
Robust small area estimation under
spatial non-stationarity for unit-level models

Theory and Empirical Results

By
Claudia Baldermann, M.Sc.

Dissertation submitted in fulfillment of
the requirements for the degree

Dr. rer. pol.
to the

Freie Universität Berlin
School of Business & Economics

Professur für Angewandte Statistik

July 18, 2017



Claudia Baldermann, Robust Small Area Estimation under Spatial Non-
Stationarity for Unit-Level Models: Theory and Empirical Results c©

Supervisors
Prof. Dr. Timo Schmid - Freie Universität Berlin
Prof. Nicola Salvati, Ph.D. - University of Pisa

Location
Berlin

Date of defense
October 30, 2017



Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Dr. Timo
Schmid (Freie Universität Berlin, Germany). His guidance and encourage-
ment have been very valuable for the success of this project.

I am also very thankful to Prof. Nicola Salvati, PhD (University of Pisa),
for the helpful discussions on the topic of this thesis and for his important
suggestions.

Special thanks got to the InGRID program. The research leading to these
results has received support under the European Commissions’s 7th Frame-
work Programme (FP7/2013-2017) under grant agreement no312691, In-
GRID - Inclusive Growth Research Infrastructure Diffusion.

This thesis has also been supported by the DAAD-MIUR Joint Mobility
Program under the project ‘SchämA - Schätzung mehrdimensionaler Ar-
mut’, project number 57265468.

I thank my colleagues at the Chair of Statistics and the Statistical Con-
sulting Unit fu:stat (Freie Universität Berlin) for very fruitful discussions
and an enjoyable working atmosphere. Special thanks go to Dr. Sebastian
Warnholz for his invaluable review of my thesis.

Last but not least, I would like to thank my family, especially my partner,
Erik Jakob, for his constant support, and my daughter, Clara, for giving
me the distraction I needed.





Contents

1 introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I THEORY 9

2 eblup approaches in small area estimation 11
2.1 Notation and Target Quantity . . . . . . . . . . . . . . . . . 11
2.2 The Linear Mixed Model . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Best Linear Unbiased Prediction . . . . . . . . . . . . 13
2.2.2 Estimation of the Variance Parameters . . . . . . . . 14
2.2.3 Mean Squared Error Estimation . . . . . . . . . . . . 15
2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The EBLUP of the Small Area Mean . . . . . . . . . . . . . 17
2.3.1 Estimation of the Area Mean . . . . . . . . . . . . . 18
2.3.2 Mean Squared Error Estimation . . . . . . . . . . . . 19

2.4 Spatial Extensions of the EBLUP Approach . . . . . . . . . 24
2.4.1 Spatial Data Structures . . . . . . . . . . . . . . . . 24
2.4.2 The Spatial EBLUP . . . . . . . . . . . . . . . . . . 25
2.4.3 The Non-Parametric EBLUP . . . . . . . . . . . . . 26
2.4.4 The Geographically Weighted EBLUP . . . . . . . . 29

2.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . 33

3 robust extensions to eblup approaches 35
3.1 The Robust EBLUP of the Small Area Mean . . . . . . . . . 35

3.1.1 Solving the Robust Estimation Equations . . . . . . . 38
3.1.2 Bias Correction . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Mean Squared Error Estimation . . . . . . . . . . . . 41

3.2 Robust Extensions to Spatial EBLUP Approaches . . . . . . 53
3.2.1 The Robust Spatial EBLUP . . . . . . . . . . . . . . 53
3.2.2 The Robust Non-Parametric EBLUP . . . . . . . . . 55

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 the robust geographically weighted eblup 59
4.1 Estimation of the Small Area Mean . . . . . . . . . . . . . . 59
4.2 Mean Squared Error Estimation . . . . . . . . . . . . . . . . 64

4.2.1 Based on the Pseudo-Linearization Approach . . . . . 64

I



Contents

4.2.2 Based on the Linearization Approach . . . . . . . . . 70
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 saeRGW: A Package for (Robust) Small Area Esti-
mation under Spatial Non-Stationarity . . . . . . . . 81

4.3.2 Further Developments . . . . . . . . . . . . . . . . . 89
4.4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . 90

II EMPIRICAL RESULTS 93

5 model-based simulation 95
5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Parameter Estimation under the GWLMM . . . . . . . . . . 97
5.3 Performance of the Small Area Means . . . . . . . . . . . . . 101

5.3.1 Performance Measures . . . . . . . . . . . . . . . . . 101
5.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . 102

5.4 Performance of the MSE Estimates . . . . . . . . . . . . . . 107
5.4.1 Performance Measures . . . . . . . . . . . . . . . . . 108
5.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . 109

5.5 Stability and Calculation Times . . . . . . . . . . . . . . . . 112
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 design-based simulation 115
6.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Model Specifications . . . . . . . . . . . . . . . . . . 117
6.2.2 Model Diagnostics . . . . . . . . . . . . . . . . . . . 118
6.2.3 Small Area Estimates . . . . . . . . . . . . . . . . . . 122

6.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . 127
6.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . 127

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 conclusion 135
7.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . 137

bibliography 139

appendix a 149

appendix b 153

abstract 157

zusammenfassung 158

II



List of Figures

1.1 Average quoted apartment net rents per sqm in urban plan-
ning areas of Berlin. Data source: empirica-database (empirica-
systeme.de). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1 Output of plot method for objects of class ‘gwlmm’ . . . . . 85

5.1 Coordinates of the synthetic population for the model-based
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Density plots of σ2
e for all outlier scenarios under spatial sta-

tionarity and non-stationarity. . . . . . . . . . . . . . . . . . 99
5.3 Density plots of σ2

v for all outlier scenarios under spatial sta-
tionarity and non-stationarity. . . . . . . . . . . . . . . . . . 100

5.4 Boxplots of the RB (%) and the RRMSE (%) in the spa-
tial stationary scenarios with different outlier contamination
mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Boxplots of the RB (%) and the RRMSE (%) in the spatial
non-stationary scenarios with different outlier contamination
mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Boundaries within the hierarchical LOR system of the Berlin
Senate. Data source: Berlin Senate - Department for Urban
Development and Housing. . . . . . . . . . . . . . . . . . . . 116

6.2 Spatial surface of the intercept from the GWLMM at an aver-
age apartment size of 75.55 sqm, normal standard of facilities
and normal building condition. . . . . . . . . . . . . . . . . 120

6.3 Index of spatial stationarity for the estimated coefficients of
the GWLMM. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Normal probability plots of level 1 (left) and level 2 (right)
residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Map of estimated average quoted net rent per sqm in Berlin:
(a) RGWEBLUP estimates; (b) RGWEBLUP-bc estimates. 123

6.6 Boxplots of the RB (%) and the RRMSE (%) across PGRs
in the design-based simulation. . . . . . . . . . . . . . . . . . 129

6.7 PGR-specific values of true RMSE (red line) for geograph-
ically weighted EBLUP estimators and average estimated
RMSE based on CCT (light blue line) and CCST (dark blue
line) method for MSE estimation. Areas are sorted by sample
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

III



List of Figures

6.8 PGR-specific values of true RMSE (red line) for global EBLUP
estimators and average estimated RMSE based on CCT (light
blue line) and CCST (dark blue line) method for MSE esti-
mation. Areas are sorted by sample size. . . . . . . . . . . . 132

A.1 Spatial surface of the model coefficients across Berlin from
the hedonic model for QNR based on the GWLMM. . . . . . 149

IV



List of Tables

5.1 Median values for the Min and Max of the estimated local
coefficients and under spatial stationarity and non-stationarity. 98

5.2 Median values for RB and RRMSE of estimated small area
means under spatial stationarity. . . . . . . . . . . . . . . . 103

5.3 Median values for RB and RRMSE of estimated small area
means under spatial non-stationarity. . . . . . . . . . . . . . 105

5.4 Median values of the performance measures of the RMSE
estimators under spatial non-stationarity. . . . . . . . . . . . 110

5.5 Number of converged Monte Carlo replications for scenarios
under spatial stationarity and non-stationarity. . . . . . . . . 112

5.6 Calculation time for scenarios under spatial stationarity and
non-stationarity, n = 200. . . . . . . . . . . . . . . . . . . . 113

6.1 Summary statistics for the variables in the model. . . . . . . 117
6.2 Model comparison of different hedonic price models for the

target variable QNR. . . . . . . . . . . . . . . . . . . . . . . 118
6.3 Summary statistics for the GWLMM coefficients. . . . . . . 119
6.4 Summary statistics for the estimated average quoted net rent

across PLRs. . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Results of the goodness-of-fit test. . . . . . . . . . . . . . . . 124
6.6 Summary statistics across the PLRs for the CVs obtained by

different MSE estimators. . . . . . . . . . . . . . . . . . . . 125
6.7 Summary statistics across sampled PLRs for the ratio be-

tween estimated CVs of direct estimates and robust model-
based estimators. . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Median values of RB (in %) and RRMSE (in %) for point
estimates in the designs-based simulation. . . . . . . . . . . 128

6.9 Median values of RB (in %), RRMSE (in %) and CR for the
conditional MSE estimates in the design-based simulation. . 130

6.10 Design-based simulation results: estimated variance param-
eter σv of the area specific random effects. . . . . . . . . . . 133

A.1 Model-based simulation results: Performance of RMSE esti-
mators under spatial stationarity. . . . . . . . . . . . . . . . 150

A.2 Design-based simulation results: Performance of RMSE esti-
mators for sampled areas. . . . . . . . . . . . . . . . . . . . 151

A.3 Design-based simulation results: Performance of RMSE esti-
mators for non-sampled areas. . . . . . . . . . . . . . . . . . 152

V



List of Tables

B.1 Model-based simulation results: Performance of estimated
small area means under spatially correlated random effects
with ρ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

VI



Introduction 1
By a small sample we may judge of

the whole piece.

- Miguel de Cervantes (1605)

1.1 Motivation

The demand for reliable small area statistics has increased substantially in
recent years. As an example, household characteristics such as income and
unemployment status are not equally distributed across the geography of a
country. Even within a city, the level of income can vary substantially be-
tween different neighborhoods. Thus, to develop effective policy measures
policymakers are increasingly interested in highly disaggregated information
on various crucial topics such as social and economic issues at a local level.
Population surveys are generally designed to obtain precise estimates of
the quantity of interest on an aggregated level, i.e., countries or regions.
The target quantity can, for instance, be a mean, a count or a quantile of
the variable of interest. Typically, the sample size for disaggregated levels
from population surveys are very small or even zero. Therefore, these levels
are called small areas. The term small area is not limited to geographic
entities, but can also refer to cross-classifications of subgroups of a popu-
lation, i.e., age × sex × education × income. In that case, these subgroups
are usually called small domains. When political decisions are based on
small area statistics, the bias and variability of the estimates for the target
quantity should be sufficiently small. Direct estimates, which rely only on
area-specific information, are unbiased but can produce results with high
variability in case of small sample sizes. Due to budgetary constraints, in-
creasing the sample size is usually not an option. Therefore, small area
estimation (SAE) techniques have been developed to gain reliability com-
pared to direct estimates by borrowing strength from similar domains and
additional information. Reliability refers to the precision of an estimator
and is usually measured by the mean squared error (MSE), which comprises
the bias and the variability.
One well-known SAE method is the empirical best linear unbiased predictor
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1.1 Motivation

(EBLUP) that uses the linear mixed model approach to incorporate auxil-
iary variables. Mixed models typically include area-specific random effects
that account for unexplained variation between areas. It is assumed here
that population units in different small areas are uncorrelated. In practice,
however, the boundaries of small areas can be set arbitrarily to define ad-
ministrative subregions for a population area. In that case, units that are
spatially close may be related even though they belong to different small
areas. Therefore, it can be reasonable to borrow strength over space by
integrating spatial effects into the model. As an example of spatial effects,
Figure 1.1 shows a map of the average quoted apartment net rents per
square meter (sqm) in urban planning areas of Berlin in 2015. The map
shows clusters of very high values in the city center and the south-west,
whereas there are low values at the eastern and western outskirts of Berlin.
This pattern may be due to spatial correlation among neighboring areas or
a result of spatial heterogeneity in the form of non-constant error variances
or model coefficients.

Figure 1.1: Average quoted apartment net rents per sqm in urban plan-
ning areas of Berlin. Data source: empirica-database (empirica-
systeme.de).

Spatial correlation in the data can be accounted for by allowing spatially cor-
related random effects (cf. Singh et al., 2005; Pratesi and Salvati, 2008). One
way to include the spatial heterogeneity allows the regression coefficients to
vary across the study area, which is referred to as spatial non-stationarity

2



1 Introduction

(Brunsdon et al., 1996; Fotheringham et al., 2002). In that case, the linear
mixed model can be combined with a geographically weighted regression to
produce reliable small area estimates (cf. Chandra et al., 2012).
These spatial methods for SAE extend the EBLUP approach and rely on the
assumption of normally distributed error term components. This assump-
tion can be violated in the presence outliers. Hence, it can be beneficial
to reduce the influence of outliers and use robust small area methods (cf.
Sinha and Rao, 2009; Chambers and Tzavidis, 2006). Outlier robust SAE
under spatially correlated random effects have been discussed in the liter-
ature (cf. Schmid, 2012; Schmid and Münnich, 2014; Schmid et al., 2016).
Robust SAE under spatial non-stationarity has been discussed in the con-
text of M-quantile estimation (cf. Salvati et al., 2012). The aim in this
thesis is to provide a robust EBLUP-based approach for SAE under spatial
non-stationarity.
The remainder of this introduction is organized in the following order: Sec-
tion 1.2 provides a literature overview and justifies in depth how this thesis
contributes to the field of SAE. Section 1.3 outlines the structure of this
thesis.

1.2 Related Literature

SAE methods are relevant when population parameters for areas or domains
with small or even zero sample sizes are of interest. In recent decades, the
demand for small area statistics has increased in public and private organi-
zations. The results can be used for various purposes like targeted recourse
allocation, health monitoring or poverty mapping. Methodological devel-
opments in SAE underline the increasing demand for reliable disaggregated
population estimates. The purpose of this section is to link the contribution
of this thesis to the current literature in the field of SAE. More comprehen-
sive literature overviews for SAE are provided, for instance, in Pfeffermann
(2002, 2013), Rao (2003) and Rao and Molina (2015).
SAE can be divided into design-based and model-based estimation meth-
ods. In general, design-based estimators rely on the sampling design and are
evaluated under the randomization distribution resulting from the sampling
process. In contrast, model-based methods are conditioned on the sample
and inference is conducted with respect to the underlying model (Pfeffer-
mann, 2013).
Design-based SAE methods broadly comprise direct estimators, indirect
synthetic estimators, and composite estimators. For a comprehensive re-
view of design-based methods in SAE see Lehtonen and Veijanen (2009).
Direct estimators, such as the Horvitz-Thompson (cf. Horvitz and Thomp-
son, 1952; Cochran, 1977) and the model-assisted generalized regression
(GREG) estimator (cf. Särndal et al., 1992) only use the area-specific data
from the sample. Therefore, the variance of these estimators can be unac-
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1.2 Related Literature

ceptably large in the case of small sample sizes. Indirect synthetic estima-
tors are based on implicit models and increase the effective sample size by
borrowing strength from similar areas. They can produce estimates with
higher precision but with a possibly large bias. Composite estimators are
defined as the weighted sum of an indirect synthetic and a direct estima-
tor. Therefore, they can be seen as a compromise between a large bias
of indirect synthetic estimators and a large variance of direct estimators.
The design-based indirect methods implicitly make use of statistical mod-
els that ignore unexplained between-area variations. In practice, however,
unexplained heterogeneity between different areas may be present.
Model-based SAE methods on the other hand are typically based on mixed
effects models. Mixed models include area-specific random effects that ac-
count for the between-area variation that cannot be explained by the fixed
part of the model (cf. Jiang and Lahiri, 2006). In the context of SAE
mixed models can be divided into unit-level and area-level mixed models.
Area-level models are suitable in situations where the target variable can
only be observed at small area-level (cf. Fay and Herriot, 1979) whereas
for unit-level models the target variable needs to be available for all units
(cf. Battese et al., 1988). Model-based methods for SAE rely on auxiliary
variables with good predictive power that are available in the sample and
(at least at area level) for the non-sampled population. Given these vari-
ables, model-based estimators strongly rely on the model assumptions (cf.
Pfeffermann, 2013). Based on mixed models, small area estimates can be
obtained using the empirical best unbiased predictor (EBLUP), empirical
Bayes and hierarchical Bayes methods. A comprehensive review of these
frameworks in the context of SAE is provided by Rao and Molina (2015).
Unit-level EBLUP approaches for SAE are the main subject of this thesis,
hence, Bayes methods are not discussed in further detail.
The production of reliable small area estimates is based on the availabil-
ity of accurate auxiliary information. When additional spatial information
such as coordinates and distances between small areas is available, it can be
incorporated into the model to borrow strength over space. For instance,
accounting for spatial effects can offer some gains in terms of precision.
In SAE, this has been demonstrated by several authors (cf. Pratesi and
Salvati, 2008; Longford, 2010; Chandra et al., 2012; Porter et al., 2014).
Spatial effects can be divided into spatial dependence and spatial hetero-
geneity (Anselin, 1988). When spatial dependency is present, outcomes
from different locations are related, i.e., they are spatially autocorrelated.
Spatial heterogeneity can be interpreted as structural instability such as
varying error variances or model coefficients.
One approach to incorporate the spatial correlation in the data is to allow
for spatially correlated random effects, e.g. by using conditional (CAR) or
simultaneous autoregressive (SAR) processes (cf. Cressie (1993) for SAR
and CAR models). In fact, mixed models that include area-specific random
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1 Introduction

effects usually assume that population units within an area are correlated
whereas units from different areas are uncorrelated. This assumption of in-
dependence can become implausible when similarities between population
units can be explained by spatial proximity. In that case it is very likely that
adjacent areas are more similar than distant areas. Singh et al. (2005) and
Pratesi and Salvati (2008) proposed a spatial extension of the EBLUP (SE-
BLUP) for area-level SAE under spatial dependence. Following these ideas,
Chandra et al. (2007) considered unit-level SAE under spatial dependence.
An approach to include the spatial heterogeneity assumes that the regres-
sion coefficients vary spatially across the study area which can be referred
to as spatial non-stationarity (Brunsdon et al., 1996). In particular, Chan-
dra et al. (2012) proposed a geographically weighted EBLUP (GWEBLUP)
for unit-level SAE under spatial non-stationarity. This approach combines
the geographically weighted regression (cf. Fotheringham et al., 2002) and
the mixed model approach. Chandra et al. (2015) presented a spatially
non-stationary area-level model for SAE. Alternative approaches for incor-
porating spatial effects in SAE based on non-parametric extensions to the
mixed model have been proposed by Opsomer et al. (2008) and Ugarte et al.
(2009). Here, spatial proximities in the data are captured by adding the
geographic locations (the coordinates) into the model via bivariate P-spline
smoothing (cf. Ruppert et al., 2003). P-spline models can handle situations
where the target variable is affected by a spatial trend of arbitrary form.
Opsomer et al. (2008) proposed a non-parametric EBLUP (NPEBLUP) un-
der the non-parametric spatial P-spline model for unit-level SAE. Giusti
et al. (2012) extended this idea for area-level SAE.
Approaches based on mixed models have in common that they rely on strong
distributional assumptions. In particular, the error term components are
assumed to be normally distributed. This implies that estimators evolved
under a mixed model can be strongly influenced by departures from nor-
mality. These departures can be the result of extreme observations in the
sample, so-called outliers. Chambers (1986) distinguishes between two cat-
egories of outlying observations: (i) the term representative outliers is used
to describe correctly recorded observations which are extremely different
compared to the whole sample and cannot be assumed to be unique in the
population; (ii) non-representative can be described as incorrectly recorded
observations in the sample. Outliers of the second type should be detected
and corrected in the data editing process. If these values are unique in the
population, they can be excluded from the estimation.
Outlier robust estimation methods have been vividly discussed in the field
of SAE. Sinha and Rao (2009) used influence functions to estimate robust
parameters in a linear mixed model and propose a robust EBLUP (RE-
BLUP) for SAE. Chambers and Tzavidis (2006) propose an alternative for
outlier robust SAE based on M-quantile methods which is a robust and dis-
tribution free approach for modeling the relationship between a dependent
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1.3 Outline

and a set of explanatory variables at different quantiles of the target vari-
able. Both methods, the REBLUP and the M-Quantile approach, can lead
to efficiency gains in the presence of outliers but can produce biased small
area estimators. Both ideas are developed under the assumption of non-
representative outliers, implying that all non-sampled values have to follow
the assumed robust working model and can hence be biased in the presence
of representative outliers. Chambers et al. (2014) denote such approaches as
robust projective. Dongmo-Jiongo et al. (2013) and Chambers et al. (2014)
correct for the bias of the robust small area estimators by an additional
correction term. Such bias-corrected robust estimators are denoted as ro-
bust predictive since these predict the contribution of non-sampled outliers
in the population on the target statistic (Chambers et al., 2014).
Recently, robust methods have been combined with spatial models in SAE.
In particular, Schmid and Münnich (2014) and Schmid et al. (2016) dis-
cuss robust projective and predictive estimators under spatially correlated
random effects. Rao et al. (2014) propose a REBLUP approach under semi-
parametric mixed models. Robust SAE under spatial non-stationarity has
been discussed in the context of M-Quantiles (cf. Salvati et al., 2012). Ro-
bust EBLUP-based methods for SAE under spatial non-stationarity have
not been considered in the literature so far.
As a contribution to the current literature, this thesis provides a robust ex-
tension to the GWEBLUP of Chandra et al. (2012). In particular, a robust
projective and a robust predictive version of the GWEBLUP is proposed
together with two analytic MSE estimates as measures of precision. More
precisely, conditional MSE estimation is developed based on the pseudo-
linearization approach of Chambers et al. (2011) and under the full lin-
earization approach proposed by Chambers et al. (2014). In addition, the
proposed methods are implemented using the R language (R Core Team,
2016) and provided as supplementary material to this thesis.

1.3 Outline

This thesis is organized around two main topics and is correspondingly di-
vided into two parts. Part I contains the theoretical foundations for the
proposed methodology of this thesis. Part II presents results of empirical
evaluations that assess the relative performance of the proposed estimators.
Part I consists of three chapters: Chapters 2 and 3 review the methodologi-
cal background motivating the proposed robust method that is presented in
Chapter 4. The review in Chapter 2 includes the classical unit-level EBLUP
method and its spatial extensions in SAE. These methods are based on the
linear mixed model which is introduced in Section 2.2. The EBLUP ap-
proach for SAE is introduced in Section 2.3. The EBLUP ignores spatial
effects such as spatial dependence or spatial heterogeneity. Therefore, spa-
tial extensions of the EBLUP are introduced in Section 2.4.

6



1 Introduction

The review in Chapter 3 introduces the robust EBLUP approach in Section
3.1 including bias correction and conditional MSE estimations. Robust ex-
tensions of spatial EBLUP approaches are reviewed in Section 3.2.
So far, robust EBLUP-based methods for spatial non-stationary data has
not been considered in the literature. Therefore, robust extensions of the
GWEBLUP are proposed in Chapter 4. In particular, a robust projective
and a robust predictive version of the GWEBLUP for the area mean are
presented in Section 4.1. As measures of precision, two analytic solutions
for conditional MSE estimation are presented in Section 4.2. In addition
to the theoretical presentation, the proposed estimators are implemented in
the package saeRGW which is presented in Section 4.3.
Part II consists of two chapters: a model-based simulation in Chapter 5
and a design-based simulation in Chapter 6. The model-based simulation
in Chapter 5 compares the statistical performance of the reviewed and the
proposed methods under different outlier scenarios. This includes scenarios
with and without spatial stationarity in the model coefficients. Even though
this thesis concentrates on small area statistics, robust and non-robust es-
timates of model the parameters under the geographically weighted linear
mixed model are examined in Section 5.2. The performance of the area
means is analyzed in Section 5.3 and that of the conditional MSE in Sec-
tion 5.3. The stability of the estimation and calculation times are discussed
in Section 5.5. The design-based simulation in Chapter 6 compares selected
estimators under the realistic data situation of the Berlin apartment rental
market. Here, the target statistic is the average of the quoted apartment
net rents in urban planning areas in Berlin. The chapter includes a case
study in Section 6.2 where the application of robust SAE methods under
spatial non-stationarity is justified for the underlying data situation. The
results of the simulation study are presented in Section 6.3.2. This includes
a discussion regarding the performance of the area means and the condi-
tional MSE estimates.
The main results of this thesis are summarized in Chapter 7. In addition,
open research questions are also presented here.
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Part I

Theory





EBLUP Approaches in Small
Area Estimation 2
This chapter reviews selected methods for SAE. These methods are based on
the assumptions of the linear mixed model (LMM). Therefore, the LMM is
introduced in Section 2.2. This section includes parameter estimation under
the LMM and introduces the empirical best unbiased predictor (EBLUP)
together with the mean squared error (MSE) estimation for quantities of
interest. The remaining sections review EBLUP-based small area estimators
that make use of the LMM. In particular, the EBLUP of the small area mean
is presented in Section 2.3. Thereafter, spatial extensions of the EBLUP
that make use of auxiliary geographical information are reviewed in Section
2.4. This review includes the spatial EBLUP (cf. Petrucci et al., 2005;
Pratesi and Salvati, 2008, 2009), the non-parametric EBLUP (cf. Opsomer
et al., 2008), and the geographically weighted EBLUP (cf. Chandra et al.,
2012). The latter approach is the basis for the proposed outlier robust
SAE under spatial non-stationarity. Since this method requires unit-level
information, this review is confined to unit-level models for SAE. To begin
with, the following section introduces the notation that is used throughout
this thesis and defines the target quantity.

2.1 Notation and Target Quantity

Consider a finite target population U of size N which is divided into M
disjoint small areas such that U = U1 ∪ . . . ∪ UM . The population units
are denoted by j and the small areas by i. Each small area i contains
a known number of units Ni, with N = ∑M

i=1Ni. It is further assumed
that a sample s = s1 ∪ . . . ∪ sm of size n is drawn from the population by
using a non-informative sampling design where m denotes the number of
sampled areas and ni denotes the area-specific sample size with n = ∑m

i=1 ni.
A sampling design is non-informative when population models are valid
for the population as well as the sampled observations (Pfeffermann and
Sverchkov, 2009). Let y be the characteristic of interest, where yij denotes
the realization of y for individual j in area i. The target quantity for this
thesis is the population mean ȳi of y in area i, which is defined by

ȳi = 1
Ni

∑
j∈Ui

yij. (2.1)

Note that the target quantity can be defined differently, i.e., as the popula-
tion total of the response variable. Under simple random sampling without
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2.2 The Linear Mixed Model

replacement (SRSWOR), the design-based direct Horvitz-Thompson esti-
mator of the area mean, denoted as ŷdi , is given by (cf. Horvitz and Thomp-
son, 1952; Cochran, 1977)

ŷ
d

i = 1
ni

∑
j∈si

yij. (2.2)

The sampling variability of this estimator is given by V ar(ŷdi ) = (1 −
niN

−1
i )S2

i /ni, where S2
i = ∑

j∈Ui(yij − ȳi)/(Ni − 1) denotes the variance
of the target variable in area i. An unbiased estimate of S2

i is given by
Ŝ2
i = ∑

j∈si(yij− ŷ
d

i )/(ni− 1) (cf. Lehtonen and Veijanen, 2009, p.227). Un-
der SRSWOR, the area-specific sample sizes ni can be very small or even
zero. Small sample sizes can cause the variability of ŷdi to be unacceptably
large. To achieve more accurate area-specific estimates, model-based esti-
mation techniques can be employed. Among those, the LMM proved to be
useful for developing population estimates of continuous target variables in
the context of SAE.

2.2 The Linear Mixed Model

The class of LMMs allows us to take advantage of correlated data. De-
pendencies between observations are usually induced by a hierarchical data
structure, i.e., when individual observations can be grouped into higher level
observation units. In the context of SAE, observations can be grouped to a
certain area. Due to unobserved heterogeneity between areas, the outcomes
of a target variable from individuals of the same area can be more alike
than the outcomes from different areas, i.e., observation within one area
might be correlated. LMMs can account for correlations within the data
by including random effects for higher level observation units in the model.
Detailed introductions to LMM theory and applications can be found, for
instance, in Faraway (2016) or McCulloch and Searle (2004). Following
Jiang and Lahiri (2006) a general LMM with area-level random effects can
be expressed as

y = Xβ +Zv + e, (2.3)

where

v ∼ N(0,Σv),
e ∼ N(0,Σe).

Here y denotes a (n× 1) vector of the target variable, X is a (n× p) design
matrix, which contains p explanatory variables, and β is a p-vector of fixed
effects, which describe the linear relation of the respective covariates in X

12



2 EBLUP Approaches in Small Area Estimation

with the target variable. The unexplained part in model (2.3) consists of two
components, the random effect part Zv and the (n×1) vector of individual
errors e, where Z is a (n × mq) design matrix for the (mq × 1) vector of
random effects v and q denotes the number of random parameters within v.
The included random effects add structure to the error term that accounts
for variations between areas, which cannot be explained by the fixed part
of the model. Note that in this thesis q = 1, as only random intercept
models are considered. Both, v and e, are assumed to be independently
normally distributed with a mean of zero and variance matrix Σe and Σv,
respectively. Based on model (2.3) the marginal distribution of y can be
expressed as

y ∼ N(Xβ,V ), (2.4)

where the variance matrix is given by

V (θ) = ZΣvZ
T + Σe.

The variance components, Σv and Σe, depend on a vector θ of unknown
variance parameters.

2.2.1 Best Linear Unbiased Prediction

Under model (2.3), quantities of interest for the target variable, such as the
population total or the mean for the target variable, can be expressed as a
linear combination of the model parameters β and v

µ = lTβ +mTv, (2.5)

where l and m are specified vectors and µ denotes the quantity of interest.
For known variance parameters θ, Henderson (1950) proposed the best lin-
ear unbiased predictor (BLUP) for µ, i.e., a predictor for µ, which minimizes
the MSE in the class of linear unbiased estimators. The BLUP of µ can be
expressed as

µ̃ = µ̃(θ) = lT β̃ +mT ṽ, (2.6)

where
β̃ = β̃(θ) = (XTV −1X)−1XTV −1y (2.7)

is the best unbiased estimator (BLUE) of β and

ṽ = ṽ(θ) = ΣvZ
TV −1(y −Xβ̃) (2.8)

denotes the BLUP of v. Proofs that (2.6) is the BLUP estimator for µ can
be found in Henderson (1963) and Robinson (1991). Note, that β̃ and ṽ
can be obtained by maximizing the joint density of y and v with respect
to β and v. This maximization is equivalent to maximizing the penalized

13
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likelihood function

l(β,θ) = −1
2(y −Xβ −Zv)TΣ−1

e (y −Xβ −Zv)− 1
2v

TΣ−1
v v. (2.9)

Setting the first derivatives with respect to β and v equal to zero yields the
ML estimating equations

XTΣ−1
e (y −Xβ −Zv) = 0 (2.10)

ZTΣ−1
e (y −Xβ −Zv)−Σ−1

v v = 0. (2.11)

For known θ, the solutions equations (2.10) and (2.11) are equivalent to β̃
and ṽ from (2.7) and (2.8), respectively. In Section 3.1, these estimating
equations become relevant for developing robust estimators. In practice, the
variance parameters θ are usually unknown and need to be estimated. Sub-
stituting the unknown variance parameters with suitable estimators leads
to the empirical best linear unbiased predictor (EBLUP) for µ

µ̂ = µ̂(θ̂) = lT β̂ +mT v̂. (2.12)

Here, β̂ and v̂ are defined as in (2.7) and (2.8), respectively, but with
estimated variance parameters θ̂.

2.2.2 Estimation of the Variance Parameters

There exist various methods for estimating the variance parameters θ.
Among those, the maximum likelihood (ML) and restricted maximum like-
lihood (REML) estimation are frequently applied in SAE. As the ML esti-
mation of θ becomes important in Section 3.1, where I introduce the robust
EBLUP approach, some details are provided here. In what follows, I mainly
refer to Rao and Molina (2015, Chapter 5.2.4).
Maximizing the density of y with respect to θ, which is equivalent to maxi-
mizing the log-likelihood function, would yield the ML estimates θ̂ML of θ.
Under the normality assumption stated in (2.4), the log-likelihood function
of y is given by

l(β,θ) = h− 1
2 log|V | −

1
2(y −Xβ)TV −1(y −Xβ), (2.13)

where h denotes an additive constant. Let θl be the lth element in θ. Then,
the partial derivatives of l(β,θ) with respect to θl is given by

sl(β,θ) = −1
2tr(V

−1∂V

∂θl
) + 1

2(y −Xβ)T ∂V
−1

∂θl
(y −Xβ), (2.14)

where ∂V −1/∂θl = −V −1(∂V /∂θl)V −1. Let I(θ) be the matrix of expected
second-order-derivatives of −l(β,θ). Then the element (l, k) of I(θ) is given
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2 EBLUP Approaches in Small Area Estimation

by
Il,k(β) = 1

2tr(V
−1∂V

∂θl
V −1∂V

∂θk
). (2.15)

The ML estimator of θ can be obtained iteratively using a Fisher-scoring
algorithm, where the expression

θ(t+1) = θt +
[
I(θ(t))

]−1
sl(β̃(θ(t)),θ(t)), t = 1, 2, . . . (2.16)

is updated until convergence is achieved. Note that β̃(θ(t)) is obtained by
(2.7), with θ(t) treated as a known variance parameter, where t denotes
the current iteration. At the convergence of equation (2.16), θ(t) is defined
as the ML estimate θ̂ML of θ. The ML estimator θ̂ML does not account
for the loss of degrees of freedom, due to the estimation of β̃(θ(t)), and
is therefore biased. Patterson and Thompson (1971, 1974) introduced the
unbiased REML method for the estimation of θ. The REML approach
involves transforming y, such that the likelihood of y∗ = ATy does not
depend on the fixed effects any more. Here, A is a matrix of dimension
n × (n − p) that is orthogonal to X. Maximizing the log-likelihood of y∗
with respect to θ leads to the unbiased REML estimator θ̂RM of θ. A
comprehensive overview of further methods for estimating θ can be found,
e.g., in Jiang and Lahiri (2006). Technical details on estimation methods for
the variance parameters can be found in Searle and Gruber (2016, Chapters
9 and 10).

2.2.3 Mean Squared Error Estimation

To judge the precision of an estimator it is necessary to assess its variability.
A measurement frequently used in SAE is the MSE. Let a be an arbitrary
estimator. Then, in general the MSE of a is given by

MSE(a) = V ar(a) +Bias(a)2, (2.17)

where V ar(a) denotes the variance and Bias(a) the bias of a, respectively.
Assuming that model (2.3) holds, it can be shown that the EBLUP in (2.6)
is asymptotically unbiased (cf. Kackar and Harville, 1981). Hence, under
the model, the MSE in (2.17) reduces to the variance part since the bias is
equal to zero. The MSE of the EBLUP can be derived in two steps: first,
the MSE of the BLUP assuming known variance parameters θ; secondly, a
term is added that takes the variability caused by the estimation of θ into
account. The MSE of the BLUP µ̃ in equation (2.6) can be expressed as
(cf. Rao and Molina, 2015, Chapter 5.2.2)

MSE(µ̃) = E(µ̃− µ)2 = g1(θ) + g2(θ), (2.18)
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where

g1(θ) = mT
(
Σv −ΣvZ

TV −1Σv

)
m,

g2(θ) = dT
(
XTV −1X

)−1
d.

Here, dT = lT−bX and b = mTΣvZ
TV −1. Note that g1(θ) is the variance

of µ̃ for a known β, and g2(θ) is the variance induced by the estimation of
β.
To develop an MSE for the EBLUP in equation (2.12), the variation induced
by the estimation of the variance parameters, needs to be taken into account.
Kackar and Harville (1984) showed that the MSE of the EBLUP in (2.12)
can be expressed as

MSE(µ̂) = MSE(µ̃) + E [µ̃− µ̂]2 , (2.19)

whereMSE(µ̃) is given in (2.18). Thus, approximatingMSE(µ̂) byMSE(µ̃)
can lead to an underestimation ofMSE(µ̂), especially when the last term of
(2.19) is large. In general, this term has no closed-form solution and needs
to be approximated. Kackar and Harville (1984) provide a Taylor series
approximation of that term. Based on this work, Prasad and Rao (1990)
proposed an approximation, which can be expressed as

E [µ̃− µ̂]2 ≈ tr
[
∆bTV (∆bT )Vθ̂

]
, (2.20)

where ∆bT = δbT/δθ, and Vθ̂ is the asymptotic variance matrix of θ̂. Thus,
(2.19) can be expressed as

MSE(µ̂) ≈ g1(θ) + g2(θ) + g3(θ), (2.21)

where g3(θ) equals (2.20). In practical applications, the MSE(µ̂) needs to
be estimated. According to (Rao and Molina, 2015, Chapter 5.2.6), this
can be done by substituting θ̂ for θ in equation (2.21). Datta and Lahiri
(2000) showed that this substitution will lead to approximately unbiased
estimators for g2(θ) and g3(θ). However, the estimation of g1(θ) is biased.
The bias of g1(θ̂) can be approximated by −g3(θ), when θ is obtained by
an unbiased estimator, such as the REML estimator. Thus, an unbiased
estimator for MSE(µ̂) is given by

M̂SE(µ̂) = g1(θ̂) + g2(θ̂) + 2g3(θ̂). (2.22)

When the estimation of θ is biased, as in the ML approach, the bias of θ̂
needs to be taken into account for the MSE estimation. In that case, an
estimator of MSE(µ̂) can be approximated by (cf. Prasad and Rao, 1990)

M̂SE(µ̂) = g1(θ̂) + g2(θ̂) + 2g3(θ̂)− cT (θ̂,θ)∇g1(θ̂), (2.23)
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2 EBLUP Approaches in Small Area Estimation

where cT (θ̂,θ) is an approximation of the bias of θ̂, and ∇g1(θ̂) denotes the
vector of first derivatives of g1(θ) with respect to θ, evaluated at θ̂. Proofs
for the unbiasedness of the MSE estimates in equations (2.22) and (2.23)
are provided in Das et al. (2004).

2.2.4 Discussion

The LMM is useful for modeling continuous outcome variables. In some
cases however, it might be necessary to model discrete outcomes, such as
categorial or count data. In the class of generalized linear mixed models
(GLMM) the distributional assumption for the target variable is relaxed.
Here, the target variable is assumed to follow a distribution that belongs to
the exponential family, which includes the normal, the binomial, the Pois-
son or the multinomial distribution. Detailed information on the theory
and applications of GLMMs is provided, for instance, in Jiang (2006) and
McCulloch and Searle (2004).
Under the LMM in equation (2.3), the variance matrices Σe and Σv for
the error term components have a very general form which provides some
flexibility in modeling the error term. This feature of the LMM becomes
important in Section 2.4, where selected spatial extensions of the EBLUP
approach are reviewed.
As the LMM assumes normality of the error term components, the param-
eter estimation under this model is sensitive to outliers. When it comes
to small sample sizes as in SAE, the impact of outliers on the parameter
estimation can be even more severe. In the past, estimation strategies in
the presence of outliers have been developed for special cases of the LMM.
A review of these developments is given in Chapter 3. The outlier sensi-
tivity of the LMM is also the main motivation for the proposed method in
this thesis, where an outlier robust parameter estimation for LMMs under
spatial non-stationarity is developed.

2.3 The EBLUP of the Small Area Mean

The LMM, introduced in the last section, provides a useful framework for
SAE to estimate small area statistics for continuous target variables. Using
a special case of the LMM in (2.3), Battese et al. (1988) introduced an
EBLUP for small area means based on unit-level data. Their aim was to
predict the crop area at the county level in Iowa (USA), using survey data
from the U.S. Department of Agriculture and additional satellite data.
This section provides details regarding this unit-level EBLUP approach for
SAE. This includes the estimation of the small area mean in Section 2.3.1
and its MSE estimation in Section 2.3.2.

17



2.3 The EBLUP of the Small Area Mean

2.3.1 Estimation of the Area Mean

The Battese, Harter and Fuller (BHF) model, introduced in Battese et al.
(1988), is a linear nested error regression model. This is a special case
of the LMM from (2.3), where v contains area-specific random intercepts.
Analogously to (2.3), the BHF model can be expressed as

y = Xβ +Zv + e, (2.24)

where

v ∼ N(0,Σv),
e ∼ N(0,Σe).

In this model the number of random parameters is q = 1 and thus the
dimension of Z reduces to (n×m). Without loss of generality, it is assumed
that the units are sorted by areas. In that case y = col1≤i≤mcol1≤j≤ni(yij),
X = col1≤i≤mcol1≤j≤ni(xij) and Z = col1≤i≤mcol1≤j≤ni(zij), where xij is
the vector of explanatory variables for individual j in area i, and zij the
respective vector in Z. Then Z = diag1≤i≤m(1ni), where 1ni is a vector of
ones with length ni. The variance matrix Σe can be expressed as Σe = σ2

eIn,
where σ2

e denotes the error term variance and In is an identity matrix of
dimension n. Under the assumption of independent random effects, the
variance matrix Σv simplifies to Σv = σ2

vIm, where σ2
v denotes the variance

of the random effects and Im is an identity matrix of dimension m. Under
the BHF model in (2.24) the variance matrix V = diag1≤i≤m(Vi) is a block-
diagonal matrix with Vi = σ2

eIni +σ2
v1ni1

T
ni
, where Ini is an identity matrix

of dimension ni. Let lij = xij andmij = zij. According to equation (2.12),
the EBLUP of the target variable for an individual j in area i can then be
expressed as

µ̂ij = ŷij = lTijβ̂ +mT
ijv̂ (2.25)

= xTijβ̂ + v̂i,

where β̂ and v̂ are defined as in (2.12), and v̂i denotes the area-specific
element from v̂ for area i. Assuming that model (2.24) also holds for the
non-sampled population units, the EBLUP of the small area mean ȳi in area
i can be expressed as

ŷ
EBLUP

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

ŷij

}
(2.26)

= N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ + v̂i)
}
,
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where si and ri denote the sampled and the non-sampled part in area i,
respectively. For unit-level small area models, it is generally assumed that
the explanatory variables can be observed for the samples and non-sampled
units. This assumption can be relaxed in some cases, such that only the
population means x̄i need to be known. Note that (Ni−ni)−1∑

j∈ri x
T
ijβ̂ =

x̄Tirβ̂, where x̄ir denotes the area mean of the explanatory variables from the
non-sampled part of the population. Let x̄is denote the area mean of the
explanatory variables from the sample, then x̄ir = (Nix̄i−nix̄is)/(Ni−ni).
It follows that for the EBLUP in (2.25) it is sufficient to know the area
means of the explanatory variables (cf. Rao and Molina, 2015, p.179). For
non-sampled areas the EBLUP of the area mean in (2.25) reduces to a
synthetic estimator ŷEBLUP−Syni = x̄Ti β̂ with an area-specific random effect
equal to zero.

2.3.2 Mean Squared Error Estimation

The MSE estimation introduced in Section 2.2.3 can be considered to be
unconditional in the sense that it does not depend on the realizations of
the random effects. Here, the expectation of the squared prediction error
in equation (2.18) is averaged over the assumed distribution of the random
effects. The unconditional MSE in equation (2.18) is valid under the as-
sumed model in (2.3). However, when the assumptions of this model are
violated, the unconditional MSE estimation can be biased. Hence, Cham-
bers et al. (2011) proposed a conditional MSE, which is bias-robust with
respect to model misspecifications regarding the variance parameters in the
underlying model. Their MSE is conditional in the sense that it treats
the random effects as fixed, but unknown. The unconditional MSE for the
EBLUP of the small area mean in equation (2.26) is presented in Section
2.3.2.1 followed by the conditional MSE in Section 2.3.2.2.

2.3.2.1 Unconditional Mean Squared Error Estimation

Based on the MSE estimation in equation (2.22), Prasad and Rao (1990)
proposed MSE estimates for special cases of the LMM, which are frequently
used in SAE. Among those, they provided an MSE estimate for the EBLUP
of the area mean in equation (2.26), which is based on the nested error
regression model in (2.24). The prediction error of the EBLUP in (2.26)
can be rearranged as

ŷ
EBLUP

i − yi = N−1
i

{∑
j∈si

yij +
∑
j∈ri

ŷij

}
−N−1

i

∑
j∈Ui

yij

= N−1
i

{∑
j∈ri

ŷij −
∑
j∈ri

yij

}

= (1− fi)
{
ŷir − µir − ēir

}
, (2.27)
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where µir = x̄Tirβ + vi is the true area mean, and ēir the mean of the
errors from the non-sampled units in area i. Furthermore, ŷir = µ̂ir denotes
the EBLUP of µir, with li = x̄ir and mi = zi, where zi is 1 at the ith
position and 0 otherwise. Based on the prediction error from (2.27), the
unconditional MSE of the EBLUP in (2.26) can then be expressed as

MSE(ŷEBLUPi ) = (1− fi)2
{
MSE(µ̂ir) + (Ni − ni)−1σ2

e

}
, (2.28)

where, analogously to equation (2.19), MSE(µ̂ir) is defined by

MSE(µ̂ir) = g1i(θ) + g2i(θ) + g3i(θ). (2.29)

Prasad and Rao (1990) showed that for the BHF case g1i(θ), g2i(θ) and
g3i(θ) simplify to the following terms

g1i(θ) =(1− γi)σ2
v

g2i(θ) =(x̄ir − γix̄is)T
(
XTV −1X

)−1
(x̄ir − γix̄is)

g3i(θ) =n−2
i (σ2

v + σ2
e/ni)−3

×
[
σ4
eV ar(σ̂2

v) + σ4
vV ar(σ̂2

e)− 2σ2
eσ

2
vCov(σ̂2

e , σ̂
2
v)
]
,

where γi = σ2
v(σ2

v+σ2
e/ni)−1. Expressions for the covariance Cov(σ̂2

e , σ̂
2
v) and

the variances V ar(σ̂2
e) and V ar(σ̂2

v) of σ2
e and σ2

v , respectively, are provided
in Prasad and Rao (1990). For the estimation of the unconditional MSE
in (2.29), the variance parameters σ2

e and σ2
e need to be substituted by

suitable estimates σ̂2
e and σ̂2

e , respectively. Analogously to equation (2.22)
for unbiased estimations of σ2

e and σ2
e , such as REML estimates, an unbiased

estimator for (2.29) is given by

M̂SE(µ̂ir) = g1i(θ̂) + g2i(θ̂) + 2g3i(θ̂). (2.30)

For ML estimators of σ2
e and σ2

e , an unbiased estimator for (2.29) can be
obtained by

M̂SE(µ̂ir) = g1i(θ̂) + g2i(θ̂) + 2g3i(θ̂)− cT (θ̂,θ)∇g1(θ̂), (2.31)

where an expression for cT (θ̂,θ) is given in Rao and Molina (2015, Chapter
7.2.2). It follows that an unbiased estimator for the unconditional MSE in
(2.28) is given by

M̂SE(ŷEBLUPi ) = (1− fi)2
{
M̂SE(µ̂ir) + (Ni − ni)−1σ̂2

e

}
, (2.32)

where M̂SE(µ̂ir) can be obtained by equation (2.30) or (2.31) depending
on the method used for the estimation of θ̂.
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2.3.2.2 Conditional Mean Squared Error Estimation

To develop a conditional MSE for the EBLUP of the area mean in equation
(2.26), Chambers et al. (2011) proposed applying a pseudo-linearization
approach, which is based on rewriting the EBLUP estimator as a weighted
sum of the sampled values of the target variable y. Recall that the EBLUP
for the mean ȳi in area i from equation (2.26) is defined as

ŷ
EBLUP

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ + v̂i)
}
.

Given the definition of β̂ and v̂i from equation (2.25), the latter expression
can be reformulated as

ŷ
EBLUP

i = N−1
i

∑
j∈si

yij

+N−1
i

∑
j∈ri

xTij (XT V̂ −1X )−1XT V̂ −1︸ ︷︷ ︸
=A

y


+N−1

i

∑
j∈ri

zTi Σ̂vZ
T V̂ −1︸ ︷︷ ︸

=Q

(In −XA)y


= N−1

i

[
δTi + (Ni − ni)

{
x̄TriA+ zTi Q(In −XA

}]
y

= dTi y. (2.33)

Here, δi is an indicator vector of size n which is one for the sampled units
in area i and zero otherwise, and di is a vector of weights specific to area
i with ∑

j∈s dij = 1. The vector of weights di in (2.33) depends on the
estimated variance parameters θ̂. As estimates of θ itself depend on the
target variable y, this approach is called pseudo-linearization. Chambers
et al. (2011) used expression (2.33) to develop an approximation for the
conditional MSE for the EBLUP in (2.26), which can be estimated by

M̂SECCT (ˆ̄yEBLUPi ) = V̂ arv(ˆ̄yEBLUPi ) + B̂iasv(ˆ̄yi)2, (2.34)

where the first term on the right-hand side denotes an estimate for the
conditional prediction variance, and the second term denotes the squared
prediction bias of (2.26). The subscript v indicates that the terms are con-
ditioned on the realization of the random effects. According to the surnames
of the authors who contributed to Chambers et al. (2011), this MSE esti-
mator is referred to by adding the subscript CCT. Chambers et al. (2011)
showed that the conditional prediction bias can be estimated by

B̂iasv(ˆ̄yEBLUPi ) =
∑
j∈s

dijµ̂j −N−1
i

∑
j∈Ui

µ̂j, (2.35)
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where µ̂j is an unbiased linear estimator of the conditional expected value
µj = E(yj|xj,v) under model (2.24), which is defined in equation (2.25).
Following the same principal as in (2.33), µ̂j can be expressed as

µ̂j =
∑
k∈s

γkjyk = γTj y, (2.36)

where

γTj = xTj A+ zTi Q(In −XA)

is a vector of weights specific to unit j. Due to the shrinkage effect, which
can lead to biased estimates of µj, Chambers et al. (2011) recommend com-
puting µ̂j as the unshrunken version µ̂uj , which is defined as µ̂j in (2.36) but
with matrix Q replaced by Qu = (ZZT )−1ZT . Let I(j ∈ i) be an indicator
function which is equal to 1 whenever unit j is in area i. Then, an estimate
of the conditional prediction variance is given by

V̂ arv(ˆ̄yEBLUPi ) = N−2
i

∑
j∈s

{
a2
ij + (Ni − ni)n−1

}
λ̂−1
j (yj − µ̂j)2, (2.37)

with aij = Nidij − I(j ∈ i), µ̂j is defined as in (2.35), and λ̂j = 1 − 2γjj +∑
k∈s γ

2
kj is a scaling constant, specific to unit j, where the weights γkj are

defined by (2.36). Note that when µ̂j is replaced by its unshrunken version
µ̂uj , λ̂j is of order 1 +O(n−1) and can be set to λ̂j = 1.
The synthetic estimator for non-sampled areas can also be expressed in the
pseudo-linear form

ŷ
EBLUP−Syn
i = x̄T β̂ = (dSyni )Ty, (2.38)

with dSyni = AT x̄i and A defined as in (2.33). However, the conditional
MSE estimator in (2.34) is not applicable for the synthetic estimator since
equation (2.35) cannot be used for estimating the area-specific conditional
bias. Chambers et al. (2011) suggest to use the expected bias under model
(2.24) and estimate the conditional expectation of the square of this bias.
The expected bias under model (2.24) is given by

E[ŷEBLUP−Syni − ȳi] =
∑
j∈s

dSynij (xTj β + vi)− x̄Ti β − vi. (2.39)

The conditional expectation of the square of this expression is given by

Ev
{
E2[ŷEBLUP−Syni − ȳi]

}
=

∑
j∈s

dSynij (xTj β + vi)− x̄Ti β


2

+ σ2
v . (2.40)
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2 EBLUP Approaches in Small Area Estimation

Thus, for non-sampled areas the squared bias of the synthetic estimator in
(2.38) can be estimated by

B̂iasv(ŷ
EBLUP−Syn
i )2 =

∑
j∈s

dSynij (xTj β̂ + v̂ui )− x̄Ti β̂


2

+ σ̂2
v , (2.41)

where v̂ui is the unshrunken estimated random effect. The conditional MSE
of the synthetic EBLUP can be estimated using (2.34) where the conditional
bias is replaced by (2.41).
The conditional MSE based on pseudo-linearization ignores the extra vari-
ability due to the estimation of θ, and can therefore be seen as a first-order
approximation of the conditional MSE of the EBLUP. This approximation
can lead to an underestimation when the EBLUP of the area mean (2.25)
varies substantially with θ and the variability of θ̂ is large. However, the
conditional MSE presented here can easily be developed for EBLUP esti-
mators that can be written in a pseudo-linear form. Chambers et al. (2011)
emphasize that this is one main advantage of the pseudo-linearization ap-
proach compared to the unconditional MSE estimation in Section 2.3.2.1.
In Section 4.2 this advantage is used to develop a conditional MSE of the
proposed estimator in this thesis.

2.3.2.3 Alternative Methods

For complex estimators, analytic expressions for the MSE estimation can be
intractable. When analytic solutions for the MSE estimation are not avail-
able resampling methods can be applied as an alternative. A comprehensive
overview of resampling methods is given, for instance, in Efron (1982). Sev-
eral resampling methods have been proposed for the MSE estimation in
the context of SAE. Among those are the parametric bootstrap approaches
of Hall and Maiti (2006b) or Chatterjee et al. (2008), the non-parametric
bootstrap of Hall and Maiti (2006a), the semi-parametric block bootstrap
for hierarchically clustered data suggested by Chambers and Chandra (2013)
and the jackknife method of Jiang et al. (2002).
Depending on the sample size, MSE estimations based on resampling meth-
ods can be computationally demanding. With increasing computing capac-
ity, this argument becomes less important. However, since the proposed
method in this thesis is computationally very demanding, even for common
sample sizes, resampling methods are not feasible for the MSE estimation.
Therefore, they will not be discussed any further detail in this thesis. Ref-
erences will be made, though, when necessary.
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2.4 Spatial Extensions of the EBLUP Approach

This section provides an overview regarding spatial EBLUP-based estima-
tors in SAE. The EBLUP of the area mean introduced in Section 2.3 is
optimal in terms of efficiency under the assumptions of the LMM in (2.24).
However, spatial effects are ignored in the underlying model assumptions.
According to Anselin (1988, Chapter 2.2), spatial effects can be divided into
spatial dependence and spatial heterogeneity. When spatial dependency is
present, outcomes from different locations are related. Under spatial het-
erogeneity the functional forms and parameters of a model can vary with
the geographic location.
A brief introduction to spatial data structures follows in Section 2.4.1 as
well as a review of extensions to the EBLUP that account for spatial effects
in the remaining subsections. In particular, the spatial EBLUP (Petrucci
et al., 2005; Pratesi and Salvati, 2008, 2009, cf.) that accounts for spatial
dependencies by allowing for spatial autocorrelation in the random effects
is presented in Section 2.4.2. Section 2.4.3 describes the non-parametric
EBLUP of Opsomer et al. (2008) which can account for a spatial trend of un-
known functional form in the target variable. The geographically weighted
EBLUP of Chandra et al. (2012) that can capture spatial heterogeneity by
allowing the model parameters to vary over space is reviewed in Section
2.4.2. Note that the latter approach is the basis for the proposed robust
method that is presented in Chapter 4 of this thesis.

2.4.1 Spatial Data Structures

According to Cressie (1993), spatial data can be classified into three cate-
gories: (i) geostatistical data; (ii) areal data; and (iii) point pattern data.
Let D be the site where data is collected. For geostatistical data, quanti-
ties of interest can be measured continuously within the whole range of D.
For example, air pollution can be recorded at arbitrary locations within the
border of a city or a specified region. For areal data, quantities can only
be measured at a fixed set of locations, which can be defined as points or
polygons. For point data, D can be partitioned in a lattice or mosaic of
polygons, where each polygon contains at least one measurement point. A
mosaic is defined as an irregular arrangement of neighboring areas, whereas
a lattice has a rectangular arrangement. Individual income data, for in-
stance, is usually measured anonymously, such that observations cannot be
associated with a certain location or address, but to subregions of a sam-
pling area (D), e.g., municipalities. Both types, geostatistical and areal
data, provide the possibility to explore neighborhood structures which are
described by the arrangement of polygons or the distance between spatial
points. In contrast, for point pattern data, the locations of points are of
main interest. Here, D consists of locations in an area and the primary in-
terest lies in the spatial distribution of these points. An example is a forest
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(D), where each tree can be directly located. In that case the distribution
pattern of certain species of trees can be of interest (cf. Plant, 2012, Chapter
1.2).
In survey sampling, data is collected at certain locations. In SAE, the inter-
est lies in producing reliable estimates for subregions of a population, using
the survey data and additional information. Therefore, geostatistical and
areal data types are relevant in SAE as a source of such additional informa-
tion. When the survey data can be connected to spatial information, the
spatial data structure can be exploited to improve the estimates via spatial
modeling. In the remainder of this section different strategies for spatial
modeling in SAE are reviewed.

2.4.2 The Spatial EBLUP

The BHF model in (2.24) accounts for unobserved heterogeneity between
the areas by including area-specific random intercepts. By assumption,
these random effects are uncorrelated. However, when spatial correlation
between neighboring areas is present this assumption becomes implausible.
In theory, one way to take spatial dependencies into account is to include
strong covariates into the model that explain the spatial correlation. In
practice however, it can be difficult to find such covariates. In the absence
of appropriate variables it is possible to redefine the model assumptions and
include spatial dependencies into the model (cf. Molina et al., 2009). One
possible way to account for the spatial correlation is to allow for spatially
correlated random effects. Spatial correlation in the random effects can be
modeled using a simultaneous autoregressive (SAR) or a conditional autore-
gressive (CAR) process. According to Shekhar and Xiong (2007, p.1104)
the CAR model is appropriate when a first-order dependency is present,
i.e., the spatial correlation is rather local. SAR models, on the other hand,
are more suitable in situations with a spatial dependency of higher order or
a more global spatial correlation. In the context of area-level SAE, Petrucci
et al. (2005) and Pratesi and Salvati (2008, 2009) extended the random
intercept model in (2.24) by assuming a SAR process for the area-specific
random effects. Chandra et al. (2007) considered the BHF model in (2.24)
for unit-level data and extended the EBLUP from equation (2.26) to ac-
count for spatial correlation between areas in the unobserved part of the
model. The SAR process of order one for the random effects is defined by

v = ρWv + u, (2.42)

where ρ ∈ (−1, 1) describes the strength of the spatial correlation between
neighboring areas (cf. Plant, 2012, Chapter 13.3.1). Furthermore, u has
length m and is a normally distributed random variable with a mean of zero
and variance matrix Σu = σuIm. The quadratic matrix W of dimension m
describes the spatial contiguity, which is based on the spatial arrangement
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of the areas. Pratesi and Salvati (2009) defined W as a 0-1 contiguity
matrix that describes the neighborhood structure between the areas with
zero-valued elements for non-adjacent pairs of areas, and non-zero elements
for neighboring areas. According to them, this definition for W can be a
good choice for applications in SAE. Equation (2.42) can be rearranged as

v = (Im − ρW )−1u. (2.43)

It follows that the LMM with a SAR process for v can be expressed as

y = Xβ +Zv + e, (2.44)

where

v ∼ N(0,Σv),
e ∼ N(0,Σe).

Here, the variance matrix Σe is defined as in equation (2.24) and Σv is
defined by

Σv = σ2
u

[(
Im − ρW T

)
(Im − ρW )−1

]
. (2.45)

In contrast to the nested error regression model in (2.24) the variance matrix
of the composed error term V = ZΣvZ

T + Σe in model (2.44) is more
complex as it is no longer block-diagonal. Thus, the estimation of the
model parameter can be computationally more demanding. Under model
(2.44), the spatial EBLUP (SEBLUP) for the small area mean ȳi can be
expressed as

ŷ
sp

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂sp + v̂spi )
}
, (2.46)

where the superscript sp indicates that v follows the previously defined
SAR process. Analogously to the EBLUP for the small area mean in equa-
tion (2.26), the parameter estimates β̂sp and v̂sp are defined as in equation
(2.12). The unknown variance parameters σe, σu and the spatial correlation
parameter ρ can be estimated by ML or REML estimation as introduced
in Section 2.3. See Salvati (2004) for details of the ML and REML esti-
mation of these parameters. Petrucci and Salvati (2006) provide analytic
MSE estimators for the SEBLUP, based on ML and REML estimates for
the unknown variance parameters, which are equivalent to equations (2.22)
and (2.23) from Section 2.2.3, respectively. In addition, parametric and
non-parametric bootstrap procedures for MSE estimation were proposed by
Molina et al. (2009).

2.4.3 The Non-Parametric EBLUP

In the absence of variables that can explain the spatial correlation between
population units, the geographical information itself can be exploited to
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serve as a proxi-variable. By incorporating the geographical information
into the fixed part of the model, spatial trends in the target can be ac-
counted for. One approach, which can take into account a spatial trends
of arbitrary functional form, is the non-parametric EBLUP (NPEBLUP)
approach proposed by Opsomer et al. (2008), where the geographical coor-
dinates can be incorporated into the model via penalized splines (P-splines).
This method is not limited to a spatial context as it can be applied when-
ever the functional form of the relationship between the target variable and
the covariates cannot be specified in a parametric form. In what follows,
the non-parametric P-spline approach is introduced along the lines of Rup-
pert et al. (2003). Afterwards, the NPEBLUP approach is presented in the
context of SAE. In general, a relationship of unknown functional form can
be expressed as

yi = m(xi) + εi, i = 1, . . . , n, (2.47)

where m(·) denotes an unknown function, and εi is a random error term
with a mean of zero and variance σε. For a univariate vector x of the
explanatory variable x, function m(xi) can be approximated, using a spline
function with a truncated polynomial spline basis Ruppert et al. (cf. 2003,
Chapter 3):

m(x,β,γ) = β0 + β1x+ . . . βtx
t +

K∑
k=1

γk(x− κk)t+ (2.48)

with

(x− κk)t+ =

(x− κk)t for x ≥ κk

0 else.

Here t is the degree of the spline, γ = (γ1, . . . , γK)T is the coefficient vector
for the spline portion of the model, and β = (β1, . . . , βt)T are the coefficients
for the parametric part of the model. K denotes the number of fixed knots
κk < . . . < κK . In general, the knots are equally spaced at quantiles of x,
where the number of knots should be sufficient to fit equation (2.48) to the
data without overfitting. Some cross validation procedures are presented in
Ruppert (2002) for an optimal choice of K. Besides that, he offers some
guidelines for a simple default choice of K where he suggests a knot every
four observations with a maximum number of 40 knots. In the P-spline
approach, a potential overfitting is prevented by a penalty term for the
magnitude of the spline parameters γ. Here, the parameters β and γ are
chosen such that the penalized quadratic loss function

(y −m(x,β,γ))2 + λγTγ (2.49)

is minimized. In the latter expression λ denotes a fixed penalty parameter
which defines the smoothness of the spline function. The larger λ, the more
the parameters γ tend toward zero, and the more spline function (2.48) is
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reduced to its parametric part. Let X = col1≤i≤n[(1, xi, x2
i , . . . , x

t
i)], and

D = col1≤i≤n(di) with dTi = col1≤k≤K [(xi − κk)t+]. Then, solving (2.49) is
equivalent to estimating the parameters of a linear mixed model where the
parameters γ are treated as random effects, which can be expressed as (cf.
Wand, 2003):

y = Xβ+Dγ + e, (2.50)

where

γ ∼ N(0,Σγ),
e ∼ N(0,Σe).

In this model the variance matrix Σe is defined as in model (2.24) and Σγ

is defined by Σγ = σ2
γIK , where σ2

γ denotes the variance of γ and IK is an
identity matrix of dimension K. Similar to the LMM introduced in Section
2.2, the model parameters β can be obtained as in equation (2.6), with a
variance matrix V = Σe +DΣγD

T . The BLUP for γ is given by

γ̃ = ΣγD
TV −1(y −Xβ̃). (2.51)

The EBLUP γ̂ of γ can be obtained with substituting the unknown variance
parameters σγ and σe in equation (2.51) by suitable estimates. In a spatial
context xi = (xi1, xi2) has two dimensions: the longitude and latitude of
a geographical coordinate. Thus, bivariate basis functions are required for
bivariate smoothing. Ruppert et al. (2003, p.254) recommended using a
spline function with a transformed radial basis function for two or more
dimensional P-splines. In a two-dimensional case, D is defined as

D = col16i6n[C(xi − κk)
16k6K

][C(κk − κk′)
16k,k′6K

]−1/2, (2.52)

where C(r) = ||r||2 log ||r|| is the radial basis function, xi = (x1i, x2i) repre-
sents the spatial coordinates of unit i, and κk is a two-dimensional knot. For
two dimensional spline functions it is no longer possible to place the knots
at quantiles of x. The knots should rather be a subset of the observations,
which should be scattered to cover the domain. Ruppert et al. (2003, p.257)
suggest choosing the number of knots by K = max[20,min(n/4, 150)] and
applying a space-filling algorithm for the position of the knots. See, e.g.,
Nychka et al. (1998) for details on space-filling algorithms.
In the context of SAE, model (2.50) can be combined with the random in-
tercept model (2.24) to obtain the NPEBLUP proposed by Opsomer et al.
(2008). The underlying model for the NPEBLUP can be expressed as

y = Xβ +Dγ +Zv + e, (2.53)
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where

γ ∼ N(0,Σγ),
v ∼ N(0,Σv),
e ∼ N(0,Σe).

Here, matrix X contains the parametric part from the spline function in
(2.48) and additional variables that need to be included in the model. Ma-
trix D is defined as in (2.50) for the univariate case or as in (2.52) for
bivariate smoothing. The variance matrices Σe and Σe are defined as in
model (2.24) and Σγ is defined as in model (2.50). In contrast to the nested
error regression model in (2.24), the parameter vector θ = (σγ, σv, σe) con-
sists of three unknown variance parameters. These can be estimated by
applying the ML or REML approach from Section 2.2.2. The unknown
parameters β, v and γ can be estimated by applying equations (2.7),
(2.8) and (2.51), respectively, where the variance matrix V is defined by
V = Σe + DΣγD

T + ZΣvZ
T . This variance matrix is more complex

compared to model (2.24) as it is not necessarily block-diagonal any more.
Under model (2.53), the NPEBLUP for the mean ȳi in area i is defined by

ŷ
np

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂np + dTijγ̂np + v̂npi )
}
. (2.54)

where the superscript np indicates that nonlinear trends in y are taken
into account using the non-parametric approach described above. Opsomer
et al. (2008) provide an analytic MSE estimation, based on REML estimates
for the variance components, which is an extension of the MSE estimation
presented in (2.22). As an alternative to analytic MSE estimation, they also
provide a non-parametric bootstrap approach. Salvati et al. (2010) develop
a conditional MSE for the NPEBLUP based on the pseudo-linearization
approach that was reviewed in Section 2.3.2.2.

2.4.4 The Geographically Weighted EBLUP

The EBLUP approaches introduced so far, the EBLUP in (2.26), the SE-
BLUP in (2.46) and the NPEBLUP in (2.54) assume that the regression
coefficients are spatially stationary, i.e., the relationship between yij and
xij is the same for the entire target area. If this assumption is violated,
the coefficients are referred to as being spatially non-stationary and these
estimators can be inefficient. Spatial non-stationarity can be present in
the intercept and the slope coefficients, where a varying intercept can be
interpreted as a spatial trend in the target variable. Thus, when spatial
non-stationarity is only present in the intercept, the NPEBLUP approach
from the last section can be applied. Chandra et al. (2012) propose a
geographically weighted EBLUP (GWEBLUP) for SAE under spatial non-
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stationarity where all model coefficients are allowed to vary over space. The
authors employ a geographically weighted regression (GWR), a method fre-
quently used for modeling data under spatial non-stationarity (Brunsdon
et al., 1996) and combine it with the LMM approach introduced in Section
2.2. It follows a short introduction to the GWR method where I mainly
refer to Fotheringham et al. (2002). Thereafter, the GWEBLUP of the area
mean is presented in the context of SAE.
The GWR approach is based on the classical linear regression model (LM)
where all observations are assumed to be independent. The LM can be ex-
pressed as y = Xβ+ e, where in contrast to the LMM defined in equation
(2.3), there is no random effect part in the error term. By assumption, the
LM has constant model coefficients β and can therefore be seen as a global
model. In contrast, the GWR is a local approach where a separate LM
is defined for each observed location. Here, the coefficients are estimated
locally, rather than globally and can therefore vary over space with an arbi-
trary functional form. Let ui be a location in the target area associated with
individual i, which is defined by its geographical coordinates, the longitude
and the latitude. The local LM with respect to location ui is defined by

yi = xTi β(ui) + ei, i = 1, . . . , n (2.55)

where β(ui) = βi is the vector of p regression coefficients specific to location
ui, and ei is the error term with a mean of zero and variance σ2

e . Using a
weighted least squares approach, as suggested by Brunsdon et al. (1996),
the local coefficients βi can be estimated by

β̂i = (XTW−1
i X)−1XTW−1

i y. (2.56)

Here Wi = diagk∈s(wi(uk)) is a fixed matrix diagonal matrix where wi(uk)
is a weighting function that decreases as the distance between the location
of individual i and location uk increases and uk is the location associated
to individual k. One possible choice to define the geographical weights
wi(uk) is the Euclidean weighting function which is defined by wi(uk) =
exp(−1/2(di,k/b)), where b denotes a bandwidth parameter and di,k is the
spatial distance between the individual i and k. A comprehensive review
of spatial weighting functions for GWR is provided in Fotheringham et al.
(2002, Chapter 2.7.3). Most weighting functions have in common that they
depend on a bandwidth parameter b which defines the speed at which the
geographical weights decay. Note that when b goes to infinity, the weights
become constant and model (2.55) is equivalent to the global LM. One
possible choice is to define b such that it minimizes the leave-one-out cross
validation criteria which is given by

CV (b) =
∑
i∈s

(yi − ŷ6=i(b))2 (2.57)
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where ŷ6=i = xTi β̂ 6=i denotes the estimated value of yi where observation i

is omitted from the estimation process. The estimate β̂ 6=i is obtained by
equation (2.56), where the weight for the ith data point is set to zero, such
that it is omitted from the computation. Further calibration methods for
b are described in detail in Fotheringham et al. (2002, Chapter 2.7.4). The
local LM in (2.55) has the matrix representation

y = Xβi +W−1/2
i e. (2.58)

where e is the error term with a mean of zero and variance matrix Σe =
σ2
eIn. The full model, unconditional to a specific location can be expressed

as

y = (X ◦B)1p + e, (2.59)

where matrix B = col16i6n(βTi ) consists of n sets of local coefficients βi, 1p
is a p-vector of ones and ◦ denotes the element-wise product of matrices. In
a global LM, the number of parameters for the fixed model part is defined
by p. Fotheringham et al. (2002, Chapter 4.2.3) point out that in the GWR
framework the concept of the number of parameters is meaningless. They
suggest considering the effective number of parameters (pe) which varies
between p and the sample size n. When the bandwidth tends to infinity
pe ≈ p and when the bandwidth tends to zero pe ≈ n. They show that pe
is given by

pe = 2tr(H)− tr(HTH) (2.60)

where H is the n× n head matrix for mapping ŷ = Hy with row vectors

hi = xTi (XTW−1
i X)−1XTW−1

i .

To detect spatial non-stationarity, Fotheringham et al. (2002, p.92) suggest
applying an approximate likelihood ratio test. In particular, they divide
the residual sum of squares (RSS) for the global LM by that for the GWR
model and carry out an F-test on this ratio with (d1, d2) degrees of freedom
(DF). Here, d1 refers to the DF for the global LM and d2 to those of the
GWR model. Alternative goodness-of-fit test based on the RSS can be
found Leung et al. (2000).
In the context of SAE, Chandra et al. (2012), combined the GWR approach
with the LMM approach to define the GWEBLUP. To motivate a local LMM
let uij be a location in the target area, associated with individual j in area
i. Then the local LMM with respect to location uij is given by

y = Xβij +Zv +W−1/2
ij e, (2.61)
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where

v ∼ N(0,Σv),
e ∼ N(0,Σe).

In this model the variance matrices Σe and Σv are defined as in model
(2.24), βij is the vector of regression coefficients specific to location uij, and
Wij the respective spatial weighting matrix. The parameter vector θ for
the variance components is assumed to be constant for all locations. Thus,
for now, spatial non-stationarity is only allowed for the fixed regression
coefficients. Equivalently to model (2.59), the full model, unconditional to
a specific location, can be expressed as

y = (X ◦B)1p +Zv + e, (2.62)

where

v ∼ N(0,Σv),
e ∼ N(0,Σe).

Analogously to the equation (2.7), the BLUE of the local coefficients βij is
given by

β̃ij = (XTVij
−1X)−1XTVij

−1y, (2.63)

where Vij = ZΣvZ
T + σ2

eW
−1
ij is the local variance matrix of y under

model (2.61). The number of effective parameters pe for the fixed part of
the full model in (2.62) can be obtained by equation (2.60) where the row
vectors of head matrixH are replaced by hij = xTij(XTVij

−1X)−1XTVij
−1.

Analogously to equation (2.8), the BLUP of the random effect v is given by

ṽ = ΣvZ
TV −1(y − λ), (2.64)

where the projection λ is given by λ = (X ◦B̃s)1p and V = ZΣvZ
T +σ2

eIn
is the unconditional variance matrix of y from model (2.62). Matrix B̃s con-
sists of n sets of local coefficient estimates β̃ij. Note that the subscript s is
used here to emphasize that the residuals in equation (2.64), and therefore
the estimation of the random effects, depends on the local in-sample coeffi-
cients.
Under model (2.61), the GWEBLUP for the mean ȳi in area i is defined by

ŷ
gw

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
gw
ij + v̂gwi )

}
, (2.65)

where the superscript gw indicates that the parameters depend on geograph-
ical weighting. The estimates, β̂gwij and v̂gwi are obtained by the empirical
counterparts of (2.63) and (2.64), respectively, where the unknown variance
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2 EBLUP Approaches in Small Area Estimation

parameters σe and σu are replaced by estimates. These estimates can be ob-
tained by applying the ML or the REML approach from Section 2.2.2. It is
important to notice that for the GWEBLUP in (2.65) the local coefficients
βij have to be estimated for each sampled and non-sampled population unit
which makes the estimation computationally demanding. In practical ap-
plications, however, it can be unrealistic to have access to the geographical
information for the non-sampled units. In that case it is possible to use the
centroid information of the areas as an approximation of the unknown loca-
tions. Here, the coefficients are constant within an area and the GWEBLUP
for the mean ȳi in area i becomes

ŷ
gw

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
gw
i + v̂gwi )

}
. (2.66)

Details regarding the algorithms for estimating the model parameters are
provided in Chandra et al. (2012). As this algorithm is the basis for the
estimation of the proposed estimator in this thesis, it will be discussed in
more detail in Section 4.1. The authors also provide a conditional MSE
estimator for the GWEBLUP, which is based on the pseudo-linearization
approach from Section 2.3.2.2. The underlying weights that are necessary
to develop the conditional MSE are discussed in more detail in Section 4.2.1
where the same approach is applied to develop a conditional MSE for the
proposed robust extension of the GWEBLUP in equation (2.65).

2.5 Summary and Outlook

When spatial data is available, it can be exploited to improve small area
estimates via spatial modeling. Here, spatial effects are taken into account
within the model specifications. The three spatial methods described in
the last section -the SEBLUP, the NPEBLUP and the GWEBLUP- extend
the random intercept model from Section 2.3. In the SEBLUP approach,
spatial dependencies are modeled in the error term by allowing for spatially
correlated random effects. In both, the NPEBLUP and the GWEBLUP
approach, spatial effects are modeled in the fixed part of the model. For
the NPEBLUP the geographical information is added to the model as an
explanatory variable using a P-Spline approach whereas for the GWEBLUP
approach the fixed coefficients are defined locally rather than globally.
The EBLUP approaches in this chapter, the basic EBLUP in equation (2.26)
and the spatial extensions in Section 2.4, are asymptotically unbiased and ef-
ficient under the correct model specification and distributional assumption.
The assumed normality of the error term components can be violated in
the presence of outliers. Outlier robustified versions of the EBLUP in equa-
tion (2.26) have recently been investigated by several authors (cf. Sinha
and Rao, 2009; Chambers et al., 2014; Dongmo-Jiongo et al., 2013). These
developments are the main subject of the next chapter.
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Robust Extensions to EBLUP
Approaches 3
In the last chapter, selected EBLUP estimators which are based on the
LMM were reviewed in the context of SAE. In general, the LMM is based
on the normality assumption of the error term components which can be
violated in the presence of outliers. Extreme observations can have a large
influence on the parameter estimates, leading to inefficient predictions of
the area statistic. This lack of outlier robustness becomes even more severe
in small samples and hence in the context of SAE. Applying outlier robust
estimation methods is expected to yield more reliable results.
This chapter reviews robustified versions of EBLUP estimators that have
been proposed in the past. In particular, the robust EBLUP (REBLUP)
of Sinha and Rao (2009) is introduced in Section 3.1 which includes the
robust estimation process for the model parameters and a bias-corrected
version of the REBLUP (Chambers et al., 2014, REBLUP-bc). In addition,
conditional MSE estimation for the REBLUP is presented in this section.
Thereafter, robust extensions of spatial small area estimators are reviewed
in Section 3.2. This includes a robust version of the SEBLUP (Schmid
and Münnich, 2014, SREBLUP) and a robust extension of the NPEBLUP
(Rao et al., 2014, RNPEBLUP). A robust extension of the GWEBLUP
has not been considered in the literature and is proposed in Chapter 4 as
the contribution of this thesis. This chapter concludes with a discussion in
Section 3.3 about alternative approaches for robust SAE.

3.1 The Robust EBLUP of the Small Area Mean

One approach for robustifying the EBLUP from equation (2.26) was in-
troduced by Sinha and Rao (2009). The authors used formerly developed
robust estimation methods for the LMM and introduced these into the field
of SAE. It follows an outline of these underlying ideas. Thereafter, the
robust EBLUP (REBLUP) of the area mean proposed by Sinha and Rao
(2009) is introduced.
Fellner (1986) investigated robust estimations for β and v from model (2.3).
He suggested restricting the influence of extreme observations by using ro-
bust versions of the ML estimation equations (2.10) and (2.11) from Section
2.2.1 for the estimation of β and v. As a reminder, under the LMM in (2.3)
these ML estimation equations are given by

XTΣ−1
e (y −Xβ −Zv) = 0
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3.1 The Robust EBLUP of the Small Area Mean

ZTΣ−1
e (y −Xβ −Zv)−Σ−1

v v = 0.

Fellner’s robust ML equations are given by

XTΣ−1/2
e ψ(Σ−1/2

e (y −Xβ −Zv)) = 0 (3.1)
ZTΣ−1/2

e ψ(Σ−1/2
e (y −Xβ −Zv))−Σ−1/2

v ψ(Σ−1/2
v v) = 0, (3.2)

where ψ(a) denotes an influence function. Following Fellner (1986), ψ(a)
should be defined such that it restricts ψ(a) to be smaller in absolute values
than a for very large values of a. Furthermore, it should approximate a
when a is sufficiently small, i.e., when it is not an outlier. A popular choice
for ψ(a) is Huber’s influence function, which is defined as

ψ(a) = amin(1, c/|a|), (3.3)

where c is a tuning constant that defines the strength of the restriction
(Huber, 1964). For very small values of c, the estimator is very robust as
the share of restricted observations is high. When c grows large, fewer ob-
servations are restricted and the estimator becomes less robust. A common
choice is to set c equal to 1.345.
For known variance parameters θ, robust estimates for β and v are obtained
by finding solutions for (3.1) and (3.2), respectively. Chambers et al. (2014)
note that the usefulness of these estimating equations is limited, unless ro-
bust estimates of θ can be defined.
Huggins (1993) defines a different set of robust ML estimates by maximizing
the log-likelihood stated in equation (2.13) with respect to β and θ. Setting
the first derivatives with respect to β and θ equal to zero yields the ML
estimating equations

XTV −1(y −Xβ) = 0 (3.4)

−1
2tr(V

−1∂V

∂θl
)− 1

2(y −Xβ)T ∂V
−1

∂θl
(y −Xβ) = 0, (3.5)

where θl denotes the lth element of θ. Huggin’s robust versions of these
estimation equations are defined as

XTV −1/2ψ(z) = 0 (3.6)

−1
2tr(K1V

−1∂V

∂θl
) + 1

2ψ(z)TV −1/2∂V

∂θl
V −1/2z = 0, (3.7)

where z = V −1/2(y−Xβ) is a vector of standardized residuals, and K1 =
E(aψ(a)T ) with a ∼ N(0, In) being standard normally distributed. Based
on Huggin’s estimating equations Richardson and Welsh (1995) propose
several modifications for the robust ML estimating equation of the variance
parameter θ in (3.7). Among those, they suggest solving the robust ML

36



3 Robust Extensions to EBLUP Approaches

estimating equation

−1
2tr(K2V

−1∂V

∂θl
) + 1

2ψ(z)TV −1/2∂V

∂θl
V −1/2ψ(z) = 0, (3.8)

for finding a robust estimator of θ. Here K2 = E(ψ(a)ψ(a)T ) with a ∼
N(0, In). The authors called the solution of equation (3.8) robust ML Pro-
posal II, as it can be seen as a generalization of Huber’s Proposal 2 (cf.
Huber, 1964).
For developing the REBLUP in the context of SAE, Sinha and Rao (2009)
build on the results presented above. In their approach, they apply robust
ML estimating equations in two steps: (1) obtain robust estimates for the
model parameters β and θ simultaneously by solving modified versions of
equations (3.6) and (3.8) using an iterative algorithm; (2) insert the esti-
mates from step one into Fellner’s equation (3.2) to obtain robust estimates
for v iteratively. For step one the robust ML estimation equations in (3.6)
and (3.8) are replaced by the modified estimating equations

XTV −1U 1/2ψ(r) = 0 (3.9)

−1
2tr(KV

−1∂V

∂θl
) + 1

2ψ(r)TU 1/2V −1∂V

∂θl
V −1U 1/2ψ(r) = 0. (3.10)

Here, r = U−1/2(y − Xβ) is a vector of standardized residuals, K is a
diagonal matrix with K = E(ψ2(a))In, where a follows a standard normal
distribution and ψ is Huber’s influence function, as defined in (3.3). Matrix
U is a diagonal matrix with U = diag(V ). In contrast to the robust
estimating equations in (3.6) and (3.8) where matrix V −1/2 is used for
normalizing the residuals, Sinha and Rao (2009) simplify the normalization
by using matrix U−1/2 instead. This replacement can lead to a stabilization
of the parameter estimation. Further details on the estimation process are
presented below. Given robust estimates for β and v, Sinha and Rao (2009)
suggest plugging these into the EBLUP from equation (2.26) to obtain the
REBLUP. Thus, under model (2.24) the REBLUP for the mean ȳi in area
i is defined by

ŷ
ψ

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ψ + v̂ψi )
}
, (3.11)

where the superscript ψ indicates that the estimates β̂ψ and v̂ψ depend on
the influence function ψ. Analogously to the EBLUP of the area mean, the
REBLUP in (3.11) reduces to a synthetic estimator ŷψ,syni = x̄Ti β̂

ψ with an
area-specific random effect equal to zero for non-sampled areas.
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3.1 The Robust EBLUP of the Small Area Mean

3.1.1 Solving the Robust Estimation Equations

Sinha and Rao (2009) suggest using the Newton-Raphson algorithm to si-
multaneously solve equations (3.9) and (3.10) to obtain robust parameter
estimates of β and θ, respectively. This algorithm turns out to be un-
stable when the starting values for β and θ differ substantially from the
true values (cf. Rao and Molina, 2015, Chapter 7.4.1). As an alternative to
the Newton-Raphson method a fixed point algorithm has been developed
by Chatrchi (2012) that solves equation (3.10) to obtain θ̂ψ. In addition,
Schoch (2012) suggests an iteratively re-weighted least squares (IRWLS) al-
gorithm for solving equation (3.9) to obtain β̂ψ. To obtain robust estimates
for v, given β̂ψ and v̂ψ, Sinha and Rao (2009) applied the Newton-Raphson
algorithm which yields stable results (cf. Rao and Molina, 2015, p.196).
The fixed point algorithm, the IRWLS algorithm and the Newton-Raphson
algorithm are described in the following as strategies to obtain robust esti-
mates for θ, β and v, respectively. These algorithms are also relevant for
the proposed method of this thesis (Chapter 4) as they are applied for the
parameter estimation in the robustified version of the GWEBLUP.

3.1.1.1 Solving for θ

To develop a fixed-point algorithm for the approximation of θ = (σ2
e , σ

2
v)T it

is necessary to find an expression of the form θ = f(θ), where f(·) is an arbi-
trary continuous function. The fixed point algorithm, developed by Chatrchi
(2012) is based on reformulating equation (3.10) as a system of equations.
Using the fact that tr(KV −1(∂V /∂θl)) = tr(KV −1(∂V /∂θl)V −1V ) with
(∂V /∂σ2

e) = In and (∂V /∂σ2
v) = ZZT , the robust ML estimating equation

in (3.10) can be expressed as

tr

(
KV −1InV

−1(In ZZT )
(
σ2
e

σ2
v

))
= a1(θ)

tr

(
KV −1ZZTV −1(In ZZT )

(
σ2
e

σ2
v

))
= a2(θ),

with

a1(θ) = ψ(r)TU 1/2V −1InV
−1U 1/2ψ(r)

a2(θ) = ψ(r)TU 1/2V −1ZZTV −1U 1/2ψ(r).

This equation system can be expressed as θ = A(θ)−1a(θ), where a(θ) =
(a1(θ), a2(θ))T and

A(θ) =
 tr (KV −1InV

−1In) tr
(
KV −1InV

−1ZZT
)

tr
(
KV −1ZZTV −1In

)
tr
(
KV −1ZZTV −1ZZT

) .
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The fixed-point iterations for θ are given by

θ(t+1) = A(θ(t))−1a(θ(t)), t = 1, 2, . . . (3.12)

To obtain a robust estimate of θ, the latter expression is updated until con-
vergence is achieved.

3.1.1.2 Solving for β

The approximation of β is very similar to the process described above. It
is based on rewriting the robust ML estimation equation in (3.9) as

XTV −1U 1/2DU−1/2(y −Xβ) = 0. (3.13)

Here,D = D(β) is an n×n diagonal matrix with the jth diagonal elements
defined as dj = ψ(rj)/rj, where rj represents the jth element of the stan-
dardized residuals r. It follows that β can be approximated by repeatedly
evaluating the fixed-point expression

β(t+1) = (XTV −1D(β(t))X )−1XTV −1D(β(t))y, t = 0, 1, 2, . . . (3.14)

until convergence is reached. The latter expression is equivalent to the
IRWLS algorithm, suggested by Schoch (2012). Let X̃ = D1/2U 1/2V −1X
and ỹ = D1/2U 1/2V −1y be transformations ofX and y, respectively. Then
equation (3.14) can be expressed as an iteration of IRWLS algorithm

β(t+1) =
[
(X̃(t))TX̃(t)

]−1
(X̃(t))T ỹ(t), t = 0, 1, 2, . . . (3.15)

To obtain a robust estimate of β, the latter expression is updated until
convergence is achieved.

3.1.1.3 Solving for v

To develop the Newton-Raphson algorithm for the approximation of v let
∆(v) be Fellner’s robust ML estimation equation (3.2). Then, the iterations
can be expressed as

v(t+1) = v(t) −∆′(v(t))−1∆(v(t)), t = 1, 2, . . . (3.16)

where ∆′(v(t)) is the derivative of ∆(v) with respect to v evaluated at v(t).
The derivative ∆′(v) is given by

∆′(v) = ZTΣ−1
e ψ′(Σ−1/2

e (y −Xβ −Zv)︸ ︷︷ ︸
=t

)Z −Σ−1
v ψ′(Σ−1/2

v v︸ ︷︷ ︸
=l

)

= ZTΣ−1
e ψ′(t)Z −Σ−1

u ψ′(l), (3.17)
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3.1 The Robust EBLUP of the Small Area Mean

where ψ′(t) = diagn[I(−c < t < c)] and ψ′(l) = diagm[I(−c < l < c)] are
diagonal matrices of dimension n and m, respectively, and c denotes the
tuning constant. When the proportion of outliers is large, the diagonals
of ψ′(t) and ψ′(l) can be very sparse. This can cause the convergence of
expression (3.16) to fail when using the Newton-Raphson algorithm. To en-
hance stability of the iterative process, it can be advisable to replace ∆′(v(t))
with its expectation, which would lead to the Fisher scoring algorithm (cf.
Jennrich and Sampson, 1976). Let A(v) be the expectation of ∆′(v), which
is given by

A(v) = ZTΣ−1
e E [ψ′(t)]Z −Σ−1

u E [ψ′(l)] , (3.18)

where E [ψ′(t)] and E [ψ′(l)] are diagonal matrices of dimension n and m,
respectively, with a constant diagonal element. Under model (2.24), t and l
are standard normally distributed. The elements are then given by E[−c ≤
t, l ≤ c] = 2Φ(c)− 1, where Φ denotes the cumulative distribution function
of the standard normal distribution. The iterations of the Fisher scoring
algorithm are defined by

v(t+1) = v(t) −A(v(t))−1∆(v(t)), t = 1, 2, . . . (3.19)

To obtain a robust estimate of v, the latter expression is updated until
convergence is achieved.

3.1.2 Bias Correction

Sinha and Rao (2009) conducted a simulation study to examine the prop-
erties of their proposed estimator from equation (3.11) in the presence of
outliers. Here, they generated populations with different specifications for
the outlier distribution, which all had in common that the outliers were gen-
erated symmetrically around zero. The REBLUP of the area mean appeared
to perform well in terms of bias and efficiency under their specifications. Ac-
cording to Chambers et al. (2014) this estimator can be referred to as being
robust projective because it replaces outlying sample values with estimates
which are expected under the working model. This implies that departures
from the model assumptions caused by outliers should only be present in
the sample and not in the non-sampled part of the population. Thus, the
non-sampled population units are assumed to follow model (2.24), unless
departures from that model vary around zero, which is the case for sym-
metric outliers. However, in the presence of non-symmetric outliers with an
expected value different from zero, the REBLUP of Sinha and Rao (2009)
can be biased (Chambers et al., 2014; Dongmo-Jiongo et al., 2013).
To account for non-symmetric outliers in the population Chambers (1986)
suggested adding a bias correction to robust projective estimators, which
accounts for the contribution of population outliers to the population pa-
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rameter of interest. These bias-corrected robust estimators are referred to
as being robust predictive. Following this idea, Chambers et al. (2014) intro-
duced a robust predictive extension of the REBLUP (REBLUP-bc) which
is given by

ˆ̄yψ−bci = ˆ̄yψi + bci, (3.20)

with
bci =

(
Ni − ni
Ni

)
n−1
i

∑
j∈si

ωiψb

{
(yij − xijβ̂ψ − v̂iψ)/ωi

}
.

Here ωi is a robust scale estimator, given by the median absolute deviation
of the residuals in area i. The function ψb is defined by Huber’s influence
function in (3.3) with a tuning constant b > c, implying that ψb is less
restrictive than ψ in equation (3.11). The additional term bci is an area-
specific estimate of the prediction bias and can be considered as a local
bias correction. Thus, for non-sampled areas, a bias correction based on
equation (3.20) is not possible. If ni is very small the variability of this bias
correction can be high (Rao and Molina, 2015, p.196).
Dongmo-Jiongo et al. (2013) mention that the estimator in (3.20) may still
be biased. They argue that the bias correction depends only on the local
information in area i, whereas the robust estimators β̂ψ and v̂ψ are influ-
enced by all sampled units. Dongmo-Jiongo et al. (2013) propose two fully
bias-corrected robust estimators for the area mean that make use of the
residuals from all areas in the sample. In their first approach, they show
that the EBLUP in equation (2.25) can be decomposed into a sum of the
REBLUP in equation (3.11) and a correction term that quantifies the pre-
diction bias from using the REBLUP instead of the unbiased EBLUP for
the prediction of the area mean. Following the ideas of Chambers (1986),
they define a robust predictive estimator for the area mean by robustifying
this correction term using Huber’s influence function. In their second ap-
proach the correction term is based on the conditional prediction bias for
the estimation of the area mean. For the proposed method in Chapter 4, a
fully bias-corrected estimation of the population parameters has not been
considered yet. Therefore, a further description of this method is dispensed
at this point. For detailed information on fully bias-corrected estimators I
refer to Dongmo-Jiongo et al. (2013) and Rao and Molina (2015, Chapter
7.4.1) and the literature cited there.

3.1.3 Mean Squared Error Estimation

A robust estimation of the small area mean also requires MSE estimates as a
measure of precision for the point estimates. For the MSE estimation of the
REBLUP in (3.11), Sinha and Rao (2009) propose a parametric bootstrap
method that is based on the robust estimates β̂ψ and θ̂ψ for generating the
bootstrap populations. Dongmo-Jiongo et al. (2013) note that using robust
estimators for the bootstrap population that do not reflect all population
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units can lead to poor results in the sense that the MSE can be negatively
biased. They propose a parametric bootstrap method that is based on the
robust coefficient estimates β̂ψ, but non-robust estimates for the variance
parameters. However, this can lead to a positive bias for the MSE estima-
tion. Chambers et al. (2014) proposed two analytic methods of MSE esti-
mation for robust predictors. First, they adopted the pseudo-linearization
of Chambers et al. (2011) to obtain a conditional MSE estimator for the ro-
bust projective REBLUP in (3.11). They use the same approach to obtain a
conditional MSE estimator for the robust predictive REBLUP-bc in (3.20)
as well. As mentioned in Section 2.3.2.2, the conditional MSE based on
pseudo-linearization ignores the extra variability due to the estimation of θ,
and can therefore be seen as a first-order approximation for the conditional
MSE of the REBLUP or the REBLUP-bc, respectively. Hence, Chambers
et al. (2014) also proposed a second-order approximation of the conditional
MSE for the REBLUP that is based on a linearization of the conditional
prediction variance. In addition, they showed adjustments of this approach
to obtain a conditional MSE for the robust predictive REBLUP-bc.
For the proposed method in this thesis, two analytic MSE estimation meth-
ods will be provided. As these are based on the two approaches proposed by
Chambers et al. (2014), more details are provided for both methods. In par-
ticular, the conditional MSE estimation for the REBLUP and REBLUP-bc
of the area mean based on the pseudo-linearization approach is presented
in Section 3.1.3.1 followed by respective MSE estimators based on the lin-
earization approach in Section 3.1.3.2.

3.1.3.1 Based on the Pseudo-Linearization Approach

To develop a conditional MSE estimation using the pseudo-linearization
approach, Chambers et al. (2014) showed that the REBLUP of the area
mean in equation (3.11) can be rewritten as a weighted sum of the sampled
values of y

ŷ
ψ

i =
∑
j∈s

dψijyj =
(
dψi
)T
y, (3.21)

where dψi is an area-specific vector of weights defined by(
dψi
)T

= N−1
i

[
δTi + (Ni − ni)

{
x̄TriA

ψ + zTi Qψ(In −XAψ)
}]
. (3.22)

Note that dψi has the same form as the weighting vector di in equation
(2.33). Here matrix Aψ is given by

Aψ = (XT V̂ −1Û 1/2D1Û
−1/2X )−1XT V̂ −1Û 1/2D1Û

−1/2. (3.23)
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D1 is an n× n diagonal matrix which is identical to D in equation (3.13).
Matrix Qψ is given by

Qψ = (ZT Σ̂−1/2
e D2Σ̂

−1/2
e Z + Σ̂−1/2

v D3Σ̂
−1/2
v )−1ZT Σ̂−1/2

e D2Σ̂
−1/2
e , (3.24)

whereD2 andD3 are n×n and m×m diagonal matrices, respectively. The
diagonal elements d2,ij and d3,i, i = 1, . . .m are given by

d2,ij = ψ
{

(σ̂e)−1(yij − xijβ̂ − vi)
}
/
{

(σ̂e)−1(yij − xijβ̂ − v̂i)
}

and

d3,i = ψ
{

(σ̂v)−1v̂i

}
/
{

(σ̂v)−1v̂i

}
.

Given the weights in (3.22), developing the conditional MSE for the RE-
BLUP in (3.11) is straightforward. Similar to (2.34), the conditional MSE
for the REBLUP is given by

M̂SECCT (ˆ̄yψi ) = V̂ arv(ˆ̄yψi ) + B̂iasv(ˆ̄yψi )2. (3.25)

The prediction bias and the variance can be estimated by (2.35) and (2.37),
respectively, with di substituted by dψi from equation (3.22). Thus, the
conditional prediction bias can be estimated by

B̂iasv(ˆ̄yψi ) =
∑
j∈s

dψijµ̂j −N−1
i

∑
j∈Ui

µ̂j, (3.26)

where µ̂j is an unbiased linear estimator of the conditional expected value
µj = E(yj|xj,v) under model (2.24). An unbiased estimate for µj can be
expressed as

µ̂j =
∑
k∈s

γψkjyk = (γψj )Ty, (3.27)

where

(γψj )T = xTj A
ψ + zTi Qψ(In −XAψ)

is a vector of weights specific to unit j. Analogously to equation (2.35),
Qψ needs to be replaced by (ZZT )−1ZT in (3.27) to obtain an unshrunken
version of µ̂j. An estimate of the conditional prediction variance is given by

V̂ arv(ˆ̄yψi ) = N−2
i

∑
j∈s

{
(aψij)2 + (Ni − ni)n−1

}
(λ̂ψj )−1(yj − µ̂j)2, (3.28)
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where aψij = Nid
ψ
ij − I(j ∈ i) and λ̂ψj = 1 − 2γjj + ∑

k∈s γ
2
kj is a scaling

constant, specific to unit j. The weights γkj are defined by equation (3.27).
Analogously to the synthetic EBLUP of the area mean in (2.38), the syn-
thetic REBLUP can be expressed in the pseudo-linear form

ŷ
ψ,Syn

i = x̄Ti β̂
ψ = (dψ,Syni )Ty, (3.29)

with (dψ,Syni )T = x̄Ti A
ψ and Aψ defined as in (3.22). Accordingly, for non-

sampled areas the squared bias of the synthetic REBLUP can be estimated
by

B̂iasv(ŷ
ψ,Syn

i )2 =

∑
j∈s

dψ,Synij (xTj β̂ψ + v̂ψ,ui )− x̄Ti β̂ψ


2

+ (σ̂ψv )2. (3.30)

where v̂ψ,ui is the unshrunken estimated random effect. The conditional
MSE of the synthetic REBLUP can be estimated using (3.25) where the
conditional bias is replaced by (3.30).
The conditional MSE estimator for the robust predictive REBLUP-bc of the
area mean in (3.20) can be obtained by replacing the weights in dψi with
the corresponding weights for the REBLUP-bc. Let qi be a vector specific
to area i with elements

qij =


ψb(ω−1

i (yij−xij β̂ψ−v̂iψ))
ω−1
i (yij−xij β̂ψ−v̂iψ) for j ∈ si

0 else

, (3.31)

where ωi is defined as in equation (3.20). Then, the weights for the REBLUP-
bc are defined by

(
dψ,bci

)T
= N−1

i


(
δi + Ni − ni

ni
qi

)T

+
∑
j∈ri

xTij −
Ni − ni
ni

∑
j∈si

xTijqij

Aψ

+
(Ni − ni)−

Ni − ni
ni

∑
j∈si

qij

 zTi Qψ(In −XAψ)

. (3.32)

As the REBLUP-bc is an approximately unbiased estimator of the area
mean, the conditional bias in (3.25) can be omitted for the MSE estimation.
Thus, the conditional MSE for the REBLUP-bc of the area mean ȳi is given
by

M̂SECCT (ˆ̄yψ,bci ) = V̂ arv(ˆ̄yψ,bci ), (3.33)
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and conditional variance can be expressed as

V̂ arv(ˆ̄yψ,bci ) = N−2
i

∑
j∈s

{
(aψ,bcij )2 + (Ni − ni)n−1

}
(λ̂ψ,bcj )−1(yj − µ̂j)2,

(3.34)

with aψ,bcij = Nid
ψ,bc
ij − I(j ∈ i). Analogously to equation (3.28), µ̂j can

be expressed as µ̂j = ∑
k∈s γ

ψ,bc
k,j yk = (γψ,bcj )Ty, where γψ,bcj is a vector of

weights specific to unit j, given by

(γψ,bcj )T =
(
δTi + n−1

i q
)T

+
∑
j∈ri

xTij − n−1
i

∑
j∈si

xTijqj

Aψ

+
1− n−1

i

∑
j∈si

qj

 zTi Qψ(In −XAψ), (3.35)

and λ̂ψj = 1 − 2γψjj + ∑
k∈s(γψkj)2 is the scaling constant, specific to unit

j. As mentioned before, the conditional MSE based on pseudo-linearization
ignores the extra variability due to the estimation of θ, and can therefore be
seen as a first-order approximation for the conditional MSE of the REBLUP.
A second-order approximation to the conditional MSE of the REBLUP is
presented in the next section.

3.1.3.2 Based on the Linearization Approach

In their work Chambers et al. (2014) develop a second-order approximation
of the conditional MSE estimation for the REBLUP based on a linearization
of the conditional prediction variance where the linearization is conducted
in two steps. First they develop a conditional MSE for the REBLUP, as-
suming the variance parameters θ are known, i.e., for the robust BLUP
(RBLUP). In a second step they derive an additional term that accounts
for the variability caused by the estimation of the variance components. For
the review of this method, I follow these steps. The conditional MSE for
the RBLUP of the area mean can be expressed by

MSEv(ỹψi ) = V arv(ỹψi ) +Biasv(ỹψi )2. (3.36)

The conditional prediction bias can be estimated by (3.26) for sampled or
by (3.30) for non-sampled areas. Thus, an expression for the conditional
variance is needed for the estimation of the conditional MSE in (3.36).
Let β̃ψ and ṽψ denote robust estimates of β and v, respectively, where the
variance parameters θ are known. Then, the prediction error of the RBLUP
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3.1 The Robust EBLUP of the Small Area Mean

for the area mean is given by

ỹ
ψ
i − ȳi = N−1

i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̃ψ + ṽψi )
}
−N−1

i

∑
j∈Ui

yij

= N−1
i

{∑
j∈ri

(xTijβ̃ψ + ṽψi )−
∑
j∈ri

yij

}

=
(
Ni − ni
Ni

){
x̄Triβ̃

ψ + zTi ṽψ − ȳri
}
. (3.37)

Assuming independence between β and v, the conditional prediction vari-
ance of the RBLUP for the area mean is given by

V arv(ỹψi − ȳi) =(
Ni − ni
Ni

)2 {
x̄TriV arv(β̃ψ)x̄ri + zTi V arv(ṽψ)zi + V arv(ēri)

}
. (3.38)

To estimate (3.38), estimates for V arv(β̃ψ), V arv(ṽψ) and V arv(ēri) are
needed. An estimate for the last term can either be estimated using only
the area-specific sample residuals or by using the residuals from the entire
sample. Chambers et al. (2014) recommend using the latter option since
it can yield MSE estimates which are more stable when the area-specific
sample sizes are very small. Following that suggestion, V arv(ēri) can be
estimated by

V̂ arv(ẽri) = (Ni − ni)−1(n− 1)−1
m∑
i=1

∑
j∈si

(yij − xTijβ̃ψ − ṽ
ψ
i )2. (3.39)

To obtain first-order approximations for V arv(β̃ψ) and V arv(ṽψ), Cham-
bers et al. (2014) used the robust estimation equations (3.9) and (3.2),
respectively. Let α̃ = col(β̃ψ, ṽψ) be the vector of estimated fixed and ran-
dom effects, and α = col(β,v) the corresponding vector of true values under
model (2.24). Then, H(α̃) = 0 is the vector of the robust ML equations,
where

H(α) =
(
Hβ(α)
Hv(α)

)
=
(

XTV −1U 1/2ψ(r)
ZTΣ−1/2

e ψ(t)−Σ−1/2
v ψ(l)

)
. (3.40)

The vectors t and l are defined as in equation (3.17), and vector r is de-
fined as in equation (3.9). The first-order approximations for V arv(β̃ψ) and
V arv(ṽψ) are given by

V arv(β̃ψ) ≈
[
Ev(∂βHβ)−1

]
V arv (Hβ)

[
Ev(∂βHβ)−1

]T
(3.41)
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and

V arv(ṽψ) ≈
[
Ev(∂vHv)−1

]
V arv (Hv)

[
Ev(∂vHv)−1

]T
, (3.42)

respectively, with

Ev(∂βHβ) = −XV −1U 1/2RU−1/2X

Ev(∂vHv) = −ZTΣ−1/2
e TΣ−1/2

e Z −Σ−1/2
v LΣ−1/2

v

V arv (Hβ) = ν(ψ(r))XV −1UV −1X

V arv (Hv) = ν(ψ(t))ZTΣ−1
e Z.

Here c denotes the tuning constant, T = diagnEv [I(−c < t < c)], L =
diagmEv [I(−c < l < c)], and R = diagnEv [I(−c < r < c)]. Expression
ν(ψ(r)) denotes the conditional variance of ψ(r), and ν(ψ(t)) the respective
variance of ψ(t). Estimates of (3.41) and (3.42) are obtained by replacing
β and v with their estimates β̃ψ and ṽψ, respectively, leading to

V̂ arv(β̃ψ) =
[
Êv(∂βHβ)−1

]
V̂ arv (Hβ)

[
Êv(∂βHβ)−1

]T
(3.43)

and

V̂ arv(ṽψ) =
[
Êv(∂vHv)−1

]
V̂ arv (Hv)

[
Êv(∂vHv)−1

]T
, (3.44)

with

Êv(∂βHβ) = −XV −1U 1/2R̃U−1/2X

Êv(∂vHv) = −ZTΣ−1/2
e T̃Σ−1/2

e Z −Σ−1/2
v L̃Σ−1/2

v

V̂ arv (Hβ) = ν̂(ψ(r̃))XV −1UV −1X

V̂ arv (Hv) = ν̂(ψ(t̃))ZTΣ−1
e Z.

Similarly, T̃ = diagn
[
I(−c < t̃ < c)

]
, L̃ = diagm

[
I(−c < l̃ < c)

]
, and R̃ =

diagn [I(−c < r̃ < c)]. An estimator for the conditional variance ν(ψ(r̃)) is
given by

ν̂(ψ(r̃)) =
η n∑

j=1
ψ2(r̃i)

 /(n− p) (3.45)

with

η =
(
1 + pV̂ arv(ψ′(r̃))/nÊv[ψ′(r̃)]2

)
,

as a bias correction term, that was suggested by Huber (1964). An estimate
for the conditional variance ν(ψ(r̃)) is obtained by replacing r̃ with t̃ in
equation (3.45). Finally, an estimate for the conditional prediction variance
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in equation (3.38) is given by

V̂ arv
(
ỹ
ψ
i − ȳi

)
= h1i(α̃) + h2i(α̃) + h3i(α̃), (3.46)

where the first component,h1i, measures the variance, caused by the esti-
mation of the fixed regression coefficients:

h1i(α̃) =
(
Ni − ni
N2
i

)2

x̄TriV̂ arv
(
β̃ψ
)
x̄ri.

The second component, h2i, in (3.46) measures the variance caused by the
estimation of the random effects, and is given by

h2i(α̃) =
(
Ni − ni
N2
i

)2

zTi V̂ arv(ṽψ)zi.

The last term, h3i, in (3.46) measures the variance of ỹψi for known β and
v, and is given by

h3i(α̃) =
(
Ni − ni
Ni

)2
V̂ arv(ẽri).

Using equations (3.46) and (3.26), the conditional MSE of the RBLUP can
be estimated by

M̂SEv(ỹψi ) = h1i(α̃) + h2i(α̃) + h3i(α̃) + B̂iasv
(
ỹ
ψ
i

)2
. (3.47)

As noted above, equation (3.36) can be seen as a first-order approximation
for the conditional MSE of the REBLUP in equation (3.11) as it ignores
the variability induced by the estimation of the variance components θ.
By using this approximation, the conditional MSE for the REBLUP can be
underestimated. To obtain a second-order approximation for the conditional
MSE of the REBLUP, Chambers et al. (2014) suggest adding an extra term
to equation (3.36) that accounts for the variability caused by the estimation
of the variance components θ. They show that the MSE of the REBLUP
can be approximated by

MSEv(ŷ
ψ

i ) ≈MSEv(ỹψi ) + Ev
[
(ŷψi − ỹ

ψ
i )2
]
. (3.48)

The authors develop an approximation of the prediction error induced by
the estimation of θ, which is given by

ŷ
ψ

i − ỹ
ψ
i ≈

N−1
i

∑
j∈ri

zTij

 2∑
k=1

(∂θkQ) (y −Xβ) (θ̂ψk − θk). (3.49)
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Here Q is defined as in equation (3.24) but for known variance parameters.
Thus, Q can be expressed as

Q = (ZTΣ−1/2
e D2Σ

−1/2
e Z + Σ−1/2

v D3Σ
−1/2
v︸ ︷︷ ︸

=B1

)−1ZTΣ−1/2
e D2Σ

−1/2
e︸ ︷︷ ︸

=B2

= B−1
1 B2. (3.50)

Then, the derivatives of Q with respect to σv is given by

∂σvQ = −B−1
1 (∂σvB1)B−1

1 B2 (3.51)

with

∂σvB1 = −1
2Σ−1

v Σ−1/2
v D3Σ

−1/2
v − 1

2Σ−1
v Σ−1/2

v ψ′(l)Σ−1/2
v ,

where ψ′(l) is defined as in equation (3.16). The derivatives of Q with
respect to σe are given by

∂σeQ = −B−1
1 (∂σeB1)B−1

1 B2 +B−1
1 (∂σeB2) (3.52)

with

∂σeB1 = −ZTΣ−1
e Σ−1/2

e D2Σ
−1/2
e Z −ZTΣ−1

e Σ−1/2
e ψ′(t)Σ−1/2

e Z

∂σeB2 = −ZTΣ−1
e Σ−1/2

e D2Σ
−1/2
e ZTΣ−1

e Σ−1/2
e ψ′(t)Σ−1/2

e

where ψ′(t) is defined as in equation (3.16). The variance of the prediction
error in (3.49) can be approximated by

V arv(ŷ
ψ

i − ỹ
ψ
i ) ≈N−1

i

∑
j∈ri

zTij

V arv
( 2∑
k=1

(∂θkQ) (y −Xβ) (θ̂ψk − θk)
)N−1

i

∑
j∈ri

zTij

T ,
(3.53)

where

Ev
(
(yj − xjβ)(θ̂ψk − θk), (yl − xlβ)(θ̂ψg − θg)

)
≈
{

(zjv)(zlv) + σ2
eI(j = l)

}
Ev[(θ̂ψk − θk)(θ̂ψg − θg)].

Using equation (3.53), an estimate for the conditional MSE of the REBLUP
in equation (3.48) is given by

M̂SEv(ŷ
ψ

i ) = h1i(α̃) + h2i(α̃) + h3i(α̃) + h4i(α̃) + B̂ias
(
ỹ
ψ
i

)2
, (3.54)
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where h4i measures the variability caused by the estimation of the variance
components and is given by

h4i(α̃) =
N−1

i

∑
j∈ri

zTij

Υ V arv(θ̂ψ)
N−1

i

∑
j∈ri

zTij

T , (3.55)

with

Υ =
2∑

k=1

2∑
g=1

(∂θkQ)
 m∑
j=1

m∑
l=1

(zTijv)(zTilv) + σ2
eI(j = l)

 (∂θgQ)T
 .

To estimate the variance matrix V ar(θ̂) of the variance components, Cham-
bers et al. (2014) suggest using the robust estimation equations in (3.10) of
Sinha and Rao (2009), and apply a first-order approximation. Explicit for-
mulas are provided in the supplemental material to Chambers et al. (2014).
To estimate the conditional MSE from equation (3.54), the parameters ṽ
and β̃ and θ need to be replaced with v̂ψ and β̂ψ and θ̂ψ, respectively,
leading to

M̂SECCST (ŷψi ) = h1i(α̂) + h2i(α̂) + h3i(α̂) + h4i(α̂) + B̂ias
(
ŷ
ψ

i

)2
.

(3.56)

According to the surnames of the authors who contributed to Chambers
et al. (2014), I refer to their MSE estimator in (3.56) by adding the subscript
CCST.
The linearization approach can also be applied to develop a conditional MSE
estimate for the REBLUP-bc in (3.20). Again, Chambers et al. (2014) first
develop a conditional MSE for the REBLUP-bc assuming that the variance
parameter θ are known, i.e., for the RBLUP-bc. As the RBLUP-bc for the
area mean ȳi is approximately unbiased, the conditional MSE is given by

MSEv(ỹψ−bci ) = V arv(ỹψ−bci ). (3.57)

Analogously to equation (3.37), the prediction error for RBLUP-bc of the
area mean is given by

ỹ
ψ
i − ȳi =

(
Ni − ni
Ni

){
x̄Triβ̃

ψ + zTi ṽψ + (1− niN−1
i )−1b̃ci − ȳri

}
. (3.58)

The bias correction b̃ci is defined as in equation (3.1.2), but for known vari-
ance parameters θ. Chambers et al. (2014) approximate the bias correction
term by using a Taylor series approximation leading to

(1− niN−1
i )−1b̃ci ≈ n−1

i

∑
j∈si

ωiψb

{
(yij − xTijβ − vi)/ωi

}
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− (ṽψ − v)T
n−1

i

∑
j∈si

ψ′b

{yij − xTijβ − vi
ωi

}
zij


− (β̃ψ − β)T

n−1
i

∑
j∈si

ψ′b

{yij − xTijβ − vi
ωi

}
xij

 .
(3.59)

When the tuning constant b in ψb is sufficiently large the outer derivative
becomes ψ′ ≈ 1. Then, the approximation in (3.59) reduces to

(1− niN−1
i )−1b̃ci ≈ n−1

i

∑
j∈si

ωiψb

{
(yij − xTijβ − vi)/ωi

}
− (ṽψ − v)T z̄si − (β̃ψ − β)T x̄si. (3.60)

The latter expression can be inserted into the prediction error from (3.58),
leading to

ỹ
ψ−bc
i − ȳi ≈

(
Ni − ni
Ni

)(x̄ri − x̄si)T (β̃ψ − β) + (z̄ri − z̄si)T (ṽψ − v)

+ n−1
i

∑
j∈si

ωiψb

{
(yij − xTijβ − vi)/ωi

}
− ēri

. (3.61)

Note that under the nested error regression model in (2.24) z̄ri − z̄si = 0.
Thus, the conditional prediction variance of the RBLUP-bc is given by

V arv
(
ỹ
ψ−bc
i − ȳi

)
=
(
Ni − ni
Ni

)2
(x̄ri − x̄si)TV arv(β̃ψ)(x̄ri − x̄si)

+ V arv

n−1
i

∑
j∈si

ωiψb

{
(yij − xTijβ − vi)/ωi

}
+ V arv(ēri)

. (3.62)

The conditional MSE in (3.57) can be estimated by

M̂SEv(ỹψ−bci ) = hbc1i(α̃) + hbc2i(α̃) + h3i(α̃), (3.63)

where the first component, hbc1i, is given by

hbc1i(α̃) =
(
Ni − ni
Ni

)2
(x̄ri − x̄si)T V̂ arv

(
β̃ψ
)

(x̄ri − x̄si),
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the second component hbc2i arises due to the bias correction and is given by

hbc2i(α̃) =
(
Ni − ni
Ni

)2
V̂ arv

n−1
i

∑
j∈si

ωiψb

{
(yij − xTijβ − vi)/ωi

}
=
(
Ni − ni
Ni

)2
n−2

i

∑
j∈si

Êv

[
ωiψb

{
(yij − xTijβ − vi)/ωi

}]2


=
(
Ni − ni
Ni

)2
 1
ni(ni − p)

∑
j∈si

[
ωiψb

{
(yij − xTijβ̃ψ − ṽ

ψ
i )/ωi

}]2
 ,

and the third component h3i is identical to h3i from equation (3.47). Analo-
gously to equation (3.48), a second-order approximation for the conditional
MSE of the REBLUP-bc is obtained by adding an extra term that accounts
for the variability caused by the estimation of θ. Chambers et al. (2014)
show that the prediction error induced by the estimation of θ can be ap-
proximated by

ŷ
ψ−bc
i − ỹψ−bci ≈

2∑
k=1

N−1
i

∑
j∈ri

zTij (∂θkQ) (y −Xβ)

+
(
Ni − ni
Nini

)∑
j∈si

∂θk

(
ωiψb

{
(yij − xTijβ − vi)/ωi

})(θ̂k − θk).

(3.64)

An approximation for the conditional variance of the latter expression is
given by

V arv
(
ŷ
ψ−bc
i − ỹψ−bci

)
≈
(
Ni − ni
Ni

)2
ΩT
i Υ V arv(θ̂)Ωi, (3.65)

where
Ωi = z̄ri − n−1

i

∑
j∈si

ψ′b

{
(yij − xTijβ − vi)/ωi

}
zij,

and Υ is defined as in equation (3.55). When the tuning constant b is
sufficiently large, then ψ′b ≈ 1. In that case Ωi = 0 under model (2.24), and
the conditional variance in (3.65) reduces to zero. Using these results, an
estimate for the conditional MSE of the REBLUP-bc in equation (3.20) is
given by

M̂SEu(ŷψ−bci ) = hbc1i(α̃) + hbc2i(α̃) + h3i(α̃) + hbc4i(α̃), (3.66)

where hbc4i is given by (3.65). To estimate the conditional MSE in equation
(3.66) the parameters ṽψ and β̃ψ and θ in (3.66) need to be replaced by v̂ψ
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and β̂ψ and θ̂ψ, respectively, leading to

M̂SECCST (ŷψ−bci ) = hbc1i(α̂) + hbc2i(α̂) + h3i(α̂) + hbc4i(α̂). (3.67)

Chambers et al. (2014) examined the performance of their proposed con-
ditional MSE estimators in a simulation study. The overall results showed
that both approaches, the pseudo-linearization (CCT) and the linearization
(CCST), perform comparably to parametric bootstrap methods with robust
estimates for the variance components. In addition, both analytic methods
were able to track the area-specific variability of the tested estimators. How-
ever, the CCST approach appeared to be more stable compared to the CCT
approach as the variation between the iterations of the simulation study was
considerably lower for the CCST estimator of the conditional MSE.

3.2 Robust Extensions to Spatial EBLUP Approaches

The spatial extensions of the EBLUP introduced in Section 2.4 account
for different kinds of spatial effects. In particular, they extend the LMM in
(2.24) by incorporating spatial information into the model. Thus, estimated
small area means obtained by these model extensions borrow strength over
space. However, these estimators still rely on the normality assumption of
the error term components which may be violated in the presence of outliers.
Schmid and Münnich (2014) introduce a robust extension to the SEBLUP
of the area mean from equation (2.46) based on the results of Sinha and
Rao (2009). Rao et al. (2014) propose a robust extension to the NPEBLUP
from equation (2.54) under the spline nested error regression model in (2.53)
using the results of Fellner (1986) on robust mixed model equations. In this
section both approaches are reviewed: the robust SEBLUP in Section 3.2.1
and the robust NPEBLUP in Section 3.2.2. So far, robust extensions for
the GWEBLUP of Chandra et al. (2012) from Section 2.4.4 have not been
considered in the literature. Hence, robust extensions for the GWEBLUP
of the area mean are presented in the next chapter as the proposed methods
of this thesis.

3.2.1 The Robust Spatial EBLUP

Following the same principals as in Sinha and Rao (2009), Schmid and Mün-
nich (2014) propose a robust SEBLUP (SREBLUP), where they develop
robust ML estimating equations for the parameters in the LMM model in
(2.44) under spatial correlation. Under this model, maximizing the density
of y with respect to β, θ and ρ leads to these ML estimation equations:

XTV −1(y −Xβ) = 0 (3.68)

−1
2tr(V

−1∂V

∂θl
)− 1

2(y −Xβ)T ∂V
−1

∂θl
(y −Xβ) = 0 (3.69)
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−1
2tr(V

−1∂V

∂ρ
)− 1

2(y −Xβ)T ∂V
−1

∂ρ
(y −Xβ) = 0. (3.70)

To obtain robust estimates for β, θ and ρ, the equations from above were
robustified analogously to the robust ML estimation equations in (3.9) and
(3.10), leading to

XTV −1U 1/2ψ(r) = 0 (3.71)

−1
2tr(KV

−1∂V

∂θl
) + 1

2ψ(r)TU 1/2V −1∂V

∂θl
V −1U 1/2ψ(r) = 0 (3.72)

−1
2tr(KV

−1∂V

∂ρ
) + 1

2ψ(r)TU 1/2V −1∂V

∂ρ
V −1U 1/2ψ(r) = 0. (3.73)

As in Sinha and Rao (2009), Schmid and Münnich (2014) applied robust
ML equations in two steps, where they first obtain robust estimates for β, θ
and ρ simultaneously by solving (3.71), (3.72) and (3.73), using a Newton-
Raphson algorithm. Later, Schmid et al. (2016) suggest solving equation
(3.72) for θ using the fixed point algorithm, as presented in (3.12) instead
of the Newton-Raphson algorithm. At convergence, they define the spatial
robust estimators β̂ψ,sp, θ̂ψ,sp and ρ̂ψ. In a second step, β̂ψ,sp, θ̂ψ,sp and
ρ̂ψ are used to find robust estimates of v by plugging them into Fellner’s
equation (3.2), and solving it using a Newton-Raphson algorithm. Given
the robust estimates of β and v, the SREBLUP is obtained by plugging
these estimates into the SEBLUP in equation (2.46). Thus, under model
(2.44), the SREBLUP for the small area mean ȳi is defined as

ŷ
ψ,sp

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ψ,sp + v̂ψ,spi )
}
. (3.74)

Schmid et al. (2016) also proposed robust predictive versions of the robust
projective estimator above. They therefore develop bias corrections that
account for spatial correlation between the area specific random effects.
Analogously to the local bias correction of Chambers et al. (2014) in equa-
tion (3.20), they propose a robust predictive SREBLUP (SREBLUP-bc) for
the mean ȳi in area i, which is given by

ˆ̄yψ,sp−bci = ˆ̄yψi + bcspi (3.75)

with

bcspi =
(
Ni − ni
Ni

)
n−1
i

∑
j∈si

ωspi ψb

{
(yij − xijβ̂ψ,sp − v̂isp)/ωspi

}
, (3.76)

where ωspi is a robust scale estimator, given by the median absolute devia-
tion of the residuals in area i that depend on the parameters β̂ψ,sp and v̂ψ,spi .
Additionally, Schmid et al. (2016) develop fully bias-corrected, robust pre-
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dictive estimators under spatially correlated random effects following the
two approaches of Dongmo-Jiongo et al. (2013). To obtain an MSE esti-
mation Schmid et al. (2016) propose a parametric bootstrap approach that
accounts for the spatial structure in the data.

3.2.2 The Robust Non-Parametric EBLUP

Rao et al. (2014) note that the NPEBLUP of the area mean in equation
(2.54) of Opsomer et al. (2008) can be sensitive to outliers and propose
a robustified version of the NPEBLUP (RNPEBLUP). According to the
authors, the robust method of Sinha and Rao (2009) runs into difficulties
in the context of spline mixed models. This is due to the definition of the
standardized residuals r = U−1/2(y−Xβ) in the robust ML equations (3.9)
and (3.10), where the spline term Dγ from model (2.53) is not included.
Thus, applying these estimation equations to the spline LMM in (2.53)
can lead to large absolute values in r causing the restricted residuals ψ(r)
to be nearly constant. Rao et al. (2014) avoid this difficulty in a two-
step procedure where they first define robust estimation equations for the
estimation of σ2

e and σ2
v . Based on the spline LMM in (2.53), the ML

estimation equations for the estimation of β, γ and v are given by

XTΣ−1
e (y −Xβ −Dγ −Zv) = 0 (3.77)

ZTΣ−1
e (y −Xβ −Dγ −Zv)−Σ−1

v v = 0 (3.78)
DTΣ−1

e (y −Xβ −Dγ −Zv)−Σ−1
γ γ = 0. (3.79)

Using this system of equation, Rao et al. (2014) develop fixed-point equa-
tions for σ2

γ, σ2
v and σ2

e , and robustify these for σ2
v and σ2

e . Note that they
do not robustify the estimation of σ2

γ, as the spline parameters γ are not
affected by outliers. Explicit expression of the fixed-point equations for σ2

e ,
σ2
v and σ2

γ are provided in Rao et al. (2014), as their equations 21, 20 and 13,
respectively. In a second step, they apply Fellner’s robust ML estimation
equations. Under model (2.53), these are given by

XTΣ−1/2
e ψ(ε) = 0 (3.80)

ZTΣ−1/2
e ψ(ε)−Σ−1/2

u ψ(Σ−1/2
v v) = 0 (3.81)

DTΣ−1/2
e ψ(ε)−Σ−1/2

γ ψ(Σ−1/2
γ γ) = 0, (3.82)

where ε = Σ−1/2
e (y−Xβ−Dγ −Zv). Using these robust ML estimation

equations and the fixed-point equations from the first step, robust predic-
tions for γ and v and robust estimators for β,σ2

e , σ2
v and σ2

γ are obtained
simultaneously. Given robust estimates for β, γ and v, the RNPEBLUP
is obtained by plugging these estimates into the NPEBLUP in equation
(2.54). Thus, under model (2.53), the RNPEBLUP for the mean ȳi in area
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i is defined as

ŷ
ψ,np

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ψ,np + dTijγ̂ψ,np + v̂ψ,npi )
}
. (3.83)

Rao et al. (2014) proposed a parametric bootstrap approach for the MSE
estimation of the RNPEBLUP in (3.83), following the procedure, that has
been proposed by Sinha and Rao (2009) for the MSE estimation of the
REBLUP in (3.11). A robust predictive extension to the robust projective
NPEBLUP in equation (3.83) has not been developed yet, and remains an
open research question (cf. Dumitrescu, 2017).

3.3 Discussion

It is important to emphasize that all EBLUP approaches presented in Chap-
ter 2 are based on different specifications of the LMM which rely on nor-
mality assumptions for the error term components. The robust EBLUP
approaches presented in this chapter attempt to enhance the reliability of
these approaches in the presence of outliers, by restricting the influence of
extreme observation on the parameter estimation.
As an alternative estimation method that avoids the strong distributional
assumptions of the LMM, Chambers and Tzavidis (2006) introduce the M-
quantile regression of Breckling and Chambers (1988) into the field of SAE.
This approach is a generalization of the quantile regression (cf. Koenker
and Bassett, 1978) as it is flexible regarding the choice of influence func-
tion underpinning the estimation procedure. The M-quantile approach is a
robust and distribution free method for modeling the relationship between
a dependent and a set of explanatory variables at different quantiles of the
target variable. The basic idea is to estimate M-quantile coefficients for dif-
ferent quantiles of the target variable, i.e., for a fine grid of quantiles on the
(0,1) interval. For the estimation of the area mean ȳi, predictions for the
non-sampled population units are based on the average of these estimated
M-quantile coefficients in area i (cf. Rao and Molina, 2015, Chapter 7.5).
Predictions based on M-quantiles can be considered to be robust projective
as these are biased in the presence of non-symmetric outliers. Hence, bias
corrections were suggested by Tzavidis et al. (2010) and Chambers et al.
(2014) to obtain robust predictive M-quantile estimators.
Chambers et al. (2014) compare the performance of small area estimators
based on the robust projective REBLUP in (3.11) and the robust predic-
tive REBLUP-bc in (3.20) with respective M-quantile estimators (MQ and
MQ-bc). The main findings suggest that the robust predictive estimators
(REBLUP-bc and MQ-bc) are less biased than robust projective estimators
(REBLUP and MQ) in the presence of non-symmetric outliers. In addi-
tion, both robust EBLUP approaches, the REBLUP and the REBLUP-bc
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performed better in terms of efficiency compared to their M-quantile coun-
terparts.
The small area M-quantile approach of Chambers and Tzavidis (2006) has
also been investigated in the context of spatial modeling. Salvati et al.
(2009), for instance, obtain small area estimates using M-quantile coef-
ficients based on a LMM specification with spatially correlated random
effects. For non-linear relationships, Pratesi et al. (2009) develop an M-
quantile version for the non-parametric approach of Opsomer et al. (2008).
Salvati et al. (2012) specify a local M-quantile model for SAE where they ex-
plore the use of the geographically weighted regression based on M-quantile
modeling. Similar to Chandra et al. (2012), they capture spatial non-
stationarity by allowing the model parameters to vary over space using
a distance matrix that defines the geographical weights.
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The local LMM in (2.61) is defined separately for each population unit with
respect to the geographical location. Here, the local model coefficients for
a unit j in area i are estimated using spatial weights that depend on the
distances to all sampled observations. Thus, observations that have a large
distance to that unit have lower weights compared to observations that are
closer. The implication of this weighting scheme regarding the presence of
outliers is twofold: (i) extreme observations that are far away have a small
influence on the parameter estimation for unit j in area i whereas (ii) the
influence is large for extreme observations that are close. In the first case,
restricting the influence of outliers may not be crucial as the spatial weights
themselves can have a robustifying effect on the parameter estimation. In
the second case, however, the restriction becomes more important as the
spatial weights can aggravate the effect of outliers. In practice, it is difficult
to identify or even locate outliers. Hence, it can be useful to combine the
geographical weighting with an influence function that restricts the impact
of extreme observations on the parameter estimation.
Following the ideas of Sinha and Rao (2009), a robust version for the GWE-
BLUP of the area mean in (2.65) is developed in this chapter. This extends
the current literature for SAE as robust extensions for the GWEBLUP
have not been considered in the literature, so far. In particular, the ro-
bust estimation of the area mean is presented in Section 4.1 where a robust
projective GWEBLUP (RGWEBLUP) and a bias-corrected robust predic-
tive GWEBLUP (RGWEBLUP-bc) is proposed. In addition, an algorithm
for estimating the robust model parameters is provided. In Section 4.2,
the MSE estimation for the proposed estimators is presented. Based on
the pseudo-linearization and the linearization approach in Chambers et al.
(2014), two analytic MSE estimators that account for the spatial weights
in the point estimators are proposed. In addition to the theoretical deriva-
tions, the proposed methods are implemented in the package saeRGWR for
the R-language (R Core Team, 2016). In Section 4.3, the main functions of
this package are presented.

4.1 Estimation of the Small Area Mean

To develop an outlier robust parameter estimation for the GWEBLUP in
equation (2.65), the two-step procedure of Sinha and Rao (2009) described
in Section 3.1 is utilized for the local LMM in (2.61). Thus, robust ML
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4.1 Estimation of the Small Area Mean

estimating equations are applied in two steps: (1) robust estimates for θ
and the local coefficients βij are obtained simultaneously by solving modified
versions of (3.10) and (3.9), respectively, with an iterative algorithm; (2)
the estimates from step one are used to solve a modified version of Fellner’s
equation (3.2) iteratively to obtain a robust estimate for v. Under the local
LMM (2.61), maximizing the density of y with respect to βij and θ leads
to the ML estimation equations

XTV −1
ij (y −Xβij) = 0 (4.1)

−1
2tr(V

−1∂V

∂θl
)− 1

2(y −Xβ)T ∂V
−1

∂θl
(y − λ) = 0. (4.2)

To obtain robust estimates for βij and θ in step (1), these equations are
robustified analogously to the estimation equations of Sinha and Rao (2009)
in (3.9) and (3.10), leading to

XTV −1
ij U

1/2
ij ψ(rij) = 0 (4.3)

−tr(V −1∂V

∂θl
K) + ψ(τ )TU 1/2V −1∂V

∂θl
V −1U 1/2ψ(τ ) = 0. (4.4)

Here, rij = U
−1/2
ij (y − Xβij) is a vector of standardized local residuals

with Uij = diag(Vij), and τ = U−1/2(y − λ) is a vector of standardized
global residuals, where the projection λ is given by λ = (X ◦ B̃s)1p. As
there is no closed-form solution to equations (4.3) and (4.4), βij and θ are
approximated iteratively. At convergence, these approximations are defined
as the robust geographically weighted estimators β̂ψ,gwij and θ̂ψ,gw of βij and
θ, respectively. In step (2), these estimates are plugged into a modified
version of Fellner’s robust ML estimating equation (3.2) given by

ZTΣ−1/2
e ψ(Σ−1/2

e (y − λ−Zv))−Σ−1/2
v ψ(Σ−1/2

v v) = 0. (4.5)

Again, there is no closed-form solution of this equation and v is approxi-
mated iteratively. Given the robust estimates for β and v, the RGWEBLUP
of the area mean is obtained by replacing the non-robust estimates β̂gwij and
v̂gw in equation (2.65) with their robust versions β̂ψ,gwij and v̂ψ,gw. Thus,
under model (2.61), the RGWEBLUP for the mean ȳi in area i is defined
by

ŷ
ψ,gw

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
ψ,gw
ij + v̂ψ,gwi )

}
. (4.6)

In case of non-sampled areas this estimator reduces to a synthetic estimator
ŷ
ψ,gw−syn
i = N−1∑

j∈Ui x
T
ijβ̂

ψ,gw
ij with an area-specific random effect equal to

zero. When the geographical information for the non-sampled units is not
available, the centroid information of the areas can be used as an approxima-
tion for the unknown locations, similar to equation (2.66). The coefficients
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here are constant within an area and the RGWEBLUP for the mean ȳi in
area i becomes

ŷ
ψ,gw

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
ψ,gw
i + v̂ψ,gwi )

}
. (4.7)

This estimator reduces to the synthetic estimator ŷψ,gw−syni = x̄Ti β̂
ψ,gw
i in

case of non-samples areas.
The proposed RGWEBLUP of the small area mean is a robust projective es-
timator which can be biased in the presence of non-symmetric outliers as the
non-sampled population units are assumed to follow the underlying model
(2.61). In order to develop a robust predictive estimator, the local bias cor-
rection of Chambers et al. (2014) in equation (3.20) is extended to the case
of spatial non-stationarity. A robust predictive GWEBLUP (RGWEBLUP-
bc) for the mean ȳi in area i, that accounts for the geographical weights, is
given by

ˆ̄yψ,gw−bci = ˆ̄yψ,gwi + bcgwi (4.8)

with

bcgwi =
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

∑
j∈si

w̄ijω
gw
i ψb

{yij − xTijβ̂
ψ,gw
ij − v̂iψ,gw

ωgwi

}
,

where w̄ij = n−1
i

∑
l∈si wl(uij) is the average geographical weight of the sam-

pled observations in area i with respect to location uij. The robust scaling
parameter ωgwi is given by the median absolute deviation of the estimated
residuals in area i. Alternatively, w̄ij in equation (4.8) can be replaced by
the median geographical weight of the sampled observations from area i.
Note that w̄ij = 1 for all sampled observations in area i when only the cen-
troid coordinates are available. In that case, the proposed bias correction in
equation (4.8) simplifies to the non-weighted bias correction of Chambers
et al. (2014) in equation (3.20).
As previously mentioned, Dongmo-Jiongo et al. (2013) introduced an alter-
native robust predictive estimator that use a global bias correction which
is based on information from all sampled units. They notify that the local
bias correction only depends on the local information in area i, whereas the
robust estimators β̂ψ and v̂ψ are influenced by all sampled units. However,
for geographically weighted estimators as the RGWEBLUP the influence of
sampled units on the parameter estimation in area i is not constant. The
influence of sampled units outside area i rather decreases as their distance
to units in area i increases. Therefore, a local bias correction appears to be
a natural start for developing a robust predictive GWEBLUP of the area
mean. An extension of the full bias correction proposed by Dongmo-Jiongo
et al. (2013) to the case of spatial non-stationarity is not addressed here but
remains an open research question.
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4.1 Estimation of the Small Area Mean

For the estimation of the proposed estimators in (4.6) and (4.8), a modified
version of the step-wise algorithm suggested by Chandra et al. (2012) is
proposed. As mentioned above, there are no closed-form solutions for the
robust estimates of βij, θ and v. Thus, the iteration steps for approximating
the robust parameters are integrated in the step-wise estimation procedure.
First, it follows a discussion of the approximation algorithms for βij, θ and
v. Thereafter, the entire estimation procedure is presented.
For the approximation of the in-sample coefficients Bs, a local version of
the fixed-point algorithm described in Section 3.1.1.2 is applied. For that
purpose the robust ML estimation equation in (4.3) can be rewritten as

XTV −1
ij U

1/2
ij DijU

−1/2
ij (y −Xβij) = 0,

where Dij is a diagonal matrix with diag(Dij) = ψ(rij)/rij. It follows that
βij can be approximated by repeatedly evaluating the fixed-point expression

β
(t+1)
ij = (XTVij

−1D(β(t)
ij )X )−1XTV −1

ij D(β(t)
ij )y, t = 0, 1, 2, . . . (4.9)

until convergence is reached. To obtain a robust estimate of θ, equation
(4.4) is solved using the fixed-point algorithm described in Section 3.1.1.1.
As θ is assumed to be spatially stationary, the tth iteration step is given
by equation (3.12) where the vector of standardized residuals r is replaced
by τ from equation (4.4). To obtain a robust estimate for v, equation (4.5)
is solved using the Fisher scoring algorithm described in Section 3.1.1.3.
Here, the tth iteration step is given by equation (3.19). Keeping these al-
gorithms in mind, the step-wise procedure for estimating the RGWEBLUP
in equation (4.6) is defined as follows.

1: Compute all in sample distances and obtain the weighting matrix Wij

for each in-sample location.

2: Define the optimal bandwidth b by cross validation using the criterion
in equation (2.57).

3: Choose initial values B(0)
s and θ(0), preferably B̂s and θ̂ from the

non-robust GWEBLUP in (2.65).

4: Update B(t+1)
s using equation (4.9).

5: Estimate the residuals τ from equation (4.4) and update θ(t+1) using
the fixed-point expression in (3.12).

6: Return to step 4 and repeat until the following stopping criteria are
achieved:

‖β(t+1)
ij − β(t)

ij ‖1 < ε, ∀j ∈ s
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|σ2,(t+1)
e − σ2,(t)

e |/σ2,(t)
e + |σ2,(t+1)

v − σ2,(t)
v |/σ2,(t)

v < ε,

where ε is a small constant.

7: Define the estimates at convergence to be the robust ML estimators
B̂ψ,gw
s and θ̂ψ,gw.

8: Plug B̂ψ,gw
s and θ̂ψ,gw into equation (4.5) and estimate v by updat-

ing the iterations of the Fisher scoring algorithm in (3.19) until the
following stopping criterion is achieved:

‖v(t+1) − vt‖1 < ε.

9: Define the estimates at convergence to be the robust ML estimator
v̂ψ,gw.

10: Compute the out-of-sample distances for each non-sampled unit ij ∈
ri and obtain the weighting matrix Wij for each non-sampled location
ij ∈ ri, using the same weighting function as in step 1.

11: Compute V̂ij = ZΣ̂vZ
T + Σ̂eW

−1
ij for each non-sampled unit.

12: Compute the pseudo-values y∗ by

y∗ij = yij min(1,
b
√
σ̂2
v + σ̂2

e

|yij|
+ xTijβ̂ij). (4.10)

13: Substitute y with y∗ in equation (2.63) and get empirical coefficient
estimates βij for all ij ∈ ri by

β̂ψ,gwij = (XT V̂ −1
ij X)−1XT V̂ −1

ij y
∗. (4.11)

14: Compute the RGWEBLUP of the area mean using equation (4.6).

Note that in the last step, the RGEWBLUP of the area mean can be re-
placed by the RGEWBLUP-bc in (4.8) to obtain a robust predictive GWE-
BLUP. Chandra et al. (2012) suggested a similar algorithm to obtain the
GWEBLUP of the area mean in (2.65), which differs as follows: the local in-
sample coefficients in step 4 are estimated explicitly using equation (2.63);
the variance parameters in step 5 are estimated by numerically maximiz-
ing the log-likelihood (treating the fixed coefficients as known) using the
Nelder-Mead algorithm (cf. Nelder and Mead, 1965); the random effects in
step 8 are estimated explicitly using equation (2.64); steps 9 and 12 are
skipped.
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As mentioned before, the estimation procedure is computationally demand-
ing, even for common sample sizes n. Details regarding computation times
are discussed in Part II of this Thesis, where the performance of the pro-
posed estimator is examined.

4.2 Mean Squared Error Estimation

As a precision measure, two analytic methods for MSE estimation are
proposed following the ideas in Chambers et al. (2014) presented in Sec-
tion 3.1.3. In particular, conditional MSE estimates based on a pseudo-
linearization of the RGWEBLUP from equation (4.6) and the RGWEBLUP-
bc from equation (4.8) are presented in Section 4.2.1. Section 4.2.2 presents
the respective linearization-based MSE estimates.
So far, developing a bootstrap MSE has not been considered, as the point
estimation of the proposed method is very time-consuming even for com-
mon sample sizes. Since bootstrap methods are based on repeatedly re-
estimating the parameter of interest, these are currently not feasible for
MSE estimation with conventional computer capacities.

4.2.1 Based on the Pseudo-Linearization Approach

In this subsection, the pseudo-linearization approach is used to develop a
conditional MSE for the robust projective RGWEBLUP. Thereafter, this
MSE estimator is extended for the robust predictive RGWEBLUP-bc.

4.2.1.1 Robust Projective GWEBLUP

In order to develop an MSE estimator that extends the pseudo-linearization
of Chambers et al. (2014) from Section 3.1.3.1 to the case of spatial non-
stationarity, the RGEWBLUP of the area mean in (4.6) needs to be ex-
pressed as a weighted sum of the sample values of the target variable y.
Recall that the RGWEBLUP for the area mean is given by

ŷ
ψ,gw

i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̂
ψ,gw
ij + v̂ψ,gwi )

}
.

It can be shown that the latter expression can be reformulated as

ŷ
ψ,gw

i =
∑
j∈s

dψ,gwij yj = (dψ,gwi )Ty. (4.12)

The derivation is carried out in three steps: (i) find a pseudo-linear form for
the in-sample estimates β̂ψ,gwij , (ii) find a pseudo-linear form for v̂ψ,gw, (iii)
find a pseudo-linear form for the out-of-sample estimates β̂ψ,gwij . For step
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(i), the robust ML estimating equations (4.3) for βij can be rewritten as

0 = XTV −1
ij U

1/2
ij D1,ijU

−1/2
ij (y −Xβij)

= XTV −1
ij D1,ij(y −Xβij),

where D1,ij is an n×n diagonal matrix which is defined as Dij in equation
(4.9). Using this expression, the in-sample regression coefficients βij can be
rewritten in a pseudo-linear form

βij = (XTV −1
ij D1,ijX)−1XTV −1

ij D1,ij︸ ︷︷ ︸
=Aij

y

= Aijy. (4.13)

The pseudo-linear form of the robust estimate β̂ψ,gwij can be obtained by
replacing βij, θ and v with their robust, geographically weighted estimates,
β̂ψ,gwij , θ̂ψ,gw and v̂ψ,gw, respectively, leading to

β̂ψ,gwij = Aψ,gw
ij y. (4.14)

For step (ii), the robust ML estimating equations of v in (4.5) can be rewrit-
ten as

0 = ZTΣ−1/2
e D2Σ

−1/2
e (y − λ−Zv)−Σ−1/2

v D3Σ
−1/2
v v, (4.15)

whereD2 andD3 are n×n and m×m diagonal matrices, respectively. The
diagonal elements d2,ij and d3,i are given by

d2,ij = ψ
{

(σe)−1(yij − xijβij − vi)
}
/
{

(σe)−1(yij − xijβij − vi)
}

and

d3,i = ψ
{

(σv)−1v̂i

}
/
{

(σv)−1vi

}
.

Using equation (4.15), the random effects v can be expressed as

v = (ZTΣ−1/2
e D2Σ

−1/2
e Z + Σ−1/2

v D3Σ
−1/2
v )−1ZTΣ−1/2

e D2Σ
−1/2
e︸ ︷︷ ︸

=Q

(y − λ)

= Q(y − λ). (4.16)

The projection λ can be rewritten as

λ = (X ◦Bs)1p = Hy, (4.17)
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4.2 Mean Squared Error Estimation

whereH is the n×n head matrix with row vectors hij given by hij = xTijAij.
Using equations (4.16) and (4.17), the random effects v can be expressed in
a pseudo-linear form, given by

v = Q(I −H)y. (4.18)

The pseudo-linear form of v̂ψ,gw can be obtained by replacing βij, θ and v
with their robust, geographically weighted estimates β̂ψ,gwij , θ̂ψ,gw and v̂ψ,gw,
respectively. This leads to

v̂ψ,gw = Qψ,gw(I −Hψ,gw)y. (4.19)

For step (iii), the out-of-sample regression coefficients βij need to be ex-
pressed in pseudo-linear form. The explicit expression for the out-of-sample
regression coefficients in equation (4.11) can be written as

β̂ψ,gwij = (XT V̂ −1
ij X )−1XT V̂ −1

ij D4︸ ︷︷ ︸
=Λψ,gwij

y

= Λψ,gw
ij y, (4.20)

where D4 is an n × n diagonal matrix. Here the diagonal elements are
defined by d4,ij = y∗ij/yij. The results from equations (4.19) and (4.20)
can be plugged into the RGWEBLUP for the area mean in equation (4.6)
leading to

ŷ
ψ,gw

i = N−1
i

∑
j∈si

yij +
∑
j∈ri

xTijΛ
ψ,gw
ij y + zTijQψ,gw(In −Hψ,gw)y


= N−1

i

δTi y +
∑
j∈ri

ηψ,gwij y

+ (Ni − ni)zTi Qψ,gw(In −Hψ,gw)y


= N−1

i

[
δTi + (Ni − ni)

{
η̄ψ,gwi + zTi Qψ,gw(In −Hψ,gw)

}]
y

= (dψ,gwi )Ty. (4.21)

Here, ηψ,gwij = xTijΛ
ψ,gw
ij , and η̄ψ,gwi = (Ni − ni)−1∑

j∈ri η
ψ,gw
ij . Given the

weights in equation (4.21), developing the conditional MSE for the RGWE-
BLUP is equivalent to the method described in Section 2.3.2.2. Similar to
equation (2.34), the conditional MSE for the RGWEBLUP in (4.6) is given
by

M̂SECCT (ˆ̄yψ,gwi ) = V̂ arv(ˆ̄yψ,gwi ) + B̂iasv(ˆ̄yψ,gwi )2, (4.22)
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4 The Robust Geographically Weighted EBLUP

where the prediction bias and the variance can be estimated by substituting
dT with (dψ,gwi )T in equation (2.35) and (2.37), respectively. Thus, the
prediction bias can be estimated by

B̂iasv(ˆ̄yψ,gwi ) =
∑
j∈s

dψ,gwij µ̂j −N−1
i

∑
j∈Ui

µ̂j, (4.23)

where µ̂j is an unbiased linear estimator of the conditional expected value
µj = E(yj|xj,v) under model (2.61) which can be expressed as µ̂j =∑
k∈s γ

ψ,gw
k,j yk = (γψ,gwj )Ty. Here, (γψ,gwj )T is a vector of weights specific

to unit j in area i, given by

(γψ,gwj )T = xTj A
ψ,gw
j + zTi Qψ,gw(In −Hψ,gw). (4.24)

To obtain the unshrunken version of µ̂j, the matrix Qψ,gw in equation (4.24)
is replaced by (ZZT )−1ZT . An estimate of the conditional prediction vari-
ance is then given by

V̂ arv(ˆ̄yψ,gwi ) = N−2
i

∑
j∈s

{
(aψ,gwij )2 +(Ni−ni)n−1

}
(λ̂ψ,gwj )−1(yj−µ̂j)2, (4.25)

where aψ,gwij = Nid
ψ,gw
ij − I(j ∈ i) and µ̂j is defined as in equation (4.23).

Again, λ̂ψ,gwj = 1 − 2γψ,gwjj + ∑
k∈s(γψ,gwkj )2 is a scaling constant, specific to

unit j, where γψ,gwkj is defined by equation (4.24). Note that by setting the
tuning constant c to a very high value, i.e., c = 100, equation (4.22) can
also be used to estimate the conditional MSE of the non-robust GWEBLUP
for the area mean in equation (2.65). In that case, the conditional MSE is
equivalent to that suggested by Chandra et al. (2012).
Similar to the synthetic EBLUP of the area mean in (2.38), the synthetic
RGWEBLUP can also be expressed in the pseudo-linear form

ŷ
ψ,gw−Syn
i = N−1 ∑

j∈Ui
xTijβ̂

ψ,gw
ij = (dψ,gw−Syni )Ty, (4.26)

with (dψ,gw−Syni )T = η̄ψ,gwi , where η̄ψ,gwi is defined as in (4.21). The expected
bias of this synthetic estimator under model (2.62) is given by

E[ŷψ,gw−Syni − ȳi] =
∑
j∈s

dψ,gw−Synij (xTj βj + vi)−N−1 ∑
j∈Ui

xTj βj − vi. (4.27)

The conditional expectation of the square of this expression is given by

Ev{E2[ŷψ,gw−Syni − ȳi]}

=

∑
j∈s

dψ,gw−Synij (xTj βj + vi)−N−1 ∑
j∈Ui

xTj βj


2

+ σ2
v . (4.28)
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Accordingly, for non-sampled areas the squared bias of the synthetic RG-
WEBLUP can be estimated by

B̂iasv(ŷ
ψ,Syn

i )2 =

∑
j∈s

dψ,Synij (xTj β̂
ψ,gw
j + v̂ψ,gw−ui )−N−1 ∑

j∈Ui
xTj β̂

ψ,gw
j


2

+ (σ̂ψ,gwv )2, (4.29)

where v̂ψ,gw−ui is the unshrunken estimated random effect. The conditional
MSE of the synthetic RGWEBLUP can be estimated using (4.22) where
the conditional bias is replaced by (4.29).

4.2.1.2 Robust Predictive RGWEBLUP-bc

As described in Section 3.1.3.1, a conditional MSE estimator for the robust
predictive RGWEBLUP-bc in equation (4.8) can be obtained by replacing
the weights dψ,gwij in equation (4.22) with corresponding weights for the
RGWEBLUP-bc. For this purpose, it can be shown that the RGWEBLUP-
bc of the area mean ȳi can be expressed as

ŷ
ψ,gw−bc
i =

∑
j∈s

dψ,gw−bcij yj = (dψ,gw−bci )Ty. (4.30)

For the derivation of the latter expression let qi be an n-vector specific to
area i with elements

qij =


w̄ijψb(tij)/tij for j ∈ si

0 otherwise,
(4.31)

where tij = (yij−xijβ̂ψ,gw−v̂iψ,gw)/ωgwi , and ωgwi defined as in equation (4.8).
Using the results from (4.14) and (4.19), the bias correction in equation (4.8)
can be rewritten in a pseudo-linear form, given by

bcgwi =
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

∑
j∈si

w̄ijω
gw
i ψb

{yij − xTijβ̂
ψ,gw
ij − v̂iψ,gw

ωgwi

}
(eq. 4.31)=

(
Ni − ni
Ni

) 1∑
j∈si w̄ij

∑
j∈si

qij(yij − xTijβ̂
ψ,gw
ij − v̂iψ,gw)

=
(
Ni − ni
Ni

) 1∑
j∈si w̄ij∑

j∈si
qij

yij − xTijA
ψ,gw
ij y − zijQψ,gw(I −Hψ,gw)︸ ︷︷ ︸

=ξψ,gwij

y


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4 The Robust Geographically Weighted EBLUP

=
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

∑
j∈si

qij
(
yij − hψ,gwij y − ξψ,gwij y

)

=
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

∑
j∈si

qijyij −

∑
j∈si

qijh
ψ,gw
ij + qijξ

ψ,gw
ij

y


=
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

qTi y −
∑
j∈si

qijh
ψ,gw
ij + qijξ

ψ,gw
ij

y


=
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

qTi −∑
j∈si

qijh
ψ,gw
ij −

∑
j∈si

qijξ
ψ,gw
ij

y.
By plugging the last line of the upper expression into equation (4.8) it
follows that

ˆ̄yψ,gw−bci = ˆ̄yψ,gwi + bcgwi

= N−1
i

δTi + (Ni − ni)

η̄
ψ,gw
i + zTi Qψ,gw(In −Hψ,gw)︸ ︷︷ ︸

=ξ̄ψ,gwi


y

+
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

qTi −∑
j∈si

qijh
ψ,gw
ij −

∑
j∈si

qijξij

y
= N−1

1


(
δi + Ni − ni∑

j∈si w̄ij
qi

)T

+ (Ni − ni)
η̄ψ,gwi − 1∑

j∈si w̄ij

∑
j∈si

qijh
ψ,gw
ij


+ (Ni − ni)

ξ̄ψ,gwi − 1∑
j∈si w̄ij

∑
j∈si

qijξ
ψ,gw
ij

y
= (dψ,gw−bci )Ty. (4.32)

As the RGWEBLUP-bc is an approximately unbiased estimator of the area
mean, the conditional bias in (4.22) can be omitted for the MSE estimation.
Thus, the conditional MSE for the RGWEBLUP-bc of the area mean ȳi is
given by

M̂SECCT (ˆ̄yψ,gw−bci ) = V̂ arv(ˆ̄yψ,gw−bci ). (4.33)

Here, the conditional variance V̂ arv(ˆ̄yψ,gw−bci ) is defined as

V̂ arv(ˆ̄yψ,gw−bci ) =

N−2
i

∑
j∈s

{
(aψ,gw−bcij )2 + (Ni − ni)n−1

}
(λ̂ψ,gw−bcj )−1(yj − µ̂j)2, (4.34)
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with aψ,gw−bcij = Nid
ψ,gw−bc
ij − I(j ∈ i). Like in equation (4.25), µ̂j can

be expressed as µ̂j = ∑
k∈s γ

ψ,gw−bc
k,j yk = (γψ,gw−bcj )Ty where λ̂ψ,gwj = 1 −

2γψ,gwjj +∑k∈s(γψ,gwkj )2 is the scaling constant, specific to unit j, and γψ,gw−bcj

is a unit-specific vector of weights given by

(γψ,gw−bcj )T =
(

1∑
j∈si w̄ij

qi

)T

+
ηψ,gwij − 1∑

j∈si w̄ij

∑
j∈si

qijh
ψ,gw
ij


+
ξψ,gwij − 1∑

j∈si w̄ij

∑
j∈si

qijξ
ψ,gw
ij

 . (4.35)

The proposed MSE estimators in (4.22) and (4.33) for the robust projec-
tive RGWEBLUP and the robust predictive RGWEBLUP-bc, respectively,
are generalizations of the pseudo-linearization approach of Chambers et al.
(2014). For constant spatial weights in model (2.62), equations (4.22) and
(4.33) reduce to the conditional MSE estimates from equations (3.56) and
(3.67) in Section 3.1.3.1, respectively. As previously mentioned, the condi-
tional MSE based on pseudo-linearization ignores the extra variability due to
the estimation of θ. Therefore, it can be seen as a first-order approximation
for the conditional MSE. Thus, a second-order approximation is proposed
in the next section. This extends the linearization approach of Chambers
et al. (2014) from Section 3.1.3.2 to the case of spatial non-stationarity.

4.2.2 Based on the Linearization Approach

As in the last section, the linearization-based, conditional MSE estimation
is first developed for the robust projective RGWEBLUP in equation (4.6).
Thereafter, this conditional MSE estimation is extended for the robust pre-
dictive RGWEBLUP-bc in equation (4.8).

4.2.2.1 Robust Projective RGWEBLUP

Similar to Chambers et al. (2014), the linearization-based MSE estimation
for the RGWEBLUP of the small area mean in equation (4.6) is developed
in two steps. First, the conditional MSE is developed for the best unbiased
predictor RGWBLUP where the variance parameters θ are assumed to be
known. Subsequently, an extra term is added that accounts for the variabil-
ity caused by the estimation of the variance parameters. The conditional
MSE for the RGWBLUP of the area mean ȳi, denoted by ỹ

ψ,gw
i , can be

expressed as

MSEv(ỹψ,gwi ) = V arv(ỹψ,gwi ) +Biasv(ỹψ,gwi )2. (4.36)
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Here the conditional prediction bias can be obtained by (4.23) for sampled
or by (4.29) for non-sampled areas. Let β̃ψ,gw and ṽψ,gw denote the robust
estimate of β and v, respectively, for known variance parameters θ. Then
the prediction error for the RGWBLUP of the area mean ȳi is given by

ỹ
ψ,gw
i − ȳi = N−1

i

{∑
j∈si

yij +
∑
j∈ri

(xTijβ̃
ψ,gw
ij + ṽψ,gwi )

}
−N−1

i

∑
j∈Ui

yij

= N−1
i

{∑
j∈ri

(xTijβ̃
ψ,gw
ij + ṽψ,gwi )−

∑
j∈ri

yij

}

= N−1
{∑
j∈ri

xTijβ̃
ψ,gw
ij

}
+
(
Ni − ni
Ni

){
zTi ṽ

ψ,gw − ȳri
}
. (4.37)

Assuming independence between β and v, the conditional variance of this
prediction error is given by

V arv(ŷ
ψ,gw

i − ȳi) = 1
N2
i

V arv

(∑
j∈ri

xTijβ̃
ψ,gw
ij

)

+
(
Ni − ni
Ni

)2 {
zTi V arv(ṽψ,gw)zi − V arv(ēri)

}
. (4.38)

To estimate this expression, estimates for V arv(ṽψ,gw), V arv(ēri) and the
variation caused by the estimation of the out-of-sample coefficients are
needed. The latter component is defined in the first component on the
right-hand side of equation (4.38).
For the proposed RGWEBLUP in equation (4.6) the variance parameter θ
is assumed to be spatial stationary. Then the results of Chambers et al.
(2014) in Section 3.1.3.2 can be directly applied for estimating V arv(ṽψ,gw)
and V arv(ēri). In particular, V arv(ṽψ,gw) can be estimated using equation
(3.44). Here, the robust ML estimating equation in Hv is replaced by (4.5)
leading to

V̂ arv(ṽψ,gw) =
[
Êv(∂vHv)−1

]
V̂ arv (Hv)

[
Êv(∂vHv)−1

]T
, (4.39)

where

Êv(∂vHv) = −ZTΣ−1/2
e T̃Σ−1/2

e Z −Σ−1/2
v L̃Σ−1/2

v

V̂ arv (Hv) = ν̂(ψ(t̃))ZTΣ−1
e Z.

The elements of t̃ are given by t̃ij = σ−1
e (yij − xTijβ̃

ψ,gw
ij + ṽψ,gwi ) and the

matrices T̃ and L̃ are defined as in equation (3.44). An estimate of the
conditional variance ν̂(ψ(t̃)) can be obtained by equation (3.45). Similarly,
V arv(ēri) in equation (4.38) can be estimated by equation (3.39), where β̃ψ
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and ṽψ are substituted by β̃ψ,gwij and ṽψ,gw, respectively, leading to

V̂ arv(ẽri) = (Ni − ni)−1(n− 1)−1
m∑
i=1

∑
j∈si

(yij − xTijβ̃
ψ,gw
ij − ṽψ,gwi )2. (4.40)

To estimate the conditional variance in equation (4.38), an estimate for the
variation caused by the estimation of the local out-of-sample coefficients
is required. Assuming independence between the local coefficients from
different locations, i.e., Cov

(
β̃ψ,gwij , β̃ψ,gwik

)
= 0 for j 6= k, this variance part

can be expressed as

1
N2
i

V ar

∑
j∈ri

xTijβ̃
ψ,gw
ij

 = 1
N2
i

∑
j∈ri

∑
k∈ri

xTikCov
(
β̃ψ,gwij , β̃ψ,gwij

)
xij

= 1
N2
i

∑
k∈ri

∑
j∈ri

xTikV ar
(
β̃ψ,gwij

)
xij

= 1
N2
i

∑
k∈ri

xTik
∑
j∈ri

V ar
(
β̃ψ,gwij

)
xij

=
(
Ni − ni
N2
i

)
x̄Tri

∑
j∈ri

V ar
(
β̃ψ,gwij

)
xij. (4.41)

It is important to note that the spatial weighting matrixWij from equation
(4.11) is deterministic and only depends on the locations of the sampled
observations but independent from the local coefficients from other loca-
tions. Therefore, the independence assumption for the local coefficients
from different locations can be justified as their estimation is independent.
The variance for the out-of-sample coefficients can be derived using their
explicit form in equation (4.11), leading to

V̂ arv
(
β̃ψ,gwij

)
= (XTV −1

ij X)−1XTV −1
ij V ar(y∗)V −1

ij X(XTV −1
ij X)−1.

(4.42)
From equation (4.10) the pseudo observations y∗ can be interpreted as a
robust version of the original target variable y which would have been ex-
pected under model (2.62). Thus, the variance matrix V ar(y∗) can be
approximated by the global variance matrix V under that model. Using
the results from equations (4.39), (4.40) and (4.42), an estimate of the con-
ditional prediction variance in equation (4.38) is given by

V̂ arv
(

ˆ̄yψ,gwi − ȳi
)

= h1i(Θ̃) + h2i(Θ̃) + h3i(Θ̃), (4.43)

where Θ̃ = {B̃ψ,gw, ṽψ,gw} denotes the quantity of estimated random effects
and local coefficients for known variance parameters. The first component,
h1i, in equation (4.43) reflects the variation due to the estimation of the
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local out-of-sample coefficients and is given by

h1i(Θ̃) =
(
Ni − ni
N2
i

)
x̄Tri

∑
j∈ri

V̂ ar
(
β̃ψ,gwij

)
xij.

The second component, h2i, in equation (4.43) measures the variance caused
by the estimation of the random effects and is given by

h2i(Θ̃) =
(
Ni − ni
N2
i

)2

zTi V̂ arv(ṽψ,gw)zi.

The third component, h3i, in equation (4.43) is given by

h3i(Θ̃) =
(
Ni − ni
Ni

)2
V̂ ar(˜̄eri).

Using equations (4.43) and (4.23), the conditional MSE in equation (4.36)
for the RGWBLUP of the area mean can be estimated by

M̂SEv(ỹψ,gwi ) = h1i(Θ̃) + h2i(Θ̃) + h3i(Θ̃) + B̂iasv(ỹψ,gwi )2. (4.44)

To account for the extra variability induced by the estimation of the variance
parameters θ, a term has to be added to equation (4.44). Analogously to
equation (3.48), the conditional MSE of the RGWEBLUP for the area mean
can be approximated by

MSEv(ŷ
ψ,gw

i ) ≈MSEv(ỹψ,gwi ) + Ev
[
(ŷψ,gwi − ỹψ,gwi )2

]
. (4.45)

As θ is assumed to be stationary, the results of Chambers et al. (2014) from
Section 3.1.3.2 can be directly applied to the approximation of the additional
term in equation (4.45). Now the global coefficients β in equation (3.49)
need to be replaced by the local coefficients βij leading to

ŷ
ψ,gw

i − ỹψ,gwi ≈

N−1
i

∑
j∈ri

zTij

 2∑
k=1

(∂θkQ) (y − λ) (θ̂ψ,gwk − θk), (4.46)

where matrix Q is defined as in equation (4.16). The derivatives of Q
with respect to σv and σe are equivalent to equations (3.51) and (3.52),
respectively. The variance of the prediction error in equation (4.62) can be
approximated by

V arv(ŷ
ψ,gw

i − ỹψ,gwi ) ≈
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N−1
i

∑
j∈ri

zTij

V arv
( 2∑
k=1

(∂θkQ) (y − λ) (θ̂ψ,gwk − θk)
)N−1

i

∑
j∈ri

zTij

T ,
(4.47)

where, as in equation (3.53), the conditional covariance is given by

Ev
(
(yj − xjβj)(θ̂ψ,gwk − θk), (yl − xlβl)(θ̂ψ,gwg − θg)

)
≈
{

(zjv)(zlv) + σ2
eI(j = l)

}
Ev[(θ̂ψ,gwk − θk)(θ̂ψ,gwg − θg)].

Replacing the global coefficients β with the local coefficients does not affect
the conditional covariance in equation (4.47), which has exactly the same
form as in equation (3.53). Thus, an estimate of the conditional MSE of
the RGWEBLUP in (4.6) is given by

M̂SEu(ŷψ,gwi ) = h1i(Θ̃) + h2i(Θ̃) + h3i(Θ̃) + h4i(Θ̃) + B̂iasv(ỹψ,gwi )2.
(4.48)

As in equation (3.54), h4i measures the variability caused by the estimation
of the variance components and is given by

h4i(Θ̃) =
N−1

i

∑
j∈ri

zTij

Υ V arv(θ̂ψ,gw)
N−1

i

∑
j∈ri

zTij

T , (4.49)

where

Υ =
2∑

k=1

2∑
g=1

(∂θkQ)
 m∑
j=1

m∑
l=1

(zTijv)(zTilv) + σ2
eI(j = l)

 (∂θgQ)T
 .

To finally obtain an estimate of the conditional MSE for the RGWEBLUP,
the parameters B̃ψ,gw,ṽψ,gw and θ in equation (4.48) need to be replaced
with the estimates B̂ψ,gw,v̂ψ,gw and θ̂ψ,gw leading to

M̂SECCST (ŷψ,gwi ) = h1i(Θ̂) + h2i(Θ̂) + h3i(Θ̂) + h4i(Θ̂) + B̂iasv(ŷ
ψ,gw

i )2.
(4.50)

By setting the tuning constant c to a very high value, i.e., c = 100, equation
(4.50) can also be used to estimate the conditional MSE for the non-robust
GWEBLUP of the area mean in equation (2.65).

4.2.2.2 Robust Predictive RGWEBLUP-bc

To develop the conditional MSE for the robust predictive RGWEBLUP-bc
in equation (4.8), the same steps as before are followed by first developing
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the conditional MSE for the RGWBLUP-BC, where the variance parameters
are assumed to be known, followed by adding an extra term which accounts
for the variability caused by the estimation of θ. Because the RGWBLUP-
BC for the area mean is approximately unbiased, the conditional MSE is
given by

MSEv(ỹψ,gw−bci ) = V arv(ỹψ,gw−bci ). (4.51)

The prediction error for the RGWBLUP-BC in (4.8) is given by

ỹ
ψ,gw−bc
i − ȳi = N−1

i

{∑
j∈ri

xTijβ̃
ψ,gw
ij

}

+
(
Ni − ni
Ni

){
zTi ṽ

ψ,gw + (1− niN−1
i )−1b̃c

gw

i − ȳri
}
.

(4.52)

Here, the bias correction b̃c
gw

i is defined as in equation (4.8) where β̂ψ,gwij

and v̂ψ,gw are replaced by β̃ψ,gwij and ṽψ,gw, respectively. Thus, b̃cgwi is given
by

b̃c
gw

i =
(
Ni − ni
Ni

) 1∑
j∈si w̄ij

∑
j∈si

w̄ijω
gw
i ψb

{yij − xTijβ̃
ψ,gw
ij − zTijṽψ,gw

ωgwi

}
.

(4.53)
Similar to Chambers et al. (2014), this bias correction term can be approx-
imated using a Taylor series approximation. Defining g1i = ∑

j∈si w̄ij and
ãij = (yij − xTijβ̃ij − zTijṽ)/ωgwi , this approximation leads to

(1−niN−1
i )−1b̃ci

≈ g−1
1i
∑
j∈si

w̄ijω
gw
i ψb(ãij)

+ (ṽψ,gw − v)T∂v

g−1
1i
∑
j∈si

w̄ijω
gw
i ψb(ãij)


+
∑
j∈si

(β̃ψ,gwij − βij)T∂βij

g−1
1i
∑
j∈si

w̄ijω
gw
i ψb(ãij)

 . (4.54)

The partial derivatives are given by

∂v

g−1
1i
∑
j∈si

w̄ijω
gw
i ψb(aij)

 = −g−1
1i
∑
j∈si

w̄ijψ
′
b(aij)zij

and

∂βij

g−1
1i
∑
j∈si

w̄ijω
gw
i ψb(aij)

 = −g−1
1i w̄ijψ

′
b(aij)xij,
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where

ψ′b(aij) =

 1 for |(yij − xTijβij − zTijv)/ωgwi | ≤ b

0 else
.

Chambers et al. (2014) note that if the tuning constant b in ψb is suffi-
ciently large then ψ′b ≈ 1. In this case the approximation in equation (4.54)
simplifies to

(1− niN−1
i )−1b̃ci ≈ g−1

1i
∑
j∈si

w̄ijω
gw
i ψb(aij)

− g−1
1i
∑
j∈si

w̄ijz
T
ij(ṽψ,gw − v)− g−1

1i
∑
j∈si

w̄ijx
T
ij(β̃

ψ,gw
ij − βij)

≈ g−1
1i
∑
j∈si

w̄ijω
gw
i ψb(aij) + zTi v − zTi ṽψ,gw

+ g−1
1i
∑
j∈si

w̄ijx
T
ijβij − g−1

1i
∑
j∈si

w̄ijx
T
ijβ̃

ψ,gw
ij . (4.55)

This approximation can be inserted into the prediction error from equation
(4.52) leading to

ỹψ,gw−bci − ȳi

= N−1
i

{∑
j∈ri

xTijβ̃
ψ,gw
ij

}
+
(
Ni − ni
Ni

){
zTi ṽ

ψ,gw + (1− niN−1
i )−1b̃c

gw

i − ȳri
}

≈ N−1
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xTijβ̃
ψ,gw
ij

}
+
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Ni − ni
Ni
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w̄ijω
gw
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1i
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w̄ijx
T
ijβij − g−1
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w̄ijx
T
ijβ̃
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ij − ȳri


≈ N−1
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xTijβ̃
ψ,gw
ij − (Ni − ni)

g1i

∑
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w̄ijx
T
ijβ̃
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ij

}

+
(
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w̄ijω
gw
i ψb(aij) + g−1

1i
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w̄ijx
T
ijβij + zTi v − ȳri


≈
(
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Ni
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j∈Ui

(x∗ij)T β̃
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ij

}

+
(
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Ni

)g−1
1i
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w̄ijω
gw
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,
(4.56)
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where

x∗ij =
{ 1

Ni−nixij, j ∈ ri
− 1
g1i
w̄ijxij, j ∈ si.

It is important to notice that ∑j∈Ui x
∗
ij = x̄ri− x̄gwsi , where x̄

gw
si denotes the

geographically weighted area mean x̄gwsi = g−1
1i
∑
j∈si w̄ijxij. Using equation

(4.56), the conditional variance of the prediction error in equation (4.56)
can be approximated by

V arv(ỹψ,gw−bci − ȳi) ≈
(
Ni − ni
Ni

)2
V arv

{ ∑
j∈Ui

(x∗ij)T β̃
ψ,gw
ij

}

+
(
Ni − ni
Ni

)2 {
V arv

g−1
1i
∑
j∈si

w̄ijω
gw
i ψb(aij)


+ V arv(ēri)

}
. (4.57)

The first term of this expression can be estimated by

V̂ arv

{ ∑
j∈Ui

(x∗ij)T β̃
ψ,gw
ij

}
=
∑
k∈Ui

∑
j∈Ui

(x∗ik)T V̂ ar
(
β̃ψ,gwij

)
x∗ij

=
∑
k∈Ui

(x∗ik)T
∑
j∈Ui

V̂ ar
(
β̃ψ,gwij

)
x∗ij

= (x̄ri − x̄gwsi )T
∑
j∈Ui

V̂ ar
(
β̃ψ,gwij

)
x∗ij

= (x̄ri − x̄gwsi )T (ζri − ζsi), (4.58)

where
ζri = (Ni − ni)−1 ∑

j∈ri
xijV̂ arv(β̃ψ,gwij )

and
ζsi = g−1

1i
∑
j∈si

w̄ijxijV̂ arv(β̃ψ,gwij ).

The variance of the out-of-sample coefficients in ζri can be estimated using
equation (4.41). The variance of the in-sample coefficients in ζsi can be
obtained with a first-order approximation that is comparable to the results
in equation (3.41). To estimate V arv(β̃ij) for the in-sample coefficients,
equation (3.43) can be directly applied, where Hβ is replace by Hβij , the
local robust ML equation from (4.3), leading to

V̂ arv(β̃ψ,gwij ) =
[
Êv(∂βijHβij)−1

]
V̂ arv

(
Hβij

) [
Êv(∂βijHβij)−1

]T
, (4.59)

77



4.2 Mean Squared Error Estimation

where

Êv(∂βijHβij) = −XV −1
ij U

1/2
ij R̃ijU

−1/2
ij X

V̂ arv
(
Hβij

)
= ν̂(ψ(r̃ij))XV −1

ij UijV
−1
ij X.

Here, r̃ij = U
− 1

2
ij (y − Xβ̃ψ,gwij ) and R̃ij = diagn [I(−c < r̃ij < c)]. The

conditional variance ν(ψ(r̃ij)) can be estimated by applying equation (3.45).
Using the conditional variance in equation (4.57), the conditional MSE for
the RGWBLUP-BC can be estimated by

M̂SEu(ŷψ,gw−bci ) = hbc1i(Θ̃) + hbc2i(Θ̃) + h3i(Θ̃). (4.60)

The first component, hbc1i, is given by

hbc1i(Θ̃) =
(
Ni − ni
Ni

)2
(x̄ri − x̄gwsi )T (ζri − ζsi),

and the third component h3i is identical to h3i in equation (4.44). The
second component, hbc2i, arises due to the bias correction and is given by

hbc2i(Θ̃) =
(
Ni − ni
Ni

)2
V̂ arv

g−1
1i
∑
j∈si

w̄ijω
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i ψb(aij)


=
(
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)2
g−2

1i
∑
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w̄2
ijÊv [ωgwi ψb(aij)]2

=
(
Ni − ni
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)2 g2i

g2
1i(ni − pi,e)

∑
j∈si

[
ωgwi ψb

{
(yij − xTijβ̃

ψ,gw
ij − ṽψi )/ωgwi

}]2
,

where g2i = ∑
j∈si w̄

2
ij and pi,e denotes the area-specific effective number of

parameters which varies between p and ni. If the bandwidth is sufficiently
large or the sampled units in area i are spatially close, then pi,e ≈ p.
A second-order approximation for the conditional MSE of the RGWEBLUP-
bc can be obtained by adding an extra term that accounts for the variability
caused by the estimation of θ. Similar to equation (4.45), the MSE of the
RGWEBLUP-bc can be approximated by

MSEv(ŷ
ψ,gw−bc
i ) ≈MSEv(ỹψ,gw−bci ) + Ev

[
(ŷψ,gw−bci − ỹψ,gw−bci )2

]
. (4.61)

Using a first-order Taylor approximation, the prediction error induced by
the estimation of θ can be approximated by

ŷ
ψ,gw−bc
i − ỹψ,gw−bci ≈ ∂ỹ

ψ,gw−bc
i

∂θ
{θ̂ψ,gw − θ}, (4.62)
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where

ỹ
ψ,gw−bc
i = N−1

i

{∑
j∈si

yij +
∑
j∈ri

xTijβ̃
ψ,gw
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i )−1b̃c
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}
(eq. 4.55)
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Following Chambers et al. (2014), it is assumed that the derivatives of β̃ψ,gwij

with respect to θ are of a lower order. Then the derivative of ỹψ,gw−bci with
respect to θ can be approximated by

∂ỹ
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Analogously to equation (3.65), Ωi is defined by

Ωi = z̄Tri − g−1
1i
∑
j∈si

w̄ijω
gw
i ψ′b

(
(yij − xTijβij − zTijQ(y − λ))
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)
zij,
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and ψ′b is defined as in equation (4.54). Using equation (4.63), the variance
of the prediction error in (4.62) can be approximated by

V arv
(
ŷ
ψ−bc
i − ỹψ−bci

)
≈
(
Ni − ni
Ni

)2
ΩT
i V arv

( 2∑
k=2

(∂θkQ) (y − λ)(θ̂ψ,gwk − θk)
)

Ωi

≈
(
Ni − ni
Ni

)2
ΩT
i Υ V arv(θ̂ψ,gw)Ωi, (4.64)

where Υ is defined as in equation (4.49). Note that when the tuning con-
stant b is sufficiently large then ψ′b ≈ 1. In that case Ωi = 0 under the
random intercept working model in (2.62), and the conditional variance in
(4.64) is reduced to zero. Using the results from above, an estimate for the
conditional MSE for the RGWEBLUP-bc is given by

M̂SEu(ŷψ,gw−bci ) = hbc1i(Θ̃) + hbc2i(Θ̃) + h3i(Θ̃) + hbc4i(Θ̃), (4.65)

where hbc4i is given by (4.64). To finally estimate the conditional MSE for
the RGWEBLUP-bc of the area mean, ṽψ,gw and β̃ψ,gw and θ need to be
replaced by the estimates v̂ψ,gw and β̂ψ,gw and θ̂ψ,gw, respectively, leading
to

M̂SECCST (ŷψ,gw−bci ) = hbc1i(Θ̂) + hbc2i(Θ̂) + h3i(Θ̂) + hbc4i(Θ̂). (4.66)

The proposed MSE estimators in (4.50) and (4.66) for the robust projective
RGWEBLUP and the robust predictive RGWEBLUP-bc, respectively, are
generalizations of the linearization approach of Chambers et al. (2014). By
setting the spatial weights in model (2.62) to be constant for all population
units, equations (4.50) and (4.66) become identical to the conditional MSE
estimates from equations (3.56) and (3.67), respectively. However, assessing
the asymptotic properties of the conditional MSE estimates developed in
this section remains an open research question. So far, these estimates can
be seen as a rather heuristic adaptation of the linearization approach in
Chambers et al. (2014) to the case of spatial non-stationarity.

4.3 Implementation

Recent developments in the field of SAE are mainly driven by the increas-
ing demand in public institutions for reliable information on a disaggregated
level. To enable the application of new methods it is necessary to supply
user-friendly software that can handle realistic data situations.
Several software packages for the R-language are currently available for
SAE. Molina and Marhuenda (2015) introduced the package sae which
provides a wide range of functions for area-level and unit-level SAE includ-
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ing the EBLUP estimator of the area mean in equation (2.26) and MSE
estimates based on a parametric bootstrap approach. Analytic MSE esti-
mators, such as the conditional and unconditional estimators presented in
Section 2.3.2 are not implemented, though. Some estimators implemented
in this package are also available in the emdi package of Kreutzmann et al.
(2017) whereas the focus here is to support the user in visualizing the re-
sults and exporting them to MS-Excel for further processing. Schoch (2014)
developed the package rsae for robust SAE where the REBLUP of the area
mean from equation (3.11) is implemented with a parametric bootstrap ap-
proach for MSE estimation. Yet, robust predictive estimators such as the
REBLUP-bc in equation (3.20) are not available. The package saeRobust
of Warnholz (2016) provides functions for robust area-level SAE with spa-
tial and temporal extensions. So far, packages for robust and non-robust
spatial unit-level SAE that were discussed in Sections 2.4 and 3.2 have not
been published. However, an R-script implementing these methods is usu-
ally available from the authors.
As supplemental material to this thesis, the package saeRGW was developed
which provides an implementation of the GWEBLUP in (2.65) of Chandra
et al. (2012) and the proposed robust extensions, the RGWEBLUP in (4.6)
and the RGWEBLUP-bc in (4.8), together with conditional MSE estimates
(CCT and CCST). Section 4.3.1 gives guidance for handling the functions
provided in this package and Section 4.3.2 outlines next steps for further
development.

4.3.1 saeRGW: A Package for (Robust) Small Area Estimation under
Spatial Non-Stationarity

The package saeRGW provides two categories of important functions: fit and
predict. The two fit functions gwlmm and rgwlmm estimate the model param-
eters under the geographically weighted linear mixed model (GWLMM) in
(2.62) using a population sample. The function gwlmm assumes normality
for the error term components whereas the function rgwlmm uses the robust
ML estimating equations (4.3) and (4.4) to estimate the local coefficients
and the variance parameters, respectively. Both functions execute the first
seven steps of the step-wise procedure from Section 4.1.
I decided to split this procedure as users do not necessarily have to be in-
terested in SAE. The package can also be used when fitting a nested error
regression model which takes into account spatial non-stationarity in the
fixed effects coefficients is appropriate. Hence, it is applicable in situations
where the coefficients vary over space and unobserved heterogeneity between
sampled domains or clusters is present in the data.
The predict generic functions predict.gwlmm and predict.rgwlmm use
the fitted model and estimate small area means together with the condi-
tional MSE estimators from Section 4.2 when population data is provided.
The predict function can handle aggregated population information with
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centroid coordinates and unit-level population data with coordinates for
each non-sampled unit. If no population data is provided these functions
provide the in-sample predictions (random effects, residuals, etc.) based on
the model fits. For users of this package who are interested in producing
small area estimates, I recommend the following work flow:

1: Prepare the data to fit the model.

2: Fit a GWLMM to a population sample using the function gwlmm.

3: Check the results using model diagnostics provided by the summary
and plot generic functions and decide whether a robust parameter
estimation is appropriate.
No: Go to step 4 and skip the rest.
Yes: Go to step 5.

4: Predict the small area means for aggregated or unit-level population
data using the function predict.gwlmm.

5: Fit a GWLMM to a population sample with the function rgwlmm
using the non-robust results from step 2 as starting values for the
local coefficients and the variance parameters.

6: Predict the robust and non-robust small area means for aggregated
or unit-level population data using the functions predict.gwlmm and
predict.rgwlmm and compare the results.

In what follows, these steps are demonstrated using the three simulated
data sets attached to the package. When the package is installed and
loaded, these data sets can be accessed by typing their names: sampleData,
popaggData, popData. The data set sampleData is a sample of size n = 200
from a generated population that consists of m = 40 regions. From each
region ni = 5 units were selected by simple random sampling without re-
placement. The population is generated under the GLMM in (2.62) with a
5% outlier contamination. Details on the data-generating process are given
in Chapter 5 as the provided data set sampleData represents one sam-
ple from the model-based simulation presented there. The two data sets
popaggData and popData contain the population data and are described
later in this section.

>library(saeRGW)
>head(sampleData)

# long lat clusterid x y
# 1 0.5 3.877223 1 5.407193 129.0080
# 2 3.0 2.763340 1 4.693331 136.0443
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# 3 2.0 1.008894 1 2.518922 115.7804
# 4 0.5 5.877223 1 3.319369 121.6476
# 5 2.0 3.008894 1 2.718502 116.1293
# 6 6.5 1.903904 2 3.063594 125.2182

To use the fit functions gwlmm or rgwlmm, a data set must consist of at
least two variables for the geographic coordinates (here: long and lat), an
identifier for the areas (here: clusterid), an explanatory variable (here: x)
and a dependent variable (here: y). In this example the data is already pre-
pared and we can start directly at step 2. To fit the GWLMM in (2.62) to a
sample using the function gwlmm, at least two arguments need to be defined:

formula a two-sided formula object describing the fixed effects, the
random effects and the geographical information of the model.
The response is on the left of the ~ operator. The explanatory
variables (numeric or factor) on the right side are separated
by a + operator, a vertical bar (|) separates the identifier
for the random intercept. After the second vertical bar, the
two coordinates -longitude and latitude- are separated by a +
operator.

data a data frame containing the variables used in formula.

Additional arguments can be specified:
band a numeric value defining an a priori defined bandwidth (de-

fault: band = NULL).
maxit an integer value defining the maximum number of iterations

for estimating the model parameters (default: maxit = 100).
tol a numeric value defining the tolerance of the convergence (de-

fault tol = 1e-04).
centroid a logical value defining weather coordinates in formula are

centroids (default centroid = FALSE).

The function gwlmm returns an object of class ‘gwlmm’ that can be used for
the summary generic function.

>formula <- y ~ x | clusterid | long + lat
>fitGWLMM <- gwlmm(formula, data = sampleData)
>summary(fitGWLMM)

# Call:
# gwlmm(formula = formula, data = sampleData)
#
# Geographic coordinates were available for each individual
#
# Bandwidth: 3.662756
#
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# Number of iterations for ML estimates: 17
#
# Estimates of variance parameters:
# Random Effects Residuals
# 2.691 9.561
#
# Shapiro-Wilk Test for the error term components:
# W p-value
# Random effects: 9.568e-01 1.302e-01
# Residuals: 9.487e-01 1.430e-06
#
# Summary statistics for local coefficients:
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# (Intercept) 95.790 101.600 103.60 103.30 104.90 107.90
# x 6.938 9.844 10.91 11.32 12.86 17.69
#
# LR-Test for non-stationarity of model coefficients:
# Likelihood LR DF P-Value
# -5.271e+02 3.309e+02 4.260e+01 2.897e-46
#
# Effective number of parameters 2*tr(H) - tr(H’H): 44.60187

The summary output contains basic information about the estimated model
parameters. Here, we can see the bandwidth that is used for the spa-
tial weights, the summary statistics for the local coefficients and the vari-
ance components. In addition, the summary output shows the results of a
Shapiro-Wilk test (cf. Shapiro and Wilk, 1965) for normality for the error
term components. Here normality can be rejected (p-value ≤ 0.05) for the
unit-level residuals.
The bandwidth is estimated using the cross-validation criteria (2.57) imple-
mented in the function gwr.sel from the package spgwr (Bivand and Yu,
2015). From the summary statistics for the local coefficients it appears that
the local coefficients vary substantially, indicating that fitting a GWLMM
rather than the global LMM in (2.24) is justified. In addition, gwlmm con-
ducts a likelihood ratio test that compares the likelihood of the GWLMM
and a global LMM fit, where the LMM is fitted using the function lmer from
the package lme4 (Bates et al., 2015). When the test rejects the Null, the
model fit under the GWLMM is significantly better than for the LMM which
indicates that spatial non-stationarity is present (cf. Fotheringham et al.,
2002, p.92). In this case the Null is rejected and spatial non-stationarity in
the model coefficients can be assumed.
The normality assumption can also be assessed using the plot generic func-
tion that provides quantile-quantile-plots for the residual components.

> plot(fitGWLMM)
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Figure 4.1: Output of plot method for objects of class ‘gwlmm’

Figure 4.1 shows substantial departures from the normal distribution of
both error term components: the random effects and the individual error.
This is expected as the data was generated with a 5% symmetric outlier
contamination in the area-level and unit-level error term. When departures
from the normality assumption are present, we can go to step 5 and estimate
the model parameters robustly using the function rgwlmm. This function
has the same structure as gwlmm. In addition, two optional arguments can
be specified:

Start a list object defining starting values for the robust parameter
estimation containing three objects: betas - Matrix with local
coefficients; sigma.v - numeric value for the variance of the
random effects; sigma.e - numeric value for the error term
variance. Default = NULL.

k a numeric value defining the tuning constant for Huber’s in-
fluence function (default k = 1.345).

If good starting values are available I recommend using the argument Start
as this can decrease the number of iterations needed for the robust parame-
ter estimation. Since the bandwidth was already estimated in the previous
step, we can use it here by specifying the argument band. The function
rgwlmm returns an object of class ‘rgwlmm’ that can be used for the summary
generic function.

>Start <- list(betas = fitGWLMM$Coefficients,
sigma.v = fitGWLMM$Variance$raneff,
sigma.e = fitGWLMM$Variance$residual)

>fitRGWLMM <- rgwlmm(formula,
data = sampleData,
Start = Start,
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band = fitGWLMM$bandwidth)
>summary(fitRGWLMM)

# Call:
# rgwlmm(formula = formula, data = sampleData,
# band = fitGWLMM$bandwidth, Start = Start)
#
# Geographic coordinates were available for each individual
#
# Bandwidth: 3.662756
#
# Number of iterations for robust estimates: 29
#
# Robust estimates of variance parameters:
# Random Effects Residuals
# 1.642 4.899
#
# Summary statistics for the robust local coefficients:
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# (Intercept) 96.560 101.500 103.10 102.80 104.5 107.50
# x 7.686 9.833 10.79 11.45 13.0 16.39
#
# Tuning constant: 1.345

The summary output shows the bandwidth that was used for the spatial
weights, the robust variance parameters, the robust local coefficients and
the tuning constant that was used to restrict the influence of extreme obser-
vations. It is noticeable that the robust variance estimates are substantially
smaller than the non-robust, whereas this is not the case for the local co-
efficients. Here, the range of the coefficients appears to be slightly smaller
compared to the non-robust estimates. To predict the robust and non-robust
small area means in step 6 a user can call the predict generic function.
Two arguments have to be specified:

object an object of class ‘gwlmm’ or ‘rgwlmm’.
popdata a data frame with population data. Two options are possible:

(1) containing the variables on the right of the ~ operator in
the formula object for all non-sampled population units, (2)
containing these variables aggregated on area-level and the
area-specific population size. Default = NULL.

If the object argument is of class ‘rgwlmm’, three optional arguments are
available:
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bcConst a numeric value defining the tuning constant for Huber’s in-
fluence function in the bias correction (default bcConst = 3).

maxit an integer value defining the maximum number of iterations
for the random effects (default maxit=100).

tol a numeric value defining the tolerance of the convergence (de-
fault tol = 1e-04).

When the argument popdata is unspecified, only in-sample predictions are
produced.

>summary(predict(fitGWLMM))

# Call:
# predict.gwlmm(object = fitGWLMM)
#
# Summary statistics for estimates error term components:
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# Random effects: -2.611 -0.751 -0.095 0.042 0.784 3.384
# Residuals: -8.689 -1.718 -0.070 0.030 1.408 14.380
#

>summary(predict(fitRGWLMM))

# Call:
# predict.rgwlmm(object = fitRGWLMM)
#
# Iterations for robust random effects: 14
#
# Summary statistics for estimates error term components:
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# Random effects: -1.825 -0.734 -0.063 0.121 0.748 4.908
# Residuals: -15.130 -1.289 -0.116 0.061 1.347 19.500

When popdata is defined, the attached data set popData is suitable for area
mean predictions in case (1) and popaggData in case (2).

>head(popData)

# long lat clusterid x
# 1 0 0.0 1 3.451709
# 2 0 0.5 1 3.483688
# 3 0 1.0 1 1.768635
# 4 0 1.5 1 1.795835
# 5 0 2.0 1 2.314546
# 6 0 2.5 1 1.416395
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>head(popaggData)

# clusterid long lat x Size
# 1 1 1.75 3.070282 3.067707 100
# 2 2 5.75 3.088069 2.823851 100
# 3 3 9.75 3.105856 3.354610 100
# 4 4 13.75 3.123643 3.289381 100
# 5 5 17.75 3.141431 3.363055 100
# 6 6 21.75 3.159218 3.315946 100

From a practical point of view it seems most realistic that a user has ac-
cess to a population sample with unit-level information and aggregated
population data. Therefore, I demonstrate an example using the data set
popaggData. One additional argument has to be specified here:

size a character value naming the variable in popdata containing
the area-specific population sizes.

The predict generic function returns an object of class ‘gwpred’ that can
be used inside the summary generic function.

>predGWLMM <- predict(fitGWLMM, popdata = popaggData,
size = "Size")

>summary(predGWLMM)

# Call:
# predict.gwlmm(object = fitGWLMM, popdata = popaggData,
# size = "Size")
#
# ##################In-sample Predictions##################
#
# Summary statistics for estimates error term components:
#
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# Random effects:-2.611 -0.751 -0.095 0.042 0.784 3.384
# Residuals: -8.689 -1.718 -0.070 0.030 1.408 14.380
#
# ##################Area Mean Predictions##################
#
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# GWEBLUP 119.90 133.20 138.50 138.50 144.10 157.80
# MSE_CCST 0.62 0.75 1.01 1.30 1.47 5.76
# MSE_CCT 0.30 0.69 1.01 1.50 1.76 6.69

>predRGWLMM <- predict(fitRGWLMM, popdata = popaggData,
size = "Size")
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>summary(rpredPop)

# Call:
# predict.rgwlmm(object = fitRGWLMM, popdata = popaggData,
# size = "Size")
#
# ##################In-sample Predictions##################
#
# Iterations for robust random effects: 14
#
# Summary statistics for estimates error term components:
#
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# Random effects: -1.825 -0.734 -0.063 0.121 0.748 4.908
# Residuals: -15.130 -1.289 -0.116 0.061 1.347 19.500
#
# ##################Area Mean Predictions##################
#
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# RGWEBLUP 120.50 133.10 138.60 138.40 144.00 158.30
# RGWEBLUP-bc 119.70 133.10 139.20 138.40 144.00 159.40
# MSE_CCST 0.34 0.46 0.89 1.34 1.43 10.69
# MSE_CCST-bc 0.34 0.94 1.26 1.61 2.26 4.66
# MSE_CCT 0.37 0.63 1.24 1.75 1.98 14.16
# MSE_CCT-bc 0.28 1.02 1.35 2.05 2.58 10.76

The predict generic function can also handle non-sampled areas. For those
areas which are not in the sample but belong to the population, the returned
point estimates are pure synthetic estimates. For robust predictions, the
bias correction becomes zero. Hence, the robust projective and robust pre-
dictive estimators are equal for non-sampled areas. In addition, the package
can handle three combinations of geographic information in the sampled and
population data: (1) only centroid information in sampled and population
data; (2) unit-level geographic information in sample and population data;
(3) unit-level geographic information in the sample and centroid information
in population data. A situation where unit-level geographic information is
available for the population but not for the sample is not considered for this
implementation as it seems unrealistic.

4.3.2 Further Developments

The package saeRGW is currently published on GitHub (repository: balder-
mann/saeRGW). Before submitting the package to a CRAN repository some
work has to be done to guarantee a stable version for potential users. One
important issue is to implement useful error messages that inform the user
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how to continue after a problem occurs. Another topic concerns the com-
putation time needed to fit a model in the GLMM framework. Even for
common sample size, e.g., n = 2000 the fitting process can be very time-
consuming. Some internal functions are already translated into the C++
language (ISO, 2012) to speed up the calculations. Further work can be
done to optimize the linear algebra operations behind the fitting process.
As mentioned in the introduction of this section, there are already several
package in existence for applications in SAE. With an increasing variety
of packages, however, it may become difficult for users to choose between
packages in each application. So far the package saeRGW covers SAE under
spatial non-stationarity which is but one specific branch within the whole
field. Hence, in a next step the package can be extended to cover unit-level
(robust and non-robust) SAE where all the estimators from Chapters 2 and
3 are implemented with their point and MSE estimates. Developing such a
general package would be beneficial for users as different estimators can be
tested and compared for real applications using the interface as presented
in the last section.
In a further step, this general package can be integrated in the package
saeRobust of Warnholz (2016) to combine unit-level and area-level SAE in
one package. Most software components in the package saeRobust can also
be used for unit-level models as these are programmed in a very general
form. In addition, some features of the saeRGW package, such as the sum-
mary output and the plot method, are already in line with this package.
Thus, an integration in the package saeRobust seems natural for further
developments.

4.4 Summary and Outlook

Outlier robust projective and predictive extensions to the currently available
GWEBLUP of Chandra et al. (2012) were proposed in this chapter. The
main findings can be summarized as follows:

- The influence of outliers on the parameter estimation has been reduced
using the results of Sinha and Rao (2009). Their robust ML estimation
equations were modified to account for spatial non-stationarity in the
fixed effects coefficients.

- The robust parameter estimation has been integrated into the algo-
rithm of Chandra et al. (2012) to estimate the robust projective GWE-
BLUP (RGWEBLUP) of the area mean. For that purpose a local fixed
point algorithm has been developed for the approximation of the local
in-sample coefficients Bs.

- The local bias correction of Chambers et al. (2014) has been combined
with geographical weighting to develop a robust predictive GWE-
BLUP (RGWEBLUP-bc) of the area mean.

90



4 The Robust Geographically Weighted EBLUP

- Two conditional MSE estimators have been developed for the RGWE-
BLUP and the RGWEBLUP-bc using the pseudo-linearization and
the linearization approach in Chambers et al. (2014).

- The GWEBLUP of Chandra et al. (2012) and the proposed estimators,
the RGWEBLUP and the RGWEBLUP-bc, have been implemented
for the R-language in the package saeRGW.

Model-based and design-based simulation studies are conducted to assess
the performance of the proposed estimators. These are presented in Part
II of this thesis. Chapter 5 presents the results of a model-based simula-
tion where the performance of the reviewed and the proposed methods is
analyzed under different outlier scenarios. This includes scenarios with and
without spatial stationarity in the model coefficients. Chapter 6 presents
the results of a design-based simulation where selected estimators are com-
pared for SAE under the realistic data situation of the Berlin apartment
rental market.
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Model-based Simulation 5
This chapter presents the results from a model-based simulation study as-
sessing the performance of the estimators that were described in Part I of
this thesis. The aim of this study is twofold: to examine the performance
of these estimators under spatial non-stationarity; and analyze their perfor-
mance in the presence of outliers. Hence, the scenarios for the model-based
simulations are a combination of settings under spatial stationarity and
non-stationarity with different outlier contamination mechanisms. Details
regarding the simulation setup are presented in Section 5.1. Thereafter, it
follows a discussion regarding the estimated variance components and local
coefficients under the GWLMM in Section 5.2. Section 5.3 presents the sim-
ulation results of the small area means and in Section 5.4 the performance
of the proposed MSE estimators is discussed. The calculation times and the
number of converged Monte Carlo replications are presented in Section 5.5.
This is followed by a short discussion of the results in Section 5.6.

5.1 Simulation Setup

Following the simulation setup in Chambers et al. (2014), the population
data is generated for m = 40 small areas. The population and sample
sizes are fixed for all areas with Ni = 100 and ni = 5, respectively. The
samples are selected from the population by simple random sampling with-
out replacement (SRSWOR) within each area. The target variable yij is
generated using the nested error regression model:

yij = β0,ij + β1,ijxij + vi + eij, (5.1)

with

β0,ij = 100 + a0(longitudeij + latitudeij)
β1,ij = 5 + a1(longitudeij + latitudeij).

The explanatory variable xij is drawn from a log-normal distribution with
mean 1 and a standard deviation of 0.5. The population coordinates are
generated as a rectangular grid of points covering the region [0,

√
N/2] ×

[0,
√
N/2]. Figure 5.1 shows the resulting lattice of neighboring rectangular

areas and the distribution of the coordinates (longitude and latitude) in the
synthetic population. Here, the red target marks show the area centroid.
The parameters a0 and a1 in the population model (5.1) define the spatial
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variation of the model coefficients. Following Chandra et al. (2012) these
are set to zero for scenarios under spatial stationarity and to a0 = 0.1
and a1 = 0.2 for scenarios under spatial non-stationarity. Hence, under
spatial stationarity the model coefficients are constant with β0 = 100 and
β1 = 5. Under spatial non-stationarity the coefficients linearly depend on
the coordinates where β0,ij lies within the range [100, 106.32] and β1,ij within
the range [5, 17.65].
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Figure 5.1: Coordinates of the synthetic population for the model-based
simulation.

The random effects vi and the individual error term eij in equation (5.1) are
generated independently under different outlier contamination mechanisms:

- (0, 0) - no outliers with eij ∼ N(0, 6) and vi ∼ N(0, 3);
- (v, e)s - symmetric outlier in the area and unit-level error term: vi ∼
N(0, 3) for the areas 1-36 and vi ∼ N(0, 20) for the areas 37-40, eij ∼
δN(0, 6)+(1−δ)N(0, 150) where δ is Bernoulli distributed with P (δ =
1) = 0.95;
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- (v, e)ns - non-symmetric outliers the area and unit-level error term:
vi ∼ N(0, 3) for the areas 1-36 and vi ∼ N(9, 20) for the areas 37-40,
eij ∼ δN(0, 6) + (1 − δ)N(20, 150) where δ is Bernoulli distributed
with P (δ = 1) = 0.95.

Under spatial stationarity, the scenario with no outliers, (0, 0), serves as a
reference when the assumptions of the LMM in (2.24) are valid whereas un-
der spatial non-stationarity this scenario refers to the GWLMM in (2.62).
The setting of the variance parameters induces a moderate intraclass corre-
lation of σv/(σv + σe) = 0.33.
Following Sinha and Rao (2009), the focus in the second scenario (v, e)s is
on symmetric outlier contamination in the area and unit-level error term.
It is expected that the robust projective estimators (REBLUP, SREBLUP,
RNPEBLUP and RGWEBLUP) are superior under these settings. How-
ever, the assumption of symmetric outlier contamination may be violated in
real applications. Thus, following Chambers et al. (2014), non-symmetric
outlier contamination is investigated in the third scenario (v, e)ns. Here,
outlier robust projective estimators are expected to suffer from a potential
bias. The outlier robust predictive estimators (REBLUP-bc, SREBLUP-bc
and RGWEBLUP-bc) should reduce this bias under this scenario.
These outlier scenarios and the general simulation setup, such as the number
of areas and the sample and population sizes, are comparable to simulations
conducted by Sinha and Rao (2009) and Chambers et al. (2014). Thus, this
specific choice of the simulation setup provides the possibility to investigate
the proposed SAE methods under extreme situations and produce compa-
rable results to previous studies. Each scenario was repeated independently
T = 500 times. For each Monte Carlo replication the population was gener-
ated according to the underlying setting and a sample was drawn. The sam-
pled data was used to estimate the small area means and the corresponding
MSE estimates. Before the results for the small area means are presented,
the robust and non-robust parameter estimation under the GWLMM area
discussed in brief.

5.2 Parameter Estimation under the GWLMM

In this thesis the main interest lies in producing reliable estimates of the
small area mean rather than the model parameters itself. However, as men-
tioned while describing the package saeRGW in Section 4.3.1, users do not
necessarily have to be interested in SAE when fitting the GWLMM.
First, the discussion focuses on the robust and non-robust estimation of the
local coefficients β0,ij and β1,ij. Finding an overall quality measure is not
obvious since there exist as many local coefficients as there are units in the
population. Therefore, I concentrate on the boundaries of the parameter
space. Remember that in the population under spatial non-stationarity β0,ij
lies within the range [100, 106.32] and β1,ij within the range [5, 17.65]. Con-
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sequently, the estimated local coefficients should also lie within these ranges.
Under spatial stationarity the estimated coefficients should be nearly con-
stant with the expected values β0 = 100 and β1 = 5. The minimum (Min)
and the maximum (Max) of the estimated local coefficients in each Monte
Carlo replication serve as a measure for the observed boundaries. The me-
dian of these values over all replications are reported in 5.1 for all outlier
scenarios under spatial stationarity and non-stationarity. In addition, the
table reports the relative deviation of the Min and Max values from the
respective lower and upper bound.

Scenario Coeff. Non-robust Robust
Min ∆%1 Max ∆%2 Min ∆%1 Max ∆%2

Spatial non-stationary: β0,ij ∈ [100, 106.32], β1,ij ∈ [5, 17.65]
(0, 0) β̂0 96.20 -3.80 109.81 3.28 96.16 -3.84 109.85 3.32

β̂1 6.01 20.27 16.59 -6.02 5.94 18.84 16.59 -6.01
(v, e)s β̂0 96.05 -3.95 110.65 4.07 96.45 -3.55 110.24 3.68

β̂1 6.08 21.58 16.53 -6.35 6.18 23.64 16.52 -6.40
(v, e)ns β̂0 97.01 -2.99 118.26 11.23 97.07 -2.93 117.64 10.65

β̂1 5.91 18.15 16.61 -5.90 6.26 25.10 16.69 -5.47
Spatial stationary: β0 = 100, β1 = 5
(0, 0) β̂0 98.78 -1.22 101.03 1.03 98.85 -1.15 101.07 1.07

β̂1 4.74 -5.13 5.31 6.27 4.76 -4.88 5.30 6.08
(v, e)s β̂0 99.01 -0.99 101.14 1.14 99.21 -0.79 100.85 0.85

β̂1 4.77 -4.67 5.26 5.13 4.81 -3.74 5.18 3.67
(v, e)ns β̂0 97.71 -2.29 109.36 9.36 97.83 -2.17 107.68 7.68

β̂1 3.85 -23.03 6.14 22.86 4.34 -13.17 5.70 14.10
1 Relative deviation of Min from the lower boundary of the parameter space
2 Relative deviation of Max from the upper boundary of the parameter space

Table 5.1: Median values for the Min and Max of the estimated local coef-
ficients and under spatial stationarity and non-stationarity.

Comparing the robust and non-robust results of the Min and Max values,
only very small differences in the range of the estimated coefficients can be
observed in scenarios with no outliers, (0, 0). In scenarios with symmetric or
asymmetric outliers,(v, e)s and (v, e)ns, the range of the robust compared to
the non-robust coefficients is smaller, especially for the estimated intercepts
(β̂0). Since the robust parameter estimates are less affected by outliers, a
smaller range can be expected.
Under spatial non-stationarity, in scenarios with no or symmetric outlier
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contamination, (0, 0) and (v, e)s, the range of the estimated robust and
non-robust intercepts (β̂0) is larger than the expected range of [100, 106.32].
This effect is more severe with asymmetric outlier contamination (v, e)ns.
Here, the Max value of the intercept is about 10% higher than the expected
upper boundary of 106.32. At the same time, in all outlier scenarios, (0, 0),
(v, e)s and (v, e)ns, the range of the estimated robust and non-robust slope
coefficients (β̂1) is smaller than the expected range of [5, 17.65].
Turning to the spatial stationary scenarios, the range of the estimated local
coefficients always includes the true population parameter for the intercept
and the slope. In the scenario with asymmetric outliers, (v, e)ns, the range
becomes wider for both coefficients.
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Figure 5.2: Density plots of σ2
e for all outlier scenarios under spatial station-

arity and non-stationarity.

The focus now turns toward the estimation of the variance parameters.
Figure 5.2 shows density plots for the estimated variance of the individual
error term component σ2

e . In general, it can be observed that the estimation
of σ2

e is not very satisfying under the robust (blue) and non-robust (red)
approach as in most cases the densities are not centered around the true
value. One exception is the scenario with symmetric outlier contamination
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where the proposed robust estimation seems to estimate σ2
e quite well under

spatial stationarity and non-stationarity. Looking at the area-level variance
component in Figure 5.3 both approaches (robust and non-robust) seem to
underestimate σ2

v in most of the scenarios. Hence, under the GWLMM the
estimation of the variance parameters, either robust or non-robust, seems
quite unreliable. For future simulations, it would be interesting to examine
these results at different values of intraclass correlations (e.g. 10%, 40%
and 60%).

5% non−sym. outliers 5% sym. outliers no outliers

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

non−
stationary

stationary

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
σv

2 = 3

D
en

si
ty Model

GWLMM

RGWLMM

Figure 5.3: Density plots of σ2
v for all outlier scenarios under spatial station-

arity and non-stationarity.

One explanation for the underestimation of the variance parameters can be
found when recalling the simulation results for the local model coefficients
in Table 6.3. In all scenarios the range of the estimated local intercepts was
wider than in the synthetic population. This implies an overfitting of the
model to the sampled data. More precisely, the estimated local intercepts
partly capture the random variation of the error term components in the
fixed part of the model. Consequently, the fraction of unexplained variation
in the model becomes smaller, which leaves less variation for the two error
term components.
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To sum up this section, it is important to emphasize that the robust and
non-robust parameter estimates under the GWLMM need to be treated
carefully in applications. Based on the simulation results, the local coef-
ficients seem to give an overall picture of the true parameter surface but
should not be interpreted individually. In addition, the estimated variance
parameters can be misleading. To find sound explanations and satisfying
guidelines for parameter interpretations, further research in this direction
is needed. The findings in this section can be seen as preliminary results.

5.3 Performance of the Small Area Means

Eleven estimators of the small area means are evaluated in the simulations.
These are the EBLUP in (2.26), the robust projective REBLUP in (3.11)
and the robust predictive REBLUP-bc in (3.20). In addition, the corre-
sponding spatial estimators are evaluated –the SEBLUP in (2.46), SRE-
BLUP in (2.46) and the SREBLUP-bc in (3.75)– which account for spatial
dependencies between the area-specific random effects. The contiguity ma-
trix W for the underlying model (2.44) is constructed using a binary adja-
cency matrix based on the neighborhood structure visible from Figure 5.1.
Here, areas which have at least one point in common on the boundary are
defined as neighbors. Based on this definition, the number of neighbors per
area varies between three and eight with a median of five. The contiguity
matrix is row standardized such that the rows sum up to one (cf. Pratesi
and Salvati, 2009). Both the EBLUP and the spatial EBLUP estimators
are suitable under spatial stationarity because they assume a global model.
In the following these are referred to as global estimators. Furthermore, the
simulation study includes the GWEBLUP in (2.65), the robust projective
RGWEBLUP in (4.6) and the robust predictive RGWEBLUP-bc in (4.8),
which are suitable under spatial non-stationarity. In addition, the non-
parametric NPEBLUP in (2.54) and the robust projective non-parametric
RNPEBLUP in (3.83) are evaluated. Both can cope with a spatial trend of
an arbitrary form in the target variable.
Following Dongmo-Jiongo et al. (2013) and Chambers et al. (2014), the ro-
bust projective estimators are estimated setting the tuning constant c =
1.345. Furthermore, the bias correction for the robust predictive estimators
is estimated using a larger tuning constant, b = 3. The simulation is con-
ducted using the programming language R. The R-scripts are attached to
the supplemental material, including a manual to reproduce the results. The
performance measures for comparing the small area means are introduced
in the next subsection. The results are presented thereafter.

5.3.1 Performance Measures

The performance of the examined estimators is evaluated using two quality
measures: the relative bias (RB) and the relative root mean squared error
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(RRMSE). Both measures are computed for each Monte Carlo replication.
The RB of an estimator measures the relative difference from the true pop-
ulation value. Thus, the area-specific Monte Carlo RB of an estimator is
defined as

RBi = 1
T

T∑
t=1

m̂ti −mti

mti

, (5.2)

where m̂it is a generic notation to denote a small area estimator of the mean
in area i for Monte Carlo replication t and mit denotes the corresponding
true population value. T denotes the number of Monte Carlo replications.
The RRMSE is an indicator of the efficiency of an estimator as it measures
the squared relative difference from the true population value. The Monte
Carlo RRMSE of an estimator is defined as

RRMSEi =

√√√√ 1
T

T∑
t=1

(
m̂ti −mti

mti

)2

. (5.3)

Judging the quality of an estimator, the RB should be close to zero and the
RRMSE should be small compared to alternative estimators.

5.3.2 Simulation Results

In what follows, the results for scenarios under spacial stationarity are pre-
sented first. This is followed by the results under spatial non-stationarity.
Results for the scenarios under spatial stationarity are presented in Figure
5.4. Table 5.2 reports the median values of the RB and the RRMSE sepa-
rated for areas with and without outliers in the area level error term.
In the scenarios with no or symmetric outliers, (0, 0) and (v, e)s, all esti-
mators are nearly unbiased and the global estimators (EBLUP, REBLUP,
REBLUP-bc and SEBLUP, SREBLUP, SREBLUP-bc) are more efficient
compared to the geographically weighted and non-parametric estimators
(GWEBLUP, RGWEBLUP, RGWEBLUP-bc and NPEBLUP). Here, the
GWEBLUP tends to overfit the model since estimating local coefficients is
not necessary. This effect is less severe for the NPEBLUP which estimates
an unneeded spatial trend.
Within the global estimators, using the spatial EBLUP approach causes
an efficiency loss compared to respective EBLUP estimators. As the data
is driven by a LMM without spatial dependencies, this can be expected
since estimating the additional spatial correlation parameter ρ is dispens-
able. In case of symmetric outliers (v, e)s, the robust projective estimators
(REBLUP, SREBLUP and RGWEBLUP) are superior in terms of efficiency
compared to their non-robust counterparts (EBLUP, SEBLUP and GWE-
BLUP).
For non-symmetric outliers (v, e)ns, the robust projective estimators (RE-
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BLUP, SREBLUP and RGWEBLUP) suffer from bias as a consequence of
their assumption that the outliers have zero expectations (Chambers et al.,
2014). The robust predictive estimators (REBLUP-bc, SREBLUP-bc and
RGWEBLUP-bc) can reduce the bias induced by the robustification at the
cost of a higher RRMSE compared to the robust projective counterparts.
This is especially true in the extreme areas 37−40 where outliers are present
in the area and unit-level error term components.
Note that the RNPEBLUP is not reported for scenarios under spatial sta-
tionarity since the algorithm was unstable such that less than 50% of the
Monte Carlo replications converged to a solution. One explanation could
be that the three variance components in model (2.53) cannot be identified
under the robust approach when the overall variation of the error term is
limited. Details regarding the stability of all estimators under investigation
are presented in Section 5.5.

Predictor Results (%) for the following scenarios and areas
(0, 0) (v, e)s (v, e)s (v, e)s (v, e)ns (v, e)ns (v, e)ns
1-40 1-40 1-36 37-40 1-40 1-36 37-40

Median values of RB
GWEBLUP 0.01 0.01 0.01 0.07 0.08 0.11 -1.78
RGWEBLUP 0.00 0.02 0.01 0.07 -0.55 -0.54 -1.59
RGWEBLUP-bc -0.01 0.03 0.02 0.04 -0.59 -0.58 -1.03
NPEBLUP 0.00 0.02 0.01 0.06 0.11 0.17 -1.72
SEBLUP 0.00 0.01 0.01 0.06 0.22 0.23 -1.97
SREBLUP -0.00 0.03 0.02 0.05 -0.54 -0.53 -1.19
SREBLUP-bc -0.02 0.02 0.02 0.03 -0.42 -0.41 -0.46
EBLUP 0.00 0.02 0.02 0.05 0.26 0.27 -2.08
REBLUP -0.00 0.02 0.02 0.04 -0.50 -0.50 -1.32
REBLUP-bc -0.01 0.02 0.02 0.03 -0.57 -0.57 -0.62
Median values of RRMSE
GWEBLUP 0.84 1.10 1.10 1.80 1.49 1.48 2.82
RGWEBLUP 0.86 0.93 0.92 1.35 1.20 1.19 2.10
RGWEBLUP-bc 0.90 1.04 1.04 1.13 1.31 1.31 1.58
NPEBLUP 0.80 1.08 1.07 1.69 1.54 1.51 2.61
SEBLUP 0.80 1.08 1.07 1.69 1.55 1.54 2.76
SREBLUP 0.82 0.91 0.91 1.18 1.14 1.14 1.62
SREBLUP-bc 0.91 1.15 1.14 1.25 1.48 1.48 1.33
EBLUP 0.80 1.07 1.06 1.67 1.56 1.55 2.80
REBLUP 0.81 0.90 0.90 1.24 1.12 1.11 1.69
REBLUP-bc 0.90 1.04 1.04 1.08 1.28 1.28 1.24

Table 5.2: Median values for RB and RRMSE of estimated small area means
under spatial stationarity.
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Figure 5.4: Boxplots of the RB (%) and the RRMSE (%) in the spatial
stationary scenarios with different outlier contamination mech-
anisms.

Turning to the scenarios under spatial non-stationarity, the median val-
ues of the RB and the RRMSE are reported in Table 5.3 and Figure 5.5
shows the corresponding boxplots of these values over all areas. It can be
observed that within the global approaches (EBLUP, REBLUP, REBLUP-
bc and SEBLUP, SREBLUP, SREBLUP-bc) the non-spatial estimators are
more efficient compared to their spatial counterparts. Thus, allowing for
spatially correlated random effects does not seem to cause any efficiency
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gain when the spatial structure in the data is actually driven by spatial
non-stationarity. To find an explanation it is important to bear in mind
that under spatial non-stationarity both the SEBLUP and the EBLUP ap-
proaches are misspecified. The non-spatial EBLUP approaches ignore spa-
tially varying coefficients in the fixed part of the model by assuming global
coefficients; the error term components (area and unit level) on the other
hand are correctly specified. In the SEBLUP approaches the fixed model
part plus the area level random error term component are misspecified.
Thus, the EBLUP is faced with one and the SEBLUP with two misspecifi-
cations under spatial non-stationarity. This may cause the efficiency loss of
the SEBLUP approaches compared to the non-spatial EBLUP approaches.

Predictor Results (%) for the following scenarios and areas
(0, 0) (v, e)s (v, e)s (v, e)s (v, e)ns (v, e)ns (v, e)ns
1-40 1-40 1-36 37-40 1-40 1-36 37-40

Median values of RB
GWEBLUP 0.00 0.02 0.05 -0.30 0.14 0.16 -1.68
RGWEBLUP -0.00 0.02 0.04 -0.27 -0.41 -0.38 -1.66
RGWEBLUP-bc 0.01 0.00 0.02 -0.16 -0.45 -0.43 -1.16
NPEBLUP 0.01 0.05 0.05 -0.03 0.08 0.09 -1.19
RNPEBLUP 0.05 0.05 0.05 -0.43 -0.37 -0.34 -1.59
SEBLUP 0.02 -0.03 0.17 -2.22 0.08 0.24 -2.97
SREBLUP 0.01 -0.04 0.08 -1.99 -0.24 -0.13 -2.94
SREBLUP-bc 0.01 0.03 0.03 -0.10 -0.19 -0.17 -0.23
EBLUP 0.02 0.01 0.05 -0.63 0.04 0.13 -1.03
REBLUP 0.02 -0.01 0.04 -0.90 -0.40 -0.35 -1.23
REBLUP-bc 0.01 0.03 0.03 -0.47 -0.40 -0.35 -0.73
Median values of RRMSE
GWEBLUP 0.81 1.06 1.05 1.53 1.40 1.34 2.41
RGWEBLUP 0.86 0.93 0.91 1.34 1.09 1.08 2.12
RGWEBLUP-bc 0.80 0.93 0.92 1.04 1.16 1.15 1.67
NPEBLUP 1.02 1.13 1.11 2.02 1.46 1.42 2.37
RNPEBLUP 0.98 1.02 1.01 1.93 1.17 1.14 2.39
SEBLUP 2.29 2.32 1.95 3.74 2.34 2.24 4.57
SREBLUP 1.30 1.97 1.72 3.40 2.13 2.00 4.10
SREBLUP-bc 1.28 1.45 1.42 2.24 1.88 1.79 2.34
EBLUP 1.29 1.53 1.46 2.27 2.02 1.99 2.52
REBLUP 1.25 1.32 1.27 2.24 1.53 1.47 2.42
REBLUP-bc 1.25 1.36 1.30 2.13 1.55 1.52 2.22

Table 5.3: Median values for RB and RRMSE of estimated small area means
under spatial non-stationarity.

105



5.3 Performance of the Small Area Means

●●●

● ●●●

● ●●●

●●● ● ●

●●● ● ● ●

●

●●

●●

●●

●●

●●●

●

●●●●

●●

●●

●●

●●

●

●●●●●●

REBLUP−bc

REBLUP

EBLUP

SREBLUP−bc

SREBLUP

SEBLUP

RNPEBLUP

NPEBLUP

RGWEBLUP−bc

RGWEBLUP

GWEBLUP

REBLUP−bc

REBLUP

EBLUP

SREBLUP−bc

SREBLUP

SEBLUP

RNPEBLUP

NPEBLUP

RGWEBLUP−bc

RGWEBLUP

GWEBLUP

REBLUP−bc

REBLUP

EBLUP

SREBLUP−bc

SREBLUP

SEBLUP

RNPEBLUP

NPEBLUP

RGWEBLUP−bc

RGWEBLUP

GWEBLUP

−2 −1 0 1 2

%RB

● ●●● ●

● ●●● ●

●●●● ●

●●●

●●●●●

●

●●

●

●

●●●●

●●

●

●●

●

●

●

●

●

●

●●● ●

●●●●

●●

●

●

●

●

●

●

non−
sym

. outliers
sym

. outliers
no outliers

1 2 3 4

%RRMSE

Figure 5.5: Boxplots of the RB (%) and the RRMSE (%) in the spatial non-
stationary scenarios with different outlier contamination mech-
anisms.

In the scenario without outliers, (0, 0), all estimators are nearly unbiased.
Furthermore, the geographically weighted approaches (GWEBLUP, RG-
WEBLUP and RGWEBLUP-bc) and the non-parametric estimators (NPE-
BLUP, RNPEBLUP) are more efficient compared to the global approaches.
This is expected as the working models for these estimators are more suit-
able under spatial non-stationarity. Within the global approaches, the ro-
bust estimators (REBLUP, REBLUP-bc and SREBLUP and SREBLUP-
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bc) are more efficient compared to their non-robust counterparts (EBLUP
and SEBLUP). Thus, robustifying against outliers seems to be beneficial
when assumptions concerning the spatial stationarity are violated.
Interestingly, in the scenario without outliers (0, 0), the robust predictive
estimators (REBLUP-bc, SREBLUP-bc and RGWEBLUP-bc) are slightly
more efficient compared to their robust projective counterparts (REBLUP,
SREBLUP and RGWEBLUP). Actually, it is expected that the variation
induced by the bias correction would cause a loss in efficiency. As this phe-
nomenon does not occur in the scenarios under spatial stationarity, it is
presumably caused by the spatial non-stationarity induced by the data gen-
erating process. One reason can be the local nature of the bias correction
that may enhance the precision of the prediction. Further investigations are
needed to find sound explanations, however.
The results for the scenarios with symmetric outlier contamination (v, e)s
confirm the expectations regarding the behavior of the robust estimators.
First, the robust projective estimators (REBLUP, SREBLUP, RNPEBLUP
and RGWEBLUP) lead to more efficient results compared to the respective
robust predictive estimators (REBLUP-bc, SREBLUP-bc and RGWEBLUP-
bc) and compared to the non-robust estimators (EBLUP, SEBLUP, NPE-
BLUP and GWEBLUP). This can be observed for all areas 1-40, with and
without outliers in the area-level error term. Second, the bias is almost neg-
ligible under symmetric outlier contamination, especially in the areas 1-36,
where outliers are only present in the unit-level error term. Third, the geo-
graphically weighted methods offer some gains in RRMSE when compared
to the global methods and the NPEBLUP.
As in the spatial stationary scenario, the robust projective estimators (RE-
BLUP, SREBLUP, RNPEBLUP and RGWEBLUP) suffer from bias in the
case of asymmetric outlier contamination (v, e)ns. The robust predictive
approaches (REBLUP-bc, SREBLUP-bc and RGWEBLUP-bc) correct for
the bias at the cost of lower efficiency compared to their robust projec-
tive counterparts, especially in the extreme areas 37-40. Regarding the
RRMSE results, the robust geographically weighted methods (RGWEBLUP
and RGWEBLUP-bc) offer better efficiency compared to the non-robust
GWEBLUP.
The overall results for the area means indicate that combining geograph-
ically weighted regression methods with robust protection –either robust
predictive RGWEBLUP or projective RGWEBLUP-bc– can lead to gains
in efficiency.

5.4 Performance of the MSE Estimates

The pseudo-linearization (CCT) and the linearization-based (CCST) ap-
proaches for MSE estimation are evaluated for six estimators of the small
area mean. These are the CCT in (3.25) and the CCST in (3.48) for the
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robust projective REBLUP; the CCT in (3.33) and the CCST in (3.67) for
the robust predictive REBLUP-bc; and the CCT in (2.34) and the CCST
for the EBLUP. The CCST for the EBLUP can be obtained by setting
the tuning constant in (3.48) to a very high value, c = 100. Furthermore,
these MSE estimators are evaluated for the GWEBLUP and the proposed
extensions, the robust projective RGWEBLUP and the robust predictive
RGWEBLUP-bc. In particular, results are presented for the CCT in (4.22)
and the CCST in (4.50) for the RGWEBLUP and the CCT in (4.33) and
the CCST in (4.66) for the RGWEBLUP-bc. The CCT and the CCST
for the GWEBLUP can be obtained by choosing a large tuning constant
(c = 100) in (4.22) and (4.50), respectively. The performance measures for
comparing the MSE estimators are introduced in the next subsection. The
results are presented thereafter.

5.4.1 Performance Measures

Similar to the point estimates in Section 5.3, the quality of the MSE es-
timates is judged by means of the RB and the RRMSE of the estimated
root MSE (RMSE). The true population value of the RMSE is given by the
empirical RMSE of an estimator observed over the Monte Carlo replications:

RMSEi =

√√√√ 1
T

T∑
t=1

(m̂ti −mti)2, (5.4)

where, as in equation (5.2), m̂it is a generic notation to denote an estimator
of the mean in area i for the Monte Carlo replication t and mit denotes the
corresponding true population value. Using this definition, the area-specific
Monte Carlo RB for the RMSE estimator is given by

RBLi = 1
T

T∑
t=1

R̂MSE
L

ti −RMSEi

RMSEi

, (5.5)

where R̂MSE
L

i denotes the estimated RMSE of an estimator of the mean
in area i using method L. Here, L can be either the CCT or the CCST
approach. The area-specific Monte Carlo RRMSE for the RMSE estimator
is given by

RRMSELi =

√√√√√√ 1
T

T∑
t=1

R̂MSE
L

ti −RMSEi

RMSEi

2

. (5.6)

When comparing different methods for MSE estimation, stable estimators in
terms of a low RRMSE with a RB close to zero are preferred. In addition,
the MSE estimates are judged by the achieved coverage rate (CR) of a
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nominal 95% confidence interval. The area-specific Monte Carlo CR is given
by

CRL
i = 1

T

T∑
t=1

I
(
|m̂ti −mti| ≤ 1.96 R̂MSE

L

ti

)
. (5.7)

MSE estimators with a CR lower than the requested 95% are less trust-
worthy and those with a higher CR reveal low efficiency as the confidence
intervals are unnecessarily wide. Thus, the CR of an MSE estimator should
ideally be close to 95%.

5.4.2 Simulation Results

The performance results of the MSE estimators for spatial non-stationary
scenarios are reported in Table 5.4. In particular, the median values of the
RB, the RRMSE and the CR are presented separately for areas with and
without outliers in the area-level error term. Results for scenarios under
spatial stationarity are reported in Table A.1 in Appendix A. These are
very similar and, hence, only the results under spatial non-stationarity are
discussed here.
In general, it can be observed that the CCST method for the MSE estima-
tion constantly offers better stability in terms of a lower RRMSE compared
to the CCT method for the geographically weighted estimators (GWE-
BLUP, RGWEBLUP and RGWEBLUP-bc) and the global estimators (EBL-
UP, REBLUP and REBLUP-bc) for all scenarios.
Turning to the bias and coverage rate, the picture is not as clear. I start dis-
cussing the results of the global estimators (EBLUP, REBLUP and REBLUP-
bc) and the non-robust GWEBLUP as these are quite similar. It can be
observed here that the CCT method underestimates the MSE in all outlier
scenarios (0, 0), (v, e)s and (v, e)ns. The magnitude of the underestimation
becomes more severe for scenarios (v, e)s and (v, e)ns in the extreme areas
37-40 with outliers in the area-specific error term. Since the CCT does not
take into account the variation caused by the estimation of the variance
parameters, an underestimation seems plausible. This underestimation is
also reflected in the CRs of the CCT which are relatively low with values
between 0.82 an 0.92. The CCST MSE estimates, on the other hand, tend
to overestimate the MSE in scenario (0, 0) and for the areas 1-36 in sce-
narios (v, e)s and (v, e)ns. In the extreme areas 37-40 an underestimation
is revealed for both outlier scenarios. However, the magnitude of the bias
is generally smaller compared to the CCT MSE estimates. The CRs of the
CCST method vary between 0.94 and 0.97 in scenario (0, 0) and in scenarios
(v, e)s and (v, e)ns for areas 1-36. Hence, the CCST provides 95% confidence
intervals with a satisfying coverage performance at least in the areas 1-36.
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Predictor MSE Results for the following scenarios and areas

(0, 0) (v, e)s (v, e)s (v, e)s (v, e)ns (v, e)ns (v, e)ns
1-40 1-40 1-36 37-40 1-40 1-36 37-40

Median values of RB (%)
GWEBLUP CCST 3.73 5.00 6.29 -16.93 13.60 14.54 -19.75

CCT -23.05 -17.64 -17.30 -29.21 -7.22 -7.10 -27.58
RGWEBLUP CCST -5.81 4.34 4.70 -22.18 9.16 10.64 -37.37

CCT -25.57 -11.06 -10.38 -30.35 1.50 4.40 -38.40
RGWEBLUP-bc CCST -4.06 -5.06 -4.10 -17.84 -11.01 -10.33 -43.03

CCT 1.65 5.63 6.43 -9.53 6.30 7.51 -31.32
EBLUP CCST 17.12 9.43 13.57 -28.12 -0.96 2.35 -19.20

CCT -13.12 -17.42 -17.34 -20.12 -22.54 -22.66 -17.06
REBLUP CCST 16.16 9.65 13.28 -23.70 1.11 7.19 -28.62

CCT -19.29 -16.97 -15.51 -34.02 -14.13 -13.75 -34.72
REBLUP-bc CCST 9.32 7.00 7.74 -15.61 2.15 3.40 -19.84

CCT -14.78 -15.39 -14.22 -28.03 -14.83 -14.48 -29.49
Median values of RRMSE (%)
GWEBLUP CCST 30.24 37.46 36.04 38.78 46.96 47.63 44.30

CCT 39.71 49.68 49.41 49.98 58.62 59.58 53.30
RGWEBLUP CCST 32.80 42.20 42.68 39.82 56.43 56.79 50.88

CCT 44.89 55.21 56.21 51.55 72.76 73.39 57.42
RGWEBLUP-bc CCST 31.97 34.84 34.89 33.31 36.63 36.53 47.24

CCT 39.34 51.63 52.37 45.01 64.87 66.00 49.75
EBLUP CCST 32.54 25.16 24.24 29.69 17.82 16.70 23.23

CCT 34.74 40.61 40.88 37.84 51.03 52.76 38.14
REBLUP CCST 34.60 30.87 28.96 35.17 24.93 24.43 37.06

CCT 30.64 33.91 33.16 41.20 41.06 40.78 43.31
REBLUP-bc CCST 34.57 36.10 37.00 28.62 37.33 39.09 29.99

CCT 30.89 34.82 34.76 38.20 41.41 41.41 41.28
Median values of CR
GWEBLUP CCST 0.95 0.97 0.97 0.93 0.95 0.96 0.91

CCT 0.83 0.88 0.88 0.82 0.86 0.86 0.85
RGWEBLUP CCST 0.93 0.94 0.94 0.73 0.94 0.94 0.88

CCT 0.82 0.86 0.87 0.67 0.86 0.86 0.82
RGWEBLUP-bc CCST 0.90 0.87 0.87 0.70 0.90 0.91 0.87

CCT 0.91 0.89 0.89 0.73 0.91 0.92 0.88
EBLUP CCST 0.97 0.95 0.95 0.88 0.96 0.97 0.84

CCT 0.87 0.88 0.89 0.81 0.87 0.88 0.83
REBLUP CCST 0.97 0.96 0.97 0.79 0.97 0.97 0.82

CCT 0.85 0.85 0.87 0.73 0.87 0.88 0.75
REBLUP-bc CCST 0.94 0.92 0.93 0.85 0.94 0.94 0.87

CCT 0.87 0.86 0.86 0.78 0.88 0.88 0.80

Table 5.4: Median values of the performance measures of the RMSE esti-
mators under spatial non-stationarity.

110



5 Model-based Simulation

Based on these results it seems that for the global estimator (EBLUP, RE-
BLUP and REBLUP-bc) and the non-robust GWEBLUP, the CCST MSE
estimator constantly performs better (in terms of bias, stability and cover-
age) compared to the CCT MSE estimator over all outlier scenarios. Ex-
ceptions of these findings can be observed for the robust projective RGWE-
BLUP and the robust predictive RGWEBLUP-bc.
The performance results of the MSE estimators for the RGWEBLUP are
discussed first. As already mentioned, the CCST MSE estimator is superior
in terms of stability compared to the CCT MSE estimator as the RRMSE is
constantly lower. In terms of bias, both MSE estimators underestimate the
MSE in scenario (0, 0) whereas the absolute value of the bias is substantially
smaller for the CCST. For symmetric outlier contamination, (v, e)s, the pat-
tern is as follows: the CCST method overestimates the MSE except for the
areas 37-40 where it underestimates; the CCT method underestimated the
MSE in all areas; the magnitude of the bias is smaller for the CCST com-
pared to the CCT. For asymmetric outlier contamination (v, e)ns both MSE
estimates overestimate the MSE in areas 1-36 where the bias is smaller for
the CCT, and in areas 37-40 both estimators underestimate with the same
order of magnitude. Thus, in this scenario, the CCT seems to perform bet-
ter in terms of bias. However, the CR of the CCT method is constantly
lower compared to the CCST method. Here, the CCST method reveals a
CR of 0.94 in scenario (0, 0) and 0.94 in scenarios (v, e)s and (v, e)ns for ar-
eas 1-37 whereas the CCT does not reach an acceptable CR in any scenario.
Turning to the MSE estimators for the robust predictive RGWEBLUP-bc,
again the CCST MSE estimator offers more stability compared to the CCT
method. In addition, the CCT MSE estimator tends to overestimate and
the CCST to underestimates the MSE, but the magnitude of the bias is
in the same range. In all scenarios the CR of the CCT is slightly higher
than for the CCST but does not in any case reach an acceptable level. This
results is counter intuitive for both methods. An overestimation of the CCT
method is unexpected as it ignores the variability caused by the estimation
of the variance parameters. As the CCST method accounts for this source
of variation, the MSE estimates should be larger than the CCT estimates.
Further investigations are needed here to fins sound explanations.
The overall results in this section indicate that using the CCST method for
the MSE estimation of the global estimators and the GWEBLUP appears
to have appealing properties regarding stability, bias and coverage in all sce-
narios. Besides some limitations regarding the coverage in the case of the
robust predictive RGWEBLUP-bc, the CCST method for MSE estimation
also performs satisfyingly for the proposed robust methods.
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5.5 Stability and Calculation Times

This section presents results regarding the stability of the estimation proce-
dures that were investigated in this simulation study. This also includes a
discussion regarding the calculation times needed for the estimation. Table
5.5 reports the number of successfully converged Monte Carlo replications
separately for each estimator and scenario. Valid replications are defined as
estimations where the iterative approximation algorithms converged with a
tolerance of 10−4. In addition, estimations with negative estimated variance
parameters are treated as invalid. When estimations do not converge or pro-
duce implausible values, these replications are excluded from the analysis
for all estimators. This assures that all estimators are compared based on
the same number of replications.

Successfully converged replications
Predictor Non-stationarity Stationarity

(0, 0) (v, e)s (v, e)ns (0, 0) (v, e)s (v, e)ns
GWEBLUP 500 488 490 500 499 497
RGWEBLUP 472 473 485 497 495 495
NPEBLUP 500 500 500 500 500 500
RNPEBLUP 500 500 500 233 263 467
SEBLUP 500 500 500 500 500 500
SREBLUP 500 500 500 500 500 500
EBLUP 500 500 500 500 500 500
REBLUP 500 500 500 500 500 498

Table 5.5: Number of converged Monte Carlo replications for scenarios un-
der spatial stationarity and non-stationarity.

From Table 5.5 it can be noted that the estimators EBLUP, SEBLUP, SRE-
BLUP and NPEBLUP do not face any stability problems as all the Monte
Carlo replications converged successfully for these estimators. In contrast,
the REBLUP, the RNPEBLUP, and the geographically weighted methods
GWEBLUP and RGWEBLUP suffer from some stability problems. As has
already been noted, the RNPEBLUP shows severe instability under spatial
stationarity for scenarios without (0, 0) or symmetric outliers (v, e)s whereas
it runs stable under spatial non-stationarity. The REBLUP also has minor
stability problems under spatial stationarity but with non-symmetric out-
liers (v, e)ns. The stability of the GWEBLUP and the RGWEBLUP mainly
exhibits problems under non-stationarity caused by convergence issues for
the variance parameters. The high variation of the fixed effects coefficients
in these scenarios seems to disturb the convergence. The problem is more
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severe for the proposed RGWEBLUP than for the non-robust GWEBLUP.
Table 5.6 reports the average calculation times for all estimators and sce-
narios based on the valid Monte Carlo replications.

Mean calculation time in seconds per replication
Predictor Non-stationarity Stationarity

(0, 0) (v, e)s (v, e)ns (0, 0) (v, e)s (v, e)ns
GWEBLUP 30.48 28.59 28.08 18.63 20.28 20.08
RGWEBLUP 26.98 27.37 34.75 20.76 25.30 28.10
SEBLUP 6.24 5.98 5.67 0.90 1.01 1.09
SREBLUP 3.04 4.49 6.09 0.96 0.97 0.94
EBLUP 0.66 0.69 0.74 0.76 0.19 0.71
REBLUP 3.29 3.37 3.60 2.62 0.85 3.28
NPEBLUP 0.68 0.57 0.65 0.83 0.82 0.59
RNPEBLUP 0.80 0.68 0.77 0.80 0.83 0.68

Table 5.6: Calculation time for scenarios under spatial stationarity and non-
stationarity, n = 200.

As previously mentioned, the geographically weighted methods (GWEBLUP
and RGWEBLUP) are computationally demanding as the model coefficients
have to be estimated for all locations in the sample. This is also reflected
in the calculations times. On average, estimating the GWEBLUP or the
RGWEBLUP was about 50 times slower compared to the EBLUP. This fac-
tor is expected to increase for larger samples as the number of operations
needed for the calculation increases exponentially with the sample size n.

5.6 Discussion

The results from the model-based simulation indicate a potential benefit
of combining geographically weighted regression with robust estimation.
In the presence of spatial non-stationarity and extreme observations, ap-
plying the proposed robust projective RGWEBLUP and robust predictive
RGWEBLUP-bc may lead to efficiency gains compared to the non-robust
GWEBLUP. In addition, the proposed CCST MSE estimator for the RG-
WEBLUP and RGWEBLUP-bc appears to have appealing properties in
terms of bias and stability in the investigated scenarios. In practice, the
proposed robust SAE methods can be expensive in terms of calculation
time compared to other methods. The potential efficiency gain, however,
may be an acceptable trade-off.
The settings in this study are similar to those in Sinha and Rao (2009) and
Chambers et al. (2014) which allows us to make some comparisons. With re-
spect to the point estimates of the EBLUP and the REBLUP approach, the
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spatial stationary results are very close to those in Sinha and Rao (2009) in
that both are unbiased and the REBLUP yields efficiency gains under sym-
metric outlier contamination. The simulation in Chambers et al. (2014) also
confirms this finding. In addition, they conclude that the CCST method
for the MSE estimation consistently offers a better stability compared to
the CCT method, which was also the finding here. As an avenue for future
work it is possible to conduct model-based simulations similar to Schmid
et al. (2016) by focusing on robust SAE under spatial correlation. It would
be interesting here to assess the behavior of the geographically weighted es-
timators (GWEBLUP, RGWEBLUP and RGWEBLUP-bc) when the data
is actually driven by spatially correlated random effects. First results under
this additional setting can be found in Appendix B.
Model-based simulations allow us to assess the estimators in a controlled
setup. However, in realistic data situations spatial stationarity in the model
coefficients may be present but can have an arbitrary functional form and
does not have to be a linear combination of the coordinates. In addition,
the outlier contamination is difficult to identify in a real population sample.
From a practical perspective, design-based simulations can be informative
as these are usually based on realistic populations with an unknown data-
generating process for the target variable. Therefore, the proposed method
is also assessed in a design-based simulation study using data from the
Berlin apartment rental market. The results of this study are presented in
the next chapter.
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Design-based Simulation 6
In SAE, design-based simulations complement model-based simulations. In
applications the underlying model for small area estimates attempts to
mimic the real data-generating process as precisely as possible to produce
reliable results. However, in practice the actual process is unknown and
all models, regardless of how advanced, can be misspecified to some extent.
Hence, design-based simulation where samples are taken from a realistic
finite population can be interesting regarding practical considerations. The
design-based simulation in this chapter assesses the relative performance of
geographically weighted EBLUP methods under the realistic data situation
of the Berlin apartment rental market. The target statistic is the average
quoted apartment net rent in urban subregions of Berlin.
The database for this simulation is introduced in Section 6.1 together with
a description of the geographic system used in Berlin to divide the urban
area into subregions. This is followed by a case study in Section 6.2 that
justifies the use of geographically weighted SAE methods and robust pa-
rameter estimation in the underlying data situation. The simulation study
is presented in Section 6.3.

6.1 The Data

The underlying data for this chapter is taken from a German real es-
tate market database provided by Empirica-Systeme GmbH (www.empirica-
systeme.de). The database includes 51,907 apartments for rent in Berlin in
2015 from various online real estate platforms and specialized print media
sources. The data is collected continuously and all duplicate entries are
dropped. In total, 120 characteristics for the apartments are available in-
cluding information on the size, different kinds of costs, the quality of the
facilities and attributes concerning the condition of an apartment and the
building. In addition, the addresses for all units are geocoded at building
level. This database is used in the following sections to estimate the aver-
age quoted apartment rent on different aggregation levels (cf. Empirca AG,
2014).
For planning and analyzing policy measures, the Berlin Senate uses a hi-
erarchical system to divide the urban area into subregions. This system is
called LOR (in German: Lebensweltlich orientierte Räume/common living
spaces) and consists of three nested levels (Berlin Senate, 2006):
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- 60 Forecasting areas (PRG, in German: Prognoseräume),

- 138 District regions (BZR, in German: Bezirksregionen),

- 447 Planning areas (PLR, in German: Planungräume).
On average, the PRGs are inhabited by about 60,000 people, the BZRs
by about 25,000 and the PLRs by about 7,500 people (Bömermann et al.,
2006). Figure 6.1 shows the boundaries of the three levels. The black-
rimmed areas identify the PGRs, the grey in conjunction with the black
lines identify the BZRs and the combination of all three lines (black, gray
and red) identify the PLRs.

Figure 6.1: Boundaries within the hierarchical LOR system of the Berlin
Senate. Data source: Berlin Senate - Department for Urban
Development and Housing.

The PRGs are designed to monitor and forecast economic and demographic
developments in order to provide sufficient resources in particular regions,
such as residential homes and employment agencies. The BZRs are admin-
istrative subregions of Berlin. The PLR are mainly designed for monitoring
social developments at neighborhood level and for planning targeted re-
source allocation (Bömermann, 2014).

6.2 Case Study

The aim in this case study is to justify the consideration of robust SAE under
spatial non-stationarity in the underlying database. After introducing the
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model specifications, model diagnostics are presented in Section 6.2.2. The
small area means are presented in Section 6.2.3.

6.2.1 Model Specifications

The variable of interest is the quoted net rent (QNR) per square meter
(sq) and the target quantity is the mean value of QNR at the PLR level
(M = 447), i.e., the lowest level of the LOR subregions in Berlin (cf. Figure
6.1). To enable purposeful and local policy measures, the Berlin Senate
is often interested in information on this very disaggregated level (Berlin
Senate, 2006). Hence, the choice of this target level has practical relevance
for policymakers in Berlin.
The starting point in this case study is a situation which can be considered
realistic in the field of survey sampling. Typically, researchers have access
to a survey with unit-level information. In addition, aggregated informa-
tion for the explanatory variables is available from publications supplied by
official statistics. To simulate this situation, the Berlin real estate database
introduced above is used to draw a sample of size n = 2006 which serves
as a survey with unit-level information. In particular, the 138 BZRs (cf.
Figure 6.1) of Berlin are employed as planned domains for the sampling
design. The sample sizes are chosen to be proportional to the size of the
BZRs, where the size is defined by the number of apartments listed in the
database. The employed sampling design results in a sample with 86 out-
of-sample areas and a medium sample size of three in the unplanned PLR
domains. In a second step, the database is used to produce aggregates,
i.e., median values on PLR level, which are used as the source of additional
information for the explanatory variables.

Variable Min Mean Max
Quoted net rent 3.97 8.96 21.54
Size 20.00 75.55 462.00
Facilities
Simple standard 0.00 0.03 1.00
Normal standard 0.00 0.41 1.00
Good standard 0.00 0.42 1.00
High standard 0.00 0.14 1.00

Condition
Bad 0.00 0.03 1.00
Normal 0.00 0.45 1.00
Good 0.00 0.52 1.00

Table 6.1: Summary statistics for the variables in the model.

117



6.2 Case Study

In the field of housing and real estate, hedonic price models (cf. Rosen,
1974) are frequently applied to model the target variable (cf. Malpezzi,
2008). Considering geographically weighted models is also common in this
field (cf. Bitter et al., 2007; Farber and Yeates, 2006; Fotheringham et al.,
2002). In this case study QNR is modeled using an additive hedonic pricing
model with three explanatory variables: (1) size in sq which is defined as
the living space, (2) facilities as an ordered categorical variable (where 1 =
simple, 2 = normal, 3 = good and 4 = high standard) which describes the
quality of the apartment facilities, (3) condition as an ordered categorical
variable (where 1 = bad, 2 = normal and 3 = good) which describes the
state of the building. The variables facilities and condition are constructed
as indexes which sum up several indicator variables. The variable facilities
includes information about the type of heating and the standard of the
bathroom and the kitchen. The variable condition includes characteristics
concerning the renovation demand of the apartment and the building. The
model is given by

QNRij = β0,ij + β1,ijSij + β2,ijFij + β3,ijCij + vi + eij, (6.1)

where S denotes the size variable. F comprises the categories of the variable
facilities and C the categories of the variable condition. Level 1 serves as
the reference category for both categorical variables, facilities and condition.
Table 6.1 reports the summary statistics of the variables used in the model.

6.2.2 Model Diagnostics

In a global linear model (global LM) the explanatory variables capture
around 25% of the variability of the target variable. Due to unobserved
heterogeneity between PLRs, the error term is expected to be correlated.
Employing a global linear mixed model (global LMM) with a random in-
tercept at level 2 (level 1 = apartment, level 2 = PLR) accounting for the
correlation within PLRs, yields an intraclass correlation coefficient (ICC)
of 0.5.

-2 log
Model n pe likelihood p-value AIC
Global LM 2006 8.00 8943.69 - 8959.69
Global LMM 2006 9.00 8218.72 - 8238.72
GWLM 2006 326.31 7542.53 2.20e-16 8195.15
GWLMM 2006 315.54 7456.97 8.34e-35 8088.06
pe denotes the effective number of parameters

Table 6.2: Model comparison of different hedonic price models for the target
variable QNR.
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Evidence of spatial non-stationarity is also present in the data. Spatial non-
stationarity of the model coefficients can be detected by a likelihood ratio
(LR) test, as suggested by Fotheringham et al. (2002), where the likelihood
of a global LM is compared to the likelihood of a geographically weighted
LM (GWLM). Following that suggestion the likelihoods of the global LMM
and the geographically weighted LMM (GWLMM) can be compared as well
to test for spatial non-stationarity in the mixed model approaches. The
distribution of that ratio can be approximated by a χ2-distribution with
(pe−p) degrees of freedom where pe denotes the effective number of param-
eters in the fixed part of the GWLMM (Fotheringham et al., 2002, p.92).
The local models are estimated using a Gaussian kernel with a bandwidth
of 1.53 km. The bandwidth is determined by cross-validating the geograph-
ically weighted LM (GWLM) using the criteria in (2.57). According to the
p-values of the LR-tests reported in Table 6.2, spatial stationarity of the re-
gression coefficients can be rejected for both the GWLM and the GWLMM.

Variable Min Q1 Median Q3 Max
Intercept 2.36 5.49 6.27 6.93 11.15
Size in sq -0.05 -0.01 -0.00 0.00 0.02
Facilities
Normal standard -3.44 0.04 0.89 1.49 4.80
Good standard -3.18 0.18 1.05 1.72 5.47
High standard -2.20 1.63 2.54 3.59 6.26

Condition
Normal -1.51 0.42 0.83 1.31 4.08
Good -0.87 1.14 2.04 2.62 6.22

Table 6.3: Summary statistics for the GWLMM coefficients.

By using a geographically weighted approach the share of explained variabil-
ity in the dependent variable increases up to 60%, thus it can be doubled
compared to the global approach. While the GWLM can capture parts
of the correlation caused by unobserved heterogeneity between PLRs, the
GWLMM still yields an ICC of 0.14. The necessity for random effects un-
der spatial non-stationarity can also be assessed. Opsomer et al. (2008),
Chandra et al. (2015) and Chandra et al. (2017) suggest a bootstrap pro-
cedure to test the area-level variance component against zero. Here, two
models are fitted, first a model without random effects (null hypothesis
H0), and second a model with these effects (alternative hypothesis H1).
The test compares the restricted log-likelihoods under each hypothesis and
the level of significance is calculated via a parametric bootstrap. In case
of geographically weighted models, this procedure dramatically increases
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the computation time. As an alternative to this formal test, it is possible
to compare the AIC values since these include a penalty for the additional
variance parameter of the random effects. The GWLMM exhibits the lowest
AIC (cf. Table 6.2), thus it seems superior compared to the other models.
The summary statistics of the estimated local model coefficients from the
GWLMM reported in Table 6.3 reveal much spatial variation in the param-
eter values. One exception is the size coefficient where, due to a very small
scale, not much variation can be seen. The spatial surface of the estimated
local intercepts is presented in Figure 6.2. The intercept is evaluated at an
average-sized apartment (75.55 sqm) with a normal standard of facilities
and normal a building condition. The spatial distribution of the local inter-
cepts reflects the current situation on the Berlin apartment rental market
with higher rents in the city center (marked by the inner black line) and
the south-west, and with lower rents in the eastern and western outskirts
of Berlin (IBB, 2015). The surface plots of the local coefficients from the
other explanatory variables also show substantial variation and are reported
in Figure A.1 in Appendix A.
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Figure 6.2: Spatial surface of the intercept from the GWLMM at an average
apartment size of 75.55 sqm, normal standard of facilities and
normal building condition.

The spatial variation of the model coefficients can be further assessed. Fol-
lowing Charlton et al. (2003) the variability of the estimated coefficients
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from the GWLMM can be compared to the estimated standard errors of the
coefficients from the global LMM. They suggest calculating the interquar-
tile range for each coefficient from the GWLMM and dividing it by two
times the standard error of the regression coefficient for the same variable
from the global LMM. This ratio is motivated by the fact that about 68%
of a standard normally distributed variable lies within the range of ± one
standard deviation and 50% within the quartiles. According to Charlton
et al. (2003), this ratio provides an approximate measure of stationarity
where values greater than one indicate spatial non-stationarity. Figure 6.3
shows this index plotted against different values for the bandwidth. At the
estimated optimal bandwidth (vertical dashed line) the index of spatial sta-
tionarity is ≥ 1.5 for all coefficients, indicating substantial non-stationarity
of the relationship between the quoted net rent and the explanatory vari-
ables. The graph also shows that the coefficients become stationary at
different spatial scales, i.e., size becomes stationary at a bandwidth of 6
whereas the intercept is more stable since it already achieves stationarity
at a bandwidth of 2.5.
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Figure 6.3: Index of spatial stationarity for the estimated coefficients of the
GWLMM.
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The GWLMM is based on the normality assumption for the error term
components. To assess departures from this assumption, Figure 6.4 shows
normal probability plots of level 1 and level 2 residuals. In both levels,
severe departures from the Gaussian assumptions, which may be caused by
outliers in the sample, can be observed.
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Figure 6.4: Normal probability plots of level 1 (left) and level 2 (right) resid-
uals.

Thus, applying a robust estimation method to control for the influence of
the extreme observations can be beneficial in this application. In addition,
based on the test for spatial non-stationarity and the lowest AIC value,
fitting a GWLMM to the data appears to be most suitable for the given
data.

6.2.3 Small Area Estimates

The summary statistics of the estimated area means reported in Table 6.4
indicate that the robust projective RGWEBLUP and the robust predictive
RGWEBLUP-bc estimates produce results of a very similar range.

Predictor Distribution across PLRs
Min Q1 Median Mean Q3 Max

RGWEBLUP 3.99 7.02 7.97 8.32 9.51 14.15
RGWEBLUP-bc 3.99 6.90 7.85 8.28 9.46 15.13
Bias correction -2.05 -0.29 -0.05 -0.04 0.20 2.04

Table 6.4: Summary statistics for the estimated average quoted net rent
across PLRs.
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(a)

(b)

Figure 6.5: Map of estimated average quoted net rent per sqm in Berlin: (a)
RGWEBLUP estimates; (b) RGWEBLUP-bc estimates.

Note that for the 86 out-of-sample PLRs the robust projective and robust
predictive estimates are equal since the local bias correction is zero in these
areas. It can further be observed that the bias correction seems to be sym-
metric around zero, indicating a symmetric contamination mechanism of
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the data.
Figure 6.5 shows maps for the estimated average QNR for the PLRs in
Berlin. At first glance both maps seem very similar. On closer inspection
the RGWEBLUP estimates in the upper figure appear smoother compared
to the RGWEBLUP-bc estimates especially in the city center. However,
the spatial pattern in both maps confirm publications of the Investitions-
bank Berlin (IBB), the public funding institute of the Berlin Senate (IBB,
2015). These patterns show clusters of very high values in the city center
and the south-west, whereas there are low values at the eastern and western
outskirts of Berlin.
In order to judge the quality of the model-based estimators, one possibility
is to assess the proximity to the direct estimates (Chambers et al., 2016).
Following Brown et al. (2001), this proximity can be investigated by com-
puting a goodness-of-fit test. The basic idea of this test is that model-based
estimators should not differ significantly from unbiased direct estimators.
The test is computed as the value of a Wald test statistic

W
(

ˆ̄ymodeli

)
=

m∑
i=1

(ˆ̄ydirecti − ˆ̄ymodeli )2

V̂ ar(ˆ̄ydirecti ) + M̂SE(ˆ̄ymodeli )
,

where ˆ̄ymodeli is a generic notation used to designate a model-based estimator
of the small area mean. The MSE of ˆ̄ymodeli is calculated by using the
proposed CCT and CCST approaches. Note that in case of the robust
predictive RGWEBLUP-bc, the CCST method for MSE estimation only
provides results for certain areas. The reason can be found when recalling
equation (4.66) for estimating the CCST MSE of the RGWEBLUP-bc. The
second component hbc2i that arises due to the bias correction depends on the
denominator ni − p. Therefore, the CCST method for the MSE estimation
can only be estimated for areas with sample sizes ni > p, hence for ni > 7
in case of the underlying model (6.1). Under the null hypothesis, the test
statistic W is χ2-distributed with m degrees of freedom (DF) where m
denotes the number of sampled areas. As a direct estimate the Horvitz-
Thompson estimator in (2.2) is used for PLRs with a sample size > 1. The
test results are reported in Table 6.5.

MSE estimator CCT CCST
Estimator W DF p-value W DF p-value
RGWEBLUP 293.43 314 0.79 308.65 314 0.57
RGWEBLUP-bc 293.65 314 0.79 39.67 941 1.00
1DF equals the number of PLRs with sample size ni > 7.

Table 6.5: Results of the goodness-of-fit test.
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For the model-based robust estimators (RGWEBLUP and RGWEBLUP-
bc) no significant difference to the direct estimates can be detected. In
addition, the RGWEBLUP and the RGWEBLUP-bc seem to be consistent
with the direct estimates with correlations of 0.86 and 0.92, respectively.
The stronger correlation between the RGWEBLUP-bc estimates and the
direct estimates provides evidence that using a robust predictive estimator
appears to be appropriate in this application.
According to the German quality standards for official statistics the coeffi-
cient of variation (CV) is used as a precision measure for published estimates
(DESTATIS, 2006). Even though these quality standards do not determine
an acceptable CV, a value of at most 15% is frequently used as a benchmark
for publishing statistics (FDZ, 2009). Thus, in order to assess the precision
of the model-based robust estimators, the summary statistics for the CVs
across the PLRs are reported in Table 6.6.

Predictor MSE CVs across PLRs
Min Q1 Median Mean Q3 Max

For sampled PLRs
RGWEBLUP CCST 1.83 3.40 4.73 6.63 7.99 64.82

CCT 1.87 3.76 5.18 7.05 8.38 64.81
RGWEBLUP-bc CCST1 2.47 5.34 7.33 7.94 9.39 20.25

CCT 1.63 3.88 5.06 5.52 6.63 14.76
For non-sampled PLRs
RGWEBLUP CCST 4.19 6.92 8.29 9.08 9.90 29.40

CCT 4.92 7.53 8.77 9.78 10.57 32.79
1Only estimated for 94 PLRs with sample size ni > 7.

Table 6.6: Summary statistics across the PLRs for the CVs obtained by
different MSE estimators.

Apart from the maximum values, the CVs are in an acceptable range for
the RGWEBLUP and the RGWEBLUP-bc estimates of the average QNR
in the sampled and the non-sampled PLRs. It is noticeable that for the
robust predictive RGWEBLUP-bc the CCT MSE estimates produce CVs
smaller than 15% in all sampled PLRs. Since the median sample size of
the unplanned PLR domain is three, there are many areas with a sample
size ni < 7. Hence, the CCST MSE estimator for the RGWEBLUP-bc can
only be estimated for the 94 PLRs with ni > 7 whereas the CCT MSE
estimator delivers results for all sampled PLRs. Thus, the CCT method for
the MSE estimation seems more appropriate in this case, even though it
tends to underestimate the MSE as it ignores the estimation of the variance
parameters. For the robust projective RGWEBLUP predictor of the area
mean not much difference can be observed between CVs based on the CCT
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and CCST MSE estimation.
Furthermore, it can be observed that the CVs are lower for estimates in the
sampled PLRs compared to the non-sampled PLRs. This can be expected
since the latter estimates are based on area-specific sampled information
whereas the former are purely synthetic estimates. This also confirms the
finding from the design-based simulation (Figure 6.7) where the RMSE lies
on a higher level for the out-of-sample areas.
To compare the precision of the model-based and unbiased direct estimators
it is possible to investigate the ratios between their estimated CVs where
values greater than one indicate that the model-based estimator has a higher
precision. These ratios are reported in Table 6.7 separately for sampled ar-
eas with ni > p and 1 < ni ≤ p. The last column reports the percentage of
areas where the ratio is greater than one. For larger areas with ni > 7, in at
least 70% of the PLRs the precision is higher for the model-based estima-
tors. One exception are the CCST MSE estimates of the robust predictive
RGWEBLUP-bc where only 20% of the PLRs have a higher precision. In
PLRs with a sample size of 1 < ni ≤ p, in 60% of the cases the precision is
higher for the model-based estimators. This lower percentage compared to
the larger areas is somehow counter-intuitive since model-based estimators
which borrow strength from additional information are expected to be more
efficient, especially in very small areas. Returning to the outcome variable
in the sample, within some of these very small PLRs the observations are
very homogeneous with only marginal within-area variation. Here, even di-
rect estimators that are based only on few observations can be very precise.

Predictor MSE CV ratios across PLRs
Min Q1 Median Mean Q3 Max % > 1

For 94 sampled PLRs with ni > 7
RGWEBLUP CCST 0.54 1.06 1.47 1.56 1.82 3.78 79

CCT 0.51 0.98 1.29 1.33 1.56 2.67 70
RGWEBLUP-bc CCST 0.27 0.58 0.74 0.77 0.94 1.52 20

CCT 0.53 0.98 1.17 1.20 1.33 2.20 70
For 220 sampled PLRs with 1 < ni ≤ p
RGWEBLUP CCST 0.03 0.71 1.24 1.51 1.95 6.86 58

CCT 0.03 0.70 1.14 1.33 1.63 8.64 57
RGWEBLUP-bc CCT 0.03 0.86 1.17 1.28 1.57 8.46 62

Table 6.7: Summary statistics across sampled PLRs for the ratio between
estimated CVs of direct estimates and robust model-based esti-
mators.

Based on this case study, it seems that considering robust SAE methods
that account for spatial non-stationarity in the data can be a good choice for
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producing small area estimates of the average QNR on PLR level in Berlin.
With a correlation of 0.92, the robust predictive estimator RGWEBLUP-bc
(4.8) is consistent with the direct estimates and the CCT MSE estimator
shows good properties with CVs ≤ 15% in the sampled PLRs.

6.3 Simulation Study

The design-based simulation in this section assesses the relative performance
of geographically weighted EBLUP methods using the database introduced
in Section 6.1. The simulation setup is presented in Section 6.3.1 and the
results are discussed Section 6.3.2. This includes a discussion concerning
the performance of the area means and the conditional MSE estimates.

6.3.1 Simulation Setup

For the design-based simulation, the real estate database of Berlin intro-
duced in Section 6.1 is used as a fixed population with N = 51.907. As
in the case study, QNR is the variable of interest which is modeled using
the hedonic price model in (6.1). For the design-based simulation, the sam-
ple size is reduced to n = 505 and the target statistic is the average QNR
on PGR level (M = 60). Given the sample size of n = 2006 from the case
study, fitting this model under the GWLMM approach lasts about 2.5 hours
for the non-robust and 5.5 hours for the robust parameters. Based on the
reduced sample size, estimating the GWEBLUP and RGWEBLUP of the
area means took about 8.5 and 12.5 minutes, respectively. To guarantee
area-specific sample sizes similar to those in the case study, the target level
is shifted from PLR to PGR level (see Figure 6.1).
More precisely, in each of the T = 500 Monte Carlo replications, an inde-
pendent random sample of size n = 505 is drawn from the fixed population
by independently sampling from each region proportional to the size of the
PGR. The PGR size is defined by the number of apartments listed in the
database. For 11 out of the 60 PGRs the population sizes Ni are very small
compared to the other regions such that the sample sizes of these areas were
set to zero. This results in Monte Carlo samples with 49 in-sample and 11
out-of-sample PGRs. The median area-specific sample size for the sampled
PGRs is 8 with a minimum of 4 and a maximum of 33 units.

6.3.2 Simulation Results

Six estimators of the small area mean are evaluated in this simulation study.
These are the EBLUP in (2.26), the robust projective REBLUP in (3.11)
and the robust predictive REBLUP-bc in (3.20) which are evaluated as
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global estimators. Furthermore, the GWEBLUP in (2.65), the robust pro-
jective RGWEBLUP in (4.6) and the robust predictive RGWEBLUP-bc in
(4.8) are evaluated. These are suitable under spatial non-stationarity. For
the out-of-sample PGRs, the synthetic versions of the non-robust and robust
projective estimators are estimated. Since the robust predictive estimators
(REBLUP-bc and RGWEBLUP-bc) rely on area-specific bias corrections,
these cannot be estimated for non-sampled areas. Note that a full bias
correction as in Dongmo-Jiongo et al. (2013) could be a solution here to
produce bias corrected small area estimates for the non-sampled areas.
In addition, the pseudo-linearization (CCT) and the linearization-based
(CCST) approach for MSE estimation are analyzed for all six estimators.
During the simulation study the global estimators did not face any stability
problems whereas the parameter estimation for the proposed RGWEBLUP
only converged in 495 out of the 500 Monte Carlo replications. Aborted
replications are excluded from the analysis such that all estimators are com-
pared based on 495 replications.
In what follows, the focus is first on results for the small area means using
the quality measures presented in Section 5.3.1 from the model-based sim-
ulation. Thereafter, the performance of the MSE estimators is presented
using the quality measures from Section 5.4.1. Since in the design-based
simulation the population is fixed, mit = mi for all quality measures.
The results for the area mean predictions are presented in Figure 6.6 sep-
arately for the sampled and non-sampled PGRs. In addition, the median
values of the RB and the RRMSE are given in Table 6.8.

Predictor 49 Sampled PGRs 11 Non-sampled PGRs
RB RRMSE RB RRMSE

GWEBLUP 1.62 4.92 3.62 13.74
RGWEBLUP 0.97 4.69 4.68 13.95
RGWEBLUP-bc -0.11 6.01 - -
EBLUP 1.00 6.00 9.60 10.35
REBLUP -0.50 5.47 7.56 10.21
REBLUP-bc -0.65 6.33 - -

Table 6.8: Median values of RB (in %) and RRMSE (in %) for point esti-
mates in the designs-based simulation.

For the in-sample PGRs the global (EBLUP, REBLUP and REBLUP-bc)
and the geographically weighted methods (GWEBLUP, RGWEBLUP and
RGWEBLUP-bc) perform reasonably well in terms of RB with absolute
median values between 0.11% and 1.62%. However, the RGEWBLUP-bc
has the lowest median RB for the in-sample PGRs. Interestingly, the bias-
corrected global estimator REBLUP-bc increases the bias compared to the
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robust projective REBLUP while it should be reducing it.
In addition, the geographically weighted predictors (GWEBLUP, RGWE-
BLUP and RGWEBLUP-bc) are more efficient in terms of lower RRMSE
compared to their global counterparts (EBLUP, REBLUP and REBLUP-
bc). Here, the proposed robust projective RGWEBLUP reveals the lowest
RRMSE which is about one percentage point lower compared to the global
REBLUP. The bias reduction for RGWEBLUP-bc comes at the price of
lower efficiency compared to the non-robust GWEBLUP. However, it is still
more efficient compared to the global REBLUP-bc.
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Figure 6.6: Boxplots of the RB (%) and the RRMSE (%) across PGRs in
the design-based simulation.

For the out-of-sample PGRs, the synthetic global estimators based on the
EBLUP and REBLUP suffer from a large bias. This is not as severe for the
synthetic geographically weighted estimators based on the GWEBLUP and
RGWEBLUP. Thus, using geographically weighted methods can improve
the prediction especially in the non-sampled PGRs which can be an im-
portant advantage in SAE. This bias reduction comes at the price of lower
efficiency in terms of RRMSE. Here, the median RRMSE is approximately
three percentage points higher compared to the global approaches (cf. Table
6.8). However, the lower part of Figure 6.6 shows that the RRMSE of the
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synthetic GWEBLUP and RGWEBLUP is considerably more stable across
all 11 non-sampled PGRs which can also be an important feature for the
reliability of an estimator. It can moreover be observed that the non-robust
and robust geographically weighted estimators (GWEBLUP and RGWE-
BLUP) perform very similarly. Thus, combining the geographical weights
with an influence function that gives lower weights to extreme observations
does not lead to efficiency gains for the 11 out-of-sample PGRs. This seems
plausible, recalling that the spatial weights for the synthetic estimators are
based entirely on the distance between the sampled units of the 49 in-sample
PGRs and the population units from the out of sample PGRs. Thus, the
influence of all sampled units (including outliers) on the small area means
of the non-sampled PGRs is already reduced by lower spatial weights. Fur-
thermore, using the global robust method (REBLUP) to estimate the small
area mean can lead to a bias reduction and efficiency gains compared to the
global EBLUP for the out-of-sample PGRs.
Turning toward the performance of the MSE estimators in Table 6.9, the
results for the in-sample PGRs (left part of Table 6.9) are presented first.
The table shows the median values of the performance measures. The dis-
tributions of these measures across all 49 sampled PGRs are reported in
Table A.2 in Appendix A.

Predictor MSE 49 Sampled PGRs 11 Non-sampled PGRs
RB RRMSE CR RB RRMSE CR

GWEBLUP CCST 25.01 49.62 0.98 -14.80 37.08 0.93
CCT -2.51 37.88 0.90 -3.79 33.51 0.98

RGWEBLUP CCST 25.36 52.05 0.96 -23.75 66.07 0.90
CCT 4.30 49.74 0.89 -18.70 50.22 0.95

RGWEBLUP-bc CCST 23.47 36.38 0.97 - - -
CCT -4.91 28.95 0.92 - - -

EBLUP CCST 14.88 20.43 0.96 76.09 76.67 1.00
CCT -5.14 27.56 0.92 115.00 115.50 1.00

REBLUP CCST 6.97 22.99 0.96 99.21 99.83 1.00
CCT -8.17 24.49 0.91 143.00 143.50 1.00

REBLUP-bc CCST 40.66 51.63 0.98 - - -
CCT -14.31 25.90 0.88 - - -

Table 6.9: Median values of RB (in %), RRMSE (in %) and CR for the
conditional MSE estimates in the design-based simulation.

For the geographically weighted methods (GWEBLUP, RGWEBLUP and
RGWEBLUP-bc), the CCT method for MSE estimation shows better sta-
bility in terms of a lower RRMSE. Interestingly, this is in contrast to the
findings in the model-based simulation study from the previous chapter
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where the CCST method is consistently more stable over all scenarios. With
median values between 0.96 and 0.98, the CCST provides 95% confidence
intervals with a reasonably good coverage performance with a tendency to
over-coverage. The CCT method reveals under-coverage with values be-
tween 0.88 and 0.92.

Figure 6.7: PGR-specific values of true RMSE (red line) for geographi-
cally weighted EBLUP estimators and average estimated RMSE
based on CCT (light blue line) and CCST (dark blue line)
method for MSE estimation. Areas are sorted by sample size.

For all predictors, it can be observed that the CCST method for MSE esti-
mation tends to overestimate the MSE whereas the CCT tends toward an
underestimation. However, in absolute value the bias of the CCT method is
considerably lower for the geographically weighted methods (GWEBLUP,
RGWEBLUP and RGWEBLUP-bc) and the global EBLUP and REBLUP-
bc methods (cf. Table 6.9). The RMSE estimates for the in-sample PGRs
shown in Figures 6.7 and 6.8 lead to a similar conclusion since for these pre-
dictors (GWEBLUP, RGWEBLUP, RGWEBLUP-bc, EBLUP and REBLUP-
bc) the CCT MSE estimators seem to be more accurate in tracking the
actual RMSE especially with a growing area-specific sample size.
Given that ni > 7, the RMSE based on the CCST method shows a large
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overestimation but advances toward the actual RMSE with a growing area-
specific sample size. At the same time, the estimated RMSE based on the
CCT method for the robust predictive REBLUP-bc and RGWEBLUP-bc
can track the actual RMSE reasonably well even for small sample sizes.

Figure 6.8: PGR-specific values of true RMSE (red line) for global EBLUP
estimators and average estimated RMSE based on CCT (light
blue line) and CCST (dark blue line) method for MSE estima-
tion. Areas are sorted by sample size.

The right part of Table 6.9 reports the performance of the MSE estima-
tors for the synthetic estimators in PGRs with zero sample size. The dis-
tributions of the performance measures across all 11 non-sampled PGRs
are reported in Table A.3 in Appendix A. For the synthetic geographically
weighted methods (GWEBLUP and RGWEBLUP) both MSE estimators
underestimate the actual MSE whereas for the global estimators reveal an
enormous overestimation. The results for the out-of-sample PGRs, shown
on the left-hand side of Figures 6.7 and 6.8 confirm this finding. In ad-
dition, these figures reveal that both types of MSE estimation are unable
to track the true MSE behavior of the synthetic predictors (GWEBLUP,
RGWEBLUP and EBLUP, REBLUP).
One explanation for the extreme overestimation of the RMSE for the global
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estimators can be found when recalling the conditional MSE estimation
for the synthetic EBLUP estimators. The squared conditional bias is of the
EBLUP and the REBLUP is estimated using (2.41) and (3.30), respectively.
Here, it can be seen that these terms additively depend on the estimated
variance of the area-specific random effect. The estimation results for the
variance component from the design-based simulation are presented in Ta-
ble 6.10. First, it can be observed that the estimates of σv based on the
global model (LMM) are substantially larger compared to the geographi-
cally weighted model (GWLMM). This can be explained by the superior
model fit of the GWLMM, which was discovered in the case study in Sec-
tion 6.2 (cf. Table 6.2). Secondly, the mean estimated variance parameter
from the LMM is 1.18 for the non-robust and 1.11 for the robust estimation.
Compared to the scale of the RMSEs of the EBLUP and the REBLUP in
the left part of Figure 6.8 this variance parameter is quite large. Thus, the
estimated RMSEs for the global synthetic estimators are mainly driven by
the large estimated variance parameter of the random effect, which may
have caused the enormous overestimation in the non-sampled PGRs.

Model Method Results for σv across replications
Min Q1 Median Mean Q3 Max

GWLMM non-robust 0.23 0.37 0.44 0.45 0.52 0.80
robust 0.23 0.33 0.40 0.41 0.47 0.70

LMM non-robust 0.95 1.12 1.18 1.18 1.24 1.51
robust 0.87 1.05 1.11 1.11 1.17 1.42

Table 6.10: Design-based simulation results: estimated variance parameter
σv of the area specific random effects.

The overall results in this simulation study indicate that in the case of
the Berlin real estate database it can be beneficial to apply geographically
weighted rather than global methods for estimating small area means. In
addition, combining the spatial weights with robust protection can lead to
bias reduction and efficiency gains for the in-sample areas. For the out-
of-sample areas, the robust protection cannot improve the prediction but
neither does it deteriorate it. The CCST method for MSE estimation per-
forms well in terms of bias and coverage rate for the GWEBLUP and the
RGWEBLUP in the sampled areas. However, the CCT MSE estimates can
track the actual RMSE more accurately and is capable of producing MSE
estimates for the RGWEBLUP-bc even for very small area-specific sample
sizes.
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6.4 Discussion

The results of this chapter indicate that combining the local LMM in (2.62)
with down weighting the influence of extreme observations can be beneficial
in the field of SAE. Under the realistic data situation of the Berlin apart-
ment rental market, applying the proposed robust projective RGWEBLUP
and robust predictive RGWEBLUP-bc to estimate the average quoted net
rent in urban subregions can lead to bias reduction and efficiency gains
compared to global methods.
In the simulation study I compared geographically weighted methods with
their global counterparts that do not account for spatial effects at all. The
likelihood ratio test showed evidence of spatial non-stationarity in the model
coefficients. Thus, using a geographically weighted model is indicated in this
case. However, other spatial effects such as spatial autocorrelation may also
be present in the data. In empirical studies it can be difficult to distinguish
between the two spatial effects of dependence and heterogeneity. Hence, in
further design-based simulation studies it would be interesting to assess the
performance of other spatial EBLUP estimators such as the SEBLUP and
NPEBLUP together with their robust extensions.
According to de Graaff et al. (2001) spatial dependency and spatial hetero-
geneity should be considered jointly. One reason is that there may be no
difference between these two effects in an observational sense as a spatial
clustering of similar values may be due to dependence among neighboring
units or a result of changing coefficients. In a further step it may be useful
to extend the GWLMM in (2.62) by allowing for spatially correlated ran-
dom effects in order to account for spatial dependence and heterogeneity
simultaneously.
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Conclusion 7
This final chapter gives a summary of the key results of this thesis and out-
lines some avenues for future research. The main findings are summarized
in Section 7.1 which includes the theoretical contributions and the empirical
results of this thesis. Section 7.2 addresses some potential fields of further
research.

7.1 Main Findings

The main objective of this thesis was to provide a robust EBLUP-based
approach for SAE under spatial non-stationarity. The theoretical founda-
tions underpinning the proposed methodology were set out in Part I and
empirical evaluations in Part II.
In the theoretical part, different EBLUP-based methods for SAE were re-
viewed. This review includes the EBLUP of the area mean and selected
spatial extensions in Chapter 2. These spatial extension are: (i) the spa-
tial EBLUP (SEBLUP) that accounts for spatial dependencies by allowing
for spatial autocorrelation in the random effects; (ii) the non-parametric
EBLUP (NPEBLUP) which can account for spatial trends of unknown
functional form in the target variable; (iii) and the geographically weighted
EBLUP (GWEBLUP) that can capture spatial non-stationarity in the model
coefficients. The reviewed EBLUP methods have in common that they are
based on the linear mixed model. Accordingly, these methods rely on the
assumption of normally distributed error term components which can be
violated in the presence of outliers. Therefore, outlier robust extension to
EBLUP approaches were reviewed in Chapter 3. This review includes the
robust EBLUP (REBLUP) of the small area mean and robust extension to
the SEBLUP and the NPEBLUP.
So far, robust EBLUP-based methods under spatial non-stationarity have
not been considered in the literature. Hence, robust extensions of the GWE-
BLUP were proposed in Chapter 4. The main contributions to the current
literature can be summarized as follows:

- The influence of outliers on the parameter estimation has been reduced
using the results of Sinha and Rao (2009). Their robust ML estimation
equations were modified to account for spatial non-stationarity in the
fixed effects coefficients.

- The robust parameter estimation has been integrated in the algorithm
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of Chandra et al. (2012) to estimate the robust projective GWEBLUP
(RGWEBLUP) of the area mean. For that purpose a local fixed point
algorithm has been developed for the approximation of the local in-
sample coefficients.

- The local bias correction of Chambers et al. (2014) has been combined
with geographical weighting to develop a robust predictive GWE-
BLUP (RGWEBLUP-bc) of the area mean.

- Two conditional MSE estimators have been developed for the RGWE-
BLUP and the RGWEBLUP-bc using the pseudo-linearization and
the linearization approach following the ideas set out in Chambers
et al. (2014).

- The GWEBLUP of Chandra et al. (2012) and the proposed estimators,
the RGWEBLUP and the RGWEBLUP-bc, have been implemented
for the R-language in the package saeRGW.

The performance of the proposed methods was assessed in the empirical
part of this thesis which includes a model-based simulation in Chapter 5
and a design-based simulation in Chapter 6. The aim of the model-based
simulation was to examine the relative performance of the proposed estima-
tors under spatial non-stationarity and in the presence of outliers. Hence,
the scenarios for the model-based simulations were chosen to be a com-
bination of settings under spatial stationarity and non-stationarity with
different outlier contamination mechanisms. The overall results from the
model-based simulation indicate a potential benefit from combining geo-
graphically weighted regression with robust parameter estimation. In the
presence of spatial non-stationarity and outliers, applying the proposed ro-
bust projective RGWEBLUP and robust predictive RGWEBLUP-bc led to
efficiency gains compared to the non-robust GWEBLUP of the small area
mean. In addition, the proposed CCST MSE estimator for the RGWE-
BLUP and RGWEBLUP-bc appeared to have good properties in terms of
bias and stability in the investigated scenarios. Even though the main inter-
est in this thesis was to provide reliable estimates for small area means, the
estimated model parameters were studied as well. Based on the simulation
results, the estimated local coefficient seemed to give an overall picture of
the true parameter surface but should not be interpreted individually. In
addition, the estimated variance parameters mainly suffered from underes-
timation. These results indicate that the robust and non-robust parameter
estimates under the GWLMM should be treated carefully in applications.
The practical implications from a model-based simulation are limited since
the data-generating process in the population is known, which is generally
not the case in applications. Design-based simulations can be more infor-
mative as these are usually based on realistic populations with an unknown
data-generating process for the target variable. Therefore, in Chapter 6 the
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7 Conclusion

relative performance of the proposed method was assessed in a design-based
simulation study using data from the Berlin apartment rental market. The
target variable in that study is the quoted net apartment rent per square
meter and the target statistic is the average of that variable on the level
of the 60 forecasting areas in Berlin. Applying robust SAE methods that
account for spatial non-stationarity in the data was justified beforehand in
a case study in Section 6.2. The overall results of the simulation indicated
that in the case of the Berlin real estate database it can be beneficial to ap-
ply geographically weighted rather than global methods for estimating the
small area means of the quoted net rent. In addition, combining the spatial
weights with robust protection led to bias reduction and efficiency gains for
in-sample areas. For the out-of-sample areas, the robust protection had no
effect on the efficiency of the estimated small area means. The proposed
MSE estimators have also been investigated. Here, the CCST method for
the MSE estimation performed well in terms of bias and coverage rate for
the GWEBLUP and the RGWEBLUP of the area mean in the sampled
areas. However, the CCT MSE estimates were able to track the actual
RMSE more accurately and were capable of producing MSE estimates for
the RGWEBLUP-bc even for very small area-specific sample sizes.

7.2 Further Research

The proposed robust extension of the GWEBLUP extends the current lit-
erature in the field of SAE. In addition, it showed promising results for
estimating small area means in model and design-based simulation stud-
ies and is implemented in the R-language with a user-friendly interface for
practitioners. However, there are several outstanding research issues that
should be addressed in the future. These issues are of theoretical and em-
pirical concern.
Starting with potential theoretical improvements, the choice of the tuning
constant can be further investigated. The proposed robust GWEBLUP
restricts the influence of outliers on the parameter estimation to produce
reliable small area estimates. The strength of this restriction is defined by
the tuning constant which is defined a priori. As the choice of the tuning
constant is a challenging problem in robust SAE, a data-driven alternative
can be considered as suggested by Wang et al. (2007). A further theoretical
issue concerns the bias correction. In this thesis a local bias correction is
considered following the ideas of Chambers et al. (2014). Dongmo-Jiongo
et al. (2013) argue that the local bias correction may still lead to biased small
area estimates as it only depends on area-specific information, whereas the
robust parameter estimates are influenced by all sampled units. This re-
maining bias may be less severe in the geographically weighted framework
since the influence of distant observations on the parameter estimation is
small. However, an extension of the global bias correction of Dongmo-Jiongo
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7.2 Further Research

et al. (2013) to the case of spatial non-stationarity is left open for further
research. Another path for further research concerns the spatial modeling.
Under the GWLMM the random effects are assumed to be independently
distributed. It may be useful to extend the GWLMM by allowing for spa-
tially correlated random effects to account for spatial dependence and non-
stationarity simultaneously. Furthermore, the results from the model-based
simulation in Section 5.2 show that the robust and non-robust parameter es-
timates under the GWLMM need to be treated carefully in applications. To
find sound explanations and satisfying guidelines for parameter interpreta-
tions, further research in this direction is needed. The findings in this thesis
can only be seen as preliminary results. Moreover, further investigation is
required for the MSE estimation. In addition to the conditional MSE esti-
mators proposed in this thesis, bootstrap methods for MSE estimation can
be developed. This could improve area-specific MSE estimation especially
for non-sampled areas. With growing computing capacity the issue of cal-
culation time may become less relevant in future. The last theoretical issue
raised here is related to the sampling design which is normally assumed to
be non-informative in model-based SAE. This assumption is violated when
the sample selection probabilities are related to the target variable. In that
case design weights can be incorporated into model-based SAE as suggested
by Pfeffermann and Sverchkov (2007) and Verret et al. (2015). Based on
these ideas, it would be interesting to include design effects into robust SAE
methods such as the proposed RGWEBLUP and RGWEBLUP-bc.
Turning to outstanding empirical evaluations, further simulation studies can
be conducted to assess the relative performance of the proposed method in a
broader context. For instance, a comparison with alternative robust meth-
ods such as the M-quantile approach would be interesting. In this context,
a natural competitor for the proposed method would be the geographically
weighted M-quantile estimator of Salvati et al. (2012). Furthermore, in the
model-based simulation in Chapter 5 the local coefficients linearly depend
on the coordinates, which might be unrealistic. Thus, different settings for
spatial non-stationarity could be analyzed in the future. Another avenue for
future work would be to conduct model-based simulations similar to Schmid
et al. (2016) and focus on robust SAE under spatial correlation. Here, it
would be interesting to assess the behavior of the geographical estimators
(GWEBLUP, RGWEBLUP and RGWEBLUP-bc) when the data is actu-
ally driven by spatially correlated random effects. Finally, in a design-based
framework it would be interesting to analyze the effect of different sampling
designs on the performance of the estimators.

To raise new questions, new possibilities, to regard old problems
from a new angle, requires creative imagination

and marks real advance in science.
- Albert Einstein (1938)
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Figure A.1: Spatial surface of the model coefficients across Berlin from the
hedonic model for QNR based on the GWLMM.
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Predictor MSE Results for the following scenarios and areas

(0, 0) (v, e)s (v, e)s (v, e)s (v, e)ns (v, e)ns (v, e)ns

1-40 1-40 1-36 37-40 1-40 1-36 37-40
Median values of RB (%)
GWEBLUP CCST 4.85 6.70 7.35 -12.23 17.96 18.63 -14.30

CCT -11.92 -10.74 -10.56 -21.29 -3.80 -3.16 -21.78
RGWEBLUP CCST 0.59 7.39 7.79 -14.96 7.50 7.89 -26.47

CCT -15.70 -4.04 -3.32 -21.26 1.76 2.38 -27.24
RGWEBLUP-bc CCST -3.17 -4.15 -3.79 -9.94 -13.38 -12.74 -29.21

CCT -9.24 -5.75 -5.46 -11.81 -1.73 -0.46 -17.74
EBLUP CCST 0.13 3.00 3.23 -10.93 4.13 4.70 -9.59

CCT -7.30 -10.33 -9.45 -17.14 -14.21 -14.09 -14.85
REBLUP CCST -2.15 1.74 1.92 -9.53 -8.25 -8.11 -26.76

CCT -13.58 -5.90 -5.25 -18.94 -7.27 -7.18 -29.23
REBLUP-bc CCST 8.71 8.06 8.33 4.47 -2.37 -1.85 -7.21

CCT -15.13 -12.37 -11.87 -15.04 -12.06 -11.44 -14.65
Median values of RRMSE (%)
GWEBLUP CCST 27.34 39.15 38.85 43.25 52.68 53.37 46.67

CCT 34.66 52.14 52.50 50.88 63.58 64.24 55.54
RGWEBLUP CCST 29.30 38.01 38.85 32.42 49.39 49.65 43.49

CCT 36.58 47.67 48.62 41.41 68.06 68.63 53.26
RGWEBLUP-bc CCST 30.35 33.72 33.90 33.01 35.73 35.51 38.26

CCT 31.77 41.25 41.29 40.28 58.76 59.73 51.21
EBLUP CCST 23.85 35.63 35.48 42.89 32.30 32.15 40.48

CCT 32.18 51.66 51.84 49.87 58.85 59.16 49.13
REBLUP CCST 29.57 34.21 34.21 33.85 31.18 30.95 33.63

CCT 31.45 41.03 41.61 36.29 52.81 53.20 47.13
REBLUP-bc CCST 35.00 38.86 39.22 37.36 37.69 37.90 36.53

CCT 30.19 37.89 37.78 37.98 53.92 53.56 54.31
Median values of CR
GWEBLUP CCST 0.95 0.96 0.97 0.93 0.95 0.96 0.93

CCT 0.87 0.89 0.89 0.84 0.89 0.89 0.86
RGWEBLUP CCST 0.94 0.93 0.93 0.80 0.95 0.95 0.91

CCT 0.86 0.86 0.86 0.74 0.90 0.90 0.86
RGWEBLUP-bc CCST 0.90 0.86 0.86 0.78 0.91 0.91 0.90

CCT 0.88 0.87 0.87 0.79 0.90 0.90 0.89
EBLUP CCST 0.94 0.96 0.96 0.96 0.95 0.95 0.92

CCT 0.89 0.92 0.92 0.88 0.90 0.90 0.89
REBLUP CCST 0.93 0.91 0.91 0.83 0.93 0.93 0.92

CCT 0.88 0.86 0.86 0.73 0.89 0.89 0.87
REBLUP-bc CCST 0.93 0.89 0.89 0.88 0.93 0.94 0.93

CCT 0.87 0.82 0.83 0.81 0.88 0.88 0.88

Table A.1: Model-based simulation results: Performance of RMSE estima-
tors under spatial stationarity.

150



Appendix A

Predictor MSE Performance across PGRs
Min Q1 Median Mean Q3 Max

Distribution of RB (%)
GWEBLUP CCST -13.90 12.80 25.01 29.89 45.28 132.60

CCT -36.57 -9.53 -2.51 1.04 7.70 51.37
RGWEBLUP CCST -44.65 9.03 25.36 24.11 43.83 113.70

CCT -41.72 -9.18 4.30 6.01 18.33 67.51
RGWEBLUP-bc CCST -34.47 8.97 23.47 37.38 52.06 135.60

CCT -36.11 -10.56 -4.91 -3.96 1.40 29.13
EBLUP CCST -23.98 -1.00 14.88 10.03 20.60 33.00

CCT -12.24 -6.74 -5.14 -5.05 -2.59 1.50
REBLUP CCST -26.52 -11.02 6.97 4.33 18.61 31.58

CCT -37.23 -21.56 -8.17 -11.38 -1.69 8.57
REBLUP-bc CCST -21.28 21.75 40.66 51.91 66.41 153.20

CCT -24.87 -18.66 -14.31 -14.40 -10.81 -4.68
Distribution of RRMSE (%)
GWEBLUP CCST 13.79 34.87 49.62 50.58 60.12 135.00

CCT 19.38 33.42 37.88 43.93 48.88 98.07
RGWEBLUP CCST 23.54 42.59 52.05 55.11 63.96 116.10

CCT 28.66 40.32 49.74 53.95 61.21 117.50
RGWEBLUP-bc CCST 13.67 23.72 36.38 53.69 66.57 146.70

CCT 13.90 24.50 28.95 31.78 37.41 83.68
EBLUP CCST 7.33 16.13 20.43 21.20 27.49 40.07

CCT 12.74 23.14 27.56 26.13 29.88 40.91
REBLUP CCST 8.88 18.54 22.99 23.51 28.75 39.75

CCT 12.33 19.61 24.49 24.99 29.35 37.80
REBLUP-bc CCST 14.26 31.43 51.63 64.73 76.90 167.10

CCT 16.78 22.88 25.90 27.17 30.38 50.35
Distribution of CR
GWEBLUP CCST 0.78 0.93 0.98 0.95 0.99 1.00

CCT 0.77 0.86 0.90 0.89 0.93 1.00
RGWEBLUP CCST 0.71 0.92 0.96 0.94 0.99 1.00

CCT 0.74 0.86 0.89 0.89 0.94 0.99
RGWEBLUP-bc CCST 0.81 0.97 0.97 0.97 0.99 1.00

CCT 0.76 0.89 0.92 0.91 0.94 0.97
EBLUP CCST 0.82 0.93 0.96 0.94 0.97 1.00

CCT 0.81 0.89 0.92 0.91 0.95 0.98
REBLUP CCST 0.77 0.90 0.96 0.93 0.98 1.00

CCT 0.74 0.83 0.91 0.88 0.94 0.97
REBLUP-bc CCST 0.88 0.97 0.98 0.98 0.99 1.00

CCT 0.83 0.86 0.88 0.88 0.91 0.92

Table A.2: Design-based simulation results: Performance of RMSE estima-
tors for sampled areas.
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Predictor MSE Performance across PGRs
Min Q1 Median Mean Q3 Max

Distribution of RB (%)
GWEBLUP CCST -45.99 -26.02 -14.80 -2.59 1.28 74.99

CCT -37.95 -15.91 -3.79 10.32 14.48 97.87
RGWEBLUP CCST -65.02 -32.20 -23.75 -13.80 4.98 53.19

CCT -60.68 -24.67 -18.70 -6.57 5.46 70.38
EBLUP CCST -30.11 8.26 76.09 213.70 137.40 1153.00

CCT -14.46 32.44 115.00 284.90 189.90 1437.00
REBLUP CCST -29.99 13.69 99.21 301.50 187.50 1566.00

CCT -14.57 38.89 143.00 393.60 250.50 1962.00
Distribution of RRMSE (%)
GWEBLUP CCST 29.46 32.86 37.08 46.95 45.11 98.12

CCT 25.75 26.94 33.51 45.98 40.06 115.10
RGWEBLUP CCST 30.00 45.68 66.07 114.40 138.40 426.20

CCT 24.36 31.20 50.22 52.56 67.12 107.60
EBLUP CCST 6.00 25.35 76.67 223.10 138.00 1155.00

CCT 7.84 33.04 115.50 288.20 190.30 1439.00
REBLUP CCST 5.83 28.92 99.83 310.20 188.20 1568.00

CCT 11.31 39.46 143.50 397.00 251.00 1964.00
Distribution of CR
GWEBLUP CCST 0.55 0.87 0.93 0.89 0.97 1.00

CCT 0.75 0.92 0.98 0.94 0.99 1.00
RGWEBLUP CCST 0.44 0.82 0.90 0.86 0.97 1.00

CCT 0.66 0.90 0.95 0.92 0.99 1.00
EBLUP CCST 1.00 1.00 1.00 1.00 1.00 1.00

CCT 1.00 1.00 1.00 1.00 1.00 1.00
REBLUP CCST 1.00 1.00 1.00 1.00 1.00 1.00

CCT 1.00 1.00 1.00 1.00 1.00 1.00

Table A.3: Design-based simulation results: Performance of RMSE estima-
tors for non-sampled areas.
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Model-based simulation under spatially correlated random
effects

The synthetic population (m = 40 and Ni = 100) was generated using a
spatial nested error regression model with correlated random area effects:

yij = 100 + 5xij + vi + eij.

The covariate xij was drawn from a log-normal distribution with mean 1
and a standard deviation of 0.5. The random effects vi and the individual
error eij were generated as

vi ∼N(0,G)
eij ∼N(0, 6)

with G = σ2
u[(I − ρW )(I − ρW T )]−1, ρ = 0.8 and σu = 3. As contiguity

matrix, a binary adjacency matrix was constructed based on the neighbor-
hood structure visible from Figure 5.1. Areas which have at least one point
on the boundary in common are defined as neighbors (queens structure).
Based on this definition, the number of neighbors per area varies between 3
and 8 with median 5. To obtain the neighborhood matrixW the contiguity
matrix is row standardized such that the rows sum up to one (cf. Pratesi and
Salvati, 2009). Three outlier contamination mechanisms are investigated:

1. (0, 0) - no outliers;

2. (v, e)s - symmetric outliers in area-level and individual error, vi ∼
N(0,G) for the areas 1-36 and vi ∼ N(0, 20) for the areas 37-40;
e ∼ δN(0, 6) + (1− δ)N(0, 150) where δ is Bernoulli distributed with
P (δ = 1) = 0.95;

3. (v, e)ns - non-symmetric outliers in area-level and individual error,
vi ∼ N(0,G) for the areas 1-36 and vi ∼ N(9, 20) for the areas 37-40;
e ∼ δN(0, 6) + (1− δ)N(20, 150) where δ is Bernoulli distributed with
P (δ = 1) = 0.95.
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Predictor Results (%) for the following scenarios and areas
(0, 0) (v, e)s (v, e)s (v, e)s (v, e)ns (v, e)ns (v, e)ns
1-40 1-40 1-36 37-40 1-40 1-36 37-40

Median values of RB
GWEBLUP 0.02 0.02 0.02 0.15 0.01 0.02 -1.81
RGWEBLUP 0.02 0.02 0.01 0.16 -0.58 -0.58 -1.72
RGWEBLUP-bc 0.02 0.03 0.02 0.07 -0.59 -0.58 -1.00
NPEBLUP 0.02 0.02 0.02 0.11 0.05 0.07 -1.61
RNPEBLUP 0.02 0.02 0.02 0.07 -0.59 -0.58 -1.23
SEBLUP 0.02 0.03 0.02 0.10 0.13 0.14 -1.77
SREBLUP 0.02 0.02 0.00 0.06 -0.59 -0.58 -1.16
SREBLUP-bc 0.02 0.02 0.02 0.03 -0.41 -0.41 -0.38
EBLUP 0.02 0.02 0.02 0.09 0.23 0.24 -1.95
REBLUP 0.02 0.02 0.01 0.07 -0.50 -0.50 -1.24
REBLUP-bc 0.02 0.02 0.02 0.04 -0.58 -0.58 -0.56
Median values of RRMSE
GWEBLUP 0.81 1.05 1.05 1.93 1.40 1.38 3.00
RGWEBLUP 0.82 0.89 0.88 1.80 1.14 1.13 2.33
RGWEBLUP-bc 0.90 1.04 1.04 1.44 1.29 1.28 1.72
NPEBLUP 0.78 1.04 1.03 1.61 1.45 1.43 2.58
RNPEBLUP 0.80 0.88 0.87 1.17 1.14 1.13 1.67
SEBLUP 0.76 1.03 1.02 1.66 1.47 1.46 2.64
SREBLUP 0.78 0.86 0.86 1.18 1.11 1.11 1.58
SREBLUP-bc 0.91 1.13 1.13 1.18 1.45 1.46 1.36
EBLUP 0.80 1.07 1.07 1.59 1.54 1.53 2.70
REBLUP 0.82 0.90 0.90 1.17 1.12 1.11 1.67
REBLUP-bc 0.91 1.03 1.03 1.02 1.27 1.27 1.24

Table B.1: Model-based simulation results: Performance of estimated small
area means under spatially correlated random effects with ρ =
0.8.

The main results can be summarized as follows:

- Without outlier contamination, (0, 0), all estimators are nearly unbi-
ased and the SEBLUP is the most efficient estimator. This is expected
as the population model is generated under the assumptions of this
estimator.

- With symmetric outlier contamination, (v, e)s, all estimators are nearly
unbiased what can be expected as the outliers sum up to zero in the
out-of-sample population and can be seen as noise. Further, the ro-
bust projective estimators (REBLUP, SREBLUP, RNPEBLUP and
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RGWEBLUP) are more efficient compared to their non-robust coun-
terparts (EBLUP, REBLUP, NPEBLUP and GWEBLUP). As ex-
pected, the most efficient estimator in this scenario is the SREBLUP.

- With asymmetric outlier contamination, (v, e)ns, the robust projective
estimators (REBLUP, SREBLUP, RNPEBLUP and RGWEBLUP)
are biased and the robust predictive estimators (REBLUP-bc, SRE-
BLUP - bc and RGWEBLUP-bc) can reduce this bias at least in the
extreme areas 37-40. This bias reduction leads to an efficiency loss in
the areas 1-36 compared to the respective robust projective estimators,
but improves efficiency in the areas 37-40.

- Comparing the global EBLUP approaches (EBLUP, REBLUP, RE-
BLUP - bc) and the local counterparts (GWEBLUP, RGWEBLUP,
RGWEBLUP - bc) the picture is not as clear: Without outlier contam-
ination, (0, 0), there is almost no difference in efficiency; with symmet-
ric outlier contamination, (v, e)s, the local approaches seem slightly
more efficient; with asymmetric outlier contamination, (v, e)ns, the
global approaches are more efficient.
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Abstract

The demand for reliable small area statistics has been growing in public
and private organizations. Sample surveys are designed to produce reli-
able estimates for quantities of interest on higher geographic levels, but
can have very small or even zero sample sizes for lower geographic levels.
Direct estimates, which only rely on area-specific information, are usually
unbiased but can produce results with high variability in the case of small
sample sizes. Small area estimation (SAE) techniques have been devel-
oped to gain reliability compared to direct estimates by borrowing strength
from additional information. One well known SAE method is the empir-
ical best linear unbiased predictor (EBLUP) of the small area mean that
incorporates auxiliary variables using the linear mixed model approach. In
addition, spatial information can be used to borrow strength over space.
One approach to account for geographical information is to extend the lin-
ear mixed model and allow for spatially correlated random area effects (cf.
Pratesi and Salvati, 2008, SEBLUP). An alternative is to include the spa-
tial information by non-parametric mixed models (cf. Opsomer et al., 2008,
NPEBLUP). Another option is the geographic weighted regression where
the model coefficients vary across the study area (cf. Chandra et al., 2012,
GWEBLUP). Under the assumption of normally distributed error terms,
these approaches are useful for estimating small area means efficiently. The
normality assumption can be violated in the presence of outliers and, hence,
it can be beneficial to reduce the influence of outliers and use robust meth-
ods for SAE (cf. Sinha and Rao, 2009).
This thesis extends the current literature by providing robust extensions for
the GWEBLUP of the area mean. In particular, a robust projective and a
robust predictive version of the GWEBLUP is proposed. In addition, two
analytic MSE estimates are developed based on the pseudo-linearization ap-
proach of Chambers et al. (2011) and under the full linearization approach
of Chambers et al. (2014). The proposed methods have been implemented
for the R-language (R Core Team, 2016) in the package saeRGW. The per-
formance of the proposed methods is assessed in model and design-based
simulation studies. The model-based simulation indicates that in the pres-
ence of spatial non-stationarity and outliers, applying the proposed robust
methods can lead to efficiency gains compared to the non-robust GWE-
BLUP of the small area mean. In addition, the proposed MSE estimators
show good properties in terms of bias and stability in the investigated sce-
narios. The design-based simulation also indicates that in case of the Berlin
real estate database it can be beneficial to combine the GWEBLUP with
robust protection for estimating small area means of the quoted net rent.
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Zusammenfassung

Small-Area-Verfahren gewinnen zunehmend an Bedeutung in der amtlichen
Statistik und privaten Institutionen. Bevölkerungsstichproben liefern in der
Regel verlässliche Schätzungen für aggregierte Populationsgrößen, können
jedoch sehr kleine Stichprobenumfänge in tieferen regionalen Ebenen auf-
weisen. Direkte Schätzverfahren, welche ausschließlich auf regionalen Beob-
achtungen basieren, liefern bei kleinem Stichprobenumfang zwar unverzerr-
te, jedoch meist sehr unpräzise Schätzungen. Methoden der Small-Area-
Schätzung (SAE - Small Area Estimation) hingegen können bei kleinen
Stichprobenumfängen durch Zuhilfenahme zusätzlicher Informationen ver-
lässlichere Regionalstatistiken liefern. Eine gängige Methode für SAE ist der
Empirical Best Linear Predictor (EBLUP). Hier werden für die Schätzung
von kleinräumigen Mittelwerten Hilfsvariablen mithilfe gemischter linearer
Modelle einbezogen. Darüber hinaus können auch räumliche Informationen
verwendet werden, um die Schätzgenauigkeit weiter zu erhöhen. Geographi-
sche Information können zum Beispiel berücksichtigt werden, indem eine
räumliche Korrelation zwischen den zufälligen Effekten im gemischten Mo-
dell zugelassen wird (vgl. Pratesi and Salvati, 2008, SEBLUP). Außerdem
können räumliche Informationen auch nichtparametrisch in das gemischte
Modell aufgenommen werden (vgl. Opsomer et al., 2008, NPEBLUP). Eine
weitere Option ist die geographisch gewichtete Erweiterung des gemisch-
ten Modells, in der die Koeffizienten räumlich variieren (cf. Chandra et al.,
2012, GWEBLUP). Unter der Annahme normalverteilter Fehlerterme sind
diese Ansätze effizient um detaillierte Regionalstatistiken zu Schätzen. Diese
Normalverteilungsannahme kann jedoch durch einzelne extreme Beobach-
tungen (Ausreißer) verletzt werden. Der Einfluss von Ausreißern kann durch
die Verwendung von robusten SAE- Methoden reduziert werden (vgl. Sinha
and Rao, 2009).
In dieser Arbeit wird eine Erweiterung für den GWEBLUP zur robusten
Schätzung von kleinräumigen Mittelwerten entwickelt. Hierbei werden ei-
ne robuste Variante nach Sinha and Rao (2009) und eine korrigierte nach
Chambers et al. (2014) eingeführt. Darüber hinaus werden zwei analyti-
sche Methoden für die MSE-Schätzungen entwickelt: (i) nach dem Pseudo-
Linearisierungsansatz von Chambers et al. (2011); (ii) und nach dem voll-
ständigen Linearisierungsansatz von Chambers et al. (2014). Die entwickel-
ten Methoden wurden zusätzlich im R-Paket saeRGW implementiert. Die
statistischen Eigenschaften der entwickelten Methoden wurden in modell-
und designbasierten Simulationsstudien untersucht. Unter räumlicher nicht-
stationarität mit Ausreißern führen die entwickelten robusten Methoden in
der modellbasierten Simulation zu Effizienzgewinnen. Darüber hinaus zeigt

158



Zusammenfassung

die MSE Schätzung in den untersuchten Szenarien gute Eigenschaften in
Bezug auf Verzerrung und Stabilität. Die Ergebnisse der designbasierten Si-
mulation deuten ebenfalls auf einen Effizienzgewinn durch die Verwendung
der entwickelten Methoden bei der Schätzung der mittleren Nettokaltmieten
in Planungsräumen der Stadt Berlin hin.
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