Gasphasenuntersuchungen
zu Geometrie und Ladungstransfer
von Kohlenstoffclustern

Im Fachbereich Physik der
Freien Universität Berlin eingereichte
Dissertation
durchgeführt am Max-Born-Institut für
Nichtlineare Optik und Kurzzeitspektroskopie

von
Gero Heusler
1999
1. Gutachter: Prof. Dr. I. V. Hertel

2. Gutachter: Prof. Dr. L. Wöste
Abstract

Carbon clusters have been investigated in the gas phase. A new modular molecular beam apparatus has been set up and allows a variety of experiments.

This work divides up into three parts: In the first part, it is shown that the near-resonant charge transfer reaction $\text{C}_{60} + \text{Na}(3p) \rightarrow \text{C}_{60}^- + \text{Na}^+$ exhibits an extraordinary large alignment effect ($<\rho_{\sigma\sigma}> = 0.8 \pm 0.2$). In a crossed beam experiment, the sodium is excited using a linearly polarized two mode dye laser. The alignment effect is observed by simultaneously monitoring the dependence of the fluorescence and the C_{60}^- anions on the polarization direction. It is found that practically only sodium atoms with their electronic charge cloud asymptotically aligned along the relative velocity vector lead to charge transfer. The clear effect is interpreted in terms of the “orbital following” model and the strong π-character of the LUMO (lowest unoccupied molecular orbital) of C_{60}.

The second part is dedicated to a mass spectrometric characterization of the carbon clusters. Carbon clusters are produced by laser-vaporization and subsequent supersonic expansion. It turns out that the bimodal distribution of carbon cluster cations may even be trimodal. This third mode is explained by the coalescence of smaller fullerenes in the source. The studies using reactive carrier gases (hydrogen and nitrogen) give some insight in the variety of the geometries of carbon cluster cations. Evidence for the formation of long-lived, excited neutral states in large fullerenes is presented.

In the third part, the geometries of the carbon cluster cations are investigated using the technique of gas phase ion chromatography. The mobility of the ions in an inert gas is determined. A comparison with the simulated mobilities of different geometric isomers allows a structural assignment of the different isomers. This will allow future studies of the reactivity of carbon clusters in dependence on their geometry.
Veröffentlichungen

E. E. B. Campbell, R. Ehlich, G. Heusler, O. Knospe, H. Sprang:

„Capture dynamics in collisions between fullerene ions and rare gas atoms“

G. Heusler, E. E. B. Campbell:

„Strong alignment effect in quasi-resonant charge transfer between laser-excited sodium atoms and C_{60}“

Diese Arbeit wurde gefördert durch die Deutsche Forschungsgemeinschaft unter Ca 127/n.
Inhaltsverzeichnis

1 Einleitung .. 1

2 Experimenteller Aufbau .. 7

2.1 Aufbau zur Untersuchung der Mobilität .. 7

2.1.1 Überblick.. 7

2.1.2 Vakuumsystem ... 9

2.1.3 Clusterquelle .. 10

2.1.4 Flugzeitmassenspektrometer .. 14

2.1.5 Quadrupolmassenspektrometer ... 16

2.1.6 Ionenoptik .. 17

2.1.7 Driftzelle .. 20

2.1.8 Datenaufnahme ... 21

2.1.9 Zusammenfassung der Quellparameter ... 21

2.2 Aufbau zur Untersuchung des Ladungstransfers .. 22

2.3 Der Zweimodenlaser ... 25

I. Ladungstransfer: Die Reaktion $\text{C}_{60} + \text{Na}(3p) \rightarrow \text{C}_{60}^- + \text{Na}^+$

3 Theoretische Einführung ... 31

3.1 Orientierung und Alignment ... 32

3.2 Reaktionstypen .. 34

3.3 Energetische Betrachtung und Massey-Kriterium .. 36

3.4 Meßtheorie... 38

3.5 Experimente mit zylindrischer Symmetrie ... 40

3.6 Messung des optisch präparierten Multipolmoments S_{20} .. 43

3.7 Stark-Effekt .. 46

3.8 Anregungs- und Reaktionsmechanismen ... 49

3.9 Das Stoßsystem Na + C$_{60}$... 51
Danksagung

Prof. E. E. B. Campbell danke ich für die Bereitstellung des Themas und die wissenschaftliche Betreuung dieser Arbeit, die gerade in der Phase größerer räumlicher Trennung an Intensität gewann. Für ihr unermüdliches Engagement möchte ich ihr herzlich danken, ebenso für die kritische Durchsicht des Manuskripts.

Prof. I. V. Hertel danke ich für die Möglichkeit, diese Arbeit am Max-Born-Institut durchzuführen und sein stetes Interesse am Fortschritt der Arbeit.

Prof. W. Raith danke ich für die Aufmunterung und hilfreiche Ideen in einer kritischen Phase des Experimentes.

Prof. L. Wöste danke ich für die Übernahme des Zweitgutachtens und sein Interesse an dieser Arbeit.

Meine Frau Anna hat mich durch alle Hochs und Tiefs der Arbeit begleitet. Mein Dank für ihre Unterstützung läßt sich nur schwer in Worte fassen.
Lebenslauf

Persönliche Daten
Name Gero Heusler
geboren am 7. 9. 1969 in Heidelberg
Familienstand verheiratet

Schulausbildung, Wehrdienst
1979-88 Gymnasium in Heidelberg
Mai 1988 Abschluß mit Abitur

Hochschulstudium und Promotion
Okt. 1989 - Juli 1995 Studium der Physik an der Universität Heidelberg und Tomsk (Russland). Diplomarbeit am Max-Planck-Institut für Kernphysik unter der Betreuung von Prof. Dr. D. Schwalm mit dem Thema:
Indirekte Untersuchung der astrophysikalischen $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ Einfangrate mit der a-Transferreaktion $^{12}\text{C}(^{7}\text{Li},t)^{16}\text{O}$
26. 7. 1995 Abschluß mit Diplom
Okt. 1995 Beginn der Promotion am Max-Born-Institut in Berlin/Adlershof unter der Betreuung von Prof. Dr. I. V. Hertel und Prof. Dr. E. E. B. Campbell

Praktika, Stipendien und Auslandsaufenthalte
Okt. - Dez. 1985 Trimester an der Roch Valley High School in Littleborough, Großbritannien
Juli/Aug. 1988 International Summer Science Institute am Weizmann-Institut in Rehovot, Israel
Sept. 1988 Praktikum in den Forschungslabors der Isabellenhütte GmbH KG in Dillenburg
1990-1995 Mitglied der Studienstiftung des deutschen Volkes
Aug. 1991 - Juli 1992 DAAD-Stipendium zum Studium an der Universität Tomsk, Russland
Aug./Sept. 1992 Sommerstudent am CERN in Genf, Schweiz