Extracellular osmolality and solute composition participate in the expressional regulation of Aquaporin-2 in renal inner medullary collecting duct cells

Evidence for an involvement of the TonE/TonEBP pathway

Dissertation to obtain the academic degree

Doctor rerum naturalium (Dr. rer. nat.)

submitted to the Department of Biology of Freie Universität Berlin, Germany

by

Robert Storm

born in Berlin, Germany

1. Expert: Prof. Dr. Walter Rosenthal

2. Expert: Prof. Dr. Horst Kreß

Disputation on the 12th of July, 2004

Acknowledgements:

I would like to thank Prof. Dr. W. Rosenthal for the possibility to perform this study in his group at the Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin.

Moreover, I would like to thank Dr. K. Maric and Prof. Dr. W. Rosenthal for their support and for helpful discussions and practical advice concerning this work.

I would also like to thank Prof. Dr. H. Kreß of the Freie Universität Berlin biology department for his cooperativeness and support during my studies and with this work.

Many thanks to all the collegues at the FMP who helped with practical advice and inspiring discussions, in particular Dr. E. Klussmann, Dr. E. Klauschenz, A. Geelhaar and all members of the Klussmann lab.

In addition, I would like to thank my parents and friends for their support.

Table of contents

		page
1.	Introduction	1
1.1	Structure and function of the mammalian kidney	1
1.2	Aquaporins: structure and function	4
1.3	Molecular mechanisms regulating the expression and trafficking of AQP2	5
	in renal principal cells: description of the classical AVP-triggered pathway	
1.4	States with impaired water homeostasis due to altered AQP2 expression	7
1.5	Introduction of the primary cultured inner medullary collecting duct	9
	(IMCD) cell model used in this work	
1.6	The aim of this study	10
2.	Materials & Experimental procedures	11
2.1	Materials	11
2.1.1	Chemicals, reagents, antibodies, cells, and animals	11
2.1.2	Apparatus and software	14
2.2	Experimental procedures	16
2.2.1	Preparation of primary cultures of IMCD cells from rat inner medullae	16
2.2.2	Coating of glass and plastic ware with collagen type IV for cell culture	16
2.2.3	Media used for cell culture	17
2.2.4	Protein analysis	19
2.2.4.1	Determination of protein concentrations by the method of Bradford	19
2.2.4.2	Protein preparations	20
2.2.4.3	Size separation of proteins by SDS-PAGE	20
2.2.4.4	Semi-dry Western blotting	21
2.2.4.5	Immunochemistry	22
2.2.5	Nucleic acid analysis	23
2.2.5.1	Isolation of total RNA from IMCD cells	23
2.2.5.2	Horizontal agarose gel electrophoresis of DNA	23
2.2.5.3	Recovery of DNA fragments from agarose gels	24
2.2.5.4	Gel electrophoresis of RNA and Northern blot analysis	24
2.2.5.5	Radioactive random prime labelling of cDNA fragments	26
2.2.5.6	Purification of [α32-P]dCTP-labeled cDNA fragments using Sephadex	26
	G50 columns	
2.2.5.7	Sequence searches and alignments	27
2.2.5.8	Generation of GFP-TonEBP and dominant negative GFP-TonEBP	27

2.2.6	Transfection of competent bacteria	28
2.2.7	Immunofluorescence	29
3.	Results	31
3.1	Elevated osmolality is required for the DBcAMP-elicited expression of	31
	robust AQP2 protein levels in IMCD cells	
3.1.1	AQP2 protein levels are regulated by extracellular osmolality and solute	32
	composition	
3.1.2	The effects of osmolality and solute composition on AQP2 protein levels	34
	are due to altered AQP2 mRNA expression	
3.1.3	Altered osmolality has no effect on the cytomegalovirus-governed	35
	expression of AQP2 in MDCK1 cells stably transfected with AQP2	
3.1.4	Evaluation of an alternative to the quantification of AQP2 protein levels	37
	in membrane preparations: reducing animal consumption	
3.2	Osmolality and solute composition have no effect on the hormone-	40
	stimulated trafficking of AQP2 in IMCD cells	
3.3	The role of DBcAMP in the expression of AQP2 in IMCD cells	41
3.3.1	Ser-133 phosphorylation of CREB is stimulated by DBcAMP	42
3.3.2	The DBcAMP-induced phosphorylation of CREB is not affected by	43
	changes in extracellular osmolality and solute composition	
3.4	Hypertonic challenge, not simple elevation of osmolality by the membrane	44
	permeating solute urea, promotes AQP2 expression	
3.4.1	The expression of AQP2 correlates with extracellular sodium	46
	concentrations	
3.4.2	The effect of hypertonic challenge on AQP2 expression is enhanced by	47
	urea	
3.5	The kinetics of AQP2 regulation in response to hypo- and hypertonic	48
	challenge	
3.6	The kinetics of AQP2 regulation in response to DBcAMP withdrawal and	50
	addition	
3.7	The human, rat, and mouse AQP2 promoter regions contain a conserved	51
	tonicity responsive element (TonE)	
3.7.1	The expression of the transcription factor TonEBP is regulated by	53
	osmolality and solute composition in IMCD cells	
3.7.2	TonEBP activity (nuclear localization) corresponds with AQP2 expression	55
	in response to hyper- or hypotonic challenge	

3.8	Investigations of the effect of compounds reported to interfere with the	58
	TonE/TonEBP pathway on the expression of AQP2	
3.8.1	Proteasome inhibition abrogates up-regulation of AQP2 expression in	58
	response to hypertonic challenge	
3.8.2	Rottlerin impairs up-regulation of AQP2 expression in response to	60
	hypertonic challenge	
3.8.3	MEK / p38 inhibition reduces the detrimental effect of hypotonic	62
	challenge on AQP2 expression	
3.8.4	Influence of proteasome inhibition, rottlerin-treatment, and inhibition of	67
	MEK1/p38 on cell morphology, cellular localization and expression of	
	AQP2, TonEBP and the actin cytoskeleton in IMCD cells	
4.	Discussion	74
5.	Abstract (English/German)	91
6.	References	96
7.	Appendix	110
7.1	Publications	110
7.2	Abbrevations	111