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Chapter 1

Introduction

Graphs are objects used to model pairwise relations between objects. For
applications such as computer networks, it is often important that the connec-
tions between the nodes are robust. This means that the failure of a few nodes
doesn’t break the network into disconnected parts. Separators are one way to
model the connectedness of a graph.

A separator is a partition of the vertices of a graph into three sets. There
are two “large” sets A and B with no edges between a vertex in A and a vertex
in B, and an additional set C containing the rest of the vertices. As moving
vertices from A or B to C preserves the separation property, we are interested
in the minimum size of the set C. The size of the set C is called the size of
the separator. A similar definition exists for edge separators, but we study
only regular graphs where their sizes are within a multiplicative constant (see
Lemma 3.3.2). Separators are closely connected to the expander graphs; a
family of expander graphs has minimal separators whose size is linear in the
number of vertices.

The story of separators of polytopes begins in 1951 with Ungar [24], who
proved that planar graphs, and therefore graphs of 3-polytopes, have minimal
separators of size O(

√
n log n). Lipton and Tarjan proved the planar separator

theorem in 1979 [15]. It gives the sharp bound O(
√
n) provided that the

large sets A and B both contain at least 1/3 of the vertices. This result is
best possible, since the m ×m grid graph can’t be separated by a separator
smaller than Ω(m). Miller and Thurston [18] gave a geometric proof of the
planar separation theorem using the Koebe–Andreev–Thurston circle-packing
theorem.

Miller, Teng, Thurston and Vavasis [17] generalized the theorem to inter-
section graphs of ball packings in d dimensions. This led Kalai to conjecture
in his 1991 paper [11, Conj 12.1.repeated in the 1997 first edition of [12]] that
simple d-polytopes would have separators of size

O
(
n1− 1

bd/2c

)
, (1.1)

which fails for d = 3 and for d = 4 postulates separators of size O(
√
n). In

1



2 CHAPTER 1. INTRODUCTION

the 2004 second edition of the Handbook [13, Conj. 20.2.12] he revised the
conjecture to the following form:

Conjecture 1.0.1 (Kalai). Simple d-polytopes have separators of size O
(
n

d−2
d−1

)
.

In dimension 3, this gives the planar separator theorem, while in dimension
4 it postulates the existence of separators of size O(n2/3).

Simplicity is a necessary assumption as the graph of the cyclic polytopes
is complete for d ≥ 4 and hence has no vertex separator. Kalai also refers to
[17] for a claim by Thurston who stated that there are triangulations of S3

with n facets whose dual graphs have separators with size Ω(n/ log n). This
is not stated in the paper, but refers to a construction which Thurston had
described to his coauthors. Gary Miller told us (personal communication) that
“Thurston gave an embedding of the cube-connected cycle graph in R3 as linear
tets [tetrahedra]”. The details of this construction appear to be lost.

Here we disprove Conjecture 1.0.1 and prove a stronger version of Thurston’s
claim: There is not only a triangulated simplicial sphere on n vertices, whose
dual graphs has separators of size Ω(n/ log n), but even a simplicial convex
4-polytope with this property. Our main theorem describes the simple dual
polytope.

Theorem 1.0.2. There is a family of simple convex 4-dimensional polytopes
NCc

4(m)′′ with n = Θ(m2m) vertices for which the smallest separators of the
graph have size Θ(2m) = Θ(n/ log n).

This thesis is structured as follows. In Chapter 2 we define our main objects
of study, separators of graphs. This section also contains necessary background
information on graphs and polytopes. In Chapter 3 we build the simple poly-
tope used for our lower bound and calculate the size of their separators. Finally
in chapter 4 we generalize the construction to higher dimensions and discuss
possible constructions for polytopes with even larger minimal separators.



Chapter 2

Graphs and Polytopes

2.1 Polytopes

The main objects of study in this work are polytopes and their graphs. Poly-
topes are interesting objects in their own right, but also play an important
role in optimization. In the following section we introduce the basics of poly-
topes. A more thorough treatment can be found in books by Grünbaum [5]
and Ziegler [25] .

Polytopes are geometrical objects, but we are mostly interested in their
combinatorial properties. We will introduce polytopes in their geometric rep-
resentation, but quickly forget all about coordinates and focus on things that
can be worked out in the face lattice.

There are two ways to define a polytope, the vertex (or interior) represen-
tation and the half-space (or exterior) representation.

Definition 2.1.1. (V-Polytope) An V -polytope is the convex hull of a finite
set of points V ⊂ Rd, that is

P =
{
x ∈ Rd |x =

|V |∑
i=1

λivi, 0 ≤ λi ≤ 1,

|V |∑
i=1

λi = 1
}
. (2.1)

The inclusion-minimal set V for which conv(V ) = P is called the vertex
set of the polytope P .

Definition 2.1.2. (H-polytope) An H-polytope is a bounded set which is the
intersection of a finite set of half-spaces, that is

P =
n⋂

i=1

{
x ∈ Rd | aT

i x ≤ ci
}

(2.2)

where ai ∈ Rd are normal vectors of the hyperplanes and ci ∈ R are displace-
ments. If this description is minimal with respect to the number of half-spaces
required to describe P , it is called irredundant.

3



4 CHAPTER 2. GRAPHS AND POLYTOPES

It is a fundamental theorem of polytopes that these two representations
are equivalent.

Theorem 2.1.3 (Minkowski-Weyl Theorem [25, Thm. 1.1.]). Let P ⊂ Rd. P
is an H-polytope if and only if P is an V -polytope.

The affine hull of a set of points is the dimension of the smallest affine
subspace which contains all of the points. The dimension of a polytope is the
dimension of its affine hull. A d-polytope in Rd is said to be full-dimensional.
If the lowest dimensional affine subspace which contains n points is (n − 1)-
dimensional, the points are said to be affinely independent.

The boundary of a polytope can be divide to lower dimensional polytopes
called faces.

Definition 2.1.4. (Face) A face is an intersection of a polytope with a set
defined by a linear equality

F = P ∩ {x ∈ Rd | ax = c} (2.3)

where the inequality ax ≤ c holds for all points in P .

Both the empty set and P are faces of P , they are given by 0x ≤ 1 and
0x ≤ 0, respectively. The empty set is defined to have dimension −1. A face
that is not equal to all of P is called a proper face. Some faces have special
names: The 0-dimensional faces are called vertices, the 1-dimensional faces are
called edges, the (d − 2)-dimensional faces are called ridges and the (d − 1)-
dimensional faces are called facets. In an irredundant half-space description
each of the inequalities corresponds to a facet. The faces of a polytope form
a lattice with order given by inclusion. This lattice is called the face lattice of
the polytope.

The faces of various dimensions are counted by the face vector.

Definition 2.1.5. (Face vector) The face vector of a d-polytope f(P ) is
(f0, f1, . . . , fd−1) ∈ Zd, where fi is the number of i-dimensional faces of P .

The face vector satisfies the famous Euler-Poincare equation

d−1∑
i=0

(−1)ifi = 1− (−1)d. (2.4)

This is the only linear equation satisfied by the face vector. More constraints
can be found by studying the flag vector.

Definition 2.1.6. (Flag vector) The flag vector flag(P ) has as components the
number of chains fi1,i2,...ik , for all nonempty {i1, i2, . . . , ik} ⊂ {0, 1, . . . , d − 1}
for all fi1 ⊂ fi2 ⊂ · · · ⊂ fik .
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For example, the entry f0,1,3 counts the number of chains in the face lattice
which have elements in dimensions (0, 1, 3). This means a vertex contained
in an edge, which is contained in a 3-face. The complete flag vector has
2d− 1 entries, but many of them are redundant. For example, we always have
f0,1 = 2f1 since each edge connects two vertices. In particular, for 4-polytopes
knowing the entries (f0, f1, f2, f3, f03) is enough to figure out the complete flag
vector.

Now that we have defined what a polytope is, we need a criterion to de-
cide which polytopes count as “the same”. There are two ways to do this, a
combinatorial one and a geometric one. Two polytopes P ⊂ Rd, Q ⊂ Re are
affinely isomorphic if there is an affine map f : Rd → Re which is a bijection
between the points of the polytopes. A more relaxed equivalence relation is
combinatorial equivalence. Two polytopes are combinatorially equivalent if
their face lattices are isomorphic, which means that there is an bijection be-
tween the elements of the lattices which preserves the inclusion relation. Two
combinatorially equivalent polytopes are said to have the same combinatorial
type. Any two affinely isomorphic polytopes are combinatorially equivalent.

Two polytopes are said to be dual to each other if there is an inclusion
reversing bijection between their face lattices. Clearly, the dual of a d-polytope
is another d-polytope. The fact that every polytope has a dual can be seen
from the polar set. Let A ⊂ Rd, then the polar set A∗ is defined by

A∗ = {y ∈ Rd | 〈x, y〉 ≤ 1 ∀x ∈ A} (2.5)

If A is a convex compact set with 0 ∈ int A, so is A∗. In particular, if A is a
polytope containing 0 in the interior, A∗ is dual to it.

We are interested in studying the graphs of polytopes. The most theoreti-
cally pleasing way to define them is to consider them a special class of polytopal
complexes. A polytopal complex is a collection of polytopes that fit together
nicely. More precisely:

Definition 2.1.7. (Polytopal complex) A polytopal complex C is a finite set
of polytopes in some Rd with the following properties:

1. The empty polytope is in C.

2. (Downward closure) If F ⊂ P is a face of P and P ∈ C, then F ∈ C.

3. The intersection P ∩Q of P,Q ∈ C is a face of both.

The dimension of a polytopal complex dim(C) is the largest dimension
among the polytopes contained in it. Its underlying set |C| is the union of all
of its polytopes |C| := ∪F∈CF.

Any polytope P and its faces form a polytopal complex. Another common
complex is the boundary complex of a polytope P . The boundary complex
is the collection of proper faces of P . The k-skeleton of a polytope P is the
collection of all faces of dimension ≤ k. Hence the d-skeleton of a d-polytope is
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the polytope and its faces, while the boundary complex is the (d−1)-skeleton.
The graph of the polytope is its 1-skeleton and it is denoted by G(P ).

After all these theoretical constructions, let’s have a look at some concrete
examples of polytopes. In any dimension, the polytope with the fewest vertices
is the simplex.

Definition 2.1.8. (Simplex) A d-simplex is the convex hull of d + 1 affinely
independant points.

Any two simplices of the same dimension are affinely isomorphic. The faces
of a simplex are lower dimensional simplices and any k ≤ d+ 1 vertices of the
simplex form a (k − 1)-face. Therefore the number of k-faces is

(
d+1
k+1

)
and the

total number of faces is 2d+1. A polytope whose facets (but not necessarily
the polytope itself) are simplices is called simplicial. The dual of a simplicial
polytope is called simple. The simplex has the honor of being the only simple
and simplicial polytope in dimensions three and greater. The vertices of a
simple d-polytope are contained in exactly d edges and d facets. These are
also sufficient conditions for simplicity. This means that the graph of a simple
polytope is d-regular.

As simplices are the least complicated polytopes, it is often useful to break
up a polytope into a union of simplices. A triangulation of a polytope P is a
polytopal complex with underlying set P where all the polytopes are simplices.

Another important polytope is the m-cube.

Definition 2.1.9. The m-cube Qm ⊂ Rm is a simple polytope defined by the
inequalities

0 ≤ xi ≤ 1 (2.6)

for i ∈ 1, . . . ,m. Equivalently, it is the convex hull of all points of the form
v ∈ {0, 1}m. We call any combinatorially equivalent polytope also an m-cube.

From the vertex description we see that the m-cube has 2m vertices. A
vertex v is incident to m edges, so the m-cube is a simple polytope. The
neighbors of v are the vertices which agree in precisely m− 1 coordinates.

From the halfspace description we see that there are 2m facets. The facets
(and therefore lower dimensional faces) are also combinatorial cubes. Poly-
topes with this property are called cubical.

The non-empty faces of an m-cube can be characterized by whether the
kth coordinate is required to be 0 or 1 or whether it can take all the values
in [0, 1]. Denoting the latter case by ∗, we see that the faces correspond to
vectors F ∈ {0, 1, ∗}m plus the empty face. The number of ∗-entries is equal
to the dimension of the face. Hence there are

(
m
k

)
2m−k k-faces and 3m +1 faces

in total.
There is an interesting connection between the simplex and the cube. If

we draw a diagram of the face lattice of a d-simplex by connecting each k-face
with the (k+1)-faces containing it, we end up with the graph of a (d+1)-cube.
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Now that we have some polytopes to work with, we will present several
ways to turn these polytopes into new ones. Vertex truncation is one such
method. We will use it extensively.

Definition 2.1.10. (Vertex truncation) Let P be a polytope with vertex set
V . Truncating a vertex v ∈ V means adding a new inequality to the halfspace
description, which is violated by v but strictly valid for all the others vertices
in V .

All the polytopes formed this way are combinatorially equivalent (but gen-
erally not affinely isomorphic). For each face intersected by the hyperplane,
a face of one dimension lower is added to the face lattice. The new facet is
called the vertex figure of the vertex v. The vertex figure’s combinatorial type
depends only on the choice of vertex, not on the inequality. Vertex cuts can
be generalized to cutting of faces of higher dimensions by requiring the added
inequality to be violated by all the vertices in the face.

The dual operation of truncation is called stacking. What we mean by this
is is that if we cut off vertex v and take the dual of the resulting polytope
is equivalent to first taking the dual and then stacking on the corresponding
facet. Stacking means adding a new vertex to the polytope which satisfies
all the inequalities in the irredundant description with strict inequality except
the ones corresponding to the face being stacked on, which is strictly being
violated.

Another way to produce new polytopes is taking prisms. This operation
takes a d-polytope P in Rd and produces a (d+ 1)-polytope prism(P ) in Rd+1.

Definition 2.1.11. A prism is the convex hull of a copy of P embedded on
the hyperplane xd+1 = 0 and another copy on the the hyperplane xd+1 = 1.

The new polytope prism(P ) has 2 copies of each face F of P at the top
and bottom and for each face F a face isomorphic to prism(F ) in the middle.
Two vertices in G(pyr(P )) are adjacent if and only if they are copies of the
same vertex or if they are in the same copy and are adjacent in P . Because
taking the prism increases the degree of each vertex by one, prism(P ) is a
simple polytope if and only if P is a simple polytope. We can easily calculate
the face vector of prism(P ) from the face vector of P .

f0(prism(P )) = 2f0(P ), (2.7)

fi(prism(P )) = fi−1(P ) + 2fi(P ) for 1 ≤ i ≤ d. (2.8)

The n-cube can be defined as the n-fold prism over the zero dimensional
polytope (a point).

The dual construction to prism is the bipyramid.

Definition 2.1.12. (Bipyramid) Let P ⊂ Rd be a d-polytope with zero in the
interior. Then the bipyramid bipyr(P ) is the convex hull of P embedded on
the hyperplane xd+1 = 0 and the points (0, 0, . . . , 1) and (0, 0, . . . ,−1).
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2.2 Graphs

Graph theory is a subject in its own right, with connections to all branches of
mathematics. We neither can nor wish to give a complete introduction, but
rather focus on the parts necessary for our own study. More information on
graphs and their separators can be found in [2] and [3].

Definition 2.2.1. (Graph) A graph is an ordered pair of sets G = (V,E). The
elements of V are called vertices. The elements of E are 2-element subsets of
V . They are called the edges of the graph.

A graph is often visualized by connecting dots (vertices) with lines (edges)
on a plane. If such a drawing can be made without any lines intersecting, the
graph is called planar. We consider only simple graphs, i.e. graphs without
loops or parallel edges.

We will only consider undirected graphs, so (u, v) and (v, u) denote the
same edge. If (u, v) ∈ E, the vertices u and v are said to be adjacent. The
vertices u and v are incident to the edge (u, v). If there is an edge between
every pair of vertices, the graph is complete.

Definition 2.2.2. (Path) A sequence of edges (u1, u2), (u2, u3), . . . (uk−1, uk) ⊂
E is called a path between the vertices u1 and uk if all the ui are distinct.

If there is a path between every pair of vertices, the graph is said to be
connected. Otherwise it is disconnected. A disconnected graph consists of
several connected components.

The degree of a vertex is the number of edges it is incident to. If all the
vertices in the graph have degree d, the graph is called d-regular. A graph
is called is k-vertex-connected if removal of fewer than k vertices does not
disconnect the graph. Edge connectivity is defined in an analogous manner.
Steinitz’ theorem states that the graphs of 3-polytopes are precisely all planar,
simple, 3-vertex-connected graphs. The vertex connectivity of a graph is at
most as large as the minimum degree of the graph. For planar graphs the
minimum degree is at most 5, so we can disconnect the graph by removing at
most 5 vertices. However, this often means that one of the components is very
small. A more nuanced view is provided by separators:

Definition 2.2.3. (Separator) A (vertex) separator with separation constant
0 < c < 1/2 is a partition of the vertices of a graph into sets (A,B,C) with
cn ≤ |A| ≤ |B| ≤ (1− c)n so that there is no edge between a vertex in A and
a vertex in B. The size of the separator separator is |C|.

Another way to think about separators is to find a set of given size with as
small as possible neighborhood.

Definition 2.2.4. (Neighborhood) Let S ⊂ V be a set of vertices. Then its
neighborhood N(S) is the set {v ∈ V \ S | (u, v) ∈ E, for some u ∈ S}.
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Separators can also be defined by removing edges instead of vertices. How-
ever, for regular graphs the sizes of these separators differ by a constant factor,
so we ignore the distinction. We are generally interested how the size of the
smallest separator behaves as a function of the number of vertices for some
fixed graph family.

The optimal upper bound on the size of minimal separators in the graphs of
3-polytopes was established by Lipton and Tarjan [15] in 1979. They showed
that planar graphs have separators of size O(

√
n) for separation constant 1/3.

This is the best possible result since an (m × m)-grid requires m vertices to
be removed to be separated. However, in higher dimensions such results are
impossible due to the existence of neighborly polytopes.

Definition 2.2.5. A k-neighborly polytope on n vertices is a d-polytope with
the k-skeleton of an (n − 1)-simplex. A

⌊
d
2

⌋
-neighborly d-polytope is simply

called neighborly, as this is the maximal neighborliness of a polytope which is
not a simplex.

The simplest and first discovered example of a neighborly polytope is the
cyclic polytope Cd(n). It is the convex hull of n vertices which lie on the
moment curve parametrized by (t, t2, . . . td) ⊂ Rd. The graph of any neighborly
polytope of dimension d ≥ 4 is a complete graph, which can’t be separated
by removing vertices. Simple d-polytopes on the other hand have d-regular
graphs and there better results could be possible.
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Chapter 3

Lower bound on separators of
simple polytopes

In this chapter we construct polytopes that disprove Conjecture 1.0.1 and
strongly affirm Thurston’s claim about separators of dual graphs of triangula-
tions. We calculate a lower bound on the size of the minimal separators in two
ways. Both proofs are for the 4-dimensional case, but they easily generalize to
higher dimensions. The first proof requires no advanced techniques, but the
bound achieved is not sharp. For the second proof, we restrict ourselves to a
subset of the neighborly cubical polytopes where we know the combinatorics
completely. This combined with a lemma proven by Sinclair to study the mix-
ing properties of Markov chains gets us the sharp bound. The main result of
this thesis is the following theorem.

Theorem 3.0.1. Let d ≥ 4. There exist a sequence of d-dimensional simple
polytopes on n vertices with separators of size Ω(n/ log n).

3.1 Doubly truncated neighborly cubical poly-

topes

We start by introducing neighborly cubical polytopes. They are the block from
which we carve our simple polytopes.

Definition 3.1.1. A neighborly cubical polytope NCPd(m) is a cubical d-
polytope whose

⌊
d
2

⌋
-skeleton is isomorphic to the

⌊
d
2

⌋
-skeleton of the m-cube.

Such polytopes were first discovered by Joswig and Ziegler [8]. Sanyal and
Ziegler [21] generalized the construction to show that each (d−2)-dimensional
neighborly polytope on m − 1 vertices can be used to define a different com-
binatorial type of NCPd(m). As the boundary complex of any NCPd(m) is a
subcomplex of the boundary complex of the m-cube, its proper faces corre-
spond to vectors in {0, 1, ∗}m, or equivalently, in {−,+, ∗}m.

11
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CHAPTER 3. LOWER BOUND ON SEPARATORS OF SIMPLE

POLYTOPES

Our construction starts from a neighborly cubical 4-polytope NCP4(m).
Its graph is that of an m-cube. The minimal separators of m-cubes were de-
termined by Harper [6]. While hypercubes are simple polytopes, NCP4(m) are
not since each vertex is incident to m > 4 edges. However, we can “simplify”
them by truncating the vertices and the edges.

Lemma 3.1.2. (See also Ewald & Shephard [4]) A d-polytope can be made
simple by cutting off the vertices, then the original edges and so on up to
(d− 2)-faces.

Proof. This is easier to see in the dual case. The dual operation of cutting
a vertex is stacking on a facet. By stacking on all facets one after the other,
we remove all the original facets and introduce new ones, which are pyramids
over (d− 2)-faces (ridges). The original (d− 2)-faces are preserved and we can
stack on them, removing them and the facets created in the previous operation.
Every iteration of this operation removes all the facets created in previous
iterations and creates new facets which are iterated pyramids on successively
lower dimensional faces. Once we have done this d − 2 times, the iterated
pyramids are over edges and hence they are simplices. This means that the
facets are simplices, so the polytope is simplicial and its dual is simple.

Therefore, by cutting of the vertices and then the original edges, we can
turn NCP4(m) into a simple polytope. Let us see what this polytope looks
like.

The starting polytope NCP4(m) has the partial reduced flag vector

flag(NCP4(m)) := (f0, f1, f2, f3; f03)

= (2m,m2m−1, 3(m− 2)2m−2, (m− 2)2m−2; 8(m− 2)2m−2)

= (4, 2m, 3(m− 2),m− 2; 8(m− 2))2m−2

The first two entries follow from the fact that the graph is the same as that
of the m-cube. Since the facets are 3-cubes, they consist of 6 squares, and
each of these squares is an intersection of two 3-cubes. Hence we know that
6f2 = 2f3 and we can calculate these values with the Euler-Poincaré formula.
The final entry follows from the fact that the facets are 3-cubes and hence
consists of 8 vertices.

We denote the polytope formed by truncating all the vertices by NCP4(m)′.
Truncating the vertices means removing all of the original vertices, but adding
2 new vertices for each edge, one at each end of the edge. The facets of this
new polytope come in two types:

• The (m − 2)2m−2 facets that arise from the original facets. They are
cubes whose vertices are cut off. These are simple polytopes with f -
vector (24, 36, 14).
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• The 2m new facets which are the vertex figures. The facets of these facets
are vertex figures of 3-cubes and hence triangles. Therefore these new
facets are simplicial. Their f -vector is (m, 3m− 6, 2m− 4).

With this information of the facets we can work out the flag vector of
NCP4(m)′:

flag(NCP′4(m)) = (4m, 14m− 24, 11m− 22,m+ 2; 28m− 24)2m−2. (3.1)

By cutting of all of the original (but shortened) edges in NCP4(m)′, we
arrive at NCP4(m)′′. It has three types of facets:

• (m−2)2m−2 simple polytopes which correspond to the facets of NCP4(m),
but whose vertices and edges have been cut. Their f -vector is (48, 72,
26).

• m2m−1 prisms over polygons with 3 to m− 1 sides. They come from the
edges of the original polytope and the number of sides depends on the
degrees of vertices incident to the edge.

• 2m simple polytopes which are the truncated vertex figures of NCP4(m).
Their f -vector is (6m− 12, 9m− 18, 3m− 4).

Using the knowledge of the facets we can work out the flag vector of
NCP4(m)′′:

flag(NCP4(m)′′) = (24m−48, 48m−96, 27m−46, 3m+2; 28m−48)2m−2 (3.2)

Since 2f0 = f1, we can verify that NCP4(m)′′ is indeed a simple polytope.
In the next section we will work out the size of its separators.

3.2 Lower bound, straightforward approach

In this section we will show an easy proof for a lower bound on the separator.
It is enough to disprove Conjecture 1.0.1, but not enough to verify Thurston’s
claim.

We are interested in what the graph G(NCP4(m)′′) = G′′m looks like. Its
most striking feature is its similarity to the graph of the hypercube, Qm. Qm

is a graph on 2m vertices with m2m−1 edges. The vertices of Qm are labeled
by vectors in {0, 1}m. G′′m similarly consists of 2m groups of (6m− 12) vertices
which we call clusters. Each cluster is a 3-regular graph and is connected to
its m neighbors by 3 to m − 1 edges. We will use this similarity to prove a
bound on the size of separators of G′′m. Let us therefore first take a look at the
separators of Qm.
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The problem of finding the sets of size k with minimal size neighborhood in
a graph G is called the discrete isoperimetric problem. It is a generalization of
the minimum separator problem as the size of the set is fixed but not required
to be a linear fraction of the vertices. Harper [6] solved the problem on the
hypercube in the 1960’s. The answer turns out to be approximately Hamming
balls.

Definition 3.2.1. (Hamming ball) Let a, b ∈ {0, 1}m. The Hamming distance
between a and b is the number of coordinates where a and b differ. The
Hamming ball B(x, r) ⊂ {0, 1}m is the set of elements at Hamming distance
≤ r from x for x ∈ {0, 1}m.

A Hamming ball B(x, r) ⊂ Qm contains

r∑
i=0

(
m

i

)
(3.3)

vertices. If k can be written in this form for some r ∈ N, any Hamming ball
with radius r has minimal size neighborhoods among the k-element sets of Qm.
If k can’t be expressed in this form, let r be maximal so that the sum is ≤ k
and include some vertices with distance r+ 1 to the set. However, not all such
choices minimize the neighborhood. Suppose x is the vertex labeled with all
zeros. Then the extra vertices can be taken to be those which come first in
the lexicographic order of vertices with r + 1 ones and m− r − 1 zeros.

Definition 3.2.2. (Lexicographic order) Let a, b ∈ {0, 1}m. Then a < b if for
some i the first i elements of a and b are the same but ai+1 < bi+1.

Hence there exist an increasing sequence of sets with minimal vertex neigh-
borhood. Increasing sequence means that the set with size k is contained in
the set with size of k + 1. The order in which the vertices are added as k
increases is also called graded lexicographic order. Let us now calculate how
the size of the neighborhoods behaves asymptotically.

Let k = c2m for some 0 < c < 1/2 and let m → ∞. By the central limit
theorem, the set with minimal neighborhood contains a Hamming ball with
radius r ≈ m/2. This is because the middle layers contain most of the vertices.
The asymptotics are fairly easy to work out, (see for example [23]):(

m

(m+ i)/2

)
∼
√

2

πm
2me−i

2/2m (3.4)

for i ∈ o(m2/3). For fixed i this is Θ(2m/
√
m).

We will use the fact that separators of Qm are large to show that the
separators of G′′m are not small.

Lemma 3.2.3. A separator of G′′m is at least as large as a separator of Qm,
which is Ω(2m/

√
m).
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Proof. Let f : G′′m → Qm be the map that sends all the vertices of a cluster
to the corresponding vertex in the cube graph. Let (A,B,C) be a separator
in G′′m. Then we can partition Qm to sets (a, b, c) using f and the separator
(A,B,C). If the preimage of a vertex v is completely contained in A, we put
v ∈ a and do the same for B and b. Otherwise, v ∈ c. Since the clusters
are connected graphs, any cluster which contains vertices in A and B must
also contain vertices in C. This means that the preimage of a vertex v ∈ c
contains vertices in C. Hence |c| ≤ |C|. Now, no vertices with labels a and b
are adjacent since this would imply that a cluster whose vertices all belong to
A is adjacent to a cluster whose vertices all belong to B. This is impossible
since we assumed that (A,B,C) is a separator. Therefore

1. (a, b, c) is a separator of Qm, or

2. one or both of a, b is small.

In the first case, c contains at least the neighborhoods of a and of b and hence
its size is bounded by the isoperimetric inequality. Therefore c has Ω(2m/

√
m)

vertices. Hence C contains at least Ω(n/(log n)
3
2 ) vertices.

In the latter case, c must contain a linear number of vertices. This means
that the set C must also be large.

3.3 Sharp lower bound

To prove the sharp bound, we need some extra tools. Let G = (V,E) be a
simple graph and S ⊂ V . The edge boundary δ(S) is defined as the set of
edges with one end in S and the other in V \ S. The edge expansion X (G) is
then defined as

X (G) := min

{
|δ(S)|
|S|

, S ⊂ V, S 6= ∅, |S| ≤ |V |
2

}
. (3.5)

This quantity gives information on mixing properties of Markov chain on G.
We study it since a large edge expansion on a regular graph also implies a large
separator (see Section 3.3.2 below). The edge expansion can be estimated
by “canonical paths” method by Sinclair [22]. A good introduction, with
applications to the graphs of polytopes, is given by Kaibel [9].

3.3.1 Sinclair’s canonical paths

To estimate the edge expansion of a graph G, we specify a path between every
(ordered) pair of vertices (s, t) ∈ V × V . The intuition behind the method is
that in graphs with small edge expansion, there necessarily exist edges which
are “congested,” that is, there are many paths going through them. To make
this intuition precise, let φ : E(G) → N count the number of paths that
traverse a given edge. The edge expansion can be bounded in terms of

φmax := max{φ(e), e ∈ E(G)}. (3.6)
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Lemma 3.3.1 (Sinclair’s lemma). Let φmax be as defined in previous para-
graph. Then the edge expansion of G satisfies

X (G) ≥ |V |
2φmax

. (3.7)

Proof. Let φ(δ(S)) be the sum of φ(e) over all the edges in δ(S). Every path
that has one end in S and the other in V \S needs to use one of these edges, so
we have φ(δ(S)) ≥ |V \S||S|. On the other hand, φmax is the global maximum
over all the edges of the graph, so we have φ(δ(S)) ≤ |δ(S)|φmax. Hence for

any |S| ≤ |V |
2

, we have

X (G) ≥ |δ(S)|
|S|

≥ φ(δ(S))

φmax |S|
≥ |S| |V \S|

φmax |S|
=
|V \S|
φmax

≥ |V |
2φmax

. (3.8)

3.3.2 Relating edge expansion and separator size

Now we will show that large edge expansion implies a large separator.

Lemma 3.3.2. Let G be a d-regular graph on n vertices with edge expansion
X (G). Then its separators are of size at least

c

d
X (G)n = Ω(X (G)n), (3.9)

for fixed d and n→∞. Here c is the constant from the definition of a separa-
tor.

Proof. Let G be as defined above and let (A,B,C) be a separator of G with
|B| ≥ |A| ≥ cn. As there are no edges between A and B, any edge in the set
δ(A) has its other end in C. This means that δ(A) contains at least |A|X (G)
edges. Since G is d-regular, the size of C is at least X (G)|A|/d ≥ X (G)cn/d =
(c/d)X (G)n.

3.3.3 Cyclic neighborly cubical polytopes

To prove Theorem 3.0.1 we will restrict to cyclic neighborly cubical polytopes
NCPc

d(m). This was the combinatorial type constructed by Joswig & Ziegler
[8]. They are also a result of using the construction method of Sanyal &
Ziegler [21] on cyclic polytopes with vertices in standard order, which justifies
the name. According to their analysis, the vertex figures are combinatorially
equivalent to a pyramid over a triangulation of the cyclic polytope Cd−2(m−1).
Since the graph Gm of NCPc

d(m) is isomorphic to that of the m-cube, we will
label the vertices by vectors in {−,+}m and edges by vectors in {−,+, ∗}m
with exactly one ∗-entry. The index of the ∗-entry is called the direction of the
edge. There are 2m−1 edges in each direction. The combinatorics of NCPc

d(m)
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is fully described by the Cubical Gale Evenness Criterion. This criterion is
fairly complicated even in the 4-dimensional case, but we do not need the
complete description.

Theorem 3.3.3 (Part of the Cubical Gale Evenness Criterion, for d = 4 [8,
Thm. 18]). The facets of the cyclic neighborly cubical polytope NCc

4(m) are
given by vectors in {−,+, ∗}m with exactly three ∗-entries.

If the first component of a vector in {−,+, ∗}m is ∗, the vector corresponds
to a facet of NCc

4(m) if and only if the rest of the vector satisfies the Gale
Evenness Criterion, that is, if between any two non-∗-entries there is an even
number of ∗-entries. Equivalently, this happens if in the rest of that vector the
two ∗-entries are cyclically adjacent.

This shows that for any vertex v, the edges in directions i and i + 1 span
a 2-face, because the vector (∗, v2, . . . , vi−1, ∗, ∗, vi+2, . . . , vm) corresponds to
a facet of NCc

4(m) for i ≤ 2 < m. As the 2-faces correspond to edges in
the vertex figure, this means that the vertices of the vertex figure at v are
cyclically connected in a consistent way independent of v. In other words
there is a Hamiltonian cycle (1, 2, 3, . . . ,m) going through the vertices in the
graph of each vertex figure. This is also shows that the boundary complex of
NCc

4(m) contains a copy of the polyhedral surface describe by Ringel [20] in
1957. This was also pointed out by Ziegler [26, Sect. 3]. See also Joswig &
Rörig [7].

Let us take a closer look at NCc
4(m)′ first. Each vertex in a ”new” facet is

labelled naturally by the direction of the edge of Gm it is incident to. Therefore
we can label the vertices of G′m by (v, i) ∈ {−,+}m × [m] where v ∈ {−,+}m
is the label of the vertex of NCc

4(m) which has been truncated and i ∈ [m] is
the direction of the edge of NCc

4(m) which has been cut. The vertex figures of
G′5 are illustrated in Figure 3.1.

We divide the edges of NCc
4(m)′ into three different classes. First of all,

there are the “long” edges which correspond to the edges NCc
4(m). They are

incident to vertices (v, i) and (v′, i) where v and v′ only differ in coordinate
i. There m2m−1 such edges in total. Secondly, there are ”medium” edges,
which are between vertices (v, i) and (v, i+1 mod m). They form a Hamilton
cycle (1, 2, 3, . . . ,m) on each cluster v. In total there are m2m medium edges.
The rest of the edges are “extra”, they are between vertices (v, i), (v, j) with
j− i 6= ±1 mod m. There are (2m−6)2m “extra” edges in total. The “extra”
and “medium” edges together form the graphs of the vertex figures of NCc

4(m)
which we call clusters.

Truncating the long edges of NCc
4(m)′ gets us the polytope NCc

4(m)′′. The
“medium” and “extra” edges are shortened by this procedure, but are other-
wise unchanged. The “long” edges are replaced by their edge figures, which are
prisms over k-gons with 3 ≤ k ≤ m − 1. Here k is the degree of the incident
vertices in their clusters, or equivalently their degree minus 1. We call the
edges between these k-gons a parallel class of long edges. The k-gon consist
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of “short” edges. A picture of a cluster of G′′5 can be seen in the bottom of
Figure 3.1.

The cycles of short edges naturally correspond to vertices of G′m, so we ex-
tend the notation {−,+}m×[m] to them. “Medium” edges connect subsequent
cycles (v, i), (v, i+ 1 mod m) while “extra” edges connect non-subsequent cy-
cles.

The similarity of the graphs is apparent in their minor relations

G′′m → G′m → Gm (3.10)

We can get G′m by contracting the cycles of short edges in G′′m and identifying
the parallel classes of long edges to a single edge. Gm is obtained from G′m by
contracting all of the medium and extra edges.

3.3.4 Canonical paths for G′′m

Now we will construct the canonical paths required for 3.3.1 in G′′m. Our
construction relies on the similarity of the clusters and their cubical connections
with each other.

Let v0 be a vertex in the cycle of short edges (v, i) and w0 be a vertex in
the cycle of short edges (w, j). We will construct a path from v0 to w0 in the
following way. Consider the coordinates in cyclic order i, i+1, . . .m, 1, . . . , i−1
and for each coordinate do the following:

Procedure P: Suppose the path we have constructed so far ends
at vertex u0 ∈ (u, k).

• If u and w differ in coordinate k, take the long edge from u0
to (u′, k), where u and u′ differ only in coordinate k. Then,
using only short edges and a medium edge, move to the cycle
of short edges labelled (u′, k + 1).
• Otherwise, u and w agree in coordinate k. Using only short

edges and a medium edge, move to the cycle (u, k + 1).

After performing this procedure at most m times, we end up in the cluster
w. After at most m− 1 more iterations, we end up in the cycle (w, j). In the
final iteration, we take at most m− 1 steps in this cycle to arrive at w0.

We will now show that no edge is used more than Θ(m22m) times by con-
sidering the four cases of short, medium, long and extra edges separately.

3.3.5 Long edges

On average, a random pair of clusters differs in m/2 coordinates. Therefore
half of the n2 paths use long edges in direction i. The procedure works inde-
pendently of the value of the other coordinates, so each of the 2m−1 parallel
classes in direction i is used equally often. Every parallel class is used by
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G5:

medium

extra

long edge

G′5:

short

medium

extra

long edges

G′′5:

Figure 3.1: The graphs Gm, G′m, and G′′m, for m = 5: Local situation at one
cluster.
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(n2/2)/2m−1 paths and therefore each long edge is used at most this number
of times. The number of vertices is n ∈ O(m2m), so this works out to be
O(m22m).

3.3.6 Medium and short edges

Every path we construct uses at most 2m iterations of procedure P . The total
number of iterations over all paths is therefore at most 2mn2. Every iteration
uses at most one long edge, one medium edge and short edges on one cycle.
The extra edges are not used at all.

Our construction treats all coordinates and both values of the coordinates
equally. This means that each set of ”cycle of short edgess and a medium edge
leaving it” is used equally often. Moreover, these sets are disjoint. Therefore
every short and medium edge is used at most 2mn2/(m2m) times. As n ∈
Θ(m22m), this is works out to be O(2mn2/m2m) = O(m22m).

3.3.7 Wrapping things up

In Section 3.1 we showed that G′′m has (6m − 12)2m vertices. Let us now
combine our canonical paths with Sinclair’s lemma 3.3.1:

X (G′′m) ≥ n

2φmax

≥ n

2n2/2m
=

2m

2n
=

2m

2(6m− 12)2m
=

1

12(m− 2)
. (3.11)

With Lemma 3.8, we get a bound on the size of minimal separators:

c

4
X (G′′m)n ≥ c n

48(m− 2)
= Ω

( n

log n

)
, (3.12)

as n = (6m− 12)2m and thus m = Θ(log n).

3.4 Upper bound on minimal separators in NCP4(m)

The minimal separators of G′′m have O(n/ log n) vertices. Separators with this
many vertices are easy to construct. Pick a random coordinate direction i and
separate the vertices into two sets: Set A′ where the coordinate i is 0 and set
B′ where the coordinate is 1. Both sets have (3m − 6)2m vertices and there
are O(2m) = O(n/ log n) edges between them. For each of these edges, pick
one end point and move it to C. The remaining vertices in A′ and B′ form the
sets A and B. This works for separation constant arbitrarily close to 1/2.



Chapter 4

Generalizations and possible
larger separators

4.0.1 Other combinatorial types of NCP4(m)

The sharp lower bound Ω(n/ log n) of Theorem 3.0.1 can be also proven for
a larger class of neighborly cubical polytopes. The polytopes constructed by
Sanyal and Ziegler [21] all contain the Hamiltonian cycle we used to construct
our paths. The triangulation of the clusters in G′m is described by [21, Thm
3.7.]. For vertex v, it is a regular triangulation created by pushing and pulling
vertices depending on the vertex label and the order of the vertices. The
pushing and pulling only affects extra edges, so we end up with a Hamiltonian
cycle through the edges. However, this cycle is not necessarily (1, 2, 3, . . . ,m)
but rather some other fixed cycle on [m].

4.0.2 Higher dimensions

This construction can also used the to get the same bound in higher dimen-
sions. There are two natural ways, using NCPd(m) i.e. a higher dimensional
neighborly polytope, or taking prisms over NCP4(m)′′. In the first case we
have to do more cuts to make the polytope simple, resulting in a large num-
ber of vertices. Hence the second way is the correct one. Using it we prove
Theorem 3.0.1 in dimensions d > 4.

Theorem 4.0.1. Let d ≥ 4. There is a family of simple convex d-dimensional
polytopes NCc

d(m)′′ with n = Θ(m2m) vertices for which the smallest separators
of the graph have size Θ(2m) = Θ(n/ log n).

Let Gd
m be the graph of a (d − 4)-fold prism over NCP4(m)′′ for d ≥ 4.

Any separator (A,B,C) of NCP4(m)′′ can be turned into a separator of Gd
m

by setting (A′, B′, C ′) to be the prisms over their respective sets. Since no
vertices a ∈ A, b ∈ B are adjacent and all the copies of a single vertex are in
the same set, there are no edges between vertices in A′ and B′. This means that
Gd

m is at least as easy to separate as NCP′′4(m). On the other hand, Gd
m also

21
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has a cubelike structure and hence with the discrete isoperimetric inequality
we get the same upper bound as for NCP′′4(m).

Similarly, the sharp bound can be extended to higher dimensions. A (d−4)
fold prims over NCc

4(m)′′ adds (d−4) extra parallel classes of long edges incident
to each vertex. We can amend our algorithm by taking a long edge in these
directions if necessary and then proceeding in the usual way.

4.1 Zig-Zag product

Expander graphs are graphs that have as large minimal separators as possible.
This means that their separators have Ω(n) vertices. Even though most regular
graphs of degree d ≥ 3 are expanders [14], constructing explicit examples is
hard. Graphs of simple 4-polytopes on the other hand are rare. Constructions
for expander graphs are often algebraic in nature and there is not much hope of
turning them into geometry since general expander graphs may contain loops
and parallel edges. A simple example is taking the elements of Zp as vertices
and connecting x to x− 1, x+ 1 and x−1 [16].

While our NCPd(m) are not expanders, they are not that far away from
expanding either. The key idea in our construction above was to take a poly-
tope which is a fairly good expander (an m-cube) and modifying it so that it
becomes a simple polytope (and therefore a regular graph). This is done by re-
placing the vertices with 3-regular graphs. There is a systematic way of doing
this operation on graphs which guarantees good separation properties. It is
called the zig-zag product. The zig-zag product was introduced by Reingold,
Vadhan and Wigderson in 2000 [19].

The zig-zag product takes a large regular graph G and a small regular
graph H and produces a new graph G ◦ H. Let G be a D-regular graph on
N vertices and H be a d-regular graph on D vertices, then their product is
then a d2-regular graph on D × N vertices. The important part is that if G
and H are good expanders, then G ◦H is too. Before we can give the formal
definition of the zig-zag product, we need to define rotation maps.

Definition 4.1.1. Let G = (V,R) be a d-regular graph. The edges incident to
vertex v are labeled with numbers 1, . . . , d. The rotation map RotG : V ×[d]→
V × [d] returns for the (v, i) pair the vertex w which across the ith edge from
v, and the label of this edge at w.

Note that in the previous definition, each edge gets two labels, one for each
endpoint. Not all graphs have rotation maps so that the label at both ends is
the same.

Using rotation maps of G and H we can now define the rotation map of
G ◦H.

Definition 4.1.2. Let G be a D-regular graph on N vertices and H is a
d-regular graph on D vertices. The rotation map RotG◦H is found with the
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following procedure:

RotG◦H((v, a), (i, j)) :

Let(a′, i′) = RotH(a, i)

Let(w, b′) = RotG(v, a′)

Let(b, j′) = RotH(b′, j)

Output((w, b), (j′, i′)

Having the edges defined locally is an advantage in computational appli-
cations. While the zig-zag product necessarily produces good expanders, the
results may not be polytopal graphs, even if the starting graphs are poly-
topal. One stumbling block is that a polytopal graph of a d-polytope for d ≥ 4
must have many planar subgraphs and short cycles, which correspond to the
3- and 2-faces. Both 3- and 2-polytopes have small separators, but as our
truncated neighborly cubical polytopes show, the separator of the 4-polytope
might still have to be large. Another problem is that the resulting graphs have
degree d2. While this allows for creation of 4-dimensional polytopes, the only
2-dimensional polytopes are polygons they might not possess sufficient variety
to create expander graphs. The next feasible dimension is 9, but there we
have already lost most of our geometric intuition. It is also possible that some
choices of the rotation map produce polytopal graphs while others don’t.

As shown by the neighborly polytopes, a given graph can be the graph
of polytopes of various dimensions. Luckily, simple polytopes don’t have this
problem and there are even algorithms to solve this problem [10] [1]. Our quick
experiment by hand found a product of a tetrahedron and a triangle, which
was not a polytopal graph.
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Summary

Let G = (V,E) be a graph on n vertices. A separator is a partition of the vertices
of the graph into three sets (A,B,C) where A and B are “large” and there is no
edge between a vertex in A and a vertex in B. The size of the separator is |C|.
Lipton and Tarjan showed that all the graphs of three dimensional polytopes have
separators of size O(

√
n).

In higher dimensions no such result is possible, as there are polytopes that have
a complete graph as their graph. The graphs of simple d-polytopes are regular
with degree d. Kalai had conjectured, that the graphs of simple d-polytopes would

have separators of size O(n
d−2
d−1 ). In this work we disprove the conjecture and show

that there are simple polytopes whose minimal separators are of size Ω(n/ log n).
We also verify a claim by Thurston, who claimed the existence of dual graphs of
triangulations of S3 with this property.
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Zusammenfassung

Sei G = (V,E) ein Graph mit n Ecken. Ein Separator ist eine Partition der Ecken des
Graphs in drei Mengen (A,B,C), sodass A und B “groß“ sind und sich keine Kante
zwischen einer Ecke in A und einer Ecke in B befindet. Die Größe des Separators
ist |C|. Lipton und Tarjan haben gezeigt, dass alle Graphen von dreidimensionalen
Polytopen Separatoren der Größe O(

√
n) haben.

In höheren Dimensionen ist ein solches Resultat nicht möglich, da es dann Poly-
tope gibt, deren Graph vollständig ist. Die Graphen von einfachen Polytopen sind
regulär vom Grad d. Kalai stellte die Vermutung auf, dass die Graphen von einfa-

chen d-dimensionalen Polytopen Separatoren der Größe O(n
d−2
d−1 ) hätten. In dieser

Arbeit widerlegen wir diese Vermutung und zeigen, dass es einfache Polytope gibt,
deren minimale Separatoren die Größe Ω(n/ log n) haben. Wir belegen außerdem
eine Behauptung von Thurston, wonach Graphen mit dieser Eigenschaft existieren,
die die dualen Graphen von Triangulierungen von S3 sind.
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Selbstständigkeitserklärung
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