
8 Rule Generalization and
Correction

One of the most important steps during the induction of extraction rules is their
generalization. The linguistic patterns for expression of information are obtained
abstracting from the concrete training examples. Such an abstraction can be
achieved excerpting different common features from the initial patterns or re-
placing the specific elements of an extraction pattern by more general elements.
The corresponding generalizing heuristics of merging, abstraction and substitu-
tion of extraction patterns are presented in this chapter.

Rule generalization is performed gradually so that a generalized rule can again
participate in the generalization process. The validation of extraction rules and
control of their induction are handled in chapter 9.

Generalization of extraction rules is connected with the tradeoff of increasing the
covering degree of a rule at the cost of its precision. A general rule accounts
for various expression possibilities of the extracted information and its context
and becomes therefore prone to erroneous extractions localizing irrelevant in-
formation. Such errors do not just negatively affect the overall precision, but
compromise the extraction rule itself preventing it from extraction of certain at-
tributes or leading to a complete discarding of the rule as we will see in the next
chapter. Rule correction is an important instrument that helps to reduce the
error rate and increase the precision of the rule without loss of its generality. We
analyze the types of errors extraction rules can commit and present an algorithm
for correction of rules based on the negation pattern.

8.1 Rule Merging

Especially at the beginning of the induction process the extraction rules can
hardly extract more information than the training examples they originate from.
The rule patterns at the first stage of induction contain very specific context
and cannot therefore be matched with any other text parts containing relevant
information. The purpose of generalization is to improve the covering degree
of extraction rules without considerable loss of precision relaxing tight context
constraints and making the encoding of extractions less detailed.

89



Based on our observation that similar information is expressed in a similar way in
the natural language we can derive a single linguistic pattern for several similar
variants of information expression. The idea behind rule merging is to find and
generalize commonalities like similar expressions in the rule patterns. If similar
lexical expression, similar linguistic property or any other feature occur in the
context or in the immediate encoding of extracted information (e.g. values of a
certain attribute) several times we can assume that there is a correlation between
this feature and the extracted information. The more similar two rules are, the
more combinations of similar features of extracted information can be identified
and their correlation with the extracted information is more confident.

To incorporate two similar patterns in one more general pattern the generalizing
capabilities of the pattern language can be optimally exploited. In fact, the
pattern language offers constructs for expression of variations occurring in the
natural language in a single pattern. Consider the following examples from the
seminar announcement corpus:

. Often the same information can be expressed with more or less details that
are not part of the information but may be its important indicators in the
context. Such an optional occurrence of details is covered by the option
pattern. Consider the sample sentences: The lecture begins at 2:15 p.m.
and The lecture begins as usual at 2:15 p.m. after the lunch break. Using
the option pattern we can incorporate both expression variants in a single
pattern The lecture begins (as usual)? at 2:15 p.m. (after the lunch break)?1.

. Many details mentioned with the information of interest do not contribute
to its identification. The wildcard pattern can be used to ignore irrelevant
text fragments. If, for instance, we are interested in the starting time
of a lecture, the irrelevant sentence parts of the following examples Since
the lecture begins at 2:15 p.m., the dinner will be postponed, In spite of the
postponed dinner the lecture begins at 2:15 p.m. can be blinded out replacing
them by wildcards: * the lecture begins at 2:15 p.m. *.

. Sometimes sentences contain repetitions of morphological or syntactic
structures with the variable length. For example, the values of the at-
tribute speaker usually contain a title, a variable number of first names
and a last name: Prof. Steven Ewing, Prof. Joshua Erwin Griffith. Repeti-
tive structures can adequately be covered by the Kleene star pattern: Prof.
(NE)∗.

. The natural language grammars often allow different order of words and
syntactic constituents in a sentence (e.g. in German the order of the main
verb and its object depends on whether they are in the main or subordinate
clause). To express various possible positions of the prepositional phrase
in the sentences After the lunch break the lecture will begin at 2:15 p.m. and
The lecture begins at 2:15 p.m. after the lunch break the permutation pattern
can be applied:((After the lunch break) (the lecture will? PF:“begin” at 2:15
p.m.)%

. Even in very similar contexts the natural language still offers different ex-
pression possibilities:The lecture begins at 2:15 p.m., The lecture begins a

1 For the seek of brevity we use sequences of strings as sample patterns in this and the following
examples

90 8 Rule Generalization and Correction



quarter past two in the afternoon. Alternative expression forms can be cap-
tured by the union pattern: The lecture begins (at 2:15 p.m. | a quarter past
two in the afternoon).

The pattern language covers the most common of possible expression variations
occurring in natural language and allows to generalize the linguistic patterns
finding an appropriate general backtracking pattern that subsumes different ex-
pression forms. The number of subsumed variations can be drastically increased
by recursive usage of backtracking patterns. Before considering this issue (cf.
sec. 8.1.4) we introduce the merging operation formally.

The merging operation is defined as a function taking two patterns as their ar-
guments and returning the merged pattern:
merge :: Pattern → Pattern → Pattern
From a theoretical point of view rule merging is a heuristic derivation (functional
mapping) of a new context-free expression from two context-free expressions rep-
resenting extraction patterns. The level of context-free languages is not left be-
cause the resulting pattern is also specified in the pattern specification language,
which is guaranteed by the merge function.

Since the patterns significantly vary in their type and properties (refer to ap-
pendix A), merging of specific pattern types requires a differentiated approach.
To account for the specific properties of primitive (strings, XML and POS) pat-
terns and sequences we first define the merging function for these special cases
before proceeding with the general cases.

8.1.1 Merging Lexical Strings, POS and XML Patterns

The simplest pattern that carries the most concise information is the string pat-
tern. When two strings are not identical, we still can generalize them, if they
originate from the same word root, i.e. their principal form is identical. Let the
function PForm denote the principal form (e.g. infinitive of a verb) of a string:

merge(A,B) = PF : PForm(A) where A and B are lexical strings and
PForm(A) = PFrom(B)2

If the word roots of the strings differ, they still can be semantically related hav-
ing a similar word meaning. If the strings belong to the same synonym set (see
sec. 5.2.5), their generalization is the SynSet pattern matching any synonym from
the set:
merge(A,B) = SynSet : A where A,B are strings and B ∈ SynSet(A)

POS patterns embed lexical, morphological and semantic information, and each
of these components can be exploited for merging. Unless all components of two
merged patterns are identical, a component has to be found the merging will be
based on. The most stringent component of a POS pattern is the lexical element
so that it is first tried to merge lexical elements in order to maintain the maximum
common information comprised by patterns. Similarly as in the case of strings,
if no morphological connection between the lexical elements can be found, their
semantic relatedness is checked. If the lexical elements are synonyms, the POS
patterns can be merged in a synonym pattern. Otherwise the weakest component
– the part of speech – is compared. If parts of speech of both POS patterns are
identical, the merged POS pattern will contain only this part of speech without
the lexical element:

2 all cases not regarded here (e.g. when the strings are identical or with different principal
forms) will be handled in the section 8.1.3.

8.1 Rule Merging 91



merge(POS : pos1 lex el1, POS : pos2 lex el2) = PF : PForm(lex el1) if
PForm(lex el1) = PForm(lex el2)
merge(POS : pos1 lex el1, POS : pos2 lex el2) = SynSet : lex el1 if lex el2 ∈
SynSet(lexel1)
merge(POS : pos1 lex el1, POS : pos2 lex el2) = POS : pos1 if pos1 = pos2

XML patterns can be merged based on their tags and their inner patterns. XML
elements may be maintained during merging if their tags correspond. If the
tags are not identical, the hierarchical structure build by the XML patterns is
abandoned, but the inner patterns of both XML patterns can still be merged.

merge(\A[A1 . . . An], \B[B1 . . . Bn]) = \A[merge(A1 . . . An, B1 . . . Bn)] where
A = B
merge(\A[A1 . . . An], \B[B1 . . . Bn]) = merge(A1 . . . An, B1 . . . Bn) otherwise

Since the inner patterns of XML patterns are usually sequences, the actual chal-
lenge while merging XML patterns is the merging of sequences, which will be
regarded in the following section.

8.1.2 Merging Sequences

Sequence is a basic pattern in extraction rules because the sentence structure is se-
quential and syntactic constituents consist of word sequences. Merging sequence
patterns is not straightforward as there are numerous possibilities of grouping and
merging different similar sequence elements. Since we are interested in maintain-
ing characteristic common features in the patterns during the merging process,
as many as possible similar sequence elements should be merged. Thus we can
leverage the MaxSimScore algorithm (refer to fig. 7.5) to determine the optimal
alignment of two sequences. The aligned sequence elements and the subsequences
between the aligned elements are merged. The resulting sequence contains the
merged aligned elements and the merged subsequences between the aligned ele-
ments in the order they occur in the alignment.

Let A1 . . . An and B1 . . . Bn be the sequences that have to be merged and Lmax =
{. . . (Ai, Bj), (Ak, Bl) . . .} – the optimal alignment determined by MaxSimScore

algorithm so that
∑|Lmax|

i=1 Score(li) is maximum where li ∈ L.

merge(A1 . . . An, B1 . . . Bn) = . . .merge(Ai, Bj) merge(Ai+1 . . . Ak−1, Bj+1 . . . Bl−1)
merge(Ak, Bl) . . . where (Ai, Bj) ∈ Lmax and (Ak, Bl) ∈ Lmax.

The MaxSimScore algorithm plays a crucial role in the rule generalization pro-
cess. On the one hand, it establishes the rule similarity measure allowing an
adequate selection of rule pairs for merging. On the other hand, it solves the
problem of sequence merging determining the optimal set of merged pairs of se-
quence elements that allows to maximize the amount of common information
hidden in original merged patterns and comprised by the resulting pattern.

8.1.3 Generalizing Differences by Backtracking Patterns

The pattern specification language comprises a rich set of different patterns to
adequately cover the multifariousness of the natural language. In the previous
sections we dealt with the important special cases of merging two patterns, i.e.
we focused on special instances in the domain of the merge function. Since
similar rules are merged, it is very likely that a POS pattern will be merged
with a POS pattern and not, for example, with a XML pattern. However, since
the rule patterns originate from the different text parts, the extraction patterns
differ inter alia because of the diversity of natural language. Many of these

92 8 Rule Generalization and Correction



differences have certain regularities that we presented at the beginning of this
chapter (s. p. 90). The regularities can be exploited to derive a more general
pattern including the original patterns and matching other potential expressions
of similar information. Backtracking patterns have the capability to concisely
capture these common differences and can therefore be leveraged for merging of
different patterns.

merge(A,A) = A
merge(∗, A) = ∗
merge(A,�) = (A)?
merge(A, (A)?) = (A)?

merge(A,A A) = A A∗

merge(A,A∗) = A∗

merge((A)% B,B (A)%) = (A B)%
merge(A B, (A B)%) = (A B)%

merge(A,B) = (A|B)
merge(A, (A|B)) = (A|B)

The “semi-idempotent” property of the merge function is especially important
for the generalization: merge(A,B) = B, where B is the more general pattern
subsuming A (e.g. consider the patterns C and C | D with the second pattern
subsuming the first one). This semi-idempotence allows to integrate different
examples of a general pattern in this pattern without extending the syntax and
semantics of the general pattern. The definition of the merge function includes
a semi-idempotent clause for every backtracking pattern.

8.1.4 Recursive Usage of Backtracking Patterns

While backtracking patterns allow to capture common variations in the natural
language, the expressive power of patterns is significantly enhanced when the
backtracking patterns are used recursively. When backtracking patterns function
as inner pattern of another backtracking patterns, the number of expressible
linguistic phrases of the inner pattern is multiplied by the number of expressible
instances of the outer pattern (e.g. while the pattern (A)∗ can express only one
sequences of As with the length n, the patten (A|B)∗ expresses 2n sequences with
this length).

To perform merging operations on recursive backtracking patterns it is useful to
extend the definition of the merge function supplying an algebra for backtracking
patterns that allows to simplify complex pattern expressions. Regarding back-
tracking patterns as an expression with operands and operators we can define
some transformations that are backed by the semantics of the patterns (refer for
the complete overview to the appendix C), e.g.

(A?)∗ = A∗

(A? | A) = A?
(A | (B | C)) = ((A | B) | C)

These transformations are used whenever two patterns are merged, i.e. if the re-
sulting pattern satisfies the left hand side of a transformation, this transformation
will be applied to simplify the pattern (cf. the derivation below).

The following example considers the generalization of the attribute Bewe-
gungsrichtung (direction of movement) and its context that is extracted in

8.1 Rule Merging 93



the Bosnian corpus (refer to 10.1). The sample derivation below shows the step-
wise generalization by merging. During merging the definition of the merge
function is applied recursively on different nesting levels of extraction patterns
(starting with merging the top-level sequence and proceeding with the merging
of sequence elements) leading to recursive backtracking patterns.

Starting with two examples of instances of the attribute Bewegungsrichtung
from the text a more general pattern is derived and further abstracted by incor-
porating features of new examples from the text.

in südliche Richtung
−→ in ADJ Richtung

in westliche Richtung

in ADJ Richtung
−→ in? ADJ? Richtung NE?

Richtung Hannover/Elbe

in? ADJ? Richtung NE?
−→ in? ADJ? Richtung (NE | nach NN)?

Entgegengesetzte Richtung nach Norden

This generalized extraction pattern can already match potential attribute values
that have a different structure than those used for its derivation, e.g. in Richtung
Sachsen, in westliche Richtung nach Frankreich. Let the assignment pattern (in?
ADJ? Richtung (NE | nach NN)?)=:direction1 denote the generalized extraction of
the attribute Bewegungsrichtung. Using the definition of the merge function
and algebraic transformations of recursive backtracking patterns we can achieve
further generalization of the context of the attribute:

(in? ADJ? Richtung (NE | nach NN)?)=:direction1
bewegt sich in Richtung Berlin

↪→ bewegen $direction1$
seitdem er sich in südliche Richtung bewegt

↪→ (bewegen $direction1$)%
bewegt sich nach mehreren Stunden in westliche Richtung

↪→ (bewegen PP? $direction1$)%
bewegt sich langsam Richtung Hannover

↪→ (bewegen (PP? | ADV) $direction1$)%
bewegt sich am nächsten Tag unerwartet in östliche Richtung

↪→ (bewegen PP? ADV? $direction1$)%

The already generalized extraction pattern is subsequently merged with the ex-
amples of occurrences of the attribute value Bewegungsrichtung in the train-
ing texts. The examples correspond with the initial rules, the natural language
representation is chosen for better readability. While merging the context of the
attribute value referenced by direction1 is continuously relaxed and accounting
for an increasing number of lexical and syntactic variations of expression.

8.1.5 Merging of Complete Extraction Rules

In the previous sections we introduced the merging function for different kinds
of patterns on a formal level. Taking into account that the main purpose of
extraction rules is to identify and extract information, certain additional con-
straints hold for merging of complete extraction patterns. Extraction patterns
usually consist of sequences of syntactic constituents and potentially other XML
elements. The extracted fragments are distinguished by the assignment pat-
terns that declare what attribute value is matched by the inner pattern of an

94 8 Rule Generalization and Correction



assignment pattern. When merging two extraction patterns, the extractions of
the same attribute values should be merged and the context around the merged
attribute values should be merged correspondingly. Therefore we cannot treat
extraction patterns as ordinary sequences and apply the merge function defined
above for sequence patterns. Instead the merging of extraction patterns can be
performed algorithmically.

Rule patterns often contain several extractions of different attribute values, and
the order of their appearance plays a major role in the identification of relevant
information. Since we are interested in maintaining as much similar informa-
tion as possible during the generalization, the sequences of extracted attributes
in both patterns should be aligned so that the maximum number of attribute
matches is achieved. To determine the optimal alignment we again can utilize
the MaxSimScore algorithm (setting the value of the Score function to 1 if two
attributes are identical and 0 otherwise). After the best alignment is identified,
we can generalize the context of extracted attribute values. The generalization
is achieved merging context fragments that surround the same attribute values
and are at the same position in the respective rule pattern, i.e. the left and right
context between the aligned extractions are merged respectively.

Let Extraction Alignment = {(Ei1 , Ej1), . . . , (Ein , Ejn)} be the optimal
alignment of extraction sequences of rule patterns pi and pj . We can
write the pattern pi and pj as pi = Ci1 Ei1 Ci2 . . . Cin Ein Cin+1 and
pj = Cj1 Ej1 Cj2 . . . Cjn Ejn Cin+1 consisting of aligned extractions and context
patterns around them. In this representation the not aligned extractions build
the context of aligned extractions and are therefore part of context patterns.
Merging pi and pj all aligned extractions and the context patterns surrounding
the respective extractions are merged:

merge(pi, pj) = merge(Ci1 , Cj1) merge(Ei1 , Ei2) merge(Ci2 , Cj2) . . .

merge(Ein , Ejn) merge(Cin+1 , Cjn+1)

Thus merging complete rule patterns the biggest possible generalization of ex-
tracted attribute values is achieved establishing the optimal alignment of extrac-
tions (reaching the biggest number of matching attributes) and obtaining the
generalization of context by bringing the context fragments related to identi-
cal attributes and situated at the same position in the respective rule patterns
together.

8.2 Rule Abstraction

A big advantage of rule merging is that the resulting generalized rules incorporate
shared features of many similar less general rules relying on a significant evidence
that these features are relevant. Sometimes, however, given a rule, there are no
similar rules that can be merged with this rule because it incorporates a not
very common expression or unusual structure. Besides, there may be just a few
instances of certain attributes in the training texts so that it is difficult to find
sufficiently similar rules for effective merging. In such cases the rules can be
generalized by rule abstraction.

8.2 Rule Abstraction 95



8.2.1 Relaxation of Context

The rule abstraction is based on the observation that quite often some parts
of encoded sentences do not characterize extracted information or contain any
relevant context. For example, subordinate sentences, relative clauses usually
provide some additional information related to one aspect of the main sentence.
If they do not contribute to the identification of relevant fragments, they can be
ignored in the linguistic pattern reducing it to the relevant features and making
it more general.

A single rule can be abstracted relaxing the specification of context of the ex-
tracted item in the rule pattern. Elements of context that do not contribute to
identification of a fact are either replaced by a more general element or removed
being subsumed by a wildcard pattern. Since both possibilities may have a pos-
itive effect, several candidate rules may be generated to be verified in the next
step. Generalization by abstraction of single rules is especially effective at the
beginning of the learning process.

8.2.2 Abstracting Function

Analogously to the merge function the formal structure of the pattern language
can be utilized to specify the abstracting heuristics as mathematical function:

abstract :: Pattern → Pattern
abstract(A) = PF : PForm(A) where A is a string (abstraction of a word is its
principal form)
abstract(PF : A) = POS : part of speech(A) A (abstraction of a principal
form of a word is its POS-tag). The function part of speech returns the POS
tag to a given string.
abstract(POS : pos lex el) = parentconst(POS : pos lex el) (abstraction of a
POS-tag is the syntactic constituent that contains the POS-tag). The function
parent const is calculated looking for the first parent that is a syntactic con-
stituent in the ancestor branch of the pos element.
abstract([A]) = ∗ (abstraction of a syntactic constituent is anything)
. . .
abstract((A A)) = (A)∗ (abstraction of a sequence of two identical elements is
the Kleene closure of these elements)

Repeated application of abstracting function leads gradually to higher degree
of generalization up to the subsumption of syntactic units by the wildcard pat-
tern, which is equivalent to their removal from the linguistic pattern. There
is no general criterion how many times the abstracting function should be ap-
plied to an extraction rule, since the optimal abstraction degree depends on the
rule structure, the attributes the rule extracts etc. Therefore several candidates
are generated applying abstract different number of times, and the optimal ab-
stracted rule is determined empirically evaluating the extraction results on the
training corpus (refer to the next chapter).

8.3 Substitution Heuristic

Merging and abstraction of extraction rules are universal generalizing heuristics
that can be applied at any stage of the induction process. However, the set of
correct rules can achieve a high degree of generality so that neither rule merging,
nor rule abstraction can improve extraction results or even change the rule set.

96 8 Rule Generalization and Correction



In spite of general rules the recall of such rule set may still be low, i.e. many of
expected extractions remain uncovered, which may be caused by several factors.
If the text corpus is very heterogenous, the expressions of relevant information in
different texts may considerably differ so that general linguistic patterns derived
from texts of the training corpus are still not able to cover many instances of
relevant information in other texts of the application domain. Another reason
may be the small number of training examples for certain attributes so that it is
not possible to derive a representative set of extraction rules from the instances
of the training corpus.

If the rule set cannot be generalized by merging and abstraction of extraction
rules and the recall of such rule set is still low, substitution heuristic can be used
to obtain new linguistic patterns that do not occur in the training corpus and
enlarge the covering degree and recall of the rule set. As already outlined the
main two constituents of a linguistic pattern are the encodings of contexts and
extracted parts. Since both constituents fulfil different roles (while context helps
to identify the relevant content, encodings of extractions match the extracted
fragment and assign it to an attribute of the target structure), they are separable
within the linguistic pattern. Considering the fact that the language diversity
manifests itself in various possible contexts and manifold expressions of extracted
information, we can gain new diverse linguistic patterns replacing the pattern
parts that encode extracted text fragments by encodings of other patterns.

Consider the example from the seminar announcement corpus. The pattern *
NN:”lecture” [PC: ”by” [NC:”Prof.” NE∗]=:speaker] [VC: VA VV:”take” ”place”] [PC:
”in” [NC: DT? NE∗ NN:”Hall” CARD]:=location] * matches amongst others the
sentence The lecture by Prof. Wolfgang J. Rutenbar will take place in the Wean Hall
5409. Analogously the pattern * [NC: ”Mr.”NE? NE]=:speaker [VC: VV:”present”]
[NC: (DT | PRN) NN:”talk”] * ”at”([NC: DT NN:”center”] [PC:”for”NC[]])=:location
*] incorporates the sentence Mr. Irfan Ali presents his talk on ATM products at the
Center for Education, One Kingsway, Edmonton, Alberta, Canada.
Replacing the encoding of extracted fragments that denote the values of the
attributes speaker and location we can generate four additional linguistic
patterns (replacing the encoding of one or both attributes). For instance, the new
pattern * NN:”lecture” [PC: ”by” [NC: ”Mr.”NE? NE]=:speaker] [VC: VA VV:”take”
”place”] [PC: ”in” ([NC: DT NN:”center”] [PC:”for” NC[])=:location] * will match
a sentence that comprises relevant location and speaker information, but could
not be identified by the two original patterns: Today the lecture by Mr. Kurtz
takes place in the Center for Cultural Studies following the workshop on the language
history.

The substitution heuristic is justified by the observation that the context and
extracted fragments are often mutually interchangeable. Since a rule usually
comprises several attribute values, substituting them by encoding of other pat-
terns leads to a big number of combinations of different encodings in a certain
context. Of course, not all of them will reflect expressions that are used in the
natural language and in the application domain, some of them may also be un-
grammatical. However, these “malformed” linguistic patterns will not damage
the extraction quality because they will not match any sentences or text parts
(since they do not occur in the real language) causing no incorrect extractions.
Thus rules that do not make sense will be filtered during the validation. On the
other hand, those rules that represent the valid language and identify relevant
information will be validated and added to the set of correct rules increasing the
covering degree of the rule set.

8.3 Substitution Heuristic 97



8.4 Rule Correction

In spite of sophisticated generalization routines extraction rules will never be
perfect. This implies that they will both extract wrong (irrelevant) information
and miss expected items. One origin of errors is the diversity of natural language
that makes it hardly possible to cover every conceivable formulation of relevant
information by an adequate linguistic pattern. Another factor is the loss of
precision of extraction rules during the generalization. Trying to capture an
increasing number of expression possibilities in one pattern many structural,
lexical and syntactic constraints of the extractions and their context are relaxed.
Hence it becomes more likely that a general pattern can match a sentence that
is similar to those incorporated by the pattern but does not contain any relevant
information. The consequence are erroneous extractions that discredit extraction
rules in the validation step.

Depending on their origin it can be possible to eliminate certain errors altering
the extraction rules. Before discussing possible remedies for mistakes made by
extraction rules it is useful to classify them and identify error types that can be
corrected improving the deficiencies of the rules.

8.4.1 Types of Errors

In the area of IE the question what extraction should be regarded correct is
far from being uniformly solved. We will discuss this issue analyzing different
evaluation strategies in sec. 10.3.3. At this stage we can define an extraction to
be incorrect if it differs from extractions expected by the human expert. Among
these two major classes of errors can be distinguished:

. Missed extractions. They designate text fragments that are supposed to
be extracted but are not extracted by the system. These errors are only
partially caused by imperfect extraction rules, e.g. in case when an extrac-
tion rule correctly identifies the sentence containing relevant information
but fails to localize the correct fragment. Often, however, there are no ap-
propriate linguistic patterns matching the sentence that contains relevant
information because no similar sentences occurred in the training corpus.
Missed extractions diminish the recall value.

. Wrong extractions. Text fragments that do not contain any relevant infor-
mation are mainly extracted because of overgeneralized rules. They have a
direct negative effect on precision but may also affect recall if their extrac-
tion prevents the extraction of correct fragments.

. Partial extractions. They occur when the extracted text fragment and
the expected extraction overlap, i.e. when a border of extracted fragment
lies between the borders of expected extraction or vice-versa. The kinds
of partial extractions can be further differentiated (e.g. subsumption by
extracted or expected value, real overlap etc.). Partial extractions influence
both precision and recall values.

. Confused attribute. When the borders of expected extraction and extracted
fragment correspond the extraction can still be incorrect because the frag-
ment can be extracted as the value of another attribute that is not expected
by human expert. Especially in case of semantically close attributes the
assignment of the attribute to the extracted fragment can be confused by
the system also causing lower precision and recall values.

98 8 Rule Generalization and Correction



In contrast to missed extractions wrong and partial extractions are often caused
by generalization of extraction rules. Rule merging as well as rule abstraction
can involve that a feature distinguishing relevant information from the irrelevant
content is replaced by a more general element that looses this capability (e.g.
abstracting from certain lexical elements, see the example below). Confused
attribute assignments happen usually in the underspecified context and may
therefore also be the consequence of rule overgeneralization.

In summary, there are several types of errors that can be committed by extraction
rules, and not all of them can be directly addressed by the rule correction. Some
errors (especially missed extractions) are supposed to be minimized during the
induction process of extraction rules. On the other hand, wrong and partial
extractions are primarily caused by too general rules and can therefore be tackled
trying to reverse the undesirable effects of generalization.

8.4.2 Rule Correction Algorithm

After having identified the generality of rules as the primary reason for wrong,
partial extractions and confused attributes, the correction of extraction rules can
consist in addition of constraints that better characterize relevant information.
Thus important features that have been lost in the generalization step can be
reintroduced during the rule correction making the extraction rule more specific.
The rule correction should, however, not completely undo the generalization
steps, but integrate only necessary specifications in the already generalized rule.

Similarly as the derivation of extraction rules their correction can be performed
inductively too following the general principle: keep the features of positive
extractions and exclude the features of negative extractions. In contrast to
Ciravegna’s rule correction by learning correction rules similarly as the extraction
rules [Cir01a] we can exploit the formal nature of our extraction rules provided
by the pattern language. The main idea in the correction algorithm is to use
the incorrect extractions of a rule (negative examples) as initial instances (anal-
ogously to initial rules) for the induction of a general negative counterpart to
the original rule. This general negative rule contains the features of the incor-
rect extractions, that is, of irrelevant information. Comparing the original rule
and its negative counterpart the features of irrelevant information can be deter-
mined as the differences of both rule patterns. Since these features characterize
the irrelevant information, they should not occur in the original extraction rule.
Hence, they can be integrated in the original extraction rule in the negated form
to explicitly exclude the possibility of matching irrelevant text fragments.

Consider a general extraction pattern derived from the MUC corpus:
* NC:=Victim target [VC: VPP ”kill”] [PC: (because of| by) [NC: (ART ADJ*)?
”bomb”NN]] *
This rule pattern matches inter alia this sentence containing relevant information:
Several civilians were killed because of a bomb explosion in San Ramon on Thursday.
However, it also matches two sentences that do not contain relevant information
because the human experts do not regard information communicated by reported
speech as factual:

The leader of separatists Jose Ramirez claimed that two residents were killed by a
recent bomb attack conducted by governmental troops.

General Bustillo said that four individuals were killed by bombs that have been planted
by terrorists in the downtown of San Miguel.

8.4 Rule Correction 99



Merging both negative examples we obtain the negative counterpart to the orig-
inal rule pattern:
* NC [VC: SynSet(”assert”)] that NC:=Victim target [VC: ”be” ”kill”] [PC: by [NC:
(ART ADJ)? ”bomb”NN]] *

Comparing both patterns we detect that the first sequence elements (basically
representing reported speech) in the negative pattern are not comprised by the
original pattern. Thus we can include them in the negated form in the origi-
nal pattern obtaining new corrected pattern: * !(NC [VC: SynSet(”assert”)] that)
NC:=Victim target [VC: VPP ”kill”] [PC: (because of | by) [NC: (ART ADJ)? ”bomb”
NN]] *

Recall that the negation pattern states explicitly what should not occur and does
not consume any tokens matching an empty fragment. The corrected pattern
does not match two irrelevant sentences still matching the sentence with relevant
information.

The merged negative pattern will be with a high likelihood more specific than the
rule pattern, but certainly not more general, since the negative pattern incorpo-
rates exactly two initial rules while the rule pattern should subsume at least two
initial rules incorporated during merging. Therefore for each element of negative
pattern at least as general counterpart in the rule pattern can be found. We
can define a diff function, which aligns the rule pattern and negative patterns so
that every element in the sequence of negative pattern is matched by an element
of the sequence of the rule pattern. It identifies subsequently the more specific
contextual elements of the negative pattern. Context specified by these elements
may be typical for irrelevant information. Therefore the more specific contex-
tual elements are negated and inserted at the same position in the sequence of
the rule pattern before their more general counterpart. Here the non-substantial
character of negation is optimally exploited allowing to specify what should not
occur without changing the original context pattern in the rule pattern sequence.

The algorithm for rule correction in fig. 8.1 builds on the idea of correction
by excluding the features of negative extractions. The induction of negative
examples and exclusion of potential differences is continued until the corrected
rule achieves an acceptable precision value or until no new negative examples can
be induced.

Let P be the pattern of extraction rule R = P → E that should be corrected
and N1, . . . , Nn - the sentences from that R made wrong extractions.

for (i=0; i<n; ++i)
NPi=encode_initial_pattern(Ni);

for (i=0; i<n; ++i) \\Construction of a heap storing similarity values
for (j=i+1; j<n; ++j) \\for any two negative patterns

pattern_sim_heap.put((i,j), RuleSim(NPi, NPj));
do {(k,l)=pattern_sim_heap.removeTop();

Gen_Neg_Pattern=merge(NPk, NPl);
D1 . . . Di =diff(P,Gen_Neg_Pattern);
P =insert_negated(D1 . . . Di, P);
precision=apply_rule(P → E).get_precision();
}while (precisison<prec_threshold && !pattern_sim_heap.isEmpty());

Figure 8.1: Algorithm for
correction of extraction

rules

100 8 Rule Generalization and Correction



8.4.3 Limitations of Rule Correction

The algorithm presented in fig. 8.1 does not cover the complete range of deficien-
cies of extraction rules. It is targeted at improvement of contextual specification
excluding the typical context features of incorrect extractions. If however the
characteristic features of negative examples lie in the specification of extracted
fragment, the diff function is not able to detect this difference.

To determine structural difference in the extracted fragment positive extractions
of the rule pattern have to be regarded too. The difference between the merged
negative pattern and all initial patterns of positive extractions has to be calcu-
lated. But here the limits of rule correction can be recognized. In some cases
the building of the difference is possible only on the lexical level (e.g. when the
specification of negative and positive examples are identical on the syntactic and
morphological level). The result would be an enumeration of lexical values that
should not occur at the certain positions of extracted fragments. Such a correc-
tion may be useful in the training corpus because of adaptation to training texts,
but lacking any abstraction it will hardly benefit the overall goodness of the rule
set in a real application.

Even though the idea that every rule can be adequately corrected to achieve an
acceptable extraction quality is quite illusionary, rule correction is a powerful
mean to improve the quality of rules and to increase the coverage of the rule set
allowing more rules to pass the precision threshold (s. experimental investigation
in sec. 12.4.1).

8.4 Rule Correction 101


