
6 Pattern Unification by
Querying XML: A Pattern

Based XML Query Language

Our approach to IE is based on learning patterns recurring in natural language
for expression of certain information. The learned patterns are not supposed to
capture exact phrases and expressions, but to be able to include essential parts
and features of expressions allowing to abstract from irrelevant parts. Patterns
consist not only in lexical elements and their positional dependencies, but include
also linguistic and structural features obtained during the preprocessing. Natural
language itself is not suitable for specification of patterns since it does not offer
any formal means for abstraction and capturing non-lexical information. The
pattern specification language has therefore to fulfil following requirements:

. Formal Specification. A formal base of the pattern specification language
facilitates the algorithmic induction of extraction patterns. Furthermore,
it allows to formally define the generalizing operations.

. Expressivity. Some rule-based approaches restrict the range of patterns
to a subset of regular expressions and are forced to simplify the modeling
of natural language taking in account that non-trivial language structures
cannot be expressed. The pattern specification language has to feature
expressive language elements to adequately reflect the variety of natural
language.

. Support for linguistic features and XML. Since patterns incorporate
linguistic and structural information, pattern language should feature com-
ponents for expression of structural and linguistic properties and allow to
interleave and nest different elements. Since the preprocessed documents
are in XML format, the language has also to support XML syntax.

To comply with the requirements we defined a context-free pattern specification
language (refer to appendix A) extending its expressivity by non-regular negation
and permutation patterns and including XML support. The pattern language
has a variety of features for handling syntactic and lexical diversity of a natural
language. Particularly, it can be specified by the negation operator that certain
lexical or syntactic sequence must not occur in the text. Various possibilities

60 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

of information expression in the natural language like repetition, optional oc-
currence or occurrence of lexical or syntactic entities in the arbitrary order are
covered by respective operators as well. Moreover, there are patterns comprising
sets of synonyms or matching all inflections of a word by specifying the principal
form. To enable the identification of relevant information a pattern encoding a
relevant text fragment that should be extracted can be referenced by a variable
(see examples in sec. 4.1). Matching text fragments are assigned to the variable
and can be accessed for extraction.1 Patterns referenced by a variable can also be
reused in other patterns. In chapters 7 and 8 we will explain how the linguistic
patterns are captured in the pattern language.

The pattern language significantly distinguishes our approach from other rule-
based approaches to IE. Whisk [Sod99] and LP2 [Cir01a] use a much more restric-
tive notion of a pattern: while Whisk employs only a subset of regular expressions
encoding certain syntactic groups, LP2 regards a fix context window with a seven
predefined features independent of the syntactic and semantic complexity of texts
and extracted fragments. Rapier [Cal98] does not restrict the length of the con-
text window, uses though only three features (POS tag, lexical form and semantic
class) to describe each token. Setting no limits for the number of features, pro-
viding XML support and a very rich set of general patterns and allowing their full
recursivity we establish a more powerful and flexible pattern model for natural
language texts. Facilitating the actual extraction by the unification of variables
we introduce a novel extraction technique allowing the immediate access to the
extracted contents after the unification has been completed.

So far we have established a view of the pattern language derived from the
IE task: patterns serve for modeling the natural language in order to encode
typical expression forms. On the other hand, patterns are used for localizing
the desired information in the document by matching them with the text. Since
the preprocessed texts are XML documents, the matching between the patterns
and XML structure has to be established. This opens a totally different view of
patterns as XML queries that retrieve XML fragments whose structure, textual
content and linguistic elements correspond with the specification in the pattern.
Due to the dualistic nature of the patterns the pattern specification language can
be regarded as an independent XML query language. The next section describes
the pattern language and explains its semantics from the perspective of XML
querying.

6.1 Pattern Specification Language in the Role of XML Query Language

As we have already mentioned, extraction patterns include not only textual ele-
ments, but also linguistic and structural features and sometimes original markup
of the document. Patterns cannot be looked for in the original text documents be-
cause they do not contain the information obtained during preprocessing. There-
fore preprocessed documents serve as the basis for pattern unification.

During the preprocessing different NLP tools can produce overlapping annota-
tions of text fragments. While a common way to cope with concurrent annota-
tions is using stand-off markup [Wit04] with XPointer references to the annotated
regions in the source document, pattern matching requires a consolidation of an-
1 Since the eventual goal of pattern matching is to establish variable bindings with fragments
that should be extracted, we borrowed the concept of variable “unification” from the logic so
that the process of pattern matching coupled with the binding of pattern variables is referred
to as “pattern unification”.

6.1 Pattern Specification Language in the Role of XML Query Language 61

notations in a single document. This means that concurrent markup has to be
merged and accommodated in a single hierarchy during the preprocessing. There
are many ways to merge the overlapping markup so that different nesting struc-
tures are possible. Besides, the annotations have to be merged with the original
markup of the document (e.g. in case of a HTML document). The problem
of merging overlapping markup at the preprocessing stage has been treated in
[Sie04] and we do not consider it here. Instead we focus on the problem of finding
a universal pattern matching mechanism for documents with multi-dimensional
markup. Looking on the problem from the XML point of view we need a query
language that is able to abstract from the concrete merging algorithm for con-
current markup, that is to identify desired elements and sequences of elements
independently from the concrete nesting structure.

Due to the arbitrary structure of the HTML documents the annotations can
be nested in arbitrary depth and vice versa – the linguistic XML elements can
contain some HTML elements with nested text it refers to. To find a linguistic
pattern we have to abstract from the concrete DTD and actual structure of the
XML document ignoring irrelevant markup, which leads to some kind of “fuzzy”
matching. Hence it is sufficient to specify a sequence of text fragments and known
XML elements (e.g. linguistic tags) without knowing by what elements they are
nested. During the matching process the nesting markup will be omitted even if
the sequence elements are on different nesting levels.

We propose an expressive pattern language with the extended semantics of the
sequence pattern, permutation, negation and regular patterns that is especially
appropriate for querying XML annotated documents. The language provides
a rich tool set for specifying complex sequences of XML elements and textual
fragments. We ignore some important aspects of a fully-fledged XML query
language such as construction of result sets, aggregate functions or support of all
XML Schema structures focusing instead on the semantics of the language.

Some modern XML query languages impose a relational view of data contained in
the XML document aiming at retrieval of sets of elements with certain properties.
While these approaches are adequate for database-like XML documents, they are
less appropriate for documents in that XML is used rather for annotation than
for representation of data. Taking the rather textual view of a XML document
its querying can be regarded as finding patterns that comprise XML elements
and textual content. One of the main differences when querying annotated texts
is that the query typically captures parts of the document that go beyond the
boundaries of a single element disrupting the XML tree structure while querying
a database-like document returns its subtrees remaining within a scope of an ele-
ment. Castagna [Cas05] distinguishes path expressions that rather correspond to
the database view and regular expression patterns as complementary “extraction
primitives” for XML data. Our approach enhances the concept of regular expres-
sion patterns making them mutually recursive and matching across the element
boundaries.

6.2 Existing XML Query Languages

After publishing the XML 1.0 recommendation the early proposals for XML
query languages focused primarily on the representation of hierarchical de-
pendencies between elements and the expression of properties of a single ele-
ment. Typically, hierarchical relations are defined along parent/child and ances-

62 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

tor/descendant axis as done in XQL and XPath. XQL [Rob98] supports posi-
tional relations between the elements in a sibling list. Sequences of elements can
be queried by “immediately precedes” and “precedes” operators restricted on the
siblings. Negation, conjunction and disjunction are defined as filtering functions
specifying an element. XPath 1.0 [Cla99] is closely related addressing primarily
the structural properties of an XML document by path expressions. Similarly to
XQL sequences are defined on sibling lists. Working Draft for Xpath 2.0 [Ber05]
provides support for more data types than its precursor, especially for sequence
types defining set operations on them.

Bird et al. recognize the deficiencies of XPath in processing of XML annotated
text documents [Bir05] and extend it to support typical queries on linguistic
annotations. The proposed language LPath can express important horizontal
positional relations within the sequence and also between the different levels of
linguistic elements.

A recently released tree query language for syntactically annotated texts Tregex
[Lev06] enables queries based on two basic relations dominance and precedence.
It includes also transitive dependencies featuring a Kleene’s closure, which how-
ever can include only one node. Boolean operations can be applied to the rela-
tions, but not to the tree nodes itself. The “horizontal” navigation is established
by immediate and transitive precedence over a closure of nodes, each of which
has to match the same pattern. In contrast to LPath this model is too weak to
express complex sequences dispersed by arbitrary nesting structures.

XML QL [Deu99] follows the relational paradigm for XML queries, introduces
variable binding to multiple nodes and regular expressions describing element
paths. The queries are resolved using an XML graph as the data model, which
allows both ordered and unordered node representation. XQuery [Boa03] shares
with XML QL the concept of variable bindings and the ability to define recur-
sive functions. XQuery features more powerful iteration over elements by FLWR
expression borrowed from Quilt [Cha01], string operations, “if else” case differ-
entiation and aggregate functions. The demand for stronger support of querying
annotated texts led to the integration of the full-text search in the language
[Req03] enabling full-text queries across the element boundaries.

Hosoya and Pierce propose integration of XML queries in a programming lan-
guage [Hos01] based on regular patterns Kleene’s closure and union with the
“first-match” semantics. Pattern variables can be declared and bound to the
corresponding XML nodes during the matching process. A static type inference
system for pattern variables is incorporated in XDuce [Hos03] – a functional
language for XML processing. CDuce [Ben03] extends XDuce by an efficient
matching algorithm for regular patterns and first class functions. A query lan-
guage CQL based on regular patterns of CDuce uses CDuce as a query processor
and allows efficient processing of XQuery expressions [Ben05]. The concept of
fuzzy matching has been introduced in query languages for IR [Car03] relaxing
the notion of context of an XML fragment.

6.3 Querying by pattern matching

The general purpose of querying XML documents is to identify and process their
fragments that satisfy certain criteria. We reduce the problem of querying XML
to pattern matching. The patterns specify the query statement describing the
desired properties of XML fragments while the matching fragments constitute the

6.3 Querying by pattern matching 63

result of the query. Therefore the pattern language serves as the query language
and its expressiveness is crucial for the capabilities of the queries. The scope for
the query execution can be a collection of XML documents, a single document or
analogously to XPath a subtree within a document with the current context node
as its root. Since in the scope of the query there may be several XML fragments
matching the pattern, multiple matches are treated according to the “all-match”
policy, i.e. all matching fragments are included in the result set. The pattern
language does not currently support construction of new XML elements (however,
it can be extended adding corresponding syntactic constructs). The result of the
query is therefore a set of sequences of XML nodes from the document. Single
sequences represent the XML fragments that match the query pattern. If no
XML fragments in the query scope match the pattern, an empty result set is
returned.

In the following sections the semantics, main components and features of the pat-
tern language are introduced and illustrated by examples of pattern unification
with XML documents resulting from the preprocessing described in the previous
chapters. The documents contain linguistic annotations inserted by POS tagger
and syntactic chunk parser as XML elements that include the annotated text
fragment as a text node. The XML output of the NLP tools is merged with the
HTML markup so that various nestings are possible. A common technique to
identify the relevant information is to match linguistic patterns describing it with
the documents. The fragments of the documents that match are likely to contain
relevant information. Hence the problem is to identify the fragments that match
our linguistic patterns, that is, to answer the query where the queried fragments
are described by linguistic patterns. Linguistic patterns comprise sequences of
text fragments and XML elements added by NLP tools and are specified in our
pattern language. When looking for linguistic patterns in an annotated HTML
document, it cannot be predicted how the linguistic elements are nested because
nesting depends on syntactic structure of a sentence, HTML layout and the way
both markups are merged. Basically, the problem of unpredictable nesting occurs
in any document with a heterogeneous structure.

The complete EBNF specification of the language can be found in appendix A.

6.3.1 Extended sequence semantics

Query languages based on path expressions usually return sets (or sequences)
of elements that are conform with the original hierarchical structure of the doc-
ument. In not uniformly structured XML documents, though, the hierarchical
structure of the queried documents is unknown. The elements we may want to re-
trieve or their sequences can be arbitrarily nested. When retrieving the specified
elements the nesting elements can be omitted disrupting the original hierarchical
structure. Thus a sequence of elements does no longer have to be restricted to
the sibling level and may be extended to a sequence of elements following each
other on different levels of XML tree. A similar relation between two XML ele-
ments called“immediately follows” (“immediately precedes”) has been introduced
by Bird et al. [Bir05] to overcome the hierarchical barrier for expression of po-
sitional dependencies of elements on different linguistic layers (e.g. noun phrase
and a part of speech).

Let us assume we would search for a sequence of POS tags: NE ADV V in a
subtree of a HTML document depicted in fig. 6.1. Some POS tags are chunked
in noun (NP), verb (VP) or prepositional phrases (PP). Named entity“Nanosoft”
is emphasized in boldface and therefore nested by the HTML element . Due

64 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

Figure 6.1: Selecting the
sequence (NE ADV V)

from a chunk-parsed
POS-tagged sentence.

XML nodes are labeled
with preorder numbered

OID|right bound
(maximum descendant

OID)

to the syntactic structure and the HTML markup the elements NE, ADV and V
are on different nesting levels and not children of the same element. According to
the extended sequence semantics we can ignore the nesting elements we are not
interested in (NPOID2 and bOID3 when matching NE, VPOID8 when matching V)
so that the sequence (NEOID4, ADVOID6, VOID9) matches the sequence pattern
NE ADV V, in short form NE ADV V ∼= (NE4, ADV6, V9).

By the previous example we introduced the matching relation ∼= as a binary
relation ∼= ⊆ P × F where P is the set of patterns and F a set of XML fragments.
An XML fragment f is a sequence of XML nodes n1 . . . nn that belong to the
subtree of the context node (i.e. the node whose subtree is queried, e.g. document
root). Each XML node in the subtree is labeled by the pair OID|right bound.
OID is obtained assigning natural numbers to the nodes during the preorder
traversal. Right bound is the maximum OID of a descendant of the node – the
OID of the rightmost leaf in the rightmost subtree. To match a sequence pattern
an XML fragment has to fulfil four important requirements.

1. Consecutiveness: All elements of the sequence pattern have to match the
consecutive parts of the XML fragment

2. Order maintenance: Its elements must be in the “tree order”, i.e. the OIDs
of the nodes according to the preorder numbering schema must be in as-
cending order.

3. Absence of overlaps: No node in the sequence can be the predecessor of
any other node in the sequence on the way to the root. E.g. NP PP NP 6∼=
(NP11, PP18, NP21) because PP18 is a predecessor of NP21 and therefore
subsumes it in its subtree. The semantics of the sequence implies that a
sequence element cannot be subsumed by the previous one but has to follow
it in another subtree. To determine whether a node m is a predecessor
of the node n the OIDs of the nodes are compared. The predecessor
must have a smaller OID according to the preorder numbering scheme,
however any node in left subtrees of n has a smaller OID too. Therefore
the right bounds of the nodes can be compared since the right bound of
a predecessor will be greater or equal to the right bound of n while the
right bound of any element in the left subtree will be smaller:

pred(m,n) = OID(m) < OID(n) ∧ rightBound(m) ≥ rightBound(n)

4. Completeness: XML fragment must not contain any gaps, i.e. there should
not be a node that is not in the XML fragment, not predecessor of one
of the nodes, whose OID however lies between the OIDs of the fragment

6.3 Querying by pattern matching 65

nodes. Since such a node is not a predecessor, it must be an element of
the sequence; otherwise it is omitted and the sequence is not complete.
Hence, the pattern V NP NP 6∼= (V9, NP11, NP21) because the node PR19

lying between NP11 and NP21 is not a predecessor of any of the fragment
nodes and not an element of the fragment. If the nodes lying between NP11

and NP21 cannot be exactly specified, we can use wildcard pattern (see sec.
6.3.3) to enable matching: V NP * NP ∼= (V9, NP11, PR19, NP21).

Using these requirements we can formally specify the semantics of the sequence:
Let s = s1 . . . sk be a sequence pattern and f = n1 . . . nn the matching XML
fragment.

s ∼= f ⇔

(I) s1
∼= (n1 . . . ni), s2

∼= (ni+1 . . . nj), . . . , sk
∼= (nl . . . nn)

(II) ∀ 1 ≤ i < n OID(ni) < OID(ni+1)
(III) 6 ∃ 1 ≤ i < n pred(ni, ni+1)
(IV) ∀ 1 ≤ i < n 6 ∃ m OID(ni) < OID(m) < OID(ni+1) ∧ ¬pred(m,ni+1)

The fourth requirement stresses the important aspect of “exhaustive” sequence:
we are interested in a certain sequence of known elements that can be arbitrar-
ily nested and captured by some elements that are irrelevant for our sequence
(e.g. html layout elements when searching for a sequence of linguistic elements).
We call such a sequence an exhaustive non-sibling sequence (ENSS). It is ex-
haustive because all predecessors omitted during the matching are covered at
some level by the matching descendants so that there is no path to a leaf of
the predecessor subtree that leads through an unmatched node. If such a path
existed, the fourth requirement would not be met. If the sequence does not begin
at the leftmost branch or does not end at the rightmost branch of an omitted
predecessor, the subtree of the respective predecessor is not fully covered. In
ADJ NN PR ∼= (ADJ14, NN16, PR19) the omitted predecessors NP11 and PP18 are
not completely a part of the sequence because they have descendants outside the
sequence borders. Nevertheless the sequence is exhaustive since there is no path
to a leaf through an unmatched node within its borders.

Another important aspect of ENSS is that it can match XML fragments across
the element borders. XPath imposes a query context by specifying the path
expression that usually addresses a certain element, XQuery restricts it indirect
by iterating over and binding variables to certain nodes. Matching ENSS there
is no additional restriction of the query scope, that is, the sequence can begin
and end at any node provided that the ENSS requirements are met. The dashed
line in the fig. 6.1 points up the region covered by the sample sequence.

According to the specification of the sequence pattern in the pattern language
(cf. appendix A):

Pattern ::= Pattern′ ′∗ Pattern

any pattern can be the element of the sequence. Therefore the sequence can
also contain textual elements, which is especially important when processing
annotated texts. Textual nodes represent leaves in an XML tree and are treated
as other XML nodes so that arbitrary combinations of XML elements and text
are possible: "released" NP "of" NE ∼= (”released”10, NP11, ”of”20, NE22)

Exhaustive sequence allows a much greater abstraction from the DTD of a doc-
ument than the usually used sequence of siblings. The expressiveness of the
language significantly benefits from the combination of backtracking patterns
(cf. sec. 6.3.3) with exhaustive sequence.

66 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

6.3.2 Specification of XML nodes

Patterns matching single XML nodes are the primitives that the more com-
plex patterns are composed from. The pattern language supports matching for
document, element, attribute, text and CDATA nodes while some DOM node
types such as entities and processing instructions are not supported. Some basic
patterns matching element and text nodes have been already used as sequence
elements in the previous section. Besides the simple addressing of an element by
its name it is possible to specify the structure of its subtree:

Pattern ::=′ \′XML-Tag(′[′Pattern′]′)?

A pattern specifying an element node will match if the element has the name cor-
responding to the XML-Tag and the pattern in the square brackets matches the
XML fragment containing the sequence of its children. E.g. \PP[PR NE]∼= (PP18)
because the name of the element is identical and PR NE ∼= (PR19, NE22). As this
example shows, the extended sequence semantics applies also when the sequence
is used as the inner pattern of another pattern. Therefore the specification of
elements can benefit from the ENSS because we again do not have to know the
exact structure of their subtrees, e.g. their children, but can specify the nodes
we expect to occur in a certain order.

Attribute nodes can be accessed by element pattern specifying the attribute
values as a constraint: \V {@normal="release"} ∼= (V9), assumed that the
element V9 has the attribute ”normal” that stores the principal form of its textual
content. Besides equality tests, numeric comparisons and boolean functions on
string attribute values can be used as constraints.

Patterns specifying textual nodes comprise quoted strings:

Pattern ::= QuotedString

and match a textual node of an XML element if it has the same textual con-
tent as the quoted string. Textual patterns can be used as elements of any
other patterns as already demonstrated in the previous section. An element
may be, for instance, described by a complex sequence of text nodes combined
with other patterns: \sentence[NE * \V{@normal=release} \NP[* "new" "ver-

sion"] "of" NE *] ∼= (sentence1)
The pattern above can already be used as a linguistic pattern identifying the
release of a new product version.

6.3.3 Backtracking patterns and variables

In contrast to the database-like XML documents featuring very rigid and repeti-
tive structures annotated texts are distinguished by a very big structural variety.
To handle this variety one needs patterns that can cover several different cases
“at once”. So called backtracking patterns have this property and constitute
therefore a substantial part of the pattern language. Their name comes from the
fact that during the matching process backtracking is necessary to find a match.

The pattern language features complex and primitive patterns. Complex patterns
consist of at least one inner element that is a pattern itself. Primitive patterns are
textual patterns or XML attribute and element specifications if the specification
of the inner structure of the element is omitted, e.g. "released", NP. If at least
one of the inner patterns does not match, the matching of the complex pattern
fails. Backtracking patterns except for wildcard pattern are complex patterns.

Let us assume, we look for a sequence "released" NE and do not care what is
between the two sequence elements. In the subtree depicted in fig. 6.1 no XML

6.3 Querying by pattern matching 67

fragment will match because there are several nodes between ”released”10 and
NE22 and the completeness requirement is not met. If we include the wildcard
pattern in the sequence, "released" * NE ∼= (”released”10 NP11 PR19 NE22), the
wildcard pattern matches the nodes lying between V9 and NE22. Thus, every
time we do not know what nodes can occur in a sequence or we are not interested
in the nodes in some parts of the sequence, we can use wildcard pattern to specify
the sequence without losing its completeness. Wildcard pattern matches parts
of the sequence that are in turn sequences themselves. Therefore it matches
only those XML fragments that fulfil the ENSS requirements II-IV. Since there
are often multiple possibilities to match a sequence on different levels, wildcard
matches nodes that are at the highest possible level such as NP11 in the previous
example.

If one does not know whether an XML fragment occurs, but wants to account
for both cases the option pattern should be used:

Pattern ::=′ (′Pattern′)?′

Pattern ::=′ (′Pattern′)∗′

Kleene closure differs from the option by the infinite number of repetitions. It
matches a sequence of any number of times repeated XML fragments that match
the inner pattern of the Kleene closure pattern. Since Kleene closure matches
sequences, the ENSS requirements have to be met by matching XML fragments.
As opposed to Tregex [Lev06] Kleene closure pattern builds a transitive closure
over XML fragments with arbitrary complexity and not just a single node.
Let O = (p)? be an option, K = (p)∗ a Kleene closure pattern, f ∈ F an XML
fragment:

O ∼= f ⇔ p ∼= f ∨ {} ∼= f

K ∼= f ⇔ {} ∼= f ∨ p ∼= f ∨ p p ∼= f ∨ . . .

where f fulfills ENSS requirements I-IV.
The option pattern matches either an empty XML fragment or its inner pattern.

An alternative occurrence of two XML fragments is covered by the union pattern.
Different order of nodes in the sequence can be captured in the permutation
pattern:

Pattern ::=′ (′Pattern(′|′Pattern)+′)′

Pattern ::=′ (′Pattern Pattern+′)%′

Let U = (p1|p2) be a union pattern, P = (p1, . . . , pn)% a permutation pattern

U ∼= f ⇔ p1
∼= f ∨ p2

∼= f

P ∼= f ⇔ p1 p2 . . . pn
∼= f ∨ p1 p2 . . . pn pn−1

∼= f ∨ · · ·
· · · ∨ p1 pn . . . p2

∼= f ∨ · · · ∨ pn pn−1 . . . p2 p1
∼= f

The backtracking patterns can be arbitrarily combined to match complex XML
fragments. E.g. the pattern ((PP | PR)? NP)% matches three XML fragments:
(NP2), (NP11, PP18) and (PR19, NP21). Using the backtracking patterns re-
cursively enlarges the expressivity of the patterns a lot allowing to specify very
complex and variable structures without significant syntactic effort.

Variables can be assigned to any pattern

Pattern ::= Pattern′ =:′ String

accomplishing two functions. Whenever a variable is referenced within a pattern
by the reference pattern

Pattern ::=′ $′String′$′,

68 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

it evaluates to the pattern it was assigned to. The pattern
(NP)∗=:noun_phrase * $noun_phrase$ ∼= (NP2, ADV6, VP8, NP11) so
that the referenced pattern matches NP11. A pattern referencing the variable
v matches XML fragments that match the pattern that has been assigned to
v. To make the matching results more persistent and enable further processing
variables can be bound to the XML fragment that matched the pattern the
variable is assigned to. After matching the pattern \sentence[NE=:company *

\V{@normal=release} \NP[* "new" "version"]"of" NE=:product *] ∼= (sentence1)
the variable company refers to NE4(Nanosoft) and product is bound to
NE22(NanoOS). The relevant parts of XML fragment can be accessed by
variables after a match has been found. Assigning variable to the wildcard
pattern can be used to extract a subsequence between two known nodes:
"released" * =:direct_object "of" ∼= (”released”10 NP11 ”of”20) with the
variable direct_object bound to NP11.
Let A = p =: v be an assignment pattern:

A ∼= f ⇔ p ∼= f

Matching backtracking patterns can involve multiple matching variants of
the same XML fragment, which usually leads to different variable bindings
for each matching variant. As opposed to multiple matchings when dif-
ferent fragments match the same pattern discussed above, the first-match
policy is applied when the pattern ambiguously matches a XML fragment.
For instance, two different matching variants are possible for the pattern
(NP)?:=noun_phrase (NP | PR)∗:=noun_prep ∼= (NP11, PR19). In the first
case (NP)?:=noun_phrase ∼= (NP11) so that noun_phrase is bound to NP11

and noun_prep to PR19. In the second case (NP)?:=noun_phrase ∼= {} and
(NP | PR)∗:=noun_prep ∼= (NP11, PR19) so that noun_phrase is bound to {}
and noun_prep to (NP11, PR19). In such cases the first found match is returned
as the final result. The order of processing of single backtracking branches is
therefore crucial for appropriate variable bindings and hence for correct iden-
tification of information. The order of processing should therefore enable the
most reliable and reasonable first match. In case of the wildcard, for example,
the backtracking begins trying to match an empty fragment increasing it step
by step allowing so to match the following patterns that generally specify the
context of or extracted information itself more precisely, e.g. in
* (V)?=:action ∼= (NP2, ADV6, V9) the variable action is bound to V9.

6.3.4 Negation

When querying an XML document it is often useful not only to specify what is
expected but also to specify what should not occur. This is an efficient way to
exclude some unwanted XML fragments from the query result because sometimes
it is easier to characterize an XML fragment by not wanted rather than desirable
properties. Regular languages (according to Chomsky’s classification) are not
capable of representing that something should not appear stating only what may
or has to appear. In the pattern language the absence of some XML fragment
can be specified by negation.

As opposed to most XML query languages (e.g. Tregex) negation is a pattern and
not a unary boolean operator. Therefore it has no boolean value, but matches
the empty XML fragment. Since the negation pattern specifies what should not
occur, it does not “consume” any XML nodes during the matching process so
that we call it “non-substantial” negation. The negation pattern !(p) matches
the empty XML fragment if its inner pattern p does not occur in the current

6.3 Querying by pattern matching 69

context node. To underline the difference to logical negation, consider the dou-
ble negation. The double negation !(!(p)) is not equivalent to p, but matches
an empty XML element if !(p) matches the current context node, which is only
true if the current context node is empty. Since the negation pattern only spec-
ifies what should not occur, the standalone usage of negation is not reasonable.
It should be used as an inner pattern of other complex patterns. Specifying a
sequence
VP *=:wildcard_1 !(PR) *=:wildcard_2 NP we want to identify sequences
starting with VP and ending with NP where PR is not within a sequence.
Trying to find a match for the sequence starting in VP8 and ending in NP21

there are multiple matching variants for wildcard patterns. Some of them enable
the matching of the negation pattern binding PR to one of the wildcards, e.g.
wildcard_1 is bound to (NP11, PR19), !(PR) ∼= {}, wildcard_2 is bound to {}.
However, there is a matching variant when the negated pattern is matched with
PR19 (wildcard_1 is bound to NP11, wildcard_2 is bound to {}). We would
certainly not want the sequence (VP8, NP11, PR19, NP21) to match our pattern
because the occurrence of PR in the sequence should be avoided. Therefore we
define the semantics of the negation so that there is no matching variant that
enables the occurrence of negated pattern:
Let P1 !(p) P2 be a complex pattern comprising negation as inner pattern. P1

and P2 are the left and right syntactic parts of the pattern and may be not valid
patterns themselves (e.g. because of unmatched parentheses). The pattern ob-
tained from the concatenation of both parts P1 P2 is a valid pattern because it
is equivalent to the replacing of the negation by an empty pattern.

P1 !(p) P2
∼= f ⇔ P1 p P2 6∼= f ∧ P1 P2

∼= f

Requiring P1 p P2 6∼= f guarantees that no matching variant exists in that the
negated pattern p occurs. Since !(p) matches an empty fragment, the pattern
P1P2 has to match complete f . It is noteworthy that the negation is the only
pattern that influences the semantics of a complex pattern as its inner pattern.
Independent of its complexity any pattern can be negated allowing very fine-
grained specification of undesirable XML fragments.

6.4 Unification Algorithm

In the previous sections we introduced the formal semantics of the pattern lan-
guage, but did not explain how the patterns can be efficiently unified with XML
documents. This section presents a very fast stack-based algorithm for pattern
matching and unification with XML documents.

Besides the expressivity one of the main criteria for the goodness of a query
language is the efficiency of the query processing. Regular patterns of XDuce
and CDuce can be efficiently processed by FSMs. However, these languages loose
the expressive power lacking such important patterns as wildcard and negation.
Negation alone extends a pattern language beyond the expressive power of regular
languages so that FSMs cannot be used as the computational model for pattern
matching.

We propose a pattern matching algorithm that leverages the concept of a stack
for processing of both patterns and XML documents and features an efficient
backtracking mechanism. To assure the correct order of processing the stack
model adequately reflects the recursive structure of patterns and hierarchical
structure of XML documents. Patterns are processed on the pattern stack, XML

70 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

documents – on the element stack. Once a pattern has been matched, it is
removed from the stack. If a complex pattern is processed, its inner patterns are
put on the stack according to the semantics of the pattern. Both stacks capture
the current state of the matching process storing parts of a pattern or a XML
fragment that are not yet matched.

To handle the extended sequence semantics the system tries to match the higher
nodes of the hierarchy and if it fails, descends to the next lower level putting the
children of the currently processed element in reversed order on the stack. This
process continues iteratively until a match is achieved or a leaf of the XML tree
is reached. Once the descendants of a node n are put on the stack, the matching
process continues on the level of the respective descendant and can only return
to the level of n after all its descendants are matched. This guarantees that the
ENSS requirements III-IV are fulfilled.

6.4.1 Unification of Negation Pattern

Since the negation changes the matching semantics of the “ancestor” and inner
patterns that are processed before and after the negation pattern, its handling
is the most challenging part of the algorithm. Let N = P1 !(p) P2 be a negation
pattern. On the one hand, if the pattern P1 p P2 matches at some point of back-
tracking, the N will not match and no further backtracking in the ancestor pat-
terns is necessary. On the other hand, if at some point during the backtracking of
ancestor patterns P1 p P2 does not match, the backtracking will have to continue
in order to exclude the possibility that P1 p P2 matches. To control the back-
tracking behavior of ancestor patterns a special returned value is used. Matching
result is a tuple (success, backtracking) that consists of two boolean values.
success denotes whether a match has been found and backtracking – whether the
backtracking should be continued. Depending on the results of matching P1 p P2

the appropriate matching result is returned. If P1 p P2 matched, (false, false)
is returned indicating that the pattern N did not match and no further back-
tracking is necessary, otherwise (true, true) is returned indicating that in this
special backtracking branch N matches, but the backtracking should continue.

6.4.2 Handling Backtracking and Assignment Patterns

In case that the backtracking patterns are processed, copies of the both stacks
have to be made before the backtracking is started. If a match is not found in
one of backtracking branches, the stacks have to be reset to the state before the
backtracking began. Furthermore due to continuing backtracking after a match
in case of negation the first match and the stacks have to be backed up to restore
them after the backtracking ends.

Assignment patterns require a special treatment of their inner patterns. After
the inner pattern of the assignment pattern has been put on the stack there is
no possibility to determine where it ends. Since the variable is bound to the
XML fragment that matches its assigned pattern, it is important to know the
borders of the inner pattern. For this purpose a special pattern end marker is
put on the pattern stack. Every time the pattern end marker is removed, the
matching XML fragment is bound to the variable. To store the variable bindings
an environment is established. Variable bindings are twofold storing the assigned
pattern and matching XML fragments. If there are multiple matches of the
pattern in the document, the environment stores all matching XML fragments
in a list of variable bindings. When the reference pattern is processed, the value

6.4 Unification Algorithm 71

of the variable storing the assigned pattern is taken from the environment and
put on the pattern stack.

In the appendix B we present the unification algorithm for sequence, negation
and selected backtracking patterns in pseudocode. For the sake of simplicity we
omitted important aspects of the language such as variable bindings, multiple
matches etc.

6.4.3 Assessment of Time Complexity

Time Complexity of Matching Non-backtracking Patterns and their Se-
quences

The time complexity of the algorithm depends to a high degree on the number of
nodes in the subtree of the context node and the number and kind of backtracking
patterns. For any non-backtracking patterns the match is established traversing
the subtree of the context node until the matching node is found. This operation
requires constant time in the best case and n

2 in the average case, where n is
the number of randomly distributed nodes in the subtree of the context node.
However, linguistically preprocessed documents feature high locality of syntactic
XML elements, so that the distribution of nodes is not random. In this case
non-backtracking pattern (e.g. XML element pattern) will match in one of the
first branches so that the complexity is proportional to the height of the subtree
of the context node corresponding in the average case to log n.

The time complexity for the sequence of non-backtracking patterns lies in the
dimension of O(n). Assuming that the match of the first sequence element con-
sumed m1 first nodes in the subtree of the context node the problem size for
all subsequent elements is reduced to O(n − m1) since according to the ENSS
“consumed” nodes cannot participate in the matching of subsequent elements.
Matching the sequence of k elements terminates when the last sequence element
is matched against the node within the context subtree, i.e.

∑k
i=1 mi ≤ n or if

one of the sequence elements could not be matched. If j-th sequence element
could not be matched, the total time complexity still yields

∑j−1
i=1 mi + m′

j ≤ n,
where m′

j is the number of consumed nodes during the unsuccessful attempt to
match j-th element. Therefore even in the worst case the subtree of the context
node can only be traversed once during the matching of the sequence, which
guarantees linear runtime in the number of nodes of the subtree of the context
node.

Time Complexity of Matching Backtracking Patterns

Due to the different semantics of backtracking patterns a differentiated analysis
of their complexity is required. Let us first assume that backtracking pattern
comprise only non-backtracking patterns as their inner patterns. In this case
option and union patterns require a double time for matching in comparison
to their inner patterns, because to decide whether they match two variants in
general have to be examined. Hence their time complexity still will lie in O(n)
in the general case and O(log n) in case of linguistically annotated documents.

Matching wildcard in a sequence (otherwise occurrences of wildcard are not rea-
sonable and not used in the practice) requires in the average case backtracking on
the half and in the worst case on the whole subtree of the context node resulting

72 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

in

n∑
i=0

1 + T (n− i) = n +
n∑

i=0

T (i) or

n
2∑

i=0

1 + T (n− i) =
n

2
+

n∑
i=n

2

T (i)

respectively, where T (i) is the time complexity of matching the rest sequence after
the wildcard. Assuming that the sequence does not contain any backtracking
patterns and hence T (s) to be linear the sequence with a wildcard requires O(n2)
in average and worst cases. Our stack-based model helps to reduce the complexity
saving a linear factor when evaluating different backtracking branches of the
wildcard: while both stacks reflect the backtracking state after matching wildcard
with the sequence of i nodes, matching the wildcard with the sequences of i + 1
nodes corresponds to the removal of i + 1-th node from the element stack, which
requires a constant time (cf. the addition of 1 to T (n) in the formulas above).

Since in the worst case checking of all permutations of the inner patterns is
required, time complexity of matching permutation pattern is even exponential
in the number of nodes. However, the asymptotic exponential runtime is quite
irrelevant in practice because it effects may be precluded limiting the number
of inner elements of permutation to some constant value, so that the absolute
runtime does not significantly exceed that of other backtracking patterns.

Matching negation as a standalone pattern requires merely the time necessary
for the matching of its inner pattern. However, negation as a part of a complex
pattern has a serious impact on the time needed for its match as we will see in
the next section.

Asymptotic Runtime of Matching Complex Recursive Patterns

Assessment of the runtime of matching complex patterns that consist of sequences
of backtracking patterns that in turn comprise backtracking patterns as their
inner patterns is a very difficult task because a very differentiated analysis is
required and many assumptions about the kind of combinations, nesting degree
of patterns and structure of the subtree of the context node have to be made.
For example, while during the matching of combinations of backtracking patterns
without negation complete backtracking is often unnecessary because the match
is found in one of the backtracking branches, negation forces the evaluation of
all backtracking branches containing the negation to ensure that the negated
pattern does not occur in any branch (cf. sec. 6.3.4). The presence of negation
implicates therefore worst case runtime.

Another important fact is the nesting degree, i.e. how often a backtracking
pattern is enclosed by another backtracking pattern (e.g. consider the pattern
((("A" | "B")? * "C")%)∗). The time complexity of matching such complex
nested patterns can be estimated multiplying the complexities of single back-
tracking patterns taking into account that in contrast to non-backtracking pat-
tern the problem size remains constant for all nested backtracking pattern be-
cause every backtracking pattern independent of the nesting level will be matched
on the subtree of the same context node (i.e. in our example every backtracking
branch of the inmost union pattern begins on the same context node as the back-
tracking branches of the outer Kleene star pattern). However, if a backtracking
pattern is nested by a non-backtracking pattern, e.g. \NP[* "new" "version"],
the problem size is reduced to the size of the subtree of the node that matches
the non-backtracking pattern (i.e. element NP in our example).

6.4 Unification Algorithm 73

Not all possible nesting combinations in complex patterns are reasonable and lead
to the multiplication of the time complexity, since the resulting patterns may be
simplified by the algebraic transformations, e.g. (*)∗=* or ("A"?)∗=("A")∗ (cf.
appendix C).

Since the runtime for matching of complex patterns depends on many parameters
(number and kind of backtracking patterns, their nestings or sequences, presence
of negation, number of non-backtracking patterns etc.) many assumptions have
to be made to formally derive the asymptotic runtime in the average case. This
average case would represent just one point in the huge spectrum of possible
cases so that the assessment of time complexity for the general case of complex
patterns is neither relevant nor reasonable. In our concrete scenario of matching
linguistic patterns with linguistically preprocessed documents we can guaran-
tee polynomial asymptotic runtime for the worst case (limiting the number of
permutation elements to 5)

O(n2k ∗ (log n)l ∗ 5!
2
∗m ∗ n)

where k corresponds to the number of wildcards and Kleene Star patterns, l
denotes the number of options and unions and m – the number of permutations.
The worst case assumes that the backtracking patterns are nested by each other
and matched with the top level context node, so that for most real patterns the
runtime will be much shorter.

Above we have presented the analysis of time complexity for the general case.
The real runtime on the preprocessed documents is usually lower than the theo-
retically derived asymptotic runtime because of optimizations of matching pro-
cess exploiting the properties of the documents such as high locality of XML
elements. Optimizations aim at reduction of backtracking cost by evaluating the
backtracking branches first that are more likely to contain the match.

6.5 Summary

XML documents with multi-dimensional markup feature a heterogeneous struc-
ture that depends on the algorithm for merging of concurrent markup. We
present a pattern language that allows to abstract from the concrete structure of
a document and formulate powerful queries. The extended sequence semantics
allows matching of sequences across element borders and on different levels of the
XML tree ignoring nesting levels irrelevant for the query. The formal specifica-
tion of the sequence semantics guarantees that the properties of “classic” sibling
sequence such as ordering, absence of gaps and overlaps between the neighbors
are maintained. The combination of fully recursive backtracking patterns with
the ENSS semantics allows complex queries reflecting the complicated positional
and hierarchical dependencies of XML nodes within a multi-dimensional markup.
Negation enhances the expressivity of the queries specifying an absence of a pat-
tern in a certain context.

Viewing patterns as XML queries opens a fully different view on our approach to
IE. It can be regarded as a query-based approach in that information is identified
and extracted by XML queries that are induced during the learning phase. Our
IE system actually learns effective XML queries that retrieve relevant information
from the linguistically preprocessed XML documents.

74 6 Pattern Unification by Querying XML: A Pattern Based XML Query Language

