
5 Preprocessing of Text Corpus

Relevant information in the natural language texts is not solely characterized
by lexical expressions. Looking for linguistic regularities in the expression of
certain information the syntax and morphology of the language are often even
more important than the exact phrases that contain it. Besides, text layout and
original markup of a document can provide additional features of extracted infor-
mation. Therefore linguistic patterns capture all sources of metadata describing
the actual text that may be helpful in identifying relevant content.

To obtain the metadata original texts have to be analyzed by linguistic tools. This
chapter describes the phase of linguistic preprocessing that precedes the induction
of extraction rules and the actual extraction. Different stages of linguistic analysis
and the employed tools are presented. Furthermore we introduce a uniform XML
format for annotated documents that incorporates all obtained information and
serves as the basis for learning and application of extraction rules.

The preprocessing stage is concluded by a semantic preprocessing that aims at
the recognition of synonymy, which plays an important role in the generalization
of extraction rules. While in the linguistic analysis we utilize tools provided by
a third party for the semantic preprocessing we developed a statistical method
based on a lexical graph. The vertices of the graph represent words and the
length of edges between them reflects their statistical cooccurrence. We propose
special synonymy metrics and evaluate them on a test set of 200 synonym sets.

5.1 Linguistic preprocessing

Beside the semantics of words, phrases and sentences text structure and linguistic
information can play an important role in identifying relevant content. Structural
and linguistic analysis offers additional features for characterization of extractions
and their context. To recognize structure and linguistic properties of texts we
employ external tools.

XML and HTML documents usually contain explicitly encoded structural and
layout information so that no additional structural analysis is required. The sys-
tem can capture the layout elements directly as additional features when building
extraction rules. The semantics of the elements is not supposed to be known,
since they are captured on a syntactic level. A presence or absence of certain
layout elements or recurring XML structure in context of extracted fragments

46 5 Preprocessing of Text Corpus

are reflected by the extraction patterns.

Although plain texts do not include explicit structuring markup, they feature
implicit structure that can vary depending on the text kind. Apart from possible
division of the text in chapters and sections structuring of smaller text parts is
especially valuable for IE. Headings, paragraphs and enumerations can be distin-
guished by specific layout, position relatively to other text parts, indentation etc.
Emphasized text can be recognized by usage of special characters or capitaliza-
tion. We use txt2html [txt] for analysis of the implicit text structure. Recognized
layout elements are encoded as HTML tags so that eventually HTML documents
with explicit structural information are generated that correspond to the original
plain texts. They serve as the input for consecutive linguistic analysis.

Linguistic knowledge can be successfully utilized for the purpose of information
extraction. Since many facts are distinguished by a certain syntactic structure,
morphological features or represented by a named entity, the additional informa-
tion about the linguistic properties of the text is essential for their identification.
Linguistic preprocessing is accomplished by TreeTagger [Tre04] and includes

Tokenization: Starting with a sequence of characters the goal is to identify
the elementary parts of natural language: words, punctuation marks and
separators. The resulting sequence of meaningful tokens is a base for further
linguistic and any text processing.

Sentence Splitting: Sentences are one of the most important elements of the
natural language for structured representation of the written content. Bind-
ing interrelated information they are the smallest units for expression of
completed thoughts or events. Since the extraction rules match and ex-
tract information from sentences, the correct recognition of the sentence
borders is crucial for the quality of extractions. The task would be trivial if
the punctuation marks were not ambiguously used. Correct representation
of a text as a sequence of sentences is utilized for syntactic parsing.

Morphological Analysis: Certain facts are typically expressed by certain
parts of speech (e.g. names). Part of speech of every token is determined
assigning a category from Penn Treebank Tag Set [Mar93] in case of texts
written in English or Stuttgart-Tübingen Tagset [Stu95] in case of German
texts. Both tag sets provide a good coverage of morphological diversity
accounting, for instance, for mood, number and tense of verbs. Segmen-
tation of compounds, recognition of stem, flection forms and consecutive
normalization disclose further important morphological features.

Chunk Parsing: While deep sentence parsing is still the subject of current
research, there are lightweight alternatives that provide limited syntactic
knowledge and are more reliable. Chunk parsing – a shallow syntactic anal-
ysis of the sentence fragments performed on phrasal level – identifies low-
level syntactic constituents (e.g. noun, verb, prepositional phrases) without
considering deeper syntactic dependencies between them. However, shal-
low parsing is sufficient for the purpose of IE because extracted information
is often completely included in a noun, verb or prepositional phrase that
build the most relevant context for its recognition.

Basic Named Entity Recognition Named entities are one of the most often
extracted types of tokens.TreeTagger utilizes a combined approach to NER
based on lookup in predefined lists (e.g. of geographic locations, company
names) and decision trees. However, TreeTagger ’s NER is limited to mere

5.1 Linguistic preprocessing 47

<html>
. . .
<body>
. . .

<p>
<sent>

<const type=”NC”>
<pos type=”CD” normal=”2”>2</pos>
<pos type=”NE” normal=”FEB”>FEB</pos>
<pos type=”CD” normal=”@card@”>89</pos>

</const>
<pos type=”:” normal=”–”>–</pos>
. . .
<const type=”NC”>

<pos type=”CD” normal=”seven”>SEVEN</pos>
<pos type=”NNS” normal=”soldier”>SOLDIERS</pos>

</const>
<const type=”VC”>

<pos type=”VBD” normal=”be”>WERE</pos>
<pos type=”VVN” normal=”kill”>KILLED</pos>

</const>
<const type=”ADJC”>

<pos type=”CC” normal=”and”>AND</pos>
</const>
<const type=”NC”>

<pos type=”JJ” normal=”several”>SEVERAL</pos>
</const>
<const type=”VC”>

<pos type=”VBD” normal=”be”>WERE</pos>
</const>
<const type=”NC”>

<pos type=”VVN” normal=”wounded”>WOUNDED</pos>
</const>
<const type=”PC”>

<pos type=”IN” normal=”by”>BY</pos>
<const type=”NC”>

<pos type=”DT” normal=”a”>A</pos>
<pos type=”NN” normal=”bomb”>BOMB</pos>

</const>
</const>
. . .
<const type=”NC”>

<pos type=”NE”>ARAUCA</pos>
<pos type=”NN” normal=”department”>

DEPARTMENT
</pos>

</const>
<pos type=”SENT” normal=”.”>.</pos>

</sent>
</p>

</body>
</html>

Figure 5.1: Sample text
enriched with structural

and linguistic information

48 5 Preprocessing of Text Corpus

identification of named entities without determining their types and is es-
sentially an extended POS tagging.

The results of linguistic analysis are integrated in the processed documents as
XML annotations. These documents already contain HTML/XML markup since
they either have been augmented with structural information by txt2html or orig-
inally have been in HTML or XML format. Therefore the linguistic annotations
are merged with the existing XML structure of a document resulting in a sin-
gle XML document, which contains complete information about its linguistic and
structural properties and offers a uniform interface for further processing. Figure
5.1 depicts the preprocessed text from the example in fig. 4.3.

In this connection the important role of XML should be underlined: XML is
widely accepted as a meta-language that is very suitable for text annotations.
We exploit its ability to easily combine and integrate annotations from different
sources to generate a single source combining the textual content and all de-
scribing information. To avoid the problem of overlapping annotations, standoff
annotations can be used alternatively (refer to sec. 6.1). We deliberately chose
the merged format because it offers an optimal platform for learning linguistic
patterns since patterns comprise every kind of information about the extracted
fragments including linguistic, structural, lexical etc. information, which should
be reflected in the document format. XML documents are therefore the basis
for the rule learning: the extraction rules are generated from and operate not
on original plain texts, but on XML documents enriched with structural and
linguistic information.

5.2 Semantic Preprocessing: Recognition of Synonyms

Diversity of the natural language is one of the major hurdles for successful in-
formation extraction. Especially expression variety is challenging to capture by
extraction patterns in order to cover possibilities of information communication
written natural language offers. To cope with the language diversity on the word
level semantic relations between words such as synonymy and hypernymy can
be utilized. In spite of using similar syntactic structures information is often
expressed differently replacing certain words by their synonyms. Extraction pat-
terns that are generated from training examples can therefore be generalized
replacing a concrete lexical item by a synonym pattern that matches not only a
concrete word but also any of its synonyms. E.g. while the pattern ”murder”[PC:
”of”[NC]=:victim target] matches the text fragment Murder of General Bustillo, ex-
tending it by the synonym pattern Synset:”murder” [PC: ”of” [NC]=:victim target]
allows to identify the victim also in the text fragments Assassination of General
Bustillo and Homicide of General Bustillo. The abstraction of extraction patterns
by using synonym patterns instead of lexical elements increases the coverage of
patterns without significantly extending their semantics because of similar word
senses of synonym words.

Semantic relations between words are usually comprised by thesauri that now
serve as an important source of semantic and lexical information for automatic
text processing. The electronic online thesauri such as WordNet [Wor05] and
OpenThesaurus [Ope05] have been increasingly employed for many IR and NLP
problems. However, considerable human effort is required to keep up with the
evolving language and many subdomains are not sufficiently covered [Tur01].
Many domain-specific words or word senses are not included; inconsistency and

5.2 Semantic Preprocessing: Recognition of Synonyms 49

bias are often cited as further major deficiencies of hand-made thesauri [Cur02],
[Sen03]. Besides, certain synonym relations that play an important role in one
domain are not essential or even wrong in another because of different word senses
that are typical for a domain. For example, consider the domain of MUC corpus
dealing with terrorist acts where the words killing and assassination are synony-
mous and the domain “operating systems” where the word killing is exclusively
reserved for denoting termination of programs and processes and the mentioned
synonymy is extraneous. For these reasons we abstained from embedding an
existing thesaurus and developed an adaptive method for automatic recognition
of synonymy [Sin06b], which detects relations that are relevant and useful in a
particular domain relying on domain text corpus.

Our method is based on a lexical graph. The graph is generated from a text
corpus by embedding linguistically preprocessed sentences in the graph structure.
The vertices of the graph are lexical items (words), their connection follows the
syntactic structure of a sentence. The structure of the graph and distances
between vertices can be utilized to define metrics for identification of semantic
relations. The approach has been evaluated on a test set of 200 German synonym
sets. Influence of size of the text corpus, word generality and frequency has
been investigated. Conducted experiments for synonyms demonstrate that the
presented methods can be extended to other semantic relations.

5.2.1 Approaches to Recognition of Synonymy

Identification of semantic relations has been approached by different communities
as a component of a knowledge management system or application of a developed
NLP framework. Many approaches are guided by the assumption that similar
terms occur in similar context and obtain a context representation of terms as
attribute vectors or relation tuples [Cur02], [Rug97], [Lin98]. A similarity metric
defined on the context representations is used to cluster similar terms (e.g. by the
nearest neighbor method). The actual definitions of context (whole document
[Che92], textual window, some customized syntactic contexts, cf. [Sen03]) and
similarity metric (cf. [Man99], [Cur02]) are the essential distinguishing features
of the approaches.

A pattern-based method is proposed by Hearst [Hea98]. Existing relations in
the WordNet database are used to discover regular linguistic patterns that are
characteristic for these relations. The patterns contain lexical and syntactic
elements and are acquired from a text corpus by identifying common context of
word pairs for which a semantic relation holds. Identified patterns are applied
to a large text corpus to detect new relations. The method can be enhanced by
applying filtering steps and iterating over new found instances [Phi02].

Lafourcade and Prince base their approach on reduction of word semantics to
conceptual vectors (vector space is spanned by a hierarchy of concepts provided
by a thesaurus, [Laf01b]). Every term is projected in the vector space and can be
expressed by the linear combination of conceptual vectors. The angle between the
vectorial representations of two terms is used in calculation of thematic closeness
[Laf01c]. The approach is more closely related to our approach since it offers
a quantitative metric to measure the degree of synonymy between two lexical
items.

In contrast, Turney [Tur01] tries to solve a quite simpler “TOEFL-like” task of
selecting a synonym to a given word from a set of words. Mutual information
related to the co-occurrence of two words, which is based on conditional probabil-
ities of co-occurrence obtained by the information retrieval, is used to assess the

50 5 Preprocessing of Text Corpus

degree of their statistical independence. The least independent word is regarded
synonymous.

Blondell et al. [Blo04] encode a monolingual dictionary as a graph and identify
synonyms by finding subgraphs that are similar to the subgraph corresponding
to the queried term.

The common evaluation method for similarity metrics is comparing their per-
formance on the same test set with the same context representations with some
manually created semantic source as the gold standard [Cur02]. Abstracting
from results for concrete test sets, Weeds et al. [Wee04] try to identify statistical
and linguistic properties on that the performance of similarity metrics generally
depends. Different bias towards words with high or low frequency is recognized
as one reason for the significant variance of k-nearest neighbors sets of different
similarity metrics.

5.2.2 Construction of the lexical graph

The assumption that similar terms occur in similar context leads to the estab-
lishing of explicit context models (e.g. in form of vectors or relation tuples) by
most researchers. We build an implicit context representation connecting lexical
items in a way corresponding to the sentence structure (as opposed to [Blo04]),
where a term is linked to every word in its definition). The advantage of the
graph model is its transitivity: not only terms in the immediate context but also
semantically related terms that have a short path to the examined term (but
perhaps have never occurred in its immediate context) can contribute to identi-
fication of related terms. The similarity metric can be intuitively derived from
the distance between the lexical vertices in the graph.

Figure 5.2: Main steps
during graph construction

Linguistically annotated documents obtained by linguistic preprocessing are used
for construction of the lexical graph. To preserve the semantic structure of the
sentences during the graph construction, i.e. to connect words that build the
actual statement of the sentence, parsed sentences are modified before being in-
serted in the graph (fig. 5.2). The punctuation signs and parts of speech that do
not carry a self-contained semantics (such as conjunctions, pronouns, articles) are
removed in a POS filtering step. Tokenization errors are heuristically removed
and the words are replaced by their normal forms (e.g. infinitive form for verbs,
nominative singular for nouns). In case of German texts we have to take into ac-
count that German grammar is characterized by a very frequent use of auxiliary
and modal verbs that in most cases immediately precede or follow the semanti-
cally related sentence parts such as direct object or prepositional phrase while the

5.2 Semantic Preprocessing: Recognition of Synonyms 51

main verb is often not adjacent to the related parts in a sentence. Since the direct
edge between the main verb and non-adjacent related sentence parts cannot be
drawn, the sentence is syntactically reorganized by replacing the modal or aux-
iliary verbs by the corresponding main verb. Another syntactic rearrangement
takes place when detachable prefixes are attached to the corresponding main
verb. In German some prefixes of verbs are detached and located at the end of
the main clause. Since verbs without a prefix have a different meaning, prefixes
have to be attached to the verb stem1. The reorganized sentence can be added to

Figure 5.3: An example of
a sentence transformed in

a lexical graph
the graph inserting the normalized words in a sentence as vertices and connecting
the adjacent words by a directed edge. However, some adjacent words are not
semantically related to each other, therefore the lexical graph features two types
of edges (see an example in fig. 5.3). A property edge links the head word of a
syntactic chunk (verb or noun phrase) with its modifiers (adverbs or adjectives
respectively) that characterize the head word and is bidirectional. A sequential
edge connects the head words (e.g. main verbs, head nouns) of syntactic chunks
reflecting the “semantic backbone” of the sentence.

The length of an edge represents how strong two lexical items are related to
each other and depends therefore on the frequency of their co-occurrence. It is
initialized with a maximum length M . Every time an existing edge is found in the
currently processed sentence, its current length CurLen is modified according to
CurLen = M

M
CurLen

+1
; hence the length of an edge is inversely proportional to the

frequency of co-occurrence of its endpoints.

After all sentences from the text corpus have been added to the lexical graph,
vertices (words) with a low frequency (≤ θ) are removed from the graph to
primarily accelerate the distance calculation. Such rarely occurring words are
usually proper nouns, abbreviations, typos etc. Because of the low frequency
semantic relations for these words cannot be confidently identified. Therefore
removing such vertices reduces the size of the graph significantly without perfor-
mance penalty (the graph generated from 5 journal volumes contained around
300000 vertices and 52191 after frequency filtering with θ = 8). Experimental
results feature even a slightly better performance on filtered graphs. To preserve
semantic consistency of the graph and compensate removal of existing paths the
connections between the predecessors and successors of removed vertices have
to be taken into account: the edge length e(p, s) between the predecessor p to
the successor s of the removed vertex r can incorporate the length of the path
length(p, r, s) from p to s through r by calculating the halved harmonic mean:

1 this is the only time a language specific heuristic is utilized in GROPUS. Since recognition
of synonyms is an optional preprocessing step, the requirement for language independence is
fulfilled

52 5 Preprocessing of Text Corpus

e(p, s) = e(p,s)∗lprs

e(p,s)+lprs
. e(p, s) is the more reduced the smaller length(p, r, s) is and

if they are equal, e(p, s) is half as long after merging.

Beside direct edges an important indication of semantic closeness is the distance,
i.e. the length of the shortest path between two vertices. Distances are calculated
by the Dijkstra algorithm with an upper threshold Θ. Once the distances from
a certain vertex reach the threshold, the calculation for this vertex is aborted
and the not calculated distances are considered infinite. Using the threshold
reduces the runtime and space considerably while the semantic relation between
the vertices with distances > Θ is negligible.

The values of M , θ and Θ depend on the particular text corpus and are cho-
sen to keep the size of the graph feasible. θ can be determined experimentally
incrementing it as long as the results on the test set are improving.

5.2.3 Identification of synonyms

The lexical graph is conceived as an instrument to identify semantic relations such
as synonymy and hypernymy between lexical items represented by its vertices.
The goal of semantic preprocessing is finding synonyms albeit some results can be
immediately transferred for identification of hyponyms. To provide a quantitative
measure of synonymy different similarity metrics (presented below) were defined
on the lexical graph. Given a word, the system uses the metric to calculate the
closest vertices to the vertex that represents this word. The result is a ranked
list of words sorted by the degree of synonymy in descending order. Every metric
sim is normalized to provide a confidence measure so that given a vertex vi the
value sim(vi, vj) can estimate the confidence of vj being synonym to vi. The
normalization is performed for each metric sim by the following functions:

nmin(sim(vi, vj)) = min(sim(vi,v1),...,sim(vi,vn))
sim(vi,vj)

for metrics that indicate maximum similarity to a vertex vi by a minimum value
and

nmax(sim(vi, vj)) = sim(vi,vj)
max(sim(vi,v1),...,sim(vi,vn))

for metrics that indicate maximum similarity to a vertex vi by a maximum value,
where v1 . . . vn are the set of graph vertices. In both cases the top-ranked word
has the maximum confidence of 1 to be a synonym of vi. The normalized ranked
lists are used for the comparison of different metrics and the evaluation of the
approach (see sec. 5.2.4).

A similarity metric is supposed to assess the semantic similarity between two
vertices of the lexical graph. Since the distance metric DistanceM used for cal-
culation of distances between the vertices in the graph indicates how semantically
related two vertices are, it can be used as a similarity metric. As the graph is di-
rected, the distance metric is asymmetric, which implies that different distances
between vj and vi can be measured depending on, which word is queried. The
major drawback of the DistanceM is that it takes into account only one path
between the examined vertices. Even though the shortest path indicates a strong
semantic relation between the vertices, it is not sufficient to conclude synonymy
that presupposes similar word senses.

Therefore more evidence for strong semantic relation with the particular aspect of
similar word senses should be incorporated in the similarity metric. The property
neighbors of a vertex vi (adjacent vertices connected with vi by the property
edge) play significant role in characterizing similar senses. If two terms share
many characteristic properties, there is a strong evidence of their synonymy. A

5.2 Semantic Preprocessing: Recognition of Synonyms 53

shared property can be regarded as a witness of the similarity of two word senses.
There are other potential witnesses, e.g. transitive verbs shared by their direct
objects; however, we restricted this investigation to the property neighbors as
the most reliable witnesses.

The simple method to incorporate the concept of the witnesses into the metric
is to determine the number of common property neighbors:

NaivePropM(vi, vj) = |prop(vi) ∩ prop(vj)|

where prop(vi) = {vk|e(i, k) is a property edge} This method disregards, how-
ever, the different degree of correlation between the vertices and their property
neighbors that is reflected by the length of property edges. A property is the
more significant, the stronger the correlation between the property and the ver-
tex is, that is the shorter the property edge is. The degree of synonymy of two
terms depends therefore on the number of common properties and the lengths of
paths between these terms leading through the properties. Analogously to the
electric circuit one can see the single paths through different shared properties
as channels in a parallel connection and path lengths as ”synonymy resistances”.
Since a bigger number of channels and smaller single resistances contribute to
the decreasing of the total resistance (i.e. the evidence of synonymy increases),
the idea of WeiPropM metric is to determine the similarity value analogously to
the total resistance in a parallel connection:

WeiPropM ′(vi, vj) =

(
n∑

k=1

1
length(vi, pk, vj)

)−1

where length(vi, pk, vj) = e(vi, pk) + e(pk, vj) is the length of the path from vi to
vj through pk and pk ∈ prop(vi) ∩ prop(vj).

Another useful observation is that some properties are more valuable witnesses
than the others. There are very general properties that are shared by many
different terms and some properties that are characteristic only for certain word
senses. Thus the number of property neighbors of a property can be regarded as
a measure of its quality (in the sense of characterizing the specific word meaning).
WeiPropM integrates the quality of a property by weighting the paths leading
through it by the number of its property neighbors:

WeiPropM(vi, vj) =

(
n∑

k=1

1
(e(vi, pk) + e(pk, vj)) ∗ |prop(pk)|

)−1

where pk ∈ prop(vi) ∩ prop(vj).

WeiPropM measures the correlation between two terms based on the path
lengths. Frequently occurring words tend to be ranked higher because the prop-
erty edge lengths indirectly depend on the absolute word frequency. Because of
high absolute frequency of words the frequency of their co-occurrence with differ-
ent properties is generally also higher and the property edges are shorter. There-
fore to compensate this deficiency (i.e. to eliminate the bias discussed in [Wee04])
an edge length from a property to a ranked term e(pk, vj) is weighted by the
square root of its absolute frequency

√
freq(vj). Using the weighted edge length

between the property and the ranked term we cannot any longer calculate the
path length between vi and vj as the sum length(vi, pk, vj) = e(vi, pk)+e(pk, vj)∗√

freq(vj) because the multiplied second component significantly outweighs the
first summand. Relative path length can be used instead where both components

54 5 Preprocessing of Text Corpus

are adequately taken into account and added relatively to the minimum of the re-
spective component: let min1 be min(e(vi, pa), . . . , e(vi, pn)) where pk ∈ prop(vi)
and min2 = min(. . . , e(pk, vj) ∗

√
freq(vj), . . .) where pk ∈ prop(vi)∩prop(vj).

Relative path length would be e(vi,pk)
min1 + e(pk,vj)∗

√
freq(vj)

min2 . Further experimental
observation suggests that when searching for synonyms of vi the connection be-
tween vi and the property is more significant than the second component of the
path – the connection between the property and the ranked term vj . Therefore
when calculating the relative path length the first component has to be weighted
stronger (the examined ratio was 2:1). The corresponding metric can be defined
as follows:

FirstCompM(vi, vj) =

(
n∑

k=1

1
RelPathLength(k) ∗

√
|prop(pk)|

)−1

where RelPathLength(x) = 2
3 ∗

e(vi,px)
min1 + 1

3 ∗
e(px,vj)∗

√
freq(vj)

min2

As opposed to NaivePropM and WeiPropM FirstCompM is not symmetric be-
cause of the emphasis on the first component.

5.2.4 Experiments with Synonym Recognition

The common evaluation method for similarity metrics is comparing their perfor-
mance on the same test set with the same context representations with some
manually created semantic source as the gold standard [Cur02]. We used a
large text corpus of 5 volumes of German computer journals to examine the
behavior of different metrics and identify other factors that have an influence
on the goodness of synonym recognition. The resulting graph generated with
M = 220, θ = 8, Θ = 60000 contained 52191 vertices, 4,927,365 edges and
376,000,000 distances. A test set of 200 synonym sets was prepared consulting
[Ope05]. The test set consists of 75 everyday words (e.g. “Präsident” (president),
“Eingang” (entrance) “Gruppe” (group)), 60 abstract terms (e.g. “Ursache” (rea-
son), “Element”, “Merkmal” (feature)) and 65 domain-specific words (e.g. “Soft-
ware”, “Prozessor” (CPU)).

Rank

Score points

Figure 5.4: Graph of the
scoring function The similarity metrics do not distinguish between different word senses returning

synonyms of all senses of the polysemous words in a single ranked list. Therefore
the synonym set of a word in the test corpus is the union of synonym sets of
its senses. To provide a measure for overall performance and to compare the

5.2 Semantic Preprocessing: Recognition of Synonyms 55

Metric Score Π(1) Π(5) Π(25) Π(100)
DistanceM 2990.7 0.20 0.208 0.199 0.38

NaivePropM 6546.3 0.415 0.252 0.271 0.440
WeiPropM 9411.7 0.54 0.351 0.398 0.607

FirstCompM 11848 0.575 0.412 0.472 0.637

Table 5.1: Results of
different metrics on the

test corpus different metrics a function measuring the similarity score (SimS) was defined
that assigns a score to a metric for correctly found synonyms among the 25
top-ranked. The function assigns 25 points to the correctly found top-ranked
synonym of vi (SimS(0, vi) = 25) and 1 point to the synonym with the 25th rank
(SimS(25, vi) = 1). The rank of a synonym is decreased only by false positives
that are ranked higher (i.e. each of correctly identified top n synonyms has rank
0). In order to reward the top-ranked synonyms stronger the scoring function
features a hyperbolic descent (its graph is visualized in fig. 5.4). For a synonym
of vi with the rank x:

SimS(x, vi) =

 0, if x /∈ synset(vi)
24∗

√
26

(
√

26−1)∗
√

x+1
+ 1− 24√

26−1


To compare performance of different metrics the SimS values of the top 25
words in the ranked list were summed for each word of a test corpus. The total
score of a similarity metric Sim is

∑200
i=1

∑25
j=1 SimS(rank(RankedList(vi, j)), vi)

where RankedList(vi, j) returns the word at the position j from the ranked list
produced by Sim for vi and v1, . . . , v200 are the words of the test corpus.

Besides, a combined precision and recall measure Π was used to evaluate the
ranked lists. Given the word vi, we examined the first n words (n = 1, 5, 25, 100)
of the ranked list returned by a similarity metric for vi whether they belong
to the synset(vi) of the test corpus. Π(n) will measure precision if n is less
than the size of the synset(vi) because the maximum recall can not be reached
for such n and recall otherwise because maximum precision cannot be reached
for n > |synset(vi)|. The Π values were averaged over 200 words. Table 5.1
presents the result of evaluating the similarity metrics introduced in sec. 5.2.3.
The results of DistanceM confirm that regarding distance between two vertices
alone is not sufficient to conclude their synonymy. DistanceM finds many related
terms ranking general words with many outgoing and incoming edges higher, but
it lacks the features providing the particular evidence of synonymy. NaivePropM
is clearly outperformed by the both weighted metrics. The improvement relative
to the DistanceM and acceptable precision of the top-ranked synonyms Π(1)
show that considering shared properties is an adequate approach to recognition
of synonyms. Ignoring the strength of semantic relation indicated by the graph
and the quality of properties is the reason for the big gap in the total score
and recall value (Π(100)). Both weighted metrics achieved results comparable
with those reported by Curran and Moens in [Cur02] and Turney in [Tur01].
Best results of FirstCompM confirm that the criteria identified in sec. 5.2.3 such
as generality of a property, abstraction from the absolute word frequency etc.
are relevant for identification of synonyms. FirstCompM performed particularly
better in finding synonyms with the low frequency of occurrence.

In another set of experiments we investigated the influence of the size of the text
corpus (cf. fig. 5.5). The plausible assumption is the more texts are processed,
the better the semantic connections between terms are reflected by the graph,
the more promising results are expected. The fact that the number of vertices

56 5 Preprocessing of Text Corpus

Frequency 9-249 250-499 500-999 1000-1499 1500-2499 2500-3999 4000-5499 5500-7499 >7500
Words/cluster 27 25 44 30 27 15 11 8 13
Aver. score 53.23 51.52 45.80 60.75 56.51 58.75 97.21 106.11 73.85

Π(1) 0.556 0.52 0.432 0.567 0.667 0.667 0.818 0.75 0.615
Π(5) 0.381 0.392 0.342 0.395 0.393 0.413 0.600 0.675 0.503
Π(25) 0.447 0.432 0.446 0.494 0.474 0.419 0.531 0.550 0.600
Π(100) 0.561 0.645 0.618 0.610 0.690 0.623 0.705 0.642 0.748

Table 5.2: Influence of
word frequency on the
results of FirstCompM

metric
does not grow proportionally to the size of text corpus can be explained by
word recurrence and growing filtering threshold θ. However, the number of edges
increases linearly and reflects the improving semantic coverage. As expected,
every metric performs considerably better on bigger graphs. While NaivePropM
seems to converge after three volumes, the both weighted metrics behave strictly
monotonically increasing. Hence an improvement of results can be expected
on bigger corpora. On the small text corpora the results of single metrics do
not differ significantly since there is not sufficient semantic information captured
by the graph, i.e. the edge and path lengths do not fully reflect the semantic
relations between the words. The scores of both weighted metrics grow, though,
much faster than that of NaivePropM. FirstCompM achieves the highest gradient
demonstrating the biggest potential of leveraging the growing graph for finding
synonymy.

Figure 5.5: Influence of
the size of the text corpus.

To examine the influence of the word categories results on the subsets of the
text corpus corresponding to a category are compared. All metrics show simi-
lar behavior, therefore we restrict the analysis to the Π values of FirstCompM
(fig. 5.6). Synonyms of domain-specific words are recognized better than those
of abstract and everyday words. Their semantics are better reflected by the
technically oriented texts. The Π values for abstract and everyday words are
pretty similar except for the high precision of top-ranked abstract synonyms.
Everyday words suffer from the fact that their properties are often too general to
uniquely characterize them, which involves loss of precision. Abstract words can
be extremely polysemous and have many subtle aspects that are not sufficiently
covered by the texts of computer journals.

To test whether the metrics perform better for the more frequent words the
test set was divided in 9 disjunctive frequency clusters (table 5.2). FirstCompM
achieved considerably better results for very frequently occurring words (≥ 4000
occurrences). This confirms indirectly the better results on the bigger text cor-

5.2 Semantic Preprocessing: Recognition of Synonyms 57

Figure 5.6: Dependency of
Π(n) on word category
(results of FirstCompM

metric) pora: while low frequency does not exclude random influence, frequent occurrence
involves adequate capturing of the word semantics in the graph by inserting and
adjusting all relevant property edges. These results do not contradict the con-
clusion that FirstCompM is not biased towards words with a certain frequency
because the mentioned bias pertains to retrieval of synonyms with a certain fre-
quency, whereas in this experiment the performance for different word frequencies
of queried words is compared.

5.2.5 Utilization of Synonym Recognition for Abstraction of Extraction Pat-
terns

The empirical investigation demonstrated that the lexical graph can serve as
an instrument for finding synonymy between lexical items in natural language
corpora. The big advantage of the graph in comparison to other context models is
that it captures not only the immediate context but establishes many transitive
connections between related terms. Similarity metric FirstCompM that best
leverages the graph structure achieved the best results confirming the significant
role of the number of shared properties, the frequency of their co-occurrence
and the degree of their generality for detecting synonymy. Therefore this metric
can be used for the determination of a synonym set of a queried word. When
abstracting a lexical item during the generalization of extraction patterns, it is
submitted as a synonym query to the lexical graph. The ranked list of words
is determined by the FirstCompM metric. The top five ranked words in the
ranked list or any word with the maximum confidence measure are returned as
a synonym set, which can be used for abstraction.

The experimental results suggest that a considerable portion of top five ranked
words are not synonymous to the queried term (cf. table 5.1). However, we
deliberately take these erroneously identified synonyms into account since it is
much more unlikely that a non-synonym fits into the context of the queried word
in the extraction pattern and causes a wrong match than that a real synonym
causes a positive match. In the most cases the extraction patterns with non-
synonyms will not match any text fragments having no negative influence on
the accuracy of corresponding extraction rule. Besides, only domain words will
be queried, for which better synonym recognition than for general words can be
expected according to the experimental results.

58 5 Preprocessing of Text Corpus

Since the texts for the graph construction do not have to be annotated by human
but only linguistically preprocessed, all texts in a domain can be used to build
the lexical graph. Significantly improving results for bigger text corpora and
more frequently occurring words indicate that the semantic preprocessing will be
more successful for bigger text corpora.

New methods that increasingly exploit the graph structure e.g. regarding the
lengths and number of short paths between two terms or extending the witness
concept to other morphological types can also contribute to a better recognition
accuracy, but have not been investigated within the scope of this research.

5.2 Semantic Preprocessing: Recognition of Synonyms 59

