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Introduction

In this thesis we consider grow up and blow up phenomena (in forward or in
backward time direction) and interpret them as heteroclinic connections between
finite invariant sets and infinity. Under this point of view we formulate the
following question: Which bounded invariant sets admit heteroclinic connections
to infinity? There already exists methods which where developed for the analysis
of bounded global attractors. Those arise in dissipative systems, which is in fact
the assumption that we want to get rid of.

To adapt those methods for the analysis of heteroclinics to infinity and de-
scribe a non bounded attractor, we propose to make use of so called “compactifi-
cations”. A compactification i the projection of a Hilbert space X onto a bounded
Hilbert manifold. If the space X is eventually infinite dimensional, the resulting
Hilbert manifold is bounded but not compact because of its being infinite dimen-
sional. Therefore the word “compactification” is not exact in this context, but we
keep it for historical reasons. Compactifications were introduced already at the
beginning of the theory of dynamical systems on the one hand under the name
of Bendixson compactification, on the other hand by Poincaré in [31]. Those
compactifications where first introduced to compactify dynamics on the plane,
but we show in the first two chapters that they may be formulated for arbitrary
Hilbert spaces. The Bendixson compactification is nothing more than a one point
compactification where infinity is projected on the north pole of the Bendixson
sphere by a stereographic projection. The north pole or “point at infinity” is,
in many cases, so degenerated that one has to circumvent this degeneracy. This
may be achieved through the Poincaré compactification. This compactification is
based on a central projection and maps infinity onto a whole “sphere at infinity”.
However in some cases the degeneracy at infinity resists this procedure.

Poincaré and Bendixson gave also their names to the famous theorem describ-
ing the longtime dynamic of planar vector fields. A globally bounded trajectory
accumulates on its ω–limit set which is a connected compact invariant set. In
the case of planar vector fields, the Poincaré-Bendixson theorem guaranties that
ω–limit sets are one of the three following types:

1. an equilibrium,

2. a periodic orbit,

v
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3. or a heteroclinic cycle

When the dimension of the phase space grows bigger, it is not possible to classify
those invariant sets which are crucial for the long time dynamic. Already in di-
mension three, strange attractors may arise such as in the famous Lorenz system.
An attempt to analyse sophisticated invariant sets and their interconnections may
be done with the help of the Conley index theory.

This theory was invented by Conley in the 60’s, and further developed until
today for example by Franzosa, Mischaikow or Mrozek. . The Conley index does
not deal directly with the invariant sets but with a neighbourhood isolating them.
This index somehow draws a balance between the trajectories beginning in this
neighbourhood and the trajectories leaving it. If those are in balance, i. e. ev-
erything which starts in the neighbourhood also leaves it, then the Conley index
is “trivial” in the sense that it coincides with the Conley index of the empty in-
variant set. On the contrary, a neighbourhood giving rise to a non trivial Conley
index admits a non trivial invariant set in its interior. This caricature of the
Conley index shows that this tool is able to detect significant invariant sets. Fur-
thermore the Conley index theory utilizes algebraic topology in structures called
connection matrices, which are able to detect heteroclinic connections between
isolated invariant sets.

In this thesis we will combine both compactifications of the phase space and
Conley index theory. The compactifications allow us to materialize invariant
sets at infinity, which are out of reach in an unbounded phase space. On these
invariant sets at infinity we apply the Conley index methods so that heteroclinic
connections between these sets and bounded invariant sets are put into light.

Although the global idea of this strategy seems clear, one encounters many
obstacles on the way to its completion. The main obstacle was the motivation
for the most demanding part of this thesis and concerns the degeneracy of the
dynamical behaviour at infinity. Even for planar quadratic vector fields, the
invariant sets at infinity are likely to be degenerate in the sense that they are not
isolated invariant - hence out of reach for Conley index methods.

Our contribution is the development of a Conley index for a class of degenerate
invariant sets at infinity that we denote by “invariant sets at infinity of isolated
invariant complements”. An invariant set S at infinity belong to this class if,
roughly speaking, there exists an isolated invariant set R bounded away from S
whose isolating neighbourhood may be chosen arbitrarily close to S. The precise
definition is given in 3.5.1 and 3.5.30. An equilibrium in the compactification of
the plane R2 exhibiting only elliptic sectors is an example of an invariant sets
with isolated invariant complement.

Our main result consists on showing that the algebraic machinery of the con-
nection matrices extends to invariant sets at infinity with isolated invariant com-
plements. Hence heteroclinic connections to this type of degenerate invariant sets
at infinity can be detected by this generalized Conley index theory. This enlarges
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significantly the horizon of the study of the behaviour at infinity via Conley index
theory.

To define the Conley index of an invariant set of isolated invariant comple-
ment, we use duality concepts for the homological and cohomological Conley
indices such as the Poincaré–Lefschetz duality or the time duality by Mrozek and
Srzednicki [29]. We proceed to a topological construction on the compactified
phase space, where the detection of heteroclinic orbits by connection matrices
machinery is possible. Then we show how these connections translate to “true”
connections between finite isolated invariant sets and the original degenerate in-
variant set at infinity.

More precisely, the main theorem is the following. Consider an invariant set
S at infinity of isolated invariant complement Scomp (see Definitions 3.5.30 and
3.5.32). For an isolating block B of the “dynamical complement” Scomp of S, we
defined an extended phase space Ext(B) (see Definition 3.5.43) and an extended
flow ϕ̂ on Ext(B) (see Proposition 3.5.46). In this extension arise an attractor b−

and a repeller b+ which play the role of an “ersatz infinity”. Our main Theorems
3.5.50 and 3.5.22 may be summarized in the following way.

Theorem. Assume that a set P ⊂ Ext(B) is isolated invariant under the flow
ϕ̂, admits an attractor–repeller decomposition (b−, Q) where Q ⊂ Scomp, and it
holds

h(P ) 6= h(b−) ∨ h(Q), (1)

where h(.) denotes the Conley index with respect to ϕ̂. Then there is a heteroclinic
orbit σ under the original compactified flow ϕ connecting Q to S, or more precisely

α(σ) ⊂ Q,

ω(σ) ∩ S 6= ∅.
Assume that a set P ⊂ Ext(B) is isolated invariant under the flow ϕ̂, admits

an attractor–repeller decomposition (Q, b+) where Q ⊂ Scomp, and it holds

h(P ) 6= h(b+) ∨ h(Q), (2)

where h(.) denotes the Conley index with respect to ϕ̂. Then there is a heteroclinic
orbit σ under the original compactified flow ϕ connecting S to Q, or more precisely

α(σ) ∩ S 6= ∅,

ω(σ) ⊂ Q.

Furthermore, Conditions 1 and 2 may be translated in terms of homology, so
that the construction embeds in the machinery of the connection matrix.

We begin this thesis with the presentation of the Bendixson compactification
in Chapter 1 and of the Poincaré compactification in Chapter 2. We show that
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those are applicable for Hilbert spaces. This will reveal useful for application to
partial differential equations. The third chapter presents the classical theory of
Conley index and our extension to invariant sets with isolated invariant comple-
ment. After this rather theoretical part, we address some meaningful examples
showing both the power and the limits of our methods. In Chapter 4 we con-
centrate on ordinary differential equations. There we show on concrete examples
that the extension constructed in Chapter 3 allows to detect heteroclinic orbits
and seem to be a good choice for the “ersatz infinity”. Furthermore, we try to
exhibit some structure of the dynamics at infinity for some meaningful examples.
Chapter 5 has its focus on partial differential equations. We show there how the
concept of compactifications is useful in this context, but also which obstacles
have to be surmounted to make this theory more powerful for infinite dimensional
dynamics. We give a full description of the dynamic at infinity for linear par-
tial differential equation. Furthermore we relate the compactifications to other
methods used for studying blow–up such as similarity variables.

As a conclusion, we want to emphasize that the purpose of this thesis is
rather to present new methods for the study of the behaviour at infinity and its
relationships to the longtime bounded behaviour. We are aware that the exam-
ples illustrating those methods are somehow deceiving because low-dimensional
mostly. We hope to be able in the near future to produce new results concern-
ing partial differential equations by the application of these methods. This work
should be seen as a first step on a long way leading in this direction.

The author thanks her dear colleagues for all the inspiration, encouragements,
help, sweets, and strong coffee... I thank in particular my advisor for his helpful
suggestions and his patience. And, last but not least, thank you Stephan and
Emilie for making me so happy!



Chapter 1

The Bendixson compactification

The most spontaneous way of compactifying a vector space is to add a point to
represent infinity. This one point compactification changes the vector space into
a sphere of the same dimension called the Bendixson sphere.

1.1 Description of the transformation

To introduce the Bendixson compactification, we follow [1, 30] but without re-
stricting us to the 2–dimensional case. We consider a Hilbert space X, possibly
infinite dimensional, with a scalar product denoted by 〈., .〉. This makes the
term ”compactification” somehow improper because the Bendixson transforma-
tion makes the phase space bounded but do not change the infinite dimensional-
ity so that the space remains non–compact. Let us describe more concretely the
Bendixson transformation. We add to X a, say, vertical direction and identify
our original space X with the hyperplane X × {−1} of X × R. Of course, the
scalar product of X induces a scalar product on X × R as the addition of the
scalar product 〈., .〉 on X with the standard scalar product on R for the last
component. The unit sphere S := {(x, z) ∈ X × R/ 〈x, x〉 + z2 = 1} and the hy-
perplane X×{−1} are tangent at the point (0,−1). This point is the south pole
of the unit sphere and the origin of the hyperplane X × {−1}. We now project
the hyperplane X × {−1} stereographically with respect to the north pole onto
the unit sphere. Through this transformation, infinity gets mapped to the north
pole. See figure 1.1 for illustration. There, a point M ∈ X×{−1} gets maped to
the point P ∈ S. The north pole and the points M and P are colinear. This fact
together with the information P ∈ S allows to compute explicitly the formulas
for the projection.

We are interested in the behaviour near infinity alias the north pole of the
unit sphere S. It is more convenient to compute in the vector space X than
on the sphere, so let us project on the hyperplane X × {+1} tangent to the
sphere at the north pole. For that we use again a stereographic projection, but

1
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X × {+1}

X × {−1}
M = (x,−1)

P = (p, z)

M ′ = (ξ, 1)
north pole

south pole

Figure 1.1: The Bendixson transformation.

this time with respect to the south pole. The whole sphere except the south
pole is maped diffeomorphically onto the hyperplane X × {+1}. The north pole
alias the point at infinity is now the origin (0,+1) of X × {+1}. The projected
dynamic around the origin (0,+1) of this hyperplane is the dynamic at infinity.
See again the picture 1.1 for illustration. The point P ∈ S gets maped to the
point M ′ ∈ X × {+1}, so that the south pole and the points P and M ′ are
colinear.
Now the time has come to establish the formulas transforming a dynamical system
on X into a dynamical system in the neighbourhood of infinity alias (0,+1) ∈
X × {+1}. For that let us consider the points

M = (x,−1) ∈ X × {−1},
P = (p, z) ∈ S and

M ′ = (ξ,+1) ∈ X × {+1},

as in picture 1.1. We assume the points M and M ′ different from the poles,
so that x, p, ξ 6= 0 and z 6= ±1. By construction the north pole, M and P are
colinear; the south pole, P and M ′ are colinear too, so we have the existence of
scalars λ and µ in R such that

(p− x, z + 1) = λ(p, z − 1) (1.1)

(p− ξ, z − 1) = µ(p, z + 1). (1.2)

Furthermore, the point P lies on the Sphere S, so

p2 + z2 = 1. (1.3)
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Let us define the Bendixson tranformation as

B : X \ {0} −→ X

x 7−→ ξ.

After simple computations involving the formulas 1.1, 1.2 and 1.3, one gets the
following for all x ∈ X, x 6= 0,

B(x) = ξ =
4

〈x, x〉x, (1.4)

and for all ξ ∈ X, ξ 6= 0,

B−1(ξ) = x =
4

〈ξ, ξ〉ξ. (1.5)

Here ‖x‖ going to infinity is equivalent to ‖ξ‖ going to 0. The coordinates x
and ξ give two charts constituting an atlas for the unit sphere S of X × R.
Unless otherwise expressly specified the coordinates ξ will be used for the upper
chart and the coordinates x for the lower. This enables us to omit the vertical
coordinates −1 for the lower chart and +1 for the upper chart. Note that the
transformation B is nothing more than the reflexion on the unit circle which is
an involution. We will not need the formula giving (p, z) ∈ S as a function of x
(or ξ), so we skip its derivation here.

Now consider a dynamical system

xt = f(x) (1.6)

on the space X. Derivating the relation 1.4 with respect to time, we get formally
for ξ 6= 0 the differential equation

ξt =
1

4
〈ξ, ξ〉 f

( 4ξ

〈ξ, ξ〉
)

− 1

2

〈

ξ, f
( 4ξ

〈ξ, ξ〉
)

〉

ξ. (1.7)

We call this equation the Bendixson–transformed vector field. This expression
has not necessarily a limit as ξ goes to 0, as we will see in the next section. But
first let us look at an easy example where this causes no trouble.

Example 1.1.1. Let us consider the equation xt = x2 on R. Through the above
formula 1.7, we get

ξt = −4,

for ξ 6= 0. Obviously this vector field has a limit as ξ goes to zero, which is −4.
The flow on the Bendixson sphere - here just a circle, on the lower and on the
upper chart are depicted in figure 1.2.

The point at infinity alias ξ = 0 is isolated invariant in the sense of definition
3.1.3. Therefore its Conley index h(∞) is well defined and it satisfies h(∞) :=
h(ξ = 0) = 0̄ (for the precise definition, see 3.1.1). Such an index,which is neither
the index of an attractor nor the index of a repeller, proves the existence of an
orbit tending to the point at infinity in forward and in backward time direction,
which is not really surprising for this example.
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north pole

south pole

B

ξt = −4

xt = x2

Figure 1.2: The Bendixson transformation applied to xt = x2.

1.2 Normalization

To apply the Conley index methods to the dynamic projected on the Bendixson
sphere, we need that there is a nice flow or at least semi–flow on the whole sphere.
The construction we presented is only a geometric one and, if it does project the
trajectories of the original system on paths on the Bendixson sphere, it does not
guarantee for the flow properties. The following problems arises.
As we mentioned previously, the right hand side of formula 1.7 describing the
Bendixson–transformed vector field may have no limit as ξ goes to zero. If we
consider the dynamics projected on the sphere or on the upper chart X × {+1},
this means a discontuinity of the projected vector field at the north pole alias the
origin of X × {+1}. To avoid this, one may multiply the projected vector field
with a strictly positive function tending to zero at the north pole. This would not
change the direction field, hence the trajectories are preserved while continuity
is provided. The north pole is then an equilibrium.
We can still encounter another annoying situation: In the case of a blow up in
the original system, we have trajectories going to infinity in finite time. This
will result after projection to trajectories reaching the north pole in finite time.
In this case, the north pole cannot be an equilibrium without violating the flow
properties. The velocity should slow down enough, so that trajectories do not
crash into the north pole in finite time.
The aim of this section is to explain how to ”slow down” the trajectories in order
to get a flow on the hyperplane X × {+1}, the upper chart of the Bendixson
sphere. This procedure is called normalization; for the definition we follow [23].
After having defined the normalization in the upper chart, we will discuss how
this provides naturally a nice flow on the Bendixson sphere itself.
Let us first work in the upper chart with coordinates ξ ∈ X obtained by stereo-
graphic projection with respect to the south pole of S \{south pole} as described
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above.

Definition 1.2.1. Normalizable vector field.

Let f be a continuous vector field on X, and g : X \ {0} → X be defined by the
formula 1.7, i. e.

g(ξ) =
1

4
〈ξ, ξ〉 f

( 4ξ

〈ξ, ξ〉
)

− 1

2

〈

ξ, f
( 4ξ

〈ξ, ξ〉
)

〉

ξ.

The vector field f is called normalizable if there is a continuous function ̺ : X →
R such that
(i) g and ̺g define the same direction field on X \ {0},
(ii) limξ→0 ̺(ξ)g(ξ) exists and is finite.

Remark. The vector fields g and ̺g define the same direction field if and only
if ̺ is positive and zero only where g is zero.

Remark. Not all vector fields are normalizable. However the class of normaliz-
able vector fields on Rn is wide enough to contain all polynomial vector fields, as
we will see in a moment. That is the reason why a lot of our examples are chosen
among them.

Each choice of a ̺ as in the definition 1.2.1 provides a ”normalization around
infinity” of the vector field f , such that the vector field ξt = ̺(ξ)g(ξ) is defined
and continuous on whole X, as we formulate in definition 1.2.2. This function ̺
also states how to slow down the projected vector field on the sphere around the
north pole as we will see in 1.2.7.

Definition 1.2.2. Normalization of f around ∞.

Let f be a vector field on X and g : X → X its Bendixson transform defined by
the formula 1.7.
The vector field F : X → X is called a normalization of f around infinity if F
and g are related by a function ̺ : X → R as in definition 1.2.1, i.e.
there exists a function ̺ such that F = ̺g, the function ̺ being continuous,
positive, zero only where g is zero, and F (ξ) having a limit as ξ goes to zero.

Remark 1.2.3. Normalization and rescaling of the time variable

The following computation shows us that normalizing with ̺ is exactly the same
as doing the change of time variable dt = ̺(ξ)dτ :

ξτ =
d

dτ
ξ

=
dt

dτ

d

dt
ξ

= ̺(ξ)g(ξ)

However, we will keep the name t for the time variable for simplicity.
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Remark 1.2.4. After normalization, there is no blow up any more: all trajec-
tories are full and trajectories tending to the point at infinity reach it in infinite
time in case it is an equilibrium. As a topological tool, the Conley index does
not depend on the normalization but only on the direction field: independance
of the Conley index on the choice of the normalization holds because the changes
of variables for different ̺’s produce topologically equivalent flows. Hence the
indices of the isolated invariant sets under the one or the other flow coincide
through proposition ??.

Example 1.2.5. Normalization for polynomial vector fields

Let us have a closer look at the normalization of polynomial vector fields on Rn.
We consider the vector field of degree d

xt = Q(x).

We split the vector field Q into two parts Q = P + p, P collecting the terms of
degree exactly d, and p all the terms of lower order. In multi–index notation, for
all i = 1, · · · , n, we have the i–th component of Q:

Qi(x) = Pi(x) + pi(x)

Pi(x) =
∑

|α|=d
aαi x

α

pi(x) =
∑

|α|≤d−1

aαi x
α,

where the multi–index α lies in Nn, and the coefficients aαi in R. Now we apply
the formula 1.7 and get the Bendixson–transformed vector field for ξ 6= 0,

ξt =
1

4
〈ξ, ξ〉Q

( 4ξ

〈ξ, ξ〉
)

− 1

2

〈

ξ, Q
( 4ξ

〈ξ, ξ〉
)

〉

ξ

= 〈ξ, ξ〉−d
(

4d−1 〈ξ, ξ〉P (ξ) − 4d

2
〈ξ, P (ξ)〉 ξ

)

+
1

4
〈ξ, ξ〉 p

( 4ξ

〈ξ, ξ〉
)

− 1

2

〈

ξ, p
( 4ξ

〈ξ, ξ〉
)

〉

ξ.

The Bendixson–transformed vector field may not have a limit as ξ goes to zero
because of the negative powers of 〈ξ, ξ〉 going to infinity as ξ is going to zero. A
normalization is possible. One may choose how strong the trajectories have to
slow down according to what one want to do with the normalized vector field:

• Continuity: In the definition of normalization, one does only require con-
tinuity of the vector field at the point at infinity. Taking ̺(ξ) = ‖ξ‖d−1 will
suffice to make the the normalized vector field continuous at ξ = 0
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• Continuous differentiability: One may require local Lipschitz continuity
of the vector field in order to get a flow on the upper chart, hence on the
whole Bendixson sphere. For that, one can normalize in such a way that
the vector field is continuously differentiable by taking ̺(ξ) = ‖ξ‖d. The
drawback of this normalization is the following: If you are interested in the
behaviour around the point at infinity, you may look for the derivative with
the lowest order which are non zero. With this economical normalization,
the normalized vector field is very likely to admit just derivatives of first
order, and they are likely to be zero. That is the reason why the third
possibility is the one mostly given in the literature.

• Smoothness: to avoid the problems explained in the previous point, one
can normalize with ̺(ξ) = 〈ξ, ξ〉d. This seems a quite brutal way to slow
down the trajectories around infinity, but this provide a polynomial vector
field again, hence smooth, so that one is able to compute as much deriva-
tives as one needs. However, one has to expect a very degenerate behaviour
at ξ = 0, meaning the first non zero derivative being of very high order.
This makes it difficult to determine the local behaviour at ξ = 0.
We want here to draw the readers attention to the paper [4] by Brunella and
Miari. Their results allow in the planar polynomial case to reduce the study
of the dynamic around the point at infinity, alias the orgin ξ = 0, to a poly-
nomial vector field called the principal part which shows less terms. This
is defined through Newton polyhedra. However the study of this ”simpli-
fied” vector field remains difficult. Schemes to analyse degenerate critical
points are given in [30], section 2.11, [1], chapter VIII and IX, but they
are not always powerfull enough for the type of degeneracy appearing at
the point at infinity. This drawback makes the Bendixson compactification
quite unpopular.

• Of course the normalization may be reached with a smaller power of ‖ξ‖ in
case one is able to factorize the Bendixson–transformed vector field with a
power of 〈ξ, ξ〉 such that simplifications take place.

Hence we have the following proposition:

Proposition 1.2.6. Polynomial vector fields on Rn are normalizable. For a
vector field of degree d, there exists an integer m ∈ {0, · · · , 2d} such that ̺(ξ) =
‖ξ‖m provides a normalization.

Remark 1.2.7. Normalization of f on the Bendixson sphere.

Our argument to analyze the dynamic will be based on the flow on the Bendixson
sphere. Until now, we just have flows on two charts: The dynamics around infinity
i.e., say, on the upper hemisphere, is described on the upper chart by a at least
Lipschitz continuously normalized vector field ξt = ̺(ξ)g(ξ), while the dynamics
on, say, the lower hemisphere, is described by the original system on the lower
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chart. The aim of the following construction is to patch them smoothly, so that
we get a vector field on the sphere S which induces a nice flow or semi–flow. Once
we will be convinced that it is possible, we will forget about this construction
and speak about the compactified flow on the Bendixson sphere.
We consider a point P = (p, z) different from the north pole n on the unit sphere:
P ∈ S \ {n}, 〈p, p〉 + z2 = 1, z 6= 0. Choose a smooth and strictly increasing
function

l : [−1, 1] −→ R

z 7−→
{

1 for z ≤ 1/3
0 for z ≥ 2/3.

Let us call Pl (resp. Pu) the stereographic projection from X×{−1} (resp. X ×
{+1}) to the sphere. If P−1

l (P ) = (x,−1) and P−1
u (P ) = (ξ,+1), we have per

construction equality of the projections of the vector fields f and g on the sphere,
where both are defined

DPu(ξ,+1)[g(ξ)] = DPl(x,−1)[f(x)], for ξ 6= 0

and we define on S \ {n} the following vector field:

Φ(P ) = l(z)DPl(x,−1)[f(x)] + (1 − l(z))̺(ξ)DPu(ξ,+1)[g(ξ)].

The function ̺ has been designed for Φ to be at least Lipschitz continuous as P
is going to the north pole.

Remark 1.2.8. The compactification removes blow–up phenomena so that ev-
ery trajectory is well–defined up to t → ∞. However it does not help against
multiplicity of prehistories if the original vector field only produces a semi flow.

1.3 Some examples

Example 1.3.1. A linear saddle point

Let us consider the elementary example of a linear saddle point in R2:

{

xt = ax
yt = by,

(1.8)

where a > 0 and b < 0. The Bendixson compactification around the point at
infinity is described in figure 1.3. Because of the four elliptic sectors, there are
homoclinic trajectories in every neighborhood of the point at infinity ξ = 0, so
that it is not isolated invariant in the sense of Conley index theory (see definition
3.1.3). This situation motivates the developement of a new concept of invariant
set with isolated invariant complement as introduced in section 3.5.1 Now for a
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Figure 1.3: The point at infinity for a linear saddle.

linear saddle point in Rn, consider the system

(xi)t = µixi, i ∈ {1, . . . , n} (1.9)

with, say, µ1 > . . . > µm > 0 > µm+1 > . . . > µn. In other words, the origin
admits m unstable dimensions. The normalized equation around the point at
infinity ξ = 0 reads

(ξi)t =

(

n
∑

k=1

(µi − 2µk)ξ
2
k

)

ξi. (1.10)

The first nonzero derivative is of third order. The separatrices are the ξ–axes
{ξk = 0, k 6= i} which are invariant and driven by the equation

(ξ)t = −µiξ3
i .

Hence the ξ–axis is stable for i ∈ {1, . . . , m} and unstable for i ∈ {m+1, . . . , n}.
The trajectories which do not lie on the separatrices are homoclinic to the point
at infinity and approach it along separatrices.

Example 1.3.2. A quadratic vector field

Now let us consider the following quadratic vector field.

{

xt = 2xy
yt = 1 + y − x2 + y2 (1.11)

This vector field admits two finite equilibria (±1, 0). The eigenvalues of the lin-

earisations at those equilibria are 1±i
√

7
2

. So those equilibria are unstable and
trajectories are spiraling away from them. The y–axis is invariant. There are no
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periodic trajectories. The Bendixson–transformed vector field, written in coordi-
nates (ξ, η), normalized with ̺(ξ, η) = (ξ2 + η2)2, reads
(

ξt
ηt

)

= −4(ξ4 − η4 + 2ξ2η2)

(

0
1

)

+

(

−2η2ξ(ξ2 + η2) − 1
2
ξη(ξ2 + η2)2

η(ξ2 + η2)2 − 2η3(ξ2 + η2) + 1
4
(ξ2 + η2)3 − 1

2
η2(ξ2 + η2)2

)

.

The first summand contains the leading order terms and shows a flow box in

direction

(

0
1

)

at the origin alias the point at infinity, corresponding to the

invariant y–axis. The second summand contains only higher order terms. With
this information we are able to draw the phase portrait on the Bendixson sphere.
This is depicted in figure 1.4: the lower rectangle is the lower chart showing the
phase portrait of the original system. The upper rectangle shows the dynamic at
infinity in the upper chart determined by the Bendixson transformed vector field.
This example shows that the Bendixson compactification allows in some cases to
get a complete description of the dynamic including the dynamic at infinity.

1.4 Some bad news

As seen already in the linear example 1.3.1, the point at infinity ξ = 0 may
happen to be very degenerate, the derivatives of the normalized vector field being
zero until a high order. This fact makes it quite fastidious to describe the local
behaviour around this point. Of course the Conley index methods we propose to
use do not require complete knowledge of the local behaviour, but you still need
some information. Moreover we saw also in example 1.3.1 that the point at infinity
may not be isolated invariant. At first glance the Bendixson compactification
seems not to be the best way to investigate the dynamic at infinity and its
relations with the finite dynamic. In fact many authors such as [30, 1] advise
against using the Bendixson compactification, and propose to use the Poincaré
compactification instead. We present this technique in the next chapter. This
alternative though will not solve all problems of degeneracy or lack of isolation.
This is the reason why we introduce in chapter 3 the concept of invariant set with
isolated invariant complement which will help in some cases.

A point which could be more fatal is the following: Applying the Conley index
methods to detect heteroclinic orbits requires a so called Morse decomposition.
This concept implies that you can partially order the isolated invariant sets - for
instance with the help of an energy functional decreasing along trajectories. Even
if you dispose of such a structure in the the original vector field, the Bendixson
compactification may destroy it mercilessly. Trying to introduce the point at
infinity in the partial order may generate a contradiction to the order properties.
Again look at the example 1.3.1: the quantity E(x, y) = 1

2
(ax2 + by2) is strictly
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A

A

A

B

B

B

north pole

north pole

Figure 1.4: Bendixson compactification of 1.11.

decreasing along trajectories, except of course along the stationary trajectory
at the origin. Nevertheless we have no Morse decomposition on the Bendixson
sphere: the trajectory along the big circle image of the x–axis tells us the energy
of the south pole should be bigger than the energy of the north pole, while the
trajectory along the big circle image of the y–axis tells us the contrary. The
lack of Morse structure makes the Conley index methods much less powerful: the
whole machinery for predicting heteroclinic orbits is out of order. As we will see
later, the Poincaré compactification will solve this problem.

At the end of the next chapter we should discuss why, in spite of all this
reasons, we insist on not neglecting the Bendixson compactification.
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Chapter 2

The Poincaré compactification

In this chapter we describe a construction introduced by Poincaré in [31]. The
phase space X gets compactified in such a way that infinity is mapped on a
whole sphere, the unit sphere of X. Most of the authors interested in dynamics
at infinity such as in [1, 30, 33, 23, 36] use rather this construction than the
Bendixson compactification. We will compare both compactifications at the end
of this chapter.

2.1 Description of the transformation

We consider again a Hilbert space X with its scalar product 〈., .〉. As for the
Bendixson compactification, we also add a vertical direction and proceed in X×R
to the following geometric construction. The original vector space X is identified
with the hyperplane X×{+1} tangent to the unit sphere at its north pole. This
time, we project the hyperplane X × {+1} centrally onto the upper hemisphere
H = {(x, z) ∈ X × R/ 〈x, x〉 + z2 = 1, z > 0}. More precisely: given a point
M on the hyperplane X × {+1}, the straight line through M and the center of
the unit sphere (0, 0) intersects the unit sphere in two antipodal points, one on
the upper hemisphere and one on the lower. We define the projection P(M) as
the intersection point on the upper hemisphere, i. e. the one with positive last
coordinate z > 0. This construction is illustrated on figure 2.1. As the point M
goes to infinity, its image under the Poincaré transformation goes to the equator
of the upper hemisphere E := {(x, 0) ∈ X ×R/〈x, x〉 = 1}, also called the sphere
at infinity. This allows to distinguish between directions at infinity and makes
this compactification more precise in its description of the dynamic of arbitrarily
far points.

Using the fact that the center of the unit sphere (0, 0), the point M ∈ X×{1}
and its image under the transformation P(M) ∈ H are colinear, the coordinates

13
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X × {+1}
M = (x, 1)

z

(0, 0)

H P(M)

Figure 2.1: The Poincaré compactification.

(χ, z) of P(M) can be computed:

χ =
x

(1+ < x, x >)
1
2

(2.1)

z =
1

(1+ < x, x >)
1
2

(2.2)

Here again it is more comfortable to study invariant sets in a plane than on a
sphere. This is the reason why we will project again on several tangent vertical
hyperplanes of X × R and look there, for example, at the linearization at equi-
libria. The figure 2.2 describes the construction. More precisely, we fix a vector

X × {+1}

M = (x, 1)

(0, 0)

H

e

E

(ξ, ζ)
(χ, z)

Figure 2.2: A chart of the sphere at infinity and surroundings.

e in the unit sphere of X, such that (e, 0) lies on the equator of the unit sphere
of X × R. Now we project gnomically a point (χ, z) = P((x, 1)) of the upper
hemisphere H on the vertical hyperplane E tangent to the equator at the point
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(e, 0). Of course this works only if the straight line through the points (x, 1),
(χ, z) and the origin (0, 0) has an intersection with the vertical hyperplane E
orthogonal to (e, 0), i. e. if 〈χ, e〉 or equivalently 〈x, e〉 is nonzero. Then using
the colinearity of the origin, (χ, z), (x, 1) and M ′ = (ξ, ζ), we compute for the
projected point M ′ = (ξ, ζ) ∈ E the following formulas:

(ξ, ζ) =
1

〈x, e〉(x, 1) (2.3)

=
1

〈χ, e〉(χ, z) (2.4)

Now let us recall that our original vector space X is a Hilbert space. This means
in particular that we dispose of a countable orthonormal basis of X in which the
coordinates (xn)n∈N of any vector x ∈ X are defined. Typically, we will choose for
the vector e the basis vectors and their opposite, such that we can get equations
on the coordinates. If ei is the i–th basis vector or its opposite −ei respectively,
we project onto the affine hyperplanes {ξi = ±1} of X × R and the formula 2.3
translates to

ξn = ±xn
xi

for all n ∈ N (2.5)

ζ = ± 1

xi
, (2.6)

which holds for all x ∈ X whose i–th coordinate is nonzero. The collection of
these projections on the hyperplanes ({ξi = ±1})i∈N builds an atlas of H\{(0, 1)}.
More precisely, each chart given by the formulas 2.5 and 2.6 is a bijection between
{(χ, z) ∈ H/ 〈χ, ei〉 > 0} and the half–plane {ξi = 1 and z > 0}, or between
{(χ, z) ∈ H/ 〈χ, ei〉 < 0} and {ξi = −1 and z > 0} respectively.

After having seen what the Poincaré compactification does geometrically, let
us describe how the differential equations are transformed. As above, we consider
a vector field xt = f(x) on the Hilbert space X. Derivating the equation 2.1 with
respect to time, we get for z 6= 0 and fz := zf(z−1.) the following equation:

{

χt = 〈χ, fz(χ)〉χfz(χ) − 〈χ, fz(χ)〉χ
zt = −〈fz(χ), χ〉 z (2.7)

Derivating the equation 2.3 with respect to time, we get for ζ 6= 0 the following
equation:

{

ξt = −〈fζ(ξ), e〉 ξ + fζ(ξ)
ζt = −〈fζ(ξ), e〉 ζ (2.8)

As in the case of the Bendixson compactification, these expressions need not to
have a limit as ζ goes to zero, i.e. as we approach the sphere at infinity. But
let us have a closer look at the function fz: it is the function whose graph is
homothetic with factor z to the graph of the function f . As we approach the
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sphere at infinity, z (or ζ respectively) is going to 0. The existence of a limit of
fz as z goes to zero (or fζ respectively) will decide on the existence of the limit of
the Poincaré transformed vector field as we approach the sphere at infinity. We
do not want to go into details here because cases where those limits do exist are
rather exceptions, but we will discuss more carefully in the section 2.2 a similar
question for a normalized version of homotheties of f .

To be complete we give the equations in coordinates, i.e. we choose for e the
basis vectors and their opposites ±ei and get for a fixed i:







(ξn)t = ∓f iζ(ξ)ξn + fnζ (ξ) for all n ∈ N

ζt = ∓f iζ(ξ)ζ,
(2.9)

where (ξn)n∈N are the coordinates of ξ in the basis (en)n∈N and fnζ (ξ) :=
〈fζ(ξ), en〉 is the n–th component of fζ(ξ) also with respect to the basis (en)n∈N.

Example 2.1.1. As a direct application of those computations, let us consider a
simple example where the problem of the lack of limit of the homothety fζ as ζ
goes to zero does not come up. As in the previous chapter, we now compactify a
linear system in the plane where the origin is a saddle point (see example 1.3.1).
The planar linear system 1.8 studied in the previous chapter gives rise to the
following equations in the four charts {ξi = ±1, ζ > 0}:

{

(ξ2)t = (b− a)ξ2
ζt = −aζ,

{

(ξ1)t = (a− b)ξ1
ζt = −bζ,

The first system describes the dynamic in the charts {ξ1 = 1, ζ > 0} and {ξ1 =
−1, ζ > 0}: the origin is the only equilibrium and it is stable. The second system
describes the dynamics in the charts {ξ2 = 1, ζ > 0} and {ξ2 = −1, ζ > 0}:
the origin is the only equilibrium and it is unstable. The figure 2.3 shows the
Poincaré hemisphere viewed from above, the equator being the boundary of the
disk. All equilibria, finite and at infinity are isolated invariant in the sense of
Conley index theory (see chapter 3 for details). This example shows that the
Poincaré compactification better fits, at least in the linear context, than the
Bendixson compactification.

2.2 Normalization and time rescaling

In this section we are concerned with the fact that the ”compactified” evolution
equations 2.7 for ξ and z on the hemisphere H or equivalently their projected
versions 2.8 may not admit a limit as z or ζ is going to zero, approaching the
sphere at infinity. As for the Bendixson compactification, we may multiplicate
with a positive function which does not change the direction field, hence preserves
the trajectories, but provides a limit as z goes to zero. Obviously, the only term
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Figure 2.3: A saddle under the Poincaré transformation.

we have to care about is the limit of the homothety of the vector field fz as z
goes to zero. This observation leads us to the following definition:

Definition 2.2.1. Normalization of the homothety fz
The vector field f : X → X is normalizable if and only if there exists a continuous
function ̺ : [0,+∞[→ [0,+∞[ such that

1. ̺(z) 6= 0 if z 6= 0, and

2. the map (χ, z) 7→ ̺(z)fz(χ) is Lipschitz continuous even in z = 0.

Remark 2.2.2. Normalization and change of time variable

If ̺ normalizes the homothety of f , the normalization of equation 2.7 and 2.8 are
provided by the change of time variable dt = ̺(z)dτ :

χτ =
dt

dτ
χt

= 〈χ, ̺(z)fz(χ)〉χ− ̺(z)fz(χ)

zτ = −〈̺(z)fz(χ), χ〉 z

ξτ =
dt

dτ
ξt

= −〈̺(ζ)fζ(ξ), e〉 ξ + ̺(ζ)fζ(ξ)

ζτ = −〈̺(ζ)fζ(ξ), e〉 ζ

Nevertheless we will keep the name t for the time variable of the normalized
equations on the Poincaré hemisphere for the sake of simplicity.
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Example 2.2.3. Normalization for polynomial vector fields

We consider again a polynomial vector field f of degree d in Rn. We decompose
f into two parts: f = P + p, P being polynomial and homogenous of degree d,
containing all the highest order terms; the polynomial p contains the lower order
terms of degree less than d− 1. It holds

fz(χ) = z1−dP (χ) + zp(z−1χ)

zd−1fz(χ) = P (χ) + zdp(z−1χ).

As the polynomial p is of degree less than d− 1, the second terms disappears as
z is going to zero. So it holds for ̺(z) := zd−1

lim
z→0

̺(z)fz = P.

It means in particular that the dynamic inside the sphere at infinity is governed
by the highest order terms, which is not surprising. The dynamic on the sphere
at infinity is governed by

χt = P (χ) − 〈P (χ), χ〉χ. (2.10)

Remark 2.2.4. The previous example teaches us also how to normalize an equa-
tion with nonlinearity of polynomial growth. Consider a map f : X → X admit-
ting a decomposition of the following type:

f = P + p,

where P is homogenous of degree d, i. e.

∀x ∈ X, ∀λ ∈ R, P (λx) = λdP (x),

and p contains terms of order lower than d − 1, but not necessary polynomial,
i. e.

p(x) = o(‖x‖d−1)

= ε(x)‖x‖d−1,

where ε is a bounded function tending to zero as ‖x‖ tends to infinity. Again the
normalization by ρ(z) = zd−1 provides

lim
z→0

fz = P.

Remark 2.2.5. Global flow or semi flow on the Poincaré hemisphere

Let us discuss now the question if the normalized vector field leads to a global
flow or semi flow on the Poincaré hemisphere. As we have seen the role of the
compactification is to suppress blow up phenomena both in forward and backward
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time. Hence the normalized vector field produces for sure only full trajectories.
We do not have only a local semi flow, but a global one. This leads us to comment
on the ”no blow up condition” imposed by Rybakowski in [34]: We consider a
continuous vector field on X, generating a local semi flow φ on the original phase
space X. Let N be a subset of X. The local semi flow φ does not explode in
N if for all x ∈ X with maximal existence time T the inclusion φ([0, T [, x) ⊂ N
implies infinite existence time T = ∞. After normalization we can guarantee
that for all x ∈ H the maximal existence time T is infinite. As a consequence
every set N ⊂ H satisfies the no blow up condition with respect to the normalized
equation on the Poincaré hemisphere, even if N intersects the sphere at infinity.
In backward time direction, we can state the following: if a prehistory exists, it
is full - we cannot guarantee its uniqueness though. The original vector field is
responsible for it. For a trajectory with initial condition in the interior of the
Poincaré sphere, the uniqueness of its prehistory depends on the original vector
field. If this vector field generates a local flow, we obtain a unique full trajectory
on the Poincaré hemisphere. If the original vector field is not regular enough
and only generates a local semi flow, we obtain at least a full trajectory on the
Poincaré hemisphere but may have multiple prehistories. This is no obstacle to
our considerations on Conley index theory though.
Finally we consider an initial condition on the equator of the Poincaré hemisphere,
alias the sphere at infinity. According to our definition of the normalization, the
map

g : E → TE
χ 7→ limz→0 ρ(z)fz(χ)

is regular enough to provide a flow on the equator of the Poincaré hemisphere
which is a closed manifold with boundary.

2.3 Some examples

Example 2.3.1. A quadratic vector field under Poincaré compactifica-

tion

We consider the following polynomial system in the plane:

{

(x1)t = x2
1 + x2

2 − 1
(x2)t = 5(x1x2 − 1)

(2.11)

This system does not show any finite equilibria, hence also no finite periodic
orbit. The dynamic at infinity is given in the vertical charts: In the half plane
{ξ1 = 1, ζ ≥ 0} the normalized dynamic is governed by

{

(ξ2)t = ξ2(ξ2 − 2)(ξ2 + 2)
ζt = −(1 + ξ2

2)ζ.
(2.12)
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This system admits three equilibria (0, 0) and (±2, 0); the derivatives at this

equilibria are

(

4 0
0 −1

)

and

(

−8 0
0 −5

)

respectively, showing that (0, 0) is a

stable node and (±2, 0) are saddle points.
In the half plane {ξ1 = −1, ζ ≥ 0}, after a few changes of signs in the

equations, we get a unstable node at the origin, while the fixpoint (±2, 0) are
saddle points.

The two other charts {ξ2 = ±1, ζ ≥ 0} do not reveal new fix points in the
sphere at infinity, so we skip those.

The global phase portrait on the Poincaré hemisphere seen from above is
shown in figure 2.3.1, using the Morse indices to decide which heteroclinics can
exist, and the Poincaré–Bendixson theorem.

(0, 0) (0, 0)

(2, 0) (2, 0)

(−2, 0) (−2, 0)

Figure 2.4: The Poincaré compactification of the vector field 2.12.

With the knowledge of this phase portrait under the Poincaré compactifica-
tion, we can derive the configuration of the point at infinity under the Bendixson
compactification: it would show four hyperbolic sectors, two elliptic sectors and
two parabolic sectors. Therefore it would be either isolated invariant nor of iso-
lated invariant complement so that its Conley index would not be defined. The
Poincaré compatification allows to avoid this complexity and replace it with sev-
eral hyperbolic fix points.

Example. 1.3.2

To be complete we want to observe how the phase portrait of the example 1.3.2
looks like. We skip here the computations, for details see [1] P.443. The invariant
y–axis in the original system gives rise to two fix points on the sphere at infinity.
The figure 2.5 shows the global phase portrait on the Poincaré hemisphere.

For this example the Bendixson compactification seems to be more natural
to describe the behaviour at infinity. The Poincaré compactification destroys
somehow artificially the flow–box at infinity.
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Figure 2.5: The Poincaré compactification for the example 1.3.2.

2.4 Poincaré versus Bendixson

Now let us briefly summarize the assets and drawbacks of the Poincaré com-
pactification. Obviously the Poincaré compactification has the advantage that
the dynamic at infinity is spread on the whole equator and therefore degenerate
behaviours less accumulate than in the Bendixson compactification. Instead of
looking at one very intricate fixpoint, one has in the Poincaré compactification
several simpler fixpoints, or possibly other invariant sets in higher dimensions.
At first sight it seems to be more work to find out what is the dynamic inside
infinity, but in fact it is in most cases more doable than considering the one point
compactification. This is also the whole philosophy of the so called blow-up
techniques as introduced by [Dumortier] to unravel degenerate fixpoints.

Another asset of the Poincaré compactification is that it gives more detailed
information: you do not only find out that some trajectory are heteroclinic to
infinity, but also which direction at infinity they follow. In the context of partial
differential equations, this provides precious information on the shape of the blow
up profile.

Last but not least the Poincaré compactification helps us out to preserve the
structure of Morse decomposition which will be essential in the Conley index
theory. A Morse decomposition is a structure which orders the invariant sets in
such a way that it is compatible with the flow, in the sense that trajectories only
run downwards with respect to the order. Think for example of an order induced
by an energy decreasing along trajectories. As one expects, different invariant
sets on the sphere at infinity may exhibit different energy levels. The one point
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compactification may shuffle those levels together and destroy the structure. This
point will be more precisely stressed out in the context of gradient vector fields
handled in section 4.2.

Even though the Poincaré compactification has many assets, we cannot just
dismiss the Bendixson compactification as useless. There are some cases where
it is just the natural thing to do whereas the Poincaré compactification would
just add artificial annoying effects. Think about a dynamical system behaving
asymptotically as xt = x or xt = −x. In the Poincaré compactification, the whole
sphere at infinity consists of equilibria so that you have no isolation as required
for Conley index theory. You are forced to consider infinity as a whole, and it is
just the same as using the Bendixson compactification. Under this point of view,
infinity is just an attractor or a repeller, respectively, and exhibits their typical
Conley index. Another example is an asymptotically constant vector field. In
the Bendixson compactification, the trajectories after projection on the sphere of
the vector field xt = c are great circles through the point at infinity. Therefore
you are able to compute the Conley index at infinity of an asymptotically con-
stant vector field and observe that this is the trivial Conley index (see Chapter
3). If you look at the same problem under Poincaré compactification, again the
whole sphere at infinity consists of equilibria. Look also at example 1.3.2: the
system under Bendixson compactification exhibits even a nice Morse structure
(two equlibria on the higher energy level, one cycle on the lower), whereas the
Poincaré compactification has a topologically more complicated one (two equilib-
ria on the higher energy level, one ”thin bretzel” on the lower). Compare figures
1.4 and 2.5.

Furthermore we will see in chapter 3 that the configuration of the Bendixson
compactification makes it more intuitive to introduce our concept of Conley index
at infinity: It does not require the technicality due to the fact that the equator is
a boundary. That is the reason why we will present the properties of the Conley
index at infinity first under the Bendixson compactification and will adapt them
for the Poincaré compactification afterwards.



Chapter 3

Conley index: classical and at

infinity

This chapter aims at presenting the classical Conley index methods and their ap-
plications to the analysis of isolated invariant sets at infinity on the one hand; on
the other hand we want to show how restrictive is the study of isolated invariant
sets at infinity and propose a way to use Conley index methods in spite of the
lack of isolation, at least in some cases. We focus on invariant sets at infinity of
”isolated invariant complement”: the precise definition is given in 3.5.1 for the
point at infinity in the Bendixson compactification, and in 3.5.30 for invariant
subsets of the sphere at infinity in the Poincaré compactification, but let us give
in this introduction the motivation of these concepts. The strength of the Conley
index is based on the concept of isolating neighbourhood, which has the speci-
ficity to be robust whereas the set that it isolates may change under perturbation
of the flow. For an invariant set S at infinity that is not isolated, the loss of ro-
bustness may be compensated by an isolating neighbourhood, not of S itself, but
of everything but S. To be more precise, if an isolating neighbourhood can ”grow
bigger” so that its complement shrinks on S, and this without loosing its isolation
property, we say that this neighbourhood isolates the complement of S. We use
time duality of the Conley index to define the Conley index of a set S of isolated
invariant complement . This duality has been studied in details in [29, 26]. Fur-
ther we propose a method to detect heteroclinics to/from a S of isolated invariant
complement. The main idea is to substitute S by an object the Conley index can
deal with. Then classical index theory is able to detect connections between finite
isolated invariant sets and this ”ersatz infinity”. Those heteroclinics translate to
trajectories accumulating on the coresponding invariant set at infinity of isolated
complement in the - Bendixson or Poincaré - compactified phase space.

This chapter summarizes the general Conley index theory and some special
features that we will be needing such as the Conley index on a manifold with
boundary. Then we will show direct applications of these classical methods to
the analysis of the dynamic at infinity. After this we expose the time duality of

23
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the Conley index, before we develop the new concepts mentioned previously in
the paragraph 3.5 and present our method to detect heteroclinic orbits between
finite isolated invariant sets and invariant sets at infinity that are of isolated
invariant complement.

3.1 Classical Conley index methods

3.1.1 Basic definitions and properties of the Conley index

The Conley index was introduced by Conley himself under the name ”Morse
index” in [10]. Generalization to infinite dimensional spaces is exposed in [34].
Some applications and a good introduction to Conley index theory is given in [38],
whereas his definitions, for example for isolating blocks, are not quite standard.
We also want to point out the nice overview article [21, 22].

The Conley index deals with invariant sets which can be isolated by a com-
pact set in the sense of definition 3.1.3. Emptiness of the isolated invariant set
implies triviality of the index: a consequence of this is the capacity of the Conley
index to detect interesting dynamical behaviour. Furthermore it comes up with
a topological algebraic machinery which allows to detect connections between
isolated invariant sets. Those methods have ben successfully applied to the anal-
ysis of the structure of global attractors. Under certain conditions, these consist
exclusively of isolated invariant sets and heteroclinics between them, which is the
typical situation to make use of this topological tool. Hence the Conley index
theory provide information about the structure of the asymptotical dynamic of
the system. Our aim is to extend Conley index methods to infinity via a com-
pactification, in order to determine the structure of the ”global attractor” of
non-dissipative systems, including its dynamic at infinity.

But first of all let us introduce the basic definitions. We define them in the
general settings of a semi flow ϕ in a phase space X which may be a vector space
or a manifold. We present here the Conley index theory in the case of a locally
compact phase space - hence finite dimensional - for clarity. We will comment on
the infinite dimensional case in chapter 5 where we deal with partial differential
equations.

If the original semi flow is a local flow, i. e. long time existence may fail, but
we have uniqueness of the prehistory, which is normalizable (see definitions 1.2.1
or 2.2.1), then the compactified flow is the global flow: the normalization has been
designed precisely to gain long time existence. On the other hand, if the original
semi flow do not provide uniqueness of the prehistory, whether compactification
nor normalization will help. Normalization transform blowing up trajectories in
full trajectories. See remarks 1.2.4 2.2.5.

Definition 3.1.1. Maximal invariant set

Let N ⊂ X be a set. The maximal invariant set Inv(N) contained in N is defined
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by the following:

Inv(N) := {x ∈ N/ there exists a full trajectory through x contained in N.}.

Definition 3.1.2. Compact neighbourhood

A set N ⊂ X is called a compact neighbourhood if N is compact and is equal to
the closure of its interior i. e.

N = cl(int(N)).

The empty set is a compact neighbourhood, but for instance the compact set
[0, 1] × {0} ⊂ R2 is not, the closure of its interior being empty.

Definition 3.1.3. Isolating neighbourhoods and isolated invariant sets

Let N be a compact neighbourhood. The set N is called an isolating neighbour-
hood if and only if its maximal invariant set Inv(N) is contained in its interior
int(N), i. e.

Inv(N) ⊂ int(N).

A set S is called isolated invariant if it admits an isolating neighbourhood N with
S := Inv(N).

Remark 3.1.4. Inflating and deflating isolating neighbourhoods Once an
invariant set S admits an isolating neighbourhood N , on can inflate and deflate
this neighbourhood N to get other isolating neighbourhoods of S. More precisely
hold:

1. Let K a compact neighbourhood of S contained in N . Then K is also
an isolating neighbourhood of S for the following reasons. The inclusion
K ⊂ N implies the inclusion Inv(K) ⊂ Inv(N) = S. The reversed in-
clusion Inv(N) ⊂ Inv(K)results of the maximality of Inv(K), so that
S = Inv(K) ⊂ int(K) as claimed.

2. On the other hand, a compact neighbourhood K containing N isolates K
as long as Inv(K) ⊂ N , i. e. K does not contain more invariant dynamic
than N . Then holds S ⊂ Inv(K) ⊂ Inv(N) = S ⊂ int(N) ⊂ int(K),
which proves the claim.

This easy fact will play an important role in paragraph 3.5.

Proposition 3.1.5. Robustness of isolating neighbourhoods

Let ϕ be a flow and N an isolating neighbourhood with respect to ϕ. For every
small enough perturbation ϕ̃ of ϕ, the compact N is an isolating neighbourhood
with respect to ε̃.
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This proposition is a consequence of the fact that the distance between the
maximal invariant set Inv(N) and the boundary ∂N of N is strictly positive and
remains so as one vary the flow. The maximal invariant set Inv(N) may change
under perturbation of the flow, but the isolation property is robust.

An isolating neighbourhood where the trajectories do not show internal tan-
gencies is called an isolating block. We will see in proposition 3.1.12 that it has
interesting properties, but let us first set its precise definition.

Definition 3.1.6. Isolating block

Let N be a compact neighbourhood. Then N is called isolating block if and only
if the trajectories through N admit no internal tangencies, i. e. for all x ∈ ∂N ,
every trajectory σ through x, and every ε > 0,

σ(]0, ε[, x) 6⊆ N or σ(] − ε, 0[, x) 6⊆ N.

As a nonempty intersection Inv(N) ∩ ∂N 6= ∅ would imply an internal tan-
gency of a trajectory with the boundary ∂N , the following is straightforward.

Proposition 3.1.7. If a compact neighbourhood N is an isolating block, then N
is an isolating neighbourhood.

Furthermore, by ”shaving” and ”squeezing” an isolated neighbourhood with
help of the flow, one can prove the following (see for example [34, 38] for details):

Proposition 3.1.8. Each isolating neighbourhood contains an isolating block.

The construction of the Conley index relies on the concept of index pairs.

Definition 3.1.9. Index pair

Let S ⊆ X be an isolated invariant set. A pair of compact sets (N,L) with
L ⊆ N ⊆ X is an index pair for S if and only if

1. Isolation: The set cl(N \ L) is an isolating neighbourhood for S.

2. Positive invariance of L with respect to N : A trajectory starting
in L remains in L until it leaves N , i. e. for all x ∈ L and all t > 0,
ϕ([0, t], x) ⊆ N =⇒ ϕ([0, t], x) ⊆ L.

3. The set L is an exit set for N : The trajectories leave N through L, i. e.
for all x ∈ N and t1 > 0 with ϕ(t1, x) /∈ N , there exists a time t0 ∈ [0, t1],
such that ϕ([0, t0], x) ⊆ N and ϕ(t0, x) ∈ L .

The following will guarantee the existence of index pairs.
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Definition 3.1.10. Exit set

Let N be a compact neighbourhood. Its immediate exit set N− is defined by

N− := {x ∈ N : ∀t > 0, φ(]0, t[, x) 6⊆ N} ⊂ ∂N.

Similarly its immediate entrance set N+ is defined by

N+ := {x ∈ N : ∀t > 0, there exists no trajectory σ through x with σ(]−t, 0[, x) ⊆ N} ⊂ ∂N.

From the definitions 3.1.6 and 3.1.10 follows immediately the proposition:

Proposition 3.1.11. Let N be an isolating block. It holds

∂N = N ∪N−.

The intersection N+ ∩N contains the points of external tangencies.

Proposition 3.1.12. If N is an isolating block, then (N,N−) is an index pair.

Proof. As N− ⊂ ∂N , it holds cl(N \N−) = N , hence the condition (1) is clearly
fulfilled.
Per definition of N−, a trajectory beginning in N− leaves N immediately, so N−

is positively invariant with respect to N .
Every trajectory leaving N has to intersect the boundary ∂N . This intersection
will be transverse as N is an isolating block. Hence this intersection point lies in
N−.

As a consequence of propositions 3.1.8 and 3.1.12 we have:

Corollary 3.1.13. Each isolated invariant set admits an index pair.

Now we have gathered all ingredients to be able to define the Conley index of
an isolated invariant set.

Definition 3.1.14. Conley index

Let (N,L) be an index pair for the isolated invariant set S and ∗ /∈ X an universal
point. The Conley index h(S) of S is a homotopy class of pointed space defined
as

h(S) =

[

N ∪ {∗}
L ∪ {∗}

]

,

where
[

N∪{∗}
L∪{∗}

]

denotes the homotopy class of the quotient space N∪{∗}
L∪{∗} obtained

by collapsing L ∪ {∗} to a distinguished point denoted by [∗].
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Remark 3.1.15. The addition of an universal point ∗ /∈ X suits the case where
the exit set L is empty, and otherwise the resulting quotient space shows the
same topology as the quotient N

L
. Hence if an isolated invariant set S admits an

index pair (N,L) where N is retractable to a point and L is empty, its Conley
index is

h(S) =

[

N ∪ {∗}
{∗}

]

= Σ0,

as the index h(S) consists of one point coming from N via homotopy on the one
side, and the distinguished point [∗] on the other side.
As another example we consider an isolated invariant set N ′ which admits an
index pair (N ′, L′) having the property that the set N ′ is homotopic to its exit
set L′. Such a situation is shown in figure 3.1. Take for N ′ a disk around the
equilibrium: this choice provides an isolating block . The exit set N ′− is the
right half of the circle bounding N ′. Then we have

h(S ′) =

[

N ′ ∪ {∗}
L′ ∪ {∗}

]

=

[

L′ ∪ {∗}
L′ ∪ {∗}

]

= [∗] =: 0̄.

This Conley index is called ”trivial Conley index” because it is the Conley index
of the empty set. Indeed the pair (∅, ∅) is an index pair for the empty set and it
holds

h(∅) =

[∅ ∪ {∗}
∅ ∪ {∗}

]

= [∗].

For further classical examples see 3.1.18.

The Conley index is well defined and does not depend on the choice of the
index pair used for its computation. We refer to [10, 38, 34] for the proof of this
fact. There a homotopy between the quotient spaces given by different index
pairs is constructed with the help of the flow.

It will reveal useful to define the Conley index on the homology level to be able
to use it in an algebraic way. Let us first recall a few basic facts about homology
theory. We choose to use the singular homology theory, following a consensus in
Conley index theory. Furthermore we make the choice of coefficients in the field
Z2 such that the homology groups are in fact homology vector spaces.
We do not want here to introduce the singular homology theory - for this we
rather refer to [39, 12] - but we recall the ingredients and the general axioms
satisfied by every homology theory.
The homology functor maps on one hand pairs (N,N1) on graded vector spaces
H∗(N,N1) = {Hn(N,N1)}n∈N called relative homology groups (or even vector
spaces in our case); on the other hand the homology functor maps continuous
maps f : (N,N1) → (N ′, N ′

1) between pairs to linear maps f∗ : H∗(N,N1) →
(N ′, N ′

1) between their homology vector spaces. In particular if the map i :
(N,N1) → (N ′, N ′

1) is the inclusion N ⊂ N ′, N1 ⊂ N ′
1, then the map i∗ is the
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inclusion
i∗ : H∗(N,N1) → H∗(N

′, N ′
1)

v 7→ v.

Furthermore there is a boundary map ∂ which is a map of degree -1 between
H∗(N,N1) and H∗(N1, ∅) = H∗(N1), in other words for each homology level q,

∂q : Hq(N,N1) → Hq−1(N1).

A homology theory satisfies the Eilenberg–Steenrod axioms:

1. Homotopy axiom: if two maps f0, f1 : (N,N1) → (N ′, N ′
1) are homo-

topic, then f0∗ = f1∗ : H∗(N,N1) → H∗(N
′, N ′

1).

2. Exactness axiom: For any pair (N,N1) the inclusion maps i : N1 → N
and j : (N, ∅) → (N,N1) together with the boundary map ∂∗ induce the fol-

lowing long exact sequence · · · ∂∗ //Hn(N1)
i∗ //Hn(N)

j∗
//Hn(N,N1)

∂∗ //Hn−1(N1)
i∗ // · · ·

3. Excision axiom: For any pair (N,N1), if U is an open subset of N such
that cl(U) ⊂ int(N), then the excision map j : (N \ U,N1 \ U) → (N,N1)
induces an isomorphism

j∗ : H∗(N \ U,N1 \ U) → H∗(N,N1)

4. Dimension axiom: If P is a one point space P = {x} then

Hq(P ) =

{

0 q 6= 0
Z2 q = 0

Definition 3.1.16. Homological Conley index

The homological Conley index of an isolated invariant set S is the homology
group of its Conley index h(S) relative to its distinguished point noted {∗} in
the following formula.

H∗(S) := H∗(h(S), {∗})

Remark. The relativ homology group H∗(h(S), {∗}) is also called reduced ho-
mology of h(S) and noted H̃∗(h(S)). The reduced homology is defined in such a
way that the homology of a single point is trivial and in dimensions other than
zero does not differ from the usual homology (see [12, 39] for details).

Remark 3.1.17. Let S be an isolated invariant set and (N,N1) an index pair
for S. Its homological Conley index H∗(S) is equal to the relative homology
H∗(N,N1) as soon as S admits a ”good” index pair - see [12] for technical details.
This is for example the case if the flow is C1. Then there exists for each isolated
invariant set an isolating block which is a differentiable manifold with boundary,
which is a sufficient condition. See [29] and references therein.
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Of course some information may get lost as passing to the homology group, but
this is the price to pay to make use of powerful algebraic structures.

Example 3.1.18. Pointed spheres

The Conley indices of hyperbolic fixpoints are pointed spheres whose dimension
is the dimension of the unstable manifold. Hence a hyperbolic fixpoint p with a
d–dimensional unstable manifold has Conley index h(p) = Σd and homological
Conley index H∗(p):

Hn(p) =

{

{0} n 6= d
Z2 n = d

This fact is proved in two steps. Without loss of generality a block K is given by
a cube around p.

1. The flow provides a homotopy contracting the block along the stable direc-
tions.

2. Through this homotopy, K has been deformed in a d–dimensional cube, its
exit set K− in its boundary. Hence the quotient K

K− has the homotop type
of a pointed d–dimensional sphere.

Proposition 3.1.19. Let S1 and S2 be two disjoint isolated invariant sets. Hence
the disjoint union S := S1∪̇S2 is also isolated invariant and for the Conley indices
holds:

h(S) = h(S1) ∨ h(S2),

H∗(S) = H∗(S1) ⊕H∗(S2).

Here the wedge h(S1) ∨ h(S2) of the two pointed spaces h(S1) and h(S2) has
to be understood as the gluing of the two spaces at their distinguished points.

Proof. The equality h(S) = h(S1) ∨ h(S2) is justified by the fact that S1 and
S2 admit disjoint index pairs (N1, P1) and (N2, P2) respectively, whose disjoint
union builds an index pair (N1 ∪N2, P1 ∪ P2) for S. Hence it holds

h(S) =

[

N1 ∪N2

P1 ∪ P2

]

=

[

N1

P1 ∪ P2
∪ N2

P1 ∪ P2

]

=

[

N1

P1
∨ N2

P2

]

= h(S1) ∨ h(S2).

The equality H∗(S) = H∗(S1)⊕H∗(S2) is now just a consequence of the basic
additivity property of homology H∗(h(S1) ∨ h(S2)) = H∗(h(S1)) ⊕ H∗(h(S2))
proved for example in [12] III.7.8.
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Figure 3.1: Non structurally stable equilibrium.

As we will see in the paragraph 3.4, we need also the cohomological Conley
index for further algebraic constructions.

Definition 3.1.20. Cohomological Conley index

Let S be an isolated invariant set. The cohomological Conley index of S denoted
by H∗(S) is defined as the cohomology of the Conley index of S, that is

H∗(S) := H∗(h(S)).

The first basic property of the Conley index is the detection of invariant sets.

Proposition 3.1.21. Detection of invariant sets

Let N be a isolating neighbourhood. If the Conley index h(Inv(N)) is non trivial,
then Inv(N) is nonempty.

Proof. The pair (∅, ∅) is an index pair for the empty set. Therefore holds h(∅) =
{∗} = 0̄. Hence h(Inv(N)) 6= 0̄ implies Inv(N) 6= ∅.

Remark 3.1.22. The converse is not true: For example structurally unstable
invariant sets are not detected by the Conley index. In figure 3.1, the Conley
index of the equilibrium is trivial, and small perturbations of the flow destroy the
equilibrium.

The isolated invariant sets theirselves are not robust, but the isolating neigh-
bourhoods and the Conley index of their maximal invariant sets are robust. This
fact is known under the name of continuation that we define in the following.
We introduce a parameter space Λ which is supposed to be a compact, locally
contractible connected metric space - for instance a compact interval of R. A
family of flows {ϕλ}λ∈Λ is parametrized by Λ through

Φ R×X × Λ → X ×R
(t, x, λ) 7→ Φ(t, x, λ) := (ϕλ(t, x), λ)

Furthermore, if N is a subset of X × R we denote by Nλ the slice

Nλ := N ∩ (X × {λ}).
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p

Figure 3.2: Equilibrium p is not an attractor although ∀y ∈ S1, ω(y) = {p}.

Definition 3.1.23. Let λ, µ be fixed in Λ, and let the sets Sλ and Sµ be isolated
invariant with respect to the flows ϕλ and ϕµ respectively. The isolated invariant
sets Sλ and Sµ are said to be related by continuation if there exists an isolating
neighbourhood N ⊂ X × Λ with respect to the parametrized flow Φ as above,
such that Sλ = Inv(Nλ) under the flow ϕλ and Sµ = Inv(Nµ) under the flow ϕµ.

Proposition 3.1.24. Continuation of the index

If two isolated invariant sets are related by continuation, then their Conley indices
coincide.

Remark 3.1.25. The equilibrium of figure 3.1 may be continuated to the empty
set, hence it has its index.

We want here to recall basic definitions of ω– and α–limit sets for sets to avoid
confusion.

Definition 3.1.26. Let U be a subset of a phase space X equipped with a flow
ϕ. The ω–limit of U is defined as

ω(U) = {x ∈ X/∃{yn}n∈N ⊂ U{tn}n∈N → +∞/ϕ(tn, yn) → x} .
The α–limit of U is defined as

α(U) = {x ∈ X/∃{yn}n∈N ⊂ U, {tn}n∈N → −∞/ϕ(tn, yn) → x} .
Remark 3.1.27. Even if U is an open set, the definition is not equivalent with
the union of all ω(y) (α(y) respectively) for y ∈ U . See figure 3.2: if U is a
neighbourhood around the equilibrium p, it holds:

ω(U) = S1,

although for every y ∈ U , ω(y) = {p}. In particular, p is not an attractor.

Proposition 3.1.28. Let S be an isolated invariant set. If h(S) admits one
connected component containing only the distinguished point {∗} and at least one
further component, then S is an attractor up to an invariant subset of trivial
Conley index. In other words, the isolated invariant set S may be written as
the disjoint union S = S ′ ∪ A, where A is an attractor i. e. there exists a
neighbourhood U of A for which holds ω(U) = A, and h(S ′) = 0̄.
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Proof. Let a compact set N be an isolating block for S. If the exit set N− is
empty, then S is an attractor because no trajectory leaves N in forward time so
that for every x ∈ N , holds ω(x) ⊂ S.
If N− 6= ∅, write N as the disjoint union of its connected components

N = N1 ∪N2 ∪ · · · ∪Nk.

Not every connected component Ni intersects the exit set N−, otherwise the Con-
ley index h(S) would be connected which contradicts the assumption. Without
loss of generality the components N1, . . . , Nm have a nonempty intersection with
N− whereas the components Nm+1, . . . , Nk do not intersect N−. Set

S ′ := Inv(N1) ∪ · · · ∪ Inv(Nm),

A := Inv(Nm+1) ∪ · · · ∪ Inv(Nk).

Because S ′ and A are disjoint holds h(S) = h(S ′)∨h(A). The Conley index h(S ′)
is connected and contains {∗}, so by assumption must hold h(S ′) = {∗} = 0̄.
Furthermore no trajectory leaves Nm+1 ∪ · · · ∪ Nk in forward time, so A is an
attractor.

The following proposition is somehow the converse of the previous one.

Proposition 3.1.29. Let A be an attractor. Then A is an isolated invariant
set and its Conley index shows at least two connected components, one of them
consisting only of the distinguished point {∗}.

Proof. According to the theorem 3.1.66, there exists a function V : X → R which
is constant on A and strictly decreasing along trajectories in a neighbourhood U
of A which is small enough not to intersect the recurrent set. As the set A is
assumed to be an attractor, it builds a minimum of V in the neighbourhood
U . Let denote by a the value of V on A. Then we claim that, for d > a, the
sublevelset

K := {x ∈ U/V (x) 6 d} ⊃ S

is an isolating block for A as soon as d − a > 0 is sufficiently small. Indeed
the boundary ∂K = {x ∈ U/V (x) = d} does not intersect A. Furthermore every
point of ∂K belongs to the immediate entrance set of K because of the monotony
of V . Hence there is no point of external tangency. The compact K is an isolating
block with empty exit set. Therefore the index of A reads

h(A) =

[

K ∪ {∗}
{∗}

]

= [K] ∪ {∗},

and the proposition follows.

Similarly holds for repellers the following proposition.
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p

N

N−

Figure 3.3: The Conley index h(p) =
[

N
N−

]

of the saddle p is trivial .

Proposition 3.1.30. Let S be an isolated invariant set. The set S is a repeller
if and only if there exists an isolating block B (nonempty) whose exit set consists
of its whole boundary ∂B = B−.

Proof. If the set S is a repeller, then it is a maximum for the abstract Lyapunov
function V of theorem 3.1.66. Hence an isloating block B can be found of the
form B = {V > d}, for d smaller but near V (S). By definition of V , the exit set
reads B− = ∂B.
If there exists an isolating block B whose exit set B− is nothing less than ∂B,
then it is clear that α(int(B)) = S.

Definition 3.1.31. Let S be an isolated invariant subset of a phase space X
equipped with a flow ϕ. The set S is said to have the index of an attractor if its
Conley index admits at least two connected components, one of those consisting
only of the distinguished point {∗}.
The set S is said to have the index of a repeller if it admit an isolating block B
whose exit set is B− = ∂B, its boundary.

3.1.2 Conley Index on a Manifold with Boundary

If the phase space is a manifold with boundary, the Conley index needs to be
adapted to take this boundary into account. This is the case in particular when
we apply the Poincaré compactification: the compactified phase space is a hemi-
sphere (topologically a disk) whose boundary is the equator (a sphere of dimen-
sion lower by one than the dimension of the original phase space). We establish
on the example of a hyperbolic saddle point at the boundary of a 2–dimensional
manifold, as illustrated in Figure 3.3, that the Conley index as we have defined
it until now, is trivial in a situation where we expect it to reveal the existence of
a non trivial isolated invariant set. We explain in the following how the classical
Conley index adapts to this situation.
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Let us consider a manifold M with boundary ∂M on which a semi flow is
defined. The boundary ∂M is invariant under the semi flow. If K is a subset of
M , the boundary ∂K of K has to be understood as the boundary of K relatively
to the manifold M , and may be denoted by ∂MK to avoid confusion. The Conley
index of an isolated invariant set S is defined via one of its index pair (N,N1)
satisfying Definition 3.1.9, as in the standard case, but has to split into several
components to extract the dynamical information both in the boundary and in
the inner part of the manifold. The definition of an isolated invariant set does
not change either, but we want to stress out that the condition on a isolating
neighbourhood K of S reads

S ∩ ∂MK = ∅
if the phase space is a manifold M with boundary. Therefore, the isolated invari-
ant set S may intersect the absolute boundary of K, but only in the interior of
K ∩∂M relatively to ∂M which is disjoint from ∂MK. For example, S may lie in
the boundary of M . Similarly for an isolating block K: the boundary ∂MK is not
allowed to admit internal tangencies, whereas ∂M ∩K cannot avoid containing
internal tangencies due to the invariance of ∂M . The definition of the Conley
index on a manifold with boundary is given in the following Definition 3.1.32 and
is illustrated in the basic example of hyperbolic fix points on the boundary in
Example 3.1.36.

Definition 3.1.32. Conley index on a manifold with boundary

We consider an isolated invariant set S on a manifold M with boundary ∂M .
The set S admits an index pair (N,N1) in the sense of 3.1.9. Let ∗ /∈ X be a
universal point. The Conley index of S is defined by three homotopy classes of
pointed spaces as follows:

h(M ;S) :=
[

N∪{∗}
N1∪{∗}

]

, the Conley index with respect to M ;

h(M, ∂M ;S) :=
[

N∪{∗}
N1∪(N∩∂M)∪{∗}

]

, the Conley index with respect to M and ∂M ;

h(∂M ;S) :=
[

N∩∂M∪{∗}
N1∩∂M∪{∗}

]

, the Conley index with respect to ∂M .

Remark 3.1.33. As the empty pair (∅, ∅) is an index pair for the isolated invari-
ant empty set, we obviously have

h(M ; ∅) = h(M, ∂M ; ∅) = h(∂M ; ∅) = 0̄.

Hence if an isolated invariant set S has one of those three indices non trivial,
then the set S is non empty. As for the standard index, the Conley index in a
manifold with boundary is able to detect isolated invariant sets. However, one
has to compute the three indices with respect to M , to M and ∂M , and to ∂M
before concluding.
The other basic properties of the Conley index like for example robustness, con-
tinuation, additivity, are obviously true for the Conley indices on a manifold with
boundary, as well.
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Remark 3.1.34. If the isolated invariant set S does not intersect the boundary
∂M , there exists an index pair which does not intersect the boundary and it
clearly holds

h(M ;S) = h(M, ∂M ;S)

h(∂M ;S) = 0̄

Remark 3.1.35. The boundary ∂M of the manifold M is invariant under the
flow and is a manifold without boundary where we can define the Conley index
in the standard way described above. Therefore the Conley index with respect
to the boundary of an isolated invariant set S, denoted by h(∂M ;S), coincides
with the standard Conley index h(S ∩ ∂M) of S ∩ ∂M as an isolated invariant
set in the manifold without boundary ∂M .

To illustrate Definition 3.1.32 let us present the important example of hyper-
bolic fixpoints on the boundary of a ball. Those may be interpreted as hyperbolic
fixpoints on the equator of the Poincaré hemisphere, alias infinity, as in Example
2.3.1.

Example 3.1.36. Let M be a n–dimensional disk. Hence its boundary ∂M is
a (n − 1)–dimensional sphere. We compute the Conley indices - in the sense of
Definition 3.1.32 - of a hyperbolic fix point p sitting on the boundary ∂M . The
hyperbolicity of the fix point implies that the linearisation of the vector field at
this point p admits n eigendirections whose corresponding eigenvalues are non
zero. The position of the fix point splits these eigendirections into two parts:
n−1 of them span the tangent space Tp∂M to the boundary at the point p. The
remaining eigendirection points to the inner part of the manifold. The stability
of this last eigendirection will play an important role for the Conley indices and
justifies our distinguishing the following cases:
Case 1: The eigendirection pointing to the interior of M is stable.
Let k ∈ {0, . . . , n − 1} be the number of unstable eigendirections - all of them
lying in the tangent space Tp∂M to ∂M at the fix point p. We claim that the
Conley indices with respect to M , to M and ∂M , and to ∂M , behave as follows:

h(M ; p) = Σk (3.1)

h(M, ∂M ; p) = 0̄ (3.2)

h(∂M ; p) = Σk (3.3)

The index h(∂M ; p) = Σk with respect to the boundary is obvious by Remark
3.1.35. The equality h(M ; p) = h(∂M ; p) holds because, the inner direction being
stable, the flow provides homotopy that retracts an index pair for p, say (N,N1),
on an index pair (N ∩ ∂M,N1 ∩ ∂M) for the flow on the boundary. The very
same homotopy provides the last equality left h(M, ∂M ; p) = 0̄: the index with
respect to M and ∂M is defined as the homotopy type of the quotient space
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N
N1∪(N∩∂M)

, and the flow provides a homotopy compressing N onto N ∩∂M , such

that h(M, ∂M ; p) is trivial, as claimed.
Case 2: The eigendirection pointing to the interior of M is unstable.
Here again, we denote by k ∈ {0, . . . , n− 1} the number of unstable directions -
i. e. eigendirections for which the corresponding eingenvalue is positive - of the
linearisation of the vector field at p in the tangent space Tp∂M to the boundary.
As the direction pointing to the interior of M is assumed to be unstable as well,
the linearisation at p has altogether k + 1 unstable eigendirections. We claim
that the Conley indices of p are as follows:

h(M ; p) = 0̄ (3.4)

h(M, ∂M ; p) = Σk+1 (3.5)

h(∂M ; p) = Σk (3.6)

The equality h(∂M ; p) = Σk is clear from standard Conley index theory on the
manifold without boundary ∂M .
The hyperbolic fixpoint p has a k+1–dimensional unstable manifoldW u(p) which
enters the interior of the manifold M , as the inner eigendirection of the linearised
vectorfield at p itself is unstable. If an index pair (N,N1) for the isolated invari-
ant set {p} is chosen small enough, the intersection N ∩W u(p) is topologically a
k+1–dimensional half disk. Its boundary relatively to M is ∂MN ∩W u(p). Here
∂MN denotes N without its interior relatively to M . Without loss of generality,
N is connected and so is ∂MN . Per definition of the exit set N1 in the index
pair, we have ∂MN ∩W u(p) ⊂ N1. Moreover the flow provides a homotopy ψ
which both retracts N onto N ∩W u(p) and the exit set N1 onto ∂MN ∩W u(p).
Therefore the following diagram commutes:

(N,N1)
ψ

//

q

��

(N ∩W u(p), ∂MN ∩W u(p))

q

��

N/N1
ψ̃

// N ∩W u(p)/∂MN ∩W u(p)

where ψ̃ is a homotopy induced by ψ, and q is the quotient map. It is easy to
see that the homotopy type of (N ∩W u(p)) / (∂MN ∩W u(p)) is trivial, hence
h(M ; p) = 0̄.
For the computation of the last index h(M, ∂M ; p) we use the same flow de-
fined homotopy ψ. This retracts N ∩ ∂M onto N ∩ ∂M ∩W u(p). Now the set
(N ∩ ∂M ∩W u(p))∪ (∂MN ∩W u(p)) builds the whole absolute boundary of the
k + 1–dimensional disk N ∩ W u(p), such that the homotopy type of the quo-
tient space (N ∩W u(p)) / ((N ∩ ∂M ∩W u(p)) ∪ (∂MN ∩W u(p))) is the k + 1–
dimensional pointed sphere Σk+1. The following diagram commutes

(N,N1 ∪ (N ∩ ∂M))
ψ

//

q

��

(N ∩W u(p), N ∩ ∂M ∩W u(p)) ∪ (∂MN ∩W u(p)))

q

��

N/N1
ψ̃

// (N ∩W u(p)) / ((N ∩ ∂M ∩W u(p)) ∪ (∂MN ∩W u(p)))
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where ψ̃ is a homotopy induced by ψ, and q is the quotient map. This proves the
equality h(M, ∂M ; p) = Σk+1.

Finally we give characterizations of attractors and repellers at the boundary.
We place us in the context of the Poincaré hemisphere to fix the ideas.

Proposition 3.1.37. We consider a flow on the Poincaré hemisphere H. Let S
be an isolated invariant set in the sphere at infinity, S ⊂ E = ∂H.
The set S is an attractor if and only if it admits an isolating block B with empty
exit set B− = set.
In this case the Conley indices of S read

h(H;S) = h(E ;S) = [B] ∪ {∗}
h(H, E ;S) = 0̄

Proof. As for the proof in the case of a phase space without boundary, the as-
sumption of S being an attractor reveals that that S is a minimum of the abstract
Lyapunov function V of theorem 3.1.66. Therefore an isolating block with empty
exit set exists. Furthermore, the flow provides an homotopy between B and B∩E
due to the fact that S ⊂ E attracts trajectories through B. Therefore, the homo-
topy types [B] and [B ∩ E ] coincide - and so do the indices h(H;S) and h(E ;S).
Assuming the existence of an isolating block B with empty exit set leads to
ω(int(B)) = S, i. e. the set S is an attractor.
The formulas for the indices are straighforward.

Proposition 3.1.38. We consider a flow on the Poincaré hemisphere H. Let S
be an isolated invariant set in the sphere at infinity, S ⊂ E .
The set S is a repeller if and only if it admits an isolating block B with exit set
B− = ∂B.
In this case the Conley index of S relative to H is trivial, i. e. . h(H;S) = 0̄.

We skip the proof to avoid repetitive of argumentation.

Definition 3.1.39. In the context of Poincaré compactification, we denote by
”index of an attractor” an index coming from an index pair (B, ∅). This index
takes the form:

h(H;S) = [B] ∪ {∗}
h(H, E ;S) = 0̄

h(E ;S) = [B ∩ E ] ∪ {∗}
In the context of Poincaré compactification, we denote by ”index of a repeller”
an index coming from an index pair (B, ∂B). This index takes the form:

h(H;S) = 0̄

h(H, E ;S) = [
B

∂B
]

h(E ;S) = [
B ∩ E
∂B ∩ E ]
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Remark 3.1.40. A set S ⊂ E with the index of an attractor is an attractor
according to 3.1.37.
A set S ⊂ E with the index of a repeller is a repeller according to 3.1.38.

For completeness, we want to address the case where an isolated invariant
set S is not fully contained in the sphere at infinity, but intersects it nontrivially
and characterize for this case the indices of attractors and repellers. We do not
dispose of the flow induced homotopy between [B] and [B∩E ]. As a consequence,
we have to be content with the following definition.

Definition 3.1.41. Consider an isolated invariant set S ⊂ H.

• The Conlex index h(S) is said to be of an attractor if S admits an isolating
block B whose exit set B− is empty.

• The Conlex index h(S) is said to be of a repeller if S admits an isolating
block B whose exit set B− is its boundary ∂HB.

The following holds.

Proposition 3.1.42. Consider an isolated invariant set S ⊂ H.

• The set S is an attractor if and only if its index h(S) is of an attractor.

• The set S is a repeller if and only if its index h(S) is of a repeller.

This proposition is being used in the proof of 3.5.38.

3.1.3 Attractor–repeller decompositions

Now that we have defined the Conley index of isolated invariant sets, we want to
present the machinery which allows to detect heteroclinic connections between
these. To this aim, we begin by presenting the tool called “connection map”. This
tool appears in the case where an isolated invariant set S can be decomposed in
an attractor–repeller pair (A,A∗). It detects connections between the repeller
A∗ and the attractor A (for precise definitions, see below). This construction is
not only the most elementar non–trivial decomposition, but also constitutes the
building block of the connection matrix theory developed for more sophisticated
decompositions, as we will see in the next paragraph. For more details see for
example [28].

Definition 3.1.43. Attractor–repeller decomposition

Let S be an isolated invariant set, and let A ⊂ S be a subset. The set A is called
an attractor in S if there exists a neighbourhood U of A with ω(U ∩ S) = A.
The set A∗ := {x ∈ S/ω(x) /∈ A} is its dual repeller. The pair of invariants sets
(A,A∗) is called an attractor–repeller decomposition of S. Similarly, the invariant
set B ⊂ S is called a repeller in S if and only if there exists a neighbourhood U
of B with α(U ∩ S) = B. The set B := {x ∈ S/α(x) /∈ B} is its dual attractor.
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AA∗

N

Figure 3.4: Decomposition of Inv(N) = S = A ∪A∗ ∪ C(A∗, A).

If an isolated invariant set is decomposed in an attractor–repeller pair (A,A∗),
the behaviour of the points of S which belong neither to A nor to A∗ is given by
the following theorem whose proof is straightforward.

Theorem 3.1.44. Let the set S be isolated invariant and suppose it admits an
attractor–repeller decomposition (A,A∗). If the set C(A∗, A) := {x ∈ S/α(x) ⊂
A∗, ω(x) ⊂ A} denotes the set of heteroclinic orbits from A∗ to A, then it holds

S = A ∪A∗ ∪ C(A∗, A).

Example 3.1.45. Let us consider all along this paragraph the following basic
example of an attractor–repeller decomposition of an isolated invariant set S in
R3. The isolated invariant set S is isolated by a compact neighbourhood N and
admits the attractor–repeller decomposition S = A ∪ A∗ ∪ C(A∗, A) where the
attractor A contains a unique fixpoint, a hyperbolic saddle with two stable direc-
tions and one unstable one; its dual repeller A∗ contains also a unique fixpoint
which is a hyperbolic saddle with one stable direction and two unstable ones. Fur-
thermore there is a connecting orbit from A∗ to A. We seek for a confirmation of
this fact by the Conley index method. This situation is described in Figure 3.4.
Note that neither A is an attracting fixpoint, nor A∗ is a repelling fixpoint.

The following properties of an attractor–repeller pair are straighforward.

Proposition 3.1.46. Let the set S be isolated invariant and suppose it admits
an attractor–repeller decomposition (A,A∗).

1. Both sets A and A∗ are isolated invariant.

2. The sets A and A∗ are disjoint.
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3. If A′ ⊂ A is an attractor in A, then A′ is also an attractor in S and the set
A′∗, its dual repeller in S, fulfills A′∗ ⊃ A∗.

4. If the set A is an attractor in S, then the dual attractor of its dual repeller
A∗ is A itself.

The Conley index theory is able to determine whether the set C(A∗, A) of
heteroclinics from A∗ to A is empty or not. The following is an attempt to
answer this question.

Theorem 3.1.47. Let S be an isolated invariant set admitting an attractor–
repeller decomposition (A,A∗). It holds

C(A∗, A) = ∅ ⇒ h(S) = h(A) ∨ h(A∗)

where h(S), h(A), and h(A∗) denotes the corresponding Conley indices.
In other words, h(S) 6= h(A) ∨ h(A∗) implies the existence of a heteroclinic

orbit from A∗ to A.

Proof. Assume there is no connection between the set A∗ and A. Then the set
S is the disjoint union of the sets A and A∗ and by proposition 3.1.19, h(S) =
h(A∗) ∨ h(A).

Example. Let us illustrate this theorem on Example 3.1.45. There we have an
attractor–repeller decomposition (A;A∗) of S. Index pairs for the calculation of
the indices can be found inFfigure 3.5, though they rather illustrate the Definition
3.1.48 below. The reader is invited to compute the indices with more natural
blocks. It holds

h(A) = Σ1

h(A∗) = Σ2

h(S) = 0̄ 6= Σ1 ∨ Σ2 = h(A) ∨ h(A∗).

So we can conclude that there exists a connection between A∗ and A.

The notion of attractor–repeller decomposition invites to define the notion of
index triples, which allows to explore the relationship of the index of the main
isolated invariant set and the indices of the attractor and repeller constituting its
decomposition.

Definition 3.1.48. Index triple

Let S be an isolated invariant set admitting an attractor–repeller decomposition
(A,A∗). An index triple for this decomposition is a collection of three compact
sets N0 ⊂ N1 ⊂ N2 such that

1. the pair (N2, N0) is an index pair for S;
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2. the pair (N2, N1) is an index pair for A∗;

3. the pair (N1, N0) is an index pair for A.

Proposition 3.1.49. Existence of index triple

Let S be an isolated invariant set admitting an attractor–repeller decomposition
(A,A∗). Then there exist three compact sets N0 ⊂ N1 ⊂ N2 forming an index
triple for the decomposition (A,A∗) of S.

Proof. The isolated invariant set S admits an index pair (N2, N0) by Theorem
3.1.13. We claim that there exists a compact neighbourhood U of the attractor
A from which trajectories stay away from the dual repeller A∗ as long as they
remain in N2; i. e. there exists a constant ε > 0 such that

x ∈ U
ϕ([0, t], x) ⊂ N2

}

⇒ d(ϕ([0, t], x), A∗) > ε

This neighbourhood U allow to define the set Z of points y ∈ N2 through which a
trajectory runs whose prehistory began in U and remained in N2 until it reaches
y itself, i. e.

Z := {y ∈ N2/∃t > 0, ∃x ∈ U/φ([0, t], x) ⊂ N2, φ(x, t) = y}.

It is straightforward to verify that the set Z together with the exit set N0 consti-
tute the compact set N1 := N0 ∪ Z of an index pair (N1, N0) for the S–repeller
A∗, so that the triple (N2, N1, N0) is an index triple for the decomposition (A,A∗)
of S.

Remark 3.1.50. Let us formulate more precisely what we proved here. Given an
index pair (N2, N0) for the isolated invariant set S, there exists for each attractor–
repeller decomposition of S a set N1 such that (N2, N1, N0) is an index triple
for this decomposition. This will be crucial in the proof of existence of index
filtrations (see 3.1.58 below).

Example. The Figure 3.5 shows the parts of an index triple for Example 3.1.45
that we follow in this paragraph. Here we set

N2 := N,

N1 := N0 ∪ Z.
Then N0 ⊂ N1 ⊂ N2 is an index triple for the considered decomposition.

Now we translate the Theorem 3.1.47 in terms of homology . This additional
point of view gives a sufficient condition for the existence of heteroclinics. To this
aim, the ‘topological” inequality h(S) 6= h(A∗)∨h(A) between pointed spaces will
be reformulated in an algebraic way and reduces to the question of the triviality
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AA∗

N

N0

Z

Figure 3.5: Construction of an index triple for Example 3.1.45.

of a linear map. It is important to be able to do this when the decomposition is
more sophisticated than an attractor–repeller pair, in which case the topological
algebraic structure keeps track of the inequalities between the Conley indices (see
Theorem 3.1.63 in the next paragraph). Of course the price to pay is a loss of
information in passing from the pointed spaces to their homology groups.

The existence of an index triple N0 ⊂ N1 ⊂ N2 for every attractor–repeller
pair allows to construct the following long exact sequence (see for example [39]
Theorem 4.8.5)

· · · // Hq(N1, N0)
i∗ //

=

Hq(N2, N0)
j∗

//

=

Hq(N2, N1)
δ(A∗,A)

//

=

Hq−1(N1, N0) //

=

· · ·

· · · // Hq(A)
i∗ // Hq(S)

j∗
// Hq(A

∗)
δ(A∗,A)

// Hq−1(A) // · · ·
The maps i∗, j∗ are induced by the inclusions i : (N1, N0) →֒ (N2, N0) and
j : (N2, N0) →֒ (N2, N1) respectively. The linear map δ(A∗, A) : H∗(A

∗) → H∗(A)
is called the connection map and is in fact defined by the composition

Hq(N2, N1)
∂ //

δ(A∗,A)

00Hq−1(N1, ∅)
jq−1

//Hq−1(N1, N0)

where ∂ is the boundary map furnished with the homology theory and the map
j∗ is induced by the inclusion j : (N1, ∅) →֒ (N1, N0). The connection map is of
degree −1 between the graded vector spaces H∗(A

∗) and H∗(A).
Note that, of course, the connection map does not depend on the choice of the

index pairs used for the computation of the indices H∗(S), H∗(A
∗) and H∗(A),

thanks to the homotopy invariance of homology theory. In particular, δ(A∗, A)
may be determined without an index triple but only with three index pairs for
S, A and A∗.

The introduction of the connection map allows to reformulate Theorem 3.1.47
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in terms of homology.

Theorem 3.1.51. Let S be an isolated invariant set admitting an attractor–
repeller decomposition (A,A∗). If the connection map δ : H∗(A

∗) → H∗(A)
defined by the long exact sequence of homology Conley indices

· · · δ //Hq(A) i∗ //Hq(S)
j∗

//Hq(A
∗) δ //Hq−1(A) i

∗
// · · ·

is nontrivial, the set C(A∗, A) of heteroclinic connections from A∗ to A is non
empty.

Proof. Assume that there exists no heteroclinics in S between the repeller A∗ and
the attractor A. Hence S is the disjoint union of A and A∗, and by Proposition
3.1.19 holds

H∗(S) = H∗(A) ⊕H∗(A
∗).

Therefore the long exact sequence defining the connection map reads

· · · δ(A
∗,A)
// Hq(A)

i∗// Hq(A) ⊕Hq(A
∗)
j∗ // Hq(A

∗)
δ(A∗,A)

//Hq−1(A)
i∗ // · · ·

Obviously holds for the inclusion induced i∗ and the projection j∗ the following:

ker(i∗) = {0} = im(δ(A∗, A))
im(j∗) = H∗(A

∗) = ker(δ(A∗, A))

Thanks to the exactness of the sequence, the connection map δ(A∗, A) : H∗(A
∗) →

H∗(A) satisfies the right hand side of the previous equalities. In other words, the
connection map is trivial.

Example. For Example 3.1.45, the only non trivial part of the long exact se-
quence reads

· · · //H2(S)
j∗

//

=

H2(A
∗)

δ //

=

H1(A)
i∗ //

=

H1(S)

=

· · ·

{0} Z Z {0}
It holds

{

{0} = im(j∗) = ker(δ)
Z = ker(i∗) = im(δ)

such that δ : Z → Z is bijective.

The connection map is non trivial, hence a connection from A∗ to A exists.

3.1.4 Morse decompositions and connection matrices

The connection matrix was introduced by Franzosa in [16]. Further important
works on this subject are [28, 38, 17]. Let us sketch the main idea of this theory
before we go into the details of the algebraic machinery. The connection matrix
theory is used in situations where the isolated invariant set S is decomposed
in several so called Morse sets (see precise definitions in the following). This
Morse decomposition gives rise to an attractor filtration to which a collection
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of connection maps is associated. In this paragraph we want to present a tool
called connection matrix which collects only some of the connection maps arising.
Afterwards, the interdependence of the connection maps may be exploited to
reconstruct the missing information. The properties of the connection maps and
the fact that they are not independant of each others imply for the connection
matrices some quite restrictive rules on their structure. Those rules are reflected
in the definition of the connection matrix by the axioms CM1–CM4 below. Using
this concept, we are able to state the existence of heteroclinic orbits with few a
priori information on the qualitative behaviour of the flow.

After this introduction, let us set the basic definitions.

Definition 3.1.52. Morse decomposition

Let the compact set S be an isolated invariant set. A finite collection M =
{M(p), p ∈ P} of disjoint compact invariant subsets of S is called a Morse de-
composition of S if the set P is furnished with a partial order < in such a way
that for every x ∈ S either

1. x ∈M(p) for some p ∈ P , or

2. there exists two elements p < p∗ ∈ P with ω(x) ⊂M(p) and α(x) ⊂M(p∗).

The partial order < on P is called admissible. The sets M(p), p ∈ P , are called
Morse sets.

In other words one has to be able to order the Morse sets such that trajectories
only run downhill and do not build heteroclinics cycles.

For example a potential or an energy function decreasing along trajectories
provides a Morse decomposition. The admissible ordering is given by the energy
levels. There are also situation where a discrete Lyapunov function provides a
Morse decomposition. Think for example of the map which associate to each
solution of a partial differential equation its number of zero. Under certain as-
sumptions, Sturm theory guarantee that this zero number is dropping with time.
When considering heteroclinic between two equilibria of such a PDE, there are
only possible if the zero number of the outgoing equilibrium is higher than the
zero number of the incoming equilibrium. In other cases, one makes use of the
lap number instead of the zero number. For more details, we refer to [5, 6].

Given a Morse decomposition M, the flow itself defines a natural partial order
on P : one can define the relation ≺ on P by the following. It holds p ≺ p∗ if and
only if an orbit runs from M(p∗) to M(p). This partial order is the smallest (i. e.
with the least number of comparisons) admissible partial order on P . However
this order is not known in general. More realistic is a situation where a stronger
order is known, for example from a Lyapunov function, and the natural flow
induced order is the one we are looking for. For that, one has to sort out the
relations p < p∗ where there is no actual orbit from p∗ to p (i. e. p ⊀ p∗).
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An important example of Morse decomposition is the attractor–repeller de-
composition: this is a Morse decomposition with only two Morse sets.

Let us collect some properties of the Morse sets.

Proposition 3.1.53. Let the compact set S be an isolated invariant set admitting
a Morse decomposition M = {M(p), p ∈ P}. Then the following holds.

1. The Morse sets M(p) are isolated invariant.

2. The set S is the union of the sets M(p) together with the sets of heteroclinics
C(p′, p), p, p′ ∈ P from M(p′) to M(p), i. e.

S =

(

⋃

p∈P
M(p)

)

∪
(

⋃

p′>p∈P
C(p′, p)

)

.

From a given Morse decomposition, cruder ones can be obtained by aggregat-
ing several Morse sets in a way that does not violate the no–cycle condition of
the partial order. This is done in the following definition and proposition.

Definition 3.1.54. Interval

Let M = {M(p), p ∈ P,<} be a Morse decomposition of an isolated invariant
set S. A subset I of P is called an interval if and only if for all p, p∗ ∈ I and all
p′ ∈ P , holds

p < p′ < p∗ ⇒ p′ ∈ I.

An interval I is called attracting if for all p ∈ I and p′ ∈ P , the relation p′ < p
implies p′ ∈ I

Proposition 3.1.55. Let M = {M(p), p ∈ P,<} be a Morse decomposition of
an isolated invariant set S let and the subset I ⊂ P be an interval. We define

M(I) :=
(

⋃

p∈IM(p)
)

∪
(

⋃

p<p∗∈I C(p∗, p)
)

, where C(p∗, p) denotes the set of

connecting orbits from M(p∗) to M(p). Then the collection MI := {M(p), p ∈
P \ I, <} ∪ {M(I)} furnished with the partial order induced by < is a Morse
decomposition of S.

This proposition is not true if I is not an interval. The construction of several
cruder Morse decompositions is crucial in the connection matrix theory: each of
them is easier to understand, and the connection matrix puts all the information
together.

As we saw before, the crudest Morse decomposition is an attractor–repeller
decomposition. Given a Morse decomposition, one can in general aggregate the
Morse sets in several ways to get an attractor–decomposition, i. e. a collection of
two Morse sets. In fact for each attracting interval I, the set I∗ := P \ I is also
an interval and (M(I),M(I∗)) is an attractor–repeller pair.

A last important notion in the context of Morse decomposition is the one of
adjacent intervals:
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Definition 3.1.56. Adjacent intervals

Let M = {M(p), p ∈ P,>} be a Morse decomposition of an isolated invariant
set S . Two intervals I, J ⊂ P are called adjacent if and only if their union I ∪J
is an interval itself.

Remark 3.1.57. We will often abreviate the union I ∪ J with IJ . For example
we may write M(IJ) for the amalgamated Morse set M(I∪J), or even δ(IJ,K) :
H∗(IJ) → H∗(K) for the connection map between H∗(M(IJ)) and H∗(M(K)),
omitting M(.) in the notation where this cannot generate confusion.

Now that we have defined the important concepts concerning Morse decom-
positions, we want to replace them in the context of Conley index and connection
matrix theory. To compute the Conley index of a single Morse set, one needs an
index pair (see Definition 3.1.9). To compute the indices and the connection map
in an attractor–repeller decomposition, one needs an index triple (see Definition
3.1.48). In a more sophisticated Morse decomposition, each attracting interval
gives rise to an attractor–repeller decomposition. Here again, one has to choose
the index pairs appropriately to fit with this so called attractor filtration: this is
the choice of an index filtration, defined below in 3.1.58.

Definition 3.1.58. Index filtration

An index filtration for a Morse decomposition M = {M(p), p ∈ P,>} of an iso-
lated invariant set S is a collection of compact sets N = {N(I), I ⊂ P attracting interval }
satisfying

1. For each attracting interval I ⊂ P , the pair (N(I), N(∅)) is an index pair
for M(I).

2. For every adjacent pair of intervals I, J ⊂ P ,

N(I) ∩N(J) = N(I ∩ J),

N(I) ∪N(J) = N(I ∪ J).

The question to ask is about the existence of such an index filtration for each
Morse decomposition. The answer is positive and goes back to Franzosa and
Mischaikow [17]. We sketch a part of the proof in the following.

Theorem 3.1.59. Given a Morse decomposition of an isolated invariant set,
there exists an index filtration for this decomposition.

Proof. Let S be an isolated invariant set admitting a Morse decomposition M =
{M(p), p ∈ (P,>)}. We want to construct an index filtration {N(I), I ⊂ P attracting interval}.
As S is isolated invariant, it admits an index pair (N1, N0) according to Theorem
3.1.13. Furthermore, for every attracting interval I ⊂ P , the pair (M(I),M(P \
I)) is an attractor–repeller decomposition of S. By Proposition 3.1.49 there exists
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an index triple for this decomposition. A closer look at the proof of Proposition
3.1.49 ( see Remark 3.1.50) shows that for each attracting interval I an index
triple of the form (N1, NI , N0) may be chosen, letting the biggest compact and
the smallest compact of the triple independent on the choice of I. The compact
sets NI do not have to fulfill the requirements of the definition of an index filtra-
tion, but allow to construct sets N(I) which do so.
For all p ∈ P and a fixed attracting interval I we have

p ∈ I ⇒ M(p) ⊂ int(NI \N0) as cl(NI \N0) isolates M(I) ⊃ M(p).

p /∈ I ⇒ M(p) ⊂ int(N1 \NI) as cl(N1 \NI) isolates M(P \ I) ⊃M(p).

Hence for each fixed p ∈ P , the set Dp defined by

Dp :=

(

⋂

I attracting, p∈I
int(NI \N0)

)

∩





⋂

I attracting, p/∈I
int(N1 \NI)



 ,

is an open neighbourhood of the set M(p). We define

Ep := {x ∈ N1/∃t > 0/φ(t, x) ∈ Dp and φ([0, t], x) ⊂ N1},

which is open and contains the neighbourhood Dp of M(p). Now the compact
sets N(I) of the index filtration are defined for every attracting interval I ⊂ P ,
I 6= P, ∅, as

N(I) := N1 \





⋃

p∈P\I
Ep



,

and further we rename N1 and N0 as

N(P ) := N1, N(∅) := N0.

It remains to prove that the pair of compact sets (N(I), N(∅)) is an index pair for
M(I). This is rather technical and can be read in [17]. Finally, the intersection
and union properties are straighforward from the definition:

N(I) ∩N(J) = N1 ∩





⋃

p∈P\I
Ep





c

∩





⋃

p∈P\J
Ep





c

= N1 ∩





⋂

p∈P∩(Ic∪Jc)

Ec
p





= N1 \





⋃

p∈P\(I∩J)

Ep





= N(I ∩ J)
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and similarly

N(I) ∪N(J) = N1 ∩









⋃

p∈P\I
Ep





c

∪





⋃

p∈P\J
Ep





c



= N1 ∩





⋂

p∈P∩(Ic∩Jc)

Ec
p





= N1 \





⋃

p∈P\(I∪J)

Ep





= N(I ∪ J)

The Definition 3.1.58 of an index filtration seems a priori to provide index pairs
only for amalgamated Morse sets of attracting intervals M(IJ). The following
proposition shows that the index filtration in fact is designed to provide index
pairs for all Morse sets - amalgamated or not.

Proposition 3.1.60. Let N = {N(I), I ⊂ P attracting interval } be an index
filtration. For every interval K ⊂ P , there exist attracting intervals I, J ⊂ P
such that the pair of compacts (N(I), N(J)) is an index pair for M(K).

Proof. The intervals I, J have to be chosen in such a way that their difference is
K. In other words, choose I, J such that (M(J),M(K)) is an attractor–repeller
decomposition of M(I). Then (N(I), N(J)) is an index pair for M(K):

1. The isolation of M(K) by cl(N(I) \ N(J)) is given by the following: let
us first recall the decomposition of M(I) into three parts M(I) = M(J) ∪
M(K)∪C(K, J) the set M(K) is the maximal invariant set Inv(cl(N(I) \
N(J))), because the points of M(I) leaving M(K) go to M(J). Further-
more the set M(K) lies in the interior of cl(N(I) \ N(J)) because it is a
subset of M(I) ⊂ int(cl(N(I) \N(∅))) and cannot have any common point
with the boundary of N(J).

2. Positive invariance of N(J) with respect to N(I): if a trajectory begins in
N(J) and stay for a positive amount of time in N(I), it cannot leave N(J)
without passing through its exit set N(∅), because of (N(J), N(∅)) being an
index pair for M(J). But, as this trajectory is supposed to stay in N(I), it
has to stay in N(∅) because of the positive invariance of N(∅) with respect
to N(I), as (N(I), N(∅)) is an index pair for M(I). As N(∅) ⊂ N(J), the
trajectory will not actually be able to leave N(J) without leaving N(I).

3. Finally, N(J) is an exit set for N(I), because N(∅) is an exit set for N(I)
and N(∅) ⊂ N(J).
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Let us illustrate the interdependance of the various connection maps in a sim-
ple situation, following [28]. We consider a totally ordered Morse decomposition
consisting of three Morse sets {M(p), p = 1, 2, 3} with 1 < 2 < 3. This case is
the easiest Morse decomposition after the attractor–repeller decomposition. As
in the proof of Proposition 3.1.60, we consider triples (I, J,K) of intervals of
{1, 2, 3} where (J,K) is an attractor–repeller decomposition of I. There are four
of them:

123 decomposes in (1, 23)

and in (12, 3)

12 decomposes in (1, 2)

23 decomposes in (2, 3)

The four long exact sequences defining the connection maps for those four attractor–
repeller pairs are interacting in the following braid diagram:

...

��

%%K
KKKKKKKKKKK ...

zzuuuuuuuuuuu

��

H∗(23)

δ(23,1)yyssssssssss

$$I
IIIIIIII

H∗(1)

��

%%K
KKKKKKKKK

H∗(3)

δ(3,12)zzuuuuuuuuu

δ(3,2)

��

H∗(12)

yyssssssssss

$$I
IIIIIIII

H∗(123)

��

%%K
KKKKKKKKK

H∗(2)

zzuuuuuuuuu

δ(2,1)

��

H∗(23)

yyssssssssss

$$I
IIIIIIII

H∗(3)

δ(3,12)

��

%%K
KKKKKKKKK

H∗(1)

zzuuuuuuuuu

��

H∗(12)

yyssssssssssss

$$I
IIIIIIIIII

...
...

In fact this braid diagram contains all
the information on the structure of con-
nections in the Morse decomposition
that one can extract with algebraic
topology: six homology indices (H∗(1),
H∗(2), H∗(2), H∗(12), H∗(23), H∗(123)
) and four connection maps (δ(1, 2),
δ(2, 3), δ(1, 23), δ(12, 3)). The connec-
tion matrix will condense this informa-
tion in three homology indices and three
”connection maps”.
Before we define properly the connection
matrix, let us discuss its entries in this
example. A connection matrix is a map
∆ : V → V where V is the graded vector
space defined by the direct sum of the
homological indices of the single Morse
sets: V := H∗(1) ⊕H∗(2) ⊕H∗(3). This
map is of degree −1, i. e. the image of
an element v = α + α′ + α′′ ∈ V , with
α ∈ Hn(1), α′ ∈ Hn(2), α′′ ∈ Hn(3) is
an element w = β + β ′ + β ′′ ∈ V with
β ∈ Hn−1(1), β ′ ∈ Hn−1(2) and β ′′ ∈
Hn−1(3).

This map ∆ can be interpreted as a matrix from the following point of view.
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For each n ∈ N the map

∆n : Hn(1) ⊕Hn(2) ⊕Hn(3) → Hn−1(1) ⊕Hn−1(2) ⊕Hn−1(3)

is a matrix as soon as bases are fixed for the homology vector spaces involved. In
other words, the fact that the homology is a graded vector space gives the matrix
∆ some depth. Furthermore ∆ is an ordinary matrix in the case that the Hn(p)’s
are one–dimensional in some degree and trivial in the others - as it happens if
the Morse sets are all hyperbolic fixpoints.

Let us describe here the obvious entries of ∆ for our example with three Morse
sets and how the map ∆ : V → V condenses the information contained in the
previous braid diagram.

• As we will see in its formal definition, the connection matrix is upper tri-
angular with respect to the ordering of the Morse decomposition. This
ordering allows only trajectories running downhill from a higher Morse set
to a lower. The entries ∆(p, q) with q > p are zero, reflecting those ”for-
bidden” trajectories.

• Furthermore, the entries ∆(2, 1) and ∆(3, 2) are the connection maps δ(2, 1)
and δ(3, 2) respectively, arising from two of the four long exact sequences
appearing in the braid diagram.

Taking those remarks into account, the connection matrix takes the following
form:

∆ =





0 δ(2, 1) ?
0 0 δ(3, 2)
0 0 0





We are now able to check the equality ∆2 = 0, essential for ∆ being a boundary
map. The entry ∆(3, 1), i. e. the question mark in the above matrix, does not
play a role in the calculation of ∆2. In this example, the only entry of ∆2 which
is not obviously zero is the one in the upper right corner ∆2(3, 1) = δ(3, 2)δ(2, 1).
The braid diagram which is commutative shows that this composition is equal to
the composition of four maps, two of them being successive maps in a long exact
sequence so that their composition is trivial. So at last the entry ∆2(3, 1) of ∆
is trivial.

The two known entries enable us to reconstruct some information which, a
priori, does not appear in the matrix. The lower diagonal block

∆(23) := ∆|H∗(2)⊕H∗(3) =

[

0 δ(3, 2)
0 0

]

is of degree −1 and has obviously the property that ∆(23)2 = 0. Hence it is a
boundary map and induces itself a graded homology vector space H∆∗(23) :=
ker∆(23)
im∆(23)

. This“artificial” homology vector space is required by the definition of
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the connection matrix (axiom CM3) to be isomorphic to the “real” one H∗(23).
In a similar way the diagonal bloc ∆(12) enables to recover the homology index
H∗(12).

It remains to recover H∗(123) and the connection maps δ(3, 12) and δ(23, 1).
This requires to fill up the entry ∆(1, 3) properly to make it possible. The
Theorem 3.1.62 guarantees that there is a good choice for ∆(1, 3). Once this
choice has been done and the entry ∆(3, 1) is filled up, the homology space
H∗(123) is recovered up to isomorphy through H∆∗(123) := ker∆

im∆
by Axiom CM3

of the definition of connection matrix 3.1.61. The two blocks

[

δ(2, 1) ∆(3, 1)
]

=: ∆(23, 1) : H∗(2) ⊕H∗(3) → H∗(1)

and
[

∆(3, 1)
δ(3, 2)

]

=: ∆(3, 12) : H∗(3) → H∗(1) ⊕H∗(2)

induce the following maps on homology:

∆̄(23, 1) : H∆∗(23) → H∆∗(1) = H∗(1)

[v] ∈ ker∆(23)
im∆(23)

7→ [∆(23, 1)(v)] ∈ H∆∗(1)

∆̄(3, 12) : H∆∗(3) = H∗(3) → H∆∗(12)

[v] ∈ H∗(3) 7→ [∆(3, 12)(v)] ∈ ker∆(12)
im∆(12)

.

Last we see that Axiom CM4 of the Definition 3.1.61 of a connection matrix was
designed to enable the recovering of the connection maps δ(23, 1) : H∗(23) →
H∗(1) and δ(3, 12) : H∗(3) → H∗(12) through the following commutative dia-

grams: H∆∗(23)
∆̄(23,1)

//

≈

��

H∆∗(1)

id
��

H∗(23)
δ(23,1)

// H∗(1)

and H∆∗(3)
∆̄(3,12)

//

id
��

H∆∗(12)

≈

��

H∗(3)
δ(3,12)

// H∗(12)

respectively.

Now let us give the formal definition of a connection matrix and its existence
theorem.

Definition 3.1.61. Connection matrix

Let M = {M(p), p ∈ P} be a Morse decomposition of an isolated invariant set S,
with partial ordering > of P . Let the graded vector space V :=

⊕

p∈P H∗(M(p))
be the direct sum of the homological Conley indices of the Morse sets. A map
∆ : V → V is called a connection matrix if and only if it fulfills the following
four axioms CM1–CM4:

• CM1: The map ∆ is a boundary map, i. e. ∆ is a linear map of degree
−1 with ∆2 = 0.

• CM2: The map ∆ is upper triangular with respect to the partial ordering;
that is the entry ∆(p, q) is trivial unless p > q.
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• CM3: For each interval I there is an isomorphism Φ(I) : H∆(I)∗ → H∗(I),
where ∆(I) is the diagonal bloc ∆(I) :

⊕

p∈I H∗(M(p)) →⊕

p∈I H∗(M(p)),
and H∆∗(I) is the artificial homology group with respect to the boundary

map ∆(I), i. e. H∆(I)∗ := ker∆(I)
im∆(I)

. Moreover if I = {p} for some p ∈ P ,

then Φ(I) = id.

• CM4: For each adjacent pair of intervals (I, J) the following diagram
commutes

· · · // H∆n(J) //

Φ(J)
��

H∆n(IJ)

Φ(IJ)
��

// H∆n(I)
∆̄(I,J)

//

Φ(I)
��

H∆n−1(J) //

Φ(J)
��

· · ·

· · · // H∗(J) // H∗(IJ) // H∗(I)
δ(I,J)

// H∗(J) // · · ·
where the following notation is used. The map ∆(I, J) is the submatrix of
∆ consisting of the entries ∆(p, q) for p ∈ I and q ∈ J , and the map ∆̄(I, J)
is its induced map on homology (i. e. if v ∈ H∗(I) is a representant of a

homology class [v] ∈ H∆(I)∗ := ker∆(I)
im∆(I)

, then ∆̄(I, J)([v]) := [∆(I, J)(v)] ∈
H∆(J)∗ := ker∆(J)

im∆(J)

Let us make a few explicative comments about this definition. First of all the
general idea of this definition is to require that the connection matrix ∆ defined
on the direct sum of the homological Conley indices of the single Morse sets con-
denses all the algebraic structures of all long exact sequences for all amalgamated
Morse sets.
Let us have a closer look at each axiom: The Axiom CM1 reflects the fact that
the connection maps δ(p, q) : H∗(p) → H∗(q) are boundary maps and generalizes
this for ∆ - and hence for all diagonal blocks of ∆. This will be crucial to be able
to define the artificial homology groups showing up in axioms CM3 and CM4.
The Axiom CM2 translate the fact that trajectories run only downhill along the
partial order on P .
The Axiom CM3 guarantees the isomorphy of the artificial homology groups
H∆∗(I) arising from the boundary map ∆(I) on

⊕

p∈I H∗(p) with the original
homological Conley indices of amalgamated Morse sets H∗(I).
Not only the indices of the amalgamated Morse sets are encrypted in ∆, but also
the whole algrebraic connection structure given by all the connection maps aris-
ing in long exact sequences generated by the attractor–repeller decompositions.
This property is the requirement of axiom CM4.
These complicated requirements on the map ∆ : V → V make it hard to believe
in its existence. However, Franzosa was able to prove the following theorem in
[16].

Theorem 3.1.62. Existence of a connection matrix

For each Morse decomposition {Mp, p ∈ P,<} of an isolated invariant set S,
there exists a connection matrix ∆ :

⊕

p∈P H∗(p) → ⊕

p∈P H∗(p) satisfying the
four conditions (CM1)-(CM4).



54 CHAPTER 3. CONLEY INDEX: CLASSICAL AND AT INFINITY

If the existence of the connection matrixi s provided, it is not the case for its
uniqueness, except for some some special cases (for instance Morse decomposition
with only hyperbolic equilibria as proved by Reineck in [32]).

Roughly speaking, nontrivial diagonal blocks in a connection matrix detect
the existence of heteroclinics between the corresponding aggregated Morse sets.
For example holds more precisely the following for adjacent Morse sets.

Theorem 3.1.63. Existence of heteroclinics in a Morse decomposition

Consider a flow ϕ admitting a Morse decomposition M = {M(i), i ∈ P,>}. If
i > j ∈ P are adjacent and there exists a connection matrix ∆ :

⊕

i∈P H(i) →
⊕

i∈P H∗(i) so that the entry ∆(i, j) is non trivial, then there is an heteroclinic
orbit connecting the Morse set M(i) to the Morse set M(j).

The foundation of the concept of Morse decomposition for a flow on a compact
metric space is base on a result by Charles Conley himself [11] telling, roughly
speaking, that a flow is gradient-like up to chain recurence part. The precise
definition of the chain recurrence set is given in 3.1.64 below. Conley proves the
existence of a Lyapunov function which is strictly decreasing outside of the chain
recurrence set and nonincreasing within it. Hence, if each connected component
of the chain recurrent set is collapsed to a point, the resulting flow is gradient–
like. Furthermore the Lyapunov functions provides a partial ordering for a Morse
decomposition consisting of the several equilibria alias the collapsed connected
components of the chain recurrence set. In this sense, the existence of a Morse
decomposition is nothing extraordinary. However, the knowledge about the con-
nected components of the chain recurrent set may be difficult to acquire.
The existence proof of the Lyapunov function is not constructive so that we do
not know in general a Lyapunov function explicitely. This is the reason why we
refer to it as ‘the abstract Lyapunov function” as in the proofs of 3.1.29, 3.1.30
above. But let us introduce the precise settings. We consider a flow ϕ on a
compact metric space X.

Definition 3.1.64. Given t > 0 and ε > 0. A (ε, t)– chain from x ∈ X to y ∈ X
is a finite collection of points (x1 = x, . . . , xn+1 = y) and of times (t1, . . . , tn) with
ti > t such that for all 1 6 i 6 n, the distance from xi+1 to ϕ(ti, xi) satisfies

d(xi+1, ϕ(ti, xi)) < ε.

The points x, y ∈ X are then said to be connected by an (ε, t)– chain.
The chain recurrent set R(ϕ) is the set of points x ∈ X which are connected to
themselves by a recurrence chain.

R(ϕ) = {x ∈ X/∃ε, t > 0 and an (ε, t)–chain connecting x to x}

Remark 3.1.65. The chain recurrent set contains the non wandering set, in
particular it contains all equilibria and periodic orbits.
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Theorem 3.1.66. Consider a flow ϕ on a compact metric space X. There exists
a function V : X → R with the following properties:

1. V is nonincreasing along trajectories i. e.

∀x ∈ X, t > 0, V (ϕ(t, x)) 6 V (x),

2. V is strictly decreasing outside of the chain recurrent set R(ϕ), i. e.

∀x ∈ X \R(ϕ), t > 0, V (ϕ(t, x)) < V (x).

Collapsing each connected component of the chain recurrent set to one point
allows to define the ”gradient part” of the flow ϕ. Flows can be classified accord-
ing to their gradient part, and Conley index theory cannot distinguish between
flows having equivalent gradient part. For details see [11].

3.2 Conley index and heteroclines to infinity

We presented in the two first chapters of the present thesis two ways of com-
pactifying a vector space and make infinity finite, hence accessible for the Conley
index techniques. We want to present in this paragraph which kind of results can
be expected in the cases where infinity is or contains an isolated invariant set.
The two questions we want to ask and answer, are the following:

1. Are there trajectories running to (or coming from) infinity?

2. If the first question is answered by yes, from which (finite of infinite) part of
the space are those trajectories coming from (or running to respectively)?

In other words we want both to clarify the existence of blow/grow up in for-
ward or backward time, and to identify as precisely as possible the structure of
heteroclinics to infinity.

Before we address those questions in more details, let us make some elemen-
tary remarks about the compactified Conley index.

Remark 3.2.1. Consider a flow on the Bendixson sphere and assume that the
north pole, alias the point at infinity, is isolated invariant. The Conley index of
the point at infinity with respect to the flow on the Bendixson sphere is equal to
the Conley index of the origin ξ = 0 of the tangent space to the north pole with
respect to the flow projected on this tangent space. In most of the cases we will
compute the Conley index of infinity in the tangent space for simplicity.

Similarly for the Poincaré compactification, we will rather compute Conley
indices of isolated invariant sets contained in the equator, alias the sphere at
infinity, with help of the projected semi flows on tangent spaces to the equator -
provided there exists a tangent space containing the whole isolated invariant set
considered.
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Under the assumption that infinity or parts of it are isolated invariant, we will
always have the existence of orbits connecting to it - that is the point of theorem
3.6.1. We can formulate more precise statements as soon as the Conley index of
infinity is known.

Proposition 3.2.2. Consider a compactified flow on the n–dimensional Bendix-
son sphere for which the point at infinity is isolated invariant. There is no tra-
jectory tending to the point at infinity in backward time direction if and only
if

h(∞) = Σ0,

and in this case, there are trajectories tending to the point at infinity in forward
time direction.
There are no trajectory tending to the point at infinity in backward time direction
if and only if

h(∞) = Σn,

and in this case there are trajectories tending to the point at infinity in backward
time direction.
Finally if h(∞) 6= Σ0,Σn, then there are both trajectories tending to the point at
infinity in forward time direction and trajectories tending to the point at infinity
in backward time direction.

Proof. The implication ”h(∞) = Σ0 ⇒ ∞ attractor” is a consequence of 3.1.28.
The converse uses the fact that we are able to construct an isolating block for the
point at infinity which is retractable to a point. For this we make again use of
the abstract Lyapunov function V of Theorem 3.1.66 which has a local minimum
on the point at infinity. The sublevel set K := {V 6 d} for d − minV > 0
sufficiently small is an isolating block retractable to a point. The exit set K− is
empty, hence h(∞) = Σ0.
In the second case, an index equal to Σn implies that the point at infinity is
a repeller by Proposition 3.1.30. The converse follows from the fact that the
abstract Lyapunov function V admits a maximum at the point at infinity . The
sublevel set K := {V > d} for maxV − d > 0 sufficiently small is retractable to
a point and its exit set is K− = ∂K. Hence h(∞) = Σn.
The third claim is a corollary of the previous.

In the case of the Poincaré compactification, we can state the following the-
orem on the existence/non–existence of unbounded trajectories in forward or
backward time direction.

Theorem 3.2.3. Consider a compactified flow on the Poincaré hemisphere.

• If there exists an isolated invariant set A ⊂ E in the sphere at infinity, whose
Conley index is that of an attractor (see definition 3.1.39), then there are
trajectories tending to A in forward time direction. Furthermore there are
no trajectories tending to A in backward time direction.
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• If there exists an isolating invariant set R ⊂ E in the sphere at infinity,
whose Conley index is that of a repeller, then there exist trajectories tending
to R in backward time direction. Furthermore there are no trajectories
tending to R in forward time direction.

• If there exists a nonempty isolated invariant set S ⊂ E in the sphere at
infinity, whose Conley index is whether that of an attractor nor that of a
repeller, then there are trajectories tending to S in forward time direction,
and trajectories tending to S in backward time direction.

The proof is straightforward with 3.1.37 and 3.1.38. We differentiate in the
original semi flow in the phase space X between trajectories having infinity as
a limit in forward or backward finite or infinite time, and the full trajectories
which remain bounded for all times. The union of those bounded trajectories is
an invariant set. This leads to the following definition.

Definition 3.2.4. Maximal bounded invariant set

If the union of all full bounded trajectories is bounded, we denote it by

F := {x ∈ X/∃ full bounded trajectory through x}

and call it the maximal bounded invariant set.

Of course, this boundedness of the maximal invariant set is not always pro-
vided. The set F is sometimes called ”global attractor” in the literature. We
avoid this name because it could lead to confusion in our context: the set F ,
even when it exists, does not have to be an attractor in the sense that it attracts
a neighbourhood of itself. Therefore we choose a longer but preciser name and
denote it by the maximal bounded invariant set. This set, if it is isolated invari-
ant, will play a very important role in section 3.5. But now let us first state some
basic facts about heteroclinics to infinity.

Remark 3.2.5. We saw in definition 3.1.32 that the Conley index at the bound-
ary E of the Poincaré hemisphere H has to take this boundary into account and
splits into three components: the Conley indices with respect to H, to H and E ,
and to E . This fact has obviously consequences on the connection matrix theory:
to describe the connections in a Morse decomposition of the whole Poincaré hemi-
sphere, inclusively its boundary alias the sphere at infinity, we have to analyze
three connection matrices, each of them collecting the information of one of the
three indices quoted above. Those three matrices will be denoted by
∆[H], connection matrix with respect to H,
∆[H,E], connection matrix with respect to H and E ,
∆[E], connection matrix with respect to E . Let us have a closer look at which
type of information may be provided by each of those three matrices.
The connection matrix ∆[E] is defined on the direct sum of the homological Conley
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indices of Morse sets with respect to the equator. Those are non trivial only for
Morse sets intersecting the equator, and deals only with the dynamic along the
equator E , a sphere invariant under the flow. Hence the connection matrix ∆[E]

can only describe heteroclinic orbits running on the equator, alias infinity. At
first sight, those orbits may seem artificial, because they do not exist as ”real” or-
bits in the original phase space X before the compactification. However they are
important in the description of asymptotic behaviours of ”real” blowing/growing
up/down orbits: in the flow projected on the Poincaré hemisphere those ”real”
exploding orbits follow the artificial ones in E as they approach the equator E , so
that we know how the original ”real” orbits approach infinity. This phenomenon
is observed in the examples ... The information carried by the connection matri-
ces ∆[H] and ∆[H,E] is less obvious to describe. For this let us consider again the
example 3.1.36. There we consider hyperbolic equilibria sitting on the bound-
ary of a manifold and computed their three Conley indices. We can summarize
these results and interpret them for the Poincaré hemisphere in the following
way: Consider a hyperbolic fix point p on the equator E of the Poincaré hemi-
sphere H. The linearisation of the projected vector field at the point p admits
n − 1 directions spanning the tangent space TpE to the equator at p, and one
eigendirection pointing to the interior of the Poincaré hemisphere. Furthermore
let us assume that {p} is a Morse set in a Morse decomposition including finite
isolated invariant sets and isolated invariant sets at infinity such as {p}. This
Morse decomposition gives rise to the connection matrices ∆H, ∆H,E , ∆E . We
distinguish the following cases:

1. If the eigendirection pointing to the interior of the Poincaré hemisphere H is
stable, the Conley index with respect to H and E is trivial, and the Conley
index with respect to H carries all the information. This information shows
up only in the connection matrix ∆[H].

2. On the contrary, if the eigendirection pointing to the interior of the Poincaré
hemisphere is unstable, the Conley index with respect to H is trivial and
the Conley index with respect to H and E carries all the information. This
information shows up only in the connection matrix ∆[H,E].

3. The Conley indices of the finite isolated invariant sets provide information
both for the connection matrices ∆[H] and ∆[H,E]., but of course not for ∆[E]

as they do not intersect the equator E .

These facts have the following consequences for the connection matrices:
The connection matrix ∆H may be used to prove the existence of heteroclinic
from a finite invariant set to the equilibrium at infinity p, but nit the other way
around. Similarly the connection matrix ∆H,E may be used to detect heteroclinic
connections from the equilibrium at infinity p to a finite isolated invariant set,
but not the other way around. The reason for that is that a trivial Conley index
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S

Figure 3.6: Isolated invariant set S at infinity with h(H;S) 6= 0̄ and h(H, E ;S) 6=
0̄.

makes no contribution to the vector space we denoted by V , direct sum of the
indices of the Morse sets, on which the connection matrices ∆ are defined - hence
generates no information about heteroclinic connections.
For the same reason, an heteroclinic between two hyperbolic equilibria on the
equator may be detected by ∆[E ] if this heteroclinic lies on the equator. On the
other hand, if this connection runs through the interior of the Poincaré hemi-
sphere, whether ∆H nor ∆H,E can detect it, because each of them contains only
half the information.

Of course, as the isolated invariant set at infinity gets more complicated than
a single hyperbolic equilibrium, the Conley indices with respect to H and E may
both be non trivial, as we see on the figure 3.6, where an isolated invariant set
S ⊂ E is represented together with an isolating block N for S. The set S consists
of two equilibria and a heteroclinic orbit between them on the sphere at infinity.
Building the quotient spaces according to the definition 3.1.32 we get:

h(H;S) = Σ1,

h(H, E ;S) = Σ1,

h(E ;S) = 0̄.

However we conjecture that for a general isolated invariant set S ⊂ E being a
Morse set in a Morse decomposition,

1. the heteroclinics finite→ S may be detected by ∆H but not by ∆H,E ,

2. the heteroclinics S →finite may be detected by ∆H,E but not by ∆H,

3. the heteroclinics S ′ → S for another isolated invariant Morse set S ′ ⊂ E
, may be detected by ∆E if these heteroclinics run on the equator, but no
heteroclinic S → S ′ through the interior of the Poincaré hemisphere can be
detected by connection matrices ∆H or ∆H,E .
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3.3 Some examples

Now let us consider the examples we saw before under the Conley index point
of view. We shall compute the indices of the isolated invariant sets and give the
connection matrices. [23]

Example 3.3.1. The quadratic vector field 1.3.2 under Bendixson com-

pactification. The phase portrait is shown on figure 1.4. A Morse decomposi-
tion of the whole Bendixson sphere is given by
M2 = {(1, 0)}, M3 = {(−1, 0)} unstable equilibria,
M1 = homoclinic orbit to the point at infinity, stable,
where the partial order reads

1 < 2

1 < 3

The figure 3.7 shows an isolating bloc for the accumulated invariant set M13

whose exit set is empty. An isolating bloc for M12 is given by a similar bloc on
the other side of the Bendixson sphere. Hence the homological Conley indices
reads:

H2(2) = Z2,

H2(3) = Z2,

H∗(1) :

{

H1(1) = Z2

H0(1) = Z2
,

H0(13) = Z2,

where the not mentioned homology groups Hk are trivial. The long exact se-
quence defining the connection map δ(3, 1) : H∗(3) → H∗(1) reads

. . . //H2(1) //

=

H2(13) //

=

H2(3)
δ //

=

H1(1)

=

// H1(13)

=

// . . .

. . . // {0} // {0} // Z2
δ // Z2

// {0} // . . .

Because

of the exactness of the sequence holds kerδ = {0} and imδ = Z2, i. e. the con-
nection map is non trivial.

Whereas the classical Conley index techniques worked out in the previous
examples, there are a lot of examples where it will not be the case. To convince
ourselves of this, we just have to take a look on figure 1.3: petals of homoclinic
orbits appears at infinity and prevent isolation. Such examples are the motivation
to create a new tool which is adapted to this frequent behaviour at infinity. This
new tool will utilize the isolation of the complementary dynamic via the duality
described in the next section.
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M1

∞

Figure 3.7: An isolating bloc for M13.

3.4 Conley index and duality

In this section we will summarize the results of [29, 26] concerning time–duality
for the Conley index. They consider a flow on a n–dimensional manifold with
boundary M , and find out a duality between the indices with respect to the flow
with original time and the indices with respect to the flow with reversed time
direction (see theorem 3.4.2). This phenomenon can be seen very easily on the
next example of a hyperbolic fix point. For the generalization to an arbtitrary
isolated invariant set, we have to pass to the homological/cohomological Conley
index. Furthermore this duality is compatible with the structure of Morse de-
composition and induces an isomorphy between the connection matrices. Our
strategy, which we will develop in the next section, is to use this duality to define
the Conley index of an invariant set of isolated invariant complement via the
Conley index of its complement - for details see 3.5.

Example 3.4.1. We consider an hyperbolic fix point P ∈ Rn with k unstable
dimensions. Hence its Conley index with respect to the flow with original time
direction is h+(P ) = Σk . With respect to the flow with reversed time direction,
the fixpoint P has n−k unstable direction, hence its Conley index reads h−(P ) =
Σn−k. Now it holds for the homological/cohomological Conley indices:

CHm
− (P ) =

{

Z, for m = k,

0, for m 6= k,

and

CH+
m(P ) =

{

Z, for m = n− k,

0, for m 6= n− k.

So the isomorphy CHm
− (P ) ∼= CH+

n−m(P ) is clear in this case. We will see at
next that it is also true in general.
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Theorem 3.4.2. If M is an orientable n–manifold with boundary, S ⊆ M an
isolated invariant set for a C1 flow on M , then there exist duality isomorphisms

D : CH∗
−(M, ∂M ;S) → CH+

∗ (M ;S) ,

D : CH∗
−(M ;S) → CH+

∗ (M, ∂M ;S) .

Further, if S ∩ ∂M = ∅, both isomorphisms reduce to a single isomorphism

D : CH∗
−(M ;S) → CH+

∗ (M ;S).

The proof of this theorem is given in [26]. It uses the following Poincaré–
Lefschetz duality theorem (see [12] VIII.7, or [39] 6.2).

Theorem 3.4.3. Poincaré–Lefschetz duality

Let M be an orientable n–dimensional manifold, and L ⊆ K compacts subsets of
M . Furthermore we assume that the sets L and K are neighbourhood retracts.
Then the following isomorphy holds:

Hk(K,L) ∼= Hn−k(M \ L,M \K).

The proof of theorem 3.4.2 can be summarized into two steps involving alge-
braic topology:

• For a given index quadruple (N,N0, N1, N2), the Poincaré–Lefschetz dual-
ity provides isomorphisms coming from cap–products: ∩zN

: Hk(N,N0 ∪
N1) → Hn−k(N,N2) and ∩zN

: Hk(N,N1) → Hn−k(N,N0 ∪ N2), where
zN ∈ Hn(N, ∂N) is the fundamental class of (N, ∂N).

• The second step consists on proving the independence on the choice of the
index quadruple. This is done by the following commutative diagram: there
appear a second index quadruple (N ′, N ′

0, N
′
1, N

′
2) with N ′ ⊂ N and homo-

topy equivalences φ− and φ+ between the coresponding quotient spaces,
which induce maps φ∗

− and φ+
∗ between the homology/cohomology groups .

Hk(N,N0 ∪N1)

∩zN

��

Hk(N/N1, N0/N1)∼=
oo Hk(N ′/N ′

1, N
′
0/N

′
1)

φ∗−
oo

∼=
// Hk(N ′, N ′

0 ∪N ′
1)

∩z
N′

��

Hn−k(N,N2) ∼=
// Hn−k(N/N2)

φ+
∗ // Hn−k(N

′/N ′
2) Hn−k(N

′, N ′
2)∼=

oo

Theorem 3.4.4. The duality isomrphism commutes with attractor–repellers

sequences. More precisely, if S is an isolated invariant set with attractor–
repeller decomposition (A,A∗), then the following diagrams commute:
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· · · // CHp
−(M, ∂M ;A) //

D
��

CHp
−(M, ∂M ;S) //

D
��

CHp
−(M, ∂M ;A∗) //

D
��

· · ·

· · · // CH+
n−p(M ;A) // CH+

n−p(M ;S) // CH+
n−p(M ;A∗) // · · ·

and

· · · // CHp
−(M ;A) //

D
��

CHp
−(M ;S) //

D
��

CHp
−(M ;A∗) //

D
��

· · ·

· · · // CH+
n−p(M, ∂M ;A) // CH+

n−p(M, ∂M ;S) // CH+
n−p(M, ∂M ;A∗) // · · ·

Furthermore the time duality isomorphismus is compatible with connection
matrices. As we will not make use of this property, we do not go into details here
and refer to [29, 26].

3.5 The Conley index at infinity

The case of a linear differential equation where the origin is a hyperbolic fixpoint
is easy and very well understood. However we saw in the first chapter that its
behaviour at the point at infinity under Bendixson compactification is degener-
ate as soon as it is a saddle point, i. e. the linear operator A governing the
equation ut = Au admits eigenvalues of different signs. Indeed the trajectories
which belong whether to the unstable eigenspace nor to the stable eigenspace are
homoclinic to the point at infinity in the Bendixson compactification. Moreover
each neighbourhood of the point at infinity contains some of those homoclinic
trajectories. This fact prevents isolation of the point at infinity: The maximal
invariant set contained in each compact neighbourhood N of the point at infin-
ity contains at least one homoclinic with an internal tangency to the boundary.
Our definition of the Conley index for the point at infinity should be able to
apply to this basic case, and we will see that it does. Furthermore this simple
case has provided the inspiration for a definition which includes more general
invariant sets at infinity in the Poincaré compactification. Therefore we begin by
the exposition of our new concept in the case of the Bendixson compactification.
After showing the limitations of this choice of compactification, we introduce the
concepts in the case of the Poincaré compactification which is the better choice
in most of the applications.

3.5.1 Under Bendixson compactification

In this paragraph we will consider the flow on the Bendixson sphere, unless
otherwise expressly specified. We describe a construction allowing us to define
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a Conley index of infinity in some cases where the classical requirements are
not fulfilled. Our generalization is based on the concept of isolation of ”the
complement” which is defined as follows.

Definition 3.5.1. The north pole alias the point at infinity is called ”of isolated
complement” if there exists a compact subset K of the Bendixson sphere S with
the following properties:

1. The north pole is contained in the complement Kc of K,

2. the compact set K is an isolating neighbourhood,

3. and every compact neighbourhood K ′ such that K ⊂ K ′ and ∞ /∈ K ′ is an
isolating neighbourhood too.

If the point at infinity is of isolated invariant complement, then all the bounded
dynamic is contained in a maximal bounded isolated invariant set, whose exis-
tence is set in the following proposition.

Proposition 3.5.2. Let us consider a normalizable flow on a Hilbert space X.
If the point at infinity in its Bendixson compactification is of isolated invariant
complement, then the set F defined as the union of all full globally bounded tra-
jectories is compact, isolated invariant, and attracts all trajectories which are
defined and globally bounded for all positive times.

Remark 3.5.3. Some authors would call such a F a global attractor. We do
not because our point of view is that infinity attracts unbounded trajectory,
hence F does not contain the global dynamic that we want to describe. We
choose to denote F by ”the maximal bounded invariant set” Furthermore we
will use the notation F for F ⊂ X but also for its image under the Bendixson
compactification, when no confusion is possible.

Proof. We assume that the point at infinity is of isolated invariant complement:
there exists a compact neighbourhood K as in definition 3.5.1 with ∞ /∈ K. We
claim that for every compact neighbourhood K ′ containing K such that ∞ /∈ K ′

holds Inv(K) = Inv(K ′), i. e. K and K ′ isolate the same invariant set. Indeed if
there is a compact neighbourhood K ′ containing K with ∞ /∈ K ′ but Inv(K) (
Inv(K ′) then it is possible to construct a compact set K ′′ which contradicts the
definition of the point at infinity being of isolated invariant complement. For this
let us define

d1 := max
x∈Inv(K ′)

d(x,K),

d2 := d(Inv(K ′),∞),

K ′′ := K ∪
(

(

Inv(K ′) ∪ B̄d1(K)
)

∩
(

B d2
2

(∞)
)∞)

,
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where d denotes the distance on the Bendixson sphere, the set B̄d1(K) denotes a
closed tubular neighbourhood aroundK, and the set B d2

2
(∞) an open ball around

the point at infinity. Furthermore let x1 ∈ Inv(K ′) be the point for which the
distance d1 is reached. The set K ′′ is a compact neighbourhood, contains K and
does not contain the point at infinity. However, the point x1 ∈ Inv(K ′) for which
the maximal distance d1 to K is reached lies on the boundary of K ′′. It is easy
to see that Inv(K ′) ⊂ K ′′, and therefore Inv(K ′) ⊂ Inv(K ′′). Hence it holds
x1 ∈ Inv(K ′′) ∩ ∂K ′′, which contradicts the fact that the point at infinity is of
isolated invariant complement.
Now remains to prove that F = Inv(K), where F is the union of all full globally
bounded trajectories. The inclusion F ⊃ Inv(K) is obvious. Suppose that
F * K. This means that there exists a x such that x /∈ K and x admits a
full bounded trajectory σ(x). We repeat the previous construction with Inv(K ′)
replaced by S := σ(x) ∪ Inv(K) to produce a contradiction to the fact that the
point at infinity is of isolated invariant complement. Hence we proved F * K.
As a consequence, F = Inv(K) and F is isolated invariant.
The ω–limit set of every forward globally bounded trajectory is a full globally
bounded trajectory which per definition is contained in F . Therefore F attracts
all trajectories which are defined and globally bounded for all positive times.

Now for practical use, the following equivalent definition may be easier to
handle. This definition requires a continuous family of isolating neighbourhoods
Kλ whose complement shrinks on the point at infinity.

Proposition 3.5.4. The point at infinity is of isolated complement if and only if
there exists a compact isolating neighbourhood K ⊂ S and a continuous monotone
retraction

H : [0, 1] ×Kc → Kc

from Kc to the point at infinity, i. e.

∀x ∈ Kc , H(0, x) = x,

∀x ∈ Kc , H(1, x) = ∞,

∀λ ∈ [0, 1] , H(λ,∞) = ∞,

∀λ < µ ∈ [0, 1] , H(λ,Kc) ' H(µ,Kc),

such that for all λ ∈ [0, 1[, the compact set Kλ := (H(λ,Kc))c is an isolating
neighbourhood.

Proof. First let us assume that the point at infinity is of isolated invariant com-
plement. Then there exists a compact isolating neighbourhood K of the maximal
bounded invariant set F . Now set d := d(K,∞) and define K ′ := S \ B d

2
(∞),

where B d
2

is the open ball of radius d
2

around the point at infinity, the Bendixson

sphere S being equiped with the standard metric. By definition 3.5.1, the set K ′
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is also an isolating neighbourhood for F . We denote by Pup : S → X the upper
chart of the Bendixson sphere, i. e. the projection on the tangent space to S at
the north pole alias the point at infinity, and define the following retraction of
K ′c = B d

2
(∞) on {∞}:

H(λ, x) : [0, 1] ×B d
2

→ B d
2

x 7→ P−1
up ((1 − λ)Pup(x) + λPup(∞))

The family Kλ := (H(λ,K ′c))c = S\B (1−λ)d
2

) satisfy the conditions of proposition

3.5.4.
Now assume that there exists a family of isolating neighbourhoods (Kλ)λ∈[0,1[

as in 3.5.4. We show that the point at infinity is of isolated invariant comple-
ment. First of all, we note that all Kλ, λ ∈ [0, 1[ isolate the same invariant
set. Otherwise we can find a λ0 for which Inv(Kλ0) intersects ∂Kλ0 , which
prevents isolation: assume there exist λ < µ such that Inv(Kλ)  Inv(Kµ).
Define λ0 := inf {ν > µ/Kν ⊃ Inv(Kµ)}. Because of the minimality of λ0 holds
Inv(Kµ) ∩ ∂Kλ0 6= ∅. This is a contradiction to the assumptions on Klambda, so
it holds

∀λ ∈ [0, 1[, Inv(Kλ = Inv(K0)).

For every compact neighbourhood K ′ containing K = K0 and not ∞, there exists
a λ such that K ′ ⊂ Kλ. Then holds Inv(K0) ⊂ Inv(K ′) ⊂ Inv(Kλ), and as a
consequence K ′ isolates the same invariant set as K, that we denote by F , the
maximal bounded invariant set.

The remark 3.5.2 leads to the following third equivalent definition of the
isolation of the complement of infinity which even does not require any compact-
ification.

Proposition 3.5.5. Consider a flow on a space X. Infinity is of isolated invari-
ant complement if the maximal bounded set F exists and is isolated invariant (in
particular compact).

This definition sounds less exotic than 3.5.1 or 3.5.4 because it does not require
any compactification. But it requires knowledge of the global behaviour while
the two others requires only knowledge about a neighbourhood of infinity - which
is more usual for the Conley index theory.

Now let us generalize the definition of the Conley index in case it is of isolated
invariant complement:

Definition 3.5.6. Let φ be a flow on the Bendixson sphere S. Assume that the
point at infinity is of isolated invariant complement. Hence the maximal bounded
invariant set F exists, is isolated invariant, and its Conley index under the flow
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φ with reversed time direction denoted by h−(F) is we defined. We define the
Conley index at infinity ĥ(∞) by

ĥ(∞) := h−(F).

Similarly the homological and cohomological Conley indices at infinity are defined
by

Ĥ∗(∞) := H−
∗ (F),

Ĥ∗(∞) := H−∗(F)

In fact, the Conley index at infinity may also be define without reversing
time, as the following proposition shows. However definition 3.5.6 is closer to
the intuition because we will later on replace infinity by an ersatz infinity having
precisely Conley index ĥ(∞).

Proposition 3.5.7. The following equalities hold:

Ĥ∗(∞) = H∗(F),

Ĥ∗(∞) = H∗(F).

Proof. By the time–duality theorem 3.4.2 holds

H−
∗ (F) = H+∗(F),

H−∗(F) = H+
∗ (F).

Corollary 3.5.8. The homological and cohomological Conley indices at infinity
may be also defined for a semi flow φ on the Bendixson sphere by

Ĥ∗(∞) := H∗(F),

Ĥ∗(∞) := H∗(F).

Remark 3.5.9. Here again we want to stress out that the definition of the Conley
index at infinity in fact does not requires compactification, because the indices
h−(F), H∗(F), and H∗(F) may be computed as well on the original phase space
X as on the Bendixson sphere S.

Remark 3.5.10. Both definitions may not coincide

In the case that the point at infinity is as well isolated invariant as of isolated
invariant complement, both the classical index h(∞) and the index at infinity
ĥ(∞) are defined. Those two indices may not be equal as we see if we consider
the example 1.3.2 of a vector field on R2 given by 1.11

{

xt = 2xy
yt = 1 + y − x2 + y2 (3.7)
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whose Bendixson compactification is illustrated on figure 1.4. The point at infin-
ity is isolated invariant and its classical Conley index is obviously trivial:

h(∞) = 0̄.

The maximal bounded invariant set F exists and consists of two unstable equi-
libria. The Conley index of F reads h(F) = Σ2 ∨ Σ2 and therefore

ĥ(∞) = Σ0 ∨ Σ0 6= h(∞).

Example 3.5.11. The Bendixson compactification of a linear vector field in Rn

is shown in example 1.3.1 and figure 1.3 for n = 2. If the origin is a hyper-
bolic equilibrium, the point at infinity is of isolated invariant complement and
the maximal bounded invariant set F contains only the origin: F = {0}. We
distinguish three cases:

1. If the origin is a saddle point, the point at infinity is not isolated invariant.
Let k ∈ N, 1 6 k 6 n− 1 be the number of unstable eigendirections of the
origin. It holds

h(F) = Σk,

ĥ(∞) = Σn−k.

2. If the origin is a sink, i. e. all eigendirections are stable, then the point at
infinity is also isolated invariant and it holds

h(F) = Σ0,

ĥ(∞) = h(∞) = Σn.

3. If the origin is a source, i. e. all eigendirections are unstable, then the
point at infinity is also isolated invariant and it holds

h(F) = Σn,

ĥ(∞) = h(∞) = Σ0.

The Conley index at infinity is able to detect the existence of unbounded
trajectories. The following proposition states analog properties as for the classical
Conley index (see Proposition 3.2.2).

Proposition 3.5.12. Consider a compactified flow on the Bendixson sphere S
for which the point at infinity is of isolated invariant complement.

• If the Conlex index at infinity ĥ(∞) is the index of a repeller (see Definition
3.1.31), then there exists a trajectory accumulating on the point at infinity
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in backward time direction, and on a finite ω–limit set in forward time
direction. More precisely there exists a x ∈ S such that











∞ ∈ α(x)

F ∩ α(x) = ∅
ω(x) ⊂ F

• If the Conlex index at infinity ĥ(∞) is the index of an attractor (see Def-
inition 3.1.31), then there exists a trajectory accumulating on the point at
infinity in forward time direction, and on a finite α–limit set in backward
time direction. More precisely there exists a x 6= ∞ ∈ S such that











∞ ∈ ω(x)

F ∩ ω(x) = ∅
α(x) ⊂ F

• If the Conley index at infinity ĥ(∞) is neither that of an attractor nor that of
a reppeller then there exists trajectories accumulating on the point at infinity
in backward time direction, and trajectories accumulating on the point at
infinity in forward time direction. More precisely there exist x1, x2 6= ∞ ∈ S

{

∞ ∈ α(x1)

∞ ∈ ω(x2)

Proof. We apply theorems 3.1.29 and 3.1.30 on the by assumption isolated in-
variant set F . This leads to the existence of trajectories connecting to F on the
one end and accumulating on the point at infinity at the other end.
The fact that there exist an isolating block B for F whose boundary is whole
occupied by the exit set in the first case, and by the entrance set in the second
case , guarantees that no trajectory can accumulate both on ∞ and F .

Remark 3.5.13. Note that we did not exclude accumulation on a homoclinic
orbit to the point at infinity. This is the reason why we cannot get equalities
{∞} = α(x) or {∞} = ω(x) respectively.

Now we shall present a method to detect heteroclinic orbits between a finite
isolated invariant set contained in F and the point at infinity in case it is of
isolated invariant complement.

Detection of heteroclinics to infinity

Let F be the maximal bounded invariant set of a flow and N an isolating neigh-
bourhood for F . Further let S ⊂ F be a finite isolated invariant set. We are
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interested in the detection of heteroclinic connections between S and the point
at infinity. If the point at infinity is not isolated invariant, classical Conley in-
dex methods will not apply. However the existence of F means that the point
at infinity is of isolated invariant complement. The heteroclinics to infinity are
trajectories which leave every neighbourhood of F in one time direction, and
accumulate on the finite isolated invariant set S ⊂ F in the other time direction.
To fix the ideas, let us consider a full trajectory {σ(t), t ∈ R}, with α(σ) ⊂ S,
which leaves N at a positive time. Because of the maximality of F , we can affirm
that the trajectory σ does not only leaves N , but leaves every isolating neighbour-
hood of F . Because these neighbourhoods can grow up to the point at infinity,
the trajectory σ has to accumulate on the point at infinity, or more precisely
{∞} ⊂ ω(σ). This fact will be made more precise in Theorem 3.5.22, but we
have to keep in mind for the moment that the crucial issue to detect heteroclinics
to/from infinity is to detect orbits leaving/entering an isolating neighbourhood
N of F .

The detection of tajectories leaving a neighbourhood N of the maximal in-
variant set F may be achieved by the following method. We propose to cut the
Bendixson sphere along the boundary of N , and glue outside of N a neighbour-
hood isolating an “ersatz infinity”, with which we will be able to apply classical
Conley index methods.

Now we will make this construction more precise and illustrate it on an elemen-
tary example. The same idea will be used for the Poincaré compactification, for
which we will consider more sophisticated examples, in particular 3-dimensional
ones.

First step: cut and glue.

For technical reasons, we will use an isolating block K for the maximal bounded
isolated invariant set F and not a simple isolating neighbourhood. We will see
that it is useful to extend the flow properly outside of the neighbourhood K of
F .
The boundary ∂K of K is a closed subset of the Bendixson sphere S. If the flow is
smooth, K may be chosen in such a way that it is a manifold with boundary - this
boundary ∂K being itself a manifold without boundary of one dimension lower.
On the other side consider an oriented manifold M of dimension n = dim(S)
with boundary ∂M . Furthermore we require that ∂M contains a connected com-
ponent d ⊂ ∂M which is homeomorphic to ∂K, and let us name g : d → ∂K
such a homeomorphism.
Let us define now the gluing map q as a quotient map

q : K ∪M → K ∪M
∼ , (3.8)

where the equivalence relation ∼ on K ∪M identifies ∂K and d: let x, y be two
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points of K ∪M ; we write x ∼ y if and only if

x = y , or
x ∈ d, y ∈ ∂K, and y = g(x) , or
y ∈ d, x ∈ ∂K, and x = g(y).

Remark 3.5.14. The set K∪M
∼ is a topological space which is in general only a

continuous manifold and not a differentiable one. In Remark 3.5.24, we explain
how this manifold (and the extension of the flow on it described below) may be
made smooth for our specific choice of M .

Now we propose a choice for M , for which we will explain also the next steps
and give examples. However, it is not the only possibility of extending K.
The boundary ∂K splits into the entrance and exit set of the isolating block K.
It holds ∂K = K+ ∪K−, the intersection K+ ∩K− is not empty, but contains
the points of external tangency to K, i. e. points that leaves K immediately
in both forward and backward time directions. We want to exploit the topology
of K+ and K− to detect orbits leaving K. Their topology is encoded by the
“simplest” topological space that one can retract them on. Assume that we have
two continuous retractions

r± : K± × [0, 1] → K±,

of K± on k± ⊂ K±, that is:

1. For all x ∈ K± and s ∈ [0, 1], r±(x, s) ∈ K±,

2. for all x ∈ k± and s ∈ [0, 1], r±(x, s) = x,

3. for all x ∈ K±, r±(x, 0) = x,

4. for all x ∈ K±, r±(x, 1) ∈ k±

Furthermore we require two extra conditions on the retraction. They will be
needed to extend the flow. The first is not really a restriction to the generality,
but guarantees that K± do not retract on their common boundary. The second
condition requires that the retractions do not squeeze K± to fast.

• (C1) k± ⊂ int∂K(K±).

• (C2) ∀s ∈ [0, 1[, the map r±(., s) : K± → K± is injective.

The condition (C1) guarantees that both of the retractions are strict. In fact, we
only need that one of the two restriction is strict, so that k− ×{1} and k+ ×{1}
do not intersect. This is no big constraint, because at least one of the two sets
K± admits a non–empty interior relatively to ∂K, so that there exist a strict
retraction to a corresponding ke ⊂ int∂K(Ke), for a e ∈ {+,−}. As a conclusion,
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(C1) is not really a constraint.
The condition (C2) allows us to extend the flow without producing branching
of the extension of the trajectories. We conjecture that such retractions exist
genererically when K± are entrance or exit sets of an isolating block. At least
they exist for the examples we draw our attention to.

We set

M := {(r+(x, s), s) ∈ K+ × [0, 1]} ∪ {(r−(x, s), s) ∈ K− × [0, 1]}.

In other words, the set M ⊂ ∂K × [0, 1] is the union of the two “graphs” of the
retractions r±. The boundary of M contains K+ ×{0}∪ k+ and K− ×{0}∪ k−.
With

d := K+ × {0} ∪K− × {0},

and

g : d→ ∂K

(x, 0) 7→ x

We construct the extended phase space K∪M
∼ as described before. Here we have

more explicitely for every pair of points x, y ∈ K ∪M , x ∼ y if and only if

x = y (3.9)

or x ∈ ∂K, y ∈ M and y = (x, 0) (3.10)

or y ∈ ∂K, x ∈ M and x = (y, 0) (3.11)

This extended phase space is in general only a continuous manifold with bound-
ary, differentiability may be reached; see Remark 3.5.24. The boundary of the
extended phase space Ext(K) is the union {(r−(x, s), s), x ∈ K− ∩ K+, s ∈
[0, 1]} ∪ {(r+(x, s), s), x ∈ K− ∩K+, s ∈ [0, 1]} ∪ k− ∪ k+. To fix the ideas, let us
state the following definition:

Definition 3.5.15. Let K be an isolating block for the maximal invariant set F .
Let r± : [0, 1] × K± → K± be retraction satisfying Conditions (C1) and (C2).
Let M be defined as the union of the graphs of r±; i. e.

M :=
{

(r+(s, x), s), x ∈ K+, s ∈ [0, 1]
}

∪
{

(r−(s, x), s), x ∈ K−, s ∈ [0, 1]
}

.

Furthermore let the equivalence relation ∼ be defined through 3.9,3.10, 3.11. The
extended phase space Ext(K) is defined as the quotient

Ext(K) :=
K ∪M

∼ .



3.5. THE CONLEY INDEX AT INFINITY 73

K+
K+

K−

K−

Figure 3.8: An isolating block K for F with its immediate entrance and exit sets
K±.

Example 3.5.16. Let us make this construction on the easiest interesting ex-
ample which is a linear vector field on R2 where the origin is a saddle. The
Bendixson compactification of this system is given in Chapter 1, 1.3.1, and il-
lustrated in Figure 1.3. The point at infinity is not isolated invariant, but of
isolated invariant complement. The maximal bounded invariant set is reduced to
the origin,

F = {0}.
Any disk centered at the origin provides an isolating block K for F . The imme-
diate entrance and exit sets are both the union of two disjoint arcs of a circle,
see Figure 3.8. Therefore, both K+ and K− are retractable to the disjoint union
of two points. The retractions r± can be easily chosen so as to satisfy conditions
(C1) and (C2) by applying homotheties shrinking each arc of the circle on its
middle point. The Figure 3.9 illustrates one of the four parts of the set M ob-
tained by this construction. Finally, Figure 3.10 shows the extended phase space
Ext(K). This exemple will be continued in 3.5.18.

Now let us introduce the extension of the flow on Ext(K).

Second step: extend the flow.

The trajectories in K are given by the compactified flow on the Bendixson sphere.
This flow has to be extended on the extended phase space Ext(K) = K∪M

∼ . We
show how to do it for our special choice M = {(r+(x, s), s) ∈ K+ × [0, 1]} ∪
{(r−(x, s), s) ∈ K− × [0, 1]}.
Let us describe the extended flow on the extended phase space. For this we
associate to each x ∈ K the positive first exit time T+(x) and the negative enter
time T−(x), precisely defined as follows:

T+(x) := sup{t > 0/ϕ(x, t) ∈ K} ∈ [0,+∞],
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s = 00 < s < 1s = 1

Figure 3.9: Retraction of each arc on a point.

Figure 3.10: The extended space Ext(K) = K∪M
∼
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T−(x) := inf{t 6 0/ϕ(x, t) ∈ K},∈ [−∞, 0]

where ϕ is the compactified flow on the Bendixson sphere. Obviously holds for
all x ∈ K, as soon as T−(x) or T+(x)

ϕ(x, T+(x)) ∈ K−,

ϕ(x, T−(x)) ∈ K+.

Furthermore, due to the injectivity of r±(s, .) for s ∈ [0, 1[, for each (x, s) ∈ M
with s ∈ [0, 1[, exists a unique X(x) ∈ ∂K such that

• X(x) lies in K+ and x = r+(X(x), s),

• or X(x) lies in K− and x = r−(X(x), s),

because of the definition of M and the conditions (C1) and (C2) required on the
retractions r±. For all x ∈ K+∩K−, holds r−(x, 0) = r+(x, 0) = x. Now we have
all ingredients to define the extended flow ϕ̂ on K∪M

∼ . We set s± := ±(1−e±(T±−t))
and define first ϕ̂ on K:

ϕ̂ : (t, x) ∈ R×K 7→











ϕ(t, x) , if T−(x) 6 t 6 T+(x)

(r− (s+, ϕ(T+(x), x)) , s+) , if t > T+(x)

(r+ (s−, ϕ(T−(x), x)) , s−) , if t 6 T−(x)

(3.12)

where ϕ is the compactified flow on the Bendixson sphere. It remains to define
ϕ̂ on M . We recall that to every (x, s) ∈ M with s 6= 1, we associate its unique
preimage through r±(., s) denoted by X(x) ∈ K± ⊂ K, so that ϕ̂(X(s), τ) makes
sense with the above definition of ϕ̂.

ϕ̂ : (x, s) ∈M 7→











ϕ̂(log(1 − s) + t, X(x)), if x ∈ r+(K+, s) and s ∈ [0, 1[,

ϕ̂(log(1 − s) − t, X(x)), if x ∈ r−(K−, s) and s ∈ [0, 1[,

(x, 1), if s = 1.

(3.13)

Proposition 3.5.17. The map ϕ̂ : Ext(K) × R → Ext(K) as defined through
Formulas 3.12 and 3.13 builds a continuous flow on the extended phase space
Ext(K).

Proof. Let us justify the group property of the map ϕ̂; i. e. for all t1, t2,
ϕ̂(t2, ϕ̂(t1, x)) = ϕ̂(t1 + t2, x). It is sufficient to prove this property outside of
K, because in K, the flows ϕ and ϕ̂ coincide and therefore ϕ̂ inherit the group
property of ϕ. When this is done, the global group property is proven by making
stopovers on the boundary common to K and M .
Let x = (r−(s, y), s), y ∈ K−, s ∈ [0, 1] be an element of M , and t1, t2 such that
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log(1− s) 6 t1, t2, t1 + t2; this guarantees that ϕ̂(t1, x), ϕ̂(t2, x), and ϕ̂(t1 + t2, x)
are still in M . By definition of ϕ̂ holds

ϕ̂(t1, x) = ϕ̂(t1, (r
−(s, y), s))

= ϕ̂(− log(1 − s) + t1, y)

=
(

r−(1 − elog(1−s)−t1 , y), 1 − elog(1−s)−t1)

Setting

s1 := 1 − elog(1−s)−t1

= 1 − (1 − s)e−t1

− log(1 − s1) = − log(1 − 1 − (1 − s)e−t1)

= t1 − log(1 − s),

we get

ϕ̂(t2, ϕ̂(t1, x)) = ϕ̂(t2 − log(1 − s1), y)

= ϕ̂(t2 + t1 − log(1 − s), y)

= ϕ̂(t1 + t2, x).

For arbitrary t1, t2, set τ = log(1 − s), which is exactly the time at which the
trajectory through x enters K and prove the group property by a stopover at
t = τ .

The proof of the equality ϕ̂(t2, ϕ̂(t1, x)) = ϕ̂(t1 + t2, x) for x = (r+(s, y), s),
y ∈ K+, s ∈ [0, 1] is similar.

Now the continuity of the flow uses the continuity of ϕ, of r± and of T± due
to the fact that K is an isolating block. The extension ϕ̂ is constructed in such a
way that the trajectories are not teared appart as they run through the sutures
K± ∼ K± × {0}.

Example 3.5.18. We continue here the basic example 3.5.16 and show the ex-
tended flow on Ext(K). The trajectories, after leaving K, just follow the ho-
mothety shrinking the arcs of circle to a point, and this in the appropriate time
direction depending on their belonging to K+ or K−. The homothety factor is
rescaled in such a way that the equilibrium on which an arc is shrinked, is reached
in infinite time. See figure 3.11. This example will be continued in 3.5.23.

If the retractions r± of K± on k± ⊂ K± can be chosen with the conditions
(C1), (C2), then the sets k± × {1} ⊂ Ext(M) under the extended flow ϕ̂ will
have the following properties:

Proposition 3.5.19. Consider a flow ϕ on the Bendixson sphere for which the
point at infinity is of isolated invariant complement. Let K be an isolating block
of the maximal bounded invariant set F . Assume that the immediate entrance
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Figure 3.11: The extended flow ϕ̂

and exit sets K± of K are retractable k± by retractions H± satisfying the above
conditions (C1), (C2) above. Then, under the above constructed flow ϕ̂ on the
extended phase space Ext(K) holds:

1. The sets k− and k+ are isolated invariant,

2. the set k− is an attractor,

3. the set k+ is a repeller.

Proof. Let U be defined as

U :=

{

(r−(s, x), s), x ∈ K−, s ∈ [
1

2
, 1]

}

.

The set U is a neighbourhood of k− in tthe extended phase space Ext(M) and
with respect to the extended flow ϕ̂ there obviously holds

ω(U) = k−,

so that k− is an attractor.
Similarly, the set V defined as

V :=

{

(r+(s, x), s), x ∈ K+, s ∈ [
1

2
, 1]

}

is a neighbourhood of k+ for which holds

α(V ) = k+,

so that k+ is a repeller.
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Remark 3.5.20. Note that the construction is also possible if ϕ is only a semi
flow. The extension ϕ̂ has to be done for each trajectory under ϕ. The extension
does not exclude multiple prehistory, bu does not create new branches of trajec-
tories. The extension of a global semi flow on S is a global semi flow on Ext(K).
Therefore we are able to formulate Theorems 3.5.22 and 3.5.27 on the existence
of heteroclinic to infinity for semi flows, and not only for flows.

The sets k± being isolated invariant with respect to the extended flow ϕ̂, the
Conley index is able to detect heteroclinic orbits to/from them. For this one has
to compare some indices.

Third step: compare indices.

The classical Conley index theory for the flow ϕ̂ now comes into play. Consider
a set S of the extended phase space Ext(K) that is isolated invariant under the
extended flow ϕ̂, and admits an attractor–repeller decomposition of the form
(k−, R), where R ⊂ F ⊂ int(K) is a bounded isolated invariant set. If there
holds

h(S) 6= h(k−) ∨ h(R),

where the Conley indices are computed with respect to the extended flow ϕ̂ then
the extended flow ϕ̂ admits a heteroclinic trajectory connecting R to b−.
Let us translate this information for the compactification of the original flow on
the Bendixson sphere. As the compactified flow and the extended flow coincide
onK, the heteroclinic R→ k− of the extended flow is, with respect to the original
compactified flow, an orbit which leaves K in forward time direction. We denote
this orbit by σ.
We cannot conclude that the ω limit set ω(σ) is the point at infinity because
we know nothing about the flow outside K; see for illustration Remark 3.5.21.
However the fact that the point at infinity is of isolated invariant complement
allows us to affirm that ω(σ) is not contained in the maximal bounded invariant
set F . Indeed, if ω(σ) were contained in F , then σ would remain bounded away
from the point at infinity. As a consequence, the trajectory σ would be bounded
and invariant, and by definition of F , we would have σ ⊂ F . This contradicts
the fact that σ leaves the block K isolating F .
Therefore, ω(σ) has to contain the point at infinity. We will also say that the
orbit accumulates at the point at infinity to describe this phenomenon.

Remark 3.5.21. An orbit may accumulate on the point at infinity while the
strict inclusion {∞}  ω(x) still holds. We can observe this phenomenon again in
example 1.3.2 illustrated in figure 1.4. From each finite equilibrium heteroclinics
are running whose ω–limit set is not solely the point at infinity: those orbits
accumulate on a homoclinic cycle containing the point at infinity.

We summarize our conclusions in the following theorem:



3.5. THE CONLEY INDEX AT INFINITY 79

Theorem 3.5.22. Consider a compactified semi flow ϕ on the Bendixson sphere
S such that the point at infinity is of isolated invariant complement.
Fix an isolating block K of the maximal bounded invariant set F and proceed to
the construction of the extended phase space Ext(K) described by 3.5.15 and the
extended semi flow ϕ̂ 3.12, 3.13 as above.

• Assume there exists an isolated invariant set S with respect to the ex-
tended semi flow ϕ̂ admitting an attractor–repeller decomposition of the
form (k−, R), where R is an isolated invariant subset of F .
If

h(S) 6= h(k−) ∨ h(R),

then there exists an orbit σ(t) with

α(σ) ⊂ R

ω(σ) ⊃ {∞}

connecting R to the point at infinity.

• Assume there exists an isolated invariant set S with respect to the ex-
tended semi flow ϕ̂ admitting an attractor–repeller decomposition of the
form (A, k+), where A is an isolated invariant subset of F .
If

h(S) 6= h(A) ∨ h(k+),

then there exists an orbit σ(t) with

α(σ) ⊃ {∞}

ω(σ) ⊂ A

connecting the point at infinity to A.

Example 3.5.23. This is the last part of example 3.5.16, 3.5.18. We notice in
figure 3.11 that the extended flow is topologically equivalent to the Poincaré com-
pactification of the linear saddle given in Example 2.1.1 and Figure 2.3. We have
already seen that the Conley index methods are able to detect the heteroclinic
orbits between the origin and the four equilibria at infinity.
On the other hand, the picture that we get is also comparable to the “blow up”
methods introduced e. g. by Dumortier (see for example [13]) and applied to
the point at infinity. Our approach to desingularize the point at infinity is more
topological and may be more flexible, although in this case both methods provide
the same picture.
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Remark 3.5.24. Note that the flow ϕ̂ being not smooth but in general only
continuous, the isolating blocks may be no manifolds (with boundary). This fact
has consequences on the algebraic topology of the Conley index: we can be sure
of the equality of the homology/cohomology of the quotient space N

L
and of the

relative homology/cohomology H(N,L) only if (N,L) is a ”good pair”. Such
a ”good pair” is given by a block together with its exit set, if one can find an
isolating block which is a manifold with boundary. This is the usual argument
used to prove the existence of a “good pair”, and does not apply here. Therefore,
we introduce the following condition (C3) on the retractions r± and discuss how
to make the extended phase space Ext(K) and the extended flow ϕ̂ smooth.

• (C3) The retractions r± are smooth.

Let us comment why the conditions (C1), (C2) and (C3) are needed.

• (C1): k± ⊂ int∂K(K±)
avoid the intersection of k+ × {1} and k− × {1} as subsets of the extended
phase space Ext(K).

• (C2):The injectivity of r±(s, .) for s ∈ [0, 1[ allows to define for each (x, s) ∈
M , s ∈ [0, 1[ a unique point X(x) on K± with x = (r±(s,X(x)), s); i. e. a
unique preimage through r±(s, .).

• (C3): Smoothness of r± is a necessary condition for the smoothness of ϕ̂.

However these conditions are still not sufficient to make the extension smooth.
To reach this aim, we propose the following strategy:
The first source of non–smoothness of the extended space sits at the boundary
∂K of K: the gluing procedure do not respect the tangential phase spaces TxS of
the Bendixson sphere S for x ∈ ∂K. If we have retractions r± fulfilling Condition
(C1), (C2), (C3), we have to modify them in such a way that d

dt |t=0
ϕ̂(t, x) ∈ TxS

for every x ∈ ∂K. We are on the safe side if there holds

∀x ∈ ∂K
d

dt |t=0

ϕ̂(t, x) =
d

dt |t=0

ϕ(t, x) ∈ TxS

According to Definition 3.12, it holds for x ∈ ∂K

d

dt |t=0

ϕ̂(t, x) =

(

∓ d

ds |s=0

r±(s, x),∓1

)

Applying first an homotopy deforming d
dt |t=0

ϕ(t, x) into
(

∓ d
ds |s=0

r±(s, x),∓1
)

,

and then the retraction r±, and rescaling the deformation time interval from
length 2 to length 1 should provide a smooth extension of the flow at the boundary
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K

∂K

homotopy d
dt
ϕ→ (dr

±

ds
,∓1)

homotopy to horizontal direction

r±

Figure 3.12: Sketch of the smoothing of Ext(K) and ϕ̂.

∂K. A similar homotopy hast to be applied at the end of the retractions r± so

that the derivative d
dt |t→∓∞

ϕ̂(t, x) =
(

∓ d
ds |s=1

r±(s, x),∓1
)

is deformed to the

horizontal direction (a, 0), a ∈ Rn. This construction is sketched in Figure 3.12.

Conjecture 3.5.25. It is generically possible to find retractions r± fulfilling (C1),
(C2), (C3) of the entrance and exit sets K±.

Conjecture 3.5.26. It is generically possible to find homotopies smoothing the
extended phase space Ext(K) and the extended flow ϕ̂ as described in Remark
3.5.24

If we know that that the extension may be smoothed, then the machinery
coming from algebraic topology apply and we have the following theorem:

Theorem 3.5.27. Assume that Ext(K) and ϕ̂ are smoothed. Then under the
assumptions of Theorems 3.5.22,

• if the connection map

δ : H∗(R) → H∗(k
−)

is nontrivial, then there is a heteroclinic connection R → k−for the extended
semi flow ϕ̂. This orbit corresponds to a trajectory σ under the compactified
flow on the Bendixson sphere S with

α(σ) ⊂ R,

ω(σ) ⊃ {∞}.

• if the connection map

δ : H∗(k
+) → H∗(A)
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is nontrivial, then there is a heteroclinic connnection k+ → Afor the ex-
tended semi flow ϕ̂. This orbit corresponds to a trajectory σ under the
compactified flow on the Bendixson sphere S with

α(σ) ⊃ {∞},

ω(σ) ⊂ A.

Remark 3.5.28. The theorem 3.5.22 is still true if one choose to extend the
phase space in another manner, as long as the flow properties of the extension
are respected. In other words,

• if one is able to embed an isolating block K of the maximal bounded invari-
ant set F in a bigger bounded phase space Y where the flow is an extension
of the flow in K,

• and if a connection between two isolated invariant sets B ⊂ F and C ⊂
Y \K,

then the same conclusions follows as in Theorem 3.5.22.
Futhermore, if the extention can be smoothed, then the Theorem 3.5.27 also
holds.
We describe a way of extending the flow which should work in quite general
situation, but there may be situations where another choice is more natural or
more efficient.

Remark 3.5.29. Let us try to describe here which type of connections may
be detected by the above presented method. The set k− being an attractor, it
seems obvious that only a pair of the form (k−, B) , where B is, say, a finite
isolated invariant set , may be an attractor–repeller decomposition of an isolated
invariant set S under the flow ϕ̂. As the set B is an finite isolated invariant set,
it is an invariant subset of F and its indices under the flows ϕ and ϕ̂ coincide.
Moreover, we know that k− having an index of attractor in the sense of definition
3.1.39, the homotopy index H∗(k

−) will show a non trivial H0(k
−). Only if

the homological Conley index of the set B shows a non trivial H1(B), the map
∂ : H1(B) → H0(k

−) has a chance to be nontrivial. This is the information
that results directly of the dynamic we constructed on the glued part M of our
extended phase space. On the other hand, the set k− itself has a topology which
may implies other nontrivial levels of homology index Hk(k

−). The ”good” sets
B for which the connection map ∂ : H∗(B) → H(k

−) may detect a heteroclinic
orbit are those with non trivial homology level Hk+1(B).

Now let us address the question of the Morse decomposition

Morse decomposition and connection matrices
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The connection map for an attractor–repeller pair lays the groundwork of the
connection matrix for a Morse decomposition. We show that our construction
with the extended phase space embeds very well in this framework. We fix an
isolating block K of F and with this K construct the extended phase space
Ext(K) equiped with the extended flow ϕ̂. Assume that there exists an isolated
invariant set S which admits a Morse decomposition {Mp, p ∈ I, >} satisfying
the following conditions:

1. there exist i+, i− ∈ I such that Mi+ = k+ and Mi− = k−,

2. for all j ∈ I, j 6= i±, Mp ⊂ F .

As k− and k+ are attractor and repeller respectively, the admissible ordering
should include them at the beginning or the end of a chain of ordering relations
respectively. Such a Morse decomposition could be obtained by completing a
Morse decomposition of the maximal bounded invariant set F by k+ and k− by
the addition of k− and k+ at extremities of chain of orders. Classical connection
matrix theory then apply through Theorem 3.5.27, as soon as the extension can
be smoothed - which we think is true exept my be in pathological situations; see
Remark 3.5.24. Theorem 3.5.27 translates the heteroclinics of the extended flow
into heteroclinics of the original flow on the Bendixson sphere S.

3.5.2 Under Poincaré compactification

We develop now definitions with many analogies to the ones in the last paragraph,
this time in the context of the Poincaré compactification. Here again we consider
semi flows for which we have existence of prehistory through each point of the
Poincaré sphere. However we do not require uniqueness of the prehistory. The
main differences with the Bendixson compactification we have to face are:

• The compactified phase space is now the Poincaré hemisphere H which is a
manifold with boundary. This make the classical Conley index theory more
technical as we saw in section 3.1.1, because the index itself splits in three
components.

• Infinity is represented by the equator E of the hemisphere H which is an
invariant set. Infinity is not a single point any more but a whole sphere. It
may contain more or less sophisticated invariant subsets S. Moreover there
are issues of dynamics inside the equator. One may argue that they are
artificial because they do not exist in the original phase space X, but they
are in fact useful to describe how trajectories approach infinity.

Let us begin with the notion of isolation of the complement.
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Definition 3.5.30. We consider a normalized semi flow φ on the Poincaré hemi-
sphere H. Let S ⊂ E be an invariant set contained in the sphere at infinity of
the Poincaré hemisphere H. The set S is called of isolated invariant complement
if there exists a compact set K ⊂ H with the following properties:

1. The compact K does not intersect with the invariant set S: K ∩ S = ∅.

2. The set K is an isolating neighbourhood in the Poincaré hemisphere H:
Inv(K) ⊂ intH(K).

3. Every compact neighbourhood K ′ ⊂ H containing K which does not inter-
sect the invariant set S is also an isolating neighbourhoood:











K ′ compact neighbourhood

K ′ ⊃ K

K ′ ∩ S = ∅
⇒ K ′ isolating neighbourhood.

Again we can define this concept equivalently with a continuous family of
isolating neighbourhoods whose complement shrinks on the invariant set S con-
tained in the sphere at infinity.

Proposition 3.5.31. Consider an invariant set S ⊂ E contained in the sphere
at infinity of the Poincaré hemisphere H. The set S is of invariant isolated
complement if and only if there exist a compact neighbourhood K̃ of the invariant
set S in the hemisphere H and a retraction

H : [0, 1] × K̃ → K̃

from the compact neighbourhood K̃ to the invariant set at infinity S such that for
all λ ∈ [0, 1[, the compact set Kλ := cl(H(λ, K̃)c) is an isolating neighbourhood
in the Poincaré hemisphere H. The map being a retraction means:

∀x ∈ K̃ , H(0, x) = x,

∀x ∈ K̃ , H(1, x) ∈ S

∀λ ∈ [0, 1], ∀x ∈ S , H(λ, x) = x,

∀λ < µ ∈ [0, 1] , H(λ, K̃) ' H(µ, K̃)

We skip the proof of the equivalence as it is quite similar to the proof of
proposition 3.5.4 in the previous paragraph.

In the case of the Bendixson compactification, the point at infinity being of
isolated invariant complement was equivalent to the existence of a compact set F
containing all bounded trajectories. In the context of Poincaré compactification,
we may observe the existence of an invariant set of isolated invariant complement
in the sphere at infinity without the existence of a maximal bounded invariant
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set F . In fact, the existence of a maximal bounded invariant set F is equivalent
to the whole sphere at infinity E being of isolated invariant complement. The set
F contains all globally bounded trajectories, which remains for all time bounded
away from the sphere atinfinity.

However, all the isolating neighbourhoods K ′ in the first definition 3.5.30 or
equivalently the Kλ in the second definition 3.5.31, all isolate the same invariant
set. We introduce the following notation:

Definition 3.5.32. Let S ⊂ E be a set of isolated invariant complement. We
define Scomp as the union of all trajectories for which whether the α–limit set nor
the ω–limit set intersects S, or

Scomp := {x ∈ H/α(x) ∩ S = ω(x) ∩ S = ∅}.

We denote Scomp by ”complement” of S, not to be confused with the complement
of S in H denoted by Sc.

Proposition 3.5.33. Let S be a set of isolated invariant complement. Then
its complement Scomp is isolated invariant. Let K be a compact fulfilling the
three conditions of the definition 3.5.1. Then every compact neighbourhood K ′

containing K isolates Scomp, in particular holds

Inv(K ′) = Inv(K) = Scomp.

Furthermore, let N be an isolating neighbourhood of Scomp. Then the compact N
fulfills the three conditions of Definition 3.5.1.

Proof. The proof is analog to the proof of proposition 3.5.2.

Remark 3.5.34. The relationship between S and Scomp is comparable to the
relationship between the point at infinity and the maximal bounded invariant set
F in the case of the Bendixson compactification. If the sphere at infinity E is of
isolated invariant complement, then Ecomp = F is the set containing all bounded
orbits. Otherwise the set Scomp and the sphere at infinity have no reason to be
disjoint.

Definition 3.5.35. Let S be a compact set, invariant under a normalized flow
on the Poincaré hemisphere and contained in the sphere at infinity. If the set S
is of isolated invariant complement, we define the Conley index of S at infinity
ĥ(S) as

ĥ(S) := h−(Scomp),

where h−(Scomp) is the classical Conley index of Scomp computed with reversed
time direction.
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S
Scomp

Figure 3.13: Classical index and index at infinity differs.

Remark. We want to recall here that, the Poincaré hemisphere H being a man-
ifold with boundary, the Conley indices split into three parts

ĥ(H;S) := h−(H;Scomp)

ĥ(H, E ;S) := h−(H, E ;Scomp)

ĥ(E ;S) := h−(E ;Scomp)

as explained in ref.

Proposition 3.5.36. Let S be an invariant set of isolated invariant complement
Scomp. If we denote the homological and cohomogical Conley index at infinity of

S by Ĥ∗ and Ĥ∗ respectively, then the following equalities hold.

Ĥk(H, E ;S) = Hn−k(H;Scomp)

Ĥk(H;S) = Hn−k(H, E ;Scomp)

Ĥk(E ;S) = Hn−k(E ;Scomp)

Proof. This is a direct consequence of Theorem 3.4.2 on time duality of the Conley
index.

Remark 3.5.37. If a set S ⊂ E is both isolated invariant and of isolated invariant
complement, then both indices h(S) and ĥ(S) are defined. They may not coincide
as we see in figure 3.13. There we have an equilibrium S on the sphere at infinity
of trivial classical Conley index h(H;S) = h(H, E ;S) = h(E ;S). Its complement
Scomp is a stable equilibrium at the orgine whose Conley index is h(Scomp) = Σ0.

Hence holds ĥ(H;S) = ĥ(H, E ;S) = Σ2 and ĥ(E ;S) = 0̄.

Now let us state a proposition analog to 3.5.12 in the case of the classical
Conley index and giving existence of trajectories accumulating on an invariant
set S at infinity.
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Proposition 3.5.38. Consider a compactified flow on the Poincaré hemisphere
H admitting an invariant set S ⊂ E at infinity of isolated invariant complement.

• If the Conlex index at infinity ĥ(S) is the index of a repeller (In the sense
of Definition 3.1.39), then there exists a trajectory accumulating on S in
backward time direction, and on a ω–limit set in Scomp in forward time
direction. More precisely there exists a x ∈ H such that











S ∩ α(x) 6= ∅
Scomp ∩ α(x) = ∅
ω(x) ⊂ Scomp

• If the Conlex index at infinity ĥ(S) is the index of an attractor (in the
sense of Definition 3.1.39), then there exists a trajectory accumulating onS
in forward time direction, and on a α–limit set in Scomp in backward time
direction. More precisely there exists a x ∈ H such that











S ∩ ω(x) 6= ∅
Scomp ∩ ω(x) = ∅
α(x) ⊂ Scomp

• If the Conley index at infinity ĥ(∞) is neither that of an attractor nor that of
a reppeller then there exists trajectories accumulating on S in backward time
direction, and trajectories accumulating on S in forward time direction.
More precisely there exist x1, x2 ∈ F

{

S ∩ α(x1) 6= ∅
S ∩ ω(x2) 6= ∅

The proof is analog to the proof of 3.5.12, replacing the point at infinity ∞ by
S and the maximal bounded invariant set F by the complement to S, i. e. Scomp.

The following proposition address a very natural question: Is it true that the
disjoint union of invariant sets of isolated invariant complement builds again an
invariant set of isolated invariant complement? We know that this is true for
isolated invariant sets . The proposition answers the question with yes.

Proposition 3.5.39. Consider a compactified semiflow on the Poincaré hemi-
sphere H. Assume that there exists a finite collection {Si}ni=1 ⊂ E of compact
invariant sets in the sphere at infinity that are pairwise disjoint and of isolated
invariant complements {Sicomp

}ni=1 ⊂ H.
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Then the disjoint union
⋃n
i=1 Si ⊂ E is an invariant set of isolated invariant

complement. Furthermore holds
(

n
⋃

i=1

Si

)

comp

=

n
⋂

i=1

Sicomp
.

If {Niλ}ni=1 is a continuous family of isolating neighbourhoods of Sicomp
as in

property 3.5.31, then there exists a λ0 ∈ [0, 1[ such that for every λ > λ0, the set
cl (
⋂n
i=1 int (Niλ)) is an isolating block for (

⋃n
i=1 Si)comp.

Proof. Set Nλ := cl (
⋂n
i=1 int (Niλ)). For every λ ∈ [0, 1[ holds

n
⋂

i=1

Sicomp
= cl

(

n
⋂

i=1

int (Niλ)

)

(3.14)

⊃ Inv

(

cl

(

n
⋂

i=1

int (Niλ)

))

= Nλ (3.15)

the equality being a priori only valid for flows but not necessarily when there are
multiple prehistories.
For λ big enough holds

n
⋂

i=1

Sicomp
⊂

n
⋂

i=1

Niλ = int(N).

Assume indeed that there is for a λ ∈ [0, 1[ a nonempty intersection

n
⋂

i=1

Sicomp
∩ ∂Njλ 6= ∅.

As the set
⋂n
i=1 Sicomp

is at a positive distance from Sj and the complement H\Njλ

of Njλ in H shrinks on Sj as λ increases, we have for a λj > λ

n
⋂

i=1

Sicomp
⊂ int(Njλj

).

Taking λ big enough guarantees

n
⋂

i=1

Sicomp
⊂

n
⋂

i=1

Niλ = int(Nλ).

In particular we know now that for λ big enough,
⋂n
i=1 Sicomp

⊂ Nλ. The set
⋂n
i=1 Sicomp

is invariant, so that it is contained in the maximal in variant set in
Nλ, i. e.

n
⋂

i=1

Sicomp
⊂ Inv(Nλ).
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Together with the inclusion 3.14 this implies equality

n
⋂

i=1

Sicomp
= Inv(Nλ) ⊂ int(Nλ)

in other words Nλ is an isolating neighbourhood of
⋂n
i=1 Sicomp

for every λ big
enough. Finally it holds

N1 = cl

(

n
⋂

i=1

int(Ni1)

)

= cl

(

n
⋂

i=1

(H \ Si)
)

= cl

(

H \
(

n
⋃

i=1

(Si)

))

.

This equality shows that the complement of Nλ shrinks on the union
⋃n
i=1(Si) so

that holds for λ < 1 but big enough
(

n
⋃

i=1

(Si)

)

comp

= Inv(Nλ)

=

n
⋂

i=1

Sicomp

and the property is proven.

Now let us describe how to detect heteroclinic orbits to sets of isolated invari-
ant complements.

Detection of heteroclinic orbits

In the context of Poincaré compactification, infinity is represented by a whole
sphere E which may contain several pairwise disjoint invariant sets {Si}ki=1 of
isolated invariant complements {(Si)comp}ki=1 (for the definition of the isolated
invariant complement see 3.5.32). To describe the global structure of the com-
pactified dynamic, we want to proceed to the same construction as in the case
of the Bendixson compactification - but for all the invariant sets {Si}ki=1 at one
time. For this, we will be needing a collection of isolating blocks {Bi}ki=1 of the
isolated invariant complements {(Si)comp}ki=1 which are big enough so that their
complements H \ Bi in the Poincaré hemisphere are pairwise disjoint. This will
allow us to extend the flow without creating branches of forward trajectories.
More precisely, the condition reads:

(NIC) ∀i 6= j ∈ {1, . . . , k}
cl(H \Bi) ∩ cl(H \Bj) = ∅
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H \B1

H \B2
B1 ∩B2

Figure 3.14: Two blocks satisfying Condition (NIC).

The condition (NIC) provide well separated {cl(H \Bi)}ki=1.

We illustrate it for n = 2 in Figure 3.14: two blocks B1 and B2 fulfill the
condition (NIC), their complements H \Bi do not intersect.

Remark 3.5.40. Let us consider a collection of blocks {Bi}ni=1 satisfying the
condition (NIC). Following Proposition 3.5.39, we define a B by setting

B = cl

(

n
⋂

i=1

int(Bi)

)

,

which is a priori only an isolating neighbourhood of (
⋃n
i=1 Si)comp. It is easy to

see that Condition (NIC) implies B =
⋂n
i=1Bi.

Conjecture 3.5.41. For every collection {Si}ki=1 ⊂ E of pairwise disjoint invari-
ant sets of isolated invariant complements, their exists a collection of compact
neighbourhoods {Bi}ki=1 such that

1. the set Bi is an isolating block for (Si)comp,

2. the collection {Bi}ki=1 satisfies the condition (NIC).

We know from Proposition 3.5.39 and its proof that we can find a family of
isolating neighbourhoods satisfying the condition (NIC), but for isolating block
it is not clear. However it was possible in the examples that we discuss. Let us
assume the existence of such a family of blocks {Bi}ni=1.
Claim 1: Under this assumption the set

B = cl

(

n
⋂

i=1

int (Bi)

)

is an isolating block for (
⋃

Si)comp.
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Proof. The set B is a compact neighbourhood because cl(int(B)) = cl (
⋂n
i=1 int (Bi)) =

B. Furthermore the set B contains (
⋃n
i=1 Si)comp =

⋂n
i=1 Sicomp

in its interior: for

every i ∈ {1, . . . , n} holds Sicomp
⊂ int(Bi) so that

n
⋂

i=1

Sicomp
⊂

n
⋂

i=1

int(Bi) = int(B).

Finally holds the inclusion ∂B ⊂ ⋃ ∂Bi. The sets Bi being isolating blocks, they
admit no internal tangency, and so does B. This completes the proof of the Claim
1.

Moreover we prove the following.

Claim 2: The boundary, entrance and exit sets of the isolating block B split in
the following way

∂B =

n
⋃

i=1

∂Bi and the union is disjoint. (3.16)

B+ =
n
⋃

i=1

(B ∩B+
i ) and the union is disjoint. (3.17)

B− =
n
⋃

i=1

(B ∩B−
i ) and the union is disjoint. (3.18)

Proof. As noticed previously, boundary, interior and closure are taken relatively
to the Poincaré sphere H. It holds

∂Bi = ∂(H \Bi)

= cl(H \Bi) \ H \Bi.

We assume the condition (NIC), which claims that the sets cl(H\Bi) are pairwise
disjoint. Therefore the boundaries ∂Bi of the Bi relatively to H are pairwise
disjoint, and so are their subsets B ∩ B+

i and B ∩B−
i .

The inclusion ∂B ⊂ ⋃n
i=1 ∂Bi is obvious. The reverse inclusion ∂B ⊃ ⋃n

i=1 ∂Bi

is justified as follows. Consider a point x ∈ ∂Bi for a i ∈ {1, . . . , n}. Fix an
arbitrary neighbourhood U of x in H. The neighbourhood U intersects H\Bi as
well as int(Bi). The fact U ∩H \Bi 6= ∅ implies

U ∩
n
⋃

i=1

(H \Bi) = U ∩
(

H \
(

n
⋂

i=1

Bi)

))

= U ∩ (H \
(

n
⋂

i=1

Bi

)

6= ∅
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As B = cl (
⋂n
i=1Bi) ⊂

⋂n
i=1Bi, U intersects also H \B.

Let us prove that U also intersects int(B). As the point x ∈ ∂Bi we have

1. the neighbourhood U of x intersects int(Bi) and

2. for every j 6= i the distance dist(x, cl(H \ Bj)) is strictly positive because
of the condition (NIC).

Hence for j 6= i holds

∀j 6= i x /∈ cl(H \Bj)

⇔ ∀j 6= i x ∈ int(Bj)

⇔ x ∈
n
⋂

i6=j
int(Bj).

Putting all together we get that U intersects int(Bi)∩
(

⋂n
i6=j int(Bj)

)

=
⋂n
j=1 int(Bj) =

int(B).
Now ∂B =

⋃n
i=1 ∂Bi is proven.

Let us prove the two last equalities. For this, consider a point x ∈ ∂B. Because
the Boundary of B is equal to the disjoint union

⋃n
i=1 ∂Bi, the point x belongs

to exactely one of the ∂Bi and we have the equivalence

x enters Bi ⇔ x enters B

x leaves Bi ⇔ x leaves B

Hence the Claim 2 is proved.

Let us now introduce the construction for the detection of heteroclinic orbits
between the invariant sets Si of isolated invariant complements and isolated in-
variant sets contained in B.
The idea of the construction of the extended phase space is to proceed for each
B±
i as in the case of the Bendixson compactification, where we only had a pair

K±. If we have ”nice” retractions r±i from B±
i to b±i , we glue B with the sets

{(λ, r±i (λ,B±
i )), λ ∈ [0, 1]} along {0} × B±

i ∼ B±
i and obtain the so called ex-

tended phase space. The details will be given below.
The construction of the extended flow is similar: as soon as a trajectory reaches
a B±

i , we extend this trajectory by following the retraction r±i from B±
i to b±i ,

the time direction depending on the upper index + or −.

Remark 3.5.42. If the Conjecture 3.5.41 fails, and the Condition (NIC) is not
fulfilled, it is still possible to detect heteroclinic orbits with the same method as
we describe below. One must only consider one of the sets of isolated invariant
complement at a time instead all simultaneously. In other words, do the following
construction n times, one time for each of the Si.
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Now let us go into the details.
First step: cut and glue

Consider an isolating block B of (
⋃n
i=1 Si)comp defined by B := cl (

⋂n
i=1 int(Bi)),

where Bi is a block for Sicomp
and the condition (NIC) is satisfied.

The entrance set B+ of B consists of n connected components {B ∩B+
i }ni=1, and

the exit set B− of B consists of n connected components {B ∩ B+
i }ni=1. Assume

that their exists 2n retractions

r±i : [0, 1] ×B ∩ B+
i → B ∩ B±

i

of B±
i on b±i , that is

1. ∀x ∈ B ∩B±
i , ∀s ∈ [0, 1], r±i (s, x) ∈ B ∩B±

i ,

2. ∀x ∈ b±i , ∀s ∈ [0, 1], r±i (s, x) = x,

3. ∀x ∈ B ∩B±
i , r±i (0, x) = x,

4. ∀x ∈ B ∩B±
i , r±i (1, x) ∈ b±i .

The retractions r±i are also required to fulfill the conditions

• (C1) b±i ⊂ int∂BB
±
i , where the last denotes the interior of B±

i relativ to
∂B.

• (C2) ∀s ∈ [0, 1[, r±i (s, .) is injective.

As in the case of the Bendixson compactification, those conditions are needed to
extend the flow. We set

M±
i :=

{

(r±i (s, x), s) ∈ [0, 1] × B ∩ B±
i

}

, (3.19)

M :=

(

n
⋃

i=1

M+
i

)

∪
(

n
⋃

i=1

M−
i

)

(3.20)

This last union is not disjoint: for each i, the sets M+
i and M−

i may intersect
at points of the form (x, s) where x ∈ B+

i ∩ B−
i , i. e. x is a point of external

tangency to the block Bi for Sicomp
.

Furthermore define

mi := {(x, 0), x ∈ B ∩ B±
i } ⊂ M±

i (3.21)

Now we glue each M±
i along B ∩ B±

i ∼ m±
i through the following equivalence

relation ∼ on B ∪M : for all pair of points x, y ∈ B ∪M , x ∼ y if and only if

x = y (3.22)

or ∃i ∈ {1, . . . , n}, e ∈ {+,−}, x ∈ me
i , y ∈ B ∩Be

i and x = (y, 0)(3.23)

or ∃i ∈ {1, . . . , n}, e ∈ {+,−}, y ∈ me
i , x ∈ B ∩Be

i and y = (x, 0)(3.24)
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B+B−
B

∂B

Figure 3.15: A block B for Scomp.

Definition 3.5.43. The extended phase space Ext(B) is defined as

Ext(B) =
B ∪M

∼ ,

where the equivalence relation ∼ is defined through 3.22.

Example 3.5.44. Let us construct the extended phase space for an example
with n = 1 =number of Si of isolated invariant complements, to visualize how
the extension works. For n > 1, the boundary of the block B relatively to the
Poincaré hemisphere H has more connected components on which the extension
takes place.
We consider the compactification of a flow on R3 so that the Poincaré hemisphere
H is a 3–dimensional manifold whose boundary E is a 2–dimensional sphere at
infinity. We draw H as a 3–dimensional ball, the flattened hemisphere. Figure
3.15 shows an isolating block B for Scomp, where S is an invariant set at infinity
of isolated invariant complement.
The boundary ∂B of B is a 2–dimensional disk. Its exit set B− is a ring, hence

it is retractable to a circle by a retraction r− fulfilling Conditions (C1) and (C2).
Its entrance set B+ is a 2–dimensional disk retractable to a single point by a
retraction fulfilling Conditions (C1) and (C2). Figure 3.16 shows the extension
of the phase space. This example will be continued in Example 3.5.48

Remark 3.5.45. The extended phase space is in general only a continuous man-
ifold with boundary. We will comment on the smoothing of the extended space
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B+
B−

B

∂B

b+

b−

Figure 3.16: Extension of the phase space.

in Remark 3.5.52. The boundary ∂Ext(B) is the union

∂Ext(B) =

(

n
⋃

i=1

{(r−i (s, x), s), x ∈ B ∩B+
i ∩ B−

i , s ∈ [0, 1]}
)

∪
(

n
⋃

i=1

{(r+
i (s, x), s), x ∈ B ∩B+

i ∩ B−
i , s ∈ [0, 1]}

)

∪
(

n
⋃

i=1

b+i

)

∪
(

n
⋃

i=1

b−i

)

.

Now we shall present the second step of the construction.

second step: extend the flow

As in the case of the Bendixson compactification, we construct an extension of
the flow ϕ on B which follows the retractions r±i on the portions M±

i of the
extended phase space. More precisely, there exist for each x ∈ B times entrance
and exit times T−(x) 6 0 and T+(x) > 0 defined as

T+(x) := sup{t 6 0/ϕ(t, x) ∈ B}
T−(x) := inf{t > 0/ϕ(t, x) ∈ B}

Obviously, if T+ or T− is finite, there holds

ϕ(T+(x), x) ∈ B−,

ϕ(T−(x), x) ∈ B+.
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As was proved in Claim 2, the sets B+ and B− split in their connected components
B ∩ B±

i so that there are for each x ∈ B with T+ or T− finite, unique i(x) and
j(x) ∈ {1, . . . , n} such that

ϕ(T+(x), x) ∈ B ∩B−
i(x),

ϕ(T−(x), x) ∈ B ∩B+
j(x).

On the other hand, for each point (y, s) ∈ M±
i with s ∈ [0, 1[, there exists a

unique point Y (y) ∈ B ∩ B±
i for which r±i (s, Y (y)) = (y, s).

For an initial condition x ∈ B, the extended flow ϕ̂(t, x) is defined as follows:

ϕ̂(t, x) =















ϕ(t, x) if t ∈ [T−(x), T+(x)] ∈ B,
(

r−j(x)(e
T+(x)−t, X(x)), 1 − eT+(x)−t

)

∈M−
j for t > T+(x)

(

r+
i(x)(e

t−T−(x), X(x)), 1 − et−T−(x)
)

∈ M+
i for t 6 T−(x)

(3.25)

In particular T−(x) = −∞ implies ϕ̂(t, x) = ϕ(t, x) for all t 6 0, and T+(x) = +∞
implies ϕ̂(t, x) = ϕ(t, x) for all t > 0. Therefore, Invϕ̂(B) = Invϕ(B).
For an initial condition (y, s) ∈ M−

i , the associated point Y (y) ∈ B ∩ B−
i with

y = r−i (s, Y (y)) belongs to B such that ϕ̂(t, Y (y)) is well defined through 3.25
for all t ∈ R. Hence we can define ϕ̂(t, (y, s)) by the following:

ϕ̂(t, (y, s)) =

{

(y, 1) if s = 1

ϕ̂(t− log(1 − s), Y (y)) if s ∈ [0, 1[
(3.26)

For an initial condition (y, s) ∈ M+
i , the associated point Y (y) ∈ B ∩ B+

i with
y = r+

i (s, Y (y)) belongs to B such that ϕ̂(t, Y (y)) is well defined through 3.25
for all t ∈ R. Hence we can define ϕ̂(t, (y, s)) by the following:

ϕ̂(t, (y, s)) =

{

(y, 1) if s = 1

ϕ̂(log(1 − s) − t, Y (y)) if s ∈ [0, 1[
(3.27)

Proposition 3.5.46. The map ϕ̂ : R×B∪M
∼ → B∪M

∼ defined through the Formulas
3.25, 3.26 and 3.27 is a continuous flow on the extended space.

Proof. The proof of this proposition is totally similar to the proof of the Propo-
sition 3.5.17 concerning the Bendixson compactification. The only difference is
the following: to each trajectory through x ∈ B under the compactified flow
ϕ that leaves the block B in forward time direction, is associated a unique
i(x) ∈ {1, . . . , n} such that, at exit time +∞ > T+(x) > 0, ϕ(T+(x), x) ∈ B∩B−

i ,
and the map x 7→ i(x) is locally constant around points for which T+(x) is fi-
nite. The same is true in backward time direction: to each trajectory through
x ∈ B which leaves block B in backward time direction, is associated a unique
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Figure 3.17: Extension of the flow.

j(x) ∈ {1, . . . , n} such that, at entrance time −∞ < T−(x), ϕ(T−(x), x) ∈ B∩B+
j ,

and the map x 7→ j(x) is locally constant around points with finite entrance time.
This provides the continuity of ϕ̂. The flow ϕ̂ defined through 3.25, 3.26 and 3.27
fulfills the semi group properties by the same calculation as in the Bendixson
case, replacing r+ by one of the r+

i(x) and r+ by one of the r+
j(x).

Remark 3.5.47. As in the case of the Bendixson compactification, it is also
possible in the case of the Poincaré compactification to extend a semi low by
extending each of its full trajectory.

Example 3.5.48. The extended flow for Example 3.5.44 is illustrated in Figure
3.17, as far as M is concerned.

Proposition 3.5.49. Under the extended flow ϕ̂ on the extended phase space
Ext(B), there holds for all i ∈ {1, . . . , n} that

• The set k−i are attractors.

• The sets k+
i are repellers.

The proof of this proposition is similar to the proof of Proposition 3.5.19 in
the case of the Bendixson compactification.

Third step: compare indices

Theorem 3.5.50. Consider a compactified semi flow ϕ on the Poincaré hemi-
sphere H. Assume that the sphere E at infinity contains a finite collection {Si}ni=1
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of pairwise disjoint invariant sets of isolated invariant complement. Assume fur-
thermore that there exist a collection {Bi}ni=1 of isolating blocks of the {Sicomp

}ni=1

fulfilling the condition (NIC). Set

B := cl

(

n
⋂

i=1

int(Bi)

)

,

which is an isolating block for (
⋃n
i=1 Si)comp according to Claim 1. After construc-

tion of the extended phase space Ext(B) defined by 3.5.43 and of the extended
semi flow ϕ̂ defined by 3.25 and 3.26 hold the following:

• Assume that there exists an isolated invariant set S ⊂ Ext(B) with respect
to the extended flow ϕ̂ that admits an attractor–repeller decomposition of the
form (k−i , R) for a i ∈ {1, . . . , n} and an invariant subset R of (

⋃n
i=1 Si)comp.

If
h(S) 6= h(k−i ) ∨ h(R),

then there exists an orbit σ of the semi flow ϕ on H such that

α(σ) ⊂ R,

ω(σ) ∩ Si 6= ∅;

i. e. the trajectory σ connects R to the invariant set Si at infinity.

• Assume that there exists an isolated invariant set S ⊂ Ext(B) with respect
to the extended flow ϕ̂ that admits an attractor–repeller decomposition of the
form (A, k+

i ) for a i ∈ {1, . . . , n} and an invariant subset A of (
⋃n
i=1 Si)comp.

If
h(S) 6= h(k+

i ) ∨ h(A),

then there exists an orbit σ of the semi flow ϕ on H such that

ω(σ) ⊂ A,

α(σ) ∩ Si 6= ∅;

i. e. the trajectory σ connects the invariant set Si at infinity to A.

Example 3.5.51. We show on Figure 3.18 an full extended flow on B for Exam-
ple 3.5.44, 3.5.48. The red connection is detected by the Conley index. Consider
a cylindric neighbourhood of it, intersected with Ext(B) and denote it by K.
The set K is an isolating block, as the reader will easily convince himself. We
draw it o the right hand side of Figure 3.18 together with its exit set K− ⊂ ∂K
in red. If C := Inv(K), there holds

h(Ext(B);C) = 0̄

h(Ext(B), ∂Ext(B);C) = Σ3
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Figure 3.18: Flow on Ext(B).

On the other hand, the set S admits an attractor–repeller decomposition ({q}, b+)
and the Conley indices of these read

h(q) = Σ2 = h(Ext(B); q)h(Ext(B), ∂Ext(B); b+), and

h(Ext(B); b+) = 0̄

h(Ext(B), ∂Ext(B); b+) = Σ3

It holds

h (Ext(B);C) 6= h
(

Ext(B); b+
)

∨ h (Ext(B); q) ,

h (Ext(B), ∂Ext(B);C) 6= h
(

Ext(B), ∂Ext(B); b+
)

∨ h (Ext(B), ∂Ext(B); q) ,

so that the existence of the red orbit is proved, and translates via Theorem 3.5.50
to an orbit σ, under the compactifed flow ϕ on the Poincaré hemisphere H, from
the set S of isolated invariant complement in the bottom to the equilibrium q, or
more precisely

α(σ) ∩ S 6= ∅
ω(σ) = {q}

Remark 3.5.52. As in the case of the Bendixson compactification, we seek
smoothness both of the extended phase space Ext(B) and of the extended flow ϕ̂,
because it allows to use the connection maps and the machinery from algebraic
topology to detect heteroclinic orbits through connection matrix theory. Again,
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the smoothness of the retractions r±i is a necessary condition. A smoothing of
the extension both at the sutures B±

i and at the extremities b±i of the portions
of extensions should be generically possible. Therefore we state the following
conjecture.

Conjecture 3.5.53. Generically, it is possible to smoothen the extended phase
space Ext(B) and the extended semi flow ϕ̂. on Ext(B)

Theorem 3.5.54. Under the assumptions of Theorem 3.5.50, and assuming that
there exists a smoothing of the extended phase space Ext(B) and of the extended
semi flow ϕ̂, we have:

• Assume there exists an isolated invariant set S ⊂ Ext(B) with respect to the
extended flow ϕ̂ that admits an attractor–repeller decomposition of the form
(k−i , R) for a i ∈ {1, . . . , n} and an invariant subset R of (

⋃n
i=1 Si)comp. If

the connection map
δ : H∗(R) → H∗(k

−
i )

is not trivial, then there exists an orbit σ of the semi flow ϕ on H such that

α(σ) ⊂ R,

ω(σ) ∩ Si 6= ∅;

i. e. the trajectory σ connects R to the invariant set Si at infinity.

• Assume there exists an isolated invariant set S ⊂ Ext(B) with respect to the
extended flow ϕ̂ that admits an attractor–repeller decomposition of the form
(A, k+

i ) for a i ∈ {1, . . . , n} and an invariant subset A of (
⋃n
i=1 Si)comp. If

the connection map
δ : H∗(k

+
i ) → H∗(A)

is not trivial, then there exists an orbit σ of the semi flow ϕ on H such that

ω(σ) ⊂ A,

α(σ) ∩ Si 6= ∅;

i. e. the trajectory σ connects the invariant set Si at infinity to A.

Remark 3.5.55. The fact that the k−i are attractors provides a nontrivial ho-
mology H0(Ext(B); k−i ), and the topology of k−i may produce further nontrivial
homologies Hj(Ext(B); k−i ). The type of connections that we expect to be de-
tectable via our methods are from isolated invariant sets R with whether H1(R)
nontrivial, or Hj+1(R) nontrivial, so that the connection maps

δ : H1(Ext(B);R) → H0(Ext(B); k−i ),

δ : Hj+1(Ext(B);R) → Hj(Ext(B); k−i ),
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have a chance to be nontrivial.
Similarly for the k+

i , we have Hn(k
+
i ) nontrivial, where n is the dimension of

the original phase space. Further homologies Hj(k
+
i ) may be non trivial. For

these, we look for isolated invariant sets A with Hj−1(A) non trivial, so that the
connection maps

δ : Hn(k
+
i ) → Hn−1(A),

δ : Hj(k
+
i ) → Hj−1(A),

have a chance to be nontrivial.

Now we address the question of the Morse decompositions.

Morse decompositions

The Theorem 3.5.54 lays the groundwork to apply connection matrix theory
to the extended semi flow. If the collection {b±i }ni=1 can meld with a Morse
decomposition of (

⋃n
i=1 Si)comp, then they are at the extremities of some chain

of order because they are attractors and repellers respectively. The connection
matrix detects heteroclinics of the extended flow ϕ̂, which translate to heteroclinic
orbits of the compactified flow ϕ on H via Theorem 3.5.54.

3.6 Limitations and properties

The following proposition underlines the fact that the Conley index of infinity
being defined (in the classical way or over duality) implies the existence of inter-
esting dynamics.

Proposition 3.6.1. Consider a flow on the Bendixson sphere. Suppose that the
point at infinity is no regular point, and that no orbit connects to it whether in
forward time nor in backward time. Then the point at infinity is neither isolated
invariant, nor of isolated invariant complement. In other words its Conley index
is not defined.

Proof. First let us prove indirectly that the point at infinity, alias the north pole,
is not isolated invariant. We call Φ the compactified and normalized flow on
the Bendixson sphere. Suppose there exists an compact set K ⊂ S isolating
the point at infinity, i. e. it holds Inv(K) = {∞} ⊂ int(K). Now consider a
sequence (xn)n∈N converging to the point at infinity, but for all n ∈ N, xn 6= ∞.
As we chose xn /∈ Inv(K), there is a time tn 6= 0 such that xn has left K at
time tn, but is not gone too far: More precisely we fix a compact supset K ′

of K with K ⊂ int(K ′). For every n, there exists a real number tn 6= 0 with
Φ(xn, tn) ∈ K ′ \K. It is possible to choose tn such that |tn| is strictly increasing.
Furthermore, up to a subsequence, (tn)n∈N is of constant sign. As Φ(xn, tn) lies
in the compact set K ′, it converges, up to a subsequence, to a limit x ∈ K ′. The
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sequence |tn| cannot be bounded, otherwise it would converge to a finite t ∈ R
and as Φ is continuous and (xn)n∈N converges to the point at infinity, we would
have Φ(x, t) = ∞ which cannot be the case for a normalized flow. So (|tn|)n∈N

goes to infinity, and the point at infinity is in the α or ω limit set of x, according
to the sign of the sequence (tn)n∈N. So we proved the first part of the claim.

Let us remark that replacing {∞} by any invariant set Σ ⊂ S, we just proved:
if the set Σ is isolated invariant, there is a x ∈ S \ Σ such that α(x) ⊂ Σ or
ω(x) ⊂ Σ.

Now let us prove indirectly the second part of the claim. Suppose the point
at infinity is of isolated invariant complement. We call R the maximal invariant
set common to all complements of sufficiently small open neighbourhoods of the
north pole. Applying the above remark to Σ = R, we find a x whose α or ω
limit set is contained in R. It cannot be both of them, otherwise x itself would
lie in R. So the trajectory through x connects R to infinity, which completes the
proof.

Of course we have an analog proposition concerning the Poincaré compactifi-
cation.

Proposition 3.6.2. If an invariant set at infinity S ⊂ E admits no orbit connect-
ing to it, then it is neither isolated invariant nor of isolated invariant complement.

Let us comment about the realization of our method in concrete cases. In
fact, the extension of the phase space and the flow is something abstract: all
what we need to detect heteroclinics is

• A block K for F (in the case of he Bendixson compactification) or for
(
⋃n
i=1 Si)comp (in the case of the Poincaré compactification).

• The homotopy type of the entrance and exit sets (k± in the case of the
Bendixson compactification, {b±i }ni=1 in the case of the Bendixson compact-
ification).

• Isolating blocks for the connections up to the boundary of K

The third ingredient is the most problematic one, but it is always a difficulty in
Conley index methods to find isolating blocks. The point is that the ingredients
needed do not require an explicit extension: we only need to know that it exists
and that Proposition 3.5.19 (Bendixson) or 3.5.49 (Poincaré) holds, telling that
the k± or k±i are attractor or repeller respectively.
The same is true for the smoothing: it is sufficient to know that it is possible
to get the extended phase space and the extended flow smooth, but it is not
necessary to perform it explicitely.

Finally we want to point out a limitation of this method: already in R2,
presence of elliptic and hyperbolic sectors at an equilibria prevents both notions
of isolation. Hence we cannot apply our construction in this case.



Chapter 4

Ordinary differential equations

4.1 Generalities on polynomial vector fields

Polynomial vector fields provide good examples for our approach because they
are easily normalized under both compactifications we are using and they provide
a wide variety of behaviours at infinity. Therefore we consider them as a good
playground to explore the possibilities of Conley index methods to study dynam-
ics at infinity. In this section we present a collection of known results concerning
their behaviour at infinity.

4.1.1 Classification results

Many authors have classify polynomial vector fields in the plane according to
their Poincaré compactified phase portrait; see Schlomiuk, Vulpe [36, 40], Artés,
Cairo, Libbre [2, 7], Brunella, Miari [4] . The sphere at infinity E is, in this
case, a one dimensional sphere S1, which is invariant under the compactified flow
. Therefore the dynamics on the sphere at infinity is rather simple: the whole
sphere at infinity may be a periodic orbit under the compactified flow; otherwise
it contains equilibria and the solutions that are not stationary follow an arc of
the circle and are connections between equilibria. The study of the dynamics at
infinity (i. e. in a neighbourhood of the sphere at infinity) almost reduces to the
study of equilibria. The difficulty lies in the fact that these equilibria may be
very degenerate in the sense that the first non zero derivative of the compactified
vector field is of high order, so that methods as presented in [30] or [1] are not
always powerful enough. We quote in a later section a result by Artés and Llibre,
Theorem 4.3.1, where the zoo of all possible Poincaré compactified phase por-
traits of quadratic Hamiltonian planar vector fields is presented; see [2]. Their
result is also based on a former classification of planar quadratic vector fields
with a center by Vulpe [40].
Another important theorem has been proven by Schlomiuk and Vulpe in [36].

103
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They classify essentially quadratic planar vector fields according to their phase
portrait in a neighbourhood of the sphere at infinity. They obtain 40 different
phase portraits. Of these, 24 admit only equilibria at infinity for which the clas-
sical Conley indices are well defined; 13 of them also admit equilibria at infinity
which are of isolated invariant complement without being isolated invariant, so
that the methods developed in the previous chapter apply; 3 of the 40 possible
phase portraits show equilibria with both hyperbolic and elliptic sectors so that
they are neither isolated invariant nor of isolated invariant complement and Con-
ley index methods do not apply at all.
To obtain this result, they first reduce the number of parameters. The number of
coefficients of the two polynomials is 12, the number of parameters after reduc-
tion is 5. Algebraic invariants and comittants of polynomials are used together
with integer-valued invariants related to the dynamic near the sphere at infinity.
There are other papers dealing with such questions, which address cubic vector
fields or even vector fields of higher degree, but restrict to very specific classes
of equations, see for example [7]. In the zoo of phase portraits presented in this
paper, the sphere at infinity consists only of equilibria, and thus these phase
portraits could only provide example for the Bendixson compactification, but the
Poincaré compactification is not a good choice to study them with Conley index
methods.

4.1.2 Critical points at infinity

This section is dedicated to applications of compactification methods on polyno-
mial vector fields which do not involve Conley index methods at all, but concen-
trate on equilibria or critical points at infinity and the study of the local dynamic
near them. The local analysis of equilibria at infinity may give information on
the existence of unbounded solutions. Indeed consider a Poincaré compactified
vector field which admits a hyperbolic equilibrium on the equator. Hyperbolic-
ity together with the fact that the equator is flow invariant, guarantees that the
eigenvectors span the whole tangent half space: one of them points to the interior
of the half space (i. e. the interior of the Poincaré hemisphere) and the other
eigenvectors build a basis of the tangent space to the equator at the equilibrium.
If the eigendirection pointing to the interior of the Poincaré hemisphere is stable,
then there is a trajectory which follows this direction, and hence is unbounded
in forward time direction. On the contrary, if the eigendirection pointing to the
interior of the Poincaré hemisphere is unstable, then there is a trajectory which,
following this unstable direction, is unbounded in backward time direction. This
idea has been deepened in several papers on which we shall report here.

We to begin this section by summarizing the paper [19] by Velasco. This
paper deals with generic properties and structural stability of the dynamics on
the sphere at infinity for polynomial vector fields. A property is called generic in
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this context if it holds for an open and dense subset of the vector space

X = { polynomial vector fields on Rn of degree 6 d}.

The dimension n and the degree d being fixed, each vector field f ∈ X can be
identified with the vector of its coefficients. Hence X is finite dimensional. If
f ∈ X is a vector field on Rn, it induces, after Poincaré compactification and
normalization, a vector field on the Poincaré hemisphere H and in particular a
vector field on the equator E of H, alias the (n−1)–dimensional sphere at infinity
defined through Equation 2.10: following [19] we denote this induced vector field
on the sphere E at infinity by π∞(f). An important result which holds in any
dimension is the following:

Theorem 4.1.1. Define

Hyp := {f ∈ X / every equilibrium of π∞(f) is hyperbolic}.

The set Hyp is open and dense in X . In other words, an equilibrium of π∞(f) o
the sphere at infinity is generically hyperbolic.

The proof of this theorem relies on standard methods and are not detailed in
[19].

Remark 4.1.2. The hyperbolicity in this theorem concerns only the dynamic on
the sphere at infinity. The behaviour in a H–neighbourhood around an equilib-
rium at infinity could still be degenerate.

For more precise results, planar vector fields and higher dimensional ones have
to be distinguished.

If the original vector field is planar, its Poincaré compactification has a 2–
dimensional disk as phase space, the 2–dimensional Poincaré hemisphere. Hence
the sphere at infinity E is a circle. Either E contains equilibria and connections
between them, or the whole sphere at infinity builds a periodic orbit.
In the first case the equilibria of the vector field π∞(X) may be hyperbolic or
not. Define

P := {f ∈ X /π∞(X) admits at least one non–hyperbolic equilibrium }.

In the second case, the sphere at infinity E may be a hyperbolic periodic orbit in
the Poincaré hemisphere or belong to a ring of periodic orbits. Define

O := {f ∈ X /E has zero Floquet exponent}.

The next theorem states that the behaviours at infinity are generically not in P
or O.
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Theorem 4.1.3. Consider the space X of polynomial planar vector fields. The
set G defined as

G = X \ (P ∪O)

is open and dense in X .

The proof of this theorem is based on the fact that there exist explicit formulas
to determine if a vector field is in P ∪O or not.
The set P is contained in the union of varieties (i. e. zero level sets of polynomial
functions) which does not coincide with the whole space X , so that X \P is open
and dense. The argumentation for the density of X \ O is more demanding,
but here again the computation of an explicit integral formula allows to check
whether a vector field X belongs to O or not. For details see [19].

Let us recall the definition of structural stability in the context of the dynamics
at infinity.

Definition 4.1.4. A vector field f ∈ X is structurally stable at infinity if and
only if there exists a neighbourhood N of the sphere E at infinity in H and a
neighbourhood U of f in X such that for every g ∈ U , there exists a homoemor-
phism h : N → N leaving the sphere at infinity E invariant and transforming
trajectories of the Poincaré compactification of f into trajectories of the Poincaré
compactification of g.

Remark 4.1.5. This definition does not only concern the vector field π∞(f) on
the sphere at infinity E , but the compactification of the vector field f in a whole
neighbourhood of infinity in H, and in this way it differs from Theorems 4.1.1 or
4.1.3.

If Σ denotes the set of all vector fields f ∈ X that are structurally stable at
infinity , Gonzá les Velasco proves that in the planar case there holds

Σ = G.

This fact has important consequences. In particular, a vector field f is struc-
turally stable as soon as all equilibria of π∞(f) on E are hyperbolic. Such an
equilibrium at infinity could show homoclinic petals in the interior of the Poincaré
hemisphere without loosing its structural stability.

In higher dimensions the results of [19] are restricted to gradient vector fields.
We will see in Theorem 4.2.1 that gradient vector fields induce a strict Lyapunov
function for the vector field π∞(f) on the sphere at infinity. As a consequence,
α, ω–limit sets of trajectories on the sphere at infinity, or more generally the
non–wandering set Ω(π∞(f)) ⊂ E , is the set of critical points of the vector field
π∞(f) induced on E by f . The paper [19] formulates the following genericity
result:
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Theorem 4.1.6. Let f be a gradient polynomial vector field on Rn and π∞(f) its
induced vector field on the sphere E at infinity. The non–wandering set Ω(π∞(f))
is generically a finite union of hyperbolic equilibria.

This theorem is a consequence of Theorem 4.1.1 together with Theorem 4.2.1.
This work contains no result on structural stability in dimension greater than 2.

Another genericity result on polynomial vector fields related to their dynamics
at infinity was proven by Cima and Llibre in [8]. This work deals with polynomial
vector fields on Rn whose trajectories are bounded in forward time direction and
their aim is to classify them with respect to their dynamic at infinity, which takes
place in the backward time direction. For each m = (m1, . . . , mn) ∈ Nn define

Xm := {polynomial vector field f = (P 1, . . . , P n) on Rn/ deg(P i) = mi}.

Furthermore, define for each i ∈ {1, . . . , n} the homogenous part of P i of highest
degree as P i

mi
. For vector fields f = (P 1, . . . , P n) in Xm, the set of all bounded

equilibria is bounded if and only if the vector field built from the componentwise
homogenous parts of highest degrees g = (P 1

m1
, . . . , P n

mn
) admits only the origin

as equilibrium. The set Gm is the set of vector fields with this property; in other
words,

Gm := {f = (P 1, . . . , P n) ∈ Xm/g = (P 1
m1
, . . . , P n

mn
) admits only the origin as equilibrium}.

The following is proven:

Theorem 4.1.7. There exists a polynomial function Φ : Xm → R such that the
set Xm \ Gm is contained in the hypersurface Φ−1(0) of Xm.
In particular, belonging to Gm is a generic property, i. e. Gm is open and dense
in Xm.

This theorem means that the homogenous part of highest degree g of a poly-
nomial vector field f generically does not contribute to the finite dynamics. For
example, the homogenous vector field g on Rn generically does not show any line
of equilibria, but concentrates the finite dynamics of f at the origin.

Next, let us summarize [14]. This paper stresses the fact that admitting a crit-
ical point at infinity is an intrinsic property of a vector field and not an artefact of
the chosen compactification. There, autonomous polynomial vector fields in Rn

are considered. We generalize, as far at it is possible, to a general Hilbert space
X whose scalar product and norm are denoted by 〈., .〉 and ‖.‖ respectively. This
part may seem repetitive after the introduction of the Poincaré compactification,
but we want to show here that there is a more general way to define compact-
ifications called “admissible” (see definition 4.1.8 below) and critical points at
infinity. Conley index methods apply with these compactification as well, as long
as the conditions for its definition are fulfilled. An admissible compactification is
defined by the following:
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Definition 4.1.8. Let κ : X → R be a C1 strictly positive function, and U the
unit ball of X. The mapping

T : X → U
y 7→ x = y

κ(y)

is called an admissible compactification if it satisfies the following four conditions:

1. κ(y) > ‖y‖

2. κ(y) ∼ ‖y‖ as ‖y‖ → ∞

3. ▽κ(y) ∼ y
‖y‖ as ‖y‖ → ∞

4. 〈y,▽κ(y)〉 < κ(y)

The first condition guarantees that the whole space X is maped on the interior
of the unit ball U . The second condition guarantees that infinity is mapped on
the boundary ∂U . The third condition guarantees the “normalisation”, so that
trajectories do not run into critical points at the boundary in finite time; this
will be the point of Proposition 4.1.13. Finally the fourth condition guarantees
the bijectivity of the map T . Indeed holds

Id = κ(y)DT (y) +
〈▽κ(y), y〉
κ(y)

Id

DT (y) =
1

κ(y)
(1 − 〈▽κ(y), y〉

κ(y)
)Id.

Hence T is locally invertible if and only if κ(y) − 〈▽κ(y), y〉 6= 0. Since this
quantity is positive at y = 0, Condition 4 of definition 4.1.8 is justified. Global
bijectivity is then given by the fact that every ray λy, λ ∈ R, y ∈ X contains its
image under T : on every ray, local bijectivity implies global bijectivity onto the
image. Therefore the map T−1 : U → X is well defined.

The Poincaré compactification can be seen as an admissible compactification
if we consider the flattened Poincaré hemisphere. The corresponding map κ is
given by κ(y) = (1 + 〈y, y〉)1/2. It is straightforward to verify the conditions
1-4 of definition 4.1.8. The Conley index methods expounded in the previous
chapter are, of course, applicable with any admissible compactifications: the
point is that the neighbourhoods of infinity have to be made bounded (compare
to compactification) for those methods to apply, and without destroying the flow
or semiflow properties (compare to normalization). If it seems more convenient,
they may be applied on any admissibly compactified phase space.

Tending to infinity in the direction p, ‖p‖ = 1, is defined by the following:

Definition 4.1.9. Consider a sequence of points (yn)n∈N ⊂ X. This sequence is
said to tend to infinity in the direction p, ‖p‖ = 1, if and only if yk/‖yk‖ goes to
p as k goes to infinity.
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Now if, on the Hilbert space X, we consider the differential equation

yt = f(y), (4.1)

we get, after application of an admissible compactification, the following differ-
ential equation on the open unit ball U of X:

xt =
1

κ
(f(κx) − 〈▽κ, f(κx)〉x) (4.2)

Here here κ = κ(T−1(x)). We have the following proposition.

Proposition 4.1.10. The point x0 ∈ U is a critical point of equation 4.2 if and
only if the point y0 := T−1(x0) is a critical point of equation 4.1.

Proof. If y0 is a critical point of 4.1, then f(κx) = f(κ(y0)x) = f(y0) = 0, so that
x0 is a critical point of 4.2. The converse is a consequence of the fourth condition
of definition 4.1.8. Equilibria of equation 4.2 are given by the equation

f(κx) − 〈▽κ, f(κx)〉x = 0. (4.3)

This implies, by doing the scalar product with ▽κ,

〈▽κ, f(κx)〉(1 − 〈▽κ, x〉) = 0. (4.4)

According to Condition 4 on admissible compactifications, there holds

|〈▽κ, x〉| = |〈▽κ(y), y/κ(y)〉| < 1.

Hence (1 − 〈▽κ, x〉) 6= 0, so that Equality 4.4 implies 〈▽κ, f(κx)〉 = 0, which
together with Equation 4.3 implies f(y) = f(κx) = 0: i. e. y is a critical point
of Equation 4.1.

Remark. In other words, the previous proposition tells us that finite equilibria
in the original equation are equivalent to equilibria in the interior of the unit disk
U for the rescaled equation.

Equation 4.2 is singular at the boundary of the unit disk ∂U , which repre-
sents the directions at infinity. As we have seen for the Bendixson and Poincaré
compactification, this equation has to be normalized to make sense there. We
apply these technics to polynomial vector fields of the form

f(y) = p0(y) + p1(y) + . . .+ pL(y), (4.5)

where each pi is the homogeneous part of f of degree i. The normalization of the
vector field is straightforward and given by

f̃(x) = κ−Lf(κx) = κ−Lp0(x) + κ−L+1p1(x) + . . .+ pL(x), (4.6)
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where κ−L is strictly positive so that no new equilibria arise and trajectories are
unchanged by the multiplication of the vector field by κ−L. After the orientation
preserving change of time variable

dτ = κL−1(y(t))dt, (4.7)

Equation 4.2 transforms to its compactified version on the closed unit ball Ū of
X

xτ = f̃(x) − 〈▽κ, f̃(x)〉x. (4.8)

This equation allows to define the notion of critical point or equilibrium at infinity.

Definition 4.1.11. The original equation 4.1 on X is said to have a critical point
at infinity in direction x ∈ X, ‖x‖ = 1, if and only if Equation 4.8 admits x ∈ ∂U
as a critical point.

Remark 4.1.12. On the boundary ∂U , Equation 4.8 reads

xτ = pL(x) − 〈▽κ, pL(x)〉x, (4.9)

exactly like in the case of the Poincaré compactification, see 2.10.

In the case of polynomial vector fields, blow–up in forward or backward time
direction corresponds to critical points at infinity as described in the following
proposition:

Proposition 4.1.13. If a trajectory of equation 4.1 blow up in finite (forward or
backward) time direction, and tends to infinity in direction p, then p is a critical
point of the compactified equation 4.8 on ∂U .

Proof. Let us consider a blow–up in positive time direction, the case of a blow–
up in negative time direction is poven similarly. Let T > 0 be the blow–up
time where by assumption holds limtրT

y(t)
‖y(t)‖ = p. For the rescaled variable

x ∈ Ū holds according to the condition (2) of the Definition 4.1.8 of an admissible
compactification

x =
y

κ
∼ y

‖y‖ → p as ‖y‖ → +∞.

The rescaled time variable τ goes to +∞ as t ր T : the contrary leads to the
regularity of p and provides, after rescaling back to the originial variables y, t, a
contradiction to the maximality of T . Hence it holds limτ→+∞ x(τ) = p, and as
a consequence p is a critical point of Equation 4.8

Furthermore the notion of critical point is not an artefact of the compactifi-
cation, but an intrinsic property of the dynamical system as the next proposition
shows.
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Proposition 4.1.14. The definition of a critical point at infinity is independent
of the choice of the admissible compactification.

The proof of this property is obvious when considering the proposition 4.1.15.
Now let us point out which equation governs the dynamics on ∂U , which is the
sphere at infinity.

Proposition 4.1.15. The dynamics inside the sphere at infinity ∂U is inde-
pendant of the choice of the compactification and is governed by the following
equation, which depends only on the highest order terms of the polynomial vector
field:

xτ = pL(x) − 〈x, pL(x)〉x (4.10)

Here x ∈ ∂U i. e. ‖x‖ = 1. Furthermore, if p ∈ ∂U is a critical point of 4.10,
so is −p.

Proof. The map f̃ defined on U by the Equation 4.6 admits a limit as the variable
x tends to the boundary ∂U = {‖x‖ = 1} of U :

lim
x→∂U

f̃(x) = pL(x)

Together with Condition (3) of Definition 4.1.8, Equation 4.10 holds on the
boundary.
The last claim comes from the fact that the right hand side of Equation 4.10 is
odd or even; the homogeneity of pL implies

pL(−x) − 〈−x, pL(−x)〉(−x) = (−1)L (pL(x) − 〈x, pL(x)〉x) .

Hence, if p is an equilibrium of Equation 4.10, so is −p.

If the dynamics inside the sphere at infinity depends only on the highest order
terms, we have to take more terms into account to determine the dynamics near
critical points at infinity. More precisely, in [14] Elias and Gingold prove the
following:

Proposition 4.1.16. Rate of blow up.

Consider a polynomial equation of the form 4.1 on a finite dimensional space
X = Rn, where the degree of the vector field is L. Assume it admits a critical
point p at infinity. The linearisation of the rescaled Equation 4.8 at an equilibrium
p ∈ ∂U (i. e. the Jacobian J(p) of the right hand side) depends only on the
terms pL and pL−1. Assume furthermore that p is a stable equilibrium (i. e. the
eigenvalues λi of J(p) have all a strictly negative real part) and no resonance
relations of the form

λj =

k
∑

i=1

miλi,
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are satisfied, where mi > 0 are integers.
Then there exists an n–parameter family of solutions of Equation 4.1 tending to
infinity in the direction p at the blow–up rate

‖y(t)‖ = c(T − t)−1/(L−1) as tր T,

where T > 0 is the blow–up time, and c is a constant. The same is true for the
equilibrium −p at infinity

We do not reproduce the proof of this proposition here because it relies on a
particular admissible compactification, which we do not wish to introduce here
in details. This compactification being chosen, the Jacobian is computed and the
claim of Theorem 4.1.16 follows. For details, see [14].

The paper [33] by Röhrl and Walcher also presents results on the existence
of unbounded solutions using other compactification schemes. The originality of
this paper is to propose alternative compactifications, not only on the unit disc
or the Poincaré hemisphere, but more generally on a hypersurface of the form

{ρ(x) = α},
where ρ : X → R is an homogeneous polynomial of fixed degree. The authors of
[33] prove the existence of unbounded trajectories in the original system by the
analysis of “equilibria at infinity” which are also in this context critical points
of the compactified system lying in the the projection of infinity. Examples
of degenerate situations in the plane are given, where the methods of [1] and
[30, 2.11] work out nicely. Second order equations are also considered and some
conditions for the existence of unbounded solutions are given. No result are given
concerning heteroclinic connections to infinity, however.

In the Paper [9] by Coleman, a more general point of view is taken for the
analysis of the dynamics at infinity in the sense that the tools presented there can
deal with invariant sets at infinity other than equilibria. The theory developed
there deals with “positive limit orbits”, as defined in 4.1.17 below. Consider a
polynomial vector field of degree d on Rn written as

xt = pd(x) + p(x), (4.11)

where pd is the homogenous part of the vector field of degree d, and p contains
all the terms of lower order. In parallel, we consider the homogenous vector field
of degree d on Rn

zt = pd(z). (4.12)

The two vector fields 4.11 and 4.12 show the same dynamics at infinity. The
system 4.12 undergoes the following “radial” change of variables:











r = ‖z‖, radius

y = z
‖z‖ ∈ unit sphere Sn−1

dτ = rk−1dt, normalized time variable,

(4.13)
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This change of variables is not really a compactification because the radius may
grow indefinitely. The unit sphere here is NOT the sphere at infinity: if a trajec-
tory z converges to a finite equilibrium e , the corresponding variable y will also
converge to the equilibrium e

‖e‖ , which is no equilibrium at infinity in the sense
of the compactifications encountered previously. In the variables r, y, τ , the flow
is global and the equations describing it read

rτ = 〈ry, pd(y)〉 (4.14)

yτ = pd(y) − 〈y, pd(y)〉y. (4.15)

Now we have all of the ingredients to define the positive limit orbits.

Definition 4.1.17. An orbit Γ = {z(t), t ∈ [0, T [} solving the homogenous Sys-
tem 4.12 is a positive limit orbit if its corresponding orbit {(r(τ), y(τ)), τ ∈ R}
solving the System (4.14, 4.15) is such that the orbit {y(τ), τ ∈ R} ⊂ Sn−1 is
contained in the ω–limit set of a solution of Equation 4.15 on the unit sphere
Sn−1.

Remark 4.1.18. This definition invites to a few comments. Positive limit orbits
are solution of the homogenous Equation 4.12, hence no trajectory of the original
Equation 4.11: only their behaviour at infinity are comparable, because they are
governed by the terms of highest degree. In Equation 4.12, and very roughly
speaking, the finite dynamics is squeezed to the origin.
Positive limit orbits are subsets of Rn. They are characterized by the fact that,
after the radial change of Variables 4.13, the orbit of the variable y on the unit
sphere {y(τ), τ ∈ R} is contained in an ω–limit set of the flow defined by Equation
4.15 on the unit sphere and independant of the radial variable r. This ω–limit
may be an equilibrium, a periodic orbit, or some more sophisticated invariant set
in the unit sphere with respect to the flow defined by Equation 4.15. An ω–limit
arising in this way as a positive limit orbit does not need to be isolated invariant
in the sense of Definition 3.1.3: it could be, for example, an equilibrium of center
type surrounded by periodic orbits.

The study of the behaviour of the radial variable {r(τ), τ ∈ R} ⊂ R+
∗ of a

positive limit orbit gives us information about whether the positive limit orbit
converges ”at infinity” or not. More precisely, the type numbers are defined by
the following:

Definition 4.1.19. Let Γ be a positive limit orbit with coordinates (r(τ), y(τ)),
τ ∈ R. The upper type number of Γ is defined as

M(Γ) := lim
τ→+∞

sup
1

τ
r(τ).

The lower type number of Γ is defined as

m(Γ) := lim
τ→+∞

inf
1

τ
r(τ).
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1) 2) 3)

Figure 4.1: Three examples for the type numbers.

Example 4.1.20. Let us explain the concept of type numbers through three
examples of compactified flow on the Poincaré hemisphere. Figure 4.1 represents
the Poincaré compactification of three positive limit orbits {z(t), t ∈ [0, T ]} on
the Poincaré hemisphere. Those orbits run along a ray from the origin. Hence
the corresponding variable y = z

‖z‖ ∈ ∂U , the unit sphere of R2, is stationary for
all three cases. The long–time behaviour of the radius differs for the three cases,
which is reflected by the type numbers.
In the first case,

lim
τ→+∞

r(τ) = +∞,

such that

lim
τ→+∞

sup
r(τ)

τ
> lim

τ→+∞
inf

r(τ)

τ
> 0.

Both type numbers are strictly positive if the growth of r is at least exponential.
In the second case

lim
τ→+∞

r(τ) = 0,

such that

0 > lim
τ→+∞

sup
r(τ)

τ
> lim

τ→+∞
inf

r(τ)

τ
.

Both type numbers are strictly negative if the decay of r is exponential.
In the last case,

lim
τ→+∞

r(τ) = a > 0.

It follows that

lim
τ→+∞

r(τ)

τ
= 0.

Both type numbers are equal to zero.

The concept of type numbers allows one to prove the following theorems:

Theorem 4.1.21. If the upper and lower type numbers of every positive limit
orbits of system 4.12 are negative, then system 4.11 is bounded in forward time
direction.
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Theorem 4.1.22. If system 4.12 admits a ray solution (i. e. a solution running
along a ray from the origin) with a positive type number, then the system 4.11 is
unbounded.

In fact, the ray defines an equilibrium on the sphere at infinity. A positive
type number implies that a trajectory coming from the inside of the Poincaré
hemisphere accumulates in forward time direction on the equilibrium at the “end”
of the ray from the origin. Note that one may also consider negative time τ
direction and get similar results.

The interplay between the dimension of the phase space and the degree of
the polynomial vector field influences the existence of unbounded orbits. The
following theorem holds:

Theorem 4.1.23. Suppose the homogenous system 4.12 has an isolated critical
point at the origin.

• If the degree k of the polynomial field is even, then the homogenous system
4.12 admits a ray solution with positive type number.

• If the dimension n of the phase space is odd, then the homogenous system
4.12 admits a ray solution, but not necessarily one with a positive type
number.

• If k is odd and n is even, there need not be any ray solution at all.

As a consequence holds the following corollary.

Corollary 4.1.24. If k is even and the origin is an isolated critical point of the
homogenous system 4.12, then the system 4.11 is unbounded.

Those results are concerned with existence or non–existence of blow–up or
grow–up and gives also information on the behaviour at infinity. However this
theory is based on the homogenous version, Equation 4.12, and not on the orig-
inal equation, Equation 4.11. Therefore it does not take the finite dynamics
into consideration. Hence no information about transfinite heteroclinics can be
expected.

4.2 Gradient vector fields

In this section we consider a polynomial gradient vector field in Rn. Let V :
Rn → R be a polynomial of degree d. We consider the vector field defined by

xt = −∇V (x), x ∈ Rn. (4.16)

Due to the fact that

dV (x(t))

dt
= −〈∇V (x(t)),∇V (x(t))〉 ≤ 0,
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the quantity V , often called the potential, is strictly decreasing along trajecto-
ries, except at equilibria, where it has no other choice than to be constant. This
implies that all of the ω or α–limit sets are equilibria, and that we have a Morse
decomposition (for a precise definition of this concept see Chapter 3). Gradient
vector fields exhibit this very convenient property, which makes them quite spe-
cial. However according to Theorem 3.1.66 by Conley, they can be considered as
a model for every vector field. This theorem says that, up to recurrent behaviour,
every field is gradient. For this reason, we draw special attention to them.

We prove that we have the same type of structure in the sphere at infinity.

Proposition 4.2.1. Let V : Rn → R be a polynomial potential of degree d. The
vector field on Rn given by

xt = −∇V (x)

induces a vector field on the sphere at infinity by Poincaré compactification and
normalization. This induced vector field on E admits a Lyapunov function. As a
consequence, the ω or α–limit sets, as well as the non–wandering set in the sphere
at infinity consist of equilibria only. Moreover, the sphere at infinity admits a
Morse decomposition.

Proof. Let us decompose V into two parts:

V = vd + w,

where vd contains all the terms of highest degree d, and w contains all terms
of degree at most d − 1. We work now with the equation 2.7 giving the time
evolution of (χ, z) ∈ H because it is the only equation offering an overview of the
sphere at infinity as a whole. After normalization by multiplying with zd−2, the
equations on the Poincaré hemisphere H have the following form:

χτ = 〈χ,▽vd(χ) + zd−1
▽w(z−1χ)〉χ− (▽vd(χ) + zd−1

▽w(z−1χ)) (4.17)

zτ = 〈χ,▽vd(χ) + zd−1
▽w(z−1χ)〉z (4.18)

The terms of lower order disappear as z goes to zero and the dynamics in the
sphere at infinity E where z = 0 is governed by the equation

χt = −(∇vd(χ) − 〈χ,∇vd(χ)〉χ). (4.19)

Now we compute the derivative with respect to the time of vd(χ(t)):

dvd(χ(t))

dt
= 〈χt,∇vd(χ)〉
= 〈χt,∇vd(χ) − 〈χ,∇vd(χ)〉χ〉 as χ ⊥ χt

= −〈χt, χt〉 ≤ 0.

= 0 if and only if χt = 0
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Hence vd is a strict Lyapunov function for the dynamics in the sphere at infinity;
i. e. it decreases strictly along trajectories - unless the trajectory is stationary.
This proves the claim.

Remark 4.2.2. The same is true for a potential V of polynomial growth; i.e.
where V is of the form V (x) =

∑

|α|=d aαx
α + g(x), where ▽g(x)

‖x‖d−1 → 0 as x goes
to infinity.

Remark 4.2.3. As already pointed out, a gradient vector field induces a Morse
decomposition with bounded equilibria as Morse sets. On the one hand, if the po-
tential V is polynomial, its homogenous part of highest degree induces a Morse
decomposition of the sphere at infinity E , with equilibria at infinity as Morse
sets. Unfortunately, the only knowledge of these two separated Morse decompo-
sitions is not sufficient to reconstruct a global Morse decomposition of the whole
Poincaré hemisphere. It remains to determine if and how the two partial orders
meld to build an admissible order on the union of the Morse sets of the two
decompositions.

Remark 4.2.4. In the proof of this proposition we make no use of the finite
dimensionality. The same is true for an infinite dimensional Hilbert space X. We
will see in the next chapter that this plays an important role.

4.3 Hamiltonian vector fields

4.3.1 Generalities on Hamiltonian vector fields

Another class of well known vector fields is the class of Hamiltonian vector fields.
In this context, there is a C2 energy function (or Hamiltonian) H on R2n with
the coordinates (x, y) ∈ Rn × Rn. The energy H : R2n → R generates a vector
field

xt =
∂H

∂y
(x, y) (4.20)

yt = −∂H
∂x

(x, y), (4.21)

with the property that H is constant along trajectories . This fact follows from

d

dt
H(x(t), y(t)) =

〈

(
∂H

∂x
,
∂H

∂y
), (

∂H

∂y
,−∂H

∂x
)

〉

=

〈

∂H

∂x
,
∂H

∂y

〉

−
〈

∂H

∂y
,
∂H

∂x

〉

= 0.

This structure is not inherited after compactification by the flow on the sphere at
infinity. The coordinates on the sphere at infinity are (χ, η) ∈ Rn with 〈χ, χ〉 +
〈η, η〉 = 1 Assume H is a polynomial vector field and hd its homogenous part of
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highest degree d. The vector field on the sphere at infinity after normalization
reads

(

χτ
ητ

)

=

(

∂hd

∂η

−∂hd

∂χ

)

−
〈(

∂hd

∂η

−∂hd

∂χ

)

,

(

χ
η

)

〉

(

χ
η

)

(4.22)

This vector field is generated by hd in the sense that it is the projection of
(

∂hd

∂η

−∂hd

∂χ

)

onto the tangent space to the sphere at infinity. Hence the standard

candidate for a function constant along trajectories on the sphere at infinity
would be hd. But computing the derivative of h along trajectories on the sphere
at infinity yields the following.

dhd
dt

(

χ(t), η(t)
)

= 〈▽hd, (χt, ηt)〉

=

〈

∂hd
∂χ

,
∂hd
∂η

−
(〈

∂hd
∂η

, χ

〉

+

〈

−∂hd
∂χ

, η

〉)

χ

〉

+

〈

∂hd
∂η

,
∂hd
∂χ

−
(〈

∂hd
∂η

, χ

〉

+

〈

−∂hd
∂χ

, η

〉)

η

〉

= −
〈

▽hd,
(

χ
η

)〉〈

▽h⊥d ,
(

χ
η

)〉

,

where ▽hd denotes the vector (∂hd

∂χ
, ∂hd

∂η
) and ▽h⊥d denotes the vector (∂hd

∂η
,−∂hd

∂χ
).

There is no reason for the product to be identically zero.

4.3.2 Planar quadratic Hamiltonian vector fields

In this paragraph we summarize the results obtained by Artés and Llibre in [2]
about quadratic Hamiltonian vector fields in the plane and comment on them
regarding the generalization of the Conley index theory developed in the present
thesis. In this paper the authors classify all planar quadratic Hamiltonian vector
fields according to their global phase portraits on the Poincaré hemisphere. More
precisely, their main theorem is the following:

Theorem 4.3.1. Let f be a quadratic Hamiltonian vector field in the plane. Then
the Poincaré compactified phase portrait of f on the Poincaré hemisphere is topo-
logically equivalent to one of the 28 configurations given in figure 4.2. Moreover,
each of the configurations of figure 4.2 is realizable by quadratic Hamiltonian
vector field.

Their proof of this theorem can be decomposed in the following steps:

• Use the classification of quadratic planar vector fields with a center obtained
by Vulpe in [40].
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Figure 4.2: Classification of planar quadratic Hamiltonian vector fields.
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Figure 4.3: Hyperbolic, parabolic and elliptic sectors.

• Reduce the parameter space consisting of the coefficients of the the polyno-
mial field to 32 different normal forms depending on at most 4 parameters.

• Study the phase portraits for the various normal forms. Here methods
described in [1] are applied successfully to study degenerate fixed points at
infinity.

The success of this strategy is based on the fact that the fields under considera-
tion are only quadratic and not of higher degree. Moreover the study of the phase
portraits relies on the decomposition of neighbourhoods of fixed points in hyper-
bolic, elliptic and parabolic sectors as illustrated in Figure 4.3: this property is
very 2–dimensional and cannot be generalized to higher dimensions. For more
details on the decomposition in sectors see [1, VIII.17.2 ]. Furthermore, other
2–dimensional theorems like Poincaré–Bendixson are used to match together the
local phase portraits around equilibria to a global phase portrait. For planar
quadratic Hamiltonian vector fields, the Conley index methods we develope will
not permit us to discover anything new; but they have the advantage that they
are applicable in higher dimensions. The analysis of the behaviour near fixed
points as in [1] is then replaced by the computation of the Conley index, and the
matching of the heteroclinics is provided by connection matrices. We illustrate
this approach on some phase portraits of the classification of Artés and Llibre in
Figure 4.2. We choose the portraits 5, and 18.

Portrait 5:

The phase portrait number 5 of the classification 4.2 contains an equilibrium p
of isolated invariant complement in the sphere at infinity whose Conley index at
infinity ĥ(p) is trivial. As we noticed in the previous chapter, this triviality is no
obstacle to the detection of connecting orbits by the method we developed. Let
us apply it here. The Figure 4.4 shows on the left an isolating block B for the
isolated invariant set pcomp with its entrance and exit sets B+ and B− respec-
tively. Both B+ and B− are retractable to a point. On the right hand side of the
Figure 4.4 the extended flow is constructed. In this extended flow, the degenerate
equilibrium p at infinity is replaced by two equilibria: b− is an attracting fixpoint
of Conley index h(b−) = Σ0, b+ a repelling fixpoint of Conley index h(b+) = Σ2.
The other isolated invariant sets are the same in the original flow and in the
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B+B−

Figure 4.4: The extended flow for Portrait 5 of 4.2.

extended flow. If we denote by S the region filled with periodic orbits together
with the two finite saddle points and the heteroclinic between them, it holds
h(S) = Σ1 ∨ Σ1. There are three further fixpoints in the sphere at infinity: the
upper one has trivial classical Conley index so that no connection to him is de-
tected. The last two are a repeller r on the left handside and an attractor a on
the right hand side. Therefore holds h(H, E ; r) = Σ2 and h(H; a) = Σ0. A Morse
decomposition of the extended phase portrait is given by the partial order on the
Morse sets

r, b+ > S > a, b−.

The connection maps (which correspond to the first subdiagonal of the connection
matrix) detect the all heteroclinics that are detectable:

r → S

b+ → S

S → a

S → b−

We illustrate in Figure 4.5 two of the isolating blocks that we use to detect the
connection, together with their exit sets in red. The block on the right handside
contains an isolated invariant set Q whose Conley index reads h(H; E ;Q) = 0̄.
The block on the left handside contains an isolated invariant set P whose Conley
index reads h(H, E ;P ) = 0̄. The block on the right handside contains an isolating
invariant set admitting (S, r) as an attractor–repeller pair. The block on the right
handside contains an isolated invariant set admitting (S, b+) as an attractor–
repeller pair. Recalling that h(S) = h(H;S) = h(H, E ;S) as S ⊂ int(H), it
holds

h(H, E ; r) ∨ h(S) = Σ0 ∨ Σ1 ∨ Σ1 6= 0̄,
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Figure 4.5: Isolating blocks of connections in Portrait 5 of 4.2.

and
h(H, E ; b+) ∨ h(S) = Σ2 ∨ Σ1 ∨ Σ1 6= 0̄.

Those inequalities in the indices implies the nontriviality of the corresponding
connection maps and hence the two connections r → S and b+ → S.
The reader will easily see how two choose the two isolating blocks to prove the
two remaining connections S → a and S → b− .
The heteroclinic orbits b+ → S and b− → S correspond in the original phase
portrait to orbits σ1 and σ2 with

{

α(σ1) ⊂ S

ω(σ1) ⊃ {p} ,

{

α(σ2) ⊃ {p}
ω(σ2) ⊂ S

,

where p denotes the equilibrium at infinity of isolated invariant complement.

Portrait 18:

The compactified phase portrait 18 of Figure 4.2 admits a equilibrium at infinity
of isolated invariant complement in the bottom that we denote by p. The Figure
4.6 shows a block B for its complement pcomp on the left handside. Its exit set B−

consists of two intervals and is contractable to the disjoint union of two points
b−1 , b

−
2 . Both of them are attracting fixpoints in the extended phase space whose

construction is exposed in paragraph 3.5.2. The entrance set B+ is contractable
to one fixpoint b+, which is a repeller in the extended flow.
On the right handside of Figure 4.6 the extended flow is shown for this exam-
ple. The complement pcomp of our degenerate fixpoint contains two fixpoints: an
equilibrium r at infinity, which is a repeller of Conley index h(H, E ; r) = Σ2 and
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B+ B−B−

b+ b−b−

Figure 4.6: Extended flow for Portrait 18 of 4.2.

a finite equilibrium s which is a saddle point of index h(s) = Σ1.
Furthermore, the Conley indices of b+ and b− reads

h(H, E ; b−) = Σ2 ∨ Σ2,

h(H); b+ = Σ0.

A Morse decomposition of the extended flow is given by the partial order

b+, r > s > b−.

The Figure 4.7 below shows isolating blocks and their exit set for the connections
b+ → s and s → b−. Let us call P the set isolated by the left block, and Q the
set isolated by the right block. It holds h(H, E ;P ) = 0̄ and h(H;Q) = Σ0. To
detect the heteroclinic orbits, one has to compare the followings:

h(H, E ; b+) ∨ h(s) = Σ2 ∨ Σ2 ∨ Σ1 6= 0̄,

h(H; b−) ∨ h(s) = Σ0 ∨ Σ1 6= 0̄.

Hence the connection maps involved are not trivial and the Conley index methods
developed in paragraph 3.5.2 are able to detect the heteroclinic orbits b+ → s→
b−. Therefore there exist in the original phase portrait orbits σ1,2 with











α(σ1) ⊃ {p}
ω(σ1) = {s} = α(σ2)

ω(σ2) ⊃ {p}

The heteroclinic r → s is detectable by the classical Conley index as the reader
will easily convince himself.
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r

s

b+b+ b−b−b−b−

Figure 4.7: Isolating blocks for the extended flow of Portrait 18.

4.4 A cube at infinity

We present here the case of a polynomial vector field P in Rn whose highest order
terms take the form

pd(x1, · · · , xn) = (xd1, · · · , xdn).
This polynomial vector field is not only interesting for itself, but also because
it may be interpreted as the discretization of the partial differential equation
ut = uxx + ud + f(u), where f contains terms of order smaller than d. For
x ∈ [a, b], we fix n points x1, · · · , xn in the interval [a, b], and define uk := u(xk),
k = 1, · · · , n. Then the equation (uk)t = udk, k = 1, · · · , n, governs the dynamic
at infinity of the uk’s. We wil study this discretisation more precisely in paragraph
4.4.3.

Let us first see the structure appearing in the sphere at infinity. After this
we will look at examples and discuss the connections between finite and infinite
dynamic.

4.4.1 A cubic structure in the sphere at infinity

We consider the following system in Rn:

(xk)t = xdk,
k ∈ {1, · · · , n}. (4.23)

This system is a gradient system with potential V (x) =
∑n

k=1

xd+1
k

d+1
. We recall

that as a consequence, the ω and α–limit sets are all equilibria. In particular,
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there exist no periodic orbits. To fix the ideas, let us fix d odd and at least
2. We analyse in this paragraph the dynamic inside the sphere at infinity. For
this we proceed to a Poincaré compactification and use the atlas of the Poincaré
hemisphere H consisting of the vertical charts {ξi = ±1, ζ ≥ 0} as described
in figure 2.2. We consider only the sphere at infinity alias the equator E of H
which is invariant under the normalized flow on H. This corresponds to the
vertical coordinate ζ being set to zero. The equations, already normalized by
̺(ζ) = ζd−1, in each of the chart {ξi = ±1, ζ = 0} of the sphere at infinity, read

{

(ξk)t = (1 − ξdk)ξk,
k = 1, · · · , n, k 6= i.

(4.24)

The equilibria are vectors whose entries ξk are 0, 1 or -1. The stability of those
equilibria depends on the linearisation of the projected vector field at those points,
or more precisely on the sign of its eigenvalues. As

∂Pk
∂ξk

= 1 − dξd−1
k

∂Pk
∂ξj

= 0 for j 6= k,

the Jacobian of the vector field is a diagonal matrix with diagonal entries Jm,m =
1 − dξd−1

m , the nondiagonal entries being all trivial. Consider an equilibrium e of
coordinates ξk = 0, 1, or −1. An entry ξk = 0 in the equilibrium will result in a
unstable eigenvalue 1 of the Jacobian at the equilibrium e, while an entry ξk = ±1
will result in a stable eigenvalue 1 − d. The corresponding eingenvector being in
both cases the k–th vector of the canonical basis of {ξi = ±1, ζ = 0} ≃ Rn−1.
Hence an equilibrium with p entries equal to zero has Morse index p for the flow
restricted to the sphere at infinity (we do not consider the vertical direction ζ in
this paragraph as the sphere at infinity is invariant under the normalized flow on
the Poincaré hemisphere).

When projected back on the sphere at infinity, the vector field admits 3n − 1
distinct equilibria. To understand the structure of the connections between the
equilibria inside the sphere at infinity, let us have a closer look at the compactified
equations. For symmetry reasons, the same behaviour is taking place in every
chart {ξi = ±1, ζ = 0} of the sphere at infinity. We claim that, in every chart
an equilibrium with an entry ξk = 0 connects to the two equilibria having the
k–th entry ξk = ±1, and else the same coordinates as the first. This connection
corresponds to the unstable direction of e led by the k–th basisvector which is
eigenvector of unstable eigenvalue 1. The Figure 4.8 below summarizes those
connections. We choose to represent it as a cube rather than a sphere to make
a representation in higher dimensions possible. To obtain the sphere at infinity,
imagine it round.
The surface of a n + 1–dimensional cube shows facets of dimension k = n, n −
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1, . . . , 0. We put in the center of the k–dimensional facets the equilibria e with
exactly k coordinates equal to zero. Each of these unstable directions connects to
the center of a k−1–dimensional facet - except if k = 0, e being then totally stable
and in a corner of the cube. The structure of heteroclinics described in Figure
4.8 arises. The heteroclinics drawn on the (n − 1)–dimensional cube surface in

Figure 4.8: Sphere at infinity for 4.23 in R3.

fact run on the (n− 1)–dimensional sphere at infinity, alias the equator E of the
Poincaré hemisphere H.
The cube has 2n (n − 1)–dimensional facets. Their centers correspond on the
sphere at infinity E = {(χ, z) ∈ Rn × R/‖χ‖ = 1, z = 0} to equilibria at infinity
of the form χ = ±ek0 , z = 0, where ek0 is the k0–th vector of the canonical basis
of Rn.
The centers of the k–dimensional facets correspond on the sphere at infinity
E = {(χ, z) ∈ Rn × R/‖χ‖ = 1, z = 0} to equilibria at infinity of the form
(a, 0) ∈ Rn × R such that a admits exactely k nontrivial entries equal to ± 1√

k
.

There are 2Ck
n of them, where Ck

n is the binomial coefficient.

4.4.2 Finite dynamic without lower order terms

In fact the system 4.23 is explicitly solvable. For completeness we want to give
here the explicit formula describing the trajectories. For every k = 1, · · · , n, the
equation

(xk)t = xdk

is solved as follows:

• If the initial condition xk(0) is zero, xk(t) ≡ 0 is solution;
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• otherwise xk(t) is of constant sign and integrating

(xk)t
xdk

= 1

provides for the solution xk(t) the explicit formula

xk(t) = xk(o)
(

1 + xd−1
k (0)(1 − d)t+

)
−1
d−1 . (4.25)

This solution blows up at the positive time Tk defined by

Tk =
1

(d− 1)xd−1
k (0)

. (4.26)

Putting the collection of xk, k = 1, · · · , n, together, we see that the origin is
unstable: every initial condition with at least one coordinate different from zero
will blow up in forward time Tk0 , where xk0(0) denotes the greatest positive
coordinate of the initial condition. For time t going to ∞, the trajectories all
converge to the origine. The origine is not hyperbolic, so its Morse index is a
priori not well defined but clearly its Conley index is the one of a repeller, i. e. Σn.

On the Poincaré hemisphere, a non–trivial trajectory, i. e. a trajectory with
initial condition distinct from the origine, will converge to an equilibrium at
infinity determined in the following way from the initial condition: generically
the maximum of the set {|xk(0)|, k = 1, . . . , n} will be reached for exactly one
k0; then the trajectory projected on the Poincaré hemisphere will converge to the
equilibrium at infinity (χ, ζ) = (sign(xk(0))ek0 , 0), where ek0 is the k0–th vector
of the canonical basis of Rn. This corresponds in our cubic graph to the center
of the n − 1–dimensional face associated to the direction sign(xk(0))ek0 . If the
maximum of the set {|xk(0)|, k = 1, . . . , n} is reached by several coordinates, say
for kj1, . . . , kjm, the trajectory wil converge to the equilibrium on the sphere at
infinity given by

χk =

{

sign(xk)√
m

if k ∈ {k1, . . . , km}
0 otherwise

This equilibrium at infinity corresponds in the cubic graph to the center of the
m–dimensional face associated to the ”diagonal” direction

∑m
i=1 sign(xki

)eki
.

Remark 4.4.1. The dynamics of System 4.24 without terms of order smaller than
the degree d gives us important information about the dynamics of equations of
the form (4.24)+linear terms, as soon as d is greater or equal 3. The sphere
at infinity E is an attractor for System 4.24, whose Conley index is h(H; E) =
Sn−1∪{∗}. It is still an attractor when we add linear terms, so that the maximal
bounded invariant set F containing all globally bounded solutions, exists and its
Conley index is Σn, because it coincides with the Conley index of the origin for
System 4.24.
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4.4.3 Finite dynamic with discrete Laplacian operator

Let divise the real interval [0, 1] in n subintervals [ak, ak+1], k ∈ {0, . . . , n} of
equal length 1

n
. Consider a map u : [0, 1] → R. The discrete Laplace operator ∆

is given by

∆u(ak) =
1

n2
(u(ak−1) − 2u(ak) + u(ak+1)) (4.27)

Instead of studying the partial differential equation ut = ∆(u) + up, we consider
its discrete version. To this purpose, set xk = u(ak). The boundary conditions
may be chosen as Neumann or Dirichlet boundary conditions.
Neumann boundary conditions: x0 = x1 and xn−1 = xn.
Dirichlet boundary condition: x0 = xn = 0.
We get the following systems of ODEs:

Neumann







































(x1)t = 1
n2 (x2 − x1) + xd1

(x2)t = 1
n2 (x3 − 2x2 + x1) + xd2

. . .

(xk)t = 1
n2 (xk+1 − 2xk + xk−1) + xdk

. . .

(xn−1)t = 1
n2 (−xn−1 + xn−2) + xdn−1

(4.28)

Dirichlet







































(x1)t = 1
n2 (x2 − 2x1) + xd1

(x2)t = 1
n2 (x3 − 2x2 + x1) + xd2

. . .

(xk)t = 1
n2 (xk+1 − 2xk + xk−1) + xdk

. . .

(xn−1)t = 1
n2 (−2xn−1 + xn−2) + xdn−1

(4.29)

The finite equilibria of these systems solve (xk)t = 0 for every k ∈ {1, . . . , n−
1}. The first equation of the system may be reformulated so as to express x2 as
a function of x1, and so on so that every xk, k ∈ {2, . . . , n− 1} is expressed as a
function of x1. Furthermore, this function is a polynom of degree dk.
The sum of all the equations of the system reads in the Neumann case

n−1
∑

i=1

xdi = 0,

and in the Dirichlet case

−x1 − xn−1 +

n−1
∑

i=1

xdi = 0.
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This equation may be rewritten only in term of x1. The unknown x1 has to solve
this equation which is polynomial of degree dn. The other variables are then fully
determined. The calculations of the finite equilibria and their Conley index are
done numerically and are summarized in the sketch below.

Furthermore, the discretization inherits the gradient structure of the partial
differential equation: setting for x = (x0, x1, . . . , xn−1, xn)

J(x) =
n−1
∑

i=1

1

2

(

xi − xi+1

n

)2

−
n
∑

i=1

xd+1
i

d+ 1

It holds

dJ(x(t))

dt
= −〈xt, xt〉 6 0

= 0 only at equilibria,

where we took the boundary conditions (Neumann or Dirichlet) into considera-
tion. As a consequence, α and ω–limit sets consist of equilibria only. We noticed
in Remark 4.4.1 that the maximal bounded invariant set F exists for the systems
we consider, which is of the form (homogenous of degree d > 3)+(linear terms).
This set F consists of the bounded equilibria and the heteroclinic between them.
We stick to the case d = 3 to keep calculations reasonable.

n=3, Neumann boundary conditions

Origin: h(0) = Σ0

2 equilibria of indices Σ2.

n=3, Dirichlet boundary conditions

Origin: h(0) = Σ0

2 equilibria of indices Σ2

2 equilibria of indices Σ1

Cascade Σ2 → Σ1 → Σ0.
Transfinite cascade Σ2 → Σ1 → Σ0.

n=4, Neumann boundary conditions

Origin: h(0) = Σ0

2 equilibria of indices Σ2

2 equilibria of indices Σ3

n=4, Dirichlet boundary conditions

Origin: h(0) = Σ0

2 equilibria of indices Σ1

2 equilibria of indices Σ2

2 equilibria of indices Σ3



130 CHAPTER 4. ORDINARY DIFFERENTIAL EQUATIONS

Cascade Σ3 → Σ2 → Σ1 → Σ0.
Transfinite cascade Σ3 → Σ2 → Σ1 → Σ0.

4.5 The Lorenz equations

The following system is famous because it gives rise to the Lorenz–attractor for
certain values of the parameters.







xt = σ(y − x)
yt = rx− y − xz
zt = −bz + xy

(4.30)

As it is a polynomial system, it is tempting to make use of compactification
techniques to study its behaviour at infinity. In fact it has already been done in
several papers. The paper [27] sums up the most information, see also [24]. We
want here to give a short survey of their results and interpret them under the
point of view of Conley index theory.

In the Bendixson compactification, the point at infinity is a repeller with
Conley index Σ3, as soon as the parameters are all strictly positive. This hast
already been shown by Conley. He observed that the function

V (x, y, z) =
1

2
(rx2 + σy2 = σ(z − 2r)2)

has a strictly negative derivative along trajectory as soon as one computes it far
enough from the origin. In fact holds

d

dt
V (x(t), y(t), z(t)) = σ(−rx2 − y2 − b(z − r)2 + br2).

The constant term is dominated by the squares. The level sets of V are ellipsoids.
Hence there exist a global attractor which is the maximal invariant set contained
in a big ellipsoid playing the role of an isolating block with empty exit set. The
global attractor has Conley index Σ0 and it is also the maximal bounded invariant
F set in the sense of Property 3.5.2. The Conley index of the point at infinity is
clearly h(∞) = Σ3.

For certain parameters, the Lorenz system shows a strange butterfly–shaped
attractor called the Lorenz attractor. The complexity of the structure of the
Lorenz attractor may be explained as a bifurcation from a singularly degenerate
heteroclinic cycle which consists of an invariant set formed by a line of equilibria
together with a heteroclinic connecting two of those equilibria, as suggested in
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Figure 4.9: The dynamic of the Lorenz system in the sphere at infinity.

[24]. This approach could explain the generation of strange ”butterflies” attrac-
tors in all Lorenz–like systems. The dynamic at infinity plays an important role
in the study of the degenerate heteroclinic cycles because the line of equilibria
is infinite and hits the sphere at infinity in an equilibrium. In [27], numerical
evidence are given for the appearance of such degenerate heteroclinic cycles as
the parameter b is crossing the value 0: for b 6= 0 , the positive and the negative
part of the z–axis are heteroclinic connection between the origine and equilibria
at infinity, the direction of which depends on the sign of b. For the value b = 0,
the z–axis is a line of normally hyperbolic equilibria. Some of them have a one–
dimensional unstable manifold, others have a two–dimensional stable manifold.
The unstable manifolds of the firsts connect to the stable ones for t → +∞, or
so show the numerical study at least.

As the reader easily sees, the choice of the coefficients of the Lorenz equations
4.30 does not affect the highest order terms. As a consequence, the dynamic in
the sphere at infinity is independant of those coefficients. Messias gives a precise
description of the dynamic in the sphere at infinity in [27]. An overview of the
dynamic at infinity is given by the following and is illustrated in figure 4.9. It
contains two equilibria at the ends of the x–axis that are centers. They are hence
surrounded by peridic orbits which degenerates in a circle of equilibria at infinity
in the (y, z)–plane.

The sphere at infinity contains neither a non trivial (i. e. empty) isolated
invariant set, nor a non trivial invariant set of isolated invariant complement:
any neighbourhood of any equilibria at infinity admits whether equilibria on its
boundary, or inner periodic orbits touching from inside, and outer periodic orbits
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touching it from outside. Therefore the methods exposed in chapter 3 cannot be
applied for the Poincaré compactification.

The global attractor admits a Morse decomposition, at least for some reason-
able parameter range. The paper [35] by Sanjurjo addresses this question and
presents a way of computing the cohomological Conley indices. In particular the
Conley index of the strange attractor is computed. We refer the reader to [35]
for the details. Unfortunately it is not possible to detect the connections of the
different Morse sets of the global attractor to the sphere at infinity by Conley
index methods because no part of the sphere at infinity is isolated invariant or of
isolated invariant complement.



Chapter 5

Partial differential equations

5.1 Chafee–Infante structure at infinity

In this chapter we want to consider infinite dimensional dynamical systems. First
let us look at a linear one. There we observe the existence in the sphere at infinity
of a structure analog to the Chafee–Infante attractor studied in [20, 5, 6]. This
is the purpose of this section to describe how this structure comes up.

We consider in the Hilbert space X the equation

ut = Au, (5.1)

with initial condition

u(0) = u0,

where u, u0 ∈ X and A : D(A) → X is a densely defined linear operator. The
space X being Hilbertian, it admits a countable orthonormal basis. Furthermore
let us assume that there exists a basis (en)n∈N of X consisting of eigenvectors of
A and that the associated eingenvalues (µn)n∈N are pairwise distinct and ordered
the following way:

µ0 > µ1 > µ2 > · · · (5.2)

This is for example the case for the Laplace operator on a bounded domain [0, L],
with Neumann boundary conditions and X = L2 (see section 5.3 and followings
where we discuss concrete problems in more details). The basis (en)n∈N provides
for each u ∈ X coordinates (un)n∈N. In those coordinates, the equation 5.1 reads

(un)t = µnun for all n ∈ N.

We now apply the Poincaré compactification on this equation as described
in chapter 2. The space X ⋍ X × {1}is projected gnomically on the Poincaré
hemisphere H = {(χ, z) ∈ X × R/ 〈χ, χ〉 + z2 = 1, z ≥ 0}, the equator {(χ, z) ∈
X×R/ 〈χ, χ〉 = 1, z = 0} being the sphere at infinity. The Poincaré compactified

133
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equation does not need to be normalized. Let us study it in the vertical half–
hyperplanes C±

i of the space X × R defined for all i ∈ N as

C±
i := {(ξ, ζ) ∈ X × R/ξi = ±1, ζ ≥ 0}.

For that we project again gnomically from the Poincaré hemisphere H\{ north pole }
to C±

i . The collection of the projections on the half–hyperplanes (C±
i )i∈N forms

an atlas of the Poincaré hemisphere up to the north pole.The coordinates in
those hyperplanes are called (ξn)n∈N and ζ , just as in chapter 2. In each half–
hyperplanesC±

i , the projected equation reads

(ξn)t = (µn − µi)ξn for all n ∈ N (5.3)

ζt = −µiζ (5.4)

For each fixed i ∈ N the vertical half–hyperplane C±
i = {ξi = ±1, ζ ≥ 0}

contain exactly one equilibrium: the origine denoted by Φ±
i with coordinates in

the basis of X ×R composed of (en, 0), n ∈ N and (0, 1) as follows:

Φ±
i :







ξi = ±1,
ξn = 0 for n 6= i,
ζ = 0.

In other words we have on the sphere at infinity a countable infinity of equilibria
Φ±
i with coordinates in the Poincaré hemisphere H:

Φ±
i :







χi = ±1,
χn = 0 for n 6= i,
z = 0.

Let us determine the stability of these equilibria with the help of equation
5.3.

For i = 0, all µn, n 6= 0, are smaller than µ0 so that (µn − µ0) is always
negative and the two equilibria Φ±

0 are stable.
For i ≥ 1, (µn − µi) is positive for 0 ≤ n ≤ i− 1 and negative for n ≥ i+ 1.

Hence the two equilibria Φ±
i with coordinates ξi = ±1, ξn = 0 for n 6= i, admits

i unstable directions and infinitely many stable ones. In terms of Morse index,
this fact just means that the Morse index of Φ±

i is equal to i, as the Morse index
counts the unstable directions.

Now let us describe the heteroclinic orbits connecting those equilibria (Φ±
i )i∈N

with one another in the sphere at infinity. For this we make again use of the
equation 5.3. Let us fix a i ∈ N and also ε ∈ {+1,−1}. Then for each n 6= i, the
ξn–axis is invariant and consists of heteroclinics

• from Φε
i to Φ±

n if µn − µi < 0 , i. e. n ∈ {0, . . . , i− 1},

• from Φ±
n to Φε

i if µn − µi > 0 , i. e. n ≥ i+ 1.
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[5, 6] Furthermore a generic initial condition in the i–dimensional unstable sub-
space of Φ±

i converges to Φ±
0 . More precisely, if χ = (χn)n∈N fulfils







χn = 0 for n ≥ i+ 1,
χn 6= 0 for n ∈ {0, . . . , i− 1},

〈χ, χ〉 = 1 ,

the trajectory through χ converges to Φ
sign(χ0)
0 after having spent long time near

Φ
sign(χn)
n , . . ., Φ

sign(χ1)
1 successively. This behaviour is caused by the fact that

µ0 − µi is the strongest unstable eigenvalue of the equilibria Φ±
i .

We compare this structure to the structure of the global attractor in the
Chafee–Infante problem for the following reason: In both cases we have equilibria
of every possible Morse index. Heteroclinic orbits from an equilibrium with lower
Morse index to an equilibrium with higher Morse index are forbidden. Moreover
an heteroclinic between two equilibria whose Morse index differs of more than one
is forbidden too, unless there exists a cascade of heteroclinics where the Morse
index decreases of one in each step between the two equilibria considered (. In the
Chafee–Infante as well as in our sphere at infinity, every heteroclinic which is not
forbidden by the Morse indices is eventually taking place, so that the complete
cascade of heteroclinics is realised. The following Graph describes this structure,
where some arrows with Morse index decay bigger than one are missing for the
sake of clarity.
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This is what we call a Chafee–Infante–like structure. We ob-
serve two differences between the structure in our sphere at
infinity and the classical Chafee–Infante attractor:

• Here we observe two equilibria of Morse index zero instead
of a single one in the classical Chafee–Infante attractor.

• More important is the second difference: in the classical
Chafee–Infante structure, there is arbitrarily many equi-
libria by adjusting the parameter, but for each fixed pa-
rameter finitely many. In our case we have a countable
infinity of equilibria (except if the space X was finite di-
mensional from the beginning).

In figure 5.1 we show the Chafee-Infante-like structure at infinity in a sphere
at infinity of dimension 2 (i.e. for X = R3), which is the greatest dimension one
can reasonably try to draw. In reality, the sphere at infinity we are considering
is infinite dimensional. The blue equilibria are Φ±

0 , the purple ones Φ±
1 , the red

ones Φ±
2 .

Note that this structure occurs independently from the stability of the finite
saddle sitting at the origin of X in the original system. Only the difference
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Figure 5.1: 2–dimensional sphere at infinity with Chafee–Infante–like structure.

µn − µi of its eigenvalues plays a role in the dynamic of the sphere at infinity:
the spectrum of the finite equilibria sitting at the origine may be translated by
considering A + bId instead of A, changing the number of unstable directions,
without destroying the Chafee–Infante–like structure in the sphere at infinity.

Now a few words about the transfinite heteroclinics between the origine and
the equilibria Φ±

i at infinity. These are determined by the equation 5.4 in the
half–hyperplanes C±

i which reads ζt = −µiζ . This equation provides the following
information:

• If the i–th eigenvalue µi is positive, there are transfinite heteroclinics from
the north pole (0, 1) of the Poincaré hemisphere (alias the origin of X in
the original system) to the equilibria Φ±

i at infinity.

• If the i–th eigenvalue µi is negative, there are transfinite heteroclinics from
the equilibria Φ±

i at infinity to the north pole (0, 1) of the Poincaré hemi-
sphere.

Those heteroclinics follow the meridian of the Poincaré hemisphere given by the
projection of the straight line directed by (ei, 1) in X × {1}, where ei was the
i–th basis vector of X. Furthermore a generic initial condition in the unstable
subspace of the origine will be attracted by Φ0 for the same reasons as given
before. This transient behaviour of the growing up trajectories is shown in figure
5.2 below. This figure shows the case where µ0 > µ1 > µ2 > 0 > µ3 > . . ., so that
the origine of the original system has a 3–dimensional unstable subspace. Here
the Poincaré hemisphere is projected in the equatorial hyperplane of X × R: its
image under this projection is a disk whose boundary is the sphere at infinity and
the interior the finite space. We show only the projected 3–dimensional unstable
subspace of the origine.
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φ+
0

φ+
1

φ+
2

Figure 5.2: Transient behaviour of the grow up solutions.

Remark 5.1.1. Note that a pair of complex conjugate eigenvalues λ, λ̄ of the
linear map A generates in the sphere at infinity E a periodic orbit. The stability
of the eigendirection of the linearisation along this periodic orbit pointing to the
inside of the Poincaré sphere H depends on the sign of the real part of λ : if
the real part Re(λ) is positive, then this direction is stable for the periodic orbit
at infinity; on the contrary, if Re(λ) < 0, then the periodic orbit at infinity is
unstable in this direction. Otherwise, the stability of the directions tangent to
the sphere at infinity depends on the sign of the differences between Re(λ) and
the other eigenvalues, as in the case where all eigenvalues of A were real.

5.2 Case of a sublinear non–linearity

In this section we consider an equation with a non–linearity growing slower than
the linear part. We show that the dynamic at infinity reveals the same structure
as in the linear case. But to this aim we have to precise a bit the settings on
our vector space X. This should be an Hilbert space, typically a subspace of L2,
containing functions from a bounded domain of Rn to R, which admits a basis
of eigenvectors of a linear operator A. Let f : R → R be sufficiently smooth
sublinear, i.e.

f(x)

x
→ 0 as x→ ±∞.

For example, as we will see in the next section, we may consider X = L2(0, π),
A = ∂2

∂x2 + bI. In this context, f twice continuously differentiable is sufficient to
guarantee a local semi–flow solving the equation:

ut = Au+ f(u). (5.5)

Now let us write in coordinates the equations governing the dynamic in the
sphere at infinity. For that we apply the procedure of Poincaré compactification
as described precisely in chapter 2. The space of functions X, whose basis (en)n∈N
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is composed of eigenvectors of A, is projected gnomically onto an hemisphere. The
behaviour at infinity is contained in the equator of the hemisphere. For comfort
we prefer to compute in the vertical hyperplanes tangent to the equator, so that
we project the dynamic on them. In the half–hyperplanes {ξi = ±1, ζ ≥ 0} we
get in coordinates the equation

(ξn)t = (µn − µi)ξn + (〈fζ(ξ), ei〉 ξn + 〈fζ(ξ), en〉) (5.6)

ζt = −〈fζ(ξ), ei〉 ζ. (5.7)

The equation 5.7 reads ζt = 0 as ζ goes to zero and confirms that the equator
is invariant, as expected. Because of the sublinearity condition on f , the terms
〈fζ(ξ), ek〉 in the equation 5.6 are zero for ζ = 0, such that at the equator it just
reads:

for all n 6= i, (ξn)t = (µn − µi)ξn

From this we can conclude that the dynamic in the sphere at infinity is the same
as in the linear case. Of course the analogy stops as soon as ζ > 0. The finite
and transfinite dynamic have to be determined for each choice of nonlinearities
f . We see an example in the next section.

5.3 Example of a bounded non–linearity

In this section we present a brief survey of the results of [3] who studied the
equation

ut = uxx + bu+ sin u, x ∈]0, π[ (5.8)

ux(0) = ux(π) = 0 (5.9)

where b is a bifurcation parameter. This equation is gradient for the potential

V (u) =

∫ π

0

(

−1

2
u2
x +

1

2
bu2 − cosu

)

dx. (5.10)

This fact provides convergence of the bounded trajectories to equilibria on the
one hand, but also a gradient structure in the sphere at infinity, as proposition
4.2.1 is also valid in infinite dimensional context.
We give now a very impressionistic overview of the bifurcation diagram the hetero-
clinics between finite equilibria and the transfinite heteroclinic connecting finite
equilibria to equilibria at infinity. The methods in fact involved to eventually
prove this picture and contained in [3] are the following:

• The bifurcation diagram is constructed with the help of the time map,
among other things.
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• The existence of a non bounded global attractor requires an inertial mani-
fold theorem for the non dissipative case, which is proven in [3] for a more
general equation than Equation 5.8.

• Nodal properties and the Y –map are used to prove the existence of hetero-
clinics.

The origin is an equilibrium, and the linearisation at the origin has eigenvalues
λj = b − j2 + 1. The origin undergoes a Pitchfork bifurcation as the parameter
b takes values b = j2 − 1, and lose a stable direction, while two equilibria are
created nearby. For (j − 1)2 < b < j2 − 1, the origin admits exactely j unstable
directions and its Conley index reads h(0) = Σj . It connects to the equilibria at
infinity φ±

0 , . . . , φ
±
j−1 in forward time direction, and to the equilibria φ±

k for k > j.
This is the left vertical line of Figure 5.3.
The Pitchfork bifurcation of the origine generates a branch of equilibria denoted
by p±1 which inherits its stability: for b > j2 − 1 but nearby, the two equilibria
have j unstable directions and their Conley indices read h(p±1 ) = Σj , while the
index of the origin is now h(0) = Σj+1. The equilibria p±i connect in forward time
direction to the equilibria at infinity φ±

0 , . . . , φ
±
j−1 . This situation takes place on

the second plain vertical line corresponding to such a value of b > j2 − 1 but
nearby.
On the second plain vertical line, there exists not only two finite equilibria p±1 , but
three equilibria p±1 , p

±
2 , and p±3 . The two new equilibria are born in saddle node

bifurcations taking place at the vertical dotted lines right and left. The saddle
node bifurcation on the right hand side justifies the heteroclinics p±2 → p±1 ; the
saddle node bifurcation on the left hand side justifies the heteroclinics p±2 → p±3 .
Now we have understood what happens on the third vertical plain line. When
the value of b approach n2 from below, more and more finite equilibria are born
in saddle node bifurcations. They connect to each other alternatively, and they
still connect in forward time direction to the equilibria φ±

0 , . . . , φ
±
j−1 at infinity.

At the critical value b = j2, the eigendirection of the equilibria φ±
j at infinity

which points to the interior of the Poincaré hemisphere changes its stability:
it was unstable for b < j2, it gets stable for b > j2. At the value b = j2,
finite equilibria accumulate on φ±

j which is not isolated invariant any more. The
eigendirections tangent to the sphere at infinity do not change their stability. For
the values b = j2, the equilibria φ+

j and φ−
j are not isolated invariant, and they

are not of isolated invariant complement: a compact neighbourhood that does
not contain, say, φ+

j , will contain more and more of these accumulating equilibria
if we let it grow in such a way that its complement shrinks to it.
On the right hand side of the vertical line b = j2, we have again only finitely
many finite equilibria 0, p±1 , . . . and they all connect in forward time direction to
the equilibria at infinity φ±

0 , . . . , φ
±
j−1, and the last of them, say, p+

m connects to
φ+
j i forward time direction, while p−m connects to φ−

j .
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bb = n2

b = n2 − 1

saddle node

saddle nodePitchfork

φjφjφjφj

−φj−φj−φj−φj

Figure 5.3: Bifurcation diagram for the equation 5.8.

The equilibria φ±
k at infinity correspond to a grow–up profile which is shown

on Figure 5.4. There we see how the 3–dimensional unstable manifold of a finite
equilibrium escape to the sphere at infinity. Typically, a trajectory tends to
infinity with grow–up profile φ±

0 after a transient behaviour near φ2± and φ±
1 .

5.4 Abstract polynomial PDE

The aim of this paragraph is to see how the procedure of compactification acts on
a abstract partial differential equation and which problems do arise. Although
solving these problems would go beyond the frame of this thesis, we want to
point out which properties the compactified equation inherit from the original
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Figure 5.4: Transient behaviour of grow–up solution.

PDE and so put the basis of further work to be done.
The PDE for which we are able to compactify the phase space X are of the form

ut = P (u), (5.11)

where P can be decomposed into two parts

P = pd + p,

such that the first is homogenous of degree d:

∀λ > 0, pd(λu) = λdpd(u),

and the second part is of lower order:

λdp(λ−1u) → 0 as λց 0

We denote such an equation by “polynomial ” PDE, because its leading term
grows polynomially. Of course, it must not be a polynomial, but may contain
space derivatives of u for example.
The homothety Pz(χ) := zP (z−1χ) of P , z > 0, reads

Pz(χ) = zP (z−1χ)

= z1−dpd(χ)zp(z−1χ)

The normalization is realized by ρ(z) = zd−1 so that ρ(z)Pz has a limit as z ց 0:

ρ(z)Pz(χ) = pd(χ) + zdp(z−1χ)

→ pd(χ) as z ց 0
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Finally, the dynamic on the sphere at infinity E = {χ ∈ X/ 〈χ, χ〉 = 1} is
governed by the equation

χt = pd(χ) − 〈pd(χ), χ〉χ. (5.12)

The Hilbert space X is a function space, the unknown χ is a function of time
and space χ(t, y), where t ∈ R and y ∈ Ω ⊂ Rn. The scalar product is of integral
form, for instance

∫

Ω

pd(χ(t, y))χ(t, y)dy.

Therefore the term 〈pd(χ), χ〉 is not a local term. It does not really matter for the
existence of trajectories, because those are inherited from the original equation
5.11. However, we are interested in invariant sets at infinity - and more modestly
in equilibria at infinity. Those are given by the equation

0 = pd(χ) − 〈pd(χ), χ〉χ.

It is rather difficult to find out equilibria through this equation. Therefore it
seems important to relate the Poincaré compactification with other methods for
studying blow–up and to translate the information they may provide about dy-
namics at infinity into terms of invariant sets in the sphere at infinity. An example
of such methods are the similarity variables that we introduce in the next section.

Furthermore, the infinity dimension of such function space is a problem for the
method we developed in the previous chapter. This method consists of, roughly
speaking, cutting away invariant sets of isolated invariant complement and re-
place him by pieces of flow, each of them containing an attractor or a repeller.
The problem is that the Conley index of repeller is not well defined in infinite
dimensional phase space. In the book by Rybakowsky, certain compactness con-
ditions are required to be able to define the Conley index in this context. For,
say, hyperbolic equilbria, those conditions impose a finite number of unstable
dimensions - which is violated for repellers. To understand this, imagine that
the Conley index of a repelling point was defined for a repelling point with in-
finitely many unstable directions, then it would be an infinite dimensional pointed
sphere. But those a retractable to a point. Hence this Conley index would be
trivial, which makes no sense.
For these reasons, the construction that we exposed has to be done in some finite
dimensional submanifold escaping to infinity, to have a chance to work.

5.5 Blow–up and Similarity variables

Partial differential equations showing blow–up phenomena may be analyzed by a
tool called similarity variables. This is a change of the time and space variables
together with a rescaling of the solutions: this is not a compactification of the
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function space in the sense(s) we introduced before. However, this change of
variables let at least part of the bow–up behaviour become a finite problem.
We will discuss equations such as nonlinear reaction–diffusion (see Section 5.5.2)
of the form

ut = △u+ |u|p−1u,

or the parabolic scalar curvature equation in its following form

ut = u2 △ u+ fu3

in Section 5.5.3. But let us first introduce the general idea of similarity variables.

5.5.1 Philosophy of the Similarity Variables

Similarity variables is a change of variables which zoom in a blow–up point at the
blow–up time. This change of variables is based on the following idea. Consider
for example a domain Ω ⊂ R, a function

v : Ω → R,

and a point a ∈ Ω. The function u : Ω → R has a graph which is homothetic of
factor λ to the graph of v with respect to the point a ∈ Ω if u and v are related
by the following formula.

∀x ∈ Ω, u(x) = λv
(

λ−1(x− a)
)

The figure 5.5 illustrate this formula.

a
x

λ−1x

u(x) = λv (λ−1x)
v(λ−1x)

graph of u

graph of v

Figure 5.5: Homothetical function graphs.

Now we consider a partial differential equation of the form

ut = P (u,▽u,△u, . . . , x), x ∈ Ω. (5.13)
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A solution u of 5.13 is called self–similar if there exists a function v (satisfying
the right boundary condition if Ω is bounded) such that

u(t, x) = λ(t)v (λα(x− a)) .

The exponent α may be different from the −1 that we had for homothetic graph.
The choice of the exponent α depends on the equation considered.

The behaviour of λ(t) is related with the blow–up phenomena and more pre-
cisely with the blow–up rate. If |λ(t)| → ∞ as t ր T , then ‖u(t, .)‖∞ → ∞ as
tր T .

To fix the ideas, think of the right hand side P of equation 5.13 as being
polynomial in u and its spatial derivatives, and, say, not depending on the space
variable x for simplicity. We keep in mind that nonlinearities like eu are also
analyzed with those methods. Looking for solutions u of Equation 5.13 constant
in space, i. e. setting its partial derivatives to zero, provides a polynomial
ordinary differential equation

ut = p(u), (5.14)

where u depends only on the time variable t and p is a polynom as P was. The
degree of the polynom p determines the rate of blow–up of the ODE 5.14. The

equation ut = ud is explicitly solvable by u(t) = (T−t) −1
d−1 where T is the blow–up

time (see Section 4.4.2 for the details of this calculation). If p is of the degree d,
the term ud dominates in the Equation 5.14 and determinates its blow–up rate.
Anyway the ODE 5.14 provides a blow–up rate of the form (T − t)β where β < 0.

The first step towards the similarity variables is to make the ansatz that
solutions of the PDE 5.13 blow up at exactely the same rate so that the quantity

(T − t)−β‖u(t, )‖∞
remains bounded, where T is the blow–up time. This is the reason for the fol-
lowing choice of rescaling

w(s, y) = (T − t)
1

p−1u(t, x),

where the time and space variables (s, y) are to be defined. Here, blow–up is
defined as the explosion of the supremum norm i. e.

lim
tրT

‖u(t, .)‖∞ = ∞.

Furthermore, for a initial condition u0 blowing up at time T , the blow–up set
B(u0) is the set of points where u tends to infinity as tր T , i. e.

B(u0) = {a ∈ Ω̄/∃(xn) → a, (tn) → T |u(tn, xn) → ∞}.
The first variable that is changed is the time in such a way that the new time

variable goes to +∞ as the old goes to T , in other words

s = log(T − t).
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Furthermore the space variable gets rescaled through

y = (T − t)γ(x− a),

where a is a blow–up point. The exponent γ is to be chosen according to the
equation so that the equation on w is ”nice”. We will see which role it plays in
the examples.

The similarity change of variables depends on blow–up time T and blow–up
point a. However the equation on w does not depend on T and a. Let us give
this equation a name:

ws = q(w,▽w,▽, y) (5.15)

If w∗ is an equilibrium of Equation 5.15, then the corresponding u solution of the
original equation 5.13 reads

u(t, x) = (T − t)βw∗ ((T − t)γ(x− a)) ,

and is a self–similar solution and blows up exactely at the rate of the ODE 5.14.
Moreover the original equation 5.13 often admits an energy functional E(u)

which is decreasing along trajectories. This energy induces a Lyapunov function
also for the rescaled equation 5.15. This helps proving the convergence of bounded
solutions w(s, .) towards equilibria that we will denote by w∗.

We have that the similarity variables allows to translate a problem at infinity
into a finite problem by rescaling the original partial differential equation appro-
priately. However, there is a crucial difference between the similarity variables
and the compactfications by Bendixson or Poincaré: the lasts are global transfor-
mations projecting a vector space on a bounded manifold. The similarity change
of variables is something local, which zooms in the blow–up points in the follow-
ing sense. Recall that the new space variable y is defined as y = (T − t)γ(x− a),

where











T = blow–up time

a = blow–up point

γ < 0

.

Hence at the blow–up time t ր T or equivalently s → ∞, it holds for x 6= a,
|y| → ∞: the points x that are distant from the blow–up point a are pushed away
to infinity by the similarity variables as time s goes by. Considering an arbitrary
blow–up solution u(t, x) of equation 5.13 admitting a blow–up time a, and its
rescaled version wa(s, y) by similarity change of variables around the point a, the
limiting equilibrium

w∗(y) = lim
s→∞

w(s, y) (5.16)

(= lim
tրT

(T − t)βu (t, a+ (T − t)γy)), (5.17)

if it exists, is called local blow–up profile.
This is to be compared with the global blow–up profile

u(T, x) = lim
tրT

u(t, x) ∈ R ∪ {±∞}, (5.18)
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if this limit exists. For example this limit exists for self–similar solutions with
blow–up set reduced to one point.
To fix the ideas, let us consider a blow–up solution u of the original equation
5.13 admitting finitely many blow–up points {a1, . . . , am}. Making at each ai a
similarity change of variables provides rescaled solution around blow–up points
ai that we denote by wai

(s, t), i ∈ {1, . . . , m} which may converge to equilibria
w∗
i of equation 5.15, which are called local blow–up profiles. The w∗

i give only
information about the behaviour of u around each blow–up point ai at blow–up
time (see the doted graphs in Figure 5.6, this is only a caricature as w∗ and
u cannot be represented in the same space–time coordinates simultaneously at
time T ) while the global profile gives information about the profile between the
blow–up points at blow–up time (see the solid graph in Figure 5.6).

a2

u(T, .)

a1

w∗
1 w∗

2

Figure 5.6: Global and local blow–up profiles.

In the context of similarity variables, blow–up is considers in the supremum
norm. The self–similar blow–up solutions escape to something that we intuitively
expect to be an equilibrium at infinity, and the global blow–up profiles are also
objects that we expect to be stationary at infinity. It is natural to think about
these as being equilibria on the sphere at infinity in the Poincaré compactification.
However, things are not so simple: the function space X in which the original
equation lives has to be chosen carefully for these objects to be in the sphere at
infinity defined by the norm of X which comes from a scalar product - which
is not the case for the supremum norm. There is here obviously a gap to fill in
order to be able to interpret the information given by the similarity variables in
the language of the Poincaré compactification. Here again, we will address this
question for the two examples below.
However, as we try in this section to understand heuristically what the similarity
of blow–up means, let us assume that we are in a situation where self–similar
solution and more generally all solution admitting a global blow–up profile con-
verges in the Poincaré compactification towards equilibria on the sphere at in-
finity. Given a fixed finite set of blow–up points B = {a1, . . . , am}: how are
solutions related whose blow–up set is a subset of the set B? Or more precisely
do their global blow–up profiles build a submanifold of the sphere at infinity? If
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this is the case, can we parametrize it? Parametrization by shape of the global
blow–up profile for some unstable manifolds escaping to infinity have been done
by Fiedler and Matano [15] on the one hand, and by Georgi [18] on the other
hand.

A last important point concerning the similarity variables is the following:
nobody says that the rate of blow–up of solutions of the original equation 5.13 has
to be exactely the rate of the corresponding ODE 5.14. We will eventually see in
the next section that blow–up at a different rate may happen. This phenomenon
is called blow–up of type II and is more precisely defined by the fact that

lim sup
tրT

(T − t)α‖u(t, .)‖∞ = ∞,

where α is the blow–up rat of the ODE 5.14.
After those general considerations, let us look at examples.

5.5.2 Power Nonlinearity

The first example we look at will make some of the speculations that we made
in the previous section concrete. Matano and Merle in their Paper [25] study
blow–up phenomena of the equation

{

ut = △u+ |u|p−1u (x ∈ Ω, t > 0)

u(0, x) = u0(x) (x ∈ Ω)
(5.19)

where Ω is either the whole Rn or an open ball BR(0) around the origin of Rn.
In the last case, Dirchlet boundary condition are considered. Furthermore we
consider only radially symmetric solutions u(t, x) = u(t, |x|).
They are using the following similarity change of variables for fixed blow–up time
T and blow–up point a:

w = (T − t)−
−1
p−1u(t, x), (5.20)

y = (T − t)
−1
2 , (5.21)

s = − log(T − t). (5.22)

Then the equation solved by w does not depend on a and T and reads

ws = △w − 1

2
y.△w − 1

p− 1
w + |w|p−1w. (5.23)

A blow–up solution u of Equation 5.19 is self–similar if and only if if the corre-
sponding w defined by the rescaling 5.20 is constant in time, i. e. is a stationary
solution w∗ of Equation 5.23. Furthermore, the blow–up of a solution u at the
point a is of type I if and only if the corresponding w defined by the rescaling
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5.20 remains bounded as s→ ∞. With the help of a decreasing energy functional
and parabolic estimates, it is possible to prove that a bounded solution w(s, y)
converges to an equilibrium w∗ of Equation 5.23, meaning blow–up of type I is
locally self–similar.

As we already indicate before, let us denote equilibria of Equation by w∗.
There are two of them which are constant in space and solve the equation

0 = − 1

p− 1
w∗ + |w∗|p−1w∗.

beside the trivial equilibrium, we have two spatially homogenous equilibria

±κ = ±(p− 1)−
1

p−1 . (5.24)

Note that the domain of the new space variable y is Rn so that we do not have
boundary conditions to satisfy for w.

Until now the dimension of the space variable n or the exponent of the non-
linearity p did not play any role. We want here to restrict us to the cases where
there are as many blow–up behaviours as possible. More precisely

n > 3

p > pJL > pS,

where pS is the critical Sobolev exponent

pS =
n + 2

n− 2
,

and

pJL = 1 +
4

n− 4 − 2
√
n− 1

.

The inequality p > pS guarantees the existence of equilibria w∗ non spatially ho-
mogenous. The inequality p > pJL guarantees the existence of type II blow–up.
See [25] for details and history. In these settings, e have beside the homoge-
nous equilibria ±κ also equilibria w∗(y) of Equation 5.23 that we do not know
explicitely. Furthermore there are singular equilibria given by

±ϕ∗(x) = ±
(

2

p− 1

(

n− 2 − 2

p− 1

))

|x|− 2
p−1

Furthermore, a blow–up of type II can only happen at the blow–up point a = 0,
while blow–up at points a 6= 0 are always of type I, where the limiting equilibrium
w∗ may be spatially homogenous or not. The following proposition guarantees
the existence of local blow–up profiles (See [25][Th. 3.1]).
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Proposition 5.5.1. Existence of Local Blow–up Profiles at the origin

Let p > pS be a fixed subcritical exponent and u0 a L∞(Ω) initial condition
blowing–up at time T . The limit 5.16 defining the local blow–up profiles exists,
the convergence being locally uniform in y ∈ Rn. This limit is either a radial sym-
metric equilibrium w∗ of Equation 5.23, or a singular stationary solution ±ϕ∗

Note that local blow–up profiles also exist at blow–up points a 6= 0, but
the limit can only be an equilibrium w∗ and not a singular one. The singular
equilibria ±ϕ∗ are closely related to blow–up of type II in the following sense
(See [25][Th. 3.2]).

Proposition 5.5.2. Characterisation of type II blow–up

Let p > pS be a fixed subcritical exponent, u0 a L∞(Ω) initial condition blowing–
up at time T and v∗ its local blow–up profile at the origin as in Proposition 5.5.1.
The following four condition are equivalent.

1. The blow–up is of type II.

2. limtրT (T − t)
1

p−1‖u(t, .)‖∞ = ∞.

3. v∗(y) = ±ϕ∗(y).

4. limx→0
u(T,x)
ϕ∗(x)

= ±1.

The singular equilibrium ϕ∗ of Equation 5.23 plays a role in the determination
of the local blow–up profile around the blow–up point 0.

Proposition 5.5.3. Classification of focused blow–up (pS < p <∞)

lim
x→0

u(T, x)

ϕ∗(x)
=



















∞ or + ∞
finite but 6= 0,±1

±1

0

⇔ type I with w∗ = ±κ
⇔ type with nonconstant w∗

⇔ type II
⇔ 0 is not a blow–up point

Now let us draw our attention to the equilibria of the rescaled Equation 5.23
which are given explicitely. First consider the spatial homogenous equilibria
w∗ = ±κ. It corresponds for the original Equation 5.19 to a selfsimilar blow–up
solution given by

u(t, x) = ±(T − t)−
1

p−1κ,

which is also spatially homogenous. If the domain is Ω = B0(R), such a solution
does not fulfill the Dirichlet boundary conditions that are assume through [25].
If the domain is Ω = Rn, then the L2–norm of u is infinite for all time. We see on
this example that translating self–similar blow–up into equilibria on the Poincaré
sphere is not an easy task because the information given by the first is local, and
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the information given by the second is global.
The second explicit equilibrium that we have is the singular one ϕ∗. Let us
compute its L2–norm.

‖ϕ∗‖2 = cst1

∫

Rn

|x|−2 2
p−1dx

= cst2 lim
R→∞

Rn

∫ R

0

r−
4

p−1dr

= cst2 lim
R→∞

Rn

[

1

1 − 4
p−1

r1− 4
p−1

]R

0

= cst3 lim
R→∞

Rn
[

r1− 4
p−1

]R

0

If 1− 4
p−1

< 0, then ‖ϕ∗‖2 = ∞ because r1− 4
p−1 admits no limit as r goes to zero.

This condition is equivalent to 1 < p < 5.

If 1 − 4
p−1

> 0, i.e. p > 5, then limrց0 r
1− 2

p−1 = 0 and it holds

‖ϕ∗‖2 = cst3 lim
R→∞

RnR1− 4
p−1

= cst3 lim
R→∞

Rn+1− 4
p−1

This limit is finite if and only if n + 1 − 4
p−1

6 0. This is equivalent to 1 < p 6

1 + 4
n−1

, which seriously reduces the choice of the exponent. In particular, it is
not compatible with the first condition p > 5. Therefore ‖ϕ∗‖2 is infinite and we
cannot interpret ϕ∗

‖ϕ∗‖ as an equilibrium on the sphere at infinity of L2, because
with this choice of nrm, this makes no sense.
Again, we cannot identify equilibria at infinity corresponding to ±ϕ∗. If the
L2–norm is not finite, norms involving additional derivatives will not help. Con-
sidering weighted spaces may help in this context. We see that the choice of the
scalar product on the space X is a delicate question.

5.5.3 Parabolic Scalar Curvature Equation

Brian Smith studied in [37] blow–up phenomena for the parabolic scalar curvature
equation. Let us briefly introduce this equation and his results.
Let M be a manifold foliated by 2–dimensional spheres, i. e. one can write M as
the product M = I × S2, where I is a real interval. Furthermore, the metric g
on M is supposed to have the following structure

g = u2dr2 + r2γ,
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where γ is a fixed metric on the spheres {r} × S2, and u is a unknown function
that we desire to determine in such a way that the scalar curvature on M is a
prescribed function R. This setting leads to the complicated equation on u:

2r∂ru = u2△u+ u+ fu3,

where △ is the Laplacian on S2 with metric γ. Transforming the radial variable
in a time variable and rescaling u in ũ leads to the following equation that we
want to draw our attention on. For the details of its derivation, see [37].

ũt = ũ2△ũ+ fũ (5.25)

This equation undergoes blow–up. The blow–up rate of the corresponding ODE
is (T − t)−

1
2 , and similarity variable can be used to study blow-up. Here, the

homogeneity of the equation 5.25 has for consequence that we do not need to
rescale the space variable: in this case, the similarity variable have not the effect
that we zoom in the blow–up point at blow–up time, but keep the same space
coordinate p ∈ S2. We will see that this has nice effects. To be more precise, the
change of variables is the following:

{

e−τ = T − t

v = (T − t)
1
2 ũ

(5.26)

The equation on v reads

vτ = v2△v + fv3 − 1

2
v. (5.27)

The results of Smith concerning the long time behaviour of this equation can be
summarized in the following theorem.

Theorem 5.5.4 (Smith). Any solution v of Equation 5.27 which is positive and
remain bounded away from 0; i.e. there exist a µ > 0 with v > µ, is also bounded
from above by +∞ > M > v. Furthermore, a solution v of Equation 5.27 which
is bounded by 0 < µ > v > M < +∞ converges for τ ր +∞ to an equilibrium
w∗ of Equation 5.27 in the sense of Ck(S2).

This describes in fact a blow–up of type I of the original Equation 5.25; i.e. at
the ODE rate. Note that blow–up of type II is not excluded: it could happen
for solutions v of Equation 5.27 which do remain bounded away from 0 and may
escape to infinity. Under this viewpoint, it could be promissing to study the stable
and unstable manifold of the origin, which may contain such blow–up solutions
of type II.
Now let us look at Equation 5.25 from the viewpoint of Poincaré compactification.
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The Equation 5.25 induce on the sphere at infinity the following normalized
equation, where the scalar product is the scalar product of L2(S2).

χt = g(χ) − 〈g(χ), χ〉χ. (5.28)

Here g(χ) = χ2△χ+ fχ3. If w∗ is a stationary solution of the rescaled Equation
5.27, we set χ∗ := w∗

‖w∗‖ and observe that χ∗ is a stationary solution of Equation
5.28 in the sphere at infinity E . For this equation, homogeneity makes us a favour
and let the self–similar blow–up translate nicely to equilibria at infinity.

In the case that f is a constant, we can explicitely determine stationary
solutions which are constant in space: for w∗(p) ≡ cst, , p ∈ S2, the condition
that w∗ is an equilibrium of Equation 5.27 reads

0 = w∗(fw2 − 1

2
)

For f > 0, we end up with two nontrivial spatially homogenous equilibria of
Equation 5.27

w∗ = ± 1√
2f
.

The linearization at these equilibria of Equation 5.27 reads

Lh =
1

2f
△h+ h. (5.29)

The Eigenvalues of L are

1 > 1 − λ0

2f
> 1 − λ1

2f
> . . .

where {λi}i∈N are the positive eigenvalues of −△ on the sphere. For f small, the
spectrum of L looks like on Figure 5.7: the eigenvalue 1 corresponding to constant
eigenfunctions is unstable, and the others are stable. As f grows, finitely many
eigenvalues 1 − λi

2f
becomes unstable.

R

iR

11 − λ0

2f
1 − λ1

2f
1 − λ2

2f

Figure 5.7: Spectrum of L.

Now let us shortly have a look at the finite equilibria, i.e. equilibria of
Equation 5.25 in the case where f is a positive constant. They are given by the
equation

0 = ũ2(△ũ) + fũ.
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Equation 5.25 admits nontrivial finite equilibria if and only if −f is an eigenvalue
λi > 0 of −△, and in this cases, the whole line spaned by the corresponding
einfunction is a line of equilibria. This line of equilibria generates two antipodal
equilibria in the sphere at infinity E .

Work has still to be done to relate the finite and the infinite dynamics of
this problem. In particular studying type II blow–up; understanding how the
Laplacian plays a role in the dynamics at infinity, as it belongs to the terms of
highest order.
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Conclusions

In this work, we de have defined the concept of invariant sets of isolated invariant
complement. They have the particularity that they do not admit a robust iso-
lating neighbourhood. However, they admit a “dynamical” complement, which
contains the dynamic that remains bounded away from them; and their dynam-
ical complement is isolated invariant. We are able to extrakt information about
heteroclinic connections to a set of isolated invariant complement via Conley in-
dex methods, which a priori are excpected to fail in such a situation.
To this purpose, we cut away the set which does not fit the requirements of Con-
ley index theory, and consider the flow on an isolating block of the complement.
Then we glue at the boundary of the block an “ersatz” which fulfills these re-
quirements. Because of the dynamical complementarity of the two invariant sets
considered, connections in the extended phase space provides orbit accumulating
on the set of isolated complement in the original phase space. The choice of the
ersatz is important. Extending arbitrarily outside of the fixed block isolating
the complement could provide isolated invariant sets in the extension - but the
artificial connections arising in the extended phase space have to be detectable
by Conley index methods. We believe that we defined the “right” ersatz; with
that, we mean that it should be in many situations the easiest way of extending
the flow outside of the block.
We have developed these concepts because we were interested in applying Conley
index methods to detect heteroclinics to infinity. In the compactified phase space,
there may be in the sphere at infinity invariant sets of isolated complements (and
not isolated themselves) and whose behaviour near infinity is structurally stable.

In particular, we are interested in blow–up phenomena for partial differential
equations. We have seen in the last chapter that the compactifications we use
works well in the asymptotically linear case. They provide dynamics at infinity
with a lot of structure: equilibria at infinity connected by cascades of connections
show up.
In case where the dynamic at infinity is leaded by higher order terms, things get
unclear. It is not even clear what is infinity in this case. Because on infinite
dimensional spaces the norms are not all equivalent, a solution may become
infinite in the one norm, but not in the other.
A “good” choice for the norm should allow us to make sense of results about blow
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up obtained by other means - for example involving the similarity variables. We
want the self similar blow–up results prove by such means to become equilibria
at infinity in our compactification. Furthermore, we need more thah existence
results on them to use Conley Index methods, but need to know their behaviour
in a neighbourhood.
Before we can apply Conley index methods to them, we have to clarify which
norm has to be used to define infinity. Or how the diffrent spheres at infinity
interact, because it is possible that we need several choices of norm to see several
type of blow–up.
We think that this way of considering blow–up phenomena is worth exploring and
that the concepts developed in the thesis will find applications in this context.
This work lays the groundwork for further research in this direction.
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Zusammenfassung
Diese Arbeit beschäftigt sich mit der Analyse der Dynamik im Unendlichen,
und wie diese mit der endlichen Dynamik zusammenhängt. Eine Trajektorie ex-
plodiert, wenn sie in endlicher Zeit unendlich groß wird: dieses Phänomen wird
als Blow–up bezeichnet. Solche Trajektorien betrachten wir als heterokline Orbits
zum Unendlichen. Wir wollen beschreiben, welche invarianten Mengen mit dem
Unendlichen durch solchen explodierenden Orbits verbunden sind. Zum Nach-
weis heterokliner Trajektorien existiert eine klassiche Methode, die auf Topolo-
gie basiert: die Conley–Index Theorie. Allerdings kann man den Conley–Index
nicht auf unbeschränkte Mengen anwenden. Um diese Schwierigkeit zu umgehen,
wird eine ”Kompaktifizierung” des Phasenraumes vorgenommen. Dabei geht es
darum, den Phasenraum X auf eine beschränkte Mannigfaltigkeit zu projizieren.
Dies kann auf verschiedene Art und Weise geschehen. Wir konzentrieren uns auf
zwei: die Bendixson–Kompaktifizierung, und die Poincaré–Kompaktifizierung.
Diese wurden ursprünglich für die Analyse von planaren Vektorfeldern entwick-
elt. Wir zeigen aber, dass diese Kompaktifizierungen in einem Hilbertraum
durchführbar sind. Bei einem unendlich–dimensionalen Raum X ist die Beze-
ichnung ”Kompaktifizierung” eigentlich falsch, da die Hilbert–Mannifaltigkeit,
die dabei herauskommt, zwar beschränkt ist, aber wegen ihrer unendlichen Di-
mension nicht kompakt. Wir behalten den Namen trotzdem aus historischen
Gründen. Bei der Bendixson–Kompaktifizierung wird Unendlich auf einem Punkt
abgebildet, während in der Poincaré –Kompaktifizierung es sich in einer ganzen
Sphäre ausbreiten kann. Die direkte Anwendung der Conley–Index Methoden auf
dem Punkt im Unendlichen, oder auf einer invarianten Menge in der Sphäre im
Unendlichen ist nicht immer möglich: die ausschlaggebende Voraussetzung der
isolierten Invarianz ist oft im Unendlichen verletzt. Schon planare quadratische
Vektorfelder besitzen Equilibria im Unendlichen, die elliptische Sektoren zeigen
und sich nicht mit der klassichen Theorie behandeln lassen. Wir führen das
Konzept einer invariante Menge S im Unendlichen, die einen isoliert invariantes
”dynamischen” Komplement Scomp besitzt, ein. Dieses dynamische Komplement
enthält, grob gesagt, die Dynamik, die fern von S bleibt. Es erlaubt uns, einen
erweiterten Phasenraum und einen erweiterten Fluss zu konstruieren, wobei die
”degenerierte” invariante Menge S durch etwas ersetzt wird, womit der Conley–
Index gut umgehen kann. Unser Hauptresultat besagt, dass die Existenz von
heteroklinen Trajektorien zwischen einer invarianten Menge R ⊂ Scomp und dem
”Ersatz” unter dem erweiterten Fluss von Conley–Index Methoden nachweisbar
ist, und liefert die Existenz von echten heteroklinen Trajektorien nach S. Darüber
hinaus zeigen wir Beispielen für Dynamik im Unendlichen und die Anwendung
dieser Methoden für gewöhnliche und teilweise auch für partielle Differential-
gleichungen. In dem Gebiet der partiellen Differentialgleichungen müssen noch
zahlreiche Hürden überwunden werden, und diese Arbeit soll ein erster Schritt in
diese Richtung sein.
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and the poincaré sphere. J. Differ. Equations, 1997.

[34] Krzystof P. Rybakowski. The Homotopy Index and Partial Differential Equa-
tions. Springer-Verlag., 1987.
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