Inhaltsverzeichnis

1	Ein	leitung		15
2	Exp	erime	ntelles	19
	2.1	Probe	npräparation und -charakterisierung	19
	2.2	Versue	chsaufbau	27
		2.2.1	Apparatur zur DC-Leitfähigkeitsmessung	27
		2.2.2	Apparatur zur AC-Suszeptibilitätsmessung und	
			AC-Leitfähigkeitsmessung	29
3	The	oretise	che Grundlagen	33
	3.1	Leitfäl	higkeit	33
		3.1.1	Leitfähigkeit in einem Metall	33
		3.1.2	Leitfähigkeit in einem Halbleiter	35
	3.2	Magne	etowiderstand	39
	3.3	Suszep	otibilität	41
	3.4	Supral	leitung	42
	3.5	Supral	leitung in dünnen Schichten	51
		3.5.1	Größeneffekt	51
		3.5.2	Granularität	54
		3.5.3	Kopplungseffekt	55
		3.5.4	Andreev-Reflexion	58
		3.5.5	Erhöhung des kritischen Magnetfeldes	59
		3.5.6	Winkelabhängigkeit des kritischen Magnetfeldes	61

INHALTSVERZEICHNIS

4	\mathbf{Erg}	ebniss	e	65
	4.1	Leitfä	higkeitsuntersuchungen	65
		4.1.1	Kritische Temperatur T_c	68
		4.1.2	Kritisches Magnetfeld B_c	70
		4.1.3	Magnetowiderstand	72
		4.1.4	Strom–Spannungs–Kennlinien	79
	4.2	Suszep	ptibilitätsmessung	80
5	Dis	kussioi	n	83
	5.1	Tempe	eraturabhängigkeit der Leitfähigkeit	83
	5.2	Magne	etowiderstand	85
	5.3	Überg	ang stemperatur T_c zur Supraleitung $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	86
	5.4	Kritis	ches Magnetfeld B_c	93
	5.5	Winke	elabhängigkeit des kritischen	
		Magne	etfeldes B_c	95
	5.6	Strom	–Spannungs–Kennlinien	98
	5.7	Probe	nstabilität	101
6	\mathbf{Zus}	amme	nfassung	103
\mathbf{Li}	terat	urverz	zeichnis	113
Da	anks	agung		115
Ρı	ıblik	ationsl	liste	117
Le	Lebenslauf			119

Abbildungsverzeichnis

2-1	Kristallstruktur der i.) α -Phase (a=6,49 Å) und der ii.) β -Phase (a=5,83 Å,	
	c=3,18 Å)	19
2-2	Kristallstruktur der (110)-Spaltfläche von InSb (blau-In, rot-Sb) \ldots .	20
2-3	Maske zu Durchführung von Widerstandsmessungen	22
2-4	LEED-Aufnahmen von S n auf InSb bei verschiedenen Bedeckungen $\left[11\right]$.	22
2-5	Relative Intensität des AES-Signal von In und Sb mit steigender Sn-	
	Bedeckung [11]	23
2-6	Raman-Spektren von Sn auf InSb bei verschiedenen Schichtdicken von	
	37 ML (5,9 nm) bis 430 ML (67,7nm) [11]	24
2-7	AFM-Aufnahme von Sn-Schichten auf InSb mit unterschiedlicher Schicht-	
	dicke [a.) 7,86 nm, b.) 39,3 nm, c.) 63,6 nm und d.) 95,5 nm] [11]	26
2-8	VTI-Probenhalter	27
2-9	Bestimmung und Einstellung der verschiedenen Winkel zwischen der c-	
	Achse und dem äußeren Magnetfeld	28
2-10	Meßprinzip zur Bestimmung der Leitfähigkeit	29
2-11	Meßprinzip zur Bestimmung der Suszeptibilität	29
2-12	PPMS-Probenhalter für die Leitfähigkeitsmessung	32
3-1	Schematische Darstellung der Temperaturabhängigkeit des Widerstands	
	in einem Metall	34
3-2	Schematische Darstellung a.) der Ladungsträgerkonzentration $n(T)$ im	
	Leitungsband und b.) der qualitativen Lage der Fermi-Energie $E_F({\rm T})$ in	
	Abhängigkeit von der Temperatur in einem Halbleiter.	36

ABBILDUNGSVERZEICHNIS

3-3	Schematische Darstellung der Abhängigkeit der Beweglichkeit μ von der	
	Temperatur in einem Halbleiter	39
3-4	Schematische Darstellung von i.) der Bahn eines freien Elektrons im Ma-	
	gnetfeld und ii.) der Bahn des Elektrons, die durch ein periodisches Git-	
	terpotentials an der Zonengrenze (ZG) getrennt wird $\ \ldots \ \ldots \ \ldots \ \ldots$	40
3-5	Typ-I-Supraleiter i.) Magnetisierung und ii.) kritisches Magnetfeld in	
	Abhängigkeit von der Temperatur	43
3-6	Typ-II-Supraleiter i.) Magnetisierung und ii.) kritisches Magnetfeld in	
	Abhängigkeit von der Temperatur	46
3-7	Schematische Darstellung der Elektron-Elektron-Wechselwirkung über vir-	
	tuelle Phononen	46
3-8	Schematische Darstellung der Subnikov-Phase eines Typ-II-Supraleiters .	48
3-9	Magnetfeldverteilung in einer supraleitenden Kugel	48
3-10	Magnetfeldverteilung in einer stabförmigen Probe senkrecht zum äußeren	
	Magnetfeld	50
3-11	Bestimmung der mittleren freien Weglänge l einer dünnen Schicht $\left[49\right]$	53
3-12	Vereinfachte Darstellung i.) der Größe und Verteilung der Zinn-Inseln und	
	ii.) der Breite des supraleitenden Übergangs im Widerstandsverlauf $\ .$.	55
3-13	schematischer Verlauf der Paaramplitude an einer N-S-Grenzfläche	56
3-14	Schematische Darstellung der Andreev-Reflexion an einer N-S-Grenzfläche	58
3-15	Dünne Schicht parallel zum angelegten äußeren Magnetfeld [43] \ldots .	59
3-16	Schematische Darstellung der Stromverteilung einer Schicht parallel und	
	senkrecht zum äußeren Magnetfeld. [66]	63
4-1	Spezifischer Widerstand des Indiumantimonid–Substrats im Temperatur-	
	bereich 0 K - 300 K bei 0 T	65
4-2	Widerstand der β -Sn-Folie ($d = 5 \mu$ m) im Temperaturbereich 0 K - 300 K	
	bei 0 T	66
4-3	Widerstandsverlauf der Probe $\sharp 81~(d=103,4~\mathrm{nm})$ im Temperaturbereich	
	0 K - 300 K bei 0 T	67

4-4	Normierte Widerstandskurven, die den supraleitenden Übergang der ver- schiedenen Proben zeigen (\sharp 92: Sn auf InSb ($d = 39, 3$ nm), \sharp 97: Sn auf InSb ($d = 63, 3$ nm), \sharp 81: Sn auf InSb ($d = 103, 4$ nm), sowie \sharp 88: reines InSb und \sharp 91: Sn auf InSb ($d = 7, 86$ nm)	69
4-5	Kritisches Feld der verschiedenen Proben [a.) errechnete Werte für Volu- menzinn, b.) \sharp 81: Sn auf InSb ($d = 103, 4$ nm), c.) \sharp 97: Sn auf InSb ($d = 63, 3$ nm), d.) \sharp 92: Sn auf InSb ($d = 39, 3$ nm), e.) \sharp 82: Sn auf InSb ($d = 39, 3$ nm)] in der Orientierung B \perp c-Achse. Die durchgezogenen Linien sind Anpassungskurven entsprechend Gl. (3.22)	70
4-6	Das kritische Magnetfeld der Probe #97 bei verschiedenen Winkeln zwi- schen äußerem Magnetfeld und der c-Achse der Schicht. Die durchgezogen Linien sind Anpassungskurven entsprechend Gl. (3.22)	71
4-7	Widerstandsverlauf in Abhängigkeit vom äußeren Magnetfeld B \parallel c-Achse der Probe $\sharp 92$ ($d = 39, 3$ nm) bei verschiedenen Temperaturen. Mit B^* , bei dem die Sättigung des Magnetowiderstandes eintritt.	74
4-8	Widerstandsverlauf in Abhängigkeit vom äußeren Magnetfeld B \perp c-Achse der Probe $\sharp 92$ ($d = 39, 3$ nm) bei verschiedenen Temperaturen	75
4-9	Widerstandsverlauf in Abhängigkeit vom äußeren Magnetfeld B \parallel c-Achse der Probe $\sharp 97~(d~=~63, 3~\text{nm})$ bei verschiedenen Temperaturen \ldots	77
4-10	Widerstandsverlauf in Abhängigkeit vom äußeren Magnetfeld B \perp c-Achse der Probe $\sharp 97~(d~=~63, 3~\text{nm})$ bei verschiedenen Temperaturen \ldots	78
4-11	U-I-Kennlinie der Probe $\sharp 97$: Sn auf InSb ($d = 63, 3$ nm) in logarithmischer Auftragung bei verschiedenen Temperaturen	79
4-12	U-I-Kennlinie der Probe \sharp 92: Sn auf InSb ($d = 39, 3$ nm) in logarithmischer Auftragung bei verschiedenen Temperaturen	80
4-13	Komplexe Massensuszeptibilität χ'_g in Abhängigkeit von der Temperatur der beiden Zinnproben (#90=Zinnfolie, #102=Zinngranulat)	81

ABBILDUNGSVERZEICHNIS

4-14	Realteil des magnetischen Moments $m' \cdot 10^{-6} \ (emu)$ in Abhängigkeit von der Temperatur der verschiedenen dicken Schichten [\sharp 82: Sn auf InSb $(d_{-2}, 30, 3, \text{nm}), \sharp$ 05: Sn auf InSb $(d_{-2}, 63, 3, \text{nm}), \sharp$ 81: Sn auf InSb	
	$(a = 53, 5 \text{ mm}), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	82
5-1	Temperaturabhängigkeit der Leitfähigkeit des InSb-Substrats	83
5-2	Schematische Darstellung der elektrischen Schaltung der einzelnen Schicht- komponenten	84
5-3	Abhängigkeit der Breite des supraleitenden Überganges ΔT von der no- minellen Schichtdicke d (- :lineare Anpassungskurve)	90
5-4	Abhängigkeit der Übergangstemperaturen T_c von der nominellen Schicht- dicke d [i.) : T_c -Werte aus den Widerstandsmessungen über eine Mi- krobrücke, ii.) : T_c -Werte aus den 4-Punkt-Widerstandsmessungen und iii.) : T_c -Werte aus den Suszeptibilitätsmessungen]	91
5-5	Abhängigkeit des kritischen Magnetfeldes B_c von der Schichtdicke d [a.) c-Achse \perp zum äußeren Magnetfeld und Messung über die Mikrobrücke, b.) c-Achse \perp zum äußeren Magnetfeld und Bestimmung mit der 4-Punkt- Widerstandsmessung, c.) c-Achse zum äußeren Magnetfeld und Messung über die Mikrobrücke]	94
5-6	Kritisches Magnetfeld in Abhängigkeit vom Winkel zwischen dem äußeren Magnetfeld und der c-Achse der Schicht [\Box - \sharp 92: Sn auf InSb ($d = 39, 3$ nm), \triangle - \sharp 97: Sn auf InSb ($d = 63, 3$ nm)]. Die durchgezogen Linien sind An- passungskurven entsprechend Gl. (3.57).	95
5-7	Vergleich der Schichtdickenabhängigkeit der Eindringtiefe λ mit Literatur- daten (•: aus (Tab. 5.4) bei $T_{Kond} = 300$ K mit 0,5 nm/s, \blacktriangle : Sn auf Glas - $T_{Kond} = 300$ K [97], \blacktriangledown : Sn auf Glas - $T_{Kond} = 77$ K mit 1 nm/s [69], \blacksquare : Sn auf Glas - $T_{Kond} = 77$ K mit 30 nm/s [69])	97
5-8	Aus Abb. 2-7 abgeschätzte Inselgröße in Abhängigkeit von der nominellen Schichtdicke d	99

5 - 9	Temperaturabhängigkeit des kritischen Stroms I_c [linkes Teilbild: Probe
	$\sharp 97 \ (d = 63, 3 \text{ nm})$ rechtes Teilbild: Probe $\sharp 92 \ (d = 39, 3 \text{ nm})]$, die
	durchgezogenen Linien stellt qualitativ die $\sqrt[3]{1-(T/T_c)^2}$ -Abhängigkeit dar 100
5-10	Widerstandsverlauf in Abhängigkeit von der Temperatur der Probe $\sharp 97:$
	Sn auf InSb ($d = 93.3$ nm), gemessen zu verschiedenen Zeitpunkten
	$(\bullet - 05.07.98, \circ - 22.12.99)$

ABBILDUNGSVERZEICHNIS

Tabellenverzeichnis

2.1	Dicke d_{ML} einer Sn-Monolage auf InSb-(110)-Substrat	21
2.2	Übersicht einiger charakteristische Materialwerte $[14][16]$	21
3.1	Einige Entmagnetisierungsfaktoren für verschiedene Probenformen	49
3.2	Charakteristische Längen eines Supraleiters in Abhängigkeit von der Tem-	
	peratur T und der mittleren freien Weglänge l [34]	52
3.3	Charakteristische Längen des Kopplungseffekts mit und ohne Verunreinigung	56
4.1	Übersicht über die untersuchten Zinnschichten	68
5.1	Experimentell bestimmte Werte des Magnetfeldes B^* , bei dem der magne-	
	tische Zusammenbruch stattfindet, für verschieden dicke Schichten $\ . \ . \ .$	85
5.2	Übersicht $B_c(0)$ der Zinnschichten in der Orientierung $B \perp$ c-Achse	93
5.3	Experimentell bestimmter Ginzburg-Landau-Parameter κ für verschieden	
	dicke Schichten	96
5.4	Experimentell bestimmte charakteristische Längen d_{er}, ξ, λ für verschieden	
	dicke Schichten	96