
Chapter 7

C++ server

In the previous chapter, I have shown how the Genesis simulator can be used as a
server on the remote computer. In the next phase of the project, I have realized
the possibility of using own server implemented in C++. The C++ server
is available over the network and responsible for solving differential equations
arising from mathematical modelling.

The C++ server is based on the object classes of common neural elements
in a hierarchical structure. Owing to their logical structure, they can also be
used to learn the main principles of compartmental modelling. Moreover, they
are easily extensible, thus aiding in the development of programs for a newly
arising modelling tasks.

This chapter is organized as follows. First, the class hierarchy is described
and the most important methods found in the object classes are reviewed. Then,
the implementation of standard elements is presented. The process of writing
the program that is used for the described classes is shown. Second, I present
how the numerical integration is realized. The form of the differential equations
and the numerical methods arising from modelling are described. Finally, I de-
scribe how the input files from a client are transformed for a simulation starting
at the server side.

7.1 Classes hierarchy

7.1.1 Basic classes

As was presented in Section 3.2.3 describing principles of compartmental mod-
elling approach, the mathematical result of this approach is a system of ordinary
differential equations (ODE), one for each compartment or simulated channel.
The system should be solved numerically, i.e. one needs to calculate values of
simulated parameters in series for each time step of numerical integration.

All elements are presented in Fig. 7.1, so that the reader can get an idea of
the main principles of the hierarchy of neural elements.

89



90 CHAPTER 7. C++ SERVER

DiffSolver
SolveSystem(dt)
SolverNode* aSolverList

Solver
Solve(dt)

Comp
CurrentNode *aCurrentList

Channel

Current
Comp *aComp

PassChannel

LongCurrent

ConstCurrent

VGChannel

Synapse

RandomSynapse

PulseSynapse

Stimulus

HHChan

Figure 7.1: Hierarchy of neural element classes.

The class Solver is one of the base classes in the objects hierarchy. Each
object, for which a solution should be found numerically, has the Solver as a
base class. The function Solve(dt) should be overridden for each Solver subclass.
Track of elements of type Solver is kept with the linked list of the class Diff-
Solver, which is designed to control all objects of the type Solver. The linked
list is realized in the standard way [65]. The function Add(Solver &) adds a new
Solver to the list, Remove(Solver &) removes a Solver from the list and shifts
the pointers.

The function SolveSystem() is invoked for solving the system of ODE, which
is equivalent to invoking the function Solve(dt) on all Solver objects. One goes
from one Solver element in the list (which is linked with pointers) and calls the
function Solve(dt) for each of them.

The class Comp, representing a compartment, is derived from the class
Solver. It has the method Solve(dt) for calculating membrane potential for the
next time index; the implementation of the numerical method will be described
in the next section. Array V [] is implemented for saving voltage values. The
methods GetV() and GetVprev() provide access to the voltage of the current
and previous time indexes. The method SetV(real aV) was developed for ini-
tialization of new voltage values; it is used for setting initial conditions (starting
values of voltages) for numerical integration.

The class Comp has fields describing electrical properties of an isopotential
segment of a membrane (according to the compartmental modelling approach):
membrane capacitance Cm, membrane resistance Rm, axial resistance Ra, and
resting membrane potential Erest.

Another important principle of class hierarchy is that each compartment



7.1. CLASSES HIERARCHY 91

(element of the type Comp) holds the list of currents, which can be either from
adjacent compartments or from channels embedded in the cell membrane. These
currents make a contribution to the resulting form of differential equations for
membrane voltages. In order to solve a differential equation for a compartment’s
voltage, one needs to take into account all of these currents.

The class Current presents a source of current into a compartment. By
initializing a new Current object, a compartment for which this current will be
added to the list of currents should be specified. The function Add(Current*
aCurrent) and the function Remove(Current* aCurrent) of the class Comp in-
clude an element aCurrent in the list and remove it from the list, respectively.
These functions are called by a constructor/destructor of the class Comp.

As described in Chapter 3, any channel is characterized by its conductance
G and equilibrium potential Eeq:

Ii = G(Eeq − V ) (7.1)

The class Current contains the protected field Eeq and the public field G, corre-
sponding to Eeq and G from Eq. 7.1. Field Eeq has been made protected, since
its value should not be changed by external methods; one can get access to Eeq
with the methods SetEeq(real E) and GetEeq(). As one can see from Eq. 7.1,
the first term depends only on the values of the Current object fields G and
Eeq; therefore the returning value Eeq ·G of the function GetEeqG() can later
be useful for solving a differential equation.

For a passive ion channel, which also called leakage channel, conductance G
is constant. It can also be a variable, for example for voltage-gated or synaptic
channels. In the second case, elements of type Current have time-dependent
variable conductance G. Thus, the conductance of synaptically activated chan-
nels is typically described with a so-called “alpha function”

Gsyn(t) =
const

τ1 − τ2
· (exp (−t/τ1)− exp (−t/τ2)) (7.2)

Voltage-gated channels have the conductance G, which depends on gating
variables resulting in a differential equation (Eq. 7.7). Currents with variable
conductance are derived from the class Solver, which provides the function
Solve(dt) for updating the value of the conductance G.

7.1.2 Implementation of standard neural elements

Compartment of cylindrical form Usually, a compartment of a complex
neural structure is approximately that of cylindrical form. The class CylComp
derived from the class Comp has fields and methods describing the morphol-
ogy of cylindrical compartments. It has fields for the radius R and length L of
a compartment, and fields holding specific electrical characteristics of a com-
partment: specific resistance RM , specific capacitance CM , and specific axial
resistance RA. When initializing an element of type CylComp, the values of
membrane resistance Rm, membrane capacitance Cm, and axial resistance Ra



92 CHAPTER 7. C++ SERVER

are calculated from the formulas introduced in Section 3.2.2 and Section 3.2.3
according to the membrane area of the cylindrical compartment (Eq. 3.15).

Compartment linking Two compartments can be connected by a pair of
longitudinal currents. The class LongCurrent derived from the class Current
provides a realization of each of these currents. The amount of a longitudinal
current, which can flow in two different directions, depends on the values of
axial resistance (reverse conductance) and potential of a source compartment.
Thus, currents from the left compartment to the right can be calculated as

I =
V
′′
m − Vm

Ra
(7.3)

and in the opposite direction

I =
V
′
m − Vm

R′
a

(7.4)

where V
′′
m and V

′
m are voltages in the left and right compartments, and R

′
a is

the axial resistance of the right compartment.

Current stimuli Constant currents injected into compartments can be de-
scribed with the element ConstInjection. Its value does not depend on the
potential of the sink compartment. The following “trick” is used to implement
this property of a constant current. Inherited from the class Current field, Eeq

is set to the constant value I and the method GetEG() has Eeq = I as a return
value. The field G is set to zero, so that we get as a result from Eq. 7.1:
Ii = G(Eeq − V ) = G · Eeq −G · V ⇒ GetEG()−G · V = I − 0 = I.

Pulsed current stimuli, whose values are variable (see Fig. 7.2), are imple-
mented as a Stimulus object. The class Stimulus is derived from the classes
ConstInjection and Solver. With the method Solve(dt), one can control the
time during the pulse interval and set the value of the current:

{
I = Injection, delay < t < delay + width

I = 0, t < delay
(7.5)

Delay Width

Injection I

Figure 7.2: Pulsed Stimulus.



7.1. CLASSES HIERARCHY 93

Currents through constant-conductance channels Channels with con-
stant conductance (passive channels) can be represented by elements of the type
PassChannel. The class PassChannel contains the methods and fields of the
base class Current. They are inherited from the Current class fields Eeq and
G. The field I describes the ionic current from this channel, and the method
GetI() can be used to view its current value.

Channels with variable conductance The class Channel is used for de-
scribing currents flowing into a compartment from channels with variable con-
ductance. It is derived from the basic classes Current and Solver. The method
Solve(dt) is available for calculating new conductance values. The method
Solve(dt) is redefined for the particular elements derived from the class Channel,
according to conductance change rules.

The class VGChannel is realized as a base class for voltage-gated channels.
It has fields m and h for activation and inactivation gating variables. The
fields mExp and hExp hold the values of the exponential functions of variables
m and h, which are used in the function describing conductance of a channel;
the field maxG holds the maximum conductance of a channel. To calculate
the conductance at a given time index using the method Solve(dt)), one needs
to solve differential equations for m and h. The implementation of solution of
the differential equations for m and h is performed by the functions SolveM(dt)
and SolveH(dt). The function Solve(dt) then calculates the total conductance
G = maxG ·mmExp · hhExp. To define the dynamics of voltage-gated variables,
the functions SolveM(dt) and SolveH(dt) are overridden for each channel.

The mechanism for opening/closing voltage-gated channels is complex and
depends on several parameters, e.g. calcium (Ca2+) and potassium (K+) con-
centrations and membrane voltage. The diverse types of voltage-gated channels
can be implemented as extended objects of the class VGChannel by defining the
dependence of conductance on voltage-gated variables.

Hodgkin-Huxley channel The class HHChan, describing voltage-gated
channel with Hodgkin-Huxley dynamics, is derived from VGChannel. It con-
tains the methods alphaM(real V), alphaH(real V),betaM(real V), and betaH(real
V), all of which can take one of three different forms with three parameters A,
B, and V0:

• exponential

• linear-exponential

• sigmoid,

whose expressions are given in Section 3.2.1, Eq. 3.2.1.
These functions are defined in the class HHChan as the methods Exp(real

V, A, B, V0), LinExp(...), and Sig(...). The class HHChan contains variables
describing the form of alpha(V)- and beta(V)-functions:



94 CHAPTER 7. C++ SERVER

• alpha_m, alpha_h, beta_m, and beta_h describe the form to be used for
alpha(V)- and beta(V)-functions; they can be 1 = exponential, 2 = linear-
exponential, or 3 = sigmoid,

• A_alpha_m, A_alpha_h, A_beta_m, A_beta_h, B_alpha_m, B_alpha_h,
B_beta_m, B_beta_h, V0_alpha_m, V0_alpha_h, V0_beta_m, and V0_beta_h
are constants for alpha(V)- and beta(V)-functions.

Depending on the variables alpha_m, alpha_h, beta_m, and beta_h in func-
tions alphaM(), alphaH(), betaM(),and betaH(), one of the functions in one
of the three standard forms (exponential, linear-exponential, sigmoid) will be
evoked. All of these variables are initiated by creating a new HHChan object.

Synaptically activated channels and cell connections The class Synapse
represents a synaptically activated channel, whose conductance is usually de-
scribed with a time-dependent “alpha function”. When the voltage of a presy-
naptic cell exceeds the threshold voltage, a spike at the presynaptic cell is ini-
tiated. It activates a synaptic channel of the postsynaptic cell.

Connections of the two cells can be established by initialization of a Synapse
object. For the initialization, the following parameters are necessary: pre- and
postsynaptic cells, the threshold voltage of the presynaptic cell for spike ini-
tiation Vthresh, maximum conductance of a synapse maxG, the equilibrium
potential Eeq, the weight of a connection (weight), and the time constants of
the alpha functions tau1 and tau2. Similar to the objects with variable con-
ductance and derived from the class Channel, the function Solve(dt) updates
the value of synaptic conductance. One does not need to solve a differential
equation, rather, one needs to check the value of the current voltage at the
presynaptic cell using the function GetV()), and if V > V thresh, calculate the
conductance by the alpha function formula:

G(t) =
weight · gmax

τ1 − τ2
· (exp(−t/τ1)− exp(−t/τ2)), (7.6)

Here, the variable t changes its value from 0 to pulseT ime, which describes
duration of the postsynaptic pulse. Therefore, the class Synapse has an addi-
tional variable t to describe the time interval from the beginning of the current
synaptic pulse. When t > pulseT ime, conductance G will be set to zero.

Connection delay was implemented in the following way. The class Synapse
contains an array VFrom that holds the voltage values of the presynaptic cell of
some time interval preceding the current simulation step. The size of this array,
which is based on the time interval, is determined by the variable V size =
delay/dt, where delay is the connection delay and dt is a step size. Thus, if the
connection delay was set nonzero, the element of the array corresponding to the
preceding time interval defined by V size (delay) is compared with Vthresh at
the current simulation step. It becomes clear that in this case, the spike arrives
at the postsynaptic cell after a certain connection delay.

RandomSynapse A synapse that receives randomly generated spikes is
implemented as the class RandomSynapse. It will be activated with an alpha



7.2. NUMERICAL INTEGRATION 95

function at the time when a spike arrives. The following parameters are respon-
sible for the random spike generation: minimum (min_amp) and maximum
(max_amp) amplitudes of a spike event, rate of spike generation (rate), and
the minimum time between spikes (abs_refract). Because the conductance of
RandomSynapse does not depend on the voltage of the presynaptic cell, the
class RandomSynapse is derived from the class Channel. As usual, the method
Solve(dt) provides an update of the conductance value. It will have a nonzero
value for each generated spike and will have zero during the time interval be-
tween spikes. The class RandomSynapse has the same parameters as the class
Synapse: delay and weight of activation and parameters of the alpha function.

The synapse activated by pulsed spike events is realized as a PulseSynapse
object. The pulses are generated in the same way as for Stimulus objects (see
Fig. 7.2), i.e. they have the parameters pulse_delay and pulse_width. Puls-
eSynapse is derived from the class Channel and uses alpha functions for the
postsynaptic conductance change.

7.2 Numerical integration

Arising from compartmental modelling, the equations Eq. 3.22, describing the
voltage of a generalized compartment, and Eq. 3.6 for gating variables of a
Hodgkin-Huxley channel are ordinary differential equations. They are coupled
to the system of ODE. It can be seen that both of these equations assume the
form

dy

dt
= A−By, (7.7)

where y is a simulated variable, and A and B are functions depending on y
and t.

It has been shown that the exponential Euler method is the most effective
numerical method for equations of this form [55]. In the case of Eq. 7.7, this
method shows an optimal combination of accuracy and speed. Therefore, I have
implemented it for numerical integration in the C++ class library.

At the time step dt, the solution at the time point t+dt can be approximated
by

y(t + dt) = y(t)D + A/B(1−D), (7.8)

where
D = exp (−B · dt). (7.9)

Let us now consider the implementation of the numerical integration pro-
cedure for the elements of our C++ classes. It is realized with the method
Solve(dt). The equation describing the compartment voltage (the Comp ele-
ment) can be written as

A =
Em/Rm +

∑
EeqG

Cm
, (7.10)

B =
1/Rm +

∑
G

Cm
, (7.11)



96 CHAPTER 7. C++ SERVER

where the sums are calculated for all Current elements attached to the list of
an Comp object. The objects corresponding to the currents of ionic channels,
synaptically activated channels, or injected stimuli are derived from the base
class Current and use the method GetEeqG() as the class method and G as
the field of the class. For currents flowing to neighboring compartments, the
potential Vm of the source compartment, which can be got with the method
GetV()), is used as Eeq and the inverse value of axial resistance Ra is used as
G. After calculating A, B, and D, one needs just to update the voltage of the
simulated compartment according to Eq. 7.8.

The solution of equations for gating variables of a Hodgkin-Huxley channel
(see Eq. 3.6) is implemented by the methods SolveM(dt) and SolveH(dt). The
numerical integration is performed as in Eq. 7.8, where A and B are calculated
by

A = α(V ) (7.12)
B = α(V ) + β(V ) (7.13)

The methods SolveM(dt) and SolveH(dt) will update the current values of m
and h. Then the method Solve(dt) will update the conductance value G.

7.3 Application of neural element classes

After this brief description of the inheritance and implementation of the classes
of neural elements, let us now consider the structure of the simulation program.
The simulation program should include the definitions of the model elements.
First, one needs to create a number of compartments, typically of cylindrical
form, using the class CylComp. The parameters of compartments, such as
radius, length, and specific electrical characteristics (RM , CM , RA), should be
defined, as well as the starting value of the voltage Vm.

Voltage-activated channels can be added to simulated compartments in two
ways: by overriding VGChannel to define the dynamics of gating variables or
by using the standard class HHChan for Hodgkin-Huxley channels. Constant
or pulsed injection currents can be set as ConstInjection or Stimulus objects.

Compartments are linked by two currents of opposite direction described
with objects of the type LongCurrent. The synaptic input can be provided us-
ing RandomSynapse objects for random synaptic activation or PulseSynapse for
pulsed synaptic activation. A simulated neuron can have a synaptic connection
to another neuron, implemented with a Synapse object. Neurons can communi-
cate directly through electrical connections, which are also called gap junctions.
This type of connection can be realized using the class LongCurrent.

Numerical integration is performed by the method SolveSystem(dt) of Diff-
Solver, which is invoked in a loop for a definite number of steps.



7.4. CONNECTION TO THE C++ SERVER 97

7.4 Connection to the C++ server

The realization of the client-server connection, with the Genesis simulator used
on the server side, has been given in Chapter 5. Similar to this realization, the
connection to the C++ server is implemented using Java RMI. The methods
of transferring model description files to the server and simulation results back
to the client are implemented in the same way. Transformation of XML model
description files is performed using methods of the open C++ transformation
library Xerces-C.

7.4.1 Input files and simulation results

NeuroSim has been organized in such a way that one does not need to modify
the code of the program when a new simulation model is defined. Instead, the
server program gets the model description data in the form of the input file.
This program is used by the client that prepares the model description data as
the input files for the server. The C++ server program is available remotely
through the network.

The model description files are described in XML format. The C++ program
transforms input files using the Xerces-C SAX API for XML parsers [13]. The
Xerces-C SAX API provides classes for reading XML data, and for the parsing
and control of errors. The handler class DocumentHandler is called when XML
elements are recognized, and ErrorHandler is called when an error occurs. Using
the Xerces-C SAX API, I have created an instance of the SAXParser class and
set my own handler for it. To this end, I have derived the MySaxHandler class
from HandlerBase and overridden methods in HandlerBase.

Let us consider the HandlerBase methods used for transforming the input
XML files. The overridden method startDocument() starts the transformation
procedure of the XML document. The methods startElement() and endEle-
ment() will be invoked when a handler detects an opening or closing tag. When
the opening tag of an element is found by the method startElement(), one
of several boolean variables of the form isElementname (for example isEle-
mentComp) is set to “true”. For example, by notification of a tag <comp> or
<HHChan>, a compartment or Hodgkin-Huxley channel element will be initial-
ized. The properties of elements are described with the tag <property>, which
contains the tags <name> and <value>. After recognizing the property name,
the property will be initialized. The method characters() reads characters in-
side an element and sets the property values. When the closing tag is found in
the document (using the method closeElement()), the modelled object and its
parameters are added to the simulation and a variable isElementname is set to
“false”. The method endDocument() closes the parsing of the document when
all model elements are designed, and starts the simulation. The simulation step
size and number of steps are also obtained from the input file. The method
endDocument() was overridden to invoke the method SolveSystem() of the class
DiffSolver.

Simulation results are saved in the files in the form of two columns, which are



98 CHAPTER 7. C++ SERVER

the time and the simulated parameter value. Saving of the results is performed
by the functions CreateFile() and CloseFile(). Thus, at each time step, the
current value of the membrane voltage for the class Comp and the conductance
value of the ionic channels will be saved in a file. The files with simulated data
are then transferred to the client for subsequent analysis.

7.5 Conclusions

A classes hierarchy has been developed for performing compartmental modelling
of real neural networks. The hierarchy is effective for realizing compartmental
modelling of real neural networks.

Common neural elements have been implemented as C++ classes. Based
on this implementation, the server side of the NeuroSim system with a client-
server architecture has been implemented. C++ was chosen because it is widely
recognized as a high-level language effective for performing mathematical calcu-
lations and application development; therefore, a large number of class libraries
is available. C++ compilers are readily available for practically any operation
system.

The C++ classes can also be used independently by researchers with experi-
ence in C or C++ programming. Using the standard object-oriented techniques,
the implemented classes for common elements can be extended for new mod-
elling tasks.

The NeuroSim client deals with data analysis and its visual presentation.
Therefore, a graphical environment for our C++ library is also supplied.


