
Chapter 5

Client-server architecture

The main features of existing simulation systems have been reviewed in Chap-
ter 4, which compares their most important features. The importance of the
client-server architecture realization in a new simulation system was shown in
Chapter 1. The new developed system for the detailed simulations of neural
networks applies the compartmental modelling approach; the theoretical back-
ground underlying this approach has been described in Section 3.2.3 of Chap-
ter 3. A system has been designed with the client-server architecture, which
provides the effective using of computer resources[52, 51, 40].

In this chapter, the main features and layout elements of the client-server
architecture the NeuroSim simulation system based on are discussed. The imple-
mentation of the connection between the client and server on which the Genesis
simulator is running is shown. The rules for transforming the model descrip-
tion files into the Genesis scripting language format are described. Finally, the
neural model elements are introduced.

5.1 Roles of client and server

The detailed simulations of neural systems are made within the approach of
compartmental modelling. The electrical circuit of each compartment is de-
scribed by an ordinary differential equation, and the equations are combined
into a coupled system. For computational modelling of the neural system, the
equations arising from the model elements need to be solved in parallel. Con-
siderable computational power is required for the following cases: models with
a huge number of neurons, models consisting of neurons with complex branched
structure and for the models consisting of neurons with complex rules for acti-
vated channels.

Thus, it becomes clear that it would be effective to divide the program into
two parts: equation solver and simulation controller. While a high-power server
performs extensive calculations, control and visual results presentation are left
to a personal computer (see Fig. 5.1). The connection mechanism between a

61

62 CHAPTER 5. CLIENT-SERVER ARCHITECTURE

Server

Own C++

Genesis

Java Client

Java Client

Java Client

Integration Results

Model Description

Figure 5.1: Client-server architecture of NeuroSim.

client and server is made with a Java tool – Remote Method Invocation (RMI),
which supports distributing run-time objects across multiple computers.

The Java client program can be running either as an application on the user’s
computer or as an applet from the Internet. The user-friendly graphical interface
allows one to define the elements of the experimental model. The description of
the objects corresponding to elements of a neural simulation model, including
the properties and their values, are automatically generated in standard XML
format. All elements: neurons, neuron connections, ion channels, and inserting
mechanisms were developed as objects with a serialization facility that allows
one to have complete access to their methods and properties. Serialization of
elements allows one to save the defined models in the form of serializable objects.

After defining an experimental model on the client side, the data and model
description are transferred to the server, which is accessible through a network.

In the first stage of the project, the server for solving the system of differential
equations was realized on the basis of the Genesis simulator. In the second stage,
our own C++ server for numerical integration was implemented, as described
in Chapter 7.

At the remote computer, the XML files containing the model and data nec-
essary for numerical integration are converted to the necessary for server format.
Files in Genesis scripting language or C++ server input files are generated using
transformers developed for parsing of XML documents.

Following that, the simulation of the model from prepared input files is done
on the server side. The data of simulation results are uploaded onto the client
and can be used for analysis: membrane voltages and channel conductance
curves can be viewed by the user; at the same time, an animation of neuron
activations and the pulse’s transformations through the network connections
can be launched.

Summing up, the client-server architecture enables researchers using the
simulation system to reduce the time needed to define models to a few minutes.
At the same time, the model can be complex and require extensive calculations,

5.2. GENESIS SIMULATOR AS A SERVER 63

the simulation of which only becomes possible by placing the mathematical
operations on a powerful server or a supercomputer.

5.2 Genesis simulator as a server

In the first phase of our project, the well-known simulator Genesis was used
as the server for numerical integration. Developed on Unix platforms, Genesis
presents certain difficulties for the novice user in acquiring programming skills
for the Genesis scripting language, in addition to the possible difficulties of work-
ing on a Unix platform. Experienced users need to spend time to master the
simulation process. Therefore, the NeuroSim environment based on a client-
server architecture provides a good alternative to using the Genesis package.
The client side, which was developed as platform independent, provides an in-
tuitively clear graphical front-end requiring practically no special programming
skills to set up the simulation process.

5.2.1 Client-server connection

As mentioned above, the communication process between the client and server
includes the transmission of the model description data from the client to the
server and delivery of the calculation results back to the client. This data
exchange process is realized using Java RMI, which directly supports commu-
nication among Java applications on multiple machines. This defines Java for
developing a client graphical interface that could be conveniently integrated
with its communication parts. Java RMI allows simple combination with the
Genesis simulator, thus utilizing Genesis for numerical calculations. Moreover,
Java provides platform independence for the client.

In the following, I consider the implementation of NeuroSim for connection
with the server based on the Genesis simulator. The main building elements of
NeuroSim as an RMI application are outlined.

Main elements of an RMI application The main idea of RMI is that the
client requests an object from the server. The “remote object” is implemented
using an interface extended from java.rmi.Remote. Once the client has the
remote object, it invokes the object’s methods as though the object were local.
However, the methods are invoked on the server side with results returned.

RMI requires a common interface implementation for “remote object”, which
will be used by both the client and the server. All methods should throw a
java.rmi.RemoteException. The code for implementation of the remote interface
StartGenInterface is following:

public interface
StartGenInterface extends java.rmi.Remote{ public String message

(String message} throws RemoteException;
}

64 CHAPTER 5. CLIENT-SERVER ARCHITECTURE

The “remote object” StartGenImpl will be used by the server. The class for
creating a remote object implements the remote interface:

public class StartGenImpl extends UnicastRemoteObject implements
StartGenInterface{...}

Then I created the RMI client, which look up the object on the server host,
using Naming.lookup. It will typecast the object to the “remote object” type
and use it just like a local object. RMI clients must know the host that provides
the remote services. The URL is specified by rmi://host/path:

StartGenInterface remObject =
(StartGenInterface)Naming.lookup("rmi://"+host+"/StartGenInterface");

The RMI server creates an object of StartGenInterface:

StartGenImpl locObject=new StartGenImpl();
Naming.rebind("rmi:///StartGenInterface",locObject);

The next step is the proper creation of the client stub and the server skeleton
that support the method calls. The server class and server skeleton class, as
well as the remote object interface and implementation, are required for RMI
server operation. Similarly, the client files, interface files, and the client skeleton
class have to be available on the client machine. For the applet, they have to
be available on the applet’s host machine.

The client will look up the remote object available on the server host from
the specified URL.

RMI client and server for Genesis simulations The connection between
client and server can be established from the menu of the client’s graphical user
interface. Using methods from the Java RMI package, the program will try to
make a connection to the server with a specified “host” and will then search the
“remote object” implemented the interface StartGenInterface according to the
following code lines:

try { StartGenInterface c;
c=(StartGenInterface)Naming.lookup("rmi://"+host+/StartGenInterface");

....
} catch (RemoteException re) {

System.out.println("RemoteException");
} catch (NotBoundException nbe) {

System.out.println("NotBoundException");
}

The interface StartGenInterface contains methods from “remote object”,
and the class StartGenImpl of a “remote object” contains their implementa-
tion. These are:

• makeXMLFile(String n) creates an XML file with model description, step
size, and method of integration

5.2. GENESIS SIMULATOR AS A SERVER 65

• TranDat(String arg1,String arg2) performs transformation of the input
XML file into a Genesis file

• StartGenesis() is responsible for starting the simulation with Genesis using
prepared files in the Genesis scripting language

• Vector getDat(String s) returns resulting data in vector format

All these functions are invoked remotely on the server. Model description
and simulation parameters in XML format are transferred to the server using
the method makeXMLFile(String n). After that, the server performs the trans-
formation into the Genesis scripting format using the Extensible Style Sheet
Language for Transformation (XSLT). The benefit of this method is that an
XSLT engine converts the XML document according to formatting rules that
are described in the XML style sheet (XSL) document. Thus, XSL conversion
rules can be redefined for transformations into various formats. XSLT is not a
standard part of Java Standard Edition, therefore one needs to download the
appropriate classes and include them in the server. Then one needs to establish
an object of the type Transformerfactory, which allows the creation of different
transformers for different style sheet templates. These operations are performed
in the method TranDat():

TransformerFactory tFactory = TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer(new

StreamSource(arg1));
transformer.transform(new StreamSource(input), new

StreamResult(new FileOutputStream(arg2)));

After transformation, three types of Genesis files will be created: initializa-
tion files of model elements with their properties, files with simulation parame-
ters, and files with commands to start the simulation.

The command starting Genesis is realized using a method of the java.lang.Runtime
class that executes the specified string command in a particular process. The
Java code
Runtime r = Runtime.getRuntime();
try{ Process p = r.exec("genesis MultiCell");}

catch(IOException e){System.exit(11);}
will execute the Genesis simulator with the input file “MultiCell.g”. This file
contains the list of files to be included for simulation.

The output data will be stored in ASCII files, using the appropriate Genesis
object. From these files, data will be transferred to the client with the “remote
object” method; after that, the files will be deleted.

The StartGenServer class was realized as an RMI server class and thus,
should be active when the client sends the request to the server host.

5.2.2 XSL transformation rules

Rules for transforming the XML data file into the Genesis scripting format are
described in the XSL format document. It includes the description of elements,

66 CHAPTER 5. CLIENT-SERVER ARCHITECTURE

<pnn>
<neurons>

<neuron>
...
<comp>
<name>soma</name>

<property>...
</property>
...

</comp>
...
</neuron>
...

</neurons>
<connections>

<connection>
...
</connection>

</connections>
<pnn>

Listing 5.1: Elements of an XML neural description file

called templates, which can be recognized during analysis of the source file.
If a pattern in the source file is matched, transformer will add the code to the
output document according to predefined rules.

The element <xsl:template match="name"> in the XSL file contains con-
verting rules that are applied when a node "name" is matched. One uses the el-
ement <xsl:apply-templates select="name"> when the rules for a template
with a node "name" should be applied.

I will demonstrate the use of important XSL elements by the example of
XML element transformations in a neural model description file. Listing 5.1
shows the parts of an XML file containing elements that will be explained
in more detail. Listing 5.2 shows the XSL code in which the transformation
rules are presented. As one can see, parsing starts with analysis of the el-
ements <pnn/neurons> and <pnn/connections> that correspond to descrip-
tions of neurons and their connections. Templates for these elements are ap-
plied with the XSL elements <xsl:apply-templates select="pnn/neurons">
and <xsl:apply-templates select="pnn/connections">. Thus, the tem-
plate <xsl:template match="pnn/neurons"> contains the rule that every XML
element <neuron> will be selected. It activates the element <xsl:for-each
select="neuron">. The number of the cell will be added to the output file
that provides the element <xsl:value-of select="id"/> used for selecting
the value of the element <id>.

For every <neuron> element, the template <xsl:template match="comp">

5.2. GENESIS SIMULATOR AS A SERVER 67

... <xsl:template match="/">...
<xsl:apply-templates select="pnn/neurons">
<xsl:apply-templates select="pnn/connections"/>
</xsl:template>
<xsl:template match="pnn/neurons">
<xsl:for-each select="neuron">
str cellId =<xsl:value-of select="id"/>
<xsl:apply-templates select="comp"/>
</xsl:for-each></xsl:template>
<xsl:template match="comp">
<xsl:choose> <xsl:when test="name[.=’dend’]"> ...
</xsl:when> <xsl:otherwise>...
</xsl:otherwise></xsl:choose>
<xsl:apply-templates select="property">...
</xsl:template> <xsl:template match="property">
...</xsl:template>
<xsl:template match="pnn/connections">...
</xsl:template></xsl:template>

Listing 5.2: XSL document transformation rules applying to files of neural ele-
ment descriptions.

will be applied. It contains the rules that are based on the “logic” XSL ele-
ments. Different code will be generated for each compartment corresponding
to a soma and a dendrite. The logical tests are realized the with the XSL ele-
ments <xsl:choose>, <xsl:when>, and <xsl:otherwise>, that allows to test
different logical conditions.

As a result of this transformation, the Genesis script file is automatically
created by a transformer on the server side, instead of preparing it manually for
every newly arising modelling task.

5.2.3 Elements of neural models

A simulation model is constructed using the Java client graphical interface. The
electrical properties of individual neurons are described with Hodgkin-Huxley
type voltage-dependent ionic channels. The neuron connections can be made
by a chemical synapse. The standard inserting mechanisms, like spike generator
and synaptically activated channel, can be included into the model. Electrical
excitation can be implemented with different types of cell stimuli: pulsed stimuli,
randomized spike generation, or constant injection.

The executable Genesis file for simulation is automatically created during
the parsing of the XML client’s data file and consists of predefined functions of
initialization of neural elements and assignation of their fields.

Here we give a short description of the standard Genesis elements. An object
compartment is commonly used in Genesis simulations and uses the fields Vm,
Em, Rm, Cm, Ra, and inject, corresponding to the labels in Fig. 3.11. Mor-

68 CHAPTER 5. CLIENT-SERVER ARCHITECTURE

phological parameters should be taken into account for construction of realistic
compartments. These parameters are specific resistance RM , specific mem-
brane capacitance CM , specific axial capacitance RA, compartment’s length
and diameter.

Compartments are connected in Genesis with two messages AXIAL and
RAXIAL, which are used for calculation of axial currents in both directions.
Voltage-gated channels with Hodgkin-Huxley dynamics are implemented with
the object hh_channel, after setting parameters of gate variable dynamics (see
Eq. 3.6). The elements presenting a channel and compartment are linked with
messages CHANNEL and VOLTAGE for calculation of the channel current.

Synaptic input can be generated in three ways: as synaptic activation in
response to presynaptic action potential generation, as random synaptic activa-
tion, and as pulsed synaptic generation. All of these methods are carried out
using the Genesis object synchan, which simulates a time-dependent synap-
tically activated ionic channel. Similar to a voltage-gated channel, a synchan
element should be linked with the postsynaptic compartment using the messages
CHANNEL and VOLTAGE.

Connections between two cells are performed with the synaptic channel that
is activated with the spike initiation in the presynaptic cell. The presynaptic
compartment should contain an object spikegen performing threshold spike
discrimination. The spikegen notifies spike initiation via an INPUT message
from the presynaptic compartment. The spikegen and synchan objects interact
through the SPIKE message.

A SPIKE message may only be sent from certain objects, e.g. the spikegen
or randomspike objects. The randomspike object is used for implementing
random synaptic responses, which generate a series of random spikes.

The pulsed synaptic input is produced with the object pulsegen. It gener-
ates a series of pulsed events and is linked with a spikegen object via INPUT
and SPIKE messages.

The pulsegen object can also be used to apply a current to a compartment
in pulsed form. In this case, the object diffamp plays the role of a subsidiary
element that produces an output from two inputs.

5.3 Summary

The basic features of the client-server architecture NeuroSim is based on have
been presented in this chapter. The client-server architecture is an effective so-
lution for the mathematical modelling of neural systems where extensive com-
putational resources are needed. This architectural technique was not realized
in the existing simulation packages whose summarized characteristics can be
found in Chapter 4.

The roles of the client and server, as well as the effective working of a whole
simulation system have been shown. The chapter contains details of the con-
nection implementation by way of the example of the Java client and the server
based on the Genesis simulator. The Java RMI tool used for distributing the

5.3. SUMMARY 69

working client and server components of the NeuroSim system have been out-
lined; the implementation of the main components for RMI connection in our
system has been described. The chapter contains the transformation rules for
the XSLT engine, which are used to parse model description files into the Gene-
sis format for simulation. The last section of the chapter includes a description
of the neural model elements.

70 CHAPTER 5. CLIENT-SERVER ARCHITECTURE

