
Chapter 2

Basic approaches in
computational neuroscience

2.1 Computer simulations

Computer simulations in neurobiological research have brought neuroscience
to a new level in understanding of the functioning of complex neurobiological
systems. Let us briefly consider the main stages of neurobiological research and
the tasks of computer simulations.

Typically, the investigation starts with a series of experiments that result in
the accumulation of experimental information about the system. In some cases
the experimental equipment is able to provide the information necessary for the
defined task and the behavior of the investigated system can be associated with
problems of a similar nature. In such a case experimental research alone can
supply the required information.

However, often the experimental information alone is not enough to explain
the functioning of particular components and the system as a whole. In this case
a computer simulation of the investigated system can be used. First of all, the
experimentalist has to choose a conceptual model which can be applied. One
has to decide which features of the system are essential and what can be left
out from consideration. On this stage one decides which level of abstraction is
suitable to fully describe the system functioning. The lack of some information
can be covered by making assumptions about the structure of the model, the
connections between neurons, the presence of activated channels and the mech-
anisms of neuron excitation. The computer simulation will help to understand
the role of particular elements on the basis of theoretical models. Thereby, it
can be able to provide information that is difficult to obtain from experimental
tests.

The next step of investigation is the computational modelling. During this
step one decides which level of modelling will be used in the simulation process.
The choice of the particular level of abstraction is defined by the amount of
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available information and the defined task. The researcher decides how faithfully
the model structure should be described to reproduce the behavior observed in
the experimental tests. The level of abstraction should be chosen in such a way
that the modelling tests show the essential features of the studied phenomenon,
which have been observed in the experiments.

After the model definition, the building of the computer programs and the
simulation itself is the central task. The realization of the program needs the
exact mathematical description of the defined model, which could require some
model simplifications.

The computer simulations have an important advantage compared to the real
experiments in being flexible to change the structure and the properties of the
investigated model. Thereby elements can be added or excluded from the model.
Different hypotheses, which are impossible to confirm during experiments, can
be checked. One can perform a series of modelling experiments to find which
features have an influence on the behavior of the model.

The simulation efforts lead to the verification of the suggested hypothesis.
At this stage the modelling inquiry consists of modelling tests performed at
different levels of abstraction until a suitable level of description of the neuron
system is achieved. Basing on the results of the developed simulation some
ideas about the structure and main features of the investigated system can be
suggested or retracted. The choice of model parameters can be also corrected.
One needs to repeat the simulation process again with corrected assumptions
about the essential system properties. It is important to carefully test the model
behavior on each of these levels.

One decides to end the simulation activity when the computer modelling
either shows good agreement with experimental results or establishes further
possible directions in experimental studies.

To conclude, it is clear that neurobiological research is developing as a com-
bination of computational modelling and experimental studies.

2.2 Directions of development of computational
neuroscience

Nowadays, two main directions in the development of computational neuro-
science could be pointed out. First, artificial networks are developed as an
attempt to describe brain activity at a high level of abstraction and as an effec-
tive computational paradigm allowing the realization of systems with “artificial
intelligence” features. The second direction is the computational modelling of
real neurobiological systems, which takes place at different levels, depending
on the purpose and available data. These models include the characteristics
of real neurons, which are chosen according to the information collected from
neurobiological experiments.
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2.2.1 Artificial neural networks

Living organisms reveal a very complex behavior. Such behavior requires the
recognizing of sensory inputs and the decision making about appropriate ac-
tion response. The neural networks are responsible for making these decisions.
These are well-organized systems consisting of a huge amount of single neurons
organized in common networks. The amazing functionality of these real neu-
ral network systems has inspired researchers to create artificial neural networks
copying the main features of the real neural systems.

The computational properties of artificial neural networks are realized on
the basis of computational units incorporating the basic functions of real neu-
rons. The main principle of creation of artificial neural network is the use of
simple threshold units (neurons) and simple connections (synapses), which are
described by only one parameter - connection strength.

The most important feature of artificial neural networks is that they are
organized in a hierarchical structure which can be related to the anatomy of the
brain. Neurons are considered as simple processing elements that can perform
parallel computational operations [27, 37, 61]. Such artificial neural networks
demonstrate functionalities similar to the brain’s activity. They can learn from
experience and generalize from a set of examples to a new one.

Artificial neural networks are based on a computational paradigm involving
the simplification of neural activity to the single continuous variable xN (see
Fig.2.1a). The neurons are assumed to be active if the value of this variable
exceeds the threshold value. The connection between neurons is described by
the parameter wN , the connection weight. The input signal is then given by the
total input over all connections

u = Σwixi (2.1)

The neuron excitation or the output is described by the function F , which is
the threshold or sigmoid function in the simplest cases (see Fig.2.1b).

The specially developed mathematical techniques in the field of “artificial in-
telligence” can be applied to a large spectrum of real-world problems. Examples
are the problems of speech and signal recognition, learning and classification.
The techniques can be used for generalization and decision making based on
incomplete data. Their principles are used for hardware development based on
neuro chips.

The interest in development of artificial neural networks can be explained by
two factors. First, they are powerful mathematical instruments for modelling
of systems performing brain-like functions; second, neurobiologists expect that
artificial neural networks will help to understand brain operations on the highest
level of simplification when the information is stored as patterns without detailed
knowledge about neuron structure.
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Figure 2.1: a) A schematic presentation of an artificial neuron. Inputs are
represented by xN , connection weights by wN . b) Two standard forms of the
function F : threshold and sigmoid.

2.2.2 Modelling of real neurobiological systems

Modelling of real neurobiological systems allows researchers to study the func-
tionalities of groups of neurons and single neural elements [69]. One of the key
points of this task is the development of models which realistically reproduce
the behavior of real nervous system.

The choice of model depends on several factors. First of all, it depends on the
purpose of the investigation. Then, it depends on the amount of available exper-
imental information. Here one should keep in mind that more detailed models
may be more difficult to analyze for extracting the required information, even if
very detailed experimental information is available. Also, the implementation of
highly complex models will require extended computational resources. There-
fore, it is important to keep a balance between the complexity of the model
and its transparency and tractability. One has to stop at the level that is suf-
ficient for the defined task, yet simple enough to allow a clear interpretation of
the results. A simpler model revealing experimentally observed behavior is also
preferable compared to one including all available details, because it highlights
the most important features of the real system.

In the following passage, I will briefly consider some of the common models
of real neural networks using the following classification:

• Pulsed neural models

– Firing-rate models

– Threshold-and-fire models
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• Compartmental models

The first level consists of so-called “pulsed neural networks”, where the infor-
mation is transferred between neurons by means of pulse sequences. This level
includes firing-rate models, which provide ways of information coding based on
the rate of firing, and the threshold-and-fire models, which use pulse timing
to describe neural activities [73]. Compartmental modelling, modelling on the
most detailed level, directly accounts a structure of neurons.

It is often difficult to find a border between the models of the mentioned
groups. No classification will be unequivocal.

2.2.3 Pulsed neural models

The results of experimental research show that communication between neurons
is based on the exchange of electrical signals referred to as spikes or pulses. A
pulse sequence is usually referred to as a “spikes train”. The experimental tests
suggest that neurons use the timing of the spikes to encode and compute infor-
mation. These observations have stimulated the growth of research activities in
the field of pulsed neural networks, which capture the spiking nature of neurons
without taking into account their detailed biophysical properties [10, 72]. The
models focus on the question how neurons code and process the information
contained in the spike trains.

Spike trains The sequences of repeated events presenting neuron activity can
be observed by measuring the membrane potential in the neuron body (soma)
(see Fig. 2.2). Short pulses, having an amplitude of about 100 mV and a dura-
tion of 1-2 ms, are usually initiated in the neuron body and propagated to the
next neuron without changes in the form. Since the form of the spikes gener-
ated by a neuron is similar, it means that the information should be contained
in the number and the timing of the spike generation. Therefore, one can record
just a time of action potential generation without taking into account the struc-
ture of pulses. The spike trains are the resulting record of such neurobiological
experiments.

Pulsed neural networks describe the neural activity using the information
contained in spike trains [71, 22, 74]. The form of the spikes is ignored to make
the computational models more transparent.

There are two important groups of pulsed neural networks according to the
levels of available information. The first group, firing-rate models, captures
the schemes of information coding, suggesting that information contained in
the neural code is based on the “ mean firing rate ”. The so-called threshold-
and-fire models describe computational properties of biological neurons and are
based on the assumption that the firing occurs if the neuron state exceeds the
threshold value.

Firing-rate models Firing-rate models describe the neuron activity using the
“firing rate” as a characteristic of the neuron activity. The traditional way to
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Figure 2.2: Schematic representation of the recording of neural activity using a
microelectrode.

define the firing rate is the temporal averaging (see Fig. 2.3a)) that is performed
by dividing the spike number nsp(T ), that is observed during the time interval T ,
by the length of that time interval:

ν =
nsp(T )

T
(2.2)

This definition together with the concept of the rate coding was introduced
by Adrian [2, 3] and successfully used in experiments on sensory neurons and
later in other applications of the neural computational field [22, 67].

This definition of the firing rate can not be used to describe the fast reac-
tion of real neurobiological systems on a changing stimulus; however, it can be
used in models of slowly-changing stimuli [63]. Despite these shortcomings, this
definition is actively used. The concept of mean firing rate has led to the idea
that neurons encode information by regular spike trains, while the irregularities
can be considered as noise.

In the case of time dependent stimulation, other averaging techniques should
be used. If it would be possible to record the spike trains resulting from the
repetition of the same stimulation sequences, one would be able to average
over the number of repetitions. Here the activity of a neuron between [t, t +
∆t] is obtained by dividing the spike number n(t; t + ∆t) by the number of
repetitions K. Dividing by the time interval length, one obtains the spike density

ρ(t) =
1

∆t

n(t; t + ∆t)
K

. (2.3)

Fig. 2.3b) illustrates this definition.
Such averaging allows one to describe fast variation in neural activity by

relating the firing rate to the short time intervals. Spike density defined in this
way is often referred to as time-dependent rate. However, it is obvious that
such a definition should be applied rather in laboratory experiments than as
a description of the functioning of real neural systems. In the real world the
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Figure 2.3: Different definitions of firing rates used in pulsed neural networks
models.

repetition of stimulus would rather be an artifact and response action should
be made on a single stimulus.

The previous scheme can be adopted to describe the response to stimulus
in terms of a time-dependent firing rate if the number of similar neurons which
experienced the same stimulation is large. In this case averaging can be done
over the number of firing neurons (see Fig. 2.3c)) and referred to as “population
activity of neurons”. The activity of a group of neurons is defined as

ν(t) =
1

∆t

n(t; t + ∆t)
N

(2.4)

where N is the number of firing neurons and n(t; t+∆t) is the number of spikes
occurring during [t, t+∆t] of a neural population. This scheme can account for
the fast changing stimuli, but assumes a large number of neurons [50, 26].

During the last years it has been observed that the decoded information
based on the firing rate can not present all of the information contained in
the spike trains. It was found that the timing of the spikes is important for the
processing of information in the neural systems. Therefore, techniques explicitly
treating the timing of the spikes have attracted interest among neurobiologists.
Techniques using temporal, phase and correlation coding are among them [63,
48, 70].

The temporal coding approach, also called time-to-first-spike coding, uses
the information about the first incoming spike time after the refractory period.
The importance of this information can be explained by the fact that during this
period the trigger zone is depolarized and can not generate the second action
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potential.
The concept of coding by phases assumes that the information is encoded

by the phase of a pulse with respect to the background oscillation. It requires
the presence of an “internal clock” in the system which can be described by
oscillations of some variable.

The idea of the correlation/synchronization coding technique is that the
information is coded by the degree of synchronization of the neuron firing.

Threshold-and-fire models In contrast to the firing-rate models, threshold-
and-fire models do not perform averaging of the spike trains, although they
explicitly treat the spike events. They belong to the pulsed neural models, since
the pulse structure is neglected. The neuron activity is approximated by two
possible states: first, the neuron is not active; second, a spike is generated (the
neuron is active). Using threshold-and-fire models, one can receive realistically-
looking results of neural activity represented by a single variable (the activity
of a neuron).

Let us consider the implementation of threshold-and-fire models on the ex-
ample of the Spike Response Model. Mathematically, the state of the neuron i is
described by the variable ui. The neuron is assumed to fire if the state variable
ui reaches the threshold ϑ. The variable ui is analogous to the membrane po-
tential. All the firing times ti (when the activity exceeds the threshold) arrange
the set Fi. The value of the variable ui is determined by two factors: the input
signals from the presynaptic neurons and the contribution of refractoriness after
the firing.

Figure 2.4: The response of the neuron i to the presynaptic spike and the change
of its activity after its own spike. a) The form of the function ui(t) and ηi(t)
at the moment of the spike initiation and immediately after that. b) The form
of the function ui(t) and εij at the moment when the presynaptic spike reaches
neuron i. Adapted from [71].
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The input from the presynaptic neuron j ∈ Γi is equal to the product of the
connection weight ωij and the postsynaptic response εij(t− t

(f)
i ). The function

ε is usually modelled as the kernel function:

εij(t− t
(f)
i ) =

[
exp

(
− t− t

(f)
i

τm

)
− exp

(
− t− t

(f)
i

τs

)]
H(t− t

(f)
i ), (2.5)

where H(t − t
(f)
i ) is the Heaviside step function, and τm and τs are time con-

stants.
The second factor, the refractoriness contribution, represents the function

that sets the state of a neuron to a low value after each firing of the neuron. This
factor is responsible for no-initiation of spikes during the absolute refractory
period, the minimal time between two spikes. The refractoriness factor is usually
defined by the kernel function

ηi(t− t
(f)
i ) = −ϑ exp

(− t− t
(f)
i

τ

)
H(t− t

(f)
i ), (2.6)

Fig. 2.4 shows how these two contributions change the form of the neural
activity ui.

The total activity of a neuron i is given by the formula

ui(t) =
∑

t
(f)
i ∈Fi

ηi(t− t
(f)
i ) +

∑

j∈Γi

∑

t
(f)
i ∈Fi

ωijεij(t− t
(f)
i ) (2.7)

Summing up, the neuron activity in the Spike Response Model depends on
the timing of the spikes and do not take into account the exact mechanisms of
spike generation (dynamics of ionic channels or spatial structure of the dendritic
tree).

The next best-known example in the class of threshold-and-fire models is the
Integrate-And-Fire Model [7, 10]. These models take into account the biophysi-
cal properties of the neuron in an explicit description of the electrical properties
of the membrane. The most important assumption of these models is that the
spike is generated if the membrane is depolarized above the threshold value.

The basic electrical circuit of the Integrate-And-Fire Model is shown in
Fig. 2.5. The circuit consists of a capacitor Cm which results from the in-
sulation property of the membrane, connected in parallel with the resistance
Rm presenting all passive channels. The resistance Rm is associated with the
resting potential of the neuron, i.e. the potential of the cell when no ions are
moved through the channels. In this scheme the neuron’s activity is described
by the membrane potential Vm. The injected current is represented by the sym-
bol Iinject. Erest is the resting potential of the neuron, typically about -70 mV.
Thus, if no current is injected (Iinject = 0) and the system comes to an equi-
librium, the membrane potential Vm will be equal the resting potential Erest.
This electrical circuit of a neural cell is described by the following equation

Iinject = Cm
dVm

dt
+

Vm − Erest

Rm
(2.8)
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Rm

Erest

Cm

Iinject

Vm

Figure 2.5: The basic circuit of an Integrate-And-Fire Model.

The solution of the differential equation (2.8) Vm(t) can be found numeri-
cally. As was mentioned above, in the Integrate-And-Fire Model after reaching
the threshold, the neuron’s activity will be reset to the value Erest. To take into
account the contribution of refractoriness, the resting value of the membrane
potential is maintained for an absolute refractory period ∆t:

Vm(t; t + ∆t) =

{
Erest, Vm > threshold

Vm(t), otherwise.
(2.9)

Summing up the properties of the Integrate-And-Fire Model, most of the
biophysical properties of the neuron are included, along with the simplification
about the threshold structure of the spike generation.

2.2.4 Compartmental modelling

Taking into account the biophysical properties of the neural membranes is possi-
ble in the frame of the compartmental modelling approach. The electrical action
potentials generated by neurons result from the ion flow through the ionic chan-
nels of the cell membrane. The detailed modelling aims to describe the processes
going on at the subcellular level. It includes studying of the anatomical prop-
erties of the neurons, the biophysics of ionic channels, as well as the synaptic
interactions between the cells. This computational approach can be applied to
the neural systems whose anatomical and biophysical properties are well studied
experimentally [35, 33].

The first important breakthrough in this field was made by Hodgkin and
Huxley in 1952 [1] and was based on experiments with the giant squid axon.
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Hodgkin and Huxley considered the functioning of a single cell on the basics of
the differential equations following from the biophysics of the membrane. They
succeeded in building a model that describes the mechanisms of the processes
responsible for action potential generation. The description of the spike gener-
ation and the propagation mechanism was considered on the basis of studies of
the currents through the ionic channels of the neuron membrane. The model
includes detailed information about the biophysics of the ionic mechanisms un-
derlying the neural spike dynamics. Despite the numerous discoveries of other
types of ionic channels, the work of Hodgkin and Huxley remains one of the
basic works in this field.

Detailed descriptions of the neuron morphology can be included in the mod-
els using the compartmental approach. Since it takes into account the pro-
cesses flowing on the microscopic level, it describes the mechanisms of the open-
ing/closing of the ionic channels that are embedded in the cell membrane. The
activation of the ionic channels is usually voltage- and time-dependent, and can
also depend on the presence or absence of various chemical messenger molecules
[28].

One divides the neuron into a definite number of segments, called “compart-
ments”, each of which is presented by a capacitance-resistance circuit (similar
to the one presented in Fig. 2.5). In addition, the current from the ionic and
synaptic channels as well as the current from neighboring compartments are
taken into account. A system of differential equations based on the presenta-
tion of the neuron as an electrical circuit and including the description of the
channel dynamics can be constructed.

The advantage of compartmental modelling is that the microscopic structure
of the cell and the description of the ionic channels are directly included in the
model. It uses anatomical and biophysical data provided by experiments.

2.3 Summary

In this chapter, I have shortly considered the main directions of the develop-
ment in computational neuroscience. First, the main aspects of artificial neural
networks were discussed. After that, I described the principles of modelling real
neurobiological systems using examples of different models. I started with rate
models, ignoring the time structure of spike trains. Then, the pulsed neural
network directly treating the structure of spike trains was presented. Finally,
compartmental models based on the morphological and anatomical structure of
neurons, which are used for detailed modelling, were shortly introduced.

In the next chapter, I will give a more extensive description of detailed
modelling. The reader will find an introduction into the physiology of the real
cell, which helps to understand the functioning of cells. The mathematical
description of conductance-based models, starting from the Hodgkin-Huxley
model and developing into detailed compartmental models, will be given.
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