Aus dem Frauen-, Kinder- und Perinatalzentrum Universitätsklinikum Benjamin Franklin der Freien Universität Berlin Geschäftsführender Direktor Prof. Dr. H. Weitzel Abteilung Frauenklinik und Poliklinik Abteilungsleiter Prof. Dr. H. Weitzel

Role of

Phospholipid Hydroperoxide Glutathione Peroxidase in Hepoxilin A₃ Biosynthesis in Human Platelets

and

Biological Actions of Hepoxilin A₃ on Human Neutrophils

Inaugural-Dissertation in fulfilment for the degree of Doctor rerum medicarum Faculty of Human Medicine Freie Universität Berlin

Submitted by: Mark Sutherland From: East London, South Africa Examiner: Dr. Dr. Dr. h. c. S. Nigam, EO Professor (RSA)

Second examiner: Prof. Dr. Dr. Ch. Geilen

Printed by permission of the Faculty of Human Medicine, Freien Universität Berlin

Graduated on: 17.05.2002

ACKNOWLEDGEMENTS

I am deeply indebted to my project leader and supervisor Dr. Dr. Dr. h.c. S. Nigam, EO Professor (RSA), Department of Gynaecology, Eicosanoid Research Division, Universitätsklinikum Benjamin Franklin, Freie Universität, Berlin for giving me the opportunity to carry out this research in his laboratory and for his supervision and guidance throughout the study. I also wish to express my appreciation for his generosity and hospitality during my stay.

I am also indebted to Prof. S. Schewe, Research Scientist in Dr. Nigam's laboratory, for his continuous guidance and support during this study, and for useful discussions and comments during the writing of this thesis.

I wish to thank all my fellow Ph. D. students in Dr. Nigam's laboratory, past and present, for their help and friendship during my stay in Berlin.

My deep appreciation goes towards Mrs. R. Nigam for her kindness and hospitality and making Berlin feel like a second home.

Finally, my family, to whom I dedicate this work. I will be forever grateful for their constant encouragement and prayers.

SUMMARY

The biosynthesis of hepoxilins in human platelets, the epidermoid carcinoma cell line A431 and the megakaryoblast cell line UT-7 was investigated. To determine which enzymes play a role in regulating the 12-lipoxygenase pathway, and thus hepoxilin synthesis, the roles of the selenoenzymes cytosolic glutathione peroxidase (GPx-1) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) were examined. This study presents for the first time the presence of PHGPx protein, a membrane bound protein, and its activity in human platelets. The presence of PHGPx protein was revealed using two different antibodies that exhibited a positive reaction corresponding to the expected molecular weight of PHGPx in both human platelets and A431 cells. The activity of PHGPx was determined using the PHGPx-specific substrate 1-palmitoyl-2-[(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-eicosatetraenoyl]-phosphatidylcholine. RT-PCR failed to detect PHGPx mRNA in human platelets which was, however, detected in megakaryocytes. Analysis of mRNA beakdown rates in differentiated UT-7 cells revealed a short half-life for PHGPx mRNA as compared to 12-LOX mRNA. Both GPx-1 and PHGPx, seperated on a Sephadex G-100 (SF) column, exhibited 12-HpETE reductase activity. The ratio of GPx-1:PHGPx activity using 12-HpETE as substrate was found to be approximately 60:1 in human platelets, in megakaryoblasts UT-7 and in epidermoid cell line A431. Hepoxilin formation was not observed in the three cell types when arachidonic acid $(100 \ \mu M)$ was used as substrate. In the presence of the selenoenzyme inhibitor iodoacetate, which inhibits both PHGPx and GPx-1, an ~80% inhibition of 12-HETE formation together with a concomitant increase of 12-HpETE by two orders of magnitude was observed. This was accompanied by the formation of hepoxilin A₃ and B₃. Both HXA₃ and HXB₃ were detected, in the absence of iodoacetate, when 12-HpETE was used as substrate. Selenium deficient UT-7 cells, which exhibited PHGPx activity but no measurable GPx-1 activity, reduced 12-HpETE, albeit at a slower rate as compared to wild-type cells. A 10-fold increase in HXA₃ formation was observed in UT-7 cells in the presence of iodoacetate. It is therefore proposed that both GPx-1 and PHGPx are involved in regulating the 12-LOX pathway in platelets and other cells by reducing the hydroperoxide tone and diverting the isomerisation route to the reduction route, thus controlling hepoxilin biosynthesis. Moreover, hepoxilin A₃ was found to up-regulate the expression of PHGPx mRNA in both A431 and HeLa cells, suggesting that HXA₃ may function as a stress-induced protective eicosanoid.

In earlier reports and reviews, it was reported that the free acid form of hepoxilin A_3 , unlike its methyl ester, does not enter neutrophils and other cells. We report in the present study that the free acid of HXA₃ is capable of stimulating intact cells. Various experiments were performed to determine its biological activity. Thus, hepoxilin A_3 was found to induce chemotaxis at concentrations as low as 30-40 nM. At concentrations around 1 μ M, HXA₃ gave rise to an instantaneous release of intracellular calcium that caused a slight liberation of arachidonic acid. Pretreatment of neutrophils with submicromolar concentrations of HXA₃ significantly blunted fMLP-induced arachidonic acid release and resulted in a 2-3 fold increase in fMLP-induced cAMP release. However, HXA₃ did not induce respiratory burst, oxygen uptake or aggregation. The free acid was found to induce A431 and HeLa cell proliferation as determined by thymidine incorporation assays. The present study thus provides ample evidence that HXA₃ is biologically active towards cells in its unesterified form.

i	INDE	X
i		

	Page
Acknowledgements	i
Summary	ii
Index	iv
List of figures	viii
List of tables	ix
Abbreviations	Х
Chapter 1 INTRODUCTION	
1.1 The arachidonic acid cascade	1
1.2 The lipoxygenases	2
1.2.1 Classification of the Lipoxygenases	2
1.3 The 12-Lipoxygenase Pathway	5
1.3.1 Heterogeneity of the 12-Lipoxygenases	5
1.3.2 Platelet-type vs. Leukocyte-type 12-Lipoxygenase	7
1.3.2.1 Primary structure and multifunctional catalysis	7
1.3.2.2 Substrate Specificity	8
1.3.2.3 Suicide Inactivation	8
1.3.3 The Bifurcated Nature of the 12-LOX pathway	9
1.4 Role of oxidative stress and the hydroperoxide tone in eicosanoid metabolism	9
1.5 Heterogeneity of 12-HpETE reducing enzymes	11
1.5.1 The Selenium-dependent peroxidases	12
1.5.1.1 Localisation and structure	12
1.5.1.2 Role of the selenium status	13
1.5.1.3 Role of GPx-1	13
1.5.1.4 Role of PHGPx	14
1.5.2 The Selenium-independent enzymes	14
1.6 Regulation of the 12-LOX pathway by seleno-enzymes	15
1.6.1 Effect of selenium deficiency on the 12-LOX pathway	15
1.6.2 PHGPx as an inhibitor of lipoxygenases	16
1.7 Heterogeneity of catalysts involved in hepoxilin synthesis	17
1.8 Biological role of 12-LOX derived eicosanoids	18
1.8.1 Biological role of 12-HpETE and 12-HETE	18

1.8.2 Biological Role of HXA ₃	19
1.9 Role of hepoxilin in disease	21
1.10 Objectives	23

v

Chapter 2 MATERIALS AND METHODS

2.1	Materials	25
2.2	Methods	26
	2.2.1 Cell preparation and pretreatments	26
	2.2.2 Cell lines and culturing	26
	2.2.3 Preparation of 1-Palmitoyl-2-[(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-	
	eicosatetraenoyl]-phosphatidylcholine (PAPC-OOH)	27
	2.2.4 Assay of enzymatic activity	27
	2.2.5 Rate of breakdown of PHGPx mRNA in UT-7 cells	27
	2.2.6 AA metabolism in platelets, A431 and UT-7 cells.	28
	2.2.7 HXA ₃ formation by mammalian 12-Lipoxygenases	28
	2.2.8 GC-MS analysis of eicosanoids	29
	2.2.9 HPLC analysis of eicosanoids	29
	2.2.10 Detection of PHGPx and 12-LOX by Reverse Transcription-PCR	29
	2.2.11 Quantification of PHGPx expression	30
	2.2.12 Measurement of chemotaxis	30
	2.2.13 Arachidonic acid release	30
	2.2.14 LTB ₄ release	31
	2.2.15 Cyclic-adenosine monophosphate (cAMP) release	31
	2.2.16 Intracellular Ca ²⁺ measurement	31
	2.2.17 PMN aggregation	32
	2.2.18 Phospholipid remodelling	32
	2.2.19 Cell proliferation	32
	2.2.20 Superoxide anion generation	33
	2.2.21 Measurement of oxygen uptake	33
	2.2.22 Western blotting	33

Chapter 3 RESULTS

I 12-LIPOXYGENASE PATHWAY IN PLATELETS AND OTHER CELLS

3.1 Detection of PHGPx and determination of its activity

3.1.1 Detection by Western Blotting	34
3.1.2 Detection by PCR	35
3.1.2.1 Occurrence of short-lived PHGPx mRNA in human megakaryocyt	es 36
3.1.3 PHGPx and GPx-1 activity in human platelets	36
3.2 Measurement of arachidonic acid and the 12-LOX metabolites 12-HpETE, 12-HETE	
and hepoxilins	
3.2.1 Optimisation of the extraction	39
3.2.2 Identification of the end products by HPLC and quantification	40
3.2.3 Identification of the end products by GC-MS and quantification	42
3.3 Regulatory role of selenoenzymes on the 12-LOX pathway	43
3.3.1 Both GPx-1 and PHGPx reduce 12-HpETE in vitro	43
3.3.2 Role of selenoenzymes in regulating the 12-LOX pathway in vivo	45
3.3.3 Distinct roles for GPx-1 and PHGPx on 12-HpETE reduction	47
3.4 Hepoxilin formation in human platelets	49
3.4.1 Hepoxilin formation with arachidonic acid as substrate	49
3.4.1.1 Identification of two isomers of trioxilin A ₃ :-	
8,11,12-TriHETrE and 8,9,12-TriHETrE	51
3.4.2 Hepoxilin formation from 12-HpETE	52
3.5 Hepoxilin formation in other cell systems	54
3.5.1 The megakaryoblast cell line UT-7	54
3.5.2 The epidermoid tumour cell line A431	56
3.5.2.1 Hepoxilin formation from arachidonic acid	56
3.5.2.2 Hepoxilin formation from 12-HpETE	57
3.6 Hepoxilin formation by platelet- and leukocyte type 12-LOX	58
3.6.1 Oxygen uptake by mammalian lipoxygenases	58
3.6.2 Hepoxilin formation by the mammalian lipoxygenases	59
3.6.3 Effect of inactivation of mammalian lipoxygenases on hepoxilin formation	60
3.7 Biological effects of HXA ₃ on tumour cells	61
3.7.1 Effect of Eicosanoids on PHGPx mRNA Transcription	61
3.7.1.1 Dose-dependent effect of HXA ₃ on PHGPx mRNA transcription	62
3.7.1.2 Time Course of PHGPx mRNA Induction	63
3.7.2 Effect of HXA ₃ on Cell Proliferation	64
II BIOLOGICAL ACTIONS OF HXA3 ON HUMAN NEUTROPHILS	
3.8 Chemotactic activity of HXA ₃	67

vii

3.9 Calcium release	67
3.10 Aggregatory activity of HXA ₃	68
3.11 cAMP release	70
3.12 Arachidonic acid release and leukotriene B ₄ formation	71
3.13 Respiratory burst	74
3.14 Regulatory volume decrease	74
Chapter 4 DISCUSSION	
4.1 Evidence for the activity and occurrence of PHGPx in human platelets	76
4.2 Role of the glutathione peroxidases in regulating HXA_3 synthesis in human platelets	77
4.3 Distinct roles of the glutathione peroxidases in regulating HXA ₃ synthesis in other	
cell types	80
4.4 Role of mammalian lipoxygenases in HXA ₃ synthesis	81
4.5 Regulation of PHGPx mRNA transcription by eicosanoids	82
4.6 Biological actions of HXA ₃ on human neutrophils	83
Chapter 5 CONCLUSION	86
Chapter 6 REFERENCES	89
PUBLICATIONS	109
POSTERS	110
CURRICULUM VITAE	111

LIST OF FIGURES

- Figure 1. Western blot to detect human PHGPx in human platelets.
- Figure 2. RT-PCR detection of the messenger of PHGPx and 12-LOX in human platelets, megakaryocytes and A431 cells.
- Figure 3. PHGPx mRNA breakdown in PMA-differentiated megakaryoblasts.
- Figure 4. PHGPx activity in A431 and platelet cytosol using PAPC-OOH as substrate.
- Figure 5. GPx-1 activity in platelet cytosol using H₂O₂ as substrate.
- Figure 6. UV-spectrum and retention time of AA, 12-HETE, 12-HPETE and 12-HHTrE.
- Figure 7. HPLC derived calibration curves for AA and 12-HETE.
- Figure 8. Mass spectrum and fragmentation pattern of Trioxilin A₃ and Hepoxilin B₃.
- Figure 9. GC-MS derived calibration curves for Trioxilin A₃ and Hepoxilin B₃.
- Figure 10. Glutathione peroxidase activity in platelet cytosol fractions separated on a sephadex G-100 column.
- Figure 11. GPx-1 and PHGPx activity in human platelet fractions with 12-HpETE as substrate.
- Figure 12. HPLC profiles from platelet extracts incubated with AA in the absence and presence of iodoacetate.
- Figure 13. 12-HpETE reduction by wild type- and selenium deficient UT-7 cells.
- Figure 14. GC-MS profile showing the formation of 12-HETE in platelet extracts incubated with AA in the absence and presence of ETYA.
- Figure 15. GC-MS profiles showing the formation of trioxilin A₃ in platelet extracts incubated with AA in the absence and presence of iodoacetate.
- Figure 16. GC-MS profiles showing the formation of HXB₃ in platelet extracts incubated with AA in the absence and presence of iodoacetate.
- Figure 17. Mass spectrum and fragmentation pattern of the two proposed isomers of Trioxilin.
- Figure 18. RT-PCR detection of the messenger for 12-LOX in platelets and UT-7 cells.
- Figure 19. Effect of 12-HpETE concentration on the inhibitory effect of iodoacetate.
- Figure 20. Trioxilin A₃ and HXB₃ formation by wild type UT-7 cells incubated with 12-HpETE in the absence and presence of iodoacetate.
- Figure 21. Hepoxilin formation by wild type- and heat inactivated A431 cells.
- Figure 22. Concentration dependent effect of HXA₃ on PHGPx mRNA levels in A431 cells.
- Figure 23. Time course of PHGPx mRNA transcription in HeLa cells treated with 12-HpETE.
- Figure 24. Effect of 12-LOX pathway products on A431 cell proliferation.

- Figure 26. HXA₃ induced chemotaxis of human neutrophils.
- Figure 27. Calcium release in human neutrophils by the free acid of HXA₃.
- Figure 28. Effect of HXA₃ on fMLP induced human neutrophil aggregation.
- Figure 29. Effect of HXA₃ on fMLP induced cAMP release in human neutrophils.
- Figure 30. Effect of the free acid of HXA₃ on the initial phase of fMLP-induced AA release.

LIST OF TABLES

- Table 1. PHGPx and GPx activity in human platelets, A431, UT-7 and RINm5F cells
- Table 2. Effect of pH on the extraction of 12-LOX derived metabolites.
- Table 3. Effect of iodoacetate on AA metabolism in human platelets.
- Table 4. Formation of hepoxilins in human platelets treated with AA.
- Table 5. Formation of hepoxilins and 12-HETE in platelets treated with 12-HpETE.
- Table 6. Effect of iodoacetate and ETYA on 12-HpETE reduction in human platelets.
- Table 7. Oxygen uptake by mammalian lipoxygenases.
- Table 8. Hepoxilin formation by mammalian 12-LOX's.
- Table 9. Hepoxilin formation by the pseudolipohydroperoxide activity of mammalian 12-LOX's.
- Table 10. Effect of various eicosanoids on PHGPx mRNA transcription in HeLa and A431 cells.
- Table 11. Effect of HXA₃ on fMLP induced neutrophil aggregation.
- Table 12. Blunting effect of HXA₃ on fMLP-induced AA release.
- Table 13. Effect of HXA₃ on the phosphatidylthanolamine pool in [1-14C]arachidonic acid labelled human neutrophils.
- Table 14. Effect of HXA₃ on regulatory volume decrease in human neutrophils as determined by flow cytometry.

ABBREVIATIONS

12-HETE	- 12S-Hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid
12-HHTrE	- 12S-Hydroxy-5Z,8E,10E-heptadecatrienoic acid
12-HpETE	- 12S-Hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid
13-HODE	- 13S-Hydroxy -9Z,11E-octadecadienoic acid
5-HpETE	- 5S-Hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
8,9,12-TriHETrE	- 8,9,12-Trihydroxy-5Z,10E,14Z-eicosatrienoic acid
8,11,12-TriHETrE	- 8,11,12-Trihydroxy-5Z,10E,14Z-eicosatrienoic acid
AA	- Arachidonic acid (5Z,8Z,11Z,14Z-eicosatetraenoic acid)
BSA	- Bovine serum albumin
cAMP	- Cyclic-adenosine monophosphate
DMEM	- Dulbeco`s Modified Eagles Medium
EDTA	- Ethylenediaminetetraacetic acid
ELISA	- Enzyme linked immuno-sorbent assay
ETYA	- 5,8,11,14-Eicosatetraynoic acid
FCS	- Fetal calf serum
fMLP	- N-Formyl-Methionine-Leucine-Phenylalanine
GC-MS	- Gas chromatography – Mass spectrometry
Glc	- Glucose
GM-CSF	- Granulocyte Macrophage Colony-Stimulating Factor
GPx-1	- Cytosolic glutathione peroxidase
HPLC	- High pressure liquid chromatography
HXA ₃	- Hepoxilin A ₃
	8(S,R)-hydroxy-11,12-epoxyeicosa-5Z,9E,14Z-trienoic acid
HXB ₃	- Hepoxilin B ₃
	10(S,R)-hydroxy-11,12-epoxyeicosa-5Z,8Z,14Z-trienoic acid
IMEM	- Iscove's Modified Eagles Medium
LOX	- Lipoxygenase
LTB ₄	- Leukotriene B ₄
PAPC	- 1-palmitoyl-2-arachidonoyl phosphatidylcholine
PBS	- Phosphate-buffered saline (phosphate buffer)
PCR	- Polymerase chain reaction
PHGPx	- Phospholipid hydroperoxide glutathione peroxidase

- Phorbol 12-Myristate 13-Acetate
- Polymorphonuclear leukocytes
- Reverse transcription – polymerase chain reaction
- Thin-layer chromatography
- Tris(hydroxymethyl)aminomethane
- Ultraviolet