8 Anhang

8.1 Oberflächenplasmonresonanz-Spektroskopie

Schematischer Aufbau eines Oberflächenresonanzsystems.

Schematisch dargestellt ist eine Flusszelle, die an eine Dextran-beschichtete Oberfläche eines Sensor-Chips angrenzt. An der Dextranschicht ist ein Ligand kovalent immobilisiert. Auf dem darunterliegenden Goldfilm wird über ein Prisma polarisiertes Licht eingestrahlt. Eine Massenzunahme an der Sensor-Chipoberfläche, wie sie durch die Bindung eines Analyten an den Liganden entsteht, bewirkt eine Änderung des Brechungsindex der umgebenden Lösung und damit des Reflexionswinkels des reflektierten Lichtes, das über photoelektronische Dioden detektiert wird.

Das Resonanzsignal (RU) nimmt zu, wenn der Analyt über die mit dem Liganden beschichteten Chipfläche fließt und es zu einer Interaktion beider kommt (Assoziationsphase).Wenn der Analyt über die Chipoberfläche fließt, die mit dem Liganden beschichtet ist, steigt das Resonanzsignal (RU) an, sofern der Analyt mit dem Liganden interagiert (Assoziationsphase). Im Laufe der Infusion nähert sich der Analyt dem Assoziations- und Dissoziationsgleichgewicht an. Nach der Infusion beginnt die Dissoziation des Analyten, welches durch den langsamen Abfall des Resonanzsignals gekennzeichnet ist. Am Ende der Dissoziationsphase schließt sich die Regenerationsphase an, um nicht dissoziierten Proteine von der Chipoberfläche zu waschen und die Basislinie (gepunktete Linie) zu regenerieren.

- 8.2 Reinigungsfraktionen verwendeter Proteine
- 8.2.1 Reinigungs- und Elutionsfraktionen verwendeter MBP-Fusionsproteine der zweiten extrazellulären Schleife von Claudin-3 und –5

Proteinreinigungsfraktionen der rekombinanten Claudin-Konstrukte.

Beispielhaft sind in der linken SDS-PAGE die Reinigungsfraktionen einer affinitätschromatographischen Reinigung von MBP-Cld5₁₄₀₋₁₆₁ aufgetrennt worden. In dem SDS-Polyacrylamidgel rechts daneben sind Elutionsfraktionen der Proteine GST (27 kDa), MBP (42,9 kDa), MBP-Cld5₁₃₈₋₁₆₇ (46,5 kDa), MBP-Cld3₁₃₇₋₁₆₆ (46,4 kDa), MBP-Cld3₁₄₀₋₁₆₁ (45,6 kDa) und MBP-Cld5₁₄₀₋₁₆₁ (45,5 kDa) dargestellt. Von der ungebundenen Fraktion (U) wurde ein viertausendstel, von den Waschfraktionen (W1, W2) ein fünftausendstel und von den Elutionsfraktionen (E) im linken Gel ein hundertstel, im rechten Gel 10 μ g auf eine 12% ige SDS-Polyacrylamidgel geladen. Die Proteine in dem SDS-Polyacrylamidgel wurde anschließend gegen CoomassieTM Brilliant Blue G250 gefärbt.

8.2.2 Reinigungs- und Elutionsfraktionen verwendeter GST- und MBP-Fusionsproteine von *Clostridium perfringens* Enterotoxin

Proteinreinigungsfraktionen der rekombinanten Clostridium perfringens Enterotoxin-Konstrukte.

sind dem linken SDS-Polyacrylamidgel die Reinigungsfraktionen Beispielhaft in einer affinitätschromatographischen Reinigung von GST-CPE₁₁₆₋₃₁₉ (49 kDa) und in dem mittleren SDS-Polyacrylamidgel von GST-CPE₂₉₀₋₃₁₉ (29 kDa) aufgetrennt worden. In dem rechten SDS-Polyacrylamidgel sind die Elutionsfraktionen der Proteine GST (27 kDa) und MBP-CPE₁₁₆₋₃₁₉ (63 kDa) dargestellt. Vom Zelllysat (L), dem Zentrifugationsüberstand (Ü) und der ungebundenen Fraktion (U) wurde je ein viertausendstel, von dem resuspendierten Zentrifugationspellet (P) ein tausendstel, von den Waschfraktionen (W) ein fünftausendstel und von den Elutionsfraktionen (E) ein hundertstel geladen. Die Proteine in der SDS-Polyacrylamidgel wurde anschließend gegen CoomassieTM Brilliant Blue G250 gefärbt.

8.3 Quantifikation der Substitutionsanalyse aus Abbildung 3.26

	Wert1	Wert2	ø	Wert1	Wert2	ø	Wert1	Wert2	ø	Wert1	Wert2	ø			
	A			D			E			F			G		
D145	0,382	0,390	0,386	0,691	0,511	0,601	0.667	0,905	0,786	0,464	0,540	0.502	0,592	0,711	0,652
F146	0,300	0,347	0,324	0,192	0,392	0,292	0,173	0,436	0,304	0,464	0,669	0,566	0,262	0,424	0,343
Y147	3,200	2,272	2,736	1,202	1,276	1,239	0,686	1,284	0,985	1,594	1,864	1,729	0,880	1,445	1,162
N148	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000
P149	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,003	0,002	0,000	0,000	0,000
L150	0,017	0,000	0,009	0,024	0,000	0,012	0,026	0,000	0,013	0,040	0,000	0,020	0,036	0,000	0,018
V151	0,214	0,241	0,228	0,000	0,000	0,000	0,033	0,000	0,016	0,156	0,045	0,101	0,000	0,000	0,000
P152	0,038	0,030	0,034	0,000	-0,023	-0,012	0,000	-0,024	-0,012	0,000	-0,021	-0,011	0,000	-0,023	-0,011
E153	0,630	0,752	0,691	2,560	1,457	2,009	1,3/4	0,968	1,171	0,624	0,851	0,738	0,212	0,389	0,300
A134 0455	7 162	0,960	1,098	0,000	0,000	0,000	0,201	0,042	0,122	0,874	1,859	1,367	1.265	1 010	1 100
Q133 K156	0.534	0,023	0.465	0,041	0,000	0,020	0,000	0,000	0,000	1,750	0.744	0.958	0.298	0.269	0.283
R157	0,351	0,000	0,405	0,000	0,000	0,040	0,000	0,000	0,003	0.962	0,744	0,000	0,200	0,200	0,203
E158	1,859	2,304	2.081	1.528	1,480	1,504	2.345	1.278	1.811	6,556	3,630	5.093	4,106	1.812	2,959
M159	0,728	1,568	1,148	0,570	0,677	0,623	1,073	0,560	0,816	2,496	1,976	2,236	1,989	1,420	1,704
	Н			1			ĸ			1			м		
D145	0.510	0.826	0.668	. 0.500	0.721	0.611	0.602	0.618	0.610	- 0.460	0.535	N 497	0.521	0.751	0.636
F146	0,328	0,820	0.558	0,183	0,538	0,361	0,002	0.695	0.463	0,400	0,700	0,451	0,021	0.559	0,340
Y147	0.445	0.864	0.655	0.470	1.160	0.815	0.585	1.487	1.036	0.569	1.504	1.036	0.380	1,153	0.767
N148	0,000	0,004	0,002	0.000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
P149	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
L150	0,028	0,000	0,014	0,016	0,000	0,008	0,033	0,000	0,017	0,734	0,907	0,821	0,045	0,000	0,022
V151	0,000	0,000	0,000	0,667	0,999	0,833	0,028	0,102	0,065	0,703	0,832	0,768	0,015	0,135	0,075
P152	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
E153	0,296	0,771	0,534	0,181	0,315	0,248	0,457	0,491	0,474	0,361	0,653	0,507	0,747	1,234	0,990
A154	0,148	0,257	0,203	1,959	1,006	1,482	0,468	0,427	0,448	1,057	0,977	1,017	0,124	0,317	0,221
Q155	0,183	0,656	U,419	5,098	3,138	4,118	0,539	0,307	0,423	6,443	3,098	4,//1	1,481	1,582	1,532
K156	0.116	6 262 0	n 190	530.0	0.310	0.286	1 247	1 251	1 2/9	1 09/	0.680.0	0.887	nean	0.472	0.581
R150	0,032	0,203	0,100	0,200	0,510	0,200	0.833	0.428	0.630	0.389	0,500	0,007	0,000	0,472	0,301
E158	1.381	1.600	1.491	3,390	1.907	2.649	2,932	1.539	2.236	4.888	3,539	4.213	3,736	2.594	3.165
M159	0,573	1,090	0,832	2,008	1,422	1,715	3,105	2,208	2,657	2,522	1,624	2,073	1,566	1,376	1,471
	N			Р			Q			R			S		
D145	0.215	0.580	0.398	0.278	0.535	0.406	0.270	0.662	0.466	0.238	0.397	0.317	0.363	0.671	0.517
F146	0,143	0,491	0,317	0,153	0,516	0,334	0,167	0,443	0,305	0,412	0,860	0,636	0,134	0,477	0,305
Y147	0,614	2,801	1,707	0,693	1,791	1,242	0,435	1,619	1,027	0,987	2,203	1,595	1,722	2,043	1,883
N148	0,257	1,090	0,674	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,016	0,008
P149	0,000	0,000	0,000	0,763	1,274	1,019	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
L150	0,039	0,000	0,020	0,000	0,000	0,000	0,022	0,000	0,011	0,036	0,000	0,018	0,030	0,000	0,015
V151	0,000	0,000	0,000	0,034	0,000	0,017	0,163	0,247	0,205	0,668	0,741	0,705	0,000	0,000	0,000
P152	0,000	0,000	0,000	1,252	1,440	1,346	0,000	0,000	0,000	0,000	0,000	0,000	0,027	0,124	0,076
E153	1,467	1,664	1,566	0,000	0,000	0,000	1,684	1,479	1,582	4,163	1,895	3,029	0,533	0,950	0,741
A134 0155	4 326	2,657	3 404	0,000	0,000	0,000	1 529	0,524 1 257	1 302	1,217	2 311	1,405	4,624	3,220	0,249 3 027
K156	+,520 0.587	,007 	0 410	0,009	0.064	0.052	0.683	η ,237 Π 786	0.735	2 179	1 808	1 993	0.419	0,220	0.384
R157	0,307	0,235	0,410	0,041	0,004	0,032	0,000	0,700	0,733	1.407	1,116	1,000	0,413	0,340	0,398
E158	3,376	2.086	2.731	1.283	1.453	1.368	3,314	1.550	2.432	4.091	2.009	3.050	2,286	1.628	1,957
M159	2,496	1,312	1,904	1,297	1,102	1,200	1,719	1,229	1,474	2,646	1,516	2,081	1,941	0,977	1,459
	Т			V			W			Y					
D145	0,261	0,429	0,345	0,195	0,436	0,316	0,100	0,134	0,117	0,036	0,272	0,154	1		
F146	0,103	0,489	0,296	0,082	0,389	0,236	0,218	1,084	0,651	0,069	0,517	0,293	1		
Y147	0,885	1,320	1,103	0,611	1,369	0,990	1,175	1,752	1,464	0,347	0,728	0,538			
N148	0,017	0,082	0,050	0,000	0,000	0,000	0,000	0,015	0,007	0,000	0,000	0,000			
P149	0,000	0,000	0,000	0,000	0,000	0,000	0,017	0,000	0,009	0,000	0,001	0,001			
L150	0,025	0,000	0,012	0,005	0,000	0,003	0,063	0,021	0,042	0,020	0,000	0,010			
V151	0,033	0,045	0,039	1,326	0,945	1,135	0,000	0,001	0,000	0,000	0,031	0,015			
P102	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000			
E103 A154	0,428	0,645	0,536	0,533	0,468	0,511	0,700	0,504	0,602	0,302	0,805	0,553			
0155		2,304	3 5/2	0,694 0,501	0,705	0,740	1,100 N N N	1 259	1,026	0,431	0,929	0.000,0			
K156	0.365	0.430	0.398	0,001	0,701	0,000	0,544	0 902	0.836	0,207	0.364	0,400			
R157	0,274	0,265	0,269	0,264	0,237	0,250	0,448	0,386	0,417	0,147	0,129	0,138	1		

In der Substitutionsanalyse der Bindung von GST-CPE₁₁₆₋₃₁₉ an Peptide der 2.EZS von Cld3 wurde der BLU-Durchschnittswert von 30 Einzelspots mit der $Cld3_{wt}$ -Sequenz als 100 % CPE-Bindung definiert (siehe *Spots* in der ersten Reihe Abb. 3.26). Alle anderen *Spots* wurden auf diesen Durchschnittswert bezogen und sind hier in n-fach Cld3-CPE-Bindung dargestellt. Die relativen Werte für zwei unabhängige Experimente (Wert1 und Wert2) und der dazugehörende Durchschnittswert (Ø) sind in der Tabelle für jeden *Spot* aufgeführt. Anhand der Aminosäureposition (linke Reihe neben den Kästen) und der Art der Aminosäuresubstitution (in jedem Kasten oben links) lassen sich die Peptidspots aus Abb. 3.26 identifizieren. Wt-*Spots* sind "fett" hervorgehoben. Die relativen Durchschnittswerte stark bindender *Spots* sind rot hervorgehoben.