EROSIONSRINNEN AUF DEM MARS

Morphologie, Verbreitung, Genese und zeitliche Einordnung der Bildungsprozesse

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften

vorgelegt am Fachbereich Geowissenschaften der Freien Universität Berlin

Dennis Reiß

Berlin, November 2005

- 1. Gutachter: Prof. Dr. Gerhard Neukum
- 2. Gutachter: PD Dr. Ralf Jaumann
- Tag der Disputation: 24.11.2005

Vorwort

Vorliegende Arbeit wurde am Institut für Planetenforschung (bis 2003: Institut für Planetenerkundung und Weltraumsensorik) des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) in Berlin-Adlerhof erstellt. Während der Arbeit bestand eine enge Kooperation mit dem Institut für Geologische Wissenschaften der Freien Universität Berlin.

Herr Prof. Dr. G. Neukum betreute die Arbeit in seiner Eigenschaft als Mitglied der Fakultät für Geowissenschaften der Freien Universität Berlin. Ihm gilt an dieser Stelle mein besonderer Dank, nicht nur für die Bereitstellung des Arbeitsplatzes und die Nutzung der Einrichtungen der Institute, sondern auch für die Diskussionen und die Hilfestellungen, die zum Gelingen der Arbeit beitrugen.

Herrn Dr. R. Jaumann, Leiter der Abteilung Planetare Geologie am Institut für Planetenforschung des DLR, danke ich für die Bereitstellung des Arbeitsplatzes und vielen wertvollen Anregungen und Diskussionen. Sein Engagement und seine Betreuung verdienen meinen besonderen Dank.

Meinem Kollegen Herrn Dipl.-Geol. Stephan van Gasselt danke ich für die langjährige Freundschaft und die angenehme Zusammenarbeit, die zahlreiche fachliche Diskussionen und Anregungen einschloß.

Meinem Kollegen Herrn Dipl.-Geol. Ernst Hauber danke ich für die angenehme Zusammenarbeit und fachlichen Diskussionen.

Für die geduldige Unterstützung auf dem Gebiet der Datenverarbeitung möchte ich mich recht herzlich bei Dipl.-Phys. Marita Wählisch und Dipl.-Ing. Frank Scholten bedanken.

Bedanken möchte ich mich auch bei Frau Ursula Wolf, die mir bei der Erstellung der Altersbestimmungen behilflich war.

Abschließend möchte ich Dipl.-Geol. R. Wagner, Dr. J. Oberst, Dipl.-Geol. K. Stephan und A. Rexin meinen Dank für die gute Zusammenarbeit aussprechen. Allen Kollegen, die durch ihre Unterstützung zum Gelingen der Arbeit beitrugen, sei hier ebenfalls gedankt.

Erklärung

Hiermit versichere ich, daß ich die vorgelegte Dissertation selbst verfaßt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Dennis Reiß, Berlin, den 15. Januar 2006

Präambel

Zwei veröffentlichte Artikel basieren auf Kapitel der vorliegenden Arbeit.

Kapitel 7 untersucht das relative Alter von Erosionsrinnen im Nirgal Vallis. Ein auf diesem Kapitel basierender Artikel (Reiss, D., van Gasselt, S., Neukum, G. and Jaumann, R., Absolute dune ages and implications for the time of formation of gullies in Nirgal Vallis, Mars) erschien 2004 im Journal of Geophysical Research (Vol. 109, E06007, doi:10.1029/2004JE002251). Als Erstautor machte ich die Auswertung, schrieb das Manuskript und entwarf die Abbildungen. S. van Gasselt schrieb die Software für die Auswertung der Kraterzählungen und kommentierte das Manuskript. G. Neukum diskutierte Methoden und Ergebnisse. R. Jaumann diskutierte Ergebnisse und kommentierte das Manuskript.

Kapitel 8 beschreibt und untersucht Erosionsrinnen im Russell Krater Dünenfeld. Ein auf diesem Kapitel basierender Artikel (Reiss, D. and Jaumann, R., Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field) erschien 2003 im Geophysical Research Letters (Vol. 30, 1321, doi:10.1029/2002GL016704). Als Erstautor machte ich die Auswertung, schrieb das Manuskript und entwarf die Abbildungen. R. Jaumann diskutierte Ergebnisse und kommentierte das Manuskript.

Es sagte, ihm sei das ganze Geheimnis bekannt ... Es sah die beiden Himmelsbewohner vom Kopf bis zu den Füßen an und erklärte ihnen, daß sie selber, ihre Monde, ihre Sonnen und ihre Sterne einzig und allein für den Menschen gemacht seien. Bei dieser Bemerkung fielen unsere beiden Reisenden einer auf den anderen. Sie erstickten beinah vor nicht zu unterdrückendem Lachen ... Voltaire, *Mikromegas*, 1752

Inhaltsverzeichnis

1	Ein	führun	g und Zielsetzung	1				
2	Pla	Planet Mars 3						
	2.1	Histori	ischer Überblick	4				
	2.2	Astron	nomische Parameter	5				
	2.3	Geolog	gie und Topographie	5				
	2.4	Morph		10				
		241	Fluviatile Formen	10				
		2.4.2	Sedimentation	13				
		2.1.2 2/1/3	Glaziale/Periglaziale Formen	15				
		2.4.0 2 / /	Rampart Krater	17				
		2.4.4 2.4.5	Polarrogionon	18				
		2.4.0		10				
		2.4.0	Aonsche Flozesse	19				
	0.5	2.4.7	Massenbewegungen	20				
	2.5	Klima		28				
		2.5.1	Atmosphäre	29				
		2.5.2	Temperaturen und Drücke	29				
		2.5.3	Wasser	31				
		2.5.4	Kohlendioxid	35				
		2.5.5	Klimawandel	36				
0	ъ <i>т</i> •							
3	IVI1S	sionen	, Datensatze und Methoden	37				
	3.1	Viking	g-Missionen	37				
	3.2	Mars (Global Surveyor (MGS)	40				
		3.2.1	Mars Orbiter Camera (MOC)	40				
		3.2.2	Mars Orbiter Laser Altimeter (MOLA)	43				
		3.2.3	Thermal Emission Spectrometer (TES)	43				
	3.3	Verkni	üpfung von Datensätzen	44				
	3.4	Alters	bestimmung durch Kraterzählungen	46				
4	Free	aionani	mon ouf don Endo	40				
4		SIONSEL		49				
	4.1	Morph	1010g1e	51				
	4.2	Vorkor	mmen	52				
	4.3	Auslôs	ende Faktoren	53				
5	Ero	sionsri	nnen auf dem Mars	57				
	5.1	Allgem	neine Merkmale	57				
	5.2	Theori	ien zum Formationsprozess	64				
	0.2	5.2.1	Wasser	64				
		5.2.1	Kohlandiovid und CO. Hydrata	66				
		5.0.2	The drammit advances	66				
	5.9	0.2.0 Vl		67				
	ე.პ	VORKOR	IIIIIIIIII	07				
		5.3.1 5.9.2	Giopale verbreitung	67				
		5.3.2	Regionale Verbreitung	68				
		5.3.3	Globale Häufigkeitsverteilung	68				
		5.3.4	Breitengradabhängige Häufigkeit	69				
		5.3.5	Asymmetrische Hemisphärenverteilung	71				
		5.3.6	Absolute Höhenlage	72				
		5.3.7	Exposition	73				

	$5.4 \\ 5.5$	Interpretation und Diskussion der Ergebnisse	$75 \\ 79$
6	Мо	rphologische Altersklassifikation von Erosionsrinnen	81
U	6 1	Morphologische Klassifikation	81
	0.1	6.1.1 Erhaltene Erosionsrinnen	81
		6.1.2 Degradierte Erosionsrinnen	82
		6.1.3 Bekraterte Erosionsrinnen	83
	62	Verbreitung	85
	6.3	Absolute Höhenlage	87
	6.4	Exposition	89
	6.5	Interpretation und Diskussion der Ergebnisse	93
	6.6	Schlußfolgerungen	94
7	Rela	ative Altersbestimmung der Erosionsrinnen im Nirgal Vallis	97
	7.1	Lage des Untersuchungsgebiets	97
	7.2	Dünen	98
	7.3	Erosionsrinnen	100
	7.4	Methodik	102
	7.5	Ergebnisse und Unsicherheiten	104
	7.6	Diskussion	106
	7.7	Schlußfolgerungen	107
8	Sais	onale Beobachtungen des Russell Krater Dünenfeldes	109
	8.1	Morphologie und Vorkommen	109
	8.2	Saisonale Beobachtungen	115
	8.3	Altersabschätzung des Dünenfeldes	117
	8.4	Diskussion	120
	8.5	Schlußfolgerungen	122
9	Zeit	liche Einordnung der Bildungsprozesse	123
10	Zus	ammenfassung der Ergebnisse und Schlußfolgerungen	127
11	Aus	blick	129
Li	terat	urverzeichnis	131
A	Abk	türzungsverzeichnis	155
в	\mathbf{Leb}	enslauf	156

Abbildungsverzeichnis

1	Globale Ansicht des Mars	3
2	Marszeichnung von Huygens	4
3	Globale Karte von Schiaparelli	5
4	Neigung des Äquators zur Bahnebene und Bahnexentrität des Mars	6
5	Generalisierte stratigraphische Karte von Oberflächeneinheiten des Mars	6
6	Digitales Höhenmodell des Mars	7
7	Histogramm der globalen Topographie des Mars	8
8	Stratigraphie und geologische Entwicklung des Mars	g
9	Übergang von einer Chaos-Region in ein Ausflußtal und tränenförmige Inseln im	0
0	Chryse Planitia Gebiet	10
10	Das gestreckte Talsystem Maadim Vallis	11
11	Dendritische Talsysteme und Hangtäler	12
12	Sedimentation von Paleoflußtälern in Kraterbecken	13
13	Geschichtete Sedimentablagerungen	14
14	Mögliche Fließstrukturen an Restbergen und lineare Talfüllungen	16
15	Mögliche Eiskeilnolvgone	17
16	Fließstrukturen von Kraterauswurfmassen	18
17	Unterschiedliche morphologische Ausprägungen der Polkappen	10
18	Partikelgrenzwertkurven als Funktion von Korngrößen für verschiedene Marso-	10
10	herflächendrücke und _temperaturen	20
10	Megarinnel-ähnliche hzw. kleine Transversaldünen	20 91
20	Dunkle Dünenformen	21 99
$\frac{20}{21}$	Mega-Dünenfeld Überlagerung und Induration von Dünen	22
21	Breitengradabhängige Verteilung von Staubstürmen als Funktion der areozentri-	
	schen Länge (L.)	<u> </u>
93	Schen Lange (L_s)	20
20 94	Steinschlagspuren an Hängen auf dem Mars	24
24 95	Hangrutsche auf dem Mars	20 26
20 26	Unterschiedliche Hengetreifen	20
$\frac{20}{27}$	Bahnbewegung von Erde und Mars um die Sonne	21
21	Mittlere Oberflächendwickschwenkungen en den Wilting Landestellen im Jahres	20
20	worlouf	20
20	Untere Crange der Wegger Megger Freitign auf dem Meng	00 91
29 20	Untere Grenze der Wasser-Massen-Fraktion auf dem Mars	91 91
ას 91	Wassereisirost an der viking 2 Landestene	ა2 იე
31 20		33
32	Die Saulen-Haufigkeit von Wasserdampi als Funktion der areozentrischen Lange	94
99	der Sonne (L_s) und des Breitengrades	34
33 94	Salsonale Frosterscheinungen	34
34 95	Phasendiagramm von Wasser	30
35	Phasendiagramm von CO_2	30
30	Technische und wissenschaftliche Instrumente des Viking Orbiter	37
37	Anzahl der Viking-Orbiter Bilder in Relation zur Bildauflösung	39
38	Technische und wissenschaftliche Instrumente der Mars Global Surveyor Raumsonde	41
39	Anzahl der MOC-NA Bilder in Relation zur Auflösung und zum Breitengrad	42
40	Bildauflosungen der MOC-NA Bilder in Relation zum Breitengrad	42
41	Uberlagerung von TES-Daten mit MOC-WA	45
42	Uberlagerung von MOLA-Daten mit MOC-NA	45
43	Mars Krater Chronologie Modell	48

44	Rheologische Klassifikation von Sediment-Wasser-Gemischen	49
45	Morphologie von Erosionsrinnen	52
46	Unterschiedliche Formen von Erosionsrinnen in den Alpen	53
47	Vergesellschaftung typischer Formen einer Permafrost-Region	54
48	HRSC-Luftbildaufnahme von einem Schuttfächer in den Schweizer Alpen	55
49	Entstehung von Schuttströmen nach <i>Postma</i> (1988)	56
50	Typische Morphologie von Erosionsrinnen auf dem Mars	57
51	Unterschiedliche Morphologien von Erosionsrinnen auf dem Mars	59
52	Morphologie von Formen spezieller polarer Massenbewegungen	59
53	Details der Morphologie von Erosionsrinnen	60
54	Morphologie von Formen trockener Massenbewegungen	61
55	Vergesellschaftung von glazialen Formen und Erosionsrinnen	62
56	Frostbedeckung von Erosionsrinnen im Frühjahr	63
57	Globale Verteilung der Erosionsrinnen	67
58	Verbreitung der Erosionsrinnen	68
59	$1 \ge 1$ Grad Häufigkeitsverteilung von einzelnen Erosionsrinnen pro km^2 der abge-	
	deckten MOC-NA Bildflächen in dem jeweiligen Eingradraster	69
60	Prozentuale Häufigkeitsverteilung von Erosionsrinnen in den Bilddaten in Abhängig-	-
	keit vom Breitengrad	70
61	Anzahl von einzelnen Erosionsrinnen pro Bildfläche in Abhängigkeit vom Brei-	
	tengrad	70
62	Prozentuale Häufigkeit von Hangneigungsstärken (Dreiecke) und einzelnen Erosi-	
	onsrinnen (Quadrate) gegen den Breitengrad	72
63	Prozentuale Häufigkeit der absoluten topographischen Höhe der einzelnen Erosi-	
	onsrinnen	73
64	Azimute der Erosionsrinnen auf der Nord- und Südhalbkugel	74
65	Erhaltene Erosionsrinnen	81
66	Degradierte Erosionsrinnen	83
67	Bekraterte Erosionsrinnen	83
68	Ergebnisse der Altersabschatzungen von bekraterten Erosionsrinnen	84
69 70	Globale Verbreitung von erhaltenen, degradierten und bekraterten Erosionsrinnen	85
70	Breitengradabhangige Haungkeit von erhaltenen, degradierten und bekraterten	96
71	Häufigkeit der absoluten tenographischen Höhe von Quellregionen der klassifizier	80
11	ten Erosionsrinnen (erhalten, degradiert und bekratert)	88
72	Azimute der klassifizierten Erosionsrinnen (erhalten, degradiert und bekratert)	00
12	auf der Nord- und Südhalbkugel	90
73	Azimute der klassifizierten Erosionsrinnen (erhalten degradiert und bekratert)	00
.0	nach Breitengrad auf der Südhalbkugel	91
74	Erhaltene und bekraterte Erosionsrinnen an unterschiedlichen Hangexpositionen	01
-	in einer Lokalität	92
75	Viking Orbiter Bildmosaik von Nirgal Vallis	97
76	Geologische Karte der Umgebung von Nirgal Vallis	98
77	Transversaldünen bedecken die Talsohle von Nirgal Vallis	99
78	Kraterüberlagerung von Dünen im Nirgal Vallis	99
79	Schwemmkegel der Erosionsrinnen überlagern die Dünen	100
80	Austrittstiefe der Erosionsrinnen im Nirgal Vallis	101
81	Bildflächen aller MOC-NA Bilder (Subphasen M00-R02), die das Nirgal Vallis	
	abdecken	102

82	Ergebnisse der Kratermessungen für die letzte Aktivitätsphase der Dünen im
	Nirgal Vallis
83	Kontextbild des Russell Krater Dünenfeldes
84	Morphologie der Erosionsrinnen des Russell-Dünenfeldes
85	Verfüllte Erosionsrinnen an einem kleinen Dünenhang im Russell Krater 111
86	West-gerichteter Dünenhang des Russell Krater
87	Mosaik des Russell Krater Dünenfeldes
88	Kartierung der Erosionsformen des Russell Krater Dünenfeldes 114
89	Albedoverlauf des Russell Krater Dünenfeldes in MOC-WA Bildern
90	Jahreszeitliche Veränderungen des Dünenfeldes anhand von TES-Daten 116
91	Frostbedeckung des Dünenhanges im Winter und Frühling
92	Bodentemperaturen zum MOC-NA Bild R07000192
93	Modellierte Schwankungen der Neigung der Rotationsachse des Mars und mögli-
	cher Entstehungszeiten von Erosionsrinnen

Tabellenverzeichnis

1	Vergleich der physikalischen Parameter von Mars und Erde	3
2	Vergleich der astronomischen Parameter von Mars und Erde	5
3	Dauer der Jahreszeiten auf dem Mars	29
4	Zusammensetzung der Atmosphäre	29
5	Vergleich der atmosphärischen Parameter für Mars und Erde	29
6	Missionen zum Mars	38
7	Subphasen der ausgewerteten MOC-Bilder	41
8	Vergleich der unterschiedlichen Referenzsysteme.	44
9	Begriffe, die Schuttströme beschreiben	50
10	Theorien zur Bildung von Erosionsrinnen auf dem Mars	34
11	Exposition der Erosionsrinnen	74
12	Ergebnisse der Altersabschätzungen von bekraterten Erosionsrinnen	34
13	Mittlere Breitengradvorkommen von erhaltenen, degradierten und bekraterten	
	Erosionsrinnen	35
14	Mittlere Höhenlagen von erhaltenen, degradierten und bekraterten Erosionsrinnen	39
15	Zusammenfassung der hochauflösenden MOC-Bilder (Subphasen M00-R02), die	
	das Nirgal Vallis abdecken)4
16	Ergebnisse der Kratermessungen für die letzte Aktivitätsphase der Dünen im	
	Nirgal Vallis)4