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Abstract 

Abstract 

The enzyme α-amylase is secreted from salivary and pancreatic glands and hydrolyzes α-D-

(1,4)-glycosidic linkage in carbohydrates such as starch. Its modulation represents the 

possibility to control postprandial hyperglycemia and is therefore considered an attractive 

strategy for the prevention or treatment of obesity or type II diabetes. However, only few 

drug-like α-amylase inhibitors without carbohydrate moieties exist and only sparse 

information about their mechanistic properties is available. The aim of this study was to 

discover novel small non-sugar α-amylase inhibitors and their binding modes using rational in 

silico methodology and biological experiments. To reach this goal, mechanistic 3D 

pharmacophore models were carefully developed and applied to several virtual screening 

experiments. Using this approach, about two million compounds could be computationally 

screened for potential inhibition of α-amylase resulting in the selection of 33 compounds in 

different virtual screening rounds, which were all biologically tested. 

Our initial virtual screening resulted in the discovery of six inhibitors out of fourteen 

biologically tested compounds (IC50 range: 86 - 300 µM). A subsequent analogue search 

using the most active and competitive newly identified inhibitor yielded twelve further 

compounds, out of which six showed slightly better inhibition up to an IC50 of 50 µM. A final, 

refined virtual screening led to the identification of four improved binders out of seven tested 

molecules with an IC50 of up to 17 µM. Overall, 50 % of the computationally suggested and 

selected virtual hits could be experimentally confirmed. Due to their small size, all identified 

binders show better ligand efficiency values than previously known inhibitors. Hence, these 

structures are ideal starting points for the design of novel α-amylase inhibitors. The 

discovered compounds have never been reported as α-amylase inhibitors before and 

represent novel scaffolds for this specific class of biological activity. 
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Zusammenfassung 

Zusammenfassung 

Das Enzym α-Amylase wird in den Speicheldrüsen, sowie im Pankreas sezerniert und 

hydrolysiert die α(1-4)-Glykosidbindung in Kohlenhydraten. Die Modulation dieses Enzyms 

stellt eine Möglichkeit dar, postprandiale Hyperglykämien zu kontrollieren und wird deshalb 

als attraktive Strategie angesehen, Fettleibigkeit oder Typ II Diabetes vorzubeugen bzw. zu 

behandeln. Es gibt allerdings nur wenige verfügbare α-Amylase Inhibitoren, die nicht aus 

Kohlenhydratbausteinen oder deren Analoga aufgebaut sind.Desweiteren ist nur wenig über 

deren Bindungsmodus bekannt. Das Ziel dieser Arbeit war daher die Auffindung neuer α-

Amylase-Inhibitoren ohne Kohlenhydratgerüst, die Analyse der entsprechenden Bindemodi 

durch in silico Modellierung und deren experimentelle Validierung. Zu diesem Zweck wurden 

mechanistische 3D Pharmakophormodelle entwickelt und als Basis für mehrere virtuelle 

Screening-Experimente verwendet. Mit diesem Ansatz konnten ca. zwei Millionen Moleküle 

auf potenzielle α-Amylase-Inhibition untersucht werden. 33 Verbindungen wurden in 

verschiedenen aufeinander folgenden Screening-Experimenten ausgewählt und 

anschließend biologisch getestet. 

Das erste virtuelle Screening lieferte vierzehn ausgewählte Verbindungen, von denen sechs 

biologische Aktivität zeigten (IC50: 86 - 300 µM). Eine darauffolgende Suche nach Analoga 

des aktivsten kompetitiven Liganden lieferte zwölf weitere Verbindungen, von denen sechs 

bis zu einer mittleren Hemmkonzentration von 50 µM biologisch aktiv sind. Ein weiteres, 

virtuelles Screening-Experiment führte zur Identifikation von vier Inhibitoren mit einer Aktivität 

von bis zu 17 µM. Insgesamt zeigten 50 % der in silico ausgewählten Verbindungen 

biologische Aktivität und konnten somit erfolgreich experimentell validiert werden. Aufgrund 

ihres geringen Molekulargewichts, zeichnen sich alle neu entdeckten Inhibitoren durch eine 

höhere ligand efficiency aus als bisher bekannte α-Amylase-Hemmer. Daher eignen sich 

diese Verbindungen als Leitstrukturen für die Entwicklung neuer α-Amylase-Inhibitoren. Alle 

gefundenen Liganden repräsentieren neueartige Grundstrukturen für die Modulation der α-

Amylase-Aktivität. 
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Introduction 

1 Introduction 

In 1812 the German scientist Gottlieb Kirchhoff discovered in St. Petersburg that starch can 

be converted into sugar by heating it in boiling water with sulfuric acid [1]. In 1831, α-amylase 

was the first enzyme catalyzing this reaction in saliva by the German scientist Erhard 

Friedrich Leuchs before it was determined in serum by Magendie in 1846, in pancreas by 

Alexander Jakulowitsch Danilewsky in 1862, and in urine by Cohnheim in 1863 [2, 3]. 

More advanced experiments at that time were performed by the French chemists Anselme 

Payen and Jean-François Persoz. They isolated an extract from germinating barley and used 

to convert gelatinized starch into sugars, mainly maltose. This extract was considered as an 

enzyme complex and termed “diastase”. Afterwards, a fermentation process called 

“Takadiastase” was developed by the Japanese scientist Takamine and is still used for the 

industrial production of fungal α-amylase [3, 4]. Since that time, α-amylase was thoroughly 

studied and different isoforms from different species have even been crystallized [5, 6]. 

The term “amylase” refers to an enzyme that hydrolyzes the O-glycosyl linkage in starch [7]. 

Starch composed of amylose (mainly α-1,4-glucosidic linkage) and amylopectin (α-1,4-

linkage and branching α-1,6-linkage) is considered one of the main sources of energy in our 

nutrition because of the distinctive composition of polymers of glucose units. Hydrolysis of 

polysaccharides like starch into glucose is a crucial manifestation in metabolic diseases such 

as type II diabetes mellitus and obesity since it suddenly causes post-prandial hyperglycemia 

[8]. α-Amylase is one of the most attractive targets for the development of novel therapeutic 

agents and controlling the glucose level in the blood [9, 10]. A broad description of α-

amylases will be given in chapter  1.1 while an overview of its structure and hydrolysis 

mechanism will be given in chapter 1.2. The role of α-amylase in metabolic diseases as well 

as its industrial applications will be summarized in chapter  1.3. In chapter  1.4, an overview of 

the so far α-amylase inhibitors described in literature will be introduced. 

1.1 Classification of α-amylases 

Since starch is the main source of glucose in human nutrition, a multitude of enzymes 

performing starch cleavage exists in living organisms. Starch-converting enzymes are mainly 

classified into four types [11]: 

(i) Endoamylases, such as α-amylase (EC 3.2.1.1), which hydrolyze α-1,4-glycosidic linkage 

in the inner part of starch to produce oligomers. This enzyme is the focus of this work. 
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(ii) Exoamylases which mainly hydrolyze either α-1,4-glycosidic bond by β-amylase (EC 

3.2.1.2) to produce β-maltose and β-dextrin or cleave both α-1,4- and α-1,6-glycosidic bonds 

to produce either β-glucose by glucoamylase (γ-amylase, EC 3.2.1.3) or α-glucose by α-

glucosidase (EC 3.2.1.20), Figure 1. 

(iii) Debranching enzymes, such as isoamylase (EC 3.2.1.68) and pullanase type I (EC 

3.2.1.41) which hydrolyze α-1,6-glycosidic bonds in amylopectin to produce long 

polysaccharides. 

(iv) Glycosyltransferases (E.C. 2.4) which cleave α-1,4-glycosidic bonds in a donor molecule 

and transfer the cleaved part into a glycosidic acceptor forming a new linkage as either α-1,4- 

or α-1,6-bond. 

 

 

Figure 1: Starch-converting enzymes. 

 

Recently, most of starch-converting enzymes were put into one group called α-amylase 

family [11-17], which belongs to glycosyl hydrolase group no. 13 (GH 13) according to the 

classification of glycosyl hydrolases by Hernissat (1991) that is based on sequence similarity. 

α-Amylases (1,4-α-D-glucan-4-glucanohydrolase, EC 3.2.1.1) are endoamylases that 

catalyze the hydrolysis of α-(1,4)-glycosidic linkages of polysaccharides such as starch and 

glycogen [3]. This family is characterized by four specific properties [11, 18]. These enzymes 
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(i) Hydrolyze α-glycosidic bonds to produce mono- or oligomers with preserved α-anomeric 

carbon conformation (C1 in the glucose unit) and create α-1,4-bonds (or α-1,6 bonds in case 

of transglycosylation), (ii) structurally consist of (α/β)8 TIM barrel structures containing the 

catalytic residues (one glutamic acid and two aspartic acids), (iii) contain highly conserved 

regions in the active site in β-strands (β2: Asp, β4: Arg, Asp, β5: Glu, β7: His, Asp) and (iv) 

provide an α-retaining double displacement mechanism, which is explained in the following 

chapter. 

1.2 Enzyme structure and activation mechanism 

α-Amylase is abundantly secreted from salivary glands and pancreas. In humans and other 

mammals, α-amylase is expressed by two genes: Gene AMY1 encodes salivary α-amylase 

and gene AMY2 synthesizes pancreatic α-amylase [19]. 

The primary sequence of human pancreatic α-amylase (HPA) and human salivary α-amylase 

(HSA) are very similar with 97% sequence identity and 92 % in the catalytic domains [20-22]. 

The overall differences between the sequences of HPA and HSA are 15 amino acids. Among 

them, two residues are in the active site region and could participate in substrate binding. 

These are Thr163 and Leu196 in HPA, which are substituted with Ser163 and Ile196 in HSA 

[21]. 

In contrast, there are 70 amino acid substitutions between HPA and porcine pancreatic α-

amylase (PPA), which could exert functional differences between the two enzymes. In 

general, four regions of amino acid segments have significantly different conformations in 

HPA and PPA, two of them (segments 237-250 and 304-310) have an effect on substrate 

cleavage pattern [21]. 

Human pancreatic α-amylase (HPA) is a 56 kD protein composed of 496 amino acids as a 

single polypeptide chain folded into three domains, as illustrated in Figure 2. Domain A 

(residues 1-99 and169-404) is the largest part and is composed of (α/β)8-barrel structure 

where the barrel of eight β-strands are surrounded by eight α-helices [21, 23]. The active site 

located as a V-shaped cleft in the catalytic domain A binds to the substrate [24, 25]. 

Carboxylic amino acid residues Asp197, Glu233 and Asp300 are located in the active site 

and constitute the essential catalytic triad required for hydrolysis of the glycosidic bond [25]. 

A chloride ion is located close to the active site (~ 5 Å) in between Arg195, Asn298 and 

Arg337. It works as an activator and modulates the optimum pH and maximal activity of α-

amylase since it shields the positive charge of Arg337 from decreasing the pKa of the 

catalytic Glu233 [26, 27]. 
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Domain B (residues 100-168) emerged from domain A is located between the third β-strand 

and the α-helix of the β-barrel of the catalytic domain and maintains the conformation of the 

enzyme. It contains a calcium ion, which stabilizes the structure of domain B. Domain C 

(residues 405-496) is an anti-parallel β-sheet of domain A and loosely associated to other 

domains [21]. It plays a role in folding and stability of the protein [23]. 

Binding subsites for glycosyl hydrolases like α-amylase were enumerated from negative 

numbers (–n) to positive numbers (+n) according to a proposal published by G. J. Davies et 

al. [28]. 

 

 

Figure 2: α-amylase (PDB entry 3OLE). 

 

While glycone binding subsites are labeled with –n on the left to accommodate the non-

reducing end of a substrate, aglycone binding subsites are represented with +n on the right 

to hold the reducing end. The site of cleavage of the scissile bond is between subsites -1 and 

+1 and every subsite is occupied with one glucose unit of the substrate [23]. 

Naturally, glycosidases, like α-amylase, catalyze the hydrolysis through a mechanism called 

double displacement mechanism [29] (Figure 3). Firstly, Glu233 acts as acid-catalyst and 
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protonates the glycosidic oxygen attached to the bond susceptible for cleavage (the oxygen 

that links the two glucose units at subsites -1, +1). Then, Asp197 acts as a nucleophile and 

attacks the anomeric carbon atom (C1 of the glucose at subsite -1) forming an oxocarbenium 

ion-like transition state, which is converted to a covalent glycosyl-enzyme intermediate. As a 

result, the glucose unit at subsite +1 leaves the active site with a proton as a glycosyl unit 

(R`OH). This process is called glycosylation of the enzyme (the first three steps are shown in 

Figure 3). Secondly, Glu233 acts as a base-catalyst by deprotonating a water molecule (in 

case of hydrolysis) or a new glucose unit (in case of condensation) to produce a nucleophilic 

hydroxyl group. This new nucleophile attacks the anomeric carbon atom of the previously 

formed glycosyl-enzyme intermediate to form again an oxocarbenium ion-like transition state. 

Then, the oxygen of this new nucleophile replaces the oxocarbenium bond (linking the 

glucose at subsite -1 and Asp197) forming a new hydroxyl group (in case of hydrolysis) or a 

new glycosidic bond (in case of condensation). Consequently, a glycosyl product with α-

anomeric configuration is formed and leaves the binding site. This process is called 

deglycosylation of the enzyme (the next three steps are depicted in the Figure 3). 

 

 

Figure 3: Catalytic mechanism of α-amylase. 
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For an optimal cleavage rate, at least two residues are required as leaving groups in the 

positive subsites [30]. Both processes occur through oxocarbenium ion-like transition state 

[3, 29, 31, 32]. The role of Asp300 is less definite, but it has been proposed to play role in 

stabilizing the conformation of the bound substrates and also in sustaining Glu233 in the right 

state of protonation for activity [32, 33]. 

The interaction of known biologically active α-amylase inhibitors were used to identify the 

important amino acids in the active site required for the activity based on their inhibitory 

potencies. 

Mutation of catalytic residues (Asp197, Glu233, and Asp300) located in subsites -1 and +1 

shows significant reduction in the enzyme activity; more than 105-fold drop in case of Asp197 

and up to 103-fold drop with Glu233 or Asp300 substitutions; indicating their essential role in 

the hydrolysis process of α-amylase [34, 35]. 

Residues Gly306 and Glu240 at subsite +3 show modest effects in enzyme activity. This 

becomes clear for acarviostatin I03 (Ki = 1.254 µM), which occupies subsites -3 to +3 

compared to pseudopentasaccharide acarbose (Ki = 2.59 µM) that occupies subsites -3 to +2 

[36]. The neutral nature of subsite +3 in the electrostatic surface of HPA and its proximity to 

the solvent region are the cause of this modest effect on potency. Asp147 and the near 

Thr163 located at subsite -4 play important roles in case of long substrates spanning from 

subsites -4 to +3 [36]. 

Mutation of Arg195 causes 450-fold reduction in α-amylase activity. Arg195 directly interacts 

with the chloride ion that is essential for the enzymatic activity and forms direct H-bonds to 

catalytic residues Asp197 and Glu233. It has been reported that Arg195 along with His299 

and Asp300 form H-bonds with the hydroxyl group of a sugar unit of a substrate that is 

subjected to neucleophilic attack by Asp197 in subsite -1 during the hydrolysis process [27]. 

This also points out the importance of His299, which has been reported with the same 

interaction with iso-acarbose [32]. During the binding of a ligand at subsites -1 and +1, the 

loop 304-310 anchored by Asp300 is re-oriented and allows the side chain of His305 to move 

inwards into the binding subsite -2 to be interacted [30, 32]. Trp58 positioned in the vicinity of 

subsite -2 shows critical importance for the activity and its mutation causes 150-fold drop in 

hydrolysis activity of HSA [37]. π-Stacking interactions between the bound glucose moieties 

and aromatic residues Tyr151 in subsite +2 and Trp59 and Tyr62 in subsite -2 have been 

reported to play a crucial role in enzymatic activity [38, 39]. 

Lipophilic residues Leu162, Leu165 and Ile235 in the active site form hydrophobic contacts 

with hydrophobic groups of the interacted inhibitors. 
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An overview of all interactions identified as crucial for an optimal α-amylase inhibition is given 

in Figure 4 that showing acarviostatin II03 bound to HPA (PDB: 3OLE). 

 

 

Figure 4: The final product of AII03 inhibitor (PDB: 3OLE). Green and red arrows represent H-

bond donors and acceptors respectively, yellow spheres indicate hydrophobic contacts, and blue stars 

show positively ionizable interactions. 

1.3 Diseases related to amylase and its applications 

Metabolic diseases like obesity and type II diabetes are characterized by high levels of blood 

glucose [8]. Naturally, glycosidases, like α-amylase, catalyze the hydrolysis of 

polysaccharides like starch, resulting into sudden postprandial hyperglycemia. The total 

number of patients diagnosed with diabetes is predicted to increase from 171 million in 2000 

to 366 million in 2030 and at least 300 million in the world are considered obese [40, 41]. 

These high numbers of people point out the importance of controlling these chronic 

disorders. One of the attractive targets for controlling the blood glucose level and the 

development of new therapeutic agents is α-amylase [9, 10]. 

Here, we briefly addressed the clinical manifestations and their consequences related to the 

hydrolysis process by α-amylase and its industrial applications. 
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1.3.1 Dental caries 

The initiation of starch breakdown in the oral cavity by salivary α-amylase is not the only 

function of this enzyme, but it is also involved in oral diseases such as dental caries and 

periodontal diseases. It occurs when α-amylase is adsorbed to the tooth enamel [42, 43] and 

binds to oral streptococci species referred as α-amylase-binding streptococci (ABS) [44]. 

This binding; which occurs in sites other than the catalytic active site [45]; assists the 

colonization of these bacteria in the oral cavity [46, 47] where salivary α-amylase hydrolyses 

the dietary starch and produces oligomers as nutrients for these bacteria. Consequently, the 

production of lactic acid, which is a bacterial metabolite, is considered as a critical step in 

dissolving the tooth enamels and development of dental caries [45, 48, 49]. 

1.3.2 Obesity and type II diabetes 

Obesity is defined as a condition of abnormal or excessive fat accumulation in adipose tissue 

to the extent that health may be impaired. Statistical figures in the United States propose that 

about 61% of type II diabetes and 17% of both coronary heart diseases (CHD) and 

hypertension can be attributed to obesity [50]. 

Therefore, obesity is accompanied with different medical consequences that seriously affect 

health. Some of these co-morbidities, in addition to type II diabetes and CHD, are 

dyslipidemia, cardiovascular diseases, sleep-disordered breathing and others [41, 51]. 

It is known that one of the main sources of energy in our diet is carbohydrates. The metabolic 

pathways of glucose in our body mainly includes: oxidation to produce energy, glycogen 

production in the liver and muscles, and lipid synthesis in the liver [52]. Excessive 

consumption of dietary carbohydrates is easily converted into fat [53] or even reduces the 

oxidation of fats [52] in the body and hence leads to fat accumulation. Therefore, 

carbohydrate is believed to manipulate substantial function in the development of obesity. 

Starch as the main carbohydrate in human nutrition is degraded in different stages into 

glucose units to be absorbed [54]. α-Amylase secreted from salivary and pancreatic glands 

triggers the hydrolysis of starch into oligomers. These oligosaccharides pass through the 

mucus layer of the brush border membrane to be subjected for further digestion by α-

glucosidase and produce glucose units. Excessive absorption of glucose increases the post-

prandial blood glucose levels and lowers insulin resistance [55]. 
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1.3.3 Industrial applications 

In addition to its clinical importance, the whole amylase family has its own applications in 

other fields such as food, detergents, textiles, paper industry and biotechnology [56, 57]. 

Bio-ethanol production is generated from starch as a renewable source of fuel and works 

through fermentation by microorganisms. This process requires high temperature to 

solubilize starch granules. Hence, starch hydrolyzing enzymes can greatly reduce the cost of 

bio-ethanol production by using cold starch hydrolysis [58]. Also, amylases from Bacillus or 

Aspergillus are used in detergent industry to remove tough strains from starchy foods such 

as potatoes, gravies, custard, chocolate etc. The reason is that these enzymes can work at 

lower temperatures and alkaline pH which means higher stability under detergent conditions 

[59]. In textile industry, starch is used as strengthening agent during weaving process and 

sizing agent to yarn before fabric production to warrant fast and secure weaving process. 

Therefore, amylases from Bacillus strains remove the size without attacking the fibers. 

Concerning paper manufacturing, some commercial products of α-amylases are 

commercially available (Amizyme®, Termamyl®, BAN®, and G9995®) and used for starch 

modification to make the surface of the paper smooth and strong to improve the writing 

quality of the paper [58]. One of the daily uses of α-amylases is its application in food 

industry such as baking process. The addition of this enzyme to the dough leads to improve 

the fermentation process and partially produces smaller dextrins and sugars to enhance the 

taste of the product such as bread [58]. Additionally, the shelf life of the baking products is 

improved when using α-amylase due to its anti-staling effect and it augments their softness. 

1.4 α-Amylase inhibitors 

As explained in the previous sections, α-amylase plays a role in postprandial hyperglycemia 

and hydrolyzing polysaccharides such as starch into oligomers. It is considered an attractive 

target for controlling metabolic diseases such as type II diabetes and obesity. Therefore, α-

amylase inhibitors can regulate the breakdown of dietary starch into smaller sugars with the 

purpose of delaying glucose absorption to be in a rate the body can deal with and hence 

decreasing the post-prandial hyperglycemia [9, 60, 61]. This is valuable for patients who 

need lower amount of α-amylase to keep glucose levels in normal range. 

While all known co-crystallized α-amylase inhibitors were peptide- or carbohydrate-based 

derivatives at the start of this work, limited drug-like inhibitors were reported before and 

during this work. Here, we are going to highlight classes that were identified so far as α-

amylase inhibitors. 
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1.4.1 Peptide-based α-amylase inhibitors 

Members of this class are large molecules with high molecular weight showing a strong 

inhibitory effect on α-amylase activity with inhibition constants (Ki) in the nanomolar range. 

As reported by Svensson et al. [62], seven types of proteinaceous α-amylase inhibitors are 

found in nature (in plants and Streptomyces species) and categorized based on similarities in 

sequence and 3D-structures. Tendamistat, one of these inhibitors, is co-crystallized with PPA 

(PDB code: 1BVN [63]) and composed of 75 amino acids. A total of 15 residues are involved 

in binding with a Ki of 9 nM [63]. This extreme specificity and binding affinity are due to the 

intricate interaction pattern into areas further away from the catalytic center [64]. However, 

peptide-based compounds are generally considered poor drug candidates because of their 

intrinsic physicochemical properties and pharmacokinetic profiles. The lower chemical 

stability of this class allows for rapid degradation by digestive system before they reach the 

required targets and hence limits their use by oral administration [65]. 

1.4.2 Carbohydrate-based α-amylase inhibitors 

Most co-crystallized inhibitors are carbohydrate-derivatives such as acarbose (a well-known 

anti-diabetic drug) and belong to the trestatin family, which is a natural metabolite of 

Streptomyces coelicoflavus ZG0656 [66]. This family is characterized by the presence of a 

pseudotrisaccharide center called acarviosine-glucose illustrated in Figure 5. 

 

 

Figure 5: acarviosine-glucose center is composed of acarviosine (valienamine in blue color 

(left), 4,6-dideoxglucose unit (middle)) and D-glucopyranose (right). 

 

This center includes acarviosine unit linked by α-1,4-glycosidic bond to one glucose unit. 

Acarviosine itself is composed of an unsaturated cyclohexitol moiety (termed valienamine) 

attached to 4,6-dideoxy-α-D-glucose group by an N-glycosidic bond [67]. The reducing end 
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of this center is located in the D-glucose unit on the right side while the non-reducing end is 

present in the valienamine moiety on the left side. D-glucose units are attached to the 

reducing or non-reducing ends of that center and form what is called acarviostatin (A), 

followed by a Roman number and two digits. Roman numbers I, II, III, or IV stand for one, 

two, three or four acarviosine-glucose units. While the first digit that comes after the Roman 

number represents the number of glucose units at the non-reducing, the last digit represents 

the ones at the reducing ends [67], (Table 1). 

 

Table 1: Acarviostatins with different numbers of sugar units and their inhibitory effect against 

α-amylase 

inhibitor 
Ki 

(µM) 

acarviosine-

glucose units 

glucose rings at 
rings before 

binding 
Ref. non-reducing 

end 

reducing 

end 

Acarbose 2.593 1 0 1 4 [36] 

AIII0(-1) 0.009 3* 0 0 8 [68] 

AIII23 0.026 3 2 3 14 [68] 

AI03 1.2549 1 0 3 6 [36] 

AII03 0.0147 2 0 3 9 [36] 

AIII03 0.0143 3 0 3 12 [36] 

AIV03 0.0416 4 0 3 15 [36] 

AII23 0.009 2 2 3 11 [67] 

AII13 0.010 2 1 3 10 [67] 

* It lacks one glucose unit at the reducing end. 

 

One acarviostatin composed of three acarviosine-glucose centers, but lacking a glucose unit 

at the reducing end (called AIII0(-1)) was recently published in 2013 [68]. It comprises eight 

rings and it is the most potent acarviostatin inhibitor against α-amylase published so far 

compared to the ones with higher number of sugar rings [68, 69]. 

Some acarviostatin inhibitors such as AI03, AII03, AIII03, and AIV03 were co-crystallized 

with HPA and published in PDB with codes: 3OLD, 3OLE, 3OLG, and 3OLI, respectively 

[36]. The mechanism of inhibition of these molecules is particular in terms of final products 

observed inside the pocket. Indeed, hydrolysis, condensation and transglycosylation of 

acarviostatin inhibitors by HPA show rearranged binding products different from the initial 

structures used in biological testing. Interestingly, co-crystallized AII03, AIII03, and AIV03 

inside the active site consist of seven carbohydrate units [36] (Figure 6). 
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Figure 6: Chemical structures of acarviostatins (II03, III03, and IV03) before (above) and after 

(middle) interaction with human pancreatic α-amylase. 

 

Likewise, acarbose (pseudotetrasaccharide) is subjected to a chemical rearrangement 

(Figure 7) that results into another binding product as pseudopentasaccharide (five rings) 

with HPA [32] or pseudohexasaccharide (six rings) with HSA [49]. 

 

 

Figure 7: Suggested enzymatic rearrangement for acarbose by HPA [32] (right) and HSA [49] 

(left).  indicates the cleavage point.  represents valienamine.  symbolizes 4,6-dideoxy-α-D-

glucose.  represents glucose unit. Negative and positive numbers denote the binding subsites. 
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This enzymatic rearrangement causes the acarviosine-glucose center to interact with amino 

acids located at subsites -1 to +2. 

Acarviosine-glucose shows characteristic interactions in the active site due to the acarviosine 

fragment that is composed of valienamine and 4,6-dideoxy-α-D-glucose groups occupying 

subsites -1 and +1, respectively. The N-glycosidic linkage occupies the position between 

these two subsites where the breakdown of the natural substrate could occur and resists any 

further cleavage. This hydrolysis resistance attributes in strong inhibition of acarviostatins. 

Reasons behind that are (i) the valienamine moiety at subsite -1 has a half-chair 

conformation that imitates the transition state of the natural substrate, and (ii) the protonated 

nitrogen of the N-linkage forms strong electrostatic interactions with carboxyl groups of 

catalytic residues, Asp197, Glu233 and Asp300 [30]. 

1.4.3 Polyphenols 

Polyphenols are widely distributed in plants as secondary metabolites and abundant in 

human nutrition. They are chemical structures that have at least one phenolic hydroxyl group 

attached to one or more benzene ring. Phenolic compounds are classified into 15 groups 

based on the number of carbons in the molecule [70-72]. General structures of important 

classes that contribute in α-amylase inhibition are depicted in Figure 8. 

 

 

 

Figure 8: Phenolic compounds that showing α-amylase inhibition. 
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Flavonoids are the major class of phenols and grouped into six subclasses based on their 

substitution. These are flavonols, flavones, isoflavones, flavanones, flavanols, and 

anthocynidins [72]. They are composed of three rings termed A, C, and B. Flavonoids have 

been studied as α-amylase inhibitors and the mode of action of the first five subclasses has 

been discussed in literature [20, 73-78]. Recently, myricetin (IC50 = 30 µM) has been co-

crystallized with HPA  (PDB code: 4GQR) and published by Williams et al. in 2012 [25]. The 

overall effects of substitutions with different functional groups or fragments are perfectly 

collected in a recent published review [71]. Briefly, hydroxylation of ring C and/or galloylation 

in C3 have resulted in better inhibition while methylation, methoxylation of ring C, 

glycosylation of ring A, or hydrogenation of the C2=C3 double bond have decreased the 

inhibition potency [71]. 

Anthocynidines, the sixth flavonoid subclass, lack the carbonyl group at C4 in ring B and 

represent the aglycone part of anthocynins (glycosyidic anthocyanidins) [79-81]. This 

subclass has not been discussed from the point of view of its structural mechanism and its 

behaviour with α-amylase. Therefore, a study in chapter  4.2.1 will analyze the mode of action 

of this subclass using molecular modeling. 

Another class that shows α-amylase inhibition and belongs to the group of phenolic 

compounds is the one with a cinnamic acid skeleton, such as ethyl caffeate [82]. The latter 

shows non-competitve α-amylase inhibiton (Ki = 1.3 mM [82]) and has been recently co-

crystallized with HPA (PDB: 4GQQ) by Williams et al. in 2012 [25]. More details will be given 

in the study of verbasacoside in chapter  4.2.3. 

Tannins which constitute a large group of phenolic compounds have diverse structures such 

as the phlorotannin 2-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy) benzene-1,3,5-triol 

(DDBT) that has been recently discovered in 2012 as a potent α-amylase inhibitor [83]; and 

gallic acid derivatives such as 1,2,3,4,6-pentagalloyl-β-D-glucose [84]. Theaflavins resulting 

from co-oxidation of flavanols [85] and containing galloyl fragments show inhibitory effect 

against α-amylase. A recent study reported by Miao et al. in 2013 has shown that hydroxyl 

groups of theaflavins form H-bonds with catalytic residues in the active site and galloyl 

moieties form aromatic interact with Tyr2 and Phe335 [86]. Chemical structures and activities 

of the previously mentioned examples are listed in Appendics  10.3 and  10.4. 

1.4.4 2-aminobenzothiazole  

In the late of 2012, a study published by Patil et al. reported a series of synthetic molecules 

that show inhibition against PPA [87]. The compound that displaying the most potent α-

http://pubs.acs.org/action/doSearch?action=search&author=Williams%2C+L+K&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Williams%2C+L+K&qsSearchArea=author
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amylase inhibition is [2-(4-Bromophenyl)-4H-benzo[d]pyrimido[2,1-b][1,3]thiazol-4-

yliden]acetonitrile with an IC50 value of 15.26 µM (Figure 9). This series will be used in the 

refined virtual screening in chapter  4.3.8. Interestingly, the same group published in 2013 

another series of 2-aminobenzothiazole as PPA inhibitors and the most potent ligand is (E)-

1-(4-Bromophenyl)-3-(6-ethoxybenzo[d]thiazol-2-ylamino)-3-(methylthio)prop-2-en-1-one with 

an IC50 value of 15.87 µM [88]. 

 

 

Figure 9: Recently published α-amylase inhibitors with unspecified mode of action [87, 88]. 

 

In addition to PPA inhibition, these series show comparable inhibition potencies against 

murine glucosidases (from pancreas, intestine and liver). However, none of these studies 

investigated the mode of action of these synthesized compounds. 

1.4.5 Terpenoids 

Terpenoids, also known as isoprenoids, are a class of natural compounds found in plants 

and derived from isoprene units (C5H8) which are then condensed to form diverse chemical 

structures with several functions in plant and animals [89]. Of these, an extract from 

Phyllanthus amarus plant containing triterpenoids oleanolic acid, ursolic acid and lupeol 

(Figure 10) show dose-dependent α-amylase inhibitory effect with an IC50 value of 4.41 µM 

[90].  

So far and to the best of our knowledge, structural mechanism of terpenoids as α-amylase 

inhibitors has not been investigated. As a result, a molecular modeling study will be 

conducted in chapter  4.2.2 for diterpenoid steviol (Figure 10) compounds (IC50 = 187 µM for 

the extract) that show competitive α-amylase inhibition. 



 

16 

Introduction 

 

Figure 10: Terpenoids showing α-amylase inhibition.
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2 Objectives 

α-Amylase enzyme secreted from salivary and pancreatic glands triggers the hydrolysis of 

polysaccharides such as starch, the main source of energy in human nutrition. This controls 

the fast elevation of blood glucose levels after meals. Post-prandial hyperglycemia is not only 

a crucial manifestation in metabolic disorders such as type II diabetes and obesity, but is a 

direct risk factor for cardiovascular disease (CVD) in type II diabetes [91]. Therefore, α-

amylase is considered an attractive target for controlling sudden raise in blood glucose levels 

after meals. For that purpose, we aimed in this research at identifying novel small drug-like α-

amylase inhibitors using molecular modeling and virtual screening by following the objectives 

below: 

 

1. To analyze binding conformations of known natural α-amylase modulators in order to 

explain the mechanism of inhibition of these binders. 3D models and docking studies 

shall be used for this purpose. 

2. To explore X-ray structures of α-amylase available in the PDB to select templates for 

this project and obtain an overview on amino acids important for inhibition. For that, 

superposition of those structures will be performed and analyzed. 

3. To generate structure-based 3D pharmacophores using available co-crystallized 

sugar-based α-amylase inhibitors. Careful analysis and statistical validation shall yield 

a predictive model to be used for virtual screening of commercial chemical 

databases. This step shall lead to identification of novel small drug-like α-amylase 

inhibitors (initial screening round). 

4. To carry out experimental biological testing for hits selected in this work in order to 

evaluate their inhibitory potency against α-amylase. Kinetic assays will be performed 

in-house and in collaboration with Dr. Gyöngyi Gyémánt at the University of 

Debrecen, Hungary. 

5. To refine models for inhibitors identified in this work and recently published during this 

research. The purpose is to elucidate the binding mode of these binders. Docking and 

3D pharmacophores shall be used to achieve this goal. A further aim is to utilize 

those developed models in second virtual screening campaign for the identification of 

novel small α-amylase inhibitors (refined screening round). 

6. To search for analogues similar to the best inhibitors identified in this work. 2D 

similarity search from a chemical database shall be performed aiming at the 

discovery of novel small α-amylase binders with improved inhibition. A subsidiary goal 
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is to analyze the structure activity relationship (SAR) for better understanding their 

inhibitory mechanism. 

 

These approaches should give new insights into the discovery of small α-amylase inhibitors 

using an efficient and cost effective computer-aided drug design methodology. 

A better understanding shall be gained about the role of sugar units in natural α-amylase 

inhibitors. Incorporating multi-step approaches as 2D and 3D filters in virtual screening 

campaigns shall improve the enrichment of true positives among selected virtual hits. 

Previously mentioned objectives will be reached by combining both computational and 

biological approaches. Detailed descriptions for the used methods are provided in the 

following chapters. 
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3 Methods 

3.1 Molecular modeling and virtual screening in drug discovery 

The objective of drug discovery is the identification of novel lead compounds that can be 

developed into drug candidates [92]. Together with in vitro and in vivo traditional 

pharmacology tools, computational methods (in silico) have been increasingly developed to 

create models for the drug discovery and optimization [93]. Computational technologies such 

as computer-aided drug design (CADD) have the advantages of speed, efficiency and cost 

effectiveness. They have therefore become an indispensible strategy for pharmaceutical 

industry [94]. 

CADD is broadly classified into structure-based drug design (SBDD), also known as direct 

design, and ligand-based drug design (LBDD) named indirect design [94, 95]. While SBDD 

uses known crystal structures of a target to investigate interactions of a ligand bound to a 

binding site, LBDD relies solely on ligands known to interact with a specific target at a 

defined binding site. LBDD is typically employed if no crystal structure of the target is 

available [94]. 

Since high-throughput screening (HTS), which experimentally tests several thousands of 

compounds against a specific drug target [96], is extremely expensive with massive trial and 

error basis [97], a computational analog called virtual screening (VS) was developed [92]. As 

one of the most widespread applications of CADD, virtual screening is used to screen virtual 

libraries of compounds aiming at identifying lead structures. This leads to improved hit rates, 

higher efficiency and saves money and time [96]. 

Structure-based virtual screening requires a known crystal structure of a drug target, which 

can be elucidated by several tools such as X-ray crystallography and NMR. The largest 

public collection of 3D crystal structures of macromolecules is the Protein Data Bank (PDB) 

[5] and some of these structures are deposited as a protein-ligand complex. Thus, a binding 

site for a co-crystallized ligand is defined and can be used in drug discovery approaches. 

The most popular strategies of SBDD are molecular docking of ligands into a specific binding 

site [98] and structure-based 3D pharmacophores [99]. 

Compared to SBDD, ligand-based approaches lack the crystal structure of a target and 

hence biological and chemical properties of ligands are correlated to predict target affinity. 

The most prominent ligand-based methods are molecular similarity, 2D and 3D 

pharmacophore models, and quantitative structure activity relationship (QSAR) [96]. 

Similarity search depends on a concept that similar compounds are supposed to exert similar 
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effects [100]. It is achieved by encoding known bioactive ligands into molecular fingerprints to 

be used for a discovery of bioactive analogues [97, 101]. 

In case of 3D pharmacophore models, common chemical features of a set of bioactive 

compounds of a specific target are identified by flexible, three-dimensional overlay. These 3D 

models are applied in virtual screening aiming at identifying novel scaffolds with potential 

activity. For QSAR models, the third strategy of LBDD, a statistical correlation between 

physicochemical and structural properties of known bioactive compounds and their biological 

activity is derived for predicting potencies of novel compounds [102]. 

An overview of SBDD and LBDD as well as combination of both methods is summarized in 

Figure 11. 

 

 

Figure 11: A general view of approaches used in computer-aided drug design. 

 

Combining structure- (SB) and ligand-based (LB) methods in virtual screening is beneficial 

because all possible information of both protein and ligand are integrated to enhance the 

consistency, quality, and performance of computer-aided drug-design approaches [102, 103]. 

Combination of SB- and LB-methods can take place either in sequential, parallel or hybrid 

approach. Sequential manner uses different SB- and LB-filters consecutively in virtual 
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screening until a small manageable number of hits are attained for biological experiments. 

Parallel methods apply several SB- and LB-approaches independently and then the top hits 

from each approach are biologically tested [102]. Hybrid approaches represent a true 

combination of SB- and LB-methods since information of both a target and a ligand is applied 

in the same time as one approach. A good example of a hybrid approach is protein-ligand 3D 

pharmacophores that are created based on a target structure co-crystallized with a ligand as 

key interactions, which is then optimized using known ligand data [102]. 

In the next chapters, methods exploited in this work will be addressed. In chapter 3.1.1, the 

protein-ligand pharmacophore approach and virtual screening will be explained while 

molecular docking and its scoring functions will be introduced in chapter 3.1.2. Then, 

similarity search (2D approach) will be highlighted in chapter 3.1.3 while the concept of 

shape- and feature-based similarity search (3D approach) will be given in chapter 3.1.4. 

Assessment and validation strategy for 3D pharmacophore virtual screening will be explained 

in chapter 3.1.5 to evaluate the effectiveness of virtual screening techniques. More 

consideration will be applied for tools and software packages that were used in this study. 

3.1.1 Pharmacophore modeling 

In 1909, the term “pharmacophore” was first used by Ehrlich to represent a molecular 

framework that carries the essential features (phoros) responsible for the biological activity of 

a drug (pharmacon) [104, 105]. In 1998, IUPAC recommended a more precise definition for a 

pharmacophore which is stated as: “A pharmacophore is the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with a 

specific biological target structure and to trigger (or to block) its biological response” [106]. 

Notes accompanying the previous definition clearly stated that a pharmacophoric feature 

does not represent a chemical fragment or functional group but chemical functionality. This 

model implies the shared molecular interaction capacities of a group of compounds with a set 

of complementary sites on the biological target [107]. 

Chemical features included in a 3D pharmacophore model are hydrogen bonding 

interactions, lipophilic areas, aromatic interactions (π stacking), and Coulomb charge 

interaction. Because pharmacophores are intuitively understandable and have been 

increasingly successful in computational drug discovery, they are considered one of the main 

tools used to find compounds with similar binding modes or even similar structures [108]. 

Software packages available for pharmacophore elucidation are numerous such as: Catalyst 

[109], Phase [110, 111] , GASP [112], MOE [113] and LigandScout [114, 115]. 
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3D Pharmacophore models are developed either in a ligand-based mode by extracting 

common chemical features that are necessary for activity of a set of bioactive compounds, or 

structure-based manner by deriving possible interaction points between a target and a bound 

ligand [105]. 

In this project, pharmacophore modeling will be processed as a protein-ligand 

pharmacophore since 3D X-ray structures of α-amylase co-crystallized with inhibitors are 

available. Because it automatically allows for extracting a co-crystallized ligand with its 

relevant protein environment, the software package LigandScout 3.1 will be used to develop 

3D pharmacophores in this project. These 3D models are universal but still selective enough 

to describe the protein-ligand interaction for a complex in the PDB. Before automatic 

generation of a pharmacophore model, LigandScout can also be used to interpret incomplete 

geometric information available in the PDB regarding hybridization states and bond types of 

the bound ligand [114]. 

Another advantage of using LigandScout is its pharmacophore-based alignment algorithm 

that can efficiently superimpose molecules on a basis of their pharmacophoric features. Also, 

LigandScout can be used to create a shared feature pharmacophore that represents several 

structure-based pharmacophores [115]. 

After developing a 3D pharmacophore model, a multi-conformational library of compounds 

can be virtually screened in LigandScout aiming at finding novel chemical structures with 

potential biological activity for the relevant macromolecule [116]. 

3.1.2 Molecular docking 

Docking represents a frequently used approach in structure-based drug design since it 

requires a 3D structure of a target. It can be used (i) to predict the favorable conformation of 

a ligand within the target binding site, and (ii) to roughly estimate the strength of this binding 

using a specific scoring function [117]. Briefly, molecular docking generates several ligand 

conformations/orientations (also called poses) at the active site, and subsequently ranks 

them by using a scoring function. Generating this binding hypothesis helps in understanding 

of its structural mechanism and can be invested to design more efficient ligands [118]. 

A large number of docking programs are currently available as well as newly ones are being 

developed and differ in their aspects such as pose prediction, type of algorithm, and scoring 

function [119]. As briefly described in [120], the software FlexX [121] utilizes incremental 

construction approaches by positioning a base fragment in an optimal location and then 

rebuilding the ligand with efficient optimization methods. FRED [122] uses exhaustive search 

to rigidly locate a generated multi-conformer library in the active site. Glide [123-125] puts a 
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ligand on a grid and uses energy terms to perform a systematic search of the conformational, 

orientational, and positional space of the docked ligand. LigandFit [126] is a shape-based 

docking tool combined with a Monte Carlo conformational search for creating ligand poses 

compatible with the shape of the binding. The program GOLD [127] uses a genetic algorithm 

for exploring the conformational space of a ligand within the active site. 

Several scoring functions are developed for protein-ligand interactions with different 

accuracies and computational efficiencies [118]. There are three commonly-used scoring 

functions: force-field-, empirical- , and knowledge-based scoring functions. The first type is 

established based on physical atomic interactions such as van der Waals and electrostatic 

interactions and implemented in programs such as GOLD [127]. Empirical-based scoring 

function estimates the binding affinity of a protein-ligand complex based on a set of energy 

terms and is applied in programs such as FlexX [121] and Glide [123]. The third scoring 

function is also referred as statistical-potential-based and uses energy potentials derived 

from the structural information established in experimental structures. It is obtained from the 

repeated occurrence of atom pairs in a database. This type gives a better balance between 

accuracy and speed compared to the force-field- and empirical-based scoring functions [128-

132]. 

Every scoring function has its pros and cons, and hence none of them is perfect in terms of 

accuracy and general application [118]. Therefore, in this project, the experimental binding 

mode of a co-crystallized ligand will be reproduced and evaluated based on values of root 

mean square deviation (RMSD) between the docked pose and the experimental binding 

mode as a matter of validation for docking experiments. Additionally, a custom 3D 

pharmacophore based scoring function is developed using LigandScout. 

The software GOLD 5.1 (Genetic Optimization for Ligand Docking) [127] will be used in this 

work, which is based on a genetic algorithm and performs complete flexible ligand 

conformation with partial protein flexibility. Similar to natural evolution process, GOLD 

manipulates a collection of data structures (chromosomes) and possible poses are created. 

The force-field-based scoring function implemented in GOLD called GoldScore will be 

applied in this approach as a fitness score [133]. 

3.1.3 Similarity search and clustering 

Based on the concept that chemically similar compounds should have similar biological 

properties, several similarity searches have been developed. These approaches can be 

performed as 2D and 3D searching [100]. While 2D similarity approaches derive information 

from a molecular graph (2D structural representation), 3D similarity approaches compare 
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molecular conformations and related properties [100]. When bioactive conformations of 

compounds are unknown, 2D molecular graphs can give robust results in SAR analysis and 

activity prediction [100, 134]. 

Similarity search can be performed using a fingerprint that maps 2D molecular structure 

information as a sequence of zero and one digits (bit string) to express the absence and 

presence of structural information, respectively. Several similarity coefficients are commonly 

used in chemical information to quantify the degree of similarity. Among these, the Tanimoto 

coefficient (also called Jaccard coefficient) is widely used in 2D similarity searches and can 

be calculated using the following simplified equation: SA, B = c / (a+ b- c), where a and b 

indicate the number of features (bits) in objects A and B respectively, while c represents the 

common features (bits) in both A and B. The range between zero (low similarity) and one 

(high similarity) gives a simple measure to represent the degree of similarity between A and 

B [135, 136]. In addition to its application in 2D similarity approaches, the Tanimoto 

coefficient can also be applied for 3D shape similarity search [137]. 

Database clustering is an important application of similarity metrics. It aims at subdividing a 

group of objects (chemical molecules) into different clusters (groups) that have a high degree 

of similarity. Clustering provides low-cost significant information in drug discovery [135, 138]. 

Available clustering algorithms include hierarchical (iterative way of data analysis and is 

represented as tree diagram) and nonhierarchical methods (each cluster represents a single 

partition of compounds). The clustering software used in this thesis is JKlustor 5.8.0 [139], 

which implements the most important clustering methods described above. 

Substructure searching is another application of similarity searches, in which all molecules 

containing a specific query substructure can be retrieved from a database. It is considered a 

valuable tool for accessing chemical structure databases [135]. This technique is 

incorporated in many cheminformatics programs such as Instant JChem [140]. 

3.1.4 Shape-based virtual screening 

Virtual screening using shape-based molecular similarity approaches is a widespread ligand-

based technique that leads to successful discovery drug design [141]. 

In this work, the platform Rapid Overlay of Chemical Structures (ROCS) will be used to 

perform 3D similarity ranking based on steric overlap [142-144]. The concept of this method 

is the use of a bioactive reference ligand in a single conformation as a query. One advantage 

of ROCS is that the knowledge of the experimental conformation of a bioactive molecule 

does not necessarily enhance the performance of the shape-based similarity search. 

Therefore, a low-energy conformation such as a docking pose can be used as a query and 
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lead to promising results. ROCS uses Gaussian spheres to determine the volume overlap 

between the heavy atoms of a query ligand and a screened molecule. To overcome the 

limitation that steric volume (shape) does not encode chemical functionality, a combination of 

both shape similarity and simplified pharmacophoric similarity pattern is used (Tanimoto 

ComboScore). [141]. 

3.1.5 Statistical validation of model predictivity 

As explained in the previous sections, a model can be used for virtual screening and lead to 

the discovery of novel potential bioactive compounds. Such a model should have the ability 

to select as many bioactive compounds as possible and exclude a large fraction of inactive 

molecules [145]. To assess the predictive power of a model, a validation step is required 

using a set of molecules with known activity for the regarded target. In most cases, only 

limited numbers of inactive compounds are published and therefore available for molecular 

modeling. In such a situation, a random selection of compounds with similar structural and 

physicochemical properties and assumed biological inactivity can be used (decoys) [146]. 

Several methods are applied to estimate the predictive quality of a model: When screening a 

database that contains N molecules, a model retrieves n compounds that fit the 

pharmacophoric features but not all of them are necessarily biologically active. 

Known bioactive molecules that fit the model and are therefore predicted correctly are called 

true positives (TP), while the ones which are inactives are called false positives (FP). The 

known biologically actives that do not match the model are false negatives (FN), while the 

ones that have no activity and do not match the pharmacophore are true negatives (TN) 

[145]. A simple representation of these four categories of compounds selected by a model is 

given in Figure 12. 

 

 

Figure 12: Selection of n molecules (FP+TP) by a model from a validation database N (actives 

and inactives) [146]. 
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Those previous assessments can be represented as virtual screening validation metrics, 

which include the true positive rate (sensitivity, Se) and false positive rate (specificity, Sp), 

Table 2. Se deals with actives and is calculated by dividing the number of selected bioactive 

compounds over all bio-actives in the database. Sp deals with inactive molecules and is 

quantified by the ratio between inactives discarded by the pharmacophore and the total 

inactives in the database [145, 147]. 

 

Table 2: Enrichment metrics used in validation of virtual screening 

Metric Equation 

Sensitivity 

  

Specificity 

  

Enrichment factor 

  

Area under the curve AUC = Σi [(Sei+1)(Spi+1 - Spi) ÷ 2] 

 

The enrichment factor (EF) is an important metric that describes how many times the list of 

compounds predicted as active is richer in true positives as the original database. When the 

EF value equals one, it means that a model has no predictive power, but simply performs a 

random selection. The model is considered useful if the EF value is substantially greater than 

one [145, 146, 148]. 

Because not all compounds matching a model during virtual screening can biologically be 

validated, only a cut-off of top-ranked hit list should be chosen for experiments. 

To ensure that the picked cut-off list contains the best possible ratio of actives to inactives, a 

validation method is carried out using the receiver operating characteristic (ROC) curve 

[147]. This visual method scores compounds that match a pharmacophore and shows 

molecules with the highest scores at the top list. It uses Se values as a function of 1-Sp. The 

ROC curve (Figure 13) represents a random selection when a straight diagonal line from the 

origin to the upper right corner (Se = 1- Sp) is plotted. 

Comparatively, the ideal pharmacophore-matching is represented as a straight vertical line 

between the origin and the upper left corner until selection of all actives. Then a continuous 

line from the upper left corner to the upper right corner is plotted for scored inactive 

compounds. The ROC curve plotted between ideal and random indicates pharmacophore 
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performance that can retrieve actives better than random selection while the curve below the 

random line represents even lower predictiveness than a random selection [146, 147, 149]. 

 

 

Figure 13: ROC curves representing the quality of a virtual screening experiment [147]. 

 

When aiming at validation of several models, the area under the ROC curve (AUC) for each 

model can be used as a single value. This value is ranged between zero (when all inactives 

are ranked first) and one (when all actives are ranked first). A convenient AUC value for 

virtual screening is the one, which is greater than the random selection (AUC > 0.5). When 

limited testing capacity is available, attention has to be paid to the beginning of the function, 

which reflects the early recognition of actives [147]. 

3.2 Biochemical assay 

Generally, two main approaches can be developed to experimentally measure enzymatic 

activities: continuous (kinetic) and discontinuous (end-point) methods. While a kinetic assay 

uses continuous measurement of the enzyme activity with respect to time, end-point 

methods stop the enzymatic reaction by a specific reagent and subsequently measure 

product concentration after a specific time [150]. 

Different experimental procedures have been developed for the determination of the activity 

of α-amylase. Among them, the following methods are reported the most often: (1) 

Saccharogenic types: measuring the amount of reduced sugar released from the substrate; 

(2) Amyloclastic types: measuring the disappearance of a starch substrate using the specific 
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reaction between iodine and residual starch; (3) Chromogenic types: measuring the amount 

of the released chromogenic group linked to the substrate using spectrophotometric 

detection [151, 152]. 

The lack of standard assay, standard substrate, or even standard reaction conditions led to 

the development of these various methods for amylase activity. Therefore, comparing results 

obtained from different methods or laboratories is very difficult [152]. 

Hence, using different variables (such as chloride and calcium concentrations, substrate 

type, and incubation time) can lead to different inhibitory potency. Acarbose, a commercially 

available anti-diabetic drug is given as an example to show the effect of using different 

conditions on the reported inhibitory values (Table 3). 

 

Table 3: Different assay conditions for acarbose with α-amylase showed divere IC50 and Ki 

values 

IC50 Ki Assay type Substrate Enzyme Conditions Ref. 

41 µM - End-point amylopectin 
HSA, 

HPA 

sodium phosphate 

buffer, pH 7.0 
[83] 

4.89 mg/ml 

(7.58 mM) 
- End-point starch PPA 

sodium phosphate 

buffer, pH 6.9 
[153] 

0.996 µM - End-point 
potato 

starch 
HSA 

sodium phosphate 

buffer, pH 6.0 
[20] 

- 2.6 µM End-point amylose HPA 
potassium phosphate 

buffer, pH 6.0 
[36] 

- 3.7 µM End-point amylose HSA 
Na2HPO4, KH2PO4,  

pH = 7.0 
[154] 

- 0.7 µM Kinetic GalG2CNP HSA MES buffer, pH = 6.0 [154] 

23 µM - Kinetic p-NPG5 PPA HEPES buffer, pH = 7.1 [75] 

HSA: human salivary, HPA: human pancreatic, PPA: porcine pancreatic α-amylases 

 

The rearrangement of acarbose results in bound products with a different number of rings 

depending on the type of enzyme used, as already described in chapter 1.4.2. In Table 3, 

diverse IC50 and Ki values are reported, ranging from 0.7 µM to 7.58 mM for one single 

inhibitor compound, acarobse in different conditions. 

The kinetic assays developed in this work are based on previously described assays using 

two different chromogenic substrates: p-Nitrophenyl-α-D-maltopentaoside (p-NPG5) [75] and 

2-chloro-4-nitrophenyl-4-O-β-D-galactopyranosylmaltoside (GalG2CNP) [154]. These assays 

are described in sections 7.3.1 and 7.3.2, respectively. 
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4 Results 

As explained earlier, postprandial hyperglycemia is considered one of the main 

manifestations of metabolic disorders such as diabetes type II and obesity. Since α-amylase 

initiates the hydrolysis of polysaccharides such as starch, as a main source in human 

nutrition, into oligomers, it is considered a drug-target for controlling abnormal high levels of 

blood glucose. 

In the following chapter 4.1, α-amylase crystal structures and their binding sites will be 

investigated. While unknown binding modes for α-amylase inhibitors discovered by our 

collaboration partners will be elucidated by molecular docking in chapter  4.2, perspective 

structure-based virtual screening approaches for α-amylase inhibitors will be explained in 

chapter  4.3. 

4.1 Structural analysis of different α-amylase isoforms and 

binding sites 

Crystal structures of α-amylase publically available in the PDB were investigated for the 

following reasons: 

i. To highlight the differences between human and porcine α-amylases, since the latter 

is widely used in many biological assays with α-amylase inhibitors. 

ii. To investigate conformational changes in the active site when co-crystallized with 

different inhibitors, and  

iii. To select templates for the modeling study based on type of a co-crystallized 

inhibitor, resolution of the x-ray structure, and inhibitory potency of the bound ligand. 

 

In humans, α-amylase is secreted from pancreatic and salivary glands and represented as 

human pancreatic α-amylase (HPA) and human salivary α-amylase (HSA) which are 

publically available in the PDB [5, 6] with a total of 40 and 13 entries, respectively. Porcine 

pancreatic α-amylase (PPA, eight PDB entries) is also considered in this study. 

In this project, macromolecules were divided into five categories: 

i. Co-crystallized with peptide-based inhibitors such as tendamistat [63]. This type was 

excluded due to complicated interaction pattern involving areas further away from the 

catalytic center [24, 64]. 

ii. Mutated X-ray structures. This group was not taken into account except those that 

were bound to an inhibitor. 
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iii. Co-crystallized with carbohydrate-based inhibitors. This group was analyzed and 

used in this work. 

iv. Co-crystallized structures recently published in 2012 with non-carbohydrate-, non-

peptide-based small molecules [25]. This type was investigated and utilized in this 

study. 

v. Crystallized macromolecules without an inhibitor. This type was excluded from 

structural analysis. 

All collected structures of HPA, HSA, and PPA are given in Appendix  10.1 

4.1.1 Structural investigation of α-amylase 

Conformational changes of α-amylase resulting from formation of a protein-inhibitor complex 

were investigated to highlight the conserved residues and deviated areas in different α-

amylase structures. Four inhibitors are observed in more than one X-ray structure (Appendix 

 10.3). To avoid duplicate analysis of similar structures, inhibitor complexes were first 

visualized using LigandScout 3.1. The PDB code 3OLE was then chosen as a template in 

this study since it is co-crystallized at high resolution of 1.55 Å with the longest sugar-based 

inhibitor that comprises seven rings (chapter  1.4.2) termed acarviostatin II03 (Ki = 0.014 µM). 

Using the software package MOE 2010.10 [155], a sequence alignment between 3OLE as a 

reference structure and relevant α-amylase structures was conducted to establish the 

correspondence between the aligned amino acids (Table 4). 

 

Table 4: Superposition of X-ray structures of α-amylase using the software MOE 

Superposed 

macromolecules 

RMSD of all 496 

residues, Å 

RMSD of pocket 

residues, Å 

Number of 

pocket residues 

3OLE, 1CPU 0.253 0.275 64 

3OLE, 3OLD 0.086 0.083 65 

3OLE, 1MFV 0.401 0.372 71 

3OLE, 1XD1 0.328 0.494 64 

3OLE, 1XCX 0.291 0.401 64 

3OLE, 1XCW 0.275 0.325 64 

3OLE, 3IJ9 0.255 0.402 74 

3OLE, 3IJ7 0.239 0.365 64 

3OLE, 4GQR 0.339 0.712 64 

3OLE, 4GQQ 1.420 1.503 92 

3OLE, 3OLI, 3OLD, 3OLG 0.263 0.232 75 
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Subsequently, the sequence-aligned 3D macromolecules were geometrically 

superpositioned by minimizing distances between alpha carbons (CA). The root mean 

square deviation (RSMD) was calculated for all residues and pocket residues (amino acids 

around the co-crystallized ligand). 

The following HPA entry codes were investigated: 4GQR and 4GQQ [25] as models co-

crystallized with small non-carbohydrate-based inhibitors, while codes 1CPU [30], 3OLE, 

3OLI, 3OLG, 3OLD [36], 1XCW, 1XCX, and 1XD1 [32], 3IJ7, 3IJ9 [31] represent structures 

bound with carbohydrate-based inhibitors. PPA and HSA were represented by entries 1MFV 

[49] and 1OSE [156], respectively. 

Results demonstrate that all superposed macromolecules co-crystallized with sugar-based 

inhibitors show only slight RMSD values below 0.5 Å in both states (the whole 

macromolecule and the active site region). These structures hold the same type of ligands 

and hence the high similar conformations can be explained. An example is given in Figure 

14. 

 

Figure 14: Superposition of α-amylase active site for PDB codes 3OLE (in black), 3OLG (gray), 

3OLD (pink), and 3OLI (cyan) using the software MOE 2010.10. Catalytic residues are in balls 

and sticks. Molecular surface of acarviostatin II03 (from 3OLE) is depicted as grid dots. 

 

Owing to the reasons previously mentioned about 3OLE, it was taken as one of the 

templates used for molecular modeling in this research. During this work, new crystal 
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structures have been published including 4GQR and 4GQQ [25]. These structures are the 

only ones that exhibit slightly higher RMSD values when superposed with 3OLE. 4GQR, the 

only structure that is co-crystallized with myricetin (IC50 = 30.2 µM [20]), a small non-

carbohydrate molecule inside the active site, was superposed with 3OLE and shows a 

RMSD value of 0.712 Å. This can be explained by the difference in binding mode for each 

type of co-crystallized ligands. The ligand of 4GQR is a flavonoid with three aromatic rings 

while the ligand of 3OLE is a trestatin with seven rings as carbohydrate-based inhibitor. This 

leads to a critical conformational change in the position of Asp300, one residue involved in 

the catalytic triad. 

With 4GQR, the myricetin displaces the side chain of Asp300 that leads to be re-oriented in 

the direction of His305. Consequently, the loop 304-310 anchored by Asp300 moves and 

directs outwards from the active site (unlike with the trestatin family with whom this loop is 

directed toward the active site) [25]. This crystal structure will be used in the refined virtual 

screening described in chapter  4.3.8. 

4GQQ, another crystal structure recently published by the same group is co-crystallized with 

ethyl caffeate (Ki = 1.3 mM [82]) in three allosteric sites away from the productive active site 

[25]. Superposition of 3OLE and 4GQQ shows high RMSD values (1.4 Å and 1.5 Å, 

respectively) for the whole structure and the pocket. This can be explained by different 

positions of binding of the co-crystallized inhibitors in both crystal structures as well as the 

structural difference between both inhibitors. 

Three molecules of ethyl caffeate bound to the triad allosteric sites lead to disorder four 

segments of polypeptide chain loops (residues 51 - 56, 104 - 111, 298 - 315, and 343 - 358) 

located in the vicinity of HPA active site. Disordering the segment containing residues 304 - 

310; which are normally anchored by Asp300 and oriented around the bound ligand; leads to 

dislocation of Asp300 and play a major role in ethyl caffeate inhibition [25]. This structure will 

be used to perform a docking study in chapter  4.2.3. 

PDB entry codes 4GQR, 4GQQ [25], and 3OLE [36] were selected as templates for HPA. 

They were chosen because (i) they have high resolutions not exceeding 1.55 Å (ii) they are 

the most recently published structures of HPA; and (iii) 4GQR and 4GQQ are the only 

available structures that are co-crystallized with small molecule non-carbohydrate, non-

peptide α-amylase inhibitors. 

PDB codes 1MFV [49] and 1OSE [156] were chosen to represent HSA and PPA, 

respectively, since they represent wild type enzymes co-crystallized with acarbose. Structural 

comparisons between HPA and HSA, on one side, and between HPA and PPA, on the other 

side were described briefly in chapter  1.2. 
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4.2 Docking using α-amylase inhibitors with previously unknown 

binding mode 

Our collaboration partners identified α-amylase activity for natural products with unknown 

binding mode and reaction mechanism. Therefore, we performed a molecular modeling study 

to elucidate how they exert their activity. Investigated inhibitors include: (i) cyanidin and 

steviol derivatives which were examined against HSA by our research partner Dr. Gyöngyi 

Gyémánt from the University of Debrecen, and (ii) verbascoside which was tested against 

PPA by Prof. Dr. Matthias F. Melzig at the Freie Universität Berlin. 

Even though cyanidin derivatives were reported as α-amylase and α-glucosidase inhibitors 

[79, 80, 157], it is the first time their binding modes are investigated and discussed using 

molecular modeling. To the best of our knowledge, steviol derivatives and verbascoside have 

never been reported as α-amylase inhibitors before this study. 

The scope of this computational study is to explain the inhibitory effect of these inhibitors and 

to investigate their mechanism of action using molecular docking and pharmacophore-based 

ranking and analysis of the docking poses. 

4.2.1 Cyanidin derivatives 

Cyanidin compounds are considered promising natural products that could be used as food 

additives with a potential role on human health. They are also responsible for pigmentations 

of widespread fruits such as berries and showing diverse colors depending on the pH. These 

natural compounds exert different biological properties such as antioxidants, anti-cancer, 

anti-obesity and anti-diabetes [158]. It was reported that these compounds have the ability to 

inhibit α-amylase [79, 80, 157] but none of the investigated articles has studied their 

mechanism of inhibition. Therefore, it was interesting to investigate how these compounds 

exert the inhibition against α-amylase. 

The crystal structure of HSA (PDB entry 1MFV [49]) was used as a template in order to 

perform a docking study using CCDCs software GOLD 5.1 [127]. Docking poses were 

analyzed and compared to the co-crystallized ligand acarbose, the reference inhibitor in this 

study that shows IC50 value of 0.5 µM. The docking conformations stabilized by similar 

interactions as acarbose in the HSA active site were selected and further investigated. Then, 

a strategy based on 3D pharmacophores was utilized for the analysis and discussion of the 

most plausible poses. 

The modified acarbose inhibitor that is co-crystallized with HSA is spanning subsites -3 to +2 

[38]. Using the crystal structure 1MFV [49], the binding mode of acarbose was analyzed with 
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LigandScout 3.1 [114, 115, 159] as illustrated in Figure 15. The key interactions of this 

inhibitor were compiled in a 3D pharmacophore model. One central interaction motif can be 

observed between the acarviosine moiety (valienamine and 4,6-dideoxy-α-D-glucose) and 

residues at subsites -1, +1 of HSA. The residues involved include Asp197, Glu233 and 

Asp300, which form electrostatic interactions with the positively charged N-atom of 

valienamine, on one side, and interact with the hydroxyl groups present in the acarviosine 

moiety, on the other side. Moreover, the large number of hydroxyl groups of the inhibitor 

allows for the formation of H-bonds with other amino acids present in the active site that 

enhance the binding efficiency of the ligand as depicted in Figure 15. Additional hydrophobic 

contacts, which stabilize the ligand, are formed between the methyl groups of 4,6-dideoxy-α-

D-glucose moieties in the ligand with Ile235 and Leu165 at subsites +1 and -3, respectively. 

 

 

Figure 15: The pharmacophoric features of the co-crystallized modified acarbose inhibitor with 

HSA (PDB code: 1MFV) were derived using LigandScout 3.1. Yellow spheres indicate hydrophobic 

contacts, H-bonds are denoted as green and red arrows, and blue stars represent the positively 

ionizable interactions. Negative and positive numbers represent the active subsites and put inside the 

rings for clarity. Acarviosine moiety at subsites -1, +1 is depicted in pink. 

 

The resulting conformations of the docked compounds were analyzed with LigandScout 3.1 

to select the most plausible poses that fulfill similar interactions as the reference inhibitor. 

Then, a 3D pharmacophore was created for each selected pose to rationalize the activity of 

the compounds in question. 

The selected conformations of cyanidin-3-O-glucoside (Cy-3-O-glc, IC50 ~ 200 µM) and 

cyanidin-3-O-rutinoside (Cy-3-rut, IC50 = 200 µM) have highly similar predicted binding modes 
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as illustrated in Figure 16. In Cy-3-O-glc, the 2-, 4-, and 6-hydroxyl groups of the glucose unit 

linked to ring C form H-bonds with His305, Asp300, His299 and Arg195. Likewise, in Cy-3-

rut, the 2-, 3-, and 4-hydroxyl groups attached to this glucose unit form H-bonds with Arg195, 

Asp197 and Asp300, on one side, and Glu233 and the 5-hydroxyl group attached to ring A, 

on the other side. 

 

 

Figure 16: Proposed binding modes of the cyanidin compounds in HSA (PDB entry: 1MFV) 

depicted above in 3D [left for Cy-3-O-glc (gray stick) and Cy-3-rut (black stick) and right for Mv-

3,5-O-diglc]. Acarbose is depicted as lines and the binding sub-sites are denoted as negative and 

positive numbers. Yellow spheres indicate hydrophobic contacts, green and red arrows represent 

donating and accepting H-bonds, respectively. Variable sizes of amino acid labeling correspond to 

their depth in the cavity. 2D (below) represents compounds Cy-3-O-glc, Cy-3-rut, and Mv-3,5-O-diglc. 

 

Additionally, the cyanidin scaffold of compounds Cy-3-O-glc and Cy-3-rut is stabilized 

through hydrophobic contact between ring B and Leu162 and also by forming H-bond 

between Lys200 and the 7-hydroxyl group of ring A. Compared to Cy-3-O-glc, the 6-

deoxyglucose unit of Cy-3-rut forms lipophilic contact between the 6-methyl group and the 
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Trp59 besides the formation of H-bonds between the 3-hydroxyl and 4-hydroxyl groups of 

this unit and Gln63 and Ser163. 

Surprisingly, investigation of malvidin-3,5-diglucoside (Mv-3,5-O-diglc, IC50 = 70 µM) inside 

the pocket revealed that the docked ligand is flipped by about 60° with respect to the 

selected poses of compounds Cy-3-O-glc and Cy-3-rut, as illustrated in Figure 16. Ring B is 

directed toward subsites -2, -3 and the 4´-hydroxyl and 5`-methoxy groups form H-bonds with 

the side chains of Gln63 and Ser163, respectively.  

Furthermore, this flipping directs the glucose unit linked to the ring C toward the subsite -1 to 

form H-bonds between 3-, 4-, and 6-hydroxyl groups with the side chains of Glu233, Asp300 

and Arg195. The glucose unit linked to ring A is oriented toward subsite +2 to stabilize the 

compound by forming H-bonds between 2-hydroxyl and 6-hydroxyl groups with the side 

chains of Tyr151 and Glu240, respectively. 

Thus, the flipping of Mv-3,5-O-diglc may explain why its binding efficiency is better than Cy-

3-O-glc and Cy-3-rut and hence shows higher activity. This suggests that the orientation of 

ring B in cyanidin derivatives toward subsites -2 and -3 is important for α-amylase inhibition. 

Generally, the main docking poses of cyanidin derivatives inhibiting HSA are similar to the 

interactions of acarbose at subsite -1. There, the glucose unit linked to ring C at position 3 of 

all cyanidin derivatives is located at the same position and superimposed on the valienamine 

moiety of acarbose. This allows the hydroxyl groups of that glucose unit to interact with the 

catalytic residues. In contrast, the lack of ionic interactions between cyanidin derivatives and 

the catalytic residues may explain their lower activity compared to acarbose. However, the 

unexpected orientation of Mv-3,5-O-diglc, which is not observed with Cy-3-O-glc and Cy-3-

rut allows Mv-3,5-O-diglc to interact with the residues spanning from subsites -3 to +2. Thus, 

Mv-3,5-O-diglc fully occupies the large binding site of the enzyme, similarly to acarbose. This 

distinct orientation might explain the higher inhibitory potency of this molecule compared to 

Cy-3-O-glc and Cy-3-rut. 

4.2.2 Steviol compounds 

Steviol glycosides are natural products originally extracted from the South American plant 

called Stevia rebaudiana, which are responsible for the extensive sweet taste of the plant 

leaves (300 times more than sucrose). The aglycone part is called tetracyclic diterpenoic acid 

steviol and is structurally related to gibberellins [160]. As a calorie free sweetener, this Steva 

extracts are used as commercial sweeteners and food additives and can substitute sucrose 

[161]. It was reported that Steva extracts are able to enhance glucose uptake in an effect 

similar to insulin and hence hold beneficial action against diabetes and obesity [161]. The α-
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amylase inhibition with an IC50 value of 187 µM for an extract containing steviol, stevioside, 

and rebaudioside are given for the first time by collaborator partners in the University of 

Debrecen. 

Here, we structurally investigated the three above-mentioned steviol derivatives as α-

amylase inhibitors mechanistically, Figure 17. This should also give insights into the 

question, which compound is most likely to show α-amylase inhibiting effects. 

 

 

 

Figure 17: The most plausible binding poses of steviol compounds docked into HSA, PDB 

entry 1MFV. 3D (above) represents stevioside (black stick) at the left and rebaudioside (gray stick) at 

the right. The co-crystallized acarbose is illustrated as lines and the negative and positive numbers 

represent the binding subsites. Yellow areas stand for lipophilic contacts, green and red arrows are 

denoted for hydrogen bonding. 2D (below) represents steviol, stevioside, and rebaudioside and the 

glucose units are abbreviated as G1, 2, 3, and 4. 
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Three derivatives (steviol, stevioside and rebaudioside) were docked in HSA using the same 

approach as cyanidin derivatives. The most plausible poses were selected based on their 

ability to fulfill the 3D pharmacophore features of acarbose described before. 

Subsequently, 3D pharmacophores were created for these selected poses using 

LigandScout 3.1. 

None of the resulted poses of steviol fulfill the interactions compiled in the acarbose 

pharmacophore. In contrast, stevioside and rebaudioside show a more plausible oriention 

inside the binding site than steviol, and span from subsites -3 to +2 in a way that they have a 

similar orientation to the one of acarbose. 

The hydroxyl groups of the glucose unit (G2) in stevioside and rebaudioside can form 

interactions through H-bonds with residues located near to subsites -1, +1. In stevioside, four 

H-bonds are observed between the 3-, 4-, and 6-hydroxyl groups of G2 and the side chains 

of the catalytic center (Asp197, Gl233 and Asp300). In contrast, the 4-hydroxyl group of G2 

of rebaudioside shows only one H-bond with the catalytic residue Asp300. 

Moreover, two H-bonds are formed between the 4- and 6-hydroxyl groups of G2 of both 

compounds with the side chain of Arg195. In addition, hydrophobic contacts are formed 

between the methylene group of both compounds with Trp58 and Tyr62 besides the ones 

that are formed between the methyl group at position 20 of stevioside with Leu165 and with 

Trp59 in case of rebaudioside. 

As supporting interactions, the glucose unit (G1) of stevioside forms one H-bond with Ser163 

at subsite -3, which is not observed with the other steviol derivatives. Additional interactions 

are also formed as H-bonds between the 3- and 4-hydroxyl groups of the glucose unit (G3) of 

stevioside with Tyr151 and Lys200; while the 4-hydroxyl group of G3 of rebaudioside forms 

H-bonds with Lys200 and His201. Furthermore, the 4-hydroxyl group in the distal glucose 

unit (G4) of rebaudioside accepts one H-bond from Ala307. 

Based on this in silico study of steviol compounds, we hypothesize that filling up the large 

binding site and the orientation closer to the co-crystallized ligand might enhance the 

inhibitory effect of stevioside better than the other studied steviol compounds. Stevioside can 

accommodate all the essential interactions required to inhibit HSA compared to steviol and 

rebaudioside. It fits the binding pocket and interacts with the residues spanning from subsite 

-3 to +2. Most of the interactions of stevioside are H-bonds that are formed between the 

hydroxyl groups of G2 with all the catalytic residues at subsites -1, +1. Additionally, the 2-

hydroxyl group of G1 donates one H-bond to Ser163 near to subsite -3; while the 3- and 4-

hydroxyl groups of G3 accept H-bonds from Lys200 and Tyr151, which overall augment the 
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efficiency of binding. This may support our proposal that stevioside could mainly be 

responsible for HSA inhibition in the steviol extract that were tested against HSA. 

4.2.3 Verbascoside 

Verbascoside is a naturally occurring phenylethanoid glycoside. It is composed of one β-

glucopyranose unit holding three fragments: phenylethanoid at C1; 4,6-dideoxy-α-D-glucose 

unit at C3; and caffeate at C4. It is also called acetoside and present in different plants and 

exerts biological properties such as antioxidant and anti-inflammatory [162, 163]. 

This compound has not been reported as α-amylase inhibitor before. Consequently, 

verbascoside had been biologically tested against α-amylase by our collaboration partner 

Prof. Dr. Matthias F. Melzig and shows inhibition with IC50 in upper micro-molar range. 

Here, an in silico study was performed for this caffeate derivative, using docking to define the 

most plausible interactions of the inhibitor with α-amylase. Because verbascoside is a 

caffeate derivative, we decided to use the crystal structure (PDB code: 4GQQ [25]) of HPA 

co-crystallized with ethyl caffeate as a reference for this study. This PDB entry represents the 

only α-amylase X-ray structure to date that is co-crystallized with a caffeate derivative as 

noncompetitive inhibitor (Ki = 1.3 mM [82]). 

Docking conformations of verbascoside were explored and compared to the co-crystallized 

ethyl caffeate. Those poses that demonstrate similar interactions to ethyl caffeate in HPA 

were selected for further analysis. 

 

Briefly, three molecules of ethyl caffeate interact with three different HPA sites away from the 

catalytic center by about 20 Å [25]. Among them, two sites (sites 2 and 3) are adjacent to 

each other. This inhibition is due to remote effect through disordering four segments with a 

total of 47 amino acids located within the elongated substrate binding site. Therefore, 

dislocations of those segments that also include Asp300 (one of catalytic residues in the 

productive active site) play a major role in the stability of the HPA polypeptide chain and 

enzymatic inhibition [25]. Using LigandScout 3.1 [114, 115], the co-crystallized ethyl caffeate 

was extracted from each binding site (PDB: 4GQQ) and the chemical features involved into 

ligand-enzyme interactions were compiled as 3D pharmacophores to explain the binding 

modes that are required for the inhibition. After successful re-docking experiments for the co-

crystallized ethyl caffeate (Appendix  10.6), verbascoside was docked into each site (sites 1, 

2 and 3) using the software GOLD 5.1 [127]. The resulted poses were prioritized using the 

pharmacophoric features of the relevant co-crystallized ethyl caffeate. 
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In site 1, the aromatic ring of ethyl caffeate inhibitor shows a hydrophobic contact with 

Val287. The hydroxyl group in meta-position donates one H-bond to Gly285 while the para-

hydroxyl group forms two H-bonds with Asp236 and Lys257. The most plausible binding pose 

of verbascoside in site 1 that fulfills the above-mentioned pharmacophore was selected 

(Figure 18). This proposed binding mode is perfectly superimposed on the co-crystallized 

inhibitor and shows very similar interactions as with the caffeate moiety. 

 

 

Figure 18: Superposition of ethyl caffeate (gray balls and sticks) and proposed binding mode of 

verbascoside (black sticks) in HPA (PDB code: 4GQQ) in site 1 in 3D (left). Yellow spheres 

indicate lipophilic contacts, green and red arrows indicate donating and accepting H-bonds, 

respectively.  

 

The hydroxyl groups of the caffeate moiety (ring A) of verbascoside forms three H-bonds with 

Gly285, Lys257 and Asp236. Hydrophobic contacts are also formed between ring A and 

Val287. Additionally, the hydroxyl groups of the ethyl dihydroxybenzene fragment (ring B) 

forms three H-bonds with Glu282 and Ser289 that can stabilize the ligand in the pocket. At 

this site the glucose units do not show any interactions, and can be considered as linkers 

between main interacting fragments (rings A and B). 

 

In site 2, the ethyl and ethenyl groups of the inhibitor ethyl caffeate form hydrophobic 

contacts with Leu26. H-bond donors are formed between the hydroxyl groups of the aromatic 

ring and Asp77 on one side, and between the carbonyl oxygen of the inhibitor and Arg85, on 

the other side. The most plausible pose fulfilling the caffeate-typical 3D pharmacophore 

features is illustrated in Figure 19. 
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Figure 19: Selected poses of verbascoside in site 2 (left) and site 3 (right) interacted in HPA 

(PDB: 4GQQ) in 3D (above) and 2D (below). Yellow spheres indicate hydrophobic contacts while red 

and green arrows indicate H-bonding as acceptors and donors, respectively. Size of amino acid 

residues depends on their positions in the pocket. 

 

The selected binding conformation of verbascoside in site 2 shows similar interactions to the 

co-crystallized inhibitor. However, the hydroxymethyl group in C6 of the glucose unit linked to 

caffeate forms additional H-bond acceptor with Arg85. Since site 2 is close to site 3, and 

because verbascoside is larger than ethyl caffeate, the former might protrude into site 3. 

Superposition of the docked verbascoside and the co-crystallized ethyl caffeate in site 2 

reveal that ring B of verbascoside interacts in a similar fashion as the aromatic ring of the 

ethyl caffeate in site 3 through hydrophobic contact with Leu26. It can be surmised that 

verbascoside occupies both sites 2 and 3 and interacts with residues located in both sites. 
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In site 3, the aromatic ring of the co-crystallized ethyl caffeate forms hydrophobic contacts 

with Leu26 and Ile372. While Asp23 forms one H-bond with meta-hydroxyl group of the 

aromatic ring, another H-bond is formed between the nitrogen atom of the backbone of 

Ile372 and the carbonyl oxygen of ethyl caffeate. The predicted binding conformation of 

verbascoside was superimposed with the docking reference in site 3. It shows very similar 

interactions besides two additional H-bonds between meta-hydroxyl group in the 

phenylethanoid ring of verbascoside and Pro374 on one side, and between the 2-hydroxyl 

group of the glucose unit linked to ethyl caffeate moiety and the carbonyl oxygen of the 

backbone of Ile372, (Figure 19). 

 

Docking results show that the presence of hydroxyl groups in caffeate moiety of 

verbascoside is essential for binding in addition to the hydrophobic contacts that are formed 

with the benzene ring of the same fragment. Also, the presence of the double bond in 

caffeate fragment stabilizes the ligand in the triad sites and decreases its flexibility leading to 

a better inhibitory potency of caffeate derivatives compared to dihydrocaffeate (IC50 > 14 

mM) [75]. Sugar fragments act as linker in verbascoside without showing real important 

interactions except H-bonding with Arg85 in site 2 and with Ile372 in site 3. Accordingly, 

sugar moieties mostly have insignificant effect on the inhibition. This supports our initial 

hypothesis that designing molecules without carbohydrate moieties could enhance the 

binding affinity of caffeate derivatives in the triad pockets. 
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4.3 Structure-Based virtual screening for α-amylase inhibitors 

The main goal of performing virtual screening is to discover novel α-amylase inhibitors with 

drug-like properties. Since the crystal structure of the target is known, structure-based virtual 

screening approach is mainly employed in this project. 

In subsequent chapters, an initial virtual screening experiment based on a shared-feature 

pharmacophore will be explained in chapter 4.3.1. A subsequent refined structure-based 

virtual screening using different 3D pharmacophores will be reported in chapter 4.3.8. 

Biological experiments for hits selected from both virtual screening approaches will be given 

in chapters 4.3.2 and 4.3.9. Binding mode analyses of discovered α-amylase inhibitors shall 

be elucidated in chapters 4.3.4 and 4.3.10. Additionally, an analogue search for the most 

promising α-amylase inhibitor identified by the initial virtual screening will be described in 

chapter 4.3.8. While biological testing and SAR analysis shall be given in chapter 4.3.6, 

docking studies for the identified analogues will be reported in chapter 4.3.7. 

4.3.1 Pharmacophore-based virtual screening: Initial screening round 

Structure-based virtual screening was performed using a 3D pharmacophore developed from 

available crystal structures of the HPA, HSA and PPA co-crystallized with carbohydrate-

based inhibitors. Selected virtual hits were experimentally tested in-house in collaboration 

with Prof. Dr. Matthias F. Melzig and in collaboration with Dr.  Gyöngyi Gyémánt at the 

University of Debrecen, Hungary. 

In the following sections, 3D pharmacophore development (chapter 4.3.1.1), virtual screening 

metrics for the developed 3D models (chapter 4.3.1.2), and a workflow of selecting 

compounds for biological testing (chapter 4.3.1.3) will be described. 

4.3.1.1 Development of 3D pharmacophore models 

First, all co-crystallized inhibitors available from the PDB were analyzed in order to compile 

essential features for optimal interaction with the α-amylase catalytic pocket. Due to large 

interaction patterns involving areas further away from the active site, peptide-based inhibitors 

were excluded [24, 64]. Crystal structures (3OLD, 3OLE, 3OLG, 3OLI, 3IJ9, 3IJ7, 2QV4, 

3BAJ, 3BAY, 1XH2, 1XD0, 1XD1, 1XH0, 1XCX, 1XCW, 1CPU, 1MFV, and 1OSE) of the 

HPA, HSA and PPA co-crystallized with sugar-based inhibitors deposited in the PDB [5, 6] 

were investigated using the platform LigandScout 3.1 [114, 115, 159]. Binding modes of co-

crystallized inhibitors were analyzed in detail and show that a large number of amino acids in 
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subsites -4 to +3 in the active site cleft contribute in binding [5, 6]. This large pocket is 

challenging because the required compounds in this work are small molecules with drug-like 

properties able to inhibit the enzyme. 

Chemical interactions of co-crystallized inhibitors were translated into 3D pharmacophore 

models (some examples are shown in Figure 20). The resulting pharmacophores were 

aligned and used as a basis to develop a unique shared-feature 3D query for the initial virtual 

screening.  

Assuming that the cleavage site of α-amylase (at subsites -1 and +1) is a central domain for 

substrate binding, our starting hypothesis was that blocking this region is essential or at least 

important for inhibition. Thus, particular attention was put in interactions observed between 

the enzyme and the investigated ligands in this region. 

 

 

Figure 20: Examples of pharmacophore models generated for the known biologically active co-

crystallized inhibitors denoted as their entries in the PDB. Chemical features are colored as: H-

bond donors (HBD) green arrows, H-bond acceptors (HBA) red arrows, positive ionizable interactions 

(PI) blue stars, hydrophobic contacts (HYD) yellow spheres, excluded volumes (Xvols) gray spheres. 
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During pharmacophore development, the role of a particular water molecule (HOH-764) in 

the binding of ligands was studied. The software package MOE 2010.10 [155] was used to 

superpose crystal structures of HPA (codes: 3OLE, 1CXW, 1XCX), HSA (code: 1MFV), and 

PPA (code: 1OSE) (see Appendix 10.2). Analysis demonstrates that HOH-746 is located 

nearly at the same position in all investigated macromolecules, which indicates its important 

role in the binding of inhibitors. The HOH-746 was therefore taken into account in the 

pharmacophore model. 

In order to assess and improve the performance of the developed models, a dataset of 19 

active compounds and 55 known inactive compounds was assembled from literature and the 

Chembl database [164], (see Appendices 10.3 and 10.4). Multi-conformational virtual 

screening of these compounds was carried out and the signal-noise ratio was determined 

using Receiver Operating Characteristics (ROC) curve described in chapter 3.1.5. 

Iterative development and validation yielded two pharmacophore models (Model A and B) 

with good early enrichment factor values (EF1% 3.9), which mean that the retrieved hit list 

contains about four times more inhibitors than a random selection (Figure 21). It is also 

supported by the high area under the curve (AUC100% = 0.80 - 0.81 %) that measures the 

accuracy of the models to discriminate active from inactive compounds. Both models can 

retrieve 63 % (12 out of 19) of active compounds as true positive compounds, which 

indicates high sensitivity. From the point of view of selected inactives, model B shows the 

ability to retrieve only 1.8 % (one out of 55) of inactive compounds compared to 9 %  (five out 

of 55) with model A (see Table 5). Hence, model B displays an excellent efficiency in 

retrieving maximum number of active compounds with the minimum inactive ligands. This 

model was selected for the next step of this work. 

 

Table 5: Comparison and validation of the developed 3D pharmacophore models demonstrate 

high efficiency discrimination between true and false positives 

 EF1% AUC100% Retrieved actives Retrieved inactives 

Model A 3.9 0.80 12 (63 %) 5 (9 %) 

Model B 3.9 0.81 12 (63 %) 1 (1.8 %) 

EF1% means early enrichment factor, and AUC100% means area under the curve. 

 

The chemical features of the developed models compile mainly ligand-enzyme interactions 

detected at the center of the catalytic cavity, where Asp197, Glu233 and Asp300 are located. 
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Model A. This model consists of (i) three optional H-bond donors (HBD) with the nitrogen 

NE2 of His299, oxygen atom of water-746 and the carbonyl oxygen of the side chain of 

Glu233 and one essential HBD with the oxygen OE2 from the side chain of Glu233, (ii) one 

essential hydrophobic contact (HYD) with Ile235 and deeper in the active site with Leu162, 

(iii) one essential H-bond acceptor (HBA) with the oxygen of water-746, (iv) one optional 

positive ionizable interaction (PI) with the carboxyl groups of the catalytic triad (Asp197, 

Glu233 and Asp300), and (v) 25 exclusion volumes (Figure 21). 

 

 

 

Figure 21: Above: 3D pharmacophore models A and B containing the following chemical 

features : three H-bond donors (green), one H-bond acceptor (red), one positive ionizable interaction 

(blue star), one Hydrophobic contact (yellow sphere), and 25 exclusion volumes (gray spheres). 

Acarviostatin II03 inhibitor in black (Ki ~ 14 nM, PDB: 3OLE) is aligned with the developed 3D model. 

H-Bond acceptor to water 746 is optional in model A. Below: Receiver Operating Characteristics 

(ROC) curves: model A (left) and the final model B (right). 



 

47 

Results 

During validation, model A was able to retrieve acarviosine scaffold (valienamine and 4,6-

dideoxy-α-D-glucose) of the carbohydrate-based inhibitors with high pharmacophore fit 

score. 

Additionally, five inactive compounds fit the model owing to the presence of hydroxyl groups 

in benzene rings as observed with rosmarinic acid (IC50 = 1.4 mM [75]) and epigallocatechin 

gallate (IC50 = 1.4 mM [165]) listed in Appendix 10.4. 

 

Model B. This model consists of the same features as model A (Figure 21). The only 

difference is that the optional HBD to the oxygen atom of water-746 of model A was modified 

into an essential feature to have model B. Therefore, it was considered as the final model to 

be used for the next step. 

4.3.1.2 Virtual screening metrics for the developed pharmacophore model 

The final model was subjected to further validation by screening drugs and biological 

compounds available from the Derwent World Drug Index 2005 (WDI, 

www.thomsonreuters.com), MDDR2009 (www.symyx.com), and DrugBank [166] databases. 

There were three goals for this further validation: (i) to investigate the ability of the model to 

retrieve known drugs either with the same or different biological activity, (ii) to examine the 

efficiency of the model by ranking the 12 previously retrieved active compounds when 

screened altogether with drug databases (iii) to have an idea about the restrictiveness of the 

model by specifying the total number of the retrieved hits from the WDI2005, MDDR2009 and 

DrugBank databases. When screening the commercial biological databases alongside with 

the collected known α-amylase inhibitors, eleven out of 12 known active compounds 

previously retrieved during the first validation are ranked within the 100 top hits. Up to 17 % 

of the compounds retrieved and ranked within the first 100 hits belong to trestatin family 

possessing acarviosine scaffold. This means the developed model can retrieve active 

compounds and prioritize α-amylase inhibitors among others. This model is suitably 

considered restrictive because the overall recovered hits from WDI, MDDR and DrugBank 

were about ~ 1.4 % (1,969 out of 141,233 compounds). The main values from this validation 

step are summarized in Table 6. 

Results of this screening campaign indicate that the 3D model can retrieve known active 

compounds from the screened databases with outstanding early enrichment factor values. 

EF1% values reach up to 63 and good discriminating accuracy expressed as area under the 

curve (AUC) reaching 0.81, a value very close to the ideal accuracy one. 
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Table 6: Results of the computational validation of the final model using drugs and biological 

compounds databases 

EF1%: early enrichment factor, AUC100%: area under the curve. 

 

Based on these promising results regarding statistical validation of the final developed 

model, we decided to use it as a 3D query for virtual screening to identify novel α-amylase 

inhibitors with a relatively low rate of expected false positive compounds. 

4.3.1.3 Overall compound selection work-flow 

After validation of the 3D pharmacophore, the model was used as a query for virtual 

screening of 1,762,189 commercially chemical compounds available from different vendors 

(Figure 22). 

The 3D model picked 5,748 hits, which correspond to 0.32 % of the database entries. 

Retrieved hits were ranked with pharmacophore fit score in LigandScout 3.1 and about 3,014 

compounds were selected for the next step. Then, 2D descriptors were used (i.e. HBD ≤ 2-5, 

HBA ≤ 10, Mol.wt.≤ 700, and ClogP ≤ 5) to rationally select 2,292 drug-like hits (chapter 

7.2.4). In order to reduce the amount of inhibitors to handle prior to biological experiments, 

two different strategies were applied: virtual docking and structural clustering. 

 

Validated 

databases 
Size of a database 

Retrieved hits from 
EF1% AUC100% 

databases known actives 

WDI2005 64,255 1,141 (1.77%) 12 58.0 0.81 

MDDR2009 72,383 752 (1.03%) 12 63.2 0.81 

DrugBank 4,595 76 (1.65%) 12 58.1 0.81 

Total 141,233 1,969 (1.39%)    
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Figure 22: Workflow of the initial virtual screening of commercial chemical databases. 

 

After successful re-docking experiments (chapter 7.5.3, Appendix 10.6), GOLD 5.1 [127] was 

used to dock the resulted virtual hits (2,292) into the α-amylase active site (PDB code: 

3OLE). Using LigandScout 3.1, poses were minimized inside the enzymatic pocket with the 

force field MMFF94 and then prioritized based on their ability to geometrically fulfill the 

features compiled in the 3D pharmacophore. Careful visual inspection was conducted 

through compound conformations with the highest fit scores and the 30 most promising 

structures were selected for the next step. 

All 2,292 virtual hits were additionally subjected to structural clustering with the software 

JKlustor 5.8.0 [139]. The 17 candidates with the highest structural diversity were selected for 

further investigation. Based on their commercial availability, 14 virtual hits were purchased 

for biological testing (Figure 23). 
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Figure 23: The virtual hits selected for biochemical assay. 

4.3.2 Biological Testing 

Kinetic assay was carried out with two different substrates, p-nitrophenyl-α-D-

maltopentaoside (p-NPG5) for the first method and 2-chloro-4-nitrophenyl-4-O-β-D-

galactopyranosylmaltoside (GalG2CNP) for the second one described in chapters 7.3.1 and 

7.3.2, respectively. The purpose of using two assay methods was to analyze the behavior of 

tested compounds in different conditions. Compound 1 was excluded from the test due to low 

solubility. 

In the first assay, PPA is used to hydrolyze the substrate p-NPG5 and release the 

chromogenic fragment p-nitrophenol (p-NP) which is continuously detected at 405 nm with 

respect to time. The residual 13 hits were prepared in the same manner like the positive 

control acarbose to evaluate their inhibitory effect against the enzyme. Of the tested 
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candidates, compounds 7, 8, and 9 exhibit inhibitory effects with IC50 values below 100 µM 

and comparable to acarbose that shows IC50 value of 97.06 µM (Table 7). This corresponds 

to a hit rate of 23 % (three out of 13). Compound 2 demonstrates weak inhibitory effect with 

IC50 value of 441.5 µM while the rest candidates do not reveal any effect in the first assay. 

Compound 7 showing the best inhibition with IC50 value of 86.6 µM is characterized by the 

presence of benzoimidazole scaffold that is structurally different from carbohydrate-based 

inhibitors. 

 

Table 7: Biological results and ligand efficiency values for hits selected by the initial virtual 

screening 

Compound Mol.wt HA 
p-NPG5, PPA GalG2CNP, HSA 

IC50 (µM) LE IC50 (µM) LE 

Bound acarbose* 948.92 65 97.06 0.08 0.5 0.13 

1 489.56 35 NT  NT  

2 300.33 21 441.5 0.22 138 0.25 

3 348.43 26 ND  200 0.19 

4 447.43 32 ND  300 0.15 

5 413.44 31 ND  ND  

6 294.36 21 ND  1000 0.19 

7 296.32 22 86.62 0.25 ND  

8 382.44 27 97.375 0.20 ND  

9 355.38 26 93.58 0.21 ND  

10 479.74 31 ND  NT  

11 425.34 31 ND  NT  

12 280.36 20 ND  NT  

13 320.38 23 ND  NT  

14 444.53 32 ND  NT  

HA stands for number of heavy atoms, LE stands for calculated ligand efficiency, ND means inactive 

at 500 µM (with p-NPG5 and PPA) and at 200 µM (with GALG2CNP and HSA), NT means not tested 

due to insolubility. 

* Bound acarbose (pseudohexasaccharide) in the active site of PPA (PDB: 1OSE [156]) and HSA 

(PDB: 1MFV [49]) was taken into account for LE calculations. 

 

Also, compound 8 displys IC50 value of 97.4 µM and perfectly matches the value of acarbose. 

It seems that compound 8 with pyrimidinyl-guanidine scaffold is interacted inside the active 

site in a very similar pattern as acarbose compared to compound 9 that reveals IC50 value of 

93.6 µM. 
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Different from the first assay, GalG2CNP is used as a substrate for HSA using MES buffer at 

pH 6.0 and the released chromogenic product chloronitrophenol (CNP) is continuously 

monitored at 400 nm with respect to time. Using this method, the effect of compounds 2 - 9 

was evaluated (the other hits were unavailable at the time of the assay). 

In this assay, compounds 2, 3, and 4, out of the eight tested compounds reveal inhibition 

against HSA with IC50 ≤ 300 µM compared to acarbose that shows IC50 value of 0.5 µM 

(Table 7). This corresponds to a hit rate of 37.5 % (three out of eight). 

Compounds 2 and 3 show competitive inhibitors with IC50 values 138 µM and 200 µM, 

respectively (Figure 24). 
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Figure 24: Concentration-effect curves (left) and investigation of inhibition types (right) of 

compounds 2 (above) and 3 (below) using GalG2CNP substrate. 

 

These inhibitors are characterized by three-ring-backbones. While compound 2 possesses 

N,4-diphenylthiazole-2-amine scaffold, compound 4 retains a dinitro-piperidine fragment and 
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both compounds are substituted with hydroxyphenyl rings. Compound 3 is composed of tri-p-

cresol rings. 

Although less potent than the reference inhibitor acarbose, these compounds bear a 

promising ligand efficiency (LE) due to their smaller size. Defined as the ratio between 

potency and their number of heavy atoms (HA), LE can be determined using the equation LE 

= (1.37/HA) × pIC50 [128, 167, 168]. The active compounds identified by virtual screening 

show higher LE values compared to the bound acarbose, more details will be discussed in 

chapter 5.2.3. These small molecules are therefore considered promising novel lead 

compounds and can be used as a structural query to develop potent α-amylase inhibitors. 

Interestingly, compound 2 was published by Heng et al. in 2009 as allosteric inhibitor (IC50 = 

11 µM) against fructose 1,6-bisphosphatase (FBPase) [169]. This enzyme plays a role in the 

production of glucose (gluconeogenesis) mainly in liver and kidney. Because of its small 

structure and its ability to inhibit two enzymes (α-amylase and FBase) involved in glucose 

production, compound 2 is a promising lead molecule that can be used to develop anti-

diabetic agents. 

During the development of this work, a natural phloroglucinol derivative (DDBT) was reported 

in 2012 as α-amylase inhibitor (IC50 = 8.56 µM) with a very analogous scaffold to compound 

3. This similarity confirms the rational of our strategy and the strength of our computer-aided 

methodology. 

Performing more than one assay with different conditions (substrate type, enzyme origin, 

medium conditions and others) to test the same compound can reveal different results 

evoking a difficult comparison as explained in chapter 3.2. This case was noticed when using 

two assays in two different Labs to test virtual hits explained before. However, molecular 

modeling was carried out trying to elucidate differences in IC50 values of these tested 

compounds. 

4.3.3 Attempt to rationalize differences in IC50 values 

To explain variations in IC50 values and the inhibitory effect of compounds tested with two 

assays, molecular modeling tools were used. Therefore, compounds 2, 3, 4, 6, 7, 8, and 9 

were investigated here while others not tested in second assay (using GalG2CNP substrate) 

were excluded. 

All investigated compounds, the two substrates (p-NPG5 and GalG2CNP) and acarbose 

were docked into α-amylase active site (PDB: 3OLE) using the software GOLD 5.1 and the 

most plausible binding poses were selected as described in chapter 7.4. Subsequently, the 
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selected conformations were used for the calculation of the Gaussian shape similarity score. 

Calculations using Gaussian functions represent an established strategy for molecular 

similarity assessment [137]. Hence, the steric overlap of the substrates and the tested 

compounds could be calculated using Gaussian shape similarity score. This overlap is 

quantified into a value ranging between zero and one. In LigandScout 3.1, Gaussian shape 

similarity score is an analytical measurement for an overlap of Gaussian function 

representations of the molecular volume of a ligand which is aligned to a reference 

compound [159]. Our assumption was that Gaussian score could be used to explain the 

competitiveness of each tested compound with each substrate in the active site. In other 

words, the steric similarity can indicate how well the compound competes with the used 

substrate and might therefore be used to explain the differences in activity in the different 

assays. 

The core molecule of the PDB code 3OLE was replaced in LigandScout 3.1 by each 

substrate as a reference for calculations. Then, the selected docking poses were inserted 

into the LigandScout 3.1 structure-based perspective to calculate their scores. Details are 

summarized in Appendix 10.5. 

Analyzing the docking poses inside the active site shows that the substrate p-NPG5 

demonstrates better orientation and overlapping than GalG2CNP. 

It can fit into the glycone (subsites -3, -2, -1 in the left region) and the aglycone (subsites +1, 

+2, +3 in the right region) binding sides. GalG2CNP relatively shows good orientation in the 

active site and is more directed to the right side, whereas acarbose is directed in both sides 

of the active site from subsites -3 to +2. 

The Gaussian scores of acarbose are higher than the ones of investigated compounds. This 

is not surprising because the carbohydrate nature of bound acarbose is highly similar to the 

substrates while the tested compounds are small non-carbohydrate molecules. Compounds 

3, 4, 6, 8 and 9 referred to p-NPG5 substrate show higher scores than the ones that reffered 

to GalG2CNP (Figure 25). This could mean that the probability of the tested compounds to 

compete with p-NPG5 substrate in the active site is higher compared to GalG2CNP. This is 

supported by the findings of the Gaussian scores for the bound acarbose that shows values 

of 0.59 (referred to p-NPG5) and 0.34 (referred to GalG2CNP). 

Additionally, bound acarbose (molecular weight 948.92) is similar in size to p-NPG5 

(molecular weight 950) compared to GalG2CNP (molecular weight 660). Hence, the latter 

shows less competition in the active site. Consequently, a higher concentration of the bound 

acarbose is required to win the competition over p-NPG5 and fit in the pocket with almost full 

occupancy in the active site. Thus, the bound acarbose reveals a high IC50 value of 97.06 µM 
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in the first assay (with p-NPG5) compared to the low IC50 value of 0.5 µM in the second 

assay (with GalG2CNP). 

When using GalG2CNP, investigated compounds show lower scores compared to the ones 

with p-NPG5. Only compound 7 shows higher score with GalG2CNP compared to p-NPG5. 

Even the low scores with GalG2CNP, compounds 2, 3, 4 ,and 6 show inhibition properties. 

This could relatively indicate weak competition between GalG2CNP and those compounds. 

Thus, analysis of Gaussian scores reveals the following findings: (i) Compounds 2, 8 and 9 

do not fulfill the hypothesis that higher score could mean higher competition and then better 

inhibition (lower IC50 value). Compound 2 shows identical scores with both substrates but 

lower IC50 with GalG2CNP. Compounds 8 and 9 reveal lower scores with GalG2CNP but 

without any activity. (ii) Our hypothesis could be theoretically applicable for compounds 3, 4, 

6 and 7. Compounds 3, 4 and 6 demonstrate lower scores with GalG2CNP and inhibitory 

activity (200 µM, ~ 300 µM, and 1 mM), which means higher concentrations of these 

inhibitors might be required to show activity with p-NPG5. However, increasing the 

concentrations of these compounds was not applicable during assay with p-NPG5 and 

precipitated in the well-plates. 

Compound 7 shows higher similarity to GalG2CNP, which means a higher concentration 

could be required to show activity with GalG2CNP. It might be applicable if the concentration 

was more than 200 µM, the maximum used concentration during assay. 

 

 

Figure 25: Diagram shows different values of Gaussian score calculated with LigandScout 3.1 

using p-NPG5 and GalG2CNP as score references for acarbose and compounds showing α-

amylase inhibition. Blue columns represent scores referred to p-NPG5 while intense red colors 

indicate scores referred to GalG2CNP. 
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In summary, the proposed reasons behind the differences in activity with the two assay 

methods could be due to the following points: Firstly, the longer substrate (p-NPG5) used in 

the first assay shows more interactions and hence better binding inside the active site than 

GalG2CNP. Hydrolysis of the substrate could occur more than once and the possibility of 

rearrangement and condensation could occur based on substrate concentration [170-174]. 

This leads to slow hydrolysis process of p-NPG5 and could explain the high amount of the 

PPA enzyme (5.680 µM) and p-NPG5 substrate (25 mM) in the first assay compared to the 

amount of HSA enzyme (2 nM) and GalG2CNP (0.75 - 4 mM) in the second assay (chapter 

7.3). Secondly, the substrate GalG2CNP used in the second assay was short and very 

sensitive to the enzyme which means the conversion rate and the affinity of GalG2CNP are 

high. 

While our steric similarity approach could explain a few aspects of differing IC50 values, it 

could not be used for rationalizing all activity differences, mainly due to the complex kinetic 

processes that cannot be represented by a simple steric overlap. Consequently, comparing 

results from two different assays is considered challenging and many factors should be taken 

into account such as types of substrate, enzyme and concentrations as well as conditions 

used in the assay (chapter 3.2). 

4.3.4 Docking studies with discovered α-amylase inhibitors  

Re-docking the active compounds in the binding site of α-amylase identified in both assays 

was conducted to depict their hypothesized binding modes and compare them to the co-

crystallized inhibitor acarviostatin 0II3 (Ki ~ 14 nM, PDB: 3OLE [36]). 

Compounds 7, 8 and 9 show inhibition properties in the kinetic assay conducted with p-

NPG5 substrate for PPA. 

Docking was carried out with GOLD 5.1 as described in chapter 7.5.3. The most plausible 

poses were selected and prioritized based on the fulfillment of chemical features of the 

developed 3D model. Subsequently, a 3D pharmacophore was created for each selected 

pose to rationalize its activity as illustrated in Figure 26. 

Superposition of compounds 7, 8 and 9 with the docking reference acarviostatin II03 reveals 

similar binding modes. They all occupy subsites -1 and +1 with interactions favorable for 

inhibition. 

Investigating the selected poses shows that hydroxyl groups of compounds 7 and 9 and the 

NH-group in the pyrimidin-4-(3H)-one fragment of compound 8 donate H-bonds to Glu233. 

Asp197 forms H-bonds, on one side, with the hydroxyl group of compound 7 and, on the 
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other side, with the hydrazine fragment of compound 9. The methyl group attached to the 

hydrazine fragment of compound 9 shows unfavorable orientation because it is located very 

near to the carboxyl group of Asp300 and impeded the formation of H-bond. However, this 

orientation helps the hydrazine group to form H-bond with Asp197. The basic nature of the 

guanidinum group allows compound 8 to better orient for interaction with the catalytic triad 

(Asp197, Glu233, and Asp300) and Tyr62 through H-bonds and positive ionizable 

interactions compared to compounds 7 and 9. While the methoxy group of compound 8 

accepts one H-bond from His305, the imidazole moiety of compound 7 and the hydroxyl 

group of compound 9 accept H-bonds from Lys200. Hydrophobic contacts are formed to 

stabilize the ligands in the enzymatic pocket. 

Hydrophobic areas between lipophilic residues Leu162 and Ile235 with the resorcinol and the 

nearby methyl groups of compound 9 are favorable and similar to the ones with acarviostatin 

II03 in subsite +1. Although the hydrophobic nature could retard the interaction with Asp300, 

hydroxyl groups of 9 are directed toward Glu233 and Lys200 forming H-bonds. In compound 

7, the ethyl group forms hydrophobic contacts with Tyr62 and Trp58 and sterically hinders 

the interaction with Asp300 and His305 compared to the methoxy group of compound 8 that 

forms one H-bond at that location. While a hydrophobic contact is observed between 

compound 7 and Tyr151, compound 9 forms a lipophilic contact with Trp59. 
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Figure 26: 2D (left) and 3D (right) depiction for the predicted conformations for compounds 7 

(above), 8 (middle), and 9 (below) in HPA (PDB: 3OLE). Yellow spheres represent hydrophobic 

contacts; arrows illustrate H-bonds (green for donor and red for acceptor); Blue stars indicate positive 

ionizable interactions. Projection and labels of residues is based on their depth in the pocket. 
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Consequently, the hydroxyl groups of 7 and 9 and the guanidinium group of 8 play crucial 

roles for binding with catalytic residues. H-bonding and positive ionizable interactions are 

favorable for α-amylase inhibition. 

In contrast, compounds 2, 3, 4 and 6, show inhibitory activity against α-amylase (HSA) when 

using GalG2CNP as a substrate. Molecular docking was performed similarly as conducted 

with previously identified inhibitors. Investigating compounds 2, 3, and 4 as the most potent 

inhibitors identified by this assay reveals that three rings comprise their structural backbone. 

The proper accommodation in subsites -1 and +1 of compound 2 explains the inhibitory 

effect of this small molecule. The three ring-backbone of this inhibitor fully occupies subsites 

-2, -1, and +1 and partially +2 with similar orientation of acarviosine scaffold of acarviostatin 

II03 (Figure 27). 

 

 

Figure 27: Plausible binding modes for compounds 2 (left) and 3 (right) as thick black sticks in 

3D (above) superposed to the co-crystallized acarviostatin II03 (PDB: 3OLE) as thin lines and in 

2D (below). 
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This interaction with the catalytic core of the cavity is similar to the one of acarviosine. This 

essential scaffold of acarbose and other trestatin family inhibitors interacts with the central 

subsites -1 and +1. Our study shows that one hydroxyl group of resorcinol of compound 2 

can form two H-bonds with His305 and the catalytic residue Asp300, in subsite -1. The side 

chain of Glu233, another catalytic residue in subsite +1, can form one H-bond with the amino 

group linked to the thiazole ring. An additional H-bond can be formed between the phenolic 

hydroxyl group and Tyr151 near subsite +2. 

Interestingly, in the identified binding mode of compound 2, the thiazole moiety occupies 

subsite -1, just like valienamine, and stabilizes the inhibitor via hydrophobic contact with the 

side chain of Tyr62. Additional lipophilic contacts are formed, on one side, between the 

resorcinol ring and Leu165 and Trp58 near subsite -2, and on the other side, between the 

phenolic ring and Ile235 and Leu162 near subsite +1. These interactions lead to a good 

stabilization of compound 2 in the catalytic core of α-amylase. 

Similarly, compound 3 occupies the catalytic core (subsites -1 and +1) and protrudes to the 

nearby subsites in our docking study. Superposition with acarviostatin II03 shows, again, a 

similar binding mode. Predicted conformation of compound 3 suggests that two H-bonds are 

formed between the catalytic residues Asp300 and Glu233 and the hydroxyl groups of two p-

cresol rings. The methyl group of the central p-cresol fragment of compound 3 can point to 

subsite -3 and form hydrophobic contact with the side chain of Thr163, stabilizing the 

inhibitor in the pocket. The other two p-cresol rings can form hydrophobic contacts in subsite 

-2 with Leu165 and Trp59, subsite +1 with Leu162 and Ile235, and near subsite +2 with 

Tyr151. 

Although compound 3 is spanning from subsites -2 to +2, it shows weaker inhibitory potency 

(IC50 = 200 µM) than compound 2 (IC50 = 138 µM). This could be due either to (i) H-bonds 

playing a major role in inhibition and fewer could be detected with 3 compared to the binding 

mode of compound 2, and/or (ii) the thiazole ring of compound 2 plays an important role for  

ligand stabilization in subsite -1 and is better oriented than p-cresol of compound 3 (Figure 

27). 

Compound 4 shows lower inhibitory potency (IC50 ~ 300 µM) even though it occupies 

subsites -3 to +2 in the docking study. The catalytic residue Asp300 can form a positive 

charge interaction with the amino group of the piperidine moiety, contributing to the 

stabilization of this ligand in the cavity. This inhibitor is stabilized inside the pocket by forming 

hydrophobic contact with lipophilic residues Thr163, Tyr62, Leu165, Leu162, and Ile235. 

Nevertheless, the presence of the nitro groups seems to affect the inhibitory potency. The 
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lack of adequate interactions with catalytic residues plays a crucial role in the weak inhibitory 

effect of compound 4. 

Surprisingly, compound 6 shows inhibitory activity and it might be due to the positively 

ionizable interaction between the amino groups with the catalytic triad. However, the 

flexibility of compound 6 could make these interactions less stable in the active site and 

hence it relatively shows weaker effect than compound 2. 

Superposition of the inactive compound 5 with the newly identified active compound 2 shows 

that even the phenolic groups in both ligands occupying subsite +1, the pyrazolone moiety of 

compound 5 is not located in subsite -1 compared to the second phenolic ring of compound 

2. This might suggest two possibilities: (i) pyrazolone fragment is not close enough to occupy 

subsite -1 or (ii) this fragment could be unfavorable for α-amylase inhibition. Additionally, the 

presence of benzene ring linked to pyrazolone moiety could augment the inactivity of 

compound 5 compared to thiazole ring in compound 2. 
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4.3.5 Similarity search for the best competitive inhibitor in the initial 

screening 

The most promising competitive α-amylase inhibitor identified in the previous initial virtual 

screening in both assays is compound 2. This small fragment was used as a query, on one 

side, to find analogues possessing potential activity, and on the other side, to gain more 

information about the structure activity relationship. Detailed procedures will be described in 

the experimental section in chapter 7.6. This approach was conducted as 2D similarity 

search from an in-house chemical database obtained from commercial vendors for choosing 

12 hits for biological testing. 

4.3.6 Biological assay and SAR for analogues of the best competitive 

inhibitor 

The previously described kinetic assay with GalG2CNP (chapter 7.3.2) was used for 

analogues of compound 2 that were selected from 2D similarity search (chapter  7.6). 

Interestingly, all the 12 compounds show activity against α-amylase (HSA) with IC50 values 

ranging from 50 µM to 4 mM (Table 8). 

Compound 2 with N,4-diphenylthiazole-2-amine as 6-5-6-membered rings was investigated 

using structurally related analogues. Compounds 22 - 27 were chosen to explore substitution 

effect on potency in ring A (Figure 28). Compounds 28 - 33 were selected with persistent 6-

5-6-membered-rings pattern holding interesting scaffold types. 

Replacement of the hydroxyl group in para-position of compound 2 (IC50 = 138 µM) with the 

carboxyl group causes 5-fold decrease in inhibition as observed with compounds 22 and 23. 

While substitution with p-sulfamoyl group tolerates the potency for compound 25 (IC50 = 165 

µM), p-dimethylamino group enhances the α-amylase inhibition of compound 26 (IC50 ~ 100). 

In contrast, substitution in meta-position by a hydroxyl group (compound 23, IC50 = 642 µM) 

or a carboxyl group (compound 24, IC50 = 423 µM) decreases the potency compared to 

compound 2. 

Indeed, the presence of both hydroxyl group in meta- and carboxyl group in para-positions or 

vice versa strongly diminishes the inhibitory potency (3- to 5-fold decrease) and hence their 

presence at the same time in ring A is unfavorable for α-amylase inhibition as observed with 

compounds 23 and 24. The reason could be the formation of intramolecular H-bonds 

between hydroxyl and carboxyl groups and the resulting unavailability for potential interaction 

with residues in the binding site. 
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However, the presence of the carboxyl group in meta-position (compound 24) seems to give 

better IC50 value than in para-position (compounds 22 and 23). 

Substitution in meta-position with an acetyl group interestingly enhances the inhibition of 

compound 27 (IC50 ~ 100 µM) compared to compound 2. 

Thus, substitution in ring A is clearly affect on the potency of the N,4-diphenylthiazole-2-

amine scaffold. Meta-substitution with acetyl group (compound 27), or para-substitution with 

hydroxyl group (compound 2), dimethylamino-group (compound 26) or sulfamoyl-group 

(compound 25) are favorable for α-amylase inhibition. Para-substitution with carboxyl group 

appears unfavorable for inhibitory potency. An overview for SAR is given in Figure 28. 

 

 

 

Figure 28: An overview for SAR for analogues of compound 2 against α-amylase. 

 

Substitution of the ring B (thiazole ring) with 1H-pyrazole leads drastically to 29-fold decrease 

in the inhibition as observed with compounds 28 and 29 (IC50 ~ 4 mM) and completely 

inactive compound 5 (from the initial virtual screening). This shows the importance of the 5-

membered heterocyclic thiazole ring for α-amylase inhibition. 

Compounds 30 - 33 are also 6-5-6-membered rings that share a scaffold called 5-

benzylidenethiazolidin-4-one. Among compound 2 analogues, compounds 30 and 31 exert 

the most potent α-amylase inhibition with IC50 values of 50 µM and 62 µM, respectively. 
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Table 8: IC50 measurements and ligand efficiency values for analogues of compound 2 

Inhibitor Structure Mol.wt. HA 
IC50 

LE Comment 
μg/ml μM 

22 

 

328.24 23 223 680 0.19 - 

23 

 

344.34 24 221 642 0.18 - 

24 

 

344.34 24 144 423 0.19 - 

25 

 

363.41 24 60 165 0.22 - 

26 

 

327.4 23 33 ~ 100 0.24 competitive 

27 

 

326.37 23 33 ~ 100 0.24 
mixed 

inhibition 

28 

 

326.3 24  ~ 4000 0.14 - 

29 

 

368.34 27  ~ 4000 0.12 - 

30 

 

388.78 26 19 50 0.23 competitive 

31 

 

357.4 24 22 62 0.24  

32 

 

448.26 27  260 0.18  

33 

 

331.39 23  ~ 700 0.19  
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From previous findings with compounds 22 - 24 and 28, the carboxyl group does not 

enhance the activity. Thus, chlorine and 2-carbonyl substitutions in compound 30 seem to 

improve the inhibitory potency as compound 31 that lacks these substitutions and possesses 

a carboxyl group shows weaker activity. Compound 32 exerts IC50 value of 260 µM weaker 

activity than compounds 30 and 31 (Table 8, Figure 28). The methoxy and carboxyl groups 

of compound 32 seem to exert 5-fold decrease in the inhibition compared to compound 30 

which lacks these substitutions. Compound 33 shows 14-fold decrease in the inhibitory 

potency (IC50 ~ 700 µM) compared to 30 due to the presence of piperazine moiety. This is 

also supported by the complete inactivity of compound 14 (a hit from the initial virtual 

screening) that possesses piperazine moiety. Thus, the latter seems unfavorable for α-

amylase inhibition. More structural mechanism is given in docking studies in chapter 4.3.7. 

The dose-response inhibitory potency of the most interesting compounds is shown in Figure 

29. 
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Figure 29: Dose-response curves for compounds 22 - 27, 30 and 31 using GalG2CNP as a 

substrate for HSA. 

 

Ligand efficiency for the 12 compounds shows values better than the positive control (LE = 

0.13), taking into account the structure of modified acarbose (pseudohexasaccharide) bound 

to the active site of HSA (PDB code: 1MFV [49]). Interestingly, compounds 26, 27, 30, and 

31 showing the most potent inhibition against α-amylase have the best LE among others 

(Table 8); more details will be discussed in chapter 5.2.3. 

To understand how these compounds accomplish their potency, we investigated their binding 

conformation inside the α-amylase cavity using molecular docking. 
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4.3.7 Docking studies of analogues of the best novel competitive 

inhibitor 

Molecular docking was carried out in the PDB code 3OLE using GOLD 5.1 (chapter 7.6). All 

compounds were docked into the catalytic active site. Plausible binding conformations were 

prioritized based on the pharmacophoric features of compound 2 and the quality of 

interactions with residues in the active site. The plausible poses of compounds 25, 26, 27, 

30, and 31 as the most promising analogues of compound 2 are given in Figure 30. 

Since compounds 22 - 24 share the same N,4-diphenylthiazole-2-amine scaffold present in 

compound 2, they can form similar interactions. However, the presence of the strongly 

electron withdrawing carboxyl group of 22 - 24 near to the carboxylic amino acid residue 

Glu240 in subsite +2, causes weaker activity than 2. The carboxyl group of 24 is located in 

meta-position and therefore, shows better inhibitory potency than 22 and 23 which possess 

para-carboxyl groups located far away from Glu240. Compounds 22 - 24, 32, and 33 that 

show weak inhibitory potency are depicted in Appendix 10.7. 

Aromatic rings of compound 25 form hydrophobic contacts with Trp58, Tyr62, Ile235, and 

Leu162. The carbonyl oxygen of sulfamoyl fragment and the amino group linked to thiazole 

ring of 25 form two H-bonds with Lys200 and Glu233, respectively. The comparison of 

compounds 22 - 27, which all have the same scaffold, suggests that hydrophobic contacts 

formed by p-dimethylamino substituent of 26 with Trp59, Thr163, and Leu165 in active 

subsites -2 and -3 are considered important for activity. Compounds lacking this fragment 

have lower activity than 26. Among them, 27 shows activity same as 26 and this could be 

due to the formation of H-bonds with Asp300, His305 which are not observed with others and 

an additional H-bond with Lys200. 

The comparison between compounds 30 - 33 that share 5-benzylidenethiazolidin-4-one 

scaffold suggests that H-bond between the 4-carbonyl oxygen of thiazolidin-4-one of 30 and 

Arg195 in subsite -1 seems important for inhibition, as 31 - 33 do not interact with this amino 

acid residue. The chlorine substituent of 30 forms a hydrophobic contact with Ile235 in 

subsite +1 that stabilizes the ligand binding. The carboxylic oxygen of compound 31 shows 

importance for potency by accepting one H-bond from the side chain of Gln63 in subsite -2, 

since 32 and 33 lack this interaction and hence show weaker inhibition. Also, 31 forms a 

hydrophobic contact with Thr163 in subsite -3 in addition to two H-bonds with Tyr151 in 

subsite +2. The carbonyl oxygen of thiazolidin-4-one of compound 32, on one side, accepts 

one H-bond from Gly306 and forms a lipophilic contact between bromine atom and Thr163, 

on the other side (Appendix 10.7). In subsite +2, one H-bond and a negative ionizable 
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interaction can be formed between the carboxyl group of 32 and the side chain of Lys200 but 

the nearby acidic Glu240 might reduce the stability of this ligand in the active site and hence 

shows lower activity than 31. Compound 33 shows weak inhibition and forms one H-bond 

between the carbonyl oxygen and the side chain of Lys200. Hydrophobic contacts are 

formed between aromatic rings of 33 and Trp58, Leu162, Ile235, and Ala198. The weak 

inhibitory potency of 33 seems due to the unfavorable orientation of piperazine ring that does 

not show any interactions with residues in subsite +1. 

 

 

Figure 30: Predicted binding poses of compounds 25 (A), 26 (B), 27 (C), 30 (D), and 31 (E) in 

black sticks and protein residues as gray balls and sticks. Yellow spheres represent hydrophobic 

contacts, red and green arrows show H-bond acceptors and donors, and yellow and blue dots 

represent hydrophobic and liopphilic surfaces of the receptor binding pocket. 

 

Investigating the predicted poses of 28 and 29 reveal that the pyrazole ring is located near to 

the charged subsite -1 (due to the presence of Asp197, Glu233, and Asp300) expecting to 

form favorable interactions. However, methyl substitution in case of 28 and carboxyl group in 

case of 29 destabilize both ligands at their sites and explain their weak inhibition.  
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4.3.8 Refined pharmacophore-based virtual screening 

During this thesis, α-amylase has been co-crystallized with myricetin (IC50 = 30.2 µM [82]) 

and published with PDB code 4GQR [25] as a first non-carbohydrate ligand bound to the 

HPA active site. The catalytic residue Asp300 in the active site and some other residues 

show different orientations from the ones observed with all other macromolecules bound to 

carbohydrate-based derivatives (chapter 4.1.1). Furthermore, novel non-carbohydrate-based 

α-amylase inhibitors have also been recently published. Hence this important new structural 

information was included in a refined virtual screening strategy. While common-based 

pharmacophore was applied in the initial virtual screening, individual 3D models derived from 

inhibitor clusters will be used in the refined one. 

In the coming chapters, the development of 3D models based on this new information will be 

described as well as the update of validation databases (chapter 4.3.8.1). Virtual screening 

workflow using the developed pharmacophores and rational selection of hits will be 

described in chapter 4.3.8.2. While biological testing and novel identified α-amylase inhibitors 

will be addressed in chapter 4.3.9, their hypothesized binding modes will be given in chapter 

4.3.10. 

4.3.8.1 Development of 3D pharmacophores 

As a first step in this refined virtual screening strategy, a new validation dataset was 

generated. The dataset used in the initial virtual screening was updated and comprised (i) 19 

active compounds including most identified inhibitors recently published during this work 

(Appendix  10.3) (ii) 60 inactive molecules (Appendix  10.3 and  10.4), (iii) 254 decoys 

generated by a KNIME workflow (an in-house workflow called myDecoyFinder) based on the 

19 active molecules, and (iv) 64,255 molecules (from WDI2005 database) and considered 

also as decoys. Preparation of validation datasets will be described in detail in the 

experimental part in chapter  7.2.2. Based on the scaffold type, the 19 biologically known 

active compounds were divided into six groups: 

i. Carbohydrate-based inhibitors, which include eight molecules with an acarviosine-

glucose scaffold. This scaffold co-crystallized with HPA (PDB: 1XCW [32]) was 

chosen to represent this group. 

ii. Flavonoid-based inhibitors, which comprise five compounds including montbretin A, B 

and C. Myricetin was selected to represent this group since it is the only available co-

crystallized flavonoid with HPA (PDB: 4GQR [25]). 

iii. Gallic acid derivatives which enclose 3 inhibitors: theaflavin monogallate, theaflavin 
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digallate, and 1,2,3,4,6-pentagalloyl-β-D-glucose [84, 165]. Here, the latter was used 

to build a model to represent this group since it is the most potent inhibitor among 

others. 

iv. Salacinol inhibitor with a tetrahydrothiophene fragment [175]. 

v. 2-(4-(3,5-Dihydroxyphenoxy)-3,5-dihydroxyphenoxy) benzene-1,3,5-triol (DDBT), 

which has a phloroglucinol scaffold [83]. 

vi. [2-(4-Bromophenyl)-4H-benzo[d]pyrimido[2,1-b][1,3]thiazol-4-yliden]acetonitrile 

inhibitor (CHEMBL2203334) which contains an acetonitrile moiety [87]. 

Individual 3D pharmacophore models for each group mentioned above were generated. 

Acarviosine-glucose and myricetin co-crystallized with α-amylase (PDB codes 1XCW and 

4GQR, respectively) were used to build 3D models. 

The other four models were obtained by docking inhibitors 1,2,3,4,6-pentagalloyl-β-D-

glucose [84], salacinol [175], DDBT [83], and CHEMBL2203334 [87] into the HPA active site 

(PDB: 3OLE) using the software GOLD 5.1. Resulted poses were prioritized using the 

pharmacophoric features of the co-crystallized acarviostatin II03 and the quality of interaction 

with catalytic residues. Selected poses were used to create 3D pharmacophores (chapter 

 7.2.4). 

The 3D model created from CHEMBL2203334 was excluded since it was too unspecific 

during validation and its early enrichment factor (EF1%) was null. It means that this model is 

not able to discriminate between true and false positives from the used validation dataset. 

Validation results of the selected five models show high efficiency in retrieving active out of 

inactive compounds and decoys. This is translated into EF1% and AUC100%. Validation results 

are summarized below in Table 9 and ROC curves are given in Figure 52 (Appendix  10.8). 

 

Table 9: Overview of validation results of models developed for the refined virtual screening 

Model Retrieved ligands Actives (19) Decoys (60 + 254) EF1% AUC100% 

1XCW-based 37 11 26 17.5 0.76 

4GQR-based 12 7 5 11.7 0.68 

Salacinol-based 27 6 21 17.5 0.63 

Pentagalloyl-based 4 3 1 11.7 0.58 

DDBT-based 27 2 25 11.7 0.52 

All models 67 14 53 11.7 0.83 

EF1% stands for early enrichment factor and AUC100% represents the area under the curve. 
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Consequently, the chosen models were further validated by incorporating the database 

WDI2005 as decoys added to the previous dataset.  A summary of the statistical validation 

for the models used in the refined virtual screening is given in Table 10 while ROC curves 

are detailed in Appendix  10.8, Figure 53. 

 

Table 10: Results of second validation for pharmacophores selected for the refined virtual 

screening 

Model Retrieved ligands Actives (19) Decoys (64569) EF1% AUC100% 

1XCW-based 3,496 11 3,485 31.6 0.77 

4GQR-based 794 7 787 36.9 0.68 

Salacinol-based 4,194 6 4,188 5.3 0.63 

Pentagalloyl-based 60 3 57 170 0.58 

DDBT-based 3,733 2 3,731 10.5 0.53 

EF1% stands for early enrichment factor and AUC100% represent the area under the curve. 

 

Details of the chemical features of the five selected models are explained and illustrated 

below. 

 

1XCW-based 3D pharmacophore model:  

PDB code 1XCW containing acarviosine-glucose was taken as a starting point to develop 

this model to represent carbohydrate-based inhibitors. As illustrated in Figure 31, this model 

comprises six essential and optional H-bonds besides two optional hydrophobic contact 

(HYD) and positive ionizable interactions (PI). Essential H-bonds include: one HBA with 

Arg195, one HBD with the carboxylic oxygen OD1 of the side chain of Asp300, and one HBD 

with the carboxylic oxygen OE2 of the side chain of Glu233. Optional H-bonds include a HBD 

with the carboxylic oxygens OE1 of the side chain of Glu233, OD2 of the side chain of 

Asp300, and OD2 of the side chain of Asp197. While an optional positive ionizable 

interaction is formed with the catalytic triad (Asp197, Glu233, and Asp300), a hydrophobic 

contact is formed with Ile235 and Leu162. Thirteen exclusion volumes spheres were added 

to include information on the steric volume of the binding site. Sizes were tailored to 

accommodate most of the actives. 

 

 

 



 

71 

Results 

4GQR-based 3D pharmacophore model: 

As depicted in Figure 31, this flavonoid-based model is composed of one essential HBA to 

water molecule 1244 (HOH-1244), three essential HBDs with the carboxylic oxygen OD1 of 

the side chain of Asp197, the nitrogen atom NE2 of His101, and HOH-1244, four optional 

HBDs with Trp59, Gln63, and OE1 of the side chain of Glu233, and created HBD at C7 in 

ring A of myricetin. Eleven exclusion volume spheres were included.  

 

 

 

Figure 31: 3D pharmacophore models of 1XCW-based (left) and 4GQR-based (right) developed 

for the refined virtual screening. Above: 3D pharmacophore with exclusion volume spheres. Middle 

and below represent 3D and 2D interactions, respectively, in the α-amylase binding site for 

acarviosine-glucose (left) and myricetin (right). Color codes: green: H-bond donor, red: H-bond 

acceptor, yellow: hydrophobic contact, blue stars: positively ionizable interactions, gray spheres: 

exclusion volumes. 
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Salacinol-based 3D pharmacophore model: 

As mentioned before, this model was created based on the docking of salacinol inhibitor into 

the catalytic pocket of the enzyme coded 3OLE (Figure 32). This model is composed of four 

H-bonds and one negative ionizable interaction (NI). Three essential HBDs are formed with 

the side chains of Asp197, Glu233, and Arg195, while the fourth feature is optional HBD with 

the side chain of Tyr151. The negative nature of the sulfate group of salacinol allows for NI 

interactions with the amino group of Lys200. Seven exclusion volume spheres were included 

to delimit the steric shape of the active site. 

 

Pentagalloyl-based 3D pharmacophore model: 

This model was developed to represent inhibitors containing gallic acid scaffold showing α-

amylase inhibiton. 1,2,3,4,6-Pentagalloyl-β-D-glucose, a representative molecule of this 

group, was docked into 3OLE and the most plausible pose was selected in a similar manner 

as for salacinol. Iterative development and validation resulted into a 3D model illustrated in 

Figure 32. 

This model includes five essential and two optional H-bonds. Three essential H-bond donors 

are formed with the carboxylic oxygens OD1 in the side chains of Asp197 and Asp300, and 

with the carboxyl group of Thr163 as well as one optional HBD with the nitrogen NE2 of 

His201. The guanidinum group of Arg195 accommodates two HBAs as essential and 

optional features, while another essential HBA is formed with the hydroxyl group of Tyr151. 

Exclusion volumes were defined as sixteen spheres. 

 

DDBT-based 3D pharmacophore model: 

This model was determined based on docking experiments of the recently published inhibitor 

2-(4-(3, 5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy) benzene-1,3,5-triol (DDBT) with IC50 

value of 8.56 µM [83]. The most plausible binding mode was selected similarly as salacinol. 

The developed model is given in Figure 32 and includes four H-bond interactions. Two 

essential H-bonds are formed with the carboxylic oxygen OD2 of the side chain of Asp300 as 

HBD and with the guanidinium group of Arg195 as HBA. The carboxylic oxygen OD2 of the 

side chain of Asp197 and the nitrogen NE2 of His201 accommodate two optional H-bond 

donors. Eleven exclusion volume spheres were added as steric constraints. 
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Figure 32: 3D pharmacophre models for salacinol-based (left column), pentagalloyl-based 

(middle column), and DDBT-based (right column) developed from docking salacinol, 1,2,3,4,6-

pentagalloyl-β-D-glucose, and DDBT into α-amylase active site (PDB: 3OLE). Above: 3D 

pharmacophore with exclusion volume spheres. 3D and 2D ligands interactions are given in the 

middle and below, respectively. Color codes are similar to previous figures. 
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4.3.8.2 Protocol of the refined virtual screening 

The previously defined 3D pharmacophore models were used individually for virtual 

screening of a library of 1,346,275 commercially available compounds from different vendors 

(Figure 33). LigandScout 3.1 was used to perform virtual screening and resulted into the 

selection of 128, 591, 2974, 57, and 1350 hits for 1XCW-based, 4GQR-based, salacinol-

based, pentagalloyl-based and DDBT-based 3D pharmacophore models, respectively. 

 

 

 

Figure 33: Workflow of the refined virtual screening. 

 

Based on their physicochemical properties, virtual hits resulting from each 3D model were 

refined using the software FILTER 2.1.1 [176]. This step was conducted to exclude unstable, 

reactive and toxic molecules using 2D drug-like descriptors (chapter  7.2.4). 

As a next step, hits with scaffolds similar to the known biologically inactive compounds 

(Appendix  10.4) or those with sugar fragments were excluded using substructure similarity 

search implemented in the tool Instant JChem 5.8.0 [140]. Consequently, previous 2D 

descriptors led to 33, 66, 744, and 178 hits belonging to 1XCW-, 4GQR-, salacinol-, and 

DDBT based-models, respectively. Hits from pentagalloy-based model did not tolerate those 

2D filters and hence were excluded from further steps. 

Subsequently, molecules that are the closest to the lead queries in terms of shapes and 

features were selected. To do so, compounds remaining from each hit-list were transformed 

into multi-conformational structures using the software OMEGA 2.4.6 [177] to be used as 
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inputs for the software ROCS 3.1.2 [142-144, 178] aiming at ranking virtual hits with 

Tanimoto ComboScore as explained in chapter  3.1.4. 

While conformations of acarviosine-glucose and myricetin queries were respectively derived 

from crystal structures coded as 1XCW and 4GQR, conformations of salacinol and DDBT 

queries were obtained from their selected docking poses (Figure 34).  

 

 

 

Figure 34: 3D Queries developed in ROCS and used to rank hitlists in the refined virtual 

screening. Color codes: Ligands are depicted as stick green; cyan represents shape of the query, 

preliminary chemical features are illustrated as green spheres for ROCS ring features, yellow sphere 

for hydrophobic contacts, red and blue nets represent H-bond acceptors and donors, respectively.  

 

Corresponding chemical features defined in previous pharmacophore models were 

incorporated into each relevant query. Consequently, hits selected using 1XCW-based 

model, 4GQR-based model and the 100 best hits from salacinol-based model and DDBT-

based model were kept for the next step. 

Then, a total of 299 hits were docked into the α-amylase binding site (PDB: 3OLE) using the 

software GOLD 5.1. Next, a careful visual inspection of the docking poses was performed to 

select the best candidates for biological testing. Previously defined 3D pharmacophore 

models for each hit-list were used to prioritize the relevant docking poses with a particular 

emphasis on the interactions with the catalytic triad, drug-likeness, diversity of the chemical 

structures and availability for immediate purchase at the vendors. Therefore, seven 

molecules were selected for biological assay. Compound 16 was selected with the 1XCW-

based model and hits 17 and 20 were chosen with 4GQR-based model. Compound 15 was 
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chosen by salacinol-based model while compounds 18, 19 and 21 were chosen by DDBT-

based model. 

All selected virtual hits were tested using the kinetic assay described in chapter  7.3.2. 

Overall, five out of seven biologically tested compounds show inhibition potency against α-

amylase, corresponding to a hit rate of 70 %. An overview of the results is shown in Table 

11. 

 

Table 11: An overview of virtual hits selected by the refined virtual screening for biological 

assay 

Query Selected compounds Identified inhibitors Hit rate 

1XCW-based 1 1 100 % 

4GQR-based 2 2 100 % 

Salacinol-based 1 0 0 % 

DDBT-based 3 2 66% 

Overall 7 5 71% (5 out of 7) 

 

4.3.9 Biological testing of hits selected by the refined virtual screening 

Using the kinetic assay with GalG2CNP and HSA, virtual hits selected by the refined virtual 

screening were evaluated and their IC50 were determined and given in Table 12 (Figure 35). 

Compounds 15 and 19 were inactive at concentrations 1.8 mM and 560 µM, respectively. 

 

Table 12: Biological results of hits selected by the refined virtual screening and ligand 

efficiency (LE) for the identified inhibitors 

Compound Mol.wt IC50 (µM) HA LE 

15 298.35 ND* 22  

16 286.29 298 21 0.23 

17 341.15 ~ 300 22 0.22 

18 341.15 17 22 0.30 

19 345.37 ND** 26  

20 457.49 27 34 0.18 

21 381.41 407 27 0.17 

ND* means inactive at 1.8 mM, ND** means inactive at 560 µM (with GalG2CNP and HSA). HA represents heavy 

atoms, and ligand efficiency was calculated by the equation LE = (1.37/HA) × pIC50. 
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The type of inhibition for the most promising inhibitors (compounds 18 and 20) was further 

investigated. Compound 18 shows non-competitive inhibition while compound 20 inhibits in a 

competitive manner. 

While compounds 17 and 20 were selected with 4GQR-based pharmacophore, compounds 

18 and 21 were identified by DDBT-based pharmacophore. These four compounds share 

(E)-N'-benzylideneacetohydrazide scaffold. To the best of our knowledge, it is the first time 

this scaffold is reported as a part of α-amylase inhibitors. The fifth identified compound that 

shows α-amylase inhibition is 16, recognized with the 1XCW-based model and has 2H-

pyrrolo[1,2-a]indole-3,9-dione scaffold. 

 

 

 

Figure 35: Novel α-amylase inhibitors identified by the refined virtual screening. 

 

The ortho-hydroxyl substitution at the benzylidenehydrazine moiety seems to be essential for 

activity as observed with compounds 18 and 20 and compared to other identified inhibitors 

(17 and 21) that lack this substitution. 

Compound 18 (IC50 = 17 µM) is the most potent inhibitor identified by the refined virtual 

screening and differs from compound 17 (IC50 = 300 µM) by its hydroxyl and chlorine 
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substitutions. On the benzylidenehydrazine scaffold, compound 18 has one hydroxyl group in 

ortho-position, which is absent in case of compound 17. Chlorine substitutions in compound 

18 are located in meta-positions compared to meta- and para-positions in compound 17. Our 

results indicate that this substitution is important for the activity of 18. 

On the other hand, hydroxyl substitution on the benzoyl moiety of 17 and 18 seems to play a 

minor role in the activity of the identified inhibitors. At this moiety, compound 17 has three 

hydroxyl groups while only two are flanking compound 18. In contrast, compound 20 (IC50 = 

27 µM), which holds a distal benzoyl group lacking hydroxyl substitution. 

Interestingly, all inhibitors identified by the refined virtual screening strategy show higher 

ligand efficiency values than acarbose, the positive control, which has LE = 0.13, (Table 12), 

more details will be discussed in chapter 5.2.3. 

All other tested compounds show no activity, including compound 15 that has two pyrazole 

rings attached to benzene-1,4-diol and compound 19 that has imidazole rings attached to 

tetrahydroxybutane. The inactivity of 15 supports our previous findings concerning pyrazole 

ring as unfavorable for inhibition (compounds 5, 28, and 29 from the initial screening). 

A detailed molecular modeling study of the binding modes and subsequent SAR of these 

inhibitors is reported in the following section. 

4.3.10 Docking of novel inhibitors identified by the refined virtual 

screening 

After the biological testing, binding modes of the identified inhibitors were re-investigated to 

rationalize the structural requirements for α-amylase inhibition. To reach this goal, the 

discovered inhibitors 16, 17, 18, 20, and 21 as well as inactive virtual hits were re-docked 

into α-amylase binding site using GOLD 5.1 (chapter 7.5.4). 

The DDBT-based model was used to prioritize poses of compound 18 and a 3D 

pharmacophore was created for the proposed binding mode. Since it is the most potent 

identified compound in the refined virtual screening, pharmacophoric features of 18 were 

used to select plausible poses of other compounds. 

Biochemical assay shows a non-competitive mechanism of inhibition for compound 18. This 

means 18 has two binding possibilities: (i) It could bind to the active site at the same time 

with the substrate and interfere with hydrolysis, or (ii) it could bind to a site or several sites 

that are away from the catalytic center and remotely interfere with the substrate binding, 

similarly to the non-competitive ethyl caffeate (Ki = 1.3 mM [82], PDB: 4GQQ [25]). Both 

possibilities were investigated in this study. 
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To explore the first hypothesis, compound 18 was docked into α-amylase active site (PDB: 

3OLE [36]). All investigated poses occupy subsites -3, -2, -1, and +1. The proposed binding 

mode of 18 shows five H-bond interactions as well as two lipophilic contacts (Figure 36). The 

ortho-hydroxyl group of benzylidenehydrazine donates one H-bond to the catalytic residue 

Asp300. Compounds with the same scaffold, but lacking this substituent, are considerably 

weak inhibitors (17 and 21) and the one that has this ortho-hydroxyl group shows good 

inhibitory potency (20). In addition, this hydroxyl group accepts one H-bond from His305. The 

catalytic residue Glu233 forms two H-bonds with the hydrazine group and the meta-hydroxyl 

group of the benzoyl ring. The other meta-hydroxyl group accepts one H-bond from Lys200. 

Interestingly, hydrophobic contacts are observed between the chlorine atoms of 

benzylidenehydrazine and Trp58, Lue162, Lue165, Tyr62 and Ala198 in subsites -3 and -2. 

To investigate the second hypothesis, the possible binding of compound 18 in allosteric sites 

located at the surface of HPA was evaluated by docking (using PDB code 4GQQ [25]). 

 

 

Figure 36: Proposed binding mode of compound 18 as 2D (left) and 3D (right) docked into α-

amylase active site (PDB: 3OLE). Color codes: H-bond donors and acceptors as green and red 

arrows, respectively; and hydrophobic contacts as yellow spheres. Ligand is in black sticks and amino 

acids are in gray balls and sticks. 

 

As explained earlier in chapter 4.2.3, three identified sites located at the HPA surface can 

accommodate three molecules of ethyl caffeate.  This exerts inhibition through disordering 

four chain segments and re-orientation of the catalytic residue Asp300. Interactions of 

compound 18 at these three allosteric sites were investigated using molecular docking. 

Results are described below, 
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Site 1: Site 1 accommodates the co-crystallized ethyl caffeate which forms three H-bonds 

between meta- and para-hydroxyl groups with Gly285, Asp236, and Lys257, on one side, 

and a lipophilic contact between the aromatic ring and Val287, on the other side. These 

features will be used to select the proposed binding mode for compound 18 at this site. 

Compound 18 shows interactions similar to ethyl caffeate at this site (Figure 37). The 

hydroxyl group at meta-position of the benzoyl ring donates one H-bond to Asp236 and 

accepts one H-bond from Lys257 in a similar manner as with the para-hydroxyl group of ethyl 

caffeate. Likewise, the hydrazine group of 18 donates one H-bond to Gly285 in a similar way 

to the one with meta-hydroxyl group of ethyl caffeate. Both meta-hydroxyl groups of 18 form 

two H-bond acceptors with Ser244 and Ser245 and one H-bond is donated from the ortho-

hydroxyl group of 18 to Glu282. However, 18 does not show any of the hydrophobic contacts 

observed with ethyl caffeate and the chlorine atoms of 18 are oriented toward the solvent. 

Nevertheless, our observations indicate that a binding of 18 could be possible in this site 1. 

 

 

Figure 37: Suggested binding mode of compound 18 docked into allosteric site 1 (PDB: 4GQQ). 

Green and red arrows represent H-bond donors and acceptors, respectively. 

 

Site 2: Ethyl caffeate forms three key interactions at site 2: a first H-bond between the para-

hydroxyl group and Asp77, a second H-bond between the carbonyl oxygen and Arg85, and 

one lipophilic contact between the ethyl group and Leu26. Based on these features, the 

binding mode of 18 was investigated in this cavity. The ortho-hydroxyl and amino group of 

benzylidenehydrazine of 18 create two H-bonds with Asp77, on one side, and one chlorine 

atom forms a hydrophobic contact with Val22, on the other side. Hence, compound 18 can 

find a binding mode similar to ethyl caffeate in this site 2 (Figure 38). The other hydroxyl 

groups in the benzoyl ring of 18 are oriented toward the solvent, which can be in favor of 

binding and can stabilize the ligand in site 2. 
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Figure 38: Proposed  binding mode of compound 18 docked into allosteric site 2 (PDB: 4GQQ). 

Green arrows represent H-bond donors and yellow spheres symbolize lipophilic contacts. 

 

Site 3: The meta-hydroxyl group of the co-crystallized ethyl caffeate creates one H-bond with 

Asp23 and so does the carbonyl oxygen of the ligand with Ile372. The aromatic ring and 

ethyl group of ethyl caffeate form hydrophobic contacts with Leu26 and Ile372, respectively. 

In the same manner as for the previous docking experiments, the most plausible binding 

pose of compound 18 at site 3 was selected based on its ability to fulfill the above-mentioned 

features. 

In Figure 39, one hydroxyl group in meta-position of the benzoyl ring of compound 18, on 

one side, creates one H-bond with Asp23 in a similar fashion as ethyl caffeate and accepts 

two H-bonds from Arg30, on the other side.  

 

 

Figure 39: Predicted binding mode of compound 18 docked into allosteric site 3 (PDB: 4GQQ). 

Red arrows denote H-bond acceptors, green arrows show H-bond donors, and yellow spheres 

represent hydrophobic contacts. 
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One hydrophobic contact is formed between one chlorine atom of 18 and the side chain of 

Ile372. Thus, compound 18 shows more H-bonding but fewer hydrophobic contacts than 

ethyl caffeate in this site 3, which indicates that a binding is also possible in this allosteric site 

of the enzyme. 

 

This docking study with the three allosteric sites of HPA shows that compound 18 can fit in 

these cavities in a similar way to ethyl caffeate, although not all functional groups of the 

ligand are involved into interaction with the enzyme. Nevertheless, based on this molecular 

modeling study, we surmise that compound 18 most likely binds to the catalytic center rather 

than the allosteric sites. This is supported by the following observations: 

 

i. The α-amylase active site is large in size (up to seven subsites) and both compound 

18 and GalG2CNP substrate are small. 

ii. Compound 18 does not fulfill all chemical interactions identified between the co-

crystallized ethyl caffeate and the HPA allosteric sites, usually creating fewer 

hydrophobic contacts. 

iii. Compound 18 shares the similar scaffold as competitive inhibitor 20, which means 

they could share similar binding site. However, the small size of 18 allows a 

simultaneous binding of the inhibitor and the substrate, leading to non-competitive 

inhibition. Instead, the larger molecular size of 20 leads to an occupation of the 

catalytic site with a competitive inhibition mode. 

 

As stated before, compound 20 shows competitive inhibition with an IC50 value of 27 µM. 

This inhibitor was selected by virtual screening using the 4GQR-based model. 

The most plausible binding mode of 20 shows interactions with the HPA catalytic sub-sites 

spanning from -3 to +2 (Figure 40). It can form five H-bonds: two HBDs between the ortho- 

and meta-hydroxyl groups of the benzylidinehyrazine fragment and His201, one HBA 

between the para-hydroxyl group and Lys200, and two H-bonds with the side chain of 

Thr163. The latter creates, on one side, one HBD with the amino group linked to the benzoyl 

moiety of 20 and, on the other side, another HBA is observed with the carbonyl oxygen 

attached to the hydrazine group of 20. 
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Figure 40: Proposed binding mode of compound 20 docked into α-amylase active site (PDB: 

3OLE). Red and green arrows show H-bonding and yellow spheres represent hydrophobic contacts. 

 

The benzoyl ring of 20 occupies subsite -1 and is stabilized by forming hydrophobic contacts 

with Leu165, Trp59 and Thr163. Other hydrophobic contacts are formed between the ligand 

and the lipophilic residues inside the active site. These residues include Tyr151, Ile235, and 

Leu162 in subsites +2 and +1, Tyr62 in subsite -2, and Thr163 and Leu165 in subsite -3.  

Interestingly, the proposed binding mode of 20 in the active site of α-amylase crystal 

structure in PDB entry 3OLE does not show any interactions with the catalytic triad (Asp197, 

Glu233, and Asp300). Hence, compound 20 was docked into α-amylase active site of PDB 

code 4GQR to explore its binding with the triad residues. Based on the quality of interactions 

with the 4GQR-based model and with catalytic residues, a suggested pose was selected. 

Then, a 3D pharmacophore was created for this pose inside the active site of the enzyme 

coded 4GQR to investigate its binding mode. In brief, compound 20 is oriented in subsites -3 

to -1 in 4GQR and shows interactions with Asp197 (more details are given in Appendix 10.9). 

The comparison between the docked binding mode of 20 in 3OLE with the one in 4GQR 

suggests that this inhibitor is better accommodated in the first than in the second, since it 

occupies sub-sites spanning from -3 to +2 of PDB entry 3OLE in a similar manner as for 

acarbose. 

Compound 16 (IC50 = 298 µM) was selected by virtual screening with the 1XCW-based 

model. This model contains one H-bond interaction with Arg195, one H-bond donor 

interaction with the carboxylic oxygen of the side chain of Asp197, and a hydrophobic contact 

with Ile235. These features are confirmed through the proposed binding pose of 16 by its 

hydroxyl groups that create H-bonds as well as the aromatic benzene ring that forms a 

lipophilic contact (Figure 41). However, this binding pose does not fulfill all chemical features 
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of 18 and shares only one H-bond acceptor with Lys200. Additionally, the benzene ring forms 

other hydrophobic contacts with Tyr151 and Ala307. 

 

 

 

Figure 41: Suggested binding mode of compound 16 docked into α-amylase active site (PDB: 

3OLE). Color codes: green and red arrows represent H-bond donors and acceptors, respectively; 

yellow spheres indicate hydrophobic contacts. 

 

This chemical feature pattern can explain the lower inhibitory potency of 16 compared to 18. 

This can also be due to two possibilities: (i) the high flexibility of the aminopropanediol 

fragment that allocates at sub-sites -1 and +1 and the resulting entropic penalty to binding, 

and/or (ii) all investigated conformations span from sub-sites -1 to +2 without protruding to 

subsite -2, which possesses a critical role in the enzymatic activity [37]. 

Likewise, compound 17 (IC50 = 300 µM) was identified by virtual screening with the 4GQR-

based model. This model contains one H-bond donor interaction with Glu233 and this 

interaction was retrieved by the proposed binding pose of 17 (Figure 42). The high structural 

similarity between compounds 17 and 18 suggests that both compounds could have similar 

binding mode. 

Hydroxyl groups on the benzoyl ring of compound 17 can form H-bonds with Glu233 and 

Lys200. Hydrophobic contacts are observed between chlorine substituents of benzylidine 

and Leu165, Thr163, and Trp59. However, the lack of an ortho-hydroxyl group in the 

benzylidine ring of 17 and the absence of the interaction between hydrazine group and 

Glu233 explain the weak inhibitory potency compared to 18. 
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Figure 42: Predicted binding mode of compound 17 docked into α-amylase active site (PDB: 

3OLE). Yellow spheres symbolize lipophilc contacts, red arrows represent H-bond acceptors, and 

green arrows denote H-bond donors. 

 

Compound 21 (IC50 = 407 µM) was selected by virtual screening using the DDBT-based 

model, which includes H-bond donor interaction with Asp300. This feature is confirmed in the 

selected pose of compound 21 (Figure 43). This binding pose shows interaction of the para-

hydroxyl group with Lys200 similar to the one with 18. Nevertheless, 21 lacks the ortho-

hydroxyl moiety linked to the benzylidine group of 18 and hence shows weaker inhibition. 

 

 

 

Figure 43: Plausible binding mode of compound 21 docked into α-amylase active site (PDB: 

3OLE). Green arrows represent H-bond donors; red arrows denote H-bond acceptors; and yellow 

spheres depict hydrophobic contacts. 
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5 Discussion 

Metabolic disorders such as type II diabetes and obesity are characterized by chronic 

hyperglycemia and unbalanced carbohydrate metabolism that causes other serious 

complications such as cardiovascular diseases. One of the main therapeutic approaches for 

treating these metabolic diseases is to control postprandial hyperglycemia. This can be 

achieved by delaying the absorption of glucose that resulted from carbohydrate digestion. 

Since α-amylase initiates the hydrolysis of polysaccharides such as starch, one of the main 

energy sources in human nutrition, this enzyme has been intensively studied as a promising 

target for controlling postprandial hyperglycemia. 

The main aim of this study was the development of predictive structure-based 3D 

pharmacophore models that allow for the identification of novel α-amylase inhibitors with 

drug-like properties. 

The search for non-sugar, non-peptide small molecules α-amylase inhibitors turned out to be 

challenging because of the following reasons: 

 

i. At the start of this project, only sugar-based co-crystallized α-amylase inhibitors were 

available with unfavorable properties for oral administration. Also, a limited number of 

non-sugar inhibitors with unknown binding modes were reported. Flavonoids were the 

only drug-like molecules reported with molecular mechanism for inhibition of HSA 

[20], PPA [179], and α-amylase from the bacterium Bacillus subtilis [78]. 

ii. The catalytic pocket is a large binding cleft that can accommodate large carbohydrate 

substrates (up to seven binding subsites with HPA). This makes the binding of non-

sugar small molecules a challenge, as they must compete with the sugar substrate. 

iii. Sugar-based structures undergo a series of enzymatic hydrolysis and condensation 

reactions in the α-amylase active site. α-Amylase hydrolyzes starch into a mixture of 

oligomaltosidic chains. These chains behave as substrates and will compete for the 

active site [172]. 

 

At the beginning of this work in 2011, a hypothesis using co-crystallized sugar-based 

inhibitors was proposed as a starting point to develop 3D models that integrate all structural 

features required for an optimal inhibitor binding. After validation, the best model was 

selected for the initial virtual screening to identify non-sugar and drug-like small molecules 

with high potential α-amylase binding affinity (chapter 4.3.1). 
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During this work, other research groups have published new information about the enzyme 

and hence these data have been used to conduct refined virtual screening campaigns.  At 

that time, a recent study published by Williams et al. in 2012 [25] for myricetin as a first small 

flavonoid co-crystallized with HPA is generally in agreement with structural determinations 

proposed by Lo Piparo et al. [20]. 

Additionally another new small α-amylase inhibitor called DDBT as a natural phlorotannin 

compound was reported with a Ki value of 1.8 µg/ml (= 4.8 µM) [83]. Another research group 

published synthetic small compounds with 2-amino-benzothiazole scaffolds as α-amylase 

inhibitors [87, 88]. 

First, our discovered binding modes of natural α-amylase inhibitors identified by collaboration 

partners will be discussed in chapter 5.1. Then, our virtual screening approaches will be 

discussed and compared in chapter 5.2 in terms of yields, effect of substrates on IC50 values, 

and ligand efficiency of the discovered inhibitors. 

5.1 Natural α-amylase inhibitors with unknown binding mode 

Natural α-amylase inhibitors (cyanidin derivatives, steviol extract and verbascoside) identified 

by our collaboration partners were investigated to elucidate their binding modes using 

molecular docking and 3D pharmacophore modeling. While cyanidins were reported as α-

amylase inhibitors [80, 180], it is the first time that their binding modes are investigated using 

molecular modeling. Our findings in chapter 4.2.1 confirmed the role of the glucose unit 

linked to 3-O-position of cyanidin that was suggested by Akkarachiyasit et al. [80]. α-Amylase 

active subsite -1 accommodates this glucose unit of both Cy-3-O-glc and Cy-3-rut and forms 

H-bond interactions with catalytic residues similar to valienamine moiety of the bound 

acarbose (PDB: 1MFV [49]). The competitive inhibitions of both Cy-3-O-glc and Cy-3-rut 

against HSA with identical IC50 values can suggest two different findings: (i) their binding 

modes are very similar which was confirmed by docking (chapter  4.2.1), (ii) the number of 

sugar units does not necessarily improve the inhibition since Cy-3-rut has one unit more than 

Cy-3-O-glc. Among the cyanidins addressed in this study, malvidin-3,5-diglucoside (Mv-3,5-

O-diglc) represents a novel α-amylase inhibitor, which has never been reported before. 

Interestingly, the binding mode predicted for this competitive inhibitor shows the importance 

of ring B orientation for the inhibition. This clarifies why Mv-3,5-O-diglc exerts 3-fold inhibitory 

potency compared to other cyanidins even it has two sugar units, similarly as Cy-3-rut. 

The second group of natural α-amylase inhibitors studied in this work was a steviol extract 

containing steviol, stevioside and rebaudioside. These ligands have not been reported as α-
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amylase inhibitors previously and their binding modes were investigated for the first time in 

chapter 4.2.2. The three compounds could collectively inhibit HSA. Based on our molecular 

modeling strategy, stevioside is the most probably molecule that exerts HSA inhibition in the 

extract. It can occupy better the binding site of the enzyme. However, further experimental 

investigation is required to evaluate the inhibition potency of these ligands individually. 

Similarly, the binding mode of verbascoside was investigated in chapter 4.2.3. Our in silico 

study showed that binding in the triad allosteric sites, remotely located at the surface and far 

away from the catalytic active site of HPA, is in general agreement with interactions of the 

co-crystallized ethyl caffeate. The presence of the phenylethanoid fragment alongside with 

ethyl caffeate enhances its binding at the HPA surface and hence improves its inhibitory 

potency. This validates the suggestion of Williams L. et al. that decorating ethyl caffeate 

could enhance the binding at the HPA surface [25]. Sugar units linking ethyl caffeate and 

phenylethanoid in verbascoside do not significantly contribute to the inhibition according to 

molecular modeling. This validates our previous findings concerning sugars in cyanidin 

compounds. 

5.2 Virtual screening 

5.2.1 Initial virtual screening 

Due to the scarce information available about small α-amylase inhibitors, a hypothesis based 

on the binding modes of co-crystallized sugar-based inhibitors was developed to identify non-

sugar small molecule inhibitors using virtual screening. A predictive common feature-based 

3D pharmacophore model focusing on the catalytic core was developed and used for virtual 

screening of more than 1.7 million commercial chemical compounds available from different 

vendors. Thus, 14 virtual hits (one was excluded due to insolubility) were selected and 

biologically tested using two kinetic assays. 

The first assay, using p-NPG5 as a substrate for PPA, led to the discovery of three α-

amylase inhibitors with IC50 values below 100 µM (compounds 7, 8, and 9) comparable to 

acarbose, the positive control. This yield corresponds to a hit rate of 23 % (three out of 13). 

The second assay was carried out for only eight out of 14 selected virtual hits (based on 

commercial availability at the time of assay) using GalG2CNP as a substrate for HSA. This 

assay method revealed other three compounds (2, 3, and 4) with IC50 values between 138 

and ~ 300 µM resulting in a hit rate of 37.5 % (three out of eight). 
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Consequently, our computer-aided approach using structure-based drug design was 

successful for the discovery of novel small drug-like non-carbohydrate α-amylase inhibitors. 

This validates our previous assumption about using sugar-based α-amylase inhibitors to 

discover non-sugar inhibitors. Using kinetic assay turned out to be advantageous since the 

type of inhibition for the best identified α-amylase inhibitors could be investigated.  

The competitive inhibition mode of inhibitors 2 and 3 validates our proposal that focusing on 

the catalytic core in the large binding site can lead to block the hydrolysis function of α-

amylase. A more detailed discussion for the identified inhibitors will be given in chapter 5.2.3. 

Among others, compound 2 holding the scaffold N,4-diphenylthiazole-2-amine is the most 

interesting inhibitor identified in the initial virtual screening because of the following: 

 

i. It inhibits both PPA (IC50 = 441 µM) and HSA (IC50 = 138 µM) compared to others 

tested in both assays. 

ii. It is a small fragment (molecular weight of 300) with the highest ligand efficiency 

value of 0.25 among others identified in the initial virtual screening. 

iii. It is kinetically validated as competitive HSA inhibitor. 

iv. It represents an allosteric inhibitor against fructose 1,6-bisphosphatase (IC50 = 11 µM 

[169]), an enzyme that plays a role during gluconeogenesis. This increases its 

importance as a small fragment playing dual role (against two enzymes) to decrease 

glucose level in the blood. It is promising ligand with potential anti-diabetic activity. 

 

Therefore, compound 2 was used as a similarity template to search for analogues with 

improved α-amylase inhibition and enrich the structure activity relationship.  

A 2D similarity search approach was conducted for a commercial database available in-

house leading to the selection of 12 hits (chapter 7.6). Interestingly, all hits demonstrate α-

amylase inhibition with IC50 ranging from 50 µM to 4 mM. All identified analogues are novel 

and have not been reported as α-amylase inhibitors before. 

Interestingly, the first assay method revealed different inhibitory profiles from the ones 

identified by the second method. This result triggers a question regarding the mode of action 

of these inhibitors when using different substrates at different conditions. Our steric similarity 

approach using Gaussian similarity score could partially rationalize the competition between 

inhibitors and a substrate (chapter  4.3.3). IC50 differences occur due to the complexity of 

kinetic processes using different conditions such as substrate, enzyme type, and medium 

(chapter  3.2). 
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5.2.2 Refined virtual screening 

Known biological α-amylase inhibitors were updated and clustered based on their scaffold 

type (chapter  4.3.8). In contrast to the initial virtual screening, individual 3D pharmacophores 

were developed and validated for each cluster and then used in the refined virtual screening. 

This step allows for better incorporating more scaffold types to refine the 3D models. Each 

model was used for virtual screening of commercial chemical databases comprising 1.4 

million molecules (chapter  4.3.8.2). All 3D models showed restrictive selection since each 

model did not select more than 0.22 % of totally screened compounds. Hits chosen by the 

pentagalloyl-based model could not tolerate the 2D descriptors used in filtering steps and 

therefore, were excluded from further process. 

Five out of seven biologically tested compounds demonstrate α-amylase inhibition with IC50 

values ranging from 17 µM to 407 µM. This corresponds to a hit rate of 70 %. Binders 

identified in this refined virtual screening have never been reported before this work as α-

amylase inhibitors. Interestingly, the scaffold (E)-N'-benzylideneacetohydrazide is the 

common substructure in four inhibitors and has never been reported as a backbone for α-

amylase inhibition before. 

Different aspects can be raised as a matter of comparison between the initial and the refined 

virtual screening approaches. In the initial approach, only one but unique common feature-

based 3D pharmacophore model developed from co-crystallized sugar-based binders was 

used. In the refined approach, four individual models developed from docking poses 

alongside with co-crystallized small ligands were utilized. While the refined virtual screening 

exhibits better efficiency in terms of IC50 values and higher hit rate than the initial campaign, 

the latter allows for identifying more novel scaffolds than the refined approach (chapter 

 5.2.3). Therefore, both strategies are successful approaches in finding novel small α-amylase 

inhibitors. 

5.2.3 Evaluation of the performed virtual screening approaches 

Virtual screening approaches in this work were assessed taking the IC50 cutoff of 300 µM. 

Novelty of scaffolds, hit rate percentage, and ligand efficiency values for initial discovered 

hits, as well as folds of improvement in activity (activity ratio) and improvement in ligand 

efficiency  (LE ratio) for optimized hits will be analyzed as matters of evaluation for this 

research. 

As stated in Table 13, six α-amylase inhibitors identified by the initial virtual screening using 

two assays demonstrate potencies ranging between 86 µM and 300 µM. This corresponds to 



 

91 

Discussion 

a hit rate of 46 % (six out of 13). Likewise, four novel α-amylase inhibitors were identified by 

the refined virtual screening using one assay method showing IC50 values ranging between 

17 µM and 300 µM. This matches a hit rate of 57 % (four out of seven). In total, ten out of 20 

biologically tested hits (50 % hit rate) exhibit α-amylase inhibition with IC50 values ranging 

between 17 µM and 300 µM. These yields in both strategies are highly acceptable outcomes 

for structure-based virtual screening compared to a typical hit rate for a prospective virtual 

screening that ranged between 1 % and 40 % [181]. Among the identified inhibitors, 

compound 3 that has tri-phenyl scaffold is similar to the natural inhibitor DDBT recently 

published in 2012 [83]. This proves the strength of our computational approach for the 

discovery of α-amylase inhibitors. 

Novelty of our discovered scaffolds stresses on the importance of these fragments, which 

can be used individually as a starting point for identifying other hits with potential α-amylase 

inhibition and give space for optimization. 

Even though compounds 17, 18 and 20 share the same backbone, compound 20 still has 

larger substituents and hence considered with novel scaffold. 

 

Table 13: Evaluation of inhibitors discovered by initial and refined virtual screening campaigns 

virtual 

screening 

method 

Assay 

code 

IC50 

(µM) 

type of 

assay 
type of inhibition HA LE 

novelty of 

scaffold 

Initial 

2 138 kinetic with 

GalG2CNP 

substrate 

competitive 21 0.25 Yes 

3 200 competitive 26 0.19 No 

4 300 ND 32 0.15 Yes 

7 86 kinetic with 

p-NPG5 

substrate 

ND 22 0.25 Yes 

8 97 ND 27 0.20 Yes 

9 93 ND 26 0.21 Yes 

Refined 

16 298 
kinetic with 

GalG2CNP 

substrate 

ND 21 0.23 Yes 

17 300 ND 22 0.22 No 

18 17 non-competitive 22 0.30 Yes 

20 27 competitive 34 0.17 Yes 

IC50: half maximal inhibitory concentration; LE: ligand efficiency which is calculated by the equation  

LE = (1.37/ HA) × pIC50; ND: not determined; HA: heavy (non-hydrogen) atoms. 

 

Ligand efficiency (LE) is an important and useful metric for evaluating virtual screening and 

the optimized compounds [181]. It becomes widely used in correlation with the potency of 

drug-like compounds in all stages of drug discovery. Based on a definition, LE is the 
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calculated binding free energy (ΔG0) of a ligand normalized by its molecular size, a change in 

free energy of binding of -1.37 kcal/mol is equivalent to a 10-fold increase in affinity. This 

follows that LE = ΔG0/HA, which is practically approximated into the equation LE = (1.37/HA) 

× pIC50 [128, 167, 168]. The latter was used here for ligand efficiency calculations. 

A mini-perspective study recently published by Zhu, T. et al. in 2013 [181] stated that an LE 

value of 0.3 for a drug-like compound (molecular weight of 500 or 35 HA) corresponds to 

about 10 nM activity is practically unrealistic for initial hit identification. The same reference 

stated that LE values of 0.32, 0.25, and 0.19 are recommended for compounds with HA ≤ 18, 

HA = 19 - 25, and HA = 26 - 35, respectively. 

The LE of the positive control in this work exhibits a value of 0.13, taking the bound form of 

acarbose (pseudohexasaccharide, HA = 65) for LE calculations. This rearranged acarbose 

product exerts the inhibition instead of the original acarbose (chapters 1.4.2) since this 

modified form is observed in the active site of PPA (PDB: 1OSE [156]) and HSA (1MFV [49]). 

All inhibitors listed in Table 13 display LE values higher than the one of the bound acarbose 

(Figure 44), and in agreement with LE values suggested by Zhu, T. et al. in 2013 [181]. 

 

 

Figure 44: Diagram of ligand efficiency values for positive control and identified α-amylase 

inhibitors.  
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Inhibitors 2, 7, 16, 17, and 18 have either 21 or 22 heavy atoms (HA) that belong to the 

range of HA = 19 - 25 with a LE value of 0.25 to be considered interesting, according to the 

recommendations of Zhu, T. et al. [181]. While compounds 2 and 7 reach the recommended 

LE value, compound 18 has even better value of 0.3 than recommended (0.25). Compounds 

16 and 17 that have LE values lower than 0.25 do not attain the proposed value since their 

potencies are weak. Likewise, Inhibitors 3, 4, 8, 9, and 20 have HA belonged to the range 

from 25 to 35 and this proposes LE values reaching 0.19 to be remarkable as initial hits in 

virtual screening. While inhibitor 3 attains the suggested LE value, compounds 8 and 9 

display values of 0.20 and 0.21 better than recommended (0.19). Compounds 4 and 20 show 

LE values lower than recommended. Although compound 20 does not reach the minimum 

proposed LE value, it reveals a potent inhibitory potency (IC50 = 27 µM) against α-amylase. 

The effectiveness of our computational approaches for identifying novel α-amylase 

fragments/small molecules with drug-like properties is successfully proved. Our hypothesis of 

blocking the catalytic center for the development of α-amylase inhibitors is biologically 

validated by determining the competitive inhibition modes of 2, 3, 20, 26, and 30. 

Nevertheless, binding modes discovered by docking studies for the identified α-amylase 

inhibitors should be further validated with experimental X-ray crystallography. 

In the same manner to the previous evaluation, IC50 cutoff between 50 µM and 260 µM was 

used to evaluate six out of 12 analogues of compound 2 (Table 14). 

 

Table 14: Evaluation of compound 2 analogues identified with similarity search 

initial inhibitor 
analogue 

code 

IC50 

(µM) 

activity 

ratio 

inhibition 

type 
HA LE 

LE 

ratio 

novelty of 

scaffold 

Compound 2 

(IC50 = 138 µM; 

HA = 21; 

LE = 0.25) 

25 165 0.83 ND 24 0.22 0.88 No 

26 100 1.38 competitive 23 0.24 0.96 No 

27 100 1.38 mixed 23 0.24 0.96 No 

30 50 2.76 competitive 26 0.23 0.92 Yes 

31 62 2.22 ND 22 0.24 0.96 No 

32 260 0.53 ND 27 0.18 0.72 No 

IC50: half maximal inhibitory concentration; ND: not determined; HA: heavy atoms; LE: ligand 

efficiency; Activity ratio = IC50 for compound 2 / IC50 of an analogue; LE ratio = LE of an analogue / LE 

of compound 2. 

 

Compounds 30 - 32 share similar scaffolds and hence the one of 30; as the most active and 

competitive identified analogue among others; is elected as a novel backbone. Similarly, 

compounds 25 - 27 hold the same scaffold of compound 2. However, all identified analogues 
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have never been reported as α-amylase inhibitors before this work. Assessment was carried 

out using parameters published by Zhu, T. et al. in 2013 [181]. They include the activity ratio 

and improvement in ligand efficiency (LE ratio). 

Applying the previously suggested LE values as metrics for assessment, none of these 

analogues attain the minimum recommended values, except compound 30 that has 26 HA 

with a LE value of 0.23 higher than suggested (0.19). However, LE ratios for all analogues 

have values close to one (Figure 45). 

 

 

Figure 45: representations of improvements in ligand efficiency and inhibitory potency of 

compound 2 analogues. 

 

This means that the optimization process preserves the drug likeness of the identified 

analogues without LE improvement. Furthermore, IC50 values of inhibitors 26, 27, 30, 31 are 

100 µM, 100 µM, 50 µM, and 62 µM, respectively, and much better than compound 2 that 

exhibits an IC50 of 138 µM. The activity ratios for these analogues are mostly improved 

(Table 14). Among them, compound 30 reaches up to 3-fold improvement better than 

compound 2 (Figure 45). This assures the success of the optimization process that was 

performed for compound 2. 

Basically, analogues of compound 2 demonstrate interesting SAR with different substituents 

(chapter 4.3.6). Substitution by the p-dimethylamino or m-acetyl groups in ring A (N-phenyl 

ring) increases the inhibition by about 1.4-folds. In contrast, the presence of the p- or m-

carboxyl group diminishes the potency up to 5-folds and the p-sulfamoyl group bears the 
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activity against the enzyme. Interestingly, a 29-fold decrease in activity is observed when ring 

B (thiazole ring) is substituted with the pyrazole ring. 

Substitutions in the 5-benzylidenethiazolidin-4-one scaffold of compounds 30 - 33 exert 

different effects on α-amylase activity. The m-carboxyphenyl group of 31 decreases the 

potency compared to the m-nitrobenzyl group in 30. However, compound 31 with an IC50 

value of 62 µM still remains better inhibitor than compound 2 (IC50 = 138 µM). Also, 

substitutions in the previously mentioned scaffold with the m-carboxyphenylamino moiety in 

case of compound 32 and 4-acetylpiperazinyl ring in case of compound 33 show 5-folds and 

14-folds decrease in α-amylase inhibition, respectively. 

Consequently, the simplicity of these identified chemical structures as α-amylase inhibitors 

and their low molecular weight shall allow for using them as basis for developing novel 

binders. Decorating these fragments with functional groups identified from SAR can be 

achieved by chemical synthesis as one possibility to obtain more potent α-amylase inhibitors.
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6 Conclusion and Prospective 

The purpose of this research was to discover novel small α-amylase inhibitors using 

computer-aided drug design approaches. This necessity comes from the fact that available 

α-amylase inhibitors are mostly sugar-based ligands with unsuitable properties for oral 

administration. Known drug-like binders are still limited in number with scarce information 

about the structural requirements for α-amylase inhibition. The available data could be 

efficiently investigated using molecular modeling. This was implemented in two virtual 

screening campaigns as initial and refined approaches. 

 

The catalytic core of the active site was exploited as a starting point to develop a validated 

predictive 3D pharmacophore for virtual screening of a library of commercial molecules. 

Among 13 rationally selected hits and biologically tested, six novel non-sugar α-amylase 

inhibitors were identified as small ligands with drug-like properties. Likewise, information 

obtained from our initial virtual screening and recent publications by other research groups 

during this project was compiled to conduct refined virtual screening campaigns. Using four 

pharmacophores originated from different scaffolds alongside with multi-step 3D refinements 

was clearly profitable owing to the discovery of four novel inhibitors out of only seven hits 

selected for biological testing. These promising results validate the ability of our 

hypothesized pharmacophores to select potential α-amylase binders. 

 

Taking the IC50 cutoff of 300 µM, ten out of 20 biologically tested molecules in both 

approaches exerted α-amylase inhibition (50 % hit rate) in mid- and low micro-molar range 

(the best IC50 = 17 µM). The identified compounds were never reported as α-amylase 

inhibitors before. Interestingly, 8 novel scaffolds are stated for the first time as promising 

structures for α-amylase inhibition. These findings successfully show the quality of virtual 

screening approaches and confirm the power of our molecular modeling methodologies for 

identifying novel α-amylase inhibitors with drug-like properties. 

 

A further step was carried out as a preliminary optimization for the most active and 

competitive inhibitor discovered in the initial virtual screening. This was achieved by 2D 

analogue-similarity search aiming at finding other potent α-amylase inhibitors and enriching 

the structure activity relationship. Six out of 12 biologically tested compounds exhibit 

inhibitory potency in low micro-molar range with IC50 values between 50 µM and 260 µM and 

about 3-fold improvement in inhibition compared to the used query inhibitor. 
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The discovered inhibitors were compared and discussed using the ligand efficiency metric 

(LE). Due to their small size, all inhibitors reported in this work display LE better than 

acarbose; a well-known anti-diabetic sugar-based drug; that was used as a positive control in 

this study. 

 

In brief, a total of 16 out of 32 biologically tested compounds display α-amylase inhibition in 

micro-molar range with good LE and inhibitory potency. Available information of sugar-based 

inhibitors were invested computationally and resulted at the end in the discovery of novel 

non-sugar α-amylase inhibitors. Hence, small organic compounds can bind to the challenging 

large binding site with high inhibitory affinity. The competitive inhibition mode for these 

inhibitors validates our hypothesis that blocking the catalytic core can lead to the discovery of 

novel α-amylase inhibitors. Thus, our 3D pharmacophore-based virtual screening 

approaches can be used for the discovery of potent drug-like α-amylase inhibitors. 

 

As a next step, an optimization approach will be conducted by compiling all information 

obtained from this work to perform a 3D shape- and feature-based similarity search. The best 

competitive α-amylase inhibitors will be used as queries for high throughput ligand-based 

virtual screening of commercial chemical library. Then, molecular docking for the best ranked 

hits will be conducted to investigate their binding modes. Careful visual inspection as well as 

the quality of interactions with residues inside the active site will be performed as 

prioritization criteria to select candidates for biological testing. Another perspective will be 

using information obtained from structure activity relationships of the identified inhibitors to 

synthesize chemical compounds with potential α-amylase inhibition. 
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7 Experimental part 

7.1 Binding mode elucidation for inhibitors identified by 

collaboration partners 

Natural α-amylase inhibitors identified by collaboration partners were prepared in MOE 

2010.10 [155] and the 3D coordinates were generated using CORINA 3.4 [182, 183]. While 

cyanidin and steviol compounds were docked into HSA active site (PDB entry code 1MFV 

[49]), verbascoside was docked into the three allosteric sites of HPA (PDB code 4GQQ [25]). 

Docking studies were carried out using the software GOLD 5.1 [127, 184]. All water 

molecules as well as co-crystallized ligands were deleted and hydrogen atoms were added to 

protein structures before docking. No constraints were introduced and the default parameters 

were used in this study (binding site: within 10 Å around the co-crystallized ligand, scoring 

function: GoldScore [133], genetic algorithm: 100% search efficiency). 100 Poses were 

generated for each compound. Validation for the docking experiments by GOLD 5.1 was 

performed by reproducing the conformation of the relevant co-crystallized inhibitor. Thus, the 

modified acarbose co-crystallized with 1MFV was docked into the active site with RMSD 1.1 

Å (Appendix  10.6, Figure 48) between heavy atoms of the original and docked 

conformations. Similarly, the co-crystallized ethyl caffeate was docked individually into 

allosteric sites 1, 2, and 3 of HPA codes 4GQQ and show respectively RMSD values of 0.5 Å, 

1.07 Å, and 1.46 Å between heavy atoms of the cocrystals and docked poses (Appendix 

 10.6). 

All residues within 7 Å from any of the outside atoms of the co-crystallized ligand were 

determined as active site using the software LigandScout 3.1 [114, 115, 159]. All docked 

poses were minimized with MMFF94 force field in LigandScout 3.1. The 3D pharmacophore 

of co-crystallized inhibitors and the quality of the superposition of each pose with the relevant 

co-crystallized ligand were used to prioritize the most relevant poses. LigandScout 3.1 was 

also used for analysis, pharmacophore creation, visualization and elucidation. 

7.2 Structure-based virtual screening 

7.2.1 Commercial chemical databases 

3D pharmacophores developed in chapters  4.3.1 and  4.3.8 were used for virtual screening of 

commercially available chemical databases assembled from different vendors which 
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comprise 1,762,189 and 1,346,275 molecules in the initial and refined virtual screening 

campaigns, respectively (Table 15). 

 

Table 15: Commercial chemical databases used in virtual screening approaches 

Vendor Amount Used in Reference 

Analyticon 30,352 initial and refined virtual screening [186] 

Asinex 465,543 initial and refined virtual screening [187-189] 

Chembridge 646,018 initial and refined virtual screening [190] 

Specs 204,362 initial and refined virtual screening [191] 

Bionet 42,660 initial virtual screening [192] 

Life Chemicals 372,071 initial virtual screening [193] 

Prestwick 1,183 initial virtual screening [194] 

  

These libraries were computationally prepared using Standardizer 5.8.0 [195] to correct 

protonation states. Then, the command-line program idbgen was used to convert libraries 

into ligand-database format (ldb) to be used as inputs for virtual screening in LigandScout 3.1 

[114, 115, 159]. The software Omega [196] with FAST parameters was used to generate up 

to 25 conformations per molecule. For shape- and feature-based similarity search by ROCS 

3.1.2 [178], commercial libraries were transformed into 3D coordinates using CORINA 3.4 

[183] and then the software OMEGA 2.4.6 [177] was used to create 25 conformations per 

molecule as oeb.gz format as inputs for ROCS 3.1.2.  

7.2.2 Validation of developed pharmacophores 

Initial virtual screening (round 1) 

Pharmacophore models created and developed in chapter 4.3.1.1 were validated using 19 

biologically known active and 55 inactive α-amylase inhibitors collected from Chembl 

database [164] and literature (Appendices 10.3 and 10.4).  All these collected molecules 

were built and minimized using MOE 2010.10 [155]. 3D coordinates were generated using 

CORINA 3.4 [183]. The command-line tool idbgen was used to generate database files to be 

used as inputs for screening in LigandScout 3.1 [159]. The software Omega [196] was used 

to generate 25 conformations per compound. Based on the best early enrichment factor 

(EF1%) and AUC100%, one pharmacophore was selected. 

A further validation step was performed in chapter 4.3.1.2 for the best chosen model using 

drugs and biological molecules commercially available in the Derwent World Drug Index 

2005 (WDI, www.thomsonreuters.com), MDDR2009 (www.symyx.com), and DrugBank [166] 
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databases. These commercial databases were similarly prepared as previously mentioned 

libraries. 

 

Refined virtual screening (round 2) 

During this work, new small molecules have been published as α-amylase inhibitors (chapter 

1.4). Therefore, validation dataset used in the initial virtual screening was updated to be used 

in the refined virtual screening. The active-list was re-constructed to: include all known 

compounds with IC50 or Ki less than 15 µM (IC50 of CHEMBL2203334, the most recent active 

molecule published in 2012 [87]); exclude all compounds with molecular weight less than the 

one of scutellarein (molecular weight = 286, the best flavonoid published as α-amylase 

inhibitor with IC50 value of 9.6 µM [20]); incorporate actives found by intensive search in 

literature to enrich the active-list. 

Therefore, the updated dataset assembled from literature including 19 known active and 60 

inactive α-amylase inhibitors (Appendices 10.3 and 10.4) were prepared as ldb format to be 

used as inputs for screening in LigandScout 3.1. 

A set of decoys compriseing 254 structures was created from ZINC database [197] using a 

Knime workflow called myDecoyFinder developed in-house by Dr. Susanne Dupré. The 

updated 19 known active inhibitors were used as a basis to create decoys with the following 

settings: 

 Molecular weight ( ± 25 Da) 

 Mannhold LogP (± 1.0) 

 Number of H-bond donors (±1) 

 Number of H-bond acceptors (± 2) 

 Number of free rotatable bonds (± 1) 

 Tanimoto coefficient (< 0.75) 

 

The output of this workflow was saved as smiles format (smi). Then, the database files for 

the updated active and inactive lists, as well as created decoys, were treated in the same 

manner with the tool idbgen and software Omega [196] to obtain input files for screening in 

LigandScout 3.1 [159]. Further validation was performed for the developed pharmacophores 

in the refined virtual screening by using commercial drugs and biological compounds 

available in WDI2005 database (64,588 compounds) as decoys. 
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7.2.3 Target preparation for pharmacophore creation 

X-ray structures of α-amylase derived from the PDB used to build common-based 

pharmacophores (chapter 4.3.1.1) were 3OLD, 3OLE, 3OLG, 3OLI [36], 3IJ9, 3IJ7 [31], 

3BAJ, 3BAY [198], 1XH2, 1XH0 [26], 1XD0, 1XD1, 1XCX, 1XCW [32], 1MFV [49], and 1OSE 

[156].  

The software LigandScout 3.1 [159] was used for visualization and interpretation of 

geometries of co-crystallized inhibitors. Co-crystallized inhibitors as well as calcium and 

chloride ions were kept inside the active site while all other ligands such as MPD (protecting 

agent during crystallization [199]) were deleted from binding sites. 

7.2.4 Pharmacophore creation and virtual screening 

Initial virtual screening 

Using LigandScout 3.1, a preliminary 3D pharmacophore was generated and analyzed for 

each co-crystallized inhibitor. Chemical features in each model were deleted or modified to 

have common features as many as possible. Therefore, the number of chemical features 

was reduced in order to have more specific models. Spatial restriction for 3D models was 

taken into account either by deleting or modifying the size of the exclusion volumes which 

prevent a ligand from occupying space restricted for amino acids of the active site. 

All models were aligned to obtain common-based pharmacophore models. Based on iterative 

validations (chapter 7.2.2), an improved model was elected for virtual screening (chapter 

4.3.1.3). 

Virtual screening for commercially available chemical databases was performed for 

1,762,189 molecules using LigandScout 3.1. Compounds matching the selected 3D model 

were further reduced using pharmacohpore fit score and 2D descriptors (i.e. HBD ≤ 2-5, HBA 

≤ 10, Mol.wt. ≤ 700 and ClogP ≤ 5). Then, 2292 resulted hits were transformed into 3D 

coordinate structures (sdf format) using CORINA 3.4 [182] for the next step. 

Two parallel steps were performed for the resulted hits, docking and structural similarity 

clustering. First, GOLD 5.1 [184] was used to dock 2,292 virtual hits into α-amylase active 

site (PDB 3OLE [36]) using default settings and GoldScore [133] as scoring function to 

create 10 poses for each compound. In LigandScout 3.1, resulted poses were minimized with 

the force field MMFF94 and then prioritized using the developed pharmacophore. Second, 

the software JKlustor 5.8.0 [139] was used to perform structural similarity clustering for 

compounds obtained from virtual screening to select at the end 17 candidates based on 
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structural diversity and commercial availability. Visual inspections for best docking poses as 

well as diversity in chemical structures were used to select 14 hits for biological experiments. 

 

Refined virtual screening 

The 19 known active α-amylase inhibitors (Appendix  10.3) were divided into six groups 

based on their chemical diversity (chapter 4.3.8.1). A representative-structure for each group 

was selected to build a 3D pharmacophore. The first two models were built based on the co-

crystallized acarviosine-glucose (PDB code 1XCW [32]) and myricetin flavonoid (PDB: 4GQR 

[25]) and were taken as representatives for carbohydrate- and flavonoid-based inhibitors, 

respectively. 

Four other 3D pharmacophores were built from non co-crystallized active inhibitors (salacinol 

[175], 1,2,3,4,6-pentagalloyl-β-D-glucose [84], DDBT [83], and CHEMBL2203334 [87]). 

These inhibitors were docked into the active site of PDB code 3OLE [36] using GOLD 5.1 

with default settings and Goldescore. All resulted poses were minimized with MMFF94 in 

LigandScout 3.1 and the best poses fulfilling the pharmacophore features of the co-

crystallized acarviostatin II03 inhibitor were selected. 

Iterative development and optimization were performed for each model using the previously 

validating databases. Model of CHEMBL2203334 was excluded because it fails to retrieve 

actives during validation and gives EF value of null. Thus, five pharmacophores were 

obtained for the refined virtual screening. 

Developed pharmacophore models were separately used for virtual screening of a library 

comprising 1,346,275 commercial chemical molecules as described in chapter 7.2.1. Five hit-

lists were obtained for the five models. First, the command-line tool FILTER 2.1.1 [176] was 

used to retain drug-like molecules. 2D descriptors derived from 141 best-selling, non-

antibiotics, prescription drugs were implemented in FILTER 2.1.1 as default settings. These 

descriptors are basically physical properties (such as molecular weight and logP), atomic and 

functional group content (such as content of heteroatom), and molecular graph topology 

(such as number and size of ring system). Thus, default 2D descriptors were applied in this 

step. Second, substructure search using the software Instant JChem 5.8.0 [140] was used to 

exclude sugar-based compounds. The hit list derived from pentagalloyl-based 

pharmacophore could not pass the previous steps. Compounds derived from 1XCW-based 

model, 4GQR-based model, salacinol-based model, and DDBT-based model that passed the 

previous steps were ranked using the software ROCS 3.1.2 [178]. This was performed by 

using the software CORINA 3.4 to convert compounds into 3D coordinates and then, the 

software OMEGA 2.4.6 [177] to create 25 conformations per compound as oeb.gz format to 



 

103 

Experimental part 

be used as inputs for the program ROCS 3.1.2. Queries were two types: (i) X-ray 

conformations of acarviosine-glucose and myricetin with their developed chemical features 

were used for hit-lists obtained from 1XCW-based and 4GQR-based hit-lists, respectively, 

and (ii) docking poses of salacinol and DDBT with their pharmacophoric features were used 

for salacinol-based and DDBT-based hit-lists, respectively. 

Best hits ranked in the first 100 hits were kept and prepared for docking. A total of 299 hits 

resulted from the ranking step were transformed into 3D coordinates using CORINA 3.4 and 

then docked into the active site (PDB: 3OLE) using GOLD 5.1 as described before. 

Resulted poses were minimized inside the active site with the force field MMFF94 

implemented in LigandScout 3.1. Previously used pharmacophores were used to prioritize 

the relevant poses. Visual inspection, fulfillment of the relevant pharmacophore, chemical 

diversity, and commercial availability were used as basis for selecting seven candidates for 

biological testing. 

7.3 Biological testing 

7.3.1 Biological testing using the substrate p-NPG5 for PPA: First assay 

This kinetic method was performed in-house according to procedures published by our 

collaboration partner Prof. Dr. Matthias F. Melzig, Freie Universität Berlin [75]. 

Reagents: HEPES was purchased from Lancaster (Mühlheim, Germany). Sodium chloride 

was obtained from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). DMSO and calcium 

chloride were obtained from Merck KgaA, Darmstadt, Germany. Acarbose was purchased 

from AK Scientific, Inc (Union City, CA, United States). Compounds 1 - 7 were purchased 

from Asinex Europe B.V. (Rijswijk, The Netherlands). Compounds 8 and 9 were obtained 

from Chembridge Corporation (San Diego, CA, United States). Compounds 10 and 11 were 

obtained from Key Organics (Camelford Cornwall, United Kingdom). Compounds 12 - 14 

were granted from Analyticon (Potsdam, Germany). 

Enzyme. α -Amylase (EC 3.2.1.1, PPA) from porcine pancreas (Type I-A) from Sigma-Aldrich 

Chemie GmbH (Steinheim, Germany) was used. 

Substrate. p-Nitrophenyl-α-D-maltopentaoside (p-NPG5) was obtained from Megazyme 

(Bray, Co.Wicklow, Ireland). Liberation of p-nitrophenol (p-NP) from p-NPG5 was monitored 

continuously with an Infinite F200 Microplate Reader and Spectra-Flour Microplate reader, 

Tecan Group Ltd., Austria under temperature-controlled conditions (37˚C) at 405 nm. 

Kinetic analysis. Kinetic experiments were conducted in 96-well-plate at 37˚C in 50 mM 

HEPES buffer pH 7.1 containing 70 mM NaCl and 1 mM CaCl2. 
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The substrate and inhibitors were dissolved in DMSO and then diluted with the buffer. The 

maximum DMSO concentration in the well did not exceed 10% without affecting the 

experiments [200]. The substrate (50 µl, 25 mM) and each tested hit (25 - 500 µM) were 

mixed together and the reaction was initiated by adding 50 µl of PPA (previously prepared as 

1 part of enzyme to 100 parts of HEPES buffer, equivalent to 5.680 µM) to the incubation 

medium. The total volume in the well was adjusted by buffer to 200 μl. The 100 % activity of 

α-amylase was determined without using the inhibitor and used as a control. Blank solutions 

were measured and subtracted from the measurement of the sample to take into account the 

effect of the used reagents. 

Calculations were obtained using the equation: Inhibition % = 1 – [(A1 – A2) / A0] × 100, where 

A1 is the absorbance of the sample (a hit, the substrate, buffer, and PPA enzyme), A2 is the 

absorbance of the blank (a hit, the substrate and buffer), and A0 is the absorbance of the 

control (the substrate, buffer, and PPA enzyme). Each assay was conducted at least two 

times with duplicate samples. 

Measurement interval was 5.5 minutes with a total period of 55 minutes. The increase in the 

absorbance of p-NP liberated by PPA was measured with respect to time to give a progress 

curve for the reaction. The slope of the curve is decreased in the presence of an inhibitor. 

A concentration-effect curve (inhibition % in Y axis and inhibitor concentration in X axis) was 

obtained for each inhibitor using linear regression analysis in Microsoft Excel to determine 

the IC50. 

Before conducting the assay, the linearity curve that represents the absorbance of the 

product (p-nitrophenol) with respect to time interval was determined using 25 mM of p-NPG5 

substrate and PPA (1 part of enzyme : 100 total parts of HEPES buffer), Figure 46. 

 

 

Figure 46: Linearity curve for p-nitrophenol resulted from the hydrolysis of p-NPG5 by PPA 

with respect to time. 
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7.3.2 Biological testing with GalG2CNP substrate for HSA: Second 

assay 

This kinetic assay was carried out based on procedures previously described by 

collaboration partner Dr. Gyöngyi Gyémánt, University of Debrecen [154]. 

Enzyme. α -Amylase (EC 3.2.1.1, HSA) from human saliva (Type IXA) from SIGMA was 

used and it gave a single band on sodiumdodecylsulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) and possessed no α- and β-glycosidase activity.  

Substrate. 2-Chloro-4-nitrophenyl-4-O-β-D-galactopyranosylmaltoside (GalG2CNP) was 

purchased from Diagnosticum ZRt, Hungary. Liberation of chloronitrophenol (CNP) from 

GalG2CNP was monitored continuously with a UV-VIS spectrophotometer (JASCO V550) 

under temperature-controlled conditions (37˚C) at 400 nm. 

Kinetic analysis. Kinetic experiments were carried out at 37˚C in 50 mM MES buffer pH 6.0 

containing 5 mM of Ca(OAc)2, 51.5 mM of NaCl and 152 mM of NaN3. The substrate (0.75 - 

4 mM) and inhibitor were mixed together and the reaction was initiated by adding HSA (2 

nM) to the incubation medium (total volume of 500 μl). 

The measurements without inhibitor were carried out in the presence of DMSO not 

exceeding 2.5 %. The increase of absorbance of CNP liberated by HSA was measured 

continuously at 400 nm using the Parallel Kinetics Analysis program of a JASCO V550 

spectrophotometer. Concentration-response plots were used to determine the effects of the 

inhibitor on the enzymatic reaction and IC50 values of inhibitors. These experiments were 

performed at constant enzyme and substrate concentrations.  Fractional activity (Y axis) was 

plotted as a function of inhibitor concentration (X axis). The data were fit using a standard 

four-parameter logistic nonlinear regression analysis of Grafit software. The type of inhibition 

was determined by the Lineweaver-Burk plot. 

7.4 Modeling differences in IC50 values in the initial virtual 

screening 

Substrates p-NPG5 and GalG2CNP, positive control as well as compounds 2, 3, 4, 6, 7, 8, 

and 9 were docked into α-amylase (PDB: 3OLE [36]) aiming at explaining the differences in 

potencies when using two different assays. Docking parameters of GOLD 5.1 [184] was used 

with its default parameters and scoring function GoldScore. Analysis and visualization for 

resulted poses were performed in LigandScout 3.1. The best plausible binding mode for each 

ligand was selected based on the fulfillment of the developed 3D pharmacophore and 
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interactions with the catalytic residues as well as the quality of superposition with the co-

crystallized ligand. Gaussian similarity score implemented in LigandScout 3.1 was used to 

quantify the steric overlap between each substrate and tested compounds. For this purpose, 

each selected pose of substrates p-NPG5 and GalG2CNP was inserted individually into the 

active site (PDB code 3OLE) replacing the co-crystallized ligand to be used as a reference 

for calculations (chapter  4.3.3, Appendix  10.5). 

7.5 Molecular Docking 

7.5.1 Target preparation for molecular docking 

All docking studies were performed using GOLD 5.1 [184]. α-Amylase structures with PDB 

codes 1MFV [49] and 4GQQ [25] were used for docking natural inhibitors identified by 

collaborations partners (chapter  4.2). Virtual hits and analogues selected in the initial virtual 

screening were docked into PDB code 3OLE [36]. Compounds selected from the refined 

virtual screening were docked into PDB codes 3OLE, 4GQQ and 4GQR [25]. All crystal 

structures used for docking were protonated, and water molecules and co-crystallized ligands 

were deleted in GOLD 5.1 before docking. 

7.5.2 Preparation of compounds for docking 

All compounds docked with GOLD 5.1 [184] were converted into 3D coordinates using 

CORINA 3.4 [183] before docking. 

7.5.3 Docking studies for inhibitors discovered by the initial virtual 

screening 

GOLD 5.1 was used for docking molecules into α-amylase active site (PDB: 3OLE [36]). The 

protein structure was prepared in GOLD 5.1 as stated in 7.5.1. 

Validation of docking experiments was performed by reproducing the binding mode of the co-

crystallized inhibitor showing RMSD of 0.8 Å between the original and docked poses 

(Appendix  10.6, Figure 48). All docking experiments were carried out without constraints.  As 

described before, default settings were used to generate 100 docking poses for each 

compound unless it is stated. Then, all created poses were analyzed inside the pocket using 

LigandScout 3.1. 
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7.5.4 Docking studies for inhibitors discovered by the refined virtual 

screening 

As mentioned before, α-amylase structures and docked compounds were first prepared as 

described in chapters 7.5.1 and 7.5.2, respectively. 

Default settings and GoldScore were applied in GOLD 5.1 [184] to create 100 poses for each 

compound, unless it is stated. α-Amylase active site with PDB code 3OLE [36] was used as a 

template for docking. All created poses were imported into LigandScout 3.1 and minimized 

inside the binding pocket with the force field MMFF94. 

Because compound 18 shows non-competitive inhibition, a second possibility was 

investigated by docking the ligand into allosteric binding sites 1, 2 , and 3 of PDB code 

4GQQ [25], previously described in chapter  4.2.3. The pharmacophre features of the co-

crystallized ethyl caffeate were used to prioritize poses of compound 18. 

A second binding mode was obtained by docking compound 20 into the active site of the 

PDB code 4GQR. The docking experiment by GOLD 5.1 [127, 184] was validated for 4GQR 

and shows RMSD of 2.1 Å between the heavy atoms of the co-crystallized ligand and docked 

conformation (Appendix  10.6, Figure 50). 

The crystal structure and compounds were prepared as described before. LigandScout 3.1 

was used to visualize and analyze resulted poses. 

7.6 Similarity search for the best competitive inhibitor in the initial 

screening 

Aiming at finding new hits similar to compound 2, similarity searching from an in-house 

chemical database originally obtained from commercial vendors was conducted. 12 

compounds were selected for biological testing (Appendix 10.11, compounds 22 - 33). 

Chosen analogues as well as protein structure coded 3OLE were prepared for docking as 

described in chapters 7.5.2 and 7.5.1, respectively. Default settings of GOLD 5.1 and the 

scoring function GoldScore were applied to create 10 poses per ligand. Then, resulted poses 

were analyzed in LigandScout 3.1. All poses were minimized inside the pocket and prioritized 

using the pharmacophore features of compound 2. The best pose for each hit was selected 

based on the highest pharmacophore fit scores. 
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8 Summary 

α-Amylase, a digestive enzyme secreted from salivary glands and pancreas, initiates starch 

catabolism resulting into postprandial blood glucose spikes. Hyperglycemia is closely 

associated with metabolic diseases such as obesity and diabetes, as well as cardiovascular 

mortality [91, 201]. Therefore, a better control of α-amylase activity is a promising therapeutic 

strategy for controlling unbalanced starch degradation and related pathologic consequences. 

The objective of this work was the discovery of novel small α-amylase inhibitors.  

 

To achieve our goal, a computer-aided drug design strategy was developed, in which two 3D 

pharmacophore-based virtual screening approaches were conducted. In the initial virtual 

screening, all available information on binding modes of co-crystallized carbohydrate-based 

α-amylase inhibitors were assembled and used to develop common feature-based 3D 

pharmacophore models. After validation with a dataset of biologically known active and 

inactive α-amylase inhibitors, the best generated model was used for virtual screening of 

commercial chemical databases comprising about two million compounds. In order to reach 

a reasonable amount of molecules for biological testing, virtual hits were filtered using 2D 

drug-like descriptors, docking and structural clustering. This initial virtual screening led to the 

final selection of 14 for biological testing. Six out of 13 biologically tested compounds (1 hit 

was excluded due to insolubility) display α-amylase inhibition with IC50 values between 86 µM 

and 300 µM. 

 

In parallel and during this project, novel small α-amylase inhibitors have been published by 

other research groups, and hence their information was included into a second round of 

virtual screening. The validating dataset was updated and categorized into five clusters 

based on scaffold type. The most potent small inhibitor from each cluster was selected and 

five different pharmacophore models were generated. These models were validated and then 

used individually for virtual screening. More than one million commercial chemical molecules 

were virtually screened resulting in five hit-lists, one for each 3D model. One hit-list was 

excluded since its compounds could not tolerate one filtering step with predefined 2D 

descriptors. Then, each lead structure inhibitor used for pharmacophore development was 

employed to build a 3D query applied for ranking the relevant resulted hits. This was 

achieved by 3D similarity search to pick molecules that are the closest to the relevant query 

in terms of shape and chemical features. Then, the best ranked hits were docked and 

analyzed to select seven virtual hits for biological experiments. Four out of seven biologically 
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tested compounds reveal promising α-amylase inhibition with IC50 ranging from 17 µM to 300 

µM. 

 

An optimization step was performed for the most active and competitive α-amylase inhibitor 

discovered by the first round virtual screening aiming at finding more potent ligands and 

rationalizing their structure activity relationships. 2D similarity search was carried out using 

an in-house chemical database and 12 analogues were selected for biological testing. Six 

out of 12 biologically tested compounds demonstrate α-amylase inhibition with IC50 values 

ranging from 50 µM to 260 µM.[14] 

 

At the end of this project, 33 compounds were selected using a rational computationally 

driven approach. In total, 16 novel non-sugar small compounds with α-amylase inhibition 

(IC50 range: 17 - 300 µM) were identified using kinetic assays. The binding modes of all α-

amylase inhibitors discovered in this work were elucidated using molecular docking, leading 

to the discovery of the structural requirements for an optimal α-amylase inhibition. 

Moreover, natural α-amylase inhibitors (cyanidin derivatives, steviol extract, and 

verbascoside) identified by collaboration partners with previously unknown binding modes 

were investigated by docking and pharmacophore modeling and their mechanism of 

inhibition were elucidated. 
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10 Appendix 

10.1 Macromolecules of pancreatic and salivary α-amylases 

(human and porcine) 

Crystal structures of HPA, HSA, and PPA publically available in the PDB are listed in Table 

16. 

 

Table 16: The PDB codes of human and porcine α-amylase crystal structures 

PDB Binding ligands, co-factors, mutation 
Release 

date 
Resolution 

Å 
Ref. 

Human pancreatic α-amylase (HPA) 

4GQR 

4GQQ 

3OLD 

3OLE 

3OLG 

3OLI 

3IJ7 

3IJ8 

3IJ9 

2QMK 

2QV4 

3BAI 

3BAJ 

3BAK 

3BAW 

3BAX 

3BAY 

1XGZ 

1XH0 

1XH1 

1XH2 

1XCW 

1XCX 

1XD0 

1XD1 

1U2Y 

1U30 

1U33 

1KB3 

1KBB 

1KBK 

1KGU 

1KGW 

myricetin 

ethyl caffeate 

acarviostatin I03 (6 rings, valienamine # 3) 

acarviostatin II03 (7 rings, valienamine # 1 and 4) 

acarviostatin III03 (7 rings, valienamine # 1 and 4) 

acarviostatin IV03 (7 rings, valienamine # 1 and 4) 

oligosaccharyl-5-F-glycosyl–F  

oligosaccharyl-5-F-glycosyl–F 

oligosaccharyl-5-F-glycosyl–F  

nitrite 

nitrite and acarbose (5 ring, valienamine # 2) 

nitrate 

nitrate and acarbose (5 ring, valienamine # 3) 

mutant N298S and nitrate 

azide 

mutant N298S , azide 

N298S, nitrate and acarbose (5 rings, valinamine # 3) 

mutant, N298S 

mutant/ acarbose (6 rings), No Cl. (valienamine # 3) 

mutant, N298S 

mutant and acarbose (5 rings, valienamine # 3) 

acarviosine-glucose (Acarv-glu) 

iso-acarbose 

acarviosine-glucose with G3F (5 ring, valienamine # 3) 

isoacarbose with G3F (6 rings, valienamine # 1) 

d-gluconohydroximino-1,5-lactam (GHIL) 

trisaccharide (G2-GHIL) 

trisaccharide (MeG2-GHIL) 

mutant R195A 

mutation of catalytic resdiues 

mutation of catalytic resdiues 

mutant R337A 

mutant R337Q 

10.2012 

10.2012 

04.2011 

04.2011 

04.2011 

04.2011 

10.2009 

10.2009 

10.2009 

03.2008 

03.2008 

03.2008 

03.2008 

03.2008 

03.2008 

03.2008 

03.2008 

05.2005 

05.2005 

05.2005 

05.2005 

12.2004 

12.2004 

12.2004 

12.2004 

09.2004 

09.2004 

09.2004 

05.2002 

05.2002 

05.2002 

05.2002 

05.2002 

1.2 

1.35 

2.00 

1.55 

2.30 

1.50 

2.00 

1.43 

1.85 

2.30 

1.97 

1.90 

2.10 

1.90 

2.00 

1.90 

1.99 

2.00 

2.00 

2.03 

2.20 

2.00 

1.90 

2.00 

2.20 

1.95 

1.90 

1.95 

2.10 

1.90 

1.90 

2.00 

2.10 

[25] 

[25] 

[36] 

[36] 

[36] 

[36] 

[31] 

[31] 

[31] 

[198] 

[198] 

[198] 

[198] 

[198] 

[198] 

[198] 

[198] 

[26] 

[26] 

[26] 

[26] 

[32] 

[32] 

[32] 

[32] 

[202] 

[202] 

[202] 

[27] 

[34] 

[34] 

[27] 

[27] 
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10.2 Structural analysis 

Software package MOE 2010.10 [155] was used to superimpose crystal structures of α-

amylase coded as 3OLE, 1CXW, 1XCX, 1MFV, and 1OSE with the purpose of investigating 

the position of water molecule 746 (HOH-746). Analysis showed that HOH-746 is located 

nearly at the same position in all investigated macromolecules (Figure 47). Distances 

between the oxygen atom of HOH-746 and the neighboring amino acid residues were 

1KGX 

2CPU 

3CPU 

1B2Y 

1CPU 

1BSI 

1HNY 

mutant R195Q 

mutation of catalytic residues 

mutation of catalytic residues, maltose 

mutation, acarbose (5 rings, valienamine # 3) 

modified acarbose (5 rings, valienamine # 3) 

mutant, D197A, D197N 

05.2002 

06.2001 

06.2001 

02.2000 

06.1999 

05.1999 

03.1996 

2.00 

2.00 

2.00 

3.20 

2.00 

2.00 

1.80 

[27] 

[30] 

[30] 

[24] 

[30] 

[35] 

[21] 

Human salivary α-amylase (HSA) 

PDB Binding ligands, co-factors, mutation 
Release 

date 

Resolution 

Å 
Ref. 

3DHP 

3BLP 

3BLK 

1Z32 

1XV8 

1Q4N 

1NM9 

1MFU 

1MFV 

1JXJ 

1JXK 

1C8Q 

1SMD 

Mutant/ acarbose (4 rings, valienamine # 2) 

W388/ acarbose (5 rings, valienamine # 3) 

W316A/ acarbose (5 rings, valienamine # 3) 

mutant, Y151M (3 rings, valienamine # 2) 

dimer 

mutant F256W 

mutant W58A (3 rings) 

mutant, residues 306-310 (7 rings, valienamine # 1and 4) 

modified acarbose, (6 rings, valienamine # 1 and 4) 

 

Role of mobile loop 

Recombinant HSA 

 

07.2008 

11.2008 

11.2008 

05.2005 

10.2005 

03.2004 

01.2004 

11.2002 

11.2002 

09.2001 

09.2001 

06.2000 

07.1996 

1.5 

1.60 

2.00 

1.60 

3.00 

2.07 

2.10 

2.00 

2.00 

1.99 

1.90 

2.30 

1.60 

[45] 

[203] 

[203] 

[38] 

[204] 

[205] 

[37] 

[49] 

[49] 

[37] 

[49] 

[205] 

[22] 

Porcine pancreatic α-amylase (PPA) 

1KXQ proteinaceous amylase inhibitor 06.2002 1.6 [206] 

1KXT proteinaceous amylase inhibitor 06.2002 2 [206] 

1KXV proteinaceous amylase inhibitor 06.2002 1.6 [206] 

1BVN proteinaceous amylase inhibitor (tendamistat) 09.1998 2.5 [63] 

1DHK dimer 12.1997 1.85 [207] 

1OSE modified acarbose (6 rings, valienamine # 1and 4) 04.1997 2.3 [156] 

1PIF  12.1996 2.3 [64] 

1PIG pseudooctasaccharide V-1532,(6 rings, valienamine # 3) 12.1996 2.2 [64] 
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measured. The oxygen atoms from the side chain (OE1) and the backbone carbonyl of the 

catalytic residue Glu233 are respectively located at 3.32 Å and 2.82 Å from the oxygen atom 

of HOH-746. Also, the nitrogen atom in the backbone of Lys200 is found at 3.14 Å from the 

oxygen atom of this water molecule. With inhibitors belonging to the trestatin family, such as 

acarbose and acarviostatins, HOH-746 can form H-bonds with hydroxyl groups of the sugar 

unit accommodated in subsite +1. Imposing the pharmacophore model to retrieve this 

particular HBD feature led to excluding most of the inactive compounds during the validation 

process for model B that was then used for the initial virtual screening. 

 

 

 

Figure 47: The water-746 is depicted as red spheres obtained by superposition of α-amylase 

structures coded in the PDB as 3OLE, 1CXW, 1XCX, 1MFV, and 1OSE (view with inhibitor 

acarviostatin II03). Positive and negative numbers represent active subsites. 

 

10.3 Biologically known active α-amylase inhibitors 

Compounds with biologically known active α-amylase inhibitors were assembled from 

Chembl database and literature to be used as validation dataset (Table 17). 

In the initial virtual screening: 19 compounds numbered from 1 to 14 and from 20 to 24 were 

used as actives during validation of the developed pharmacophores. 

In the refined virtual screening: 19 compounds numbered from 1 to 19 were considered 

actives to validate the generated 3D models. 
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Table 17: Collected biologically known active α-amylase inhibitors 

No. Name Structure Ref. Activity PDB 

1 Quercetagetin 

 

[20] IC50 = 10.2 µM 
 

2 Scutellarein 

 

[20] IC50 = 9.64 µM 
 

3 

Product of 

rearranged 

acarbose, and 

elongation of 

acarviosine-

glucose 
 

[36] 

[198] 

[26] 

[32] 

[24] 

[30] 

IC50  = 2.59 µM 

 

3BAJ 

3BAY 

1XH2 

1B2Y 

1CPU 

1XD0 

4 

Product of 

acarviostatin 

I03, and 

acarbose 

 

[36] 

[26] 
Ki = 1.25 µM 

3OLD 

1XH0 

5 

Product of 

acarviostatins 

II03, III03, and 

IV03 

 

[36] 

Ki = 0.0147 µM 

Ki = 0.0143 µM 

Ki = 0.0416 µM 

3OLE 

3OLG 

3OLI 

6 

Product of 

rearranged 

acarbose 

 

[154] 

[49] 

[156] 

Ki = 0.7 µM 
1MFV 

1OSE 
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No. Name Structure Ref. Activity PDB 

7 

Product of iso-

acarbose 

elongated with 

G3F 

 

[32] Ki = 0.012 µM 1XD1 

8 

1,2,3,4,6-

pentagalloyl-β-

D-glucose 

 

[84] 
IC50 = 2.35 µM 

(Ki = 2.6 µM)  

9 Iso-acarbose 

 

[32] Ki = 0.012 µM 1XCX 

10 

α-Acarviosinyl-

1,4-α-D-

glucopyranosyl

-1,6-D-

glucopyranosyl

idene-spiro-

thiohydantoin 

(PTS-G-TH) 

 

[154] Ki = 0.19 µM 
 

11 Montbretin A 

 

[82] Ki = 0.008 µM 
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No. Name Structure Ref. Activity PDB 

12 Montbretin B 

 

[82] Ki = 3.600 µM 
 

13 Montbretin C 

 

[82] Ki = 6.100 µM 
 

14 Acarviosine-

glucose 

 

[32] Ki = 0.075 µM 1XCW 

15 Theaflavin 

monogallate 

 

[165] IC50 = 5.5 µM 
 

16 Theaflavin 

digallate 

 

[165] IC50 = 2.9 µM 
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No. Name Structure Ref. Activity PDB 

17 

2-(4-(3, 5-

Dihydroxyphen

oxy)-3,5-

dihydroxyphen

oxy) benzene-

1,3,5-triol 

(DDBT) 
 

[83] 
IC50 = 8.56 µM,  

Ki = 4.8 µM 
 

18 Salacinol 

 

[175] 
Ki = 10 µM for 

PPA 
 

19 
CHEMBL2203

334 

 

[87] 
IC50 = 15.260 

µM 
 

20 Luteolin 

 

[20] IC50 = 18.4 µM 
 

21 Fisetin 

 

[20] IC50 = 19.6 µM 
 

22 Quercetin 

 

[20] IC50 = 21.4 µM 
 

23 G3F/5FIdoF 

 

[31] 

Inhibition = 90 

%, 5FIdoF (25 

mM) elongated 

with G3F(40 

mM) 

3IJ9 

24 MeG2F/5FIdoF 

 

[31] 

Inhibition = 95 

%, 5FIdoF (50 

mM) elongated 

with MeG2F 

(20 mM) 

3IJ7 
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10.4 Biologically known inactive α-amylase inhibitors 

Compounds biologically tested against α-amylase with known weak or inactive inhibition 

were collected from literature and listed in Table 18 to be used in validation dataset. 

In the initial virtual screening, 55 compounds numbered from 1 to 43 and from 56 to 67 in 

Table 18 were used as inactives during validation of developed pharmacophores. 

In the refined virtual screening, 60 compounds numbered from 1 to 55 in Table 18 and from 

20 to 24 in Table 17 (Appendix  10.3) were used as inactives to validate the developed 3D 

models. 

 

Table 18: Collected biologically known inactive α-amylase inhibitors 

No Name structure Ref. Value PDB 

1 Kaempferol 

 

[20] 
inhibition = 

34.5 % 
 

2 Eupafolin 

 

[20] 
IC50 = 48 

µM 
 

3 (+)-Catechin 

 

[20] 
inhibition = 

13.1 % 
 

4 (-)-Catechin 

 

[208] 

inhibition = 

16 % 

 

 

5 Genkwanin 

 

[20] 
inhibition = 

17.5 % 
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No Name structure Ref. Value PDB 

6 Acacetin 

 

[20] 
inhibition = 

14.1 % 
 

7 

Rhamnetin 

 

 

 

[20] 
inhibition = 

8.1 % 
 

8 Isorhamnetin 

 

[20] 
inhibition = 

35.4 % 
 

9 Hesperetin 

 

[20] 
inhibition = 

39.8 % 
 

10 Genistein 

 

[20] 
inhibition = 

25.1 % 
 

11 Epicatechin 

 

[20] 
inhibition = 

10.3 % 
 

12 Daidzein 

 

[20] 
inhibition = 

23.3 % 
 

13 Diosmetin 

 

[20] 
inhibition = 

19.2 % 
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No Name structure Ref. Value PDB 

14 Naringenin 

 

[20] 
inhibition = 

26.8 % 
 

15 Myricetin 

 

[20] 

[25] 

IC50 = 30.2 

µM 
4GQR 

16 

Bi-fluorescence-

labeled 

maltoside 

 

[209]   

17 

Bi-fluorescence-

labeled 

maltohexaoside 

 

[209]   

18 

5-(2,2-Dimethyl-

1,3-dioxolan-4-

yl)-3-hydroxy-4-

methoxyfuran-

2(5H)-one 
 

[210] 
Inhibition = 

0%  
 

19 

Maltosyl-α (1,4)-

d-

gluconhydroximo

-1,5-lactam; (G2-

GHIL) 

 

[202] Ki = 1.8 mM 1U30 

20 Aesculin 

 

[208] IC50 = 1.67 

mM 
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No Name structure Ref. Value PDB 

21 Apigenin 

 

[208] Inhibition = 

12.4 % 
 

22 Arbutin 

 

[208] Inhibition = 

30 % 
 

23 

4'-O-methyl-

maltosyl-α (1,4)-

d-

gluconhydroximo

-1,5-lactam; 

(MeG2-GHIL) 
 

[202] Ki = 25 µM 1U33 

24 Chrysin 

 

[208] inhibition = 

5 % 
 

25 Cyanidinchloride 

 

[208] Inhibition = 

12 % 
 

26 Cynarin 

 

[208] IC50 > 2 

mM 
 

27 

3(3,4-

Dimethoxyphenyl

)-propanoic acid 
 

[208] IC50 > 12 

mM 
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No Name structure Ref. Value PDB 

28 
Epigallocatechin 

gallate 

 

[165] IC50 = 1.4 

mM 
 

29 (-)-Epicatechin 

 

[208] IC50 = 3.5 

mM 
 

30 
Isochlorogenic 

acid A 

 

[208] IC50 = 0.39 

mM 
 

31 Isoquercitrin 

 

[208] inhibition = 

12.2 % 
 

32 
Luteolin-7-

glucoside 

 

[208] IC50 = 0.28 

mM 
 

33 Naringenin 

 

[208] IC50 = 1.8 

mM 
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No Name structure Ref. Value PDB 

34 Naringin 

 

[208] inhibition = 

0 % 
 

35 Quercitrin 

 

[208] inhibition = 

37.6 % 
 

36 Rosmarinic acid 

 

[208] IC50 = 1.4 

mM 
 

37 Rutin 

 

[208] inhibition = 

20.1 % 
 

38 Sinapinic acid 

 

[208] IC50 > 6.5  

39 Ethyl caffeate 

 

[82] 

[25] 
Ki = 1.3 mM 4GQQ 
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No Name structure Ref. Value PDB 

40 Trans-chalcone 

 

[179] Ki = 48 µM  

41 

2-(4,5-Dihydroxy-

3-oxo-2,3-

dihydrofuran-2-

yl)-2-

hydroxyethyl 

palmitate 
 

[210] 

[211] 

IC50 = 62.5 

µM 
 

42 

5-(2,2-Dimethyl-

[1,3]dioxolan-4-

yl)-3,4-dihydroxy-

5H-furan-2-one 
 

[210] 

[211] 

IC50 = 28 

µM 
 

43 

Acetic acid 2-

acetoxy-1-(3,4-

dihydroxy-5-oxo-

2,5-dihydro-

furan-2-yl)-ethyl 

ester  

[210] 

 

Inhibition = 

99 % 
 

44 
CHEMBL220794

8 

 

[87] 
IC50 = 22.96 

µM 
 

45 
CHEMBL220794

9 

 

[87] 
IC50 = 21.85 

µM 
 

46 
CHEMBL220795

0 

 

[87] 
IC50 = 24.39 

µM 
 

47 
CHEMBL220795

1 

 

[87] 
IC50 = 20.6 

µM 
 

48 
CHEMBL220795

2 

 

[87] IC50 = 19.91 

µM 
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No Name structure Ref. Value PDB 

49 
CHEMBL220795

3 

 

[87] IC50 = 18.71 

µM 
 

50 
CHEMBL220795

4 

 

[87] IC50 = 20.22 

µM 
 

51 
CHEMBL220795

5 

 

[87] IC50 = 23.24 

µM 
 

52 
CHEMBL220795

6 

 

[87] IC50 = 19.54 

µM 
 

53 
CHEMBL220795

7 

 

[87] IC50 = 22.30 

µM 
 

54 
CHEMBL220795

8 

 

[87] IC50 = 21.8 

µM 
 

55 
CHEMBL220795

9 

 

[87] IC50 = 17.43 

µM 
 

56 Ghavamiol 

 

[175] Ki < 10 mM 

 

 

 

57 

D-

gluconhydroximo

-1,5-lactam, 

(GHIL) 
 

[202] Ki =18 mM 1U2Y 
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No Name structure Ref. Value PDB 

58 Aesculetin 

 

[208] 
inhibition = 

17.4 % 
 

59 Chinic acid 

 

[208] IC50 = 13 

mM 
 

60 
Dihydrocaffeic 

acid 

 

[208] IC50 > 14 

mM 
 

61 

2,3-

Dihydroxybenzoi

c acid 
 

[208] IC50 > 7 mM  

62 Benzoic acid 

 

[208] IC50 > 10 

mM 
 

63 Ferulic acid 

 

[208] IC50 > 5 

mM 
 

64 Isoferulic acid 

 

[208] IC50 > 7 

mM 
 

65 Caffeic acid 

 

[208] IC50 = 4.8 

mM 
 

66 Scopoletin 

 

[208] IC50 = 1.3 

mM 
 

67 Ascorbic Acid 

 

[210] 

[211] 

IC50 = 26.5 

µM 
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10.5 Steric overlap of substrates with tested compounds  

LigandScout 3.1 [159] was used for calculating Gaussian shape similarity score for 

compounds tested in both assays (first with p-NPG5 and second with GalG2CNP substrate) 

and listed in Table 19. It was performed attempting to explain the differences in inhibitory 

potencies (chapter 4.3.3). Cyan color represents the region of the p-NPG5 in both sides; 

silver color represents the region of GalG2CNP as appeared mainly at right side. 

 

Table 19: Results of steric overlap and Gaussian scores for compounds tested in the first and 

second assays 

compound 

first assay_ p-NPG5 second assay_ GalG2CNP 

Overlapping with substrates Gaussian 

score 

IC50  

(µM) 

Gaussian 

score 

IC50  

(µM) 

p-NPG5 1 NA 0.39 NA 

 

GalG2CNP 0.396 NA 1 NA 

 

Bound 

acarbose 
0.59 97.06 0.34 0.5 

 

2 0.24 441.5 0.24 138 

 

3 0.30 ND 0.19 200 
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compound 

first assay_ p-NPG5 second assay_ GalG2CNP 

Overlapping with substrates Gaussian 

score 

IC50  

(µM) 

Gaussian 

score 

IC50  

(µM) 

4 0.27 ND 0.19 300 

 

6 0.28 ND 0.20 1000 

 

7 0.30 86.62 0.37 ND 

 

8 0.30 97.375 0.29 ND 

 

9 0.35 93.58 0.22 ND 

 

NA means not applicable and ND means not determined. 
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10.6 Validation of docking experiments for α-amylase 

The docking program GOLD 5.1 [184] was used first to reproduce the binding mode of the 

co-crystallized ligand in each used ligand-protein complex. The root mean square deviation 

(RMSD) was calculated in GOLD 5.1 between the heavy atoms of the original co-crystallized 

ligand and the docked conformation ligand. Validation of docking experiments for the PDB 

codes 1MFV and 3OLE for HSA and HPA, respectively, are depicted in Figure 48. 

 

    
 

Figure 48: The software GOLD 5.1 generated binding mode (gray, balls and sticks) of 

pseudohexasaccharide bound acarbose (left, PDB: 1MFV [49]) and acarviostatin II03 (right, 

PDB: 3OLE [36]) compared to their experimental conformations (black sticks). RMSD between 

heavy atoms of the docked and co-crystallized conformations for the first ligand was 1.12 Å (left) and 

for the second one was 0.8 Å (right). 
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In HPA coded 4GQQ, three allosteric sites, located separately from each other and far away 

from the catalytic active site by about 20 Å, accommodate three molecules of ethyl caffeate 

[25]. The conformations of ethyl caffeate in the three allosteric binding sites were reproduced 

with GOLD 5.1. Superpositions of the original and generated conformations in sites 1, 2, and 

3 are given in Figure 49. 

 

 

Figure 49: Docking poses of ethyl caffeate (black sticks) superposed with co-crystallized ligand 

(gray balls and lines) showing RMSD values of 0.5 Å, 1.07 Å and 1.46 Å in allosteric sites 1 

(left), 2 (middle), and 3 (right) in the PDB code 4GQQ, respectively. 

 

 

In the same manner, GOLD 5.1 was used to reproduce the conformation of myricetin co-

crystallized with HPA and coded as 4GQR. Superposition of the original orientation with the 

created pose is depicted in Figure 50. 

 

Figure 50: Generated binding mode of myricetin (gray lines and balls) superimposed with the 

co-crystallized ligand (black sticks) in HPA active site (PDB code: 4GQR [25]). RMSD value = 

2.1 Å. 
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10.7 Docking of analogues of the best competitive inhibitor in the 

initial screening 

Analogues of compound 2 were selected by similarity search from an in-house database 

(chapter  7.6) and biologically tested with GalG2CNP substrate and HSA as explained in 

chapter  4.3.10. Suggested binding modes for compounds 22, 23, 24, 32, and 33 were given 

in Figure 51. 

 

 

 

Figure 51: Docking poses of compounds 22 (A), 23 (B), 24 (C), 32 (D), and 33 (E). Ligands are 

shown in black stick mode and active site residues are rendered as gray balls and sticks. Yellow 

spheres represent hydrophobic contacts, red arrows: H-bond acceptors, green arrows: H-bond 

donors, red stars: Negative ionizable interactions. Blue and yellow dots represent hydrophilic and 

lipophilic surfaces of the receptor binding pocket. 
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10.8 Validation of models developed in the refined virtual 

screening  

3D pharmacophores developed in the refined virtual screening (chapter  4.3.8) were validated 

using ROC curve. Dataset used for a first validation (Figure 52) were 19 biologically known 

active compounds (Appendix  10.3), and decoys composed of 60 inactive compounds 

(Appendix  10.4), and 254 created molecules used as decoys (chapter  7.2.2). 

 

 

Figure 52: ROC curves for the first validation of 1XCW-based model, 4GQR-based model, 

salacinol-based model, pentagalloyl-based model, and DDBT-based model. 

 

 

 

 

 



 

147 

Appendix 

Second validation for the 3D models developed in the refined virtual screening (Figure 53) 

was performed using the previously mentioned dataset, in addition to 64,255 compounds 

from WDI2005 utilized as decoys. 

The goal of this validation was to check the selectivity of the pharmacophores to retrieve the 

active compounds from large screening database. Validation results show that these models 

can retrieve the known active compounds and rank them within the first 500 hits based on 

the pharmacophore fit scores using LigandScout 3.1. The EF1% as well as the AUC100% 

reveal the quality of these pharmacophores and show promising reliability to be used for the 

refined virtual screening. 

 

 

 

Figure 53: ROC curves for the second validation of 3D pharmacophores used in the refined 

virtual screening. 
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10.9 Docking of the best competitive inhibitor in the refined virtual 

screening 

First, compound 20 was docked into PDB code 3OLE but resulted poses does not show any 

interactions with the catalytic residues. Therefore, another binding mode was suggested by 

docking experiments into the PDB code 4GQR (Figure 54). The most plausible pose 

occupies subsites -3 to -1 and shows five H-bonds at subsite -1: two HBDs between meta- 

and para-hydroxyl groups with the catalytic residue Asp197, two HBDs between ortho- and 

meta-hydroxyl groups with His101, and one HBA between para-hydroxyl group and Arg195. 

Compound 20 adequately displays stability by forming hydrophobic contacts with the 

lipophilic residues located in subsites -2 and -3 in the active site. These residues are Trp58, 

Trp59, Tyr62, Thr163, and Leu165. 

 

 

 

Figure 54: Suggested binding mode of compound 20 docked into active site of α-amylase 

(PDB: 4GQR). Yellow spheres represent hydrophobic contacts, green and red arrows symbolize H-

bond donors and acceptors, respectively. 
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10.10 Quality control performed by vendors for selected 

compounds 

Compounds selected in the initial and refined virtual screening campaigns and biologically 

tested against α-amylase were basically obtained from commercial vendors. Quality control 

for these selected hits was performed by commercial supplier. 

 

Key Organics compounds 

All compounds are subjected to rigorous quality control procedures with purity of more than 

90 %. Purity is checked by 1HNMR and 13C, elemental analysis and mass spectroscopy. 

http://www.keyorganics.net 

 

Asinex 

All compounds have a minimum purity of 90%. They have been characterized by either NMR 

and/or HPLC/MS methods. Complementary analytical data are available free of charge under 

the Customer’s request. 

http://asinex.com/Libraries.html 

 

ChemBridge 

All compounds are tested by LC-MS and/or NMR to confirm sample identity and minimum 

purity of 90 %. Electronic copies of NMR or LC-MS data are available upon request. 

http://www.chembridge.com/screening_libraries/quality_control/index.php 

 

Vitas-M  

All compounds have a minimum purity level of 90%. All compounds are tested by NMR. NMR 

spectra can be supplied upon request. 

http://www.vitasmlab.com/compound-libraries-quality-control-2.htm 

 

Princeton Biomolecular Research 

All compounds are required minimum purity level of 90% and are tested by NMR and LC/MS. 

http://www.princetonbio.com/pages4.html 

 

 

 

http://www.keyorganics.net/
http://asinex.com/Libraries.html
http://www.chembridge.com/screening_libraries/quality_control/index.php
http://www.vitasmlab.com/compound-libraries-quality-control-2.htm
http://www.princetonbio.com/pages4.html
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Enamine  

All compounds have minimum purity level of > 90%. All compounds are tested by NMR 

spectroscopy, LC/MS, GC, FT/IR and quantitative elemental analysis. 

http://www.enamine.net/index.php?option=com_content&task=view&id=22 

 

Analyticon Discovery GmbH 

Purity of compounds is more than 90% on average. Identity is confirmed by MS/NMR. 

http://www.ac-discovery.com/content/Downloads/Product_Information.php 

 

ChemDiv 

ChemDiv supports comprehensive QC of all compounds; by NMR, HPLC/MS/UV and 

other options. ChemDiv provides 100% quality control for all compounds and guarantee 

more than 90% purity (+/- 5% accuracy). The purity accuracy is confirmed by 1H NMR and/or 

LC (UV)/ MS spectra in electronic format (MS TIF files) for all stock available compounds. 

http://www.chemdiv.com/additional-chemistry-services/

http://www.enamine.net/index.php?option=com_content&task=view&id=22
http://www.ac-discovery.com/content/Downloads/Product_Information.php
http://www.chemdiv.com/additional-chemistry-services/
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10.11 Commercial compounds selected by virtual screening 

approaches 

Virtual hits selected from the initial (compounds 1 - 14) and the refined virtual screening 

campaigns (compounds 15 - 21) were biologically evaluated. Compound 1 was excluded due 

to solubility issues. Compounds 22 - 33 were chosen from an in-house database by 2D 

searching for analogues similar to compound 2 (Table 20). Known biological activities of 

these compounds against targets other than α-amylase were also searched using CAS 

SciFinder (www.cas.org/products/scifinder) and listed below.  

 

Table 20: Commercial chemical compounds chosen by both initial and refined virtual screening 

approaches and biologically tested against α-amylase. Known biological activities with targets 

other than α-amylase were also included below 

Assay 
code 

Structure Vendor 
Vendor's 

code 
Known activity in 

literature 

1 

 

Asinex BAS 
00115253 

- 

2 

 

Asinex BAS 
04880564 

Fructose 1,6-

bisphosphatase 

(FBPase) inhibitor, 

IC50 = 11 µM [169] 

3 

 

Asinex BAS 
00411559 

Food additive [212] 

4 

 

Asinex BAS 
01579757 

- 

5 

 

Asinex BAS 
00341615 

- 

http://www.cas.org/products/scifinder
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Assay 
code 

Structure Vendor 
Vendor's 

code 
Known activity in 

literature 

6 

 

Asinex BAS 
13152985 

- 

7 

 

Asinex BAS 
01057772 

Tumor Hsp90 

Inhibitor, IC50 > 50 

µM [164] 

8 

 

Chembridge 7973051 - 

9 

 

Chembridge 5468077 - 

10 

 

Key 

Organics 
4F-062 - 

11 

 

Key 

Organics 
10L-950 - 

12 

 

Analyticon NP-003952 - 

13 

 

Analyticon NP-007087 - 

14 
 

Analyticon NAT19-
353800 

- 

15 

 

Specs AG-
219/09467025 

- 

16 

 

Specs AH-
262/36680018 

- 
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Assay 
code 

Structure Vendor 
Vendor's 

code 
Known activity in 

literature 

17 

 

Specs AK-
968/41922716 

- 

18 

 

Specs AN-
329/40366541 

- 

19 

 

Specs 
AG-

205/04837062 
Anti-microbial [213] 

20 

 

Chembridge 
5668374 

 
- 

21 

 

Specs 
AG-

690/09194027 
- 

22 

 

ChemDiv 5186-0425 

DNA gyrase B 

inhibitor, IC50 = 56 

µM [214] 

23 

 

Vitas-M STK017577 

DNA gyrase B 

inhibitor, IC50 = 39 

µM [214] 

24 

 

Vitas-M STK051250 

MurC ligase 

inhibitor, IC50 = 347 

µM [215]. DNA 

gyrase B inhibitor, 

IC50 = 36 µM [214] 

25 

 

Vitas-M STK087186 

MurC ligase 

inhibitor, IC50 = 531 

µM [215]. FBPase 

inhibitor, IC50 = 55 

µM [169]. DNA 

gyrase B inhibitor, 

IC50 = 25 µM [214] 

26 

 

Vitas-M STK031735 

MurC ligase 

inhibitor, residual 

activity = 90% at 

100 µM [215] 
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Assay 
code 

Structure Vendor 
Vendor's 

code 
Known activity in 

literature 

27 

 

Vitas-M STK947495 

MurC ligase 

inhibitor, residual 

activity = 83% at 

100 µM [215] 

28 

 

Princeton 
OSSK_04528

7 

DNA gyrase B 

inhibitor, IC50 > 500 

µM [214] 

29 

 

Princeton 
OSSK_93743

8 

DNA gyrase B 

inhibitor, IC50 > 500 

µM [214]. Heat-

shock protein 90 

(Hsp90) inhibitor, 

Kd = 680 nM [216] 

30 

 

Vitas-M STK091393 

DNA gyrase B 

inhibitor, IC50 > 

1000 µM [185] 

31 

 

Enamine T0520-5342 

DNA gyrase B 

inhibitor, IC50 > 

1000 µM [185] 

32 

 

Chembridge 6341222 

DNA gyrase B 

inhibitor, residual 

activity = 86 % at 

125 µM/L [185] 

33 

 

Vitas-M STK864500 

DNA gyrase B 

inhibitor, residual 

activity = 97 % at 

500 µM/L [185] 

 

http://www.enamine.net/

