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Summary
Nanostructured sol-gel synthesized magnesium fluoride exhibits catalytic activity
significantly different than its conventional counterparts. It has been shown experi-
mentally to act as amoderate Lewis acid due to coordinatively unsaturated cations on
the surface. Whenpartially hydroxylated, thematerial is shown to combine Brønsted-
and Lewis-acidity. In this work, surfaces of magnesium fluoride are examined in a
variety of pure and partially hydroxylated terminations in order to break down the
catalytic activity of the material into individual interactions. In addition, the quan-
tum chemical results are combined with surface thermodynamics for the prediction
of the relative stability of terminations at finite conditions of temperature and pres-
sure of hydrogen fluoride and water. The shape of magnesium fluoride crystals at
these conditions is predicted usingWulff constructions. Adsorption of hydrogen flu-
oride and ofwater on the surfaces ismodelled using density functional, perturbation,
and Hartree-Fock theory for the periodic systems. The results show that the basic-
ity and position of the fluorines on the surface are as important as the acidity of the
cations. As a consequence, no direct connection was found between the number of
missing coordination partners of cationic sites and the strength of adsorption. In-
stead the adsorption is govern by the synergetic effect of acid-base pairs. Theoretical
results indicate that surface hydroxyls are in some occasions Brønsted-basic while in
others they act as adsorption sites for water. From a methodological point of view,
it was shown that complex adsorption situations cannot be described adequately by
DFT. The presence of hydrogen fluoride andwater, as well as temperature, have a sig-
nificant effect on the relative stability of the different terminations. The agreement to
perturbation theory showed that the description with DFT/B3LYP is satisfactory for
the description of the crystal shapes. Unfortunately, the model can not be validated
for the case of sol-gel synthesized material, due to the lack of suitable experimental
data. A classical force field was parametrized based on the DFT description of mag-
nesium fluoride. This will enable the mesoscale modelling of magnesium fluoride
crystallites beyond the periodic model.
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Zusammenfassung
Nanostrukturiertes, mittels Sol-Gel-Synthese hergestelltes Magnesiumfluorid weist
katalytische Eigenschaften auf, die sich von denen des konventionell hergestellten
Materials signifikant unterscheiden. Experimentell hat es sich aufgrund der koor-
dinativ ungesättigten Kationen an seiner Oberfläche als moderate Lewis-Säure er-
wiesen. In seiner partiell hydroxylierten Form werden Brønsted- und Lewis-Säure
kombiniert. In dieser Arbeit werden Magnesiumfluoridoberflächen in verschiede-
nen reinen und partiell hydroxylierten Terminierungen untersucht, um die kataly-
tische Aktivität in die einzelnen Wechselwirkungen zu zerlegen. Zusätzlich werden
die quantenchemischen Ergebnisse mit Oberflächenthermodynamik kombiniert, um
die relative Stabilität der Terminierungen in Bedingungen endlicher Temperatur und
endlichen Partialdrucks von Fluorwasserstoff und Wasser vorherzusagen. Die Form
von Magnesiumfluoridkristallen unter diesen Bedingungen werden mittels Wulff-
konstruktionen vorhergesagt. Die Adsorption von Fluorwasserstoff undWasser wird
mittels Dichtefunktional-, Störungs- und Hartree-Fock-Theorie in periodischen Sys-
temenmodelliert. Die Ergebnisse zeigen, dass dabei die Basizität und die Position der
Fluoratome an der Oberfläche so wichtig wie die Säure der Kationen sind. Infolge-
dessen wurde kein direkter Zusammenhang zwischen der Anzahl fehlender Koordi-
nationspartner der Kationen und der Stärke der Adsorption identifiziert. Stattdessen
ist das Zusammenwirken der Säure-Base-Paare für die Adsorption maßgebend. Laut
den theoretischen Ergebnissen sind die Hydroxyle an der Oberfläche in manchen
Fällen Brønsted-basisch, während sie in anderen Fällen als Adsorptionszentren für
Wasser dienen. Aus methodischer Sicht wurde gezeigt, dass komplizierte Adsorpti-
onssituationen mit DFT nicht ausreichend beschrieben werden. Sowohl die Präsenz
von Fluorwasserstoff undWasser als auch die Temperatur haben einen signifikanten
Effekt auf die relative Stabilität unterschiedlicher Terminierungen. Die Übereinstim-
mung zur Störungstheorie zeigt, dass DFT/B3LYP die Form der Kristalle befriedi-
gend beschreibt. Leider kann das Model für mittels Sol-Gel synthetisiertes Materi-
al mangels experimenteller Daten nicht validiert werden. In Anlehnung an die Be-
schreibung mittels DFT wurde ein klassisches Kraftfeld für Magnesiumfluorid para-
metrisiert. So wird eine mesoskalige Modellierung von Magnesiumfluoridkristallen
jenseits des periodischen Modells ermöglicht.
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1 Introduction
An increasing awareness concerning the environmental impact of human activity and
industrialization has emerged in the past couple of decades [1]. This is reflected, for
example, in the introduction of the term green chemistry in 1998 [2] and its wide use
ever since. In twelve principles, the term comprises the aims to be pursued for a
sustainable chemical industry; minimization of waste production and of the use of
auxiliary substances, reduction of toxicity of reagents and products, preference for
catalytic routes are only some of the aspects it addresses.
Catalysis is called “a foundational pillar of green chemistry” [3]. In particular high
surface heterogeneous catalysts offer the advantage of relatively easy separation and
re-use compared to the alternatives [4], whichmakes their use attractive. Nanoscopic
structures offer, in addition to the advantage of high surface area – or partly as a
consequence thereof, higher catalytic activities compared to the corresponding con-
ventional material. An excellent example of such behaviour isMgF2. Until recently, it
was regarded as rather unreactive, only suitable as catalytic support [5]. This changed
with the development of the sol-gel synthetic route for metal fluorides in the early
2000s [6]. Originally used for the production of nanostructured AlF3, the sol-gel syn-
thesis has evolved into a flexible process for the synthesis of a wide range of fluorides
[7], including MgF2.

Synthesis and catalytic applications of nanostructured magnesium fluoride

The sol-gel synthesis offers a possibility to produce MgF2-based material with a va-
riety of surface modifications (fig. 1.1). The procedure essentially consists of the
formation of magnesium alkoxide from metallic magnesium and a solvent, and its
consequent reaction with hydrogen fluoride to form a sol or gel. The end-product
is obtained after a suitable thermal treatment with post-fluorination. Small varia-
tions of the synthetic process give rise to modifications of the nanomaterial’s surface;
reported functionalizations include for example the introduction of sulfonic [8], or
oxide groups on the surface [9], doping with noble metals [10], coexistence of MgF2
with other phases [11], and partial hydroxylation of the surface [12–14]. Although
nanoscopic MgF2 can be produced using a variety of methods, sol-gel synthesis is
the only possibility, until now, for the production of partially hydroxylated mate-
rial (see [15] and references therein). Hydroxylation is achieved by using aqueous
HF, thus provoking a competition between fluorolysis and hydrolysis. Fluorolysis is
significantly favoured against hydrolysis, so only a small amount of hydroxyls are in-
troduced in the nanomaterial. Still, different concentrations of surface hydroxyls can
be achieved by variation of the ratio of H2O to HF [16]. The nanomaterial’s surface
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1 Introduction

Figure 1.1: Some of the possible products of the sol-gel synthesis for nanostructured
MgF2.

modifications determine its catalytic activity, making it useful in a variety of applica-
tions.
Compared to other metal fluorides, pure MgF2 shows a weak to moderate Lewis-
acidity, which is advantageous for certain applications. An example is the fluori-
nation of 2-chloropyridine to 2-fluoropyridine, an intermediate in the production
of pesticides and other biologically active compounds: According to the proposed
mechanism, HF forms chains coordinated to surface fluorines. The free F-end of the
chain attacks the 2-chloropyridine, which is adsorbed on a cationic site. It was shown
that catalysts with stronger Lewis-acidity are not as efficient as MgF2 [17]. In other
cases, variation of the Lewis-acidity leads to manipulation of the outcome of a re-
action, as in the case of dehydrohalogenation of haloalkanes. It was demonstrated
in the example of 3-chloro-1,1,1,3-tetrafluorobutane that AlF3 and MgF2 selectively
catalyse the elimination of HF, whereas the much weaker acid BaF2 the elimination
of HCl [18].
Partially hydroxylated MgF2 combines Lewis- and Brønsted-acidic properties due to
the cationic sites and acidic hydroxyls on the surface, respectively. It is a particularly
suited catalyst for synthetic routes involving Friedel-Crafts reactions, yet its catalytic
properties depend to a certain extent on the concentration of the hydroxyls. This is
illustrated in the following examples: According to the proposed mechanism for the
synthesis of (all-rac)-α-tocopherol of the vitamin E family, the first step takes place
on the Brønsted-acidic hydroxyl, while the second step on the Lewis-acidic site, thus
allowing a one-pot synthesis [12]. At a certain degree of hydroxylation, MgF2-xOHx
exhibits high degree of conversion and selectivity for this synthesis. At higher de-
grees of hydroxylation the conversion increases, but at the same time some of the
selectivity is lost. By contrast in the synthesis of vitamin K, catalysts with a high
density of Brønsted-acidic sites are more efficient [19]. Other reactions catalysed by
partially hydroxylated high-surface magnesium fluoride include the dehydration of
D-xylose to furfural [8], benzylation reactions [20] and the conversion of cellulose to
glucose [19]. The observed acidic hydroxyls stand in contrast to those of conventional
hydroxylated MgF2, which exhibit basic properties [21].
Other functionalities make the nanomaterial suitable for more applications: Nano-
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material with oxide functionalities has been shown to performwell in the catalysis of
Michael additions [9]. Nanostructured MgF2 doped with noble metals is suitable for
hydrogenation reactions. For example, gold-doped magnesium hydroxide fluoride
was successfully employed for an one-pot synthesis of menthol [10]. The first step
of the synthesis, the cyclization of citronellal to isopulegol is catalysed by the acidic
sites, while the second step, the hydrogenation, occurs on the gold sites. Nanoscopic
palladium-doped magnesium fluoride is active in the hydrogenation of styrene [7].
The outlined diversity in catalytic applications of nanoscopic MgF2 was the inspira-
tion for thiswork. The aim is to develop a predictivemodel for the sol-gel synthesis of
MgF2 and the properties of the synthesizedmaterial, with focus on partially hydroxy-
lated modifications. In this context, two principle questions arise: Which properties
of the surface are decisive for the catalytic activity and which synthetic conditions
affect these properties.

From nanostructured MgF2 to a quantum chemical model

The structural characteristics of sol-gel synthesized MgF2-based nanomaterial have
been extensively investigated in a number of studies targeting both its bulk and its
surface properties. Data from 19F-NMR [22, 23], XRD [12] and TEM [24] show ev-
idence of coexisting crystalline and amorphous phases in the nanomaterial’s bulk.
The crystalline phases have a size of 3–8 nm and space group (136), which is a rutile-
type structure.
Space group (136) defines a tetragonal lattice with two MgF2 formula units in the
conventional unit cell (fig. 1.2(b)). The bulk consists of octahedra which share their
edges and tips in an alternating arrangement, as shown in fig. 1.2(a). Magnesium
cations and fluorine anions are arranged in the centre and corners of the octahedra
respectively. So, each cation is surrounded by six anions in an octahedral coordi-
nation, while each anion is surrounded by three cations. According to results from
X-ray powder diffraction, the lattice constants of rutile-typeMgF2 are a = 4.625Å and
c = 3.052Å, and x(F) = 0.3024 [25]. Periodic density functional theory with B3LYP
[26, 27] shows a deviation of 3% in the volume of the unit cell, with a = 4.667Å and
c = 3.083Å [28].
According to the above, a cubic MgF2 crystal with edge of 5 nm consists of about
104 atoms. Based on a rough estimation, one facet of such a crystallite consists of ap-
proximately 100 unit cells or 350 atoms. So having amean size of 5 nm, the crystalline
phases in the nanomaterial are in the range of crystallites rather than clusters, and
are better modelled as periodic systems.
Two possibilities for the quantum chemical description of solids are embedded clus-
ter and periodic models. In the embedded clusters scheme, a small number of atoms
around the site of interest is treated in a high level of theory. Around it, one or more
hosting systems are set up, which represent the surrounding bulk and are treated
in lower levels of theory. Downside of this treatment is the large amount of hand-
work needed for the setup. On the other hand, the periodic treatment of solids, the
principles of which are discussed in detail in the next chapter, has been largely au-
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1 Introduction

(a) (b)

Figure 1.2: (a) Coordination in themagnesiumfluoride bulk and (b) unit cell. Cations
are arranged in the centre of the octahedra, anions on the edges. The unit
cell includes two MgF2 units.

tomatized in the last couple of decades, as a number of software for this purpose
have been published. This constitutes an important advantage, as the present study
requires the investigation of a large number of structures. Therefore, the periodic
treatment was chosen for the quantum chemical modelling of the surfaces.

Adsorption as an indicator of catalytic properties

A simplified general model for heterogeneous catalysis is that of a three-step process.
In the first step, one or more reactants are adsorbed on the catalyst’s surface. In the
second step, the reaction takes place on the surface of the catalyst, and in the third
step, the product is desorbed. It is thus of importance for the catalytic activity, that
the interaction between reactant and surface is adequate for the activation of the for-
mer, but at the same time not as strong as to prevent the desorption of the molecule
in the third step (poisoning) [29].
Theoretical studies on heterogeneous catalysis usually focus on the snapshot between
the first and second step of the process: the structure of adsorbed molecules on sur-
faces. The evaluation of the adsorption structure and energy can give valuable in-
formation about the type of activation that occurs, as well as the strength of the in-
teraction between surface and molecule. However, catalytically relevant adsorption
systems usually involve large molecules, for which a complex scheme of multiple
interactions might compose the mechanism of activation. It is therefore helpful to
study the adsorption of different small molecules on the surfaces of interest, in order
to break down the complex schemes into individual interactions. This way, an insight
in the mechanisms behind the catalytic activity of surfaces is gained.
The adsorption of suitable probe molecules is employed in experiment as well as
in theory for the characterization of surface properties. A widely used method is
the measurement of the vibrational frequency shift of probe molecules and of sur-
face functionalities in adsorption systems compared to the free components. For ex-
ample, Lewis-acidic sites are evaluated from the vibrational frequency shift of CO
molecules when adsorbed on a surface [30]. For MgF2 surfaces, it has been employed
both in experimental [12] and theoretical [28] characterization of the cationic sur-
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face sites revealing their Lewis-acidic character. It is however noteworthy that the
calculated frequency shifts of CO do not confirm the assumption of direct analogy
between Lewis-acidity and coordination number of the cations. In the presence of
surface hydroxyls, CO has been employed for the experimental identification of their
Brønsted-acidic properties [16]. The acid-base pairs on MgF2 surfaces have been in-
vestigated via the vibrational frequency shifts of adsorbed CHCl3 [31].
In this work, HF and H2O have been chosen as probe molecules. Investigating their
interaction with (partially hydroxylated) MgF2 surfaces serves two purposes: First,
they influence the formation of the nanomaterial, as both of them are reactants in the
synthetic procedure. Secondly, they are involved in numerous reactions that could
be catalysed by the nanomaterial, so modelling the adsorption can give an insight in
the activation mechanisms occurring on MgF2 surfaces.
Based on the strength of the interaction and its effect on the electronic structure of
the adsorbates, adsorption is generally divided into chemisorption and physisorp-
tion. The former involves a change in the electronic structure of themolecule, charge-
transfer and even dissociation or formation of newmolecules; the latter includes cor-
related charge fluctuations like mutually induced dipole moments in surface and
adsorbate [32]. However, the two are not distinct, but rather two limiting cases in
a continuous spectrum of interaction strengths. Translated in adsorption energies,
−0.5eV1 per adsorbate is generally regarded as the limit between physisorption and
chemisorption [33].
The theoretical investigation of weak interactions, as in the case of physisorption,
requires consideration of electron correlation. Sophisticated wave function-based
methods, e.g. configuration interaction or coupled cluster, are feasible for small sys-
tems, but their exponential scaling with the number of electrons is prohibitive for
their application to large or periodic systems. A possibility to circumvent this prob-
lem is offered by approaches based on clusters, e.g. the method of increments [34–
36] where the interactions are fragmented and expanded in series of different terms
[37]. Unfortunately, these methods are time-consuming and require a great amount
of handwork, so they cannot be used for production. The only automatized electron
correlation method for periodic systems is second-order Møller-Plesset perturbation
theory [38]. Based on the “local ansatz” it is implemented in the Cryscor package
[39, 40], and a canonical implementation is available in Vasp [41–44]. The MP2 de-
scription has long been regarded as sufficient for the treatment of adsorption [45].
This assumption was recently confirmed for MgF2 [46].
Density functional theory is routinely employed for the calculation of large and ex-
tended systems. It partly accounts for electron correlation, but not always adequately.
A number of correction schemes for DFT have been proposed to account for this in-
sufficiency [47–54]. Among them, the dispersion correction schemes proposed by
Grimme and coworkers [53, 54] arewidely used and have been implemented in quan-
tum chemical codes not only for molecules, but also for solids (D3 gradients are im-

1Here and in the following, the negative sign in the adsorption energy indicates an attractive interac-
tion.
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1 Introduction

plemented in Vasp and D2 in Crystal09 [55, 56] and later). The Grimme corrections
combine sophisticated calculations andmodels on one hand, and on the other hand a
large number of approximations, whichwill be discussed in detail in the next chapter.
As their description of systems involving solids and adsorption interactions has cer-
tain shortcomings, there have been efforts to improve the Grimme schemes: Civalleri
et al. [57] have proposed a revision of the dispersion coefficients to reproduce calcu-
lations of cohesive energies and structures of molecular crystals. Ehrlich et al. [58]
presented an adaptation of the Grimme scheme specifically concentrated on adsorp-
tion on ionic surfaces. The latter appears to perform better compared to the previous
dispersion correction schemes, showing that there is the possibility to improve the
performance of dispersion correction schemes.

Prediction of the morphology of the crystal surface

The advances in surface science and in heterogeneous catalysis in the mid-nineties
lead to a revival in the interest for surface thermodynamics2, although the scheme
is based on principles of the nineteenth century physics. Initially, concepts of sur-
face thermodynamics were employed to interpret and link experimental results from
ultra-high vacuum to technically relevant conditions [59, 60]. Later, with the estab-
lishment of quantum chemical codes for periodic systems, surface thermodynam-
ics were employed to link results from ab initio calculations to experimental condi-
tions, predicting the stability of different surfaces with respect to ambient conditions.
The scheme was developed and extensively tested on ruthenium/oxygen and ruthe-
nium oxid/oxygen systems showing agreement to experimental data [61, 62]. Since
then, ab initio surface thermodynamics have been employed to address a variety of
questions concerning the stability and reactivity of surfaces (see for example refer-
ences [63–70]).
The evidence of crystalline structures in nanostructured MgF2 already in solution
during formation of the sol or gel indicate that the nanostructured MgF2-based ma-
terial could be regarded as an agglomeration of crystallites. Within this model, the
surface and consequently the reactivity of the nanomaterial are largely determined
by the exposed surfaces of the crystallites. Based on the fact that the sol-gel synthesis
includes a thermal treatment as a last step of the process, it is sensible to assume that
thermodynamics play an important role in the formation of the surfaces. On these
grounds, surface thermodynamics are employed in the present work for modelling
the effect of temperature and gas phase composition on the relative stability of termi-
nations and adsorption structures, and how they consequently affect themorphology
of MgF2 crystals.

2Source: Citation reports ofWeb of Science™ of publications with keywords heterogeneous catalysis and
surface thermodynamics.
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Multiscale modelling

The combination of surface thermodynamics and periodic quantum chemical cal-
culations offer an idealized view of the shape of the crystals. However, mesoscale
effects that deviate from this view, as irregularities in the crystal shape, e.g. lattice
distortion and defect formation, or agglomeration processes, are highly relevant for
nanoscopic materials. In order to investigate such effects, at least partly abandon-
ing the quantum chemical description is inevitable, due to its high computational
cost: The hypothetical cubic crystal mentioned earlier consists of roughly 104 atoms;
even after approximations, e.g. assumingperfectly symmetric crystalliteswith frozen
core, some hundreds of atoms per crystallite need to be taken into account.
Classical force fields are routinely employed for the modelling of very large systems,
with main focus on biomolecules. An enormous variety of force fields has been de-
veloped for such applications (see for example [71, 72]), spanning through a wide
spectrum of functional forms, parametrized based on ab initio or experimental data.
Recently there has been an increasing interest also for solid state modelling with clas-
sical force fields [73–77]. A classical force field for MgF2 was published by Catti et al.
[78] in the nineties, and was employed for simulations of MgF2 clusters up to a size
of some tenths of atoms [79, 80]. However, a study of MgF2 in the mesoscale has not
yet been done.
A challenging part of multiscale modelling is the achievement of a seamless transi-
tion between different scales. So in the last section of this work, the foundation for
future investigation of nanostructured MgF2 in the mesoscale is laid by parametriz-
ing a force field based on the quantum chemical data.
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2 Theoretical background and
methodology

2.1 Quantum chemical methods
2.1.1 Introduction

Less than thirty years after the postulation of Planck’s constant [81], following a long
journey of scientific – and indeed philosophical – exchange among the pioneers of the
field, E. Schrödinger published a series of six papers titled “Quantisierung als Eigen-
wertproblem” [82], inwhich he postulated awavefunction for the hydrogen atomand
explored its range of applications. A fewmonths earlier, in their famous “three-man-
paper”, Born, Heisenberg, and Jordan [83] had presented an application of matrix
mechanics on quantum physics. The evolution thereafter was rapid. “From about
1927 onwards, the quantum theory [. . . ] was essentially complete” (Longair [84]).
The Schrödinger equation is the core of every non-relativistic quantumchemical prob-
lem. In its general form, it is written as:

i
∂

∂t
Ψ(t, x)=HΨ(t, x). (2.1)

The wavefunctionΨ(t, x), in which t stands for time and x for all space coordinates of
the quantummechanical particles, contains all information about the system, and the
Hamiltonian H describes the evolution of the system and its energy states. Unfor-
tunately, as the size of the system increases, Ψ becomes multi-dimensional and the
Schrödinger equation becomes a highly complex problem, the solution of which is
impossible without the introduction of approximations: First of all, quantum chem-
istry treats stationary states instead of following the time evolution of the system:
The time dependence of thewavefunction is separated from the spatial part, and only
the latter is treated. In addition, relativistic effects can be usually neglected (for light
atoms). Under these two approximations, the non-relativistic, time-independentHamil-
tonian for a system consisting of N electrons, and M nuclei of mass m and charge Z
takes in atomic units the form:

H =−
N∑

i=1

1
2
∇2

i −
M∑

a=1

1
2ma

∇2
a −

N∑
i=1

M∑
a=1

Za

ria
+

N∑
i=1

N∑
j>i

1
rij

+
M∑

a=1

M∑
b>a

ZaZb

rab
. (2.2)

The first two terms describe the kinetic energy of electrons and of nuclei, followed
by terms for the electrostatic interaction between nuclei and electrons (with ria the
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2 Theoretical background and methodology

distance between electron i and nucleus a) as well as among electrons, and among
nuclei (with rij the distance between electrons i and j and rab between nuclei a and
b).
The problem was further simplified by Born and Oppenheimer [85]. They suggested
in 1927 that, because the nuclei’s motion happens in a much slower time-scale than
the motion of electrons, the latter can be regarded as moving in the field of static
nuclei. As a result of the consequent separation of variables, the problem is reduced
to solving the electronic Schrödinger equation:

H el|Ψ〉 = E el|Ψ〉, (2.3)

with H el the electronic Hamiltonian:

H el =−
N∑

i=1

1
2
∇2

i −
N∑

i=1

M∑
a=1

Za

ria
+

N∑
i=1

N∑
j>i

1
rij

, (2.4)

getting the electronic energy E el. Then, the potential energy of the system within the
Born-Oppenheimer approximation can be readily calculated as:

E = E el+
M∑

a=1

M∑
b>a

ZaZb

rab
. (2.5)

In the present work, systems are only treated within the Born-Oppenheimer approx-
imation and focus is placed on methods for the calculation of the electronic energy.
Thus for simplicity, H and E will be written in the following instead of H el and E el.

2.1.2 The Hartree-Fock approximation

In the Hartree approximation [86], the electronic wavefunction Ψ of an N-electron
system is approximated by a set of N orthogonal spin orbitals χ:

Ψ(x1, x2, . . . , xN )= χ(x1)χ(x2) . . .χ(xN ). (2.6)

Slater explicitly included the Pauli exclusion principle in the above formalismbywrit-
ing Ψ as an antisymmetric wavefunction [87], the Slater determinant. For a system
of N electrons in spin orbitals χ, the Slater determinant is written as:

Ψ(x1, x2, . . . , xN )= 1p
N!

∣∣∣∣∣∣∣∣∣∣
χi(x1) χ j(x1) · · · χk(x1)
χi(x2) χ j(x2) · · · χk(x2)

...
... . . . ...

χi(xN ) χ j(xN ) · · · χk(xN )

∣∣∣∣∣∣∣∣∣∣
, (2.7)

with normalization factor 1p
N!
. Hartree later included exchange in his theory refor-

mulating it into the Hartree-Fock equations [88, 89]. The problem then consists in
finding, following the variational principle, the set of χi which gives the lowest en-
ergy. This is the best approximation to the electronic energy E , and the Slater deter-
minant Ψ0 that gives E0 is the best approximation for the wavefunction:

E0 = 〈Ψ0|H |Ψ0〉. (2.8)
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2.1 Quantum chemical methods

Each electron is assumed to interact with an effective potential of all other electrons
in the system (self-consistent field approximation) [90], so instead of solving the N-
electron Schrödinger equation, one needs to solve N one-electron equations, theHart-
ree-Fock equations (eq. 2.9). The Fock operator f is an effective one-electron operator,
which acts on the spin orbitals. So, the eigenvalue problem that needs to be solved
is:

f |χi〉 = εi|χi〉, (2.9)

where the Fock operator takes the form:

f = h(1)+vhf(1). (2.10)

The h(1) part of the one-electron Hamiltonian includes the kinetic energy of electron
(1) and its interaction with the nuclei:

h(1)=−1
2
∇2 −∑

a

Za

r1a
(2.11)

The interaction of electron (1) in spin orbital χi with the other electrons in the system
is expressed by the effective Hartree-Fock potential vhf(1):

vhf(1)= ∑
j 6=i

(
J j(1)−K j(1)

)
. (2.12)

It consists of the Coulomb operator J j(1) which expresses the classical Coulomb in-
teraction between two electrons (1) and (2) in orbitals i and j:

J j(1)χi(1)=
[∫

dx2χ
∗
j (2)

1
r12

χ j(2)
]
χi(1), (2.13)

and the exchange operator K i(1) – without classical equivalent:

K j(1)χi(1)=
[∫

dx2χ
∗
j (2)

1
r12

χi(2)
]
χ j(1). (2.14)

The exchange integral vanishes when electrons (1) and (2) have antiparallel spin due
to the orthogonality of spin orbitals. Self-interaction is intrinsically dealt with in
Hartree-Fock theory, since exchange and Coulomb integrals cancel out when χi = χ j.
The orbital energy εi of eq. 2.9 is calculated as the sum of the integrals:

εi = 〈χi| f |χi〉 = 〈χi|h(i)|χi〉+
∑

j
〈χi|J j|χi〉−

∑
j
〈χi|K j|χi〉, (2.15)

and the total electronic energy E0 is derived from the orbital energies according to:

E0 =
∑

i
εi − 1

2

(∑
ij
〈χi|J j|χi〉−

∑
ij
〈χi|K j|χi〉

)
. (2.16)

In restricted Hartree-Fock, the set of spin orbitals consists of pairs with the same
spatial part and antiparallel spin. As a consequence, the spin components can be
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2 Theoretical background and methodology

integrated out in closed-shell systems and the orbital energy only depends on the
spatial component ψ.
Roothaan and Hall [91, 92] proposed to express the unknown molecular orbitals ψi

as a linear combination of known basis functions φµ:

ψi =
K∑
µ=1

Cµiφµ. (2.17)

This way, the variational problem consists in finding the coefficients Cµi, for which
the orbitals minimize the energy. The matrix representation of the Roothaan equa-
tions is:

FC=SCε. (2.18)

The orbital energies εi are stored in the diagonal matrix ε. The coefficients Cµi of the
linear expansion in eq. 2.17 are stored in the square matrix C. As the basis functions
φ are not necessarily orthogonal, a hermitian overlap matrix S emerges. Its elements
are defined as the overlap of the basis functions:

Sµν =
∫
φ∗
µ(1)φν(1)dr1, (2.19)

and take values between 0 and 1. F is the Fock matrix, a hermitian matrix with ele-
ments:

Fµν =
∫
φ∗
µ(1) fφν(1)dr1, (2.20)

with f the Fock operator of eq. 2.10. Since the elements of the Fockmatrix Fµν depend
on the coefficients Cνi, the Roothaan equations can only be solved iteratively.

2.1.3 Perturbation theory

Rayleigh-Schrödinger perturbation theory

One of the possibilities to improve theHartree-Fock solution is perturbation theory. It
presupposes that a problem, the exact solution of which is unknown, can be reduced
to a simple part that can be solved exactly, and a perturbation. The contribution of
the latter to the energy must be expected to be small compared to the unperturbed
part. The time-independent perturbation theory is known as Rayleigh-Schrödinger
perturbation theory [93]. The derivation presented in this section for the energy per-
turbation follows the notation by Szabo and Ostlund [94].
To solve the eigenvalue problem of eq. 2.3 using perturbation theory, the exact Hamil-
tonian H is rewritten as a combination of the unperturbed Hamiltonian H 0 and a
perturbation H ′:

H |Φi〉 =
(
H 0 +λH ′) |Φi〉 = E i|Φi〉. (2.21)

The factor λ allows for a continuous transition from the perturbed to the unperturbed
system taking values between one and zero. The eigenfunctions Φi and energies E i

can be expanded in power series in λ:

Φi =Φ(0)
i +λΦ(1)

i +λ2Φ(2)
i +·· · (2.22)
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2.1 Quantum chemical methods

E i = E(0)
i +λE(1)

i +λ2E(2)
i +·· · (2.23)

Φ(0)
i is required to be normalized, while the k-th order correction to the wavefunction

Φ(k)
i is required to fulfil the constrain of intermediate normalization:

〈Φ(0)
i |Φi〉. (2.24)

Substitution of eq. 2.22 into 2.24, results in:

〈Φ(0)
i |Φ(0)

i 〉+λ〈Φ(0)
i |Φ(1)

i 〉+λ2〈Φ(0)
i |Φ(2)

i 〉+ · · · = 1, (2.25)

and as eq. 2.25 is required to hold for every λ between zero and one, it follows that:

〈Φ(0)
i |Φ(1)

i 〉 = 0, 〈Φ(0)
i |Φ(2)

i 〉 = 0, . . . (2.26)

Substituting equations 2.22 and 2.23 into 2.21 gives:

(
H 0 +λH ′)(|Φ(0)

i 〉+λ|Φ(1)
i 〉+λ2|Φ(2)

i 〉+ . . .
)
=(

E(0)
i +λE(1)

i +λ2E(2)
i + . . .

)(
|Φ(0)

i 〉+λ|Φ(1)
i 〉+λ2|Φ(2)

i 〉+ . . .
)
.

(2.27)

This holds for every λ, so eq. 2.27 can be split into equations according to the powers
of λ. For instance, grouping the λ1-terms and multiplying by 〈Φ(0)

n | results in:

〈Φ(0)
n |H 0|Φ(1)

i 〉−E(0)
i 〈Φ(0)

n |Φ(1)
i 〉 = E(1)

i 〈Φ(0)
n |Φ(0)

i 〉−〈Φ(0)
n |H ′|Φ(0)

i 〉. (2.28)

Taking into account the orthonormality of the unperturbed wavefunctions and the
fact that H 0 is hermitian, eq. 2.28 gives for i = n following expressions for the first-
order correction of the energy:

E(1)
i = 〈Φ(0)

i |H ′|Φ(0)
i 〉. (2.29)

Following the same steps with the λ2-terms of eq. 2.27, the expression for the second-
order correction is:

E(2)
i = 〈Φ(0)

i |H ′|Φ(1)
i 〉. (2.30)

So for the calculation of E(2)
i , the first-order corrected wavefunction Φ(1)

i is required.
Φ(1)

i is expanded in the basis of eigenfunctions of H 0:

|Φ(1)
i 〉 =∑

n
cn|Φ(0)

n 〉 (2.31)

with coefficients cn = 〈Φ(0)
n |Φ(1)

i 〉 and ci = 0 as a consequence of the intermediate nor-
malization. As the unperturbed wavefunctions are mutually orthogonal, eq. 2.28
gives for n 6= i:

〈Φ(0)
n |H ′|Φ(0)

i 〉 =
(
E(0)

i −E(0)
n

)
〈Φ(0)

n |Φ(1)
i 〉, (2.32)

27



2 Theoretical background and methodology

so the first-order corrected wavefunction is:

|Φ(1)
i 〉 = ∑

n:n 6=i

〈Φ(0)
n |H ′|Φ(0)

i 〉
E(0)

i −E(0)
n

|Φ(0)
n 〉. (2.33)

For the second-order correction of the energy, eq. 2.33 is substituted into 2.30:

E(2)
i = ∑

i 6=n

∣∣∣〈Φ(0)
n |H ′|Φ(0)

i 〉
∣∣∣2

E(0)
i −E(0)

n
. (2.34)

Corrections of higher order for the energy and wavefunction are obtained in an anal-
ogous manner.

Correlation energy

Correlated systems can be described by means of perturbation theory by setting H 0

the Hartree-Fock Hamiltonian:

H 0 =∑
i

f (i), (2.35)

and the electron correlation as perturbation:

H ′ =∑
ij

1
rij

−∑
i

vhf(i). (2.36)

This treatment of electron correlation is called Møller-Plesset (MP) perturbation the-
ory [38]. The unperturbedwavefunctionΦ(0) is theHartree-Fockwavefunction, which
is an eigenfunction of H 0 with eigenvalue

E(0)
0 =∑

a
εa, (2.37)

with εa the orbital energies. The first-order correction of the energy is according to
eq. 2.29:

E(1)
0 = 〈Φ(0)|∑

i< j

1
rij

|Φ(0)〉−〈Φ(0)|∑
i

vhf(i)|Φ(0)〉. (2.38)

The sum of the two terms is the Hartree-Fock energy of 2.16. Consequently, the treat-
ment of electron correlation starts with the second-order correction of the energy.
According to Brillouin’s theorem, singly excited determinants do not mix with the
Hartree-Fock reference, so the singly excited terms vanish and Φ(0)

i of eq. 2.34 are
wavefunctions Φrs

ab, that represent double excitations from orbitals a,b to r, s, with
eigenvalue:

H 0|Φrs
ab〉 =

(
E(0)

0 − (εa +εb −εr −εs)
)
|Φrs

ab〉. (2.39)
The general expression of eq. 2.34 becomes for MP:

E(2)
i = ∑

a<b
r<s

∣∣∣∣∣〈Φ(0)
n | ∑

i< j

1
rij
|Φrs

ab〉
∣∣∣∣∣
2

εa +εb −εr −εs
. (2.40)
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2.1.4 Density functional theory

Hohenberg-Kohn theorems

The development of density functional theory (DFT) marked the breakthrough in
the application of quantum chemical calculations to large systems. It has its roots in
the work of Thomas and Fermi on the statistical treatment of electron density in the
nineteen twenties [95, 96], but it was in the nineteen sixties that the Hohenberg-Kohn
theorems [97] opened the way for its definition as a formally exact theory. [98]
Inwavefunction-basedmethods, the electron density ρ in volumeunit (r1) is obtained
by integrating the wavefunction:

ρ(r1)= N
∫ ∫

· · ·
∫

|Ψ(x1, x2, . . . , xN )|2 ds1dx2dx3 . . .dxN . (2.41)

Then, an integration of the electron density over the entire space gives the total num-
ber of electrons in the system:

N =
∫
ρ(r)dr. (2.42)

The first Hohenberg-Kohn theorem states that the external potential of the system
can be defined by the electron density. With the external potential and the number
of electrons being known, the electronic Hamiltonian of eq. 2.4 can be reformulated
so that its lowest eigenvalue, the ground-state electronic energy of the system, is ex-
pressed as a functional of its ground-state electron density:

E
[
ρ
]=Vne

[
ρ
]+T

[
ρ
]+Vee

[
ρ
]
. (2.43)

Vne is the energy contribution due to the external potential from the nuclei, T the
kinetic energy of the electrons and Vee the electron-electron interaction. The second
Hohenberg-Kohn theorem states that for any trial density that integrates to the cor-
rect number of electrons, the calculated energy is higher than the energy defined by
the exact density. That means that the electron density can be treated variationally.
The Hohenberg-Kohn theorems show that in principle it is possible to bypass finding
the wavefunction for the description of a system.

Kohn-Sham equations

The introduction of orbitals in DFT by Kohn and Sham [99] was an essential step
towards its future wide use: They assume a system of N non-interacting electrons
and an external potential veff such that, when acting on the electrons, it gives rise
to an electron density identical to the electron density of the interacting system. In
the basis of the separation in a non-interacting and an interacting part, the energy of
eq. 2.43 takes the form:

E
[
ρ
]= ∫

v(r1)ρ(r1)dr+Tni
[
ρ
]−∆T

[
ρ
]+ 1

2

Ï
ρ(r1)ρ(r2)

r12
dr1dr2 +∆Vee

[
ρ
]
. (2.44)
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The kinetic energy of the electrons is now separated into the kinetic energy in the
non-interacting system Tni and the kinetic correlation energy ∆T, which is the dif-
ference of the kinetic energy in the real and the non-interacting system. The term
of the electron-electron interaction is split into an integral expressing the Coulomb
repulsion between densities in two volumes r1 and r2, and a term ∆Vee. The latter
comprises correlation and exchange effects, as well as a self-interaction correction for
the Coulomb repulsion.
The exchange and correlation terms, ∆Vee and ∆T, form the functional Exc

[
ρ
]
, which

is linked to an exchange-correlation potential vxc(r) via:

vxc(r)= δExc
[
ρ(r)

]
δρ(r)

. (2.45)

This separation allows for the Hamiltonian to be written as a sum of one-electron
Hamiltonians hKS

i :

H KS =
N∑

i=1
hKS

i =
N∑

i=1

(
−1

2
∇2 +veff(ri)

)
. (2.46)

Solution of the non-interacting system is – analogously to the Hartree-Fock method
– a Slater determinant of the Kohn-Sham spin orbitals. The spatial part of the Kohn-
Sham orbitals θKSi is an eigenfunction of the one-electron operator hKS

i with Kohn-
Sham orbital energy εKSi :[

−1
2
∇2

i +v(r1)ρ(r1)+
∫
ρ(r2)
r12

dr1 +vxc
]
θKSi = εKSi θKSi . (2.47)

In eq. 2.47, the contributions to the external potential veff have been separated into
non-interacting and interacting. The former include the nuclei-electron interaction
and the Coulomb repulsion among electrons; the interacting contributions are col-
lected in the one-electron exchange-correlation potential vxc.
The Kohn-Sham orbitals are determined by solving eq. 2.47 in an iterative proce-
dure with objective the minimization of the electronic energy. It follows from equa-
tions 2.47 and 2.44 that the electronic energy is:

E
[
ρ
]=−∑

a
za

∫
ρ(r1)
r1a

dr1 − 1
2

N∑
i=1

〈
θKSi (1)

∣∣∣∇2
1

∣∣∣θKSi (1)
〉
+ 1

2

Ï
ρ(r1)ρ(r2)

r12
dr1dr2 +Exc

[
ρ
]
,

(2.48)
where the Kohn-Sham orbitals are required to be normalized. Equation 2.48 is in
principle exact. Unfortunately, the expression of the unknown exchange-correlation
functional for the calculation of Exc is not trivial.

Exchange-correlation functionals

The first approach to the exchange-correlation contribution was the local density ap-
proximation (LDA) [100–102]. It assumes a system consisting of a homogeneous elec-
tron gas and a uniform positive background that ensures the neutrality of the system.
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The electron exchange contribution Ex in this case can be calculated analytically giv-
ing for the homogeneous electron gas the Slater (or Dirac) exchange energy:

EDirac
x =−3

4

(
3
π

)1/3 ∫
ρ3/4(r)dr. (2.49)

The kinetic energy of the non-interacting system can also be determined analytically:

Tni =− 3
10

(
3π2)2/3

∫
ρ5/3(r)dr. (2.50)

The correlation energy for the homogeneous electron gas has been accurately calcu-
lated by Ceperley and Alder [103] by means of quantum Monte Carlo simulations.
This, together with analytical data for the limiting cases of very high and very low
density [98], was used in interpolations by Vosko, Wilk, and Nusair who formulated
the exchange-correlation energy as a functional of the electron density [102]. The
assumption of a constant local electron density as made in LDA is a rather rough ap-
proximation for molecules.
A more sophisticated description of the electron density is offered by the general-
ized gradient approximation (GGA). Here, Exc is expressed as a function of both the
density and the density gradient:

EGGA
xc

[
ρ
]= ∫

f (ρ,∇ρ)d3r. (2.51)

Some GGA functionals are derived from theoretical arguments only, while others
are additionally based on semi-empirical parameters [98]. Perdew-Burke-Ernzerhof
(PBE) [104] is an example of purely theoretical functional, in which f of eq. 2.51 is
derived from the homogeneous electron gas model and fundamental constants.
Hybrid-functionals mix the exact Hartree-Fock exchange determined with the Kohn-
Sham orbitals with exchange from LDA and GGA functionals; the correlation con-
tribution is a combination of LDA and GGA correlation. A great variety of hybrid
functionals exists, some of which are semi-empirical, while others purely theoretical.
One of the most popular hybrid functionals is B3LYP [26, 27], in which the exchange-
correlation energy is calculated according to:

EB3LYP
xc = (1−a−b)EDirac

x +aE0
x+bEB88

x + (1− c)EVWN
c + cELYP

c . (2.52)

B3LYPmixes a fraction of exact exchangeE0
xwith exchange fromLDAand the gradient-

corrected functional B88 [26]. The correlation is described with a fraction of the LDA
parametrization by Vosko et al. (EVWN

c ) and the GGA functional by Lee et al. (ELYP
c )

[27]. B3LYP was introduced within the package Gaussian92/DFT [105]. It is a varia-
tion of the earlier B3PW, in which the exchange-correlation energy is:

EB3PW
xc = (1−a−b)EDirac

x +aE0
x+bEB88

x +EVWN
c + cEPW91

c . (2.53)

The exchange is treated in both functionals alike, and the values for coefficients a, b,
c are the same in equations 2.52 and 2.53. The two functionals differ in the treatment
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of the correlation contribution: In B3PW, VWN correlation is mixed with the PW91
functional [106]. The parameters a = 0.20, b = 0.72 and c = 0.81 have been obtained
from fitting of B3PW results to certain molecular atomization energies, ionization
potentials and proton affinities in the G1 set [107], and are adopted in B3LYP.

2.1.5 Electronic structure of solids

The Schrödinger equation for periodic systems

Although finite defective crystals compose most solids in reality, the model used for
their quantum chemical description is that of a perfect crystal. A perfect crystal [108]
is an infinite periodic system of atoms arranged on a Bravais lattice with basis vectors
a1, a2, a3, forming the direct lattice with lattice vectors g :

g= n1a1 +n2a2 +n3a3, (2.54)

for which the corresponding reciprocal lattice K is defined as:

K= k1b1 +k2b2 +k3b3, (2.55)

with ni and ki integers. The reciprocal lattice basis vectors bi are connected to the
direct lattice basis vectors:

aibj = 2πδij. (2.56)

By definition, a crystal exhibits translational invariance with respect to the direct lat-
tice vectors g. As the potential energy of the crystal reflects the periodicity of its
lattice, the Hamiltonian in the Schrödinger equation is required to exhibit the same
periodicity:

H (r)Ψ(r)= EΨ(r) ≡ H (r−g)Ψ(r−g)= EΨ(r−g), (2.57)

with Ψ the many-particle wavefunction. Eigenfunctions of Hamiltonian in eq. 2.57
must obey the Bloch theorem [109], which states that:

Φ(r+g,k)= eik·rΦ(r,k), (2.58)

and are thus called Bloch functions. Bloch functions that fulfil the periodic boundary
conditions of eq. 2.57 are the product of a plane wave with vector k and a function u
which has the same periodicity as the direct lattice g:

Φ(r,k)= eik·ru(r,k). (2.59)

From the periodic boundary conditions and the Bloch theorem, it follows that the
components of the wave vector k in eq. 2.59 correspond to points of the reciprocal
lattice:

kj = mbj, (2.60)

with m an integer. The Bloch functions of eq. 2.59 have the same periodicity as the
reciprocal lattice. As a result, the description of a crystalline system can be limited to
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2.1 Quantum chemical methods

the first Brillouin zone [110].
The Schrödinger equation for solids is solved in the self-consistent field approxima-
tion, discussed in section 2.1.2. The eigenfunctions of the one-electron Hamiltonian
of the periodic system, single-particle wavefunctions called crystalline orbitals, are
linear combinations of Bloch functions with coefficients Cµn:

Ψn(r,k)=∑
µ

CµnΦ(r,k). (2.61)

Bloch functions can be constructed from plane waves or atomic orbitals, and both
methods are employed in quantum chemical codes for solids. Latter is the case in
the Crystal09 software package [55, 56], which has been employed for the DFT and
Hartree-Fock calculations throughout thiswork; for this reason, the discussion here is
limited to LCAO-crystalline orbitals. For an atomic orbital φ(rn) centred in the atomic
position rn of the 0-cell, and φ

g
n(r) its equivalent atomic orbitals in cell g, the Bloch

function constructed from the linear combination of these orbitals is:

Φn(r,k)= 1p
N

∑
g

eik·gφg
n(r). (2.62)

The Schrödinger equation is solved in an iterative procedure analogous to that for
non-periodic systems. In matrix representation, eq. 2.57 takes the form:

F(k)C(k)=S(k)C(k)E(k). (2.63)

The coefficients of the linear combination 2.61 are stored in matrix C, and the overlap
of the basis functions in matrix S. Bloch functions Φµ that correspond to different re-
ciprocal lattice points k are mutually orthogonal. As a consequence, the Schrödinger
equation for a crystalline system can be solved for each k-point separately.

Periodic local MP2

Among the possibilities to overcome the computational cost involved inwavefunction-
basedmethods for electron correlation is the use of local, instead of canonical, orbitals
as is done for example in local MP2 [111]. The computational cost of perturbation
theory as formulated in section 2.1.3 follows a scaling of O (n5) with the number of
electrons n in a system,which is prohibitive for the calculation of large systems. How-
ever, for a given occupied orbital, only the virtual orbitals which have a significant
overlapwith it contribute to the correlation. This is exploited in the localized descrip-
tion: The virtual space is truncated into an excitation domain only involving virtual
orbitals in the close proximity of the corresponding occupied one. Moreover, taking
into account the short-ranged nature of electron correlation (∝ r−6), pairs need to be
taken into account only up to a certain distance. The local MP2 scheme, first pro-
posed by Saebo and Pulay [112], combined with integral-direct techniques reduces
the computational effort to a linear scaling [113], making its use feasible on large sys-
tems.
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2 Theoretical background and methodology

Local MP2 has been implemented for solids in the Cryscor package [39, 40]. The oc-
cupied space is described in Cryscor with a set of orthonormal Wannier functions
[114], which are derived from the localization of the canonical Bloch functions pro-
vided by Crystal [115, 116]. The virtual space is spanned with projected atomic or-
bitals, created by projecting the atomic orbitals of an excitation domain against the
occupied subspace and each other [117]. The projected atomic orbitals form a non-
orthogonal set, but are orthogonal to the Wannier functions and well-localized.
The correlation energy of a pair i,j is:

ELMP2
ij = ∑

a,b in [i,j]
K ij
ab

(
2Tij

ab−Tij
ba

)
, (2.64)

where the Wannier function i is in the 0-cell and j can be in principle anywhere in
space. a and b are the projected atomic orbitals in the excitation domains for i and j.
K are the electron repulsion integrals and T the corresponding LMP2 amplitudes. K
and T decay with r−3, leading to the energy decay of r−6, that allows for a cutoff in
the sum of eq. 2.64. Pairs are classified according to a distance criterion into strong,
weak, and distant, and are treated at different levels [39]. A detailed derivation of
the expression for the energy correction, as well as an extensive discussion on the
implementation of LMP2 can be found in the Cryscor User’s Manual [118].

2.2 Long-range effects
2.2.1 Dipole-dipole interaction

In addition to the interactions that arise from the overlap of wavefunctions, long-
range effects are of significance in extended systems as well. These are electrostatic,
dispersion, and induction interactions. While electrostatic forces are positive or nega-
tive depending on the sign of the charges, dispersive and induction forces are always
attractive [119]. Induction is partly accounted for in Hartree-Fock, but dispersion in-
teractions are a consequence of electron correlation, so they can be treated by means
of perturbation theory.
In a system AB with unperturbed Hamiltonian H 0 =H A+H B which has the eigen-
value EA +EB, the electrostatic interaction is regarded as perturbation between the
electron distributions:

H ′ =
∫
ρ̂A(r)ρ̂B(r)

|r−r′| d3rd3r′. (2.65)

For the description of the charge distributions, it is convenient to express them as a
multipole expansion:

H ′ = TqA qB +Tα

(
qAµ̂B

α − µ̂A
α qB

)
+Tαβ

(
1
3

qAΘ̂B
αβ− µ̂A

α µ̂
B
β + 1

3
Θ̂A
αβqB

)
+·· · , (2.66)

with Tν = ∇α · · ·∇ν 1
r , q the total charge, µ the dipole moment and Θ the quadrupole

moment [119].
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2.2 Long-range effects

The first-order correction of the energy, as defined in eq. 2.38, corresponds to the
classical electrostatic interaction of the electron distributions:

E(1) = 〈Φ0
AΦ

0
B|H ′|Φ0

AΦ
0
B〉 =

∫
ρA(r)ρB(r)

|r−r′| d3rd3r′. (2.67)

The second-order correction of the ground-state energy is in accordancewith eq. 2.34:

E(2)
00 = ∑

mn
m or n 6=0

∣∣〈00|H ′|mn〉∣∣2
E0

00 −E0
mn

, (2.68)

with m and n the excited states of subsystem A and B respectively. The terms of
eq. 2.68 can be separated into induction (for m = 0 or n = 0) and dispersion (for
m,n 6= 0) contributions.
If expression 2.66 is truncated after the dipole terms, the dispersion energy becomes
proportional to r−6, r being the distance between the fragments considered. The dis-
persion energy Edisp can be expressed as a function of ionization energies Ip and
polarizabilities α of species A and B:

E[6]
disp ≈−

3I A
p IB

p

2(I A
p + IB

p )
αAαB

r6 , (2.69)

which is the London equation for the dispersion interaction [120].
An alternative approach gives an expression of the dispersion interaction in terms of
polarizabilities at an imaginary frequency iω [121]:

E[6]
disp =− 3

πr6

∫ ∞

0
αA(iω)αB(iω)dω. (2.70)

In equations 2.69 and 2.70, α refers to the average polarizabilities and the superscript
in E[6]

disp indicates that only interactions up to dipole-dipole are taken into account.

2.2.2 Dispersion correction for DFT

Due to its low computational cost, DFT is the method of choice for the calculation
of large and extended systems. It is thus a drawback, that it does not sufficiently
account for dispersion effects. A long-range dispersion correction (D2) for different
functionals was presented by Grimme and co-workers in 2006 [53]. It calculates a
semi-empirical correction of the form:

ED2
disp =−s6

n−1∑
i=1

n∑
j=i+1

C[6]
ij

r6
ij

fdmp
(
r6

ij

)
. (2.71)

The dispersion energy in D2 consists of a sum of pair interactions with r−6 depen-
dence, a global factor s6 that depends on the density functional used, and a damping
function fdmp

(
r6

ij

)
that prevents the correction from taking large negative values at

short distances, which are already treated correctly by DFT.
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2 Theoretical background and methodology

Key to the success of the dispersion correction is the choice of C[6]
ij coefficients. At

the same time, their global determination is problematic, as they strongly depend on
the particular binding situation in every system. Following the London dispersion
formula, the atomic coefficients are defined in D2 as:

C[6]
i = 0.05NI i

pα
i. (2.72)

The ionization potential Ip and polarizabilityα are calculatedwithDFT/PBE0. How-
ever, their product is then scaled by 0.05 and by a factor N that depends on the row of
the atom in the periodic table. The atomic coefficients of eq. 2.72 are used to calculate
the pair coefficients:

C[6]
ij =

√
C[6]

i C[6]
j . (2.73)

D3, a development of the dispersion correction for density functionals was presented
byGrimmeand co-workers in 2010 as a “more sophisticated and less empirical scheme”
[54]. It includes higher multipole terms for the pair interactions (C[8] and C[10]), as
well as three-body terms. The coefficients are calculated based on the Casimir-Polder
formula (2.70) by means of time-depended DFT with a modified PBE0 functional. In
particular, to achieve a consistent description of the atoms throughout the periodic ta-
ble, the polarizabilities of hydrides of all elements are calculated and the coefficients
are determined according to:

C[6]
AB =−3

π

∫ ∞

0

1
m

(
αAmHn(iω)− n

2
αH2(iω)

)
× 1

k

(
αBkHl(iω)− l

2
αH2(iω)

)
dω. (2.74)

An interpolation scheme is then used to define coordination-adopteddispersion coef-
ficients. The coordination number of A andB in the hydrides of eq. 2.74 is determined
based on the values for the covalent radii proposed by Pyykkö and Atsumi [122],
but is then scaled by a factor of 4/3 for use in D3. The coefficients for higher-order
terms are calculated according to recursive formulas based on multipole expansions
for hydrogen and helium [123], which can be in principle extended to heavier atoms
[124]. In the D3 scheme, these parameters are “[. . . ] chosen for convenience such that
reasonable C[8]

AA values for He, Ne and Ar are obtained” (Grimme et al. [54]). The
three-body contribution in D3 is derived from third-order perturbation theory:

ED3
ABC = ∑

ABC
fdmp,3(r̄ABC)

C[9]
ABC (3cosθa cosθb cosθc +1)

(rABrBCrCA)3 , (2.75)

with θ and r the angles and edges of the triangle formed by atoms A, B and C.
fdmp,3(r̄ABC) is a dumping function that depends on the geometrical average of rAB,
rBC and rCA . Instead of being calculated from the polarizabilities, the coefficient
C[9]
ABC is approximated as the geometrical mean of the corresponding two-body coef-

ficients:
C[9]
ABC =−

√
C[6]
ABC[6]

BCC[6]
AC. (2.76)
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2.2 Long-range effects

2.2.3 Electrostatic contributions in periodic systems

In a periodic system of unit cell with volume V = l3 and particles i, j, the electrostatic
interaction ECoul between particles in the n-th periodic images of the system is given
by:

ECoul =
1
2

∑
i,j,n

n=0:i 6=i

qi q j

|rij +nl| . (2.77)

The indices i and j run over the particles in the zeroth cell. The vector nl expresses
the translation to the neighbouring cells, thus including all pair interactions in the
periodic system, while the condition i 6= j for n= 0 takes care of self-interaction. Due
to the poor convergence of the sum in eq. 2.77, the electrostatic contribution cannot
be calculated directly. A number of methods have been developed to address this
problem, but probably the most widely used – at least for ionic solids – is also the
predecessor of all others: the Ewald summation [125].
For every particle with charge qi, a screening charge density is introduced with op-
posite sign. The screening charges can have any shape, but following the formulation
by Frenkel and Smit [126], the densities are chosen to have the form of Gaussianswith
width

p
2/α:

ρ(r)=−qi

(α
π

)3/2
exp

(−αr2)
. (2.78)

In contrast to the original sum, the electrostatic energy due to the screened charges
converges rapidly, hence it can be calculated easily with direct-lattice summation:

Escr = 1
2

N∑
i 6= j

qi q j
erfc

(p
αrij

)
rij

. (2.79)

A compensating charge distribution is introduced to correct for the added screening
charges. It consists of a sum of Gaussians:

ρ1(r)=∑
j,n

q j

(α
π

)3/2
exp

(
−α ∣∣r− (

r j +nl
)∣∣2)

. (2.80)

Sum 2.80 is periodic and varies smoothly in space. The electrostatic energy due to
the compensating charges Ecomp is thus calculated in the reciprocal space as:

Ecomp = 1
2V

∑
k 6=0

4π
k2

∣∣ρ (k)
∣∣2 exp

(−k2

4α

)
. (2.81)

Ecomp as given in eq. 2.81 includes self-interaction between a Gaussian distribution
with charge qi and the point charge qi in its center. The self-interaction has the value:

Eself =
√
α

π

∑
i

q2
i . (2.82)
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Finally, from equations 2.79, 2.81 and 2.82, the Coulomb energy in a periodic system
can be calculated as a combination of a direct- and a reciprocal-space sum:

ECoul = Escr+Ecomp−Eself

= 1
2

N∑
i 6= j

qi q j
erfc

(p
αrij

)
rij

+ 1
2V

∑
k 6=0

4π
k2

∣∣ρ (k)
∣∣2 exp

(−k2

4α

)
−

√
α

π

∑
i

q2
i .

(2.83)

The value of α controls the convergence of the sums in equations 2.79 and 2.81. When
α is chosen large, theGaussian charge distribution is narrowand the direct-space sum
converges rapidly. On the other hand, the reciprocal-space sum converges rapidly for
small values of α [127].
To this point, no approximations have been made. However, truncation of the series
in the direct and reciprocal space are required for their calculation. The accuracy of
the Ewald summation depends on the choice of direct- and reciprocal-space cutoff,
rmax and kmax. The errors of the direct-space contribution δEreal andof the reciprocal-
space contribution δErec are estimated as:

δEreal ∝ exp
(
α2r2

max
)
, δErec ∝ exp

(
−π

2k2
max

α2l2

)
. (2.84)

The two errors are kept in same order of magnitude [128] when the cutoff values rmax
and kmax are chosen according to:

kmax = α2rmaxl
π

. (2.85)

2.3 Surface thermodynamics
The chemical potential

The thermodynamic quantity that describes the spontaneity of a process at condi-
tions of constant temperature and pressure is the Gibbs energyG. For a closedmono-
phasic system, it is linked to the inner energy U , entropy S, temperature T, pressure
P, and volume V according to:

G =U −TS+PV . (2.86)

Processes in a system occur spontaneously if they give rise to a decrease in the Gibbs
energy [129]. In a multiphase system with phases j and components i, the change in
the total Gibbs energy dGtot is given by:

dGtot =−∑
j

S jdT +∑
j

V jdP +∑
j

∑
i
µ

j
i dn j

i . (2.87)

The term involving the chemical potential µ j
i arises from the fact that the system de-

scribed by eq. 2.87 does not consist of closed phases; an exchange of particles between
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phases is allowed. If pressure and temperature are kept constant, eq. 2.87 reduces to:

(
dGtot)

T, P =∑
j

∑
i
µ

j
i dn j

i , (2.88)

so the processes in the system are determined only by the chemical potential of the
components in the different phases. The chemical potential is thus the intensive ana-
logue to the Gibbs energy:

µ=
(
∂G
∂n

)
T, P

, (2.89)

therefore a function of temperature and pressure. For a system in equilibrium, it
holds that dGtot = 0. Considering a system with two phases a and b, this condition
takes the form: ∑

i
µa

i dna
i +

∑
i
µb

i dnb
i = 0. (2.90)

In equilibrium, the same number of particles of a species is transferred from a to b
as from b to a: dna

i = −dnb
i . Then, according to eq. 2.90, the chemical potential of a

component i must be equal in both phases of the system:

µa
i =µb

i . (2.91)

In statistical mechanics, the chemical potential of a system with N particles and vol-
ume V can be calculated from the total partition function Q via:

µ=−RT
(
∂ lnQ
∂N

)
V , T

, (2.92)

with R the universal gas constant. In a systemof indistinguishable particles following
Boltzmann statistics, e.g. the ideal gas, the total partition function is:

Q(N,T,V )= (q(V ,T))N

N!
, (2.93)

with q the one-particle partition function. According to Sterling’s approximation
[130], the logarithm of the total partition function can be written as:

lnQ ≈ N ln q−N ln N +N. (2.94)

In the ideal gas limit, the one-particle partition function q is proportional to the vol-
ume and the quantity q(V ,T)/V depends only on temperature. Taking this into ac-
count and using kBT/P = V /N, the chemical potential of the ideal gas is written as:

µideal gas =−RT ln
( q
V

kBT
)
+RT lnP. (2.95)
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Figure 2.1: Treatment of interfaces in thermodynamics. (a) The interface as mathe-
matical surface separating two homogeneous phases. (b) The interface as
a non-homogeneous phase.

Surface energy

Until now, the system was discussed only with regard to the bulk phases; no infor-
mation whatsoever was included about the interface between the phases. Two pos-
sibilities to treat an interface are illustrated in fig. 2.1. The first, shown in fig. 2.1(a),
was originally proposed by J.W.Gibbs [131]. The interface is regarded as a strictly
two-dimensional boundary separating two perfectly homogeneous bulk phases. An
alternative approach, introduced by Guggenheim [132] based on previous work of
van der Waals Jr. and Baker, is shown in fig. 2.1(b). Here, the interface is regarded as
a distinct, non-homogeneous phase, each limit of which shares the properties of the
neighbouring bulk phase so that the phase transitions are continuous. Both models
can be employed to derive expressions for the thermodynamics of interfaces. In the
Gibbs model, the interface is a mathematical construct, so its thermodynamic prop-
erties need to be defined explicitly. In the Guggenheim model, the properties of the
interface are derived from standard thermodynamic considerations. It offers a more
intuitive treatment, therefore it will be used in the following to derive an expression
for the interface energy.
The total Gibbs energy of the system in fig. 2.1(b) is

Gtot =Ga +Gs +Gb, (2.96)

or using the chemical potential∑
j

∑
i

n j
iµ

j
i =

∑
i

na
i µ

a
i +

∑
i

ns
iµ

s
i +

∑
i

nb
i µ

b
i . (2.97)

The Gibbs energy of the surface Gs in equations 2.96 depends on the area of the in-
terface. Instead of normalizing it with respect to the number of particles, it is more
sensible to define an area-specific surface energy γ. If γ is defined as the surface en-
ergy per area unit, and A the area of the interface, eq. 2.96 becomes:

γ= 1
A

(
Gtot−Ga −Gb

)
. (2.98)
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In quantum chemicalmodelling, the calculation of surface energy is based on eq. 2.98.
However, instead of calculating a Gibbs surface energy γ, pure electronic energy val-
ues are usually used for the calculation, although corrections for vibrational energy
can be in principle included from first principles. If the system consists only of a solid
phase in vacuum, the electronic surface energy is calculated as:

Es = 1
2A

(
Eslab−nEbulk

)
. (2.99)

Eslab is the energy of a slab consisting of n formula units and Ebulk the energy per
formula unit in bulk. The factor 1/2 in eq. 2.99 emerges as a consequence of the mod-
elling of the solid as a symmetric slab. The intensive bulk energy Ebulk is multiplied
by the number of “molecules” n in the slab (see section 3.2 for details on the slab
model).
Unfortunately, as soon as adsorbates are introduced on the surface, eq. 2.99 ceases to
be valid, due to the inhomogeneity of the treated solid phase: Having modified the
surface of the slab by adding adsorbates, it is not possible to define an infinite bulk
corresponding to the slab. From a thermodynamic point of view, the presence of ad-
sorbates on the surface implies – instead of vacuum as modelled by first principles
– the existence of a second phase. Expressing the Gibbs energy of the adsorbates as
Gads = ∑

iµ
ads
i nads

i , one uses the chemical potential to attribute a temperature and a
pressure to the implied gas phase; the temperature and pressure, in turn, determine
the Gibbs energy of the adsorbates. This is, naturally, only true when the phases of
the system are in equilibrium, thus eq. 2.91 is valid. In this case, the temperature-
and pressure-dependent surface energy is obtained via:

γ= 1
2A

(
Gslab−nbulkµbulk−∑

i
nads

i µadsi

)
. (2.100)

All terms in eq. 2.100 are Gibbs energies. Nonetheless, when combining quantum
chemical calculations to surface thermodynamics it is a reasonable approximation
to neglect the vibrational degrees of freedom for the solid terms: Firstly, the vibra-
tional contributions to the total energy are significantly smaller than the electronic
energy. Secondly, the vibrational contributions are expected not to differ significantly
between slab and bulk, so can be assumed to cancel each other out. That allows for
substituting Gslab and Gbulk with the corresponding electronic energies, which also
enter eq. 2.99.

Wulff construction

In the beginning of the section, it was mentioned that a system tends towards the di-
rection that minimizes its Gibbs energy. In the case of a biphasic system with phases
of constant volume and constant number of particles, this corresponds tominimizing
the energy of the interface:

min
γ(n)

(∫
γ (n)dA

)
. (2.101)
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Figure 2.2: Two-dimensional pictorial scheme of the Wulff construction. Polar plot
of the surface energies (black vectors). The green lines correspond to the
Wulff planes. The inner envelope in beige corresponds to the equilibrium
shape of the crystal.

If γ is independent of the orientation n, eq. 2.101 is minimized by minimizing the
area A. This is the case for fluids. By contrast, the surface energy of crystals strongly
depends on the orientation of the surface under consideration, which is expressed by
the Miller indices (hkl). This complicates the minimization of the integral.
G. Wulff published in 1901 a detailed account on his experimental investigation on
crystal growth [133], in which he determined the orientation-dependent growth rate
of Zn(NH4)SO4 ·6H2O in solution. Comparing his findings to previous works, Wulff
concluded that the growth rate of a crystal towards a given direction is proportional
to the corresponding surface energy. This is the solution for the problem in eq. 2.101:
As Wulff writes, “the minimum surface energy of a polyhedron at constant volume
is reached when the distance of its surfaces from a given point is proportional to the
surface tension of these surfaces” [133]. This becomes clear considering the process
of crystal growth: As the crystal grows towards a given direction, the surface nor-
mal to this direction advances away from the centre of mass of the crystal, while the
neighbouring surfaces expand laterally. As a result, the exposure of the former con-
tinuously decreases.
The graphical determination of the equilibrium shape of a crystal based on surface
energies is known as Wulff construction. A short but very informative explanation of
the Wulff construction can be found in ref. [32]. The construction is demonstrated
in fig. 2.2: In a polar diagram, the surface energies are plotted as vectors with mag-
nitude γ(hkl) and orientation (hkl). Then, normal planes are drawn to the radius
vectors. The inner envelope of the drawn planes represents the shape for which the
crystal minimizes its surface energy.

42



3 Computational methods

3.1 General remarks
The computationalmethods used in the presentwork have been described in detail in
the corresponding sections of papers P1 and P2. This chapter provides background
information on certain aspects and in addition covers topics that are not published
elsewhere: Section 3.2 is concernedwith themodelling of surfaceswithin the periodic
approach, providing information for readers not familiar with solid state quantum
chemistry. The calculation of the chemical potential for surface thermodynamics is
discussed in section 3.3, including details complementary to the computational sec-
tion of paper P2. A topic not published elsewhere is introduced in section 3.4, con-
cerning the computational aspects of the parametrization of classical force fields.
Regarding the quantum chemical calculations, convergence criteria and other pa-
rameters are introduced in the corresponding papers. Unless explicitly mentioned
otherwise, periodic calculations are performed using the Crystal09 [55, 56] code for
Hartree-Fock and DFT; the Cryscor09 [39, 40] code is employed for periodic local
MP2 calculations. The latter will be referred to in the following as MP2 for simplic-
ity. With the exception of certain tests published in P1, where it is explicitly stated,
the B3LYP functional [26, 27] is used for the DFT calculations. These are mentioned
throughout this work plainly as DFT.

3.2 Model of the surfaces
The surfaces have been modelled with the Crystal09 quantum chemical package for
periodic systems. Slabs in Crystal09 are cut from the three-dimensionally periodic
bulk, and are periodic in the two directions along the cutting plane; in the third direc-
tion the system is non-periodic (fig. 3.1). Termination and thickness of the slabs have
been chosen to always preserve a symmetry plane normal to the z-axis. This way, no
measures need to be taken to prevent reconstruction during structure optimization.
Based on previous calculations [28], low-index slabs of a thickness of 12 MgF2 units
have been chosen. Due to the differences of the sequence and composition of the
atomic layers along each direction, the MgF2 layers correspond to different number
of atomic layers in each slab. Atomic layers include atoms that share the same value
of z-coordinate. (001) is a non-polar surface, so (001) slabs consist of 12 stoichiomet-
ric atomic layers. The other low-index surfaces are polar, with the corresponding
slabs being built of different sequences of charged atomic layers: slab (100) consists
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y
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z

Figure 3.1: Pictorial representation of the construction of the slab from a 3-
dimensional periodic bulk. Pink planes imply periodic continuity in the
corresponding direction, green planes represent non-periodic directions.

of 36 atomic layers with sequence F-Mg-F, (110) of 18 atomic layers with sequence F-
(Mg,Mg,F,F)-F and (101) of 18 atomic layers with sequence (F,F)-(Mg,Mg)-(F,F). The
structure along vicinal directions will be discussed in detail in sec. 4.2.

3.3 Surface thermodynamics
3.3.1 Calculation of the chemical potential

In most cases, thermodynamic quantities have standard temperature as a reference
point. To combine the chemical potential to quantum chemical quantities, one needs
to refer it to 0K. This is done by expressing it as:

µi(pi,T)= E i,electr.+∆µp0

i (T)+kT ln
pi

p0 . (3.1)

Eq. 3.1 differs from eq. 2.95 of section 2.3 in the units; 3.1 refers to one molecule
whereas 2.95 to 1mol. The first term of eq. (3.1) is the electronic energy of species
i, which is regarded as the Gibbs energy at zero Kelvin, neglecting the vibrational
and rotational contributions. The third term of eq. 3.1 is the pressure-dependent
contribution to the chemical potential, with k the Boltzmann constant. The second
term expresses the temperature dependence of µi and is not as straight-forward as
the other two. It can be calculated directly from eq. 2.95 and the partition function by
means of statistical mechanics, but it is usually – also in this work – calculated based
on listed values for thermodynamic quantities [134]. ∆µp0

i (T) refers to the change of
the chemical potential of the component i of a system when the temperature is in-
creased from 0K to T, at constant pressure p0 = 1atm. It is calculated using tabulated
values in a number of steps, demonstrated in the following.
Standard values for thermodynamics are listed in the NIST database [135], in the
form of polynomials for the heat capacity, standard enthalpy and standard entropy
as a function of temperature. These polynomials (equations 3.2 and 3.3), known as
the Shomate equation, are the result of fits to experimental values:

H◦−H◦
298.15 = At+ Bt2

2
+ Ct3

3
+ Dt4

4
− E

t
+F −H, (3.2)
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3.4 Parametrization of classical force fields

S◦ = A ln
t

[K]
+Bt+ Ct2

2
+ Dt3

3
− E

2t2 +G. (3.3)

The factors entering the equations for H2O and HF are listed in table 3.1, and t is an
expression of temperature in Kelvin: t = T K

1000 .

Table 3.1: Values used to calculate∆µp0

i (T). Factors A to H give H◦−H◦
298.15 in kJ/mol

and S◦ in J/molK. The quantity H◦−H◦
0 is in kJ/mol.

H2O HF
A / Jmol−1K−1 30.09200 30.11693
B / Jmol−1K−2 6.832514 −3.246612
C / Jmol−1K−3 6.793435 2.868116
D / Jmol−1K−4 −2.534480 −1.243874
E / kJKmol−1 0.082139 −0.024861
F / kJmol−1 −250.8810 −281.4912
G / Jmol−1K−1 223.3967 210.9226
H / kJmol−1 −241.8264 −272.5462
H◦−H◦

0 9.905 8.599

Since these data are referred to the standard temperature, the quantity H◦ − H◦
0 is

additionally needed. It is calculated by direct summation over vibrational levels of
the ground electronic state of HF and H2O and is tabulated in [136]. Using equa-
tions 3.2–3.3 and the values listed in table 3.1, the temperature contribution to the
chemical potential is calculated as:

∆µ0→T = (
H◦

298.15 −H◦
0
)+ (

H◦−H◦
298.15

)−S◦T. (3.4)

Using the expression for the chemical potential as a function of temperature and pres-
sure, the surface energy at finite temperature and pressure can be calculated follow-
ing the considerations of section 2.3. For the system MgF2/HF/H2O the surface en-
ergy is calculated via:

γ(T, pHF, pH2O, ptot)= 1
2A

[
EDFT
slab (T, ptot)−NMgEDFT

MgF2-bulk
(T, ptot)

− (NHF −NOH)µHF(T, pHF)

−
(
NH2O +NOH

)
µH2O(T, pH2O)

]
.

(3.5)

For a detailed derivation of eq. 3.5, the reader is referred to paper P2.

3.4 Parametrization of classical force fields
The parametrization of the classical force field to fit the DFT energy is performed in
the three-dimensional periodic system and is based on the energy-volume equation
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3 Computational methods

of states (EOS) of the rutile-type MgF2 bulk. The structures for the EOS are derived
from the fully relaxed bulk of rutile-type MgF2 by uniformly expanding the lattice;
20 structures in the range between 0.80 and 1.20 of the equilibrium volume of the unit
cell are calculated. The periodic DFT calculations are performed with the Crystal14
code [137, 138] using the keyword EOS. It takes care of the expansion of the lattice
and ensures that the selection criteria for the Coulomb and exchange integrals are
frozen to those of the reference geometry throughout the series of calculations, thus
minimizing computational noise.
It will be explained in detail in section 4.5 that for the modelling of bulk MgF2 using
classical force fields, it is necessary to split the energy into a sum of electrostatic and
a sum of short-range interactions, individually evaluating each of the two and con-
sequently summing them to obtain the total energy.
The short-range pair interactions in MgF2 are described as Buckingham potentials
[139], with the modification that the pair-specific coefficients are written as products
of ion-specific parameters:

EBuck
ij = bibj exp

(−rij

ρ

)
− didj

r6
ij

(3.6)

This way, the parameters entering the pair potentials are reduced from seven to five,
thus accelerating the minimization procedure.

x

x

x

x

x

x

x

x

x

Figure 3.2: The minimum image convention, here shown for atom x. Only interac-
tions between the atoms inside the dashed box (simulation box centred at
x) are taken into account. The original simulation box is shown in green
and its periodic images in beige.

The evaluation of the short-range contribution is performed via direct-lattice summa-
tion after imposing periodic boundary conditions, using the minimum image con-
vention, illustrated in fig. 3.2. The simulation boxes are chosen to contain 2× 2×
2 or 3× 3× 3 unit cells, corresponding to a size of (9.3344×9.3344×6.1658) Å and
(14.0016×14.0016×9.2488) Å, respectively. The Matlab package MolDynSim [140] is
employed for the calculation of the short-range contribution.
The electrostatic contribution is evaluated in periodic boxes containing 2×2×2 unit
cells via Ewald summation [125], as implemented in the molecular dynamics pack-
age OpenMM6.2 [141]. The values for the ionic charges zMg = 1.66 and zF =−0.83 are
derived from the DFT calculation for the fully optimized bulk via Mulliken popula-
tion analysis [142]. In addition to the charges and periodic box, OpenMM requires
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3.4 Parametrization of classical force fields

the definition of the direct space cutoff rmax and a parameter δ, which corresponds
to the desired accuracy. These are used to determine the value of parameter α, which
controls the width of the Gaussians:

α=
√− log(2δ)

rcutoff
. (3.7)

Consequently, based on the calculated value of α and the width of the periodic box
l1, the error of the reciprocal-space sum is estimated according to:

error= kmax
p

lα
20

exp
(− (πkmax/lα)2)

. (3.8)

The value of the cutoff in reciprocal space kmax is chosen such, that error< δ accord-
ing to eq. 3.8 [143].
The fitting is performedusing the simplex algorithm fminsearch [144], implemented in
Matlab® [145], as a minimization of the sum of squared errors (SSE); error is the dif-
ference in bulk energy values calculatedwith DFT andwithMM for each point of the
EOS. Since no force field parameters are involved in the electrostatic contribution, it is
evaluated once for each of the points {V } and then added to the short-range contribu-
tion. Having calculated the DFT energies EDFT

bulk {V } and the electrostatic contribution
EEwald
bulk {V }, the fitting is performed in the following steps (schematically shown in

fig. 3.3):

1. Guess of the parameters. In addition to the parameters entering the pair poten-
tials, dummy parameter C is used to shift the MM value to the energy range of
the DFT, and does not appear in the final force field.

2. Calculation of the short-range contribution in the bulk, EBuck
bulk , with Bucking-

ham pair potentials.

3. Addition of the electrostatic contribution to calculate the total bulk energy, EMM
bulk,

with molecular mechanics.

4. Shift of the classical energy to match the range of DFT.

5. Calculation of the SSE. Optionally, the errors are weighted with factors w {V }
prior to calculating the SSE to achieve a better fit around the minimum.

The fitted parameters are used in a Coulomb-Buckingham force field, the pair poten-
tials of which have the form:

ECoul-Buck
ij = e2zi z j

rij
+bibj exp

(−rij

ρ

)
− didj

r6
ij

. (3.9)

These are employed for the calculation of the energy ofMgF2 clusters in non-periodic
systems. The total energy of the clusters is calculated as a sum of pair interactions:

EMM
cluster =

∑
i,j

i 6= j

ECoul-Buck
ij . (3.10)

1In non-cubic boxes, the shortest dimension is taken as l.
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3 Computational methods

Figure 3.3: The strategy followed for the parametrization of classical pair potentials,
for the development of a force field that reproduces the DFT energies for
bulk MgF2.
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4 Results

On the way to a predictive model for the sol-gel synthesized MgF2, the present work
is concerned with two central topics. One topic is the influence of the synthetic con-
ditions on the morphology of crystals. The most important results on this subject
have been published in paper P2. The other topic relates to the catalytic properties of
MgF2 surfaces and their investigation with quantum chemical methods. This is the
subject of paper P1, in which Hartree-Fock, MP2 and DFTwith dispersion correction
schemes have been employed to describe the adsorption of HF and H2O on various
MgF2 surfaces. The publications are attached in the next chapter.
In this chapter, complementary questions are addressed, either to – challenge and –
support the validity of the already published results, or to extend the investigation to
related questions. The chapter begins with basic considerations concerning the cal-
culation of surface energy, in section 4.1, which underlie the investigation presented
in papers P1 and P2. The effect of finite basis and the performance of different meth-
ods on the calculation of surface energies is tested in the example of pure, low-index
MgF2 surfaces. Then, the focus is moved to hydroxylated terminations and their sta-
bility, as predicted from Hartree-Fock, MP2 and DFT calculations. Papers P1 and P2
focus on these low-index terminations and the adsorption of H2O and HF on them.
Vicinal surfaces are the subject in section 4.2. Defects are assumed to play an essential
role in the properties of nanostructured material. To model defective sites within the
periodic model, slabs are cut at a small angle to the lattice vectors. The stability of
the resulting terminations, some ofwhich are highly unsaturated, is discussed briefly.
Subsequently in section 4.3, one of the vicinal surfaces, (103), is taken as a model for
defects. Hydroxylation and its effect on the adsorption of H2O and HF on surface
(103) is studied with DFT. Phase diagrams are then created for the prediction of the
stability of the modelled terminations at finite temperature and pressure. These two
sections are based on calculations performed by two students during their research
internships under the author’s supervision: Mengxi Shi carried out the DFT calcula-
tions presented in section 4.2, and Bruno Pescara did the DFT calculations involving
hydroxylated terminations of (103).
The work presented in section 4.4 was motivated by the insights won in papers P1
and P2. It is seen in P1, that DFT is not always sufficient for the description of the
adsorption structures, some of which occur in the Wulff plots of P2. So the question
arises, whether the crystal morphologies predicted from thermodynamics based on
DFT are valid. To answer this, MP2 calculations are combined with surface thermo-
dynamics to create surface diagrams and consequently Wulff plots for MgF2. The
MP2 calculations were performed by Giuseppe Sansone under supervision of Lukas
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Hammerschmidt and Lorenzo Maschio. In the last section, the focus is shifted from
quantum chemistry towards multiscale modelling. To open the way for a mesoscale
model ofMgF2 that is compatible with the quantum chemical results, a classical force
field is parametrized to reproduce the results of DFT calculations.

4.1 The contribution of electron correlation to the
stability of low-index surfaces

The truncation of the bulk when modelling surfaces goes along with a basis set su-
perposition error (BSSE) as a result of the use of finite basis sets: Compared to the
bulk, the basis is unbalanced in the surrounding of the surface atoms due to the re-
moval of the neighbouring atomic layers and the corresponding basis functions. This
disturbance is usually not accounted for in the calculation of surface energies. It oc-
curs in more or less similar extent for all slabs, therefore it is not expected to interfere
with the relative stability of the surfaces.
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Figure 4.1: The effect of truncation on the surface energy of unrelaxed slabs. The ad-
dition of atomic ghost layers results in stabilization of the surfaceswithout
changing their energetic order.

Focusing on the four low-index surfaces of MgF2, the effect of truncation on the sur-
face energy of unrelaxed1 structures has been examined. Thiswas done by placing in-
creasing layers of ghost atoms in the position of the missing neighbours on the slabs.
The surface energies obtained for these slabs with B3LYP are shown in fig. 4.1. Being
the only low-index surface to expose fourfold coordinated cations, (001) shows, with

1That refers to the relaxation of the slab structures. The slabs themselves are derived from the fully
optimized bulk, like all other structures in this work.
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4.1 The contribution of electron correlation to the stability of low-index surfaces

0.15J/m2, the strongest decrease in the surface energy after addition of ghost atoms.
Surface (100) is stabilized by 0.12J/m2, (101) by 0.11J/m2 and (110) by 0.09J/m2. Con-
vergence is reached in (001) already after addition of the first layer of ghost atoms,
owing to the fact that one atomic layer covers all positions of missing neighbours
of the surface atoms. Analogously, convergence is reached after addition of three
atomic layers on (100) and (101), while the surface energy of (110) converges when
two atomic layers are added.
The energetic order of the surfaces is associated to their stabilization after addition of
ghost layers, with the least stable surfaces “gaining” from the ghost layers the most.
Yet, the BSSE has no consequence on the energetic order of the surfaces. That being
the case, truncation-related BSSE is not taken into account in the further investigation
of surfaces.
After optimization of the structures on the other hand, the energetic order of the sur-
faces changes. The relaxation energy of (101) is significantly lower compared to the
other three surfaces, only 8% of the unrelaxed surface energy, whereas it is 18% for
(001), 16% for (100) and 19% for (110).

Table 4.1: Surface energy in J/m2 for the four low-index terminations of rutile MgF2
obtained from DFT, MP2 and Hartree-Fock calculations on the structures
optimized with DFT, and exposure of the surfaces in the Wulff plot.

DFT2 MP2 Hartree-Fock

Esurf area Esurf area Esurf area
(001) 1.07 – 1.15 – 1.10 –
(100) 0.76 16% 0.87 14% 0.80 16%
(101) 0.82 43% 0.90 45% 0.85 44%
(110) 0.67 41% 0.76 41% 0.71 40%

The surface energies obtained from DFT, Hartree-Fock and MP2 calculations on the
structures relaxed with B3LYP are presented in table 4.1. The three methods predict
the same energetic order for the surfaces: Among relaxed structures, (110) is themost
stable termination, followed by (100), (101) and (001). Also quantitatively the meth-
ods are in very good agreement, with differences in the energy of the same surface
being less than 6%. The performance of Hartree-Fock is in the case of pure surfaces
comparable to DFT and MP2, in line with the findings of the thorough analysis by
Hammerschmidt et al. [46] on the correlation contributions in MgF2 (110) slabs. Also
in line with this analysis, the surface energies calculated with MP2 are higher than
those calculated with B3LYP.
It cannot be said with certainty which method yields the “correct” surface energies,
since there are no experimental values available. However, as Hammerschmidt et al.

2The surface energies calculated with DFT are identical to those published in [28]. However, the ex-
posure of the surfaces differs, presumably due to an oversight related to the Wulff construction in
[28].
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note, there is an intrinsic source of error in local MP2 calculations of surface ener-
gies according to eq. 2.99: By analogy to the effect of the truncated basis discussed
previously, the neighbours removedwhen cutting a surface from the bulk interfere in
localMP2with the consistent description of the excitation domains between bulk and
slabs. The excitation domains in the MgF2 bulk include one F and its 3 neighbouring
Mg (see also P1). Since the surface fluorines (fig. 4.2) have only two neighbours, the
excitation domains of the surface atoms are smaller than the corresponding in the
bulk. In [46], this effect was found to be in a similar range as the BSSE in the unre-
laxed (110).
The effects discussed above have a similar influence on all low-index surfaces. When
used in Wulff constructions, the three series of surface energies give essentially the
same crystal shape. The exposure of the surfaces in the Wulff plots, listed in table 4.1
next to the corresponding surface energies, is nearly identical in the three cases, with
deviations not exceeding 2%of the total crystal surface. Surfaces (101) and (110) dom-
inate the surface of the crystal, each with more than 40% participation, while (100)
takes up 14-16% depending on the method. Based on the Wulff construction, (001)
appears not to be exposed in the athermal limit.
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Figure 4.2: Relaxed surfaces of rutile MgF2 in side and top view. Surface atoms are
highlighted and non-equivalent surface fluorinesmarkedwith (a) and (b).
Red frames mark the periodic unit (1×1 cell).

Turning to partially hydroxylated surfaces, one faces the problem that a surface en-
ergy as defined in eq. 2.99 cannot be calculated for slabs with modified surface com-
position, because there is no analogy to a homogeneous bulk. Instead, their stability
can be evaluated by defining an energy of hydroxylation ∆EOH, which is the reaction
energy of:

MgxF2x +yH2O−−→MgxF2x−y(OH)y +yHF. (4.1)
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4.1 The contribution of electron correlation to the stability of low-index surfaces

Table 4.2: Energy of hydroxylation, in eV, obtained from total energies according to
eq. 4.2. y is equal to 2 for all cases and 4 for (101)-2OHa.

pattern cell ∆EOH

DFT MP2 Hartree-Fock
(001)-1OHa 1×1 0.508 0.594 0.700p

2×p
2 0.510 – –

(100)-1OHa 1×1 0.476 0.570 0.629
2×1 0.422 – –

(101)-1OHa 1×1 0.582 0.676 0.773
(101)-2OHa 1×1 0.572 – –
(110)-1OHa 1×1 0.608 0.703 0.785

2×1 0.545 – –
(110)-1OHb 1×1 0.475 0.534 0.649

2×1 0.440 – –

This allows for the comparison of the energies, since the system in each side of 4.1
consists of x magnesium, 2x fluorine, 2y hydrogen, and y oxygen atoms. The hydrox-
ylation energy per substituted site is then calculated as:

∆EOH = 1
y

(
EMgxF2x−y(OH)y

+yEHF −EMgxF2x
−yEH2O

)
. (4.2)

The available positions for surface hydroxylation are shown in fig. 4.2. (001) and (101)
have two equivalent fourfold coordinated surface fluorines in the unit cell, whereas
(100) only one. On (110) there are two equivalent threefold coordinated fluorines,
marked with (b), and one of twofold coordination, marked with (a). The hydroxy-
lation energies have been calculated with DFT, and selected hydroxylation patterns
additionally with Hartree-Fock and MP2; they are presented in table 4.2. The hy-
droxylation patterns are named (hkl)-nOHm, with n the number of hydroxyls in the
periodic unit, and the hydroxylation position m = a, b or c. For example, pattern
(001)-1OHa on cell 1× 1 is a termination of (001), in which all a1 positions are hy-
droxylated. The same pattern on cell

p
2×p

2 means that every other a1 position is
hydroxylated, in total one forth of the surface anions. ∆EOH is calculated from total
energies of symmetric slabs, so y= 2n for the two sides of the slab.
The hydroxylation of MgF2 is in all cases predicted to be endothermic: ∆EOH is pos-
itive for all patterns studied, regardless of the method employed for the calculation.
∆EOH calculated from the DFT energies takes values between 0.440 and 0.582 eV per
substituted site, depending on pattern and degree of hydroxylation. On surfaces
(100) and (110), the hydroxylation energy is lower in 2×1 than in 1×1 cells, indicat-
ing a destabilizing interaction between hydroxyls in neighbouring cells. The largest
difference is observed for (110)-1OHa, where ∆EOH for substitution of one fluorine
per 2×1 cells is 63meV lower than for the substitution of one fluorine per 1×1 cell. For
(100), the difference between degrees of hydroxylation is lower, 54meV. In both cases
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the hydroxyls are coordinated to two cations. Due to the form of the unit cell they
are positioned rather close to the equivalent position in the neighbouring cell, 3.08Å.
Obviously, latter is true for termination of (110)-1OHb as well. Yet, the difference in
hydroxylation between the 2×1 and 1×1 cell is in this case only 35meV, as hydroxyls
in position b are sterically prevented from interacting with those in the neighbouring
cells. On surface (001) the difference between hydroxylation energies on 1×1 andp

2×p
2 is, with 2meV, negligible; the square (001) unit cell leaves already at high de-

gree of hydroxylation a distance of 4.67Å between hydroxyls in neighbouring cells,
which is sufficient to prevent an interaction between them. On surface (101), the sit-
uation is different. Here, two degrees of hydroxylation are tested, both in the 1×1
cell: hydroxylation pattern (101)-2OHa, where both positions a1 and a2 are hydroxy-
lated, and (101)-1OHa, where one of them is occupied by a fluorine. ∆EOH is in this
case by 10meV higher at high than at low degree of hydroxylation. The stabilizing
interaction between hydroxyls, which is observed only for this termination, is a result
of the “staggered” structure of (101). When hydroxyls occupy both positions a1 and
a2, they exhibit an alternating, chain-like arrangement, the consequence of which is
a slight stabilization of the structure.
Comparing the hydroxylation energy for different surfaces at low degree of hydroxy-
lation, (101) has the highest ∆EOH, is thus the least favoured hydroxylation position.
It is followed by (110)-1OHa, (001) and (110)-1OHb. Hydroxylation is most favoured
on (100), with ∆EOH = 476meV. In any case, as indicated by the positive values of
the hydroxylation energy, non-hydroxylated terminations are more stable than their
hydroxylated counterparts.
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Figure 4.3: Adsorption structures of HF on partially hydroxylatedMgF2 surfaces, ob-
tained fromoptimizationwith B3LYP. Selecteddistances andbond lengths
are given in Å.

Structure optimizations on the adsorption of HF on hydroxylatedMgF2 surfaces sup-
port this finding. Starting from hydroxylated surfaces and placing a HF molecule on
top of the coordinatively unsaturated Mg, the system tends towards re-fluorination,
as it can be seen in the optimized structures in fig. 4.3. The F-end of HF coordinates
to Mg, while the H-end forms a hydrogen bond to the hydroxy-group on the surface;
on (110)-1OHb the hydroxyl is not available due to its position with threefold coor-
dination, so the H-bond acceptor is a surface fluorine. In all three cases, the F–Mg
distance is, with 1.9Å, in the range of the bonds in the slab (1.9-2.0Å). The distance
from the HF-hydrogen to the oxygen of the hydroxyl (or in the last case to the surface
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fluorine) ranges between 1.0-1.4Å; the distance between H and F of the adsorbate is
in the range 1.0-1.5Å. On the other hand, the bond lengths of the free molecules are
0.97Å for H2O and 0.93Å for HF, and they do not change significantly during all
other cases of adsorption on MgF2 surfaces studied. Based on the bond lengths, the
hydrogen can thus not be unambiguously attributed to HF or H2O. The adsorption
energy for these structures, −0.79eV for 100% HF on hydroxylated (100), −1.23eV
for 100% HF on (110)-1OHa and −0.97eV on (110)-1OHb, is notably higher than the
adsorption energy on the corresponding non-hydroxylated surfaces, −0.67eV and
−0.89eV respectively (see paper P1).
Returning to the energy of hydroxylation, the three methods show qualitative agree-
ment regarding the endothermic nature of the reaction. For a quantitative compari-
son, one should keep in mind that ∆EOH is some orders of magnitude smaller than
the total energies, or even the MP2 corrections. If ∆EOH is split in contributions from
the adsorbates, ∆Eads = 2

(
EHF −EH2O

)
, and from the slabs, ∆Eslab = EMgxF2x−y(OH)y

−
EMgxF2x

, the two parts have comparable contributions to ∆EOH, −48.02 and approx.
48.07Ha, respectively. That is not the case in the MP2 corrections. The correction
to ∆Eads is −0.012Ha, coming from the difference in correlation between the adsor-
bates, is the principal contribution to the correction of the hydroxylation energy. It
is partly compensated by the positive correction to ∆Eslab, which ranges between
0.004−0.008Ha. The correction to ∆Eslab decreases with increasing stabilization the
hydroxylated slab. As a consequence, the overall correction to ∆EOH increases. The
highest and lowest correction in ∆Eslab are observed for structures (100)-1OHa and
(110)-1OHb respectively. As the hydroxylation energies from Hartree-Fock are very
close for the two structures, MP2 causes a reversing in the energetic order, “correct-
ing” the discrepancy between Hartree-Fock and DFT.

4.2 Truncation and stability of vicinal surfaces
The interest in surface properties is usually limited to the most stable surfaces, which
are in most cases the low-index ones. Part of the focus of this work being the shape
of nanocrystals, high-index terminations are also taken into account and tested for
their potential exposure in the crystallites.
Cutting at a small angle to the lattice vectors, the slabs created are of Type B according
to Tasker’s nomenclature [146]: They consist of sequences F-Mg-F-F-Mg-F of charged
atomic layers, allowing for symmetric stoichiometric slabswith nonet dipolemoment
normal to the surface. The periodicity patterns relevant for the high-index slabs are
shown schematically in fig. 4.4. Each block layer corresponds to the least number
of atomic layers that need to be added on a symmetric and stoichiometric slab to
produce another symmetric and stoichiometric slab. In the case shown in fig. 4.4(a),
addition of a block layer results in a shift of the surfaces with respect to another by
a fraction of the lattice constant (1/4 in the example shown). The exposed surfaces
on the two sides are equivalent irrespectively of the thickness, provided it is a mul-
tiple of block layers. However, the relative position of the surface sites, consequently
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unit cell

(a)

unit cell

(b)

Figure 4.4: Pictorial representation of periodicity and symmetry patterns in vicinal
slabs. A layer of blocks represents the number of layers required to pre-
serve stoichiometry in the slab.

the orientation of the partial dipole moments, change with every added block layer
affecting the surface energy. As it takes a few layers for the relative position of the
surfaces to be repeated, an increase in the thickness of slabs with periodicity (a) is
unlikely to produce a recognizable pattern as the surface energy converges. The pat-
tern shown in fig. 4.4(b) is more familiar. A slab of odd number of block layers has
a mirror plane symmetry resulting in a peak-peak profile. A slab of even number
of block layers has a glide plane symmetry giving a peak-well profile. Assuming,
for example, that coordinatively unsaturated cations sit in the wells of the surface in
fig. 4.4(b), they will be positioned directly opposite to each other in a slab with odd
number of block layers; in a slab of even number of block layers the cations of the op-
posite surfaces will be alternating. Increasing the thickness of such a slab will result
in a kind of odd-even effect.
A block layer in slabs (102), (112), (103) and (301) has a thickness of 3 atomic layers,
whereas in (120), (201) and (401) a thickness of 6 atomic layers. Some of the modelled
high-index slabs combine both types of layering in the two directions parallel to the
surface, resulting in the convergence patterns shown in fig. 4.5. For example, in slab
(102) two series of odd-even oscillations in the two lattice directions parallel to the
surface, resulting from the combination of two patterns of type (b) can be clearly rec-
ognized. On the other hand, type (a) dominates in slab (401), leading to a particularly
favourable interaction for a thickness of 39 atomic layers and an unfavourable one for
51 atomic layers, but loses in significance as the slab thickness increases, leading to
convergence.
The energy of the high-index surfaces is calculated from the relaxed structures at
converged thickness. The surface energies for all studied terminations are listed in
table 4.3. They are significantly higher than the energies of the low-index surfaces
(table 4.1), with the exception of (001), so they do not appear in the Wulff construc-
tion.
Nevertheless, surface (103) has been included in the study: On one hand, its surface
energy as calculated with B3LYP is so close to the energy of (001), that an exposure
of (103) is possible under conditions of finite pressure and temperature. On the other
hand, it is a suitable model for stepped surfaces.
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Figure 4.5: Convergence of the surface energywith slab thickness for vicinal cuts. The
results are obtained from DFT calculations on unrelaxed structures.
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Table 4.3: Energy, in J/m2, of vicinal surfaces, obtained from optimization with DFT.
The thickness of the slabs in atomic layers is also listed.

(hkl) atomic layers Esurf
(102) 45 1.57
(201) 33 0.93
(120) 39 1.54
(112) 21 2.01
(103) 36 1.02
(301) 24 0.92
(401) 69 0.91

a1

b1

c1 a2 c2

b2

a1
b1

c1
a2

b2 c2

4.
66

7 
Å

14.337 Å

Figure 4.6: Relaxed structure of surface (103). Surface atoms are highlighted and non-
equivalent surface fluorinesmarkedwith (a), (b) and (c). Red framesmark
the periodic unit (or 1×1 cell).

4.3 Surface (103)
4.3.1 Terminations and adsorption

Surface (103), shown in fig. 4.6, exposes three non-equivalent surface anions and two
coordinatively unsaturated cations. The anions, all doubly coordinated, are marked
in fig. 4.2 with (a), (b) and (c). Due to the vicinal cut of the surface, their positions
differ slightly in height, with (a) lying higher than (b), which lies in turn higher than
(c). Fourfold coordinated Mg cations are coordinated to anions (a) and (b), whereas
fivefold coordinated Mg cations are located between anions (a) and (c).

Table 4.4: Energy of hydroxylation for surface (103), in eV, obtained from DFT
calculations.

termination cell ∆EOH

(103)-1OHa 1×1 0.480
(103)-1OHb 1×1 0.497
(103)-1OHc 1×1 0.555
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4.3 Surface (103)

Hydroxylation is probed on the surface sites of (103) by exchanging one of the fluo-
rines for a hydroxyl and optimizing the structure. As in the case of low-index surfaces
discussed previously, the obtained values for∆EOH (see table 4.4) are positive, which
means that the hydroxylation of eq. 4.1 is endothermic. Position (a) has the lowest hy-
droxylation energy, followed by (b) and (c), showing a correlation to the position of
the anion in the z-axis: the more exposed the surface anion, the less unfavoured its
hydroxylation.
The adsorption of HF and H2O on (103) is calculated on clean and partially hydroxy-
lated surfaces. Structures at half coverage are studied, such that one kind of adsorp-
tion sites – four- or fivefold coordinated Mg – is occupied by adsorbates. Regarding
hydroxylated surfaces, only structures have been investigated on which the adsor-
bate coordinates to a site next to a hydroxyl: There are two possible structures for
(103)-OHa, where the hydroxyl is located between the two surface cations, and one
for (103)-OHb and (103)-OHc, each. On (103)-OHc, however, no minimum is found
for the adsorption of HF.

(a) HF on 5-fold Mg (b) HF on 4-fold Mg (c) H2O on 5-fold Mg (d) H2O on 4-fold Mg

(e) H2O on 4-fold Mg (f) H2O on 5-fold Mg (g) H2O on 4-fold Mg (h) H2O on 5-fold Mg

(i) HF on 4-fold Mg (j) HF on 5-fold Mg (k) HF on 4-fold Mg

Figure 4.7: Adsorption structures of HF and H2O on terminations of (103). (a)–(d)
clean surfaces, (e)–(f) and (i)–(j) (103)-OHa, (g) and (k) (103)-OHb, and
(h) (103)-OHc. Green spheres represent fluorine, black magnesium, red
oxygen and blue hydrogen atoms.

The optimized adsorption structures are presented in fig 4.7. After geometry opti-
mization, the molecules are arranged on the surface so that the electronegative end
(oxygen or fluorine) coordinates to the surfaceMg, while the hydrogen coordinates to
a surface fluorine. The distance between electronegative end and Mg varies between
2.0 and 2.2Å in the different structures.
The adsorption energies, listed in table 4.5, are in the same range as for the low-index
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surfaces, with H2O showing generally stronger adsorption than HF. Furthermore,
H2O is adsorbed stronger on the fourfold coordinated site, where it forms two H-
bonds to the neighbouring fluorines. In contrast, HF binds stronger to the fivefold
coordinated site. There, it takes the position of the missing neighbour and forms a
significantly shorter H-bond of 1.6Å – compared to a distance of 2.1Å in the case of
the fourfold site.
The presence of hydroxyl on (103) destabilizes, in themajority of cases, the adsorption
of molecules on the neighbouring cations. Hydroxylation in position (a) has no effect
on the adsorption of HF on the fourfold coordinated Mg and only a minor one of 3%
decrease in the adsorption energy on the fivefold coordinated Mg. Hydroxylation of
position (b) leads to a 13% decrease in the adsorption energy of HF compared to the
clean surface. When a hydroxyl is introduced in position (c) adsorption of HF on the
fivefold coordinated site fails completely. In contrast to the low-index surfaces, no
tendency for re-fluorination of the hydroxylated site is observed on (103). The reason
is presumably the protected position of the hydroxy groups in the slab, that prevents
them from acting as H-bond acceptors.

Table 4.5: Adsorption energies, in eV, for H2O and HF on surface (103). All values
refer to 50% coverage. Adsorption of HF does not occur on the fivefold
coordinated cationic site of (103)-OHc.

termination site Eads

H2O HF
(103) 4-fold -1.09 -0.63
(103) 5-fold -0.80 -0.79
(103)-OHa 4-fold -0.71 -0.61
(103)-OHa 5-fold -0.67 -0.80
(103)-OHb 4-fold -0.90 -0.55
(103)-OHc 5-fold -0.56 –

The interaction of H2Owith surface (103) is also hindered by surface hydroxyls. Hy-
droxylation of position (a) significantly affects the adsorption on the fourfold site,
which is 35%weaker than on the clean surface; to a lesser extent it affects the adsorp-
tion on the fivefold site, which is 17% weaker than on the clean surface. Adsorption
on the fivefold site is affected more by hydroxyls in position (c), which lead to a 30%
decrease of the adsorption energy compared to the clean surface. When position (b)
is occupied by a hydroxyl, H2O adsorbs 17% weaker on the fourfold cation than on
the clean surface.
The adsorption energies for H2O presented above, in particular those concerning hy-
droxylated terminations, should be interpreted with caution. As discussed in paper
P1, DFT does not adequately describe interactions in which dispersion is of impor-
tance. In this regard, the structures shown in figures 4.7(f) and 4.7(h) are particularly
problematic. The O–Mg distance is in both cases, with 2.2Å, rather long, and com-
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4.3 Surface (103)

parable – or longer – to the distance of the oxygen to the hydrogen on the surface:
2.2Å on (103)-OHa and 2.0Å on (103)-OHc. According to the findings in P1, DFT
is not expected to describe the adsorption interactions in these structures satisfacto-
rily, but it cannot be predicted with certainty if the adsorption energy is under- or
overestimated.

4.3.2 Surface thermodynamics

Having optimized structures for the clean and hydroxylated terminations of (103), as
well as the adsorption on them, the total energies of the structures are used in phase
diagrams for three temperatures (fig. 4.8), following the choice of conditions in paper
P2. They include, besides the clean surface, hydroxylation patterns in which one or
two equivalent anion positions are hydroxylated, and adsorption structures of H2O
and HF at half coverage, on clean and doubly hydroxylated surfaces. Full coverage,
in which four- and fivefold cations are covered with adsorbates, is not possible on
surface (103) due to the high density of adsorption sites.

6F

4F,2OHb+0.5H2O

6F+0.5H2O (on 4)

6F+0.5HF (on 5)

10-15

10-10

10-5

100

10-15 10-10 10-5 100

p H
2O

/a
tm

pHF/atm

(a) 300K

10-15

10-10

10-5

100

10-15 10-10 10-5 100

p H
2O

/a
tm

pHF/atm

6F

6F+0.5HF 
(on 5)

6F
+0.5H2O (on 4)

4F,2OHa

4F,2OHb+0.5H2O

(b) 450K

4F,2OHa

10-15

10-10

10-5

100

10-15 10-10 10-5 100

p H
2O

/a
tm

pHF/atm

6F

6F
+0.5HF

(on 5)

6F
+0.5H2O (on 4)

4F,2OHb+0.5H2O

(c) 600K

Figure 4.8: Phase diagrams for surface (103) at three temperature values and vary-
ing partial pressure of H2O and HF, based on DFT energies. The ter-
minations are named after the anions on the surface, the adsorbates and
the coordination of the adsorption site: e.g. 6F for clean MgF2 surface,
4F,2OHb+0.5H2O for a termination hydroxylated in position (b) and half-
covered with H2O.

At lowpartial pressures, clean (103) is themost stable termination. Thewater-covered
surface becomesmore stable as the partial pressure of water rises. At 300K, that hap-
pens already at pH2O = 10−15 atm, whereas at 450 and 600K the transition occurs later,
at pressures of 10−7 and 10−3 atm respectively. By analogy, increasing partial pres-
sure of HF favours the HF-covered termination at 300K already when 10−9 atm are
reached. At 450K the clean termination is more stable up to pHF = 10−3 atm and at
600K a partial pressure of 1 atm is required for HF adsorption to take place. Turning
towards the high pressure region, where the transition fromH2O- to HF-covered ter-
mination occurs, it should be pointed out that H2O preferably adsorbs on fourfold,
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whereas HF on fivefold sites. That being the case, the two adsorbates do not com-
pete for the same adsorption sites, but still sterically hinder each other. At increased
temperature, high partial pressure of H2O and low partial pressure of HF the most
stable doubly hydroxylated surface is exposed, (103)-OHa. A further increase of pH2O

leads to the adsorption of H2O on the hydroxylated surfaces. The interaction with
H2Omolecules particularly stabilizes temination (103)-OHb. As a consequence, H2O-
covered (103)-OHb is exposed at high pH2O. This is an illustrative example on how the
experimental conditions can be used for fine tuning of the surface and manipulation
of the catalytic activity.

4.4 Surface thermodynamics based on MP2 energies
4.4.1 Phase diagrams and crystal morphology

The relative stability of a variety of terminations and the morphology of MgF2 crys-
tals at conditions of finite temperature and pressure was investigated in paper P2
by combining surface thermodynamics with DFT calculations. On the other hand,
the comparison of methods for the description of adsorption interactions in paper
P1 showed that the adsorption of H2O, in particular on hydroxylated surfaces, is not
described sufficiently with DFT. In this section, the phase diagrams are reviewed to
examine how significant is the effect of explicit correlation in the quantum chemi-
cal calculations for the prediction of the crystal morphology: MP2 calculations are
combined with surface thermodynamics for the creation of phase diagrams and con-
sequently Wulff constructions for the prediction of crystal shapes.
At 300K adsorption structures dominate the phase diagrams, shown in fig. 4.9. Clean
terminations, shown in red, are exposed only at very low pressures. As long as the
partial pressure of H2O is kept low, surfaces covered with HF become more stable
as pHF increases. This happens for pHF = 10−13 −10−12 atm on (100), (101) and (110),
but not before 10−9 atm have been exceeded on (001). Surfaces covered with H2O
are favoured compared to clean terminations already at pH2O = 10−14 −10−13 atm for
(001), (101) and (110) at low partial pressure of HF and around pH2O = 10−11 atm for
(100). The two adsorbates compete when both partial pressures are increased, but
as long as the pressures are held equal the adsorption of H2O is strongly favoured
on (001), and slightly on (110). On (001), (100) and (110), H2O-covered hydroxylated
surfaces are the most stable terminations when the partial pressure of H2O is high
and at the same time the partial pressure of HF very low.
With an increase of temperature to 450K, clean surfaces gain in importance (fig. 4.10).
Clean terminations of (100), (101) and (110) are the most stable up to partial pres-
sures of 10−5 atm, with a minor deviation for (001), on which the clean termination
is favoured up to pHF = 10−3 atm and pH2O = 10−6 atm. On all surfaces, HF-covered
terminations dominate at high pHF. The transition from HF- to H2O-covered termi-
nations in the high pressure region occurs at pHF = pH2O. In the region of low pHF

and towards high pH2O, hydroxylated terminations occur, giving their place to H2O-
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Figure 4.9: Phase diagrams for the four low-index surfaces of rutile MgF2 at 300K,
based on MP2 energies.

covered hydroxylated terminations with increasing partial pressure of H2O.
The trends described above evolve furtherwhen the temperature is increased to 600K.
A large part of the phase diagrams is occupied by clean terminations. These are ex-
posed up to partial pressures of 10−3−10−2 atm for HF andH2O – for (001) even up to
pHF = 1atm. Hydroxylated terminations occupy a larger part of the low pHF region
compared to lower temperatures. As the partial pressure of H2O increases, they give
place to terminations which are additionally covered with H2O.
The results obtained with surface thermodynamics are used to predict the shape of
MgF2 crystals at conditions of finite temperature and pressure of HF andH2O. Wulff
constructions for nine sets of conditions3 are presented in fig. 4.12. From left to right,
the effect of increasing temperature can be observed at constant pressure conditions;
from top to bottom, the transition from the low pressures region to the high pH2O –
low pHF and then to the high pressures region. The values for the surface energy at
the chosen conditions are listed in table 4.6, next to the corresponding terminations.
In addition, the exposure of each termination in the Wulff construction is given as
percentage of the total crystal area. As discussed in section 2.3, the thermodynamic
considerations behind the Wulff construction imply that the surface with the lowest

3The conditions chosen are the same as those in paper P2, to facilitate a direct comparison of the
results.
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Figure 4.10: Phase diagrams for the four low-index surfaces of rutile MgF2 at 450K,
based on MP2 energies.

energy occupies the largest part of the crystal surface, since it has the slowest growth
rate. Although that is true, the values in table 4.6 show no exact – inverse – analogy
between γ and the area. The reason is the symmetry of the MgF2, owing to which
certain facets are equivalent; (101) occurs thus eight times, (110) and (100) four times,
as explained in detail in paper P2.
The occurrence of terminations in theWulff plots of fig. 4.12 reflects the observations
made previously based on the phase diagrams: With increasing temperature and de-
creasing pressure, surfaces covered with adsorbates give place to clean surfaces; the
composition of the exposed adsorbate-free terminations also depend on the temper-
ature and pressure conditions. In particular, in the conditions chosen here, at low
pressures (first row in the figure and table), clean surfaces are exposed at 600 and
450K. Under the same pressure conditions at 300K, H2O covers all surfaces. The ad-
sorption stabilizes (101) and (110) compared to (100), so the latter now only occupies
4% of the crystal surface. Keeping the temperature at 300K, an increase in pH2O to
10−3 atm particularly favours surface (101). As a consequence, platelet crystals are
formed, the surface of which is dominated, with 84%, by (101). At at the same con-
ditions of pressure at 450K, (110) is exposed in its hydroxylated and H2O-covered
termination. Combined to the observed increase in the surface energy of (101), this
leads to the formation of cube-like crystals. A further increase of the temperature to
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Figure 4.11: Phase diagrams for the four low-index surfaces of rutile MgF2 at 600K,
based on MP2 energies.

600K results in oblong crystals with hydroxylated surface; they consist only to 35% of
the otherwise dominating (101), 46% (110) and 19% (100). An increase of pHF favours,
as expected, crystals the surface of which is covered with HF. At 600K the crystals
are quasi-spherical, but with a lowering of the temperature to 450K they become flat,
since the energy of (101) – having two adsorption sites per unit cell instead of one –
decreases faster than the energy of the other surfaces.
An attempt to obtain surface energy values at 300K, pH2O = 10−3 atm and pHF = 1atm
reveals the limitations of the model: A negative surface energy is obtained for (101)
in the HF-covered termination. Strictly interpreted, a negative value for the surface
energy suggests a decomposition of the slab in favour of the surfaces. Negative sur-
face energies in surface thermodynamics can be interpreted as a limit for dissolution
[147]. However, in the framework of this model, it should be regarded as an artefact
caused by the high values for pressure. For a structure that consists of an MgF2 slab
and HF adsorbates, eq. 3.5 for the surface energy is reduced to:

γ (T, pHF)= 1
2A

[
EMP2
slab −NMgEMP2

MgF2-bulk
−NHFµHF (T, pHF)

]
, (4.3)

so a negative value for γ is reached when EMP2
slab − NMgEMP2

MgF2-bulk
< NHFµHF (T, pHF).

Nonetheless, the qualitative observation is still valid: At conditions of high pHF and
high temperature, (101) is significantly more stable than the other surfaces.
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Figure 4.12: The effect of temperature change on the morphology of the crystals at
three pressure conditions - surface (100) in purple, (101) in gray and (110)
in light blue. The corresponding surface energies as well as the relative
exposure of the surfaces on the crystal are presented in table 4.6. The
Wulff construction for 300K, pH2O = 10−3 atm and pHF = 1atm is not pos-
sible. A more detailed explanation is given in the text.

Table 4.6: Exposed surfaces of MgF2 crystals shown in fig. 4.12 – termination, surface
energy in J/m2 and abundance as percentage of the total crystal surface.

300K 450K 600K

(hkl) termin. γ area termin. γ area termin. γ area
pH2O = 10−10 atm/pHF = 10−12 atm

001 2F+1H2O 0.96 – 2F 1.15 – 2F 1.15 –
100 1F+1H2O 0.77 4 1F 0.87 14 1F 0.87 14
101 2F+1H2O 0.69 45 2F 0.90 45 2F 0.90 45
110 3F+1H2O 0.58 51 3F 0.76 41 3F 0.76 41

pH2O = 10−3 atm/pHF = 10−12 atm

001 2F+1H2O 0.66 – 2F+1H2O 0.95 – 1F,1OH 1.00 –
100 1F+1H2O 0.31 – 1F+1H2O 0.75 2 1OH 0.61 19
101 2F+1H2O 0.17 84 2F+1H2O 0.66 45 1F,1OH 0.82 35
110 3F+1H2O 0.26 16 2F,1OHa

+1H2O
0.55 53 2F,1OHb 0.54 46

pH2O = 10−3 atm/pHF = 1atm

001 2F+1H2O 0.66 2F+1H2O 0.95 – 2F 1.15 –
100 1F+1HF 0.10 1F+1HF 0.41 11 1F+1HF 0.74 10
101 2F+1HF −0.04 n.d. 2F+1HF 0.30 68 2F+1HF 0.66 50
110 3F+1HF 0.17 3F+1HF 0.39 22 3F+1HF 0.62 40
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4.5 A force field for MgF2

4.4.2 MP2 versus DFT for surface thermodynamics

In paper P1, the performance of the two methods on the adsorption was studied on
a variety of structures. The conclusion was that DFT adequately describes simple
cases, as the adsorption of HF on clean surfaces, but it does not perform as well – or
completely fails – on the adsorption of water on clean and hydroxylated surfaces.
However, comparing the phase diagrams based on DFT energies in paper P2 to those
presented in this section the differences are not as prominent. One should keep in
mind, that the surface diagrams are not exactly comparable with respect to the oc-
curring terminations due to certain discrepancies in the structures included. For in-
stance, low coverage – 25% for H2O, and 25% and 50% for HF – is not included in the
MP2 study due to the high computational cost of the calculations. This is also the case
for a number of hydroxylation patterns: degrees of hydroxylation so low that would
require the calculation of supercells, or complete hydroxylation for surface (101) have
not been included in the MP2 diagrams.
Bearing that in mind, the two methods capture predominantly the same trends. It
was observed in paper P1, that the adsorption energies calculated with DFT are in
general lower than those calculated with MP2. In line with this result, adsorption
structures appear earlier – at lower pressure – in the phase diagrams with MP2. The
effect is pronounced in water-covered hydroxylated terminations, which – as seen in
P1 – DFT describes poorly, causing in the phase diagram of (110) at 600K the only
case of qualitative discrepancy: At low pHF with increasing pH2O the clean termina-
tion (6F) gives its place to (2F,1OHb), which is followed by (2F,1OHb+H2O), according
toDFT. According toMP2 however, H2Oadsorption stabilizes the other hydroxylated
termination, causing a transition from termination (2F,1OHb) to (2F,1OHa+H2O).
The same applies to the Wulff plots. It was seen in section 4.1 that the two meth-
ods predict the same crystal shape for MgF2 based on the quantum chemical sur-
face energies. This is also the case at conditions of finite temperature and pressure,
where the relative exposure of the surfaces and consequently the shape of the crys-
tals are comparable. Minor discrepancies in the predicted crystal shape are observed
at conditions where adsorption plays a major role and goes hand in hand with dif-
ferences regarding the predicted termination: For instance at 450K, pH2O = 10−3 atm
and pHF = 10−12 atm, the combination of hydroxylation and adsorption of H2O leads
to a stabilization of (110) at the expense of (100). On the other hand at pH2O = 10−3 atm
and pHF = 1atm at the same temperature, (110) is covered with HF according to MP2
results, but with H2O according to DFT, without this significantly affecting the rela-
tive exposure of the surfaces.

4.5 A force field for MgF2
4.5.1 Embedded clusters as a model for MgF2 bulk

To extend themodelling of crystallites in themesoscale, a classical force field is param-
etrized to reproduce the DFT energies for the MgF2 bulk. To this end, the previously
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published force field by Catti et al. [78] for rutile-type MgF2 bulk is used as a starting
point. It consists of Coulomb-Buckingham pair potentials:

Eij =
e2zi z j

rij
+bij exp

(−rij

ρ

)
− dij

r6
ij

, (4.4)

with dispersion coefficients dij derived from theoretical and experimental data; the
repulsion coefficients have been expressed as bij = exp

(
r i+r j
ρ

)
. The ionic radii rF and

rMg, the parameter ρ and the ionic charges zF, zMg (with 2zF + zMg = 0) have been fit-
ted to reproduce Hartree-Fock results for the elastic tensors of MgF2. The bij and dij

coefficients of Catti’s force field are listed in table 4.7, the value for ρ is 0.205Å, and
for zF and zMg -0.83 and 1.66 respectively.

Table 4.7: Parameters of the pair potentials in Catti’s force field [78], employed for the
testing of the embedded cluster scheme. bij in eV, dij in eVÅ6.

F–F F–Mg Mg–Mg
bij 17039.097 4166.247 905.517
dij 15.168 2.901 0.5557

Catti’s force field is used to examine the suitability of embedded clusters as an ap-
proximation for MgF2 bulk. To this end, a translational asymmetric unit of MgF2 is
embedded in rutile-type clusters cut following two strategies:

a. The six atoms of a translational asymmetric unit are embedded in quasi-spherical
clusters of varying radii.4

b. The original translational asymmetric unit is the centre of a cuboid embedding
cluster, the edges of which have a length of 2n+1 units.

[0
01
]

Figure 4.13: The unit cell of rutile-type MgF2. Black spheres represent magnesium
and green spheres fluorine. In opaque, the atoms of the translational
asymmetric unit.

In both cases, the energy of the central translational asymmetric unit is calculated in
gradually growing clusters; it corresponds to a bulk energy per unit cell. In case (a),
4Starting from bulk MgF2, the clusters contain all atoms located within a set radius from at least one
of the six atoms of the translational asymmetric unit.
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4.5 A force field for MgF2

the resulting clusters are symmetric, but as shown at the bottom of fig. 4.14(a) they
are charged, and their charge diverges with growing size. The clusters of series (b)
are stoichiometric and neutral. However, as a consequence of the shape of the trans-
lational asymmetric unit (fig. 4.13), they have in two directions a macroscopic dipole
moment.
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Figure 4.14: Energy of a unit cell of MgF2 embedded in spherical and cuboid clus-
ters. For spherical clusters, the charge of the embedding clusters is also
plotted. The cuboid clusters are neutral but have a macroscopic dipole
moment.

At first glance, both energy series in fig. 4.14 seem to converge. Unfortunately, they
do so in different limits: The quasi-spherical series converges to a bulk energy of
approximately -4217 kJ/mol, while the cuboid series to a value of -3223 kJ/mol. Be-
sides, one should be cautious when claiming convergence: a closer look at the tail
of the cuboids’ series reveals that even when approaching the 100×100×100 cluster,
the bulk energy keeps decreasing, although very slowly, monotonically. The spher-
ical clusters’ series shows better signs of convergence, however in the range of radii
between 100 and 160Å, the bulk energy values show a deviation of approximately
80 kJ/mol. When evaluating these results, one should keep in mind that the series
plotted in fig. 4.14 expand to a ridiculously large size of clusters: for example, a spher-
ical cluster of radius 100Å already consists of 393440 atoms and a cuboid cluster with
edges of 81 unit cells consists of 3188646 atoms.
A modelling of the MgF2 bulk with embedded clusters and the calculation of the
bulk energy via direct summation has thus proven to be unsuitable. For an infinite
periodic system as the one to be modelled in this work, the exponential and the dis-
persion term of Coulomb-Buckingham pair potentials do not constitute a problem,
owing to their rapid convergence: It is sufficient to calculate the interaction of pairs up
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to a cutoff of a few Ångstrøm for rij. The Coulomb term, on the other hand, shows a
significantly slower converge and is sensitive tomacroscopic dipolemoments. There-
fore, a different strategy should be pursued for the calculation of the electrostatic in-
teractions of bulk MgF2. In the following, the electrostatic interaction is calculated
via Ewald summation.

4.5.2 Fitted force fields

A number of fits were performed according to the procedure described in section 3.4,
with varying fitting parameters. The quality of the fitting, the performance regard-
ing the EOS and the shape of the individual pair potentials will be discussed for a
selection of them.

Table 4.8: Parameters of selected fitted force fields. d is given in
p
eVÅ3, b in

p
eV

and ρ in Å. The simulation box is measured in number of unit cells. A
weighting of 3p·10+4p·5 means that the error of the minimum and of one
neighbouring point on each side are weighted by a factor of 10 and two
further points on each side by a factor of 5.

dMg bMg dF bF ρ sim. box w{V }

fit 1 0.381 37.311 4.806 178.557 0.205 2×2×2 none
fit 2 −1.425 292.223 9.582 20.385 0.225 3×3×3 none
fit 3 −0.240 57.582 4.482 144.315 0.202 2×2×2 7p·5
fit 4 0.083 78.669 7.733 97.739 0.209 3×3×3 7p·5
fit 5 0.495 38.561 9.646 98.697 0.231 3×3×3 3p·10+4p·5
fit 6 6.217 9.614 6.519 73.068 0.284 3×3×3 11p·10

The size of the simulation box, the weighting scheme – where applicable – and the
fitted parameters are presented in table 4.8. Fits 1 and 3 were performed in 2×2×2
simulation boxes, and all others in 3× 3× 3 boxes, which correspond to cutoffs of
6.16Å and 9.24Å, respectively; obviously, the latter is expected to give a description
of higher quality, since more interactions are taken into account. The last column in
table 4.8 refers to the weighting scheme of the errors during fitting. In the first two
fits, no weighting is applied. In fits 3 and 4, the DFT minimum and its three neigh-
bouring points in each direction, seven points in total, are weighted by a factor of 5.
By analogy, eleven points are weighted by 10 in fit 6. In fit 5, a graded scheme has
been applied, in which three points (the DFT minimum and its two neighbours) are
weighted by 10 and the following four points – two in each direction – are weighted
by 5. Yet before discussing the fitted parameters, the reader is invited to take a look
at the graphical representation of the EOS in fig. 4.15.
The EOS (Eshifted

bulk vs volume) have been created using the parameters of the fitted
force fields. For comparison, an EOS has been created with Catti’s parameters for
the short-range interaction, shifted to match the DFT range. All series show a pro-
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Figure 4.15: EOS for MgF2 bulk calculated with periodic DFT, literature and fitted
force fields. The force field energies are shifted to match the DFT range.
The ‘Catti et al.’ series has been removed from the close-up to improve
readability.

nounced anharmonicity at very large expansion factors, which is not observed in the
DFT series. As expected, Catti’s pair potential does not reproduce the EOS fromDFT.
In accordance to the their Hartree-Fock calculation, which gives a unit cell volume of
66.4Å3, the force field underestimates the volume of the unit cell as well. The fitted
force fields reproduce the DFT energies for small cell volumes and around the min-
imum satisfactorily. An exception are fits 1 and 2, the minimum of which is shifted
towards smaller volume with respect to DFT.
The quality of the fitted force fields is quantified in table 4.9, by means of errors,
mean absolute error and standard deviation. The error values for Ebulk support the
visual observations made above. The failure of the fits at the large volume range is
reflected by the amplitude of the errors, which – for the last two points in each series –
is a multiple of the mean absolute error |∆Ebulk|; the mean absolute error itself takes
very similar values for all fits. Additional information, however, can be extracted
from the standard deviation σ. When calculated over the entire series, the σ value
close to 3 suggests that fits 1 and 2 are better choices compared to fits 4 and 5 with a
standard deviation larger than 4, or fit 6 with σ≈ 5. Since the DFT energies are more
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Table 4.9: Error, sum of absolute errors and standard deviation of the fitted bulk en-
ergy Ebulk. The standard deviation is calculated for the entire series (σ)
and for five points around the minimum (σ5). Volume of the unit cell in
Å3, errors’ values in kJ/mol.

∆Ebulk

expansion volume Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Fit 6
0.800 53.72 4.52 4.06 5.96 6.90 6.10 7.58
0.819 55.03 1.17 1.25 2.90 3.73 3.28 5.03
0.839 56.36 −1.13 −0.75 0.73 1.40 1.21 3.08
0.859 57.70 −2.52 −2.03 −0.70 −0.18 −0.21 1.64
0.880 59.07 −3.16 −2.69 −1.50 −1.15 −1.06 0.66
0.900 60.47 −3.16 −2.81 −1.77 −1.57 −1.43 0.08
0.921 61.88 −2.74 −2.57 −1.72 −1.64 −1.50 −0.26
0.943 63.31 −1.97 −1.99 −1.38 −1.40 −1.29 −0.36
0.964 64.77 −0.87 −1.08 −0.77 −0.85 −0.79 −0.22
0.987 66.25 0.30 −0.08 −0.14 −0.25 −0.26 −0.04
1.000 67.15 0.95 0.49 0.16 0.06 0.01 0.00
1.009 67.75 1.59 1.09 0.58 0.48 0.41 0.25
1.032 69.27 2.66 2.09 1.04 1.01 0.85 0.32
1.055 70.82 3.65 3.08 1.41 1.48 1.26 0.37
1.078 72.39 4.28 3.78 1.40 1.63 1.33 0.11
1.102 73.97 4.08 3.75 0.57 0.99 0.64 −0.91
1.126 75.59 3.25 3.17 −0.91 −0.24 −0.64 −2.48
1.150 77.22 1.26 1.51 −3.55 −2.59 −3.02 −5.12
1.174 78.86 −2.86 −2.19 −8.30 −7.02 −7.45 −9.79
1.199 80.55 −9.28 −8.08 −15.35 −13.70 −14.12 −16.66

|∆Ebulk| 2.77 2.43 2.54 2.41 2.34 2.75
σ 3.37 2.96 4.36 4.02 4.04 5.01
σ5 1.13 0.98 0.73 0.73 0.68 0.41

reliable close to the equilibrium structure than further away, the standard deviation
is calculated again, this time limited to five points around the minimum. The new
standard deviation, σ5, presents a different picture: With a σ5 ≈ 0.4, fit 6 appears to
be notably better than the others, followed by fits 3–5 with σ5 ≈ 0.7, and fits 1 and 2
with σ5 ≈ 1.0. Nevertheless, the data in table 4.9 should be interpreted with caution.
The bulk energy in the EOS is calculated as a sum of pair interactions, some of which
are attractive, and some repulsive. That leaves open the possibility of individual pair
interactions cancelling out, thus producing coincidentally good results for the total
energy.
Indeed, turning to the individual pair potentials plotted in fig. 4.16, this scepticism
proves to be justified. The first observation to be made is, that the – according to the
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plotted EOS – well-behaved fit 6 must be rejected, due to the shape of pair potentials
Mg-Mg and Mg-F caused by the low value for bMg. As a consequence of bMg and
dMg having the same order of magnitude, the intrinsic weakness of the Coulomb-
Buckingham potential, the “turning over” for small values of rij [148], is pronounced
for the pair Mg-Mg. Considering that the distance between Mg atoms in the bulk is
3.08Å, the rather shallow barrier between 2–3Å is unlikely to be sufficient to prevent
“nuclear fusion” during simulation. The low bMg value affects the Mg-F potential as
well, making it monotonically attractive, thus also useless for simulations. Fits 2 and
3 have to be rejected as unphysical. Their negative values for dMg cancel out in the
Mg-Mg potential, but – though not visible in the graph – result in a repulsive disper-
sion for the pair Mg-F. Moreover, the potential for pair F-F in fit 2 falls monotonically
towards negative infinity with decreasing rij due to the low values of bF.
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Figure 4.16: Analytical plot of Coulomb-Buckingham pair potentials with fitted and
literature parameters for MgF2.

The detailed examination of the fitted force fields showed that the parametrization
of force fields for solids based solemnly on the EOS is not sufficient. Thus, not only
the performance of the force fields in reproducing the bulk energies obtained with
DFT but also the behaviour of the individual pair potentials need to be taken into
consideration for the evaluation of the presented fits. Based on these criteria, fits 4
and 5 are acceptable and are employed in the following.

4.5.3 Validation of the force fields

In the previous section, the force fields were evaluated with respect to their perfor-
mance in the periodic system. Objective is, however, their application to the mod-
elling of nanocrystals, so their behaviour in non-periodic systems is of importance
as well. For further evaluation of the suitability of the force fields, they are tested on
cluster structures.
Four neutral MgF2 clusters have been cut from the optimized bulk structure, pre-
sented in fig. 4.17; each cluster consists of 24 Mg and 48 F atoms. Cluster (a) has
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Figure 4.17: Clusters for validation of the force field, cut from the relaxed bulk struc-
ture of rutile-type MgF2. All clusters are neutral and consist of 72 atoms:
24 Mg and 48 F.

the shape of a rod, the long side of which consists of 24 atomic layers parallel to the
(110) surface while the short sides consist of 3 and 5 atomic layers, resulting in di-
mensions of 25.7×3.1×5.9Å. Cluster (b) is a quasi-spherical cluster with maximal
dimensions of 9.2×9.2×8.9Å. Structure (c) is a flat cluster, the large side of which
is cut along the (100) surface, with a thickness of 7 atomic layers. Its dimensions are
15.41×11.2×4.7Å. The last cluster, (d), is a thin film of (001) consisting of 2 atomic
layers, with dimensions 20.5×20.5×1.54Å; one missing Mg and two F atoms form a
vacancy in the centre of the cluster. These structures are not necessarily what a MgF2
nanocrystal is expected to look like. They are chosen such that they represent differ-
ent distributions of pair distances.

Table 4.10: Energy of the clusters, in kJ/mol, obtained from DFT, and from MM cal-
culations with the two best fitted force fields. The energies are given with
respect to the total energy of the most stable cluster, (a), the energy of
which is set to zero.

cluster DFT Fit 4 Fit 5
a 0.00 0.00 0.00
b 743.18 640.31 508.82
c 1898.55 1830.35 1717.64
d 2296.95 1818.56 1838.73

The total energy of these structures is calculated with single-point DFT, and with the
two force fields. According to the DFT calculations, cluster (a) is the most stable of
the four. It is followed by structures (b), (c) and (d), in that order. Naturally, the
quantum chemical energies lie on a different range than the energies calculated with
force fields. Of interest, however, is whether the force fields predict the same trends
in the energy as DFT. The most stable cluster, (a), is regarded as a reference for the
comparison of the relative stability of the structures.
In table 4.10, the energy of the clusters is given as their difference to the energy of
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the reference. Both force fields underestimate the energy of the less stable clusters
compared to DFT. For clusters (b) and (c), fit 4 predicts ∆Etot lower than DFT by
103 kJ/mol and 68 kJ/mol respectively, while fit 5 by 234 kJ/mol and 181 kJ/mol. On
the other hand for cluster (d), which is the least stable of the four, the discrepancy
between DFT and force fields is significantly larger. Fit 4 predicts a ∆Etot lower by
478 kJ/mol, whereas fit 5 by 458 kJ/mol than DFT.
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Figure 4.18: Total energy of the clusters from DFT and fitted force fields with respect
to the most stable structure, in kJ/mol. Lines between points are drawn
for clarity and do not imply continuity between the structures.

The decision, which force field is better suited for themodelling ofMgF2 clusters, can
only be met under consideration of the mechanics of the simulation in which it will
be employed. Based merely on the values of ∆Etot, fit 4 performs overall better than
fit 5. However, it reverses the energetic order of the two least stable clusters. Con-
sequence of the reversing would be, for instance, in the case of a simple geometry
optimization with MM, a step from structure (c) to structure (d) to be accepted with
force field 4 but not with force field 5. In this respect, fit 5 is in better accord to DFT,
and is therefore proposed as more suitable for the modelling of MgF2 in a multiscale
approach.
An additional consideration is to be given to the observables used for fitting. Until
now, the force field is fitted and tested onlywith respect to total energies, but not with
respect to forces. Therefore in the present state, it should be employed with caution
in MD simulations, which base on the equation of motion to propagate the system.
A safer choice is its use in Metropolis Monte Carlo simulations [149], in which the
propagation of the system is based on the energy.
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6 Conclusions

The aim set at the beginning of this work was the better understanding of the prop-
erties behind the catalytic activity of MgF2-based nanomaterial. Having determined
the suitable method to investigate the properties of MgF2 surfaces and having com-
pleted the extensive study of different terminations and the adsorption of H2O and
HF on them, it is sensible to go back to the starting point of this work: the experimen-
tal findings. It is in general assumed, that coordinatively unsaturated cations are the
key to catalytic activity – and that the more neighbours the cation misses, the higher
is its activity. That is partly true, but it is only one aspect. After having investigated
a number of adsorption patterns, one can conclude that the surface anions and the
particular surface structure play a role just as important for the interaction with the
adsorbates, at least for polar molecules.
Wuttke et al. [16] have postulated different types of surface hydroxyls: terminal and
bridging, based on their coordination; free, hydrogen-bonded and interacting with
neighbouring unsaturated cations, based on their interactions with adjacent sites.
The theoretical findings of the present work confirm the existence of bridging hy-
droxyls on the surface, usually coordinated to two cations. Terminal hydroxyls do
not occur among the structures studied, as the terminations of pure and stoichio-
metric MgF2 slabs do not contain singly coordinated surface fluorines. A relaxation
of the structure occurs upon hydroxylation, however the change in the structure of
the surface is not so pronounced as to result in the formation of terminal hydrox-
yls. Hydrogen bonding between surface hydroxyls and fluorines is not supported
by findings in this work either. On low-index surfaces, hydroxyls are sterically pre-
vented from interacting with adjacent fluorines, but also on the stepped surface (103)
an interaction is not observed.
Experimental studies indicate that the properties of surface hydroxyls of MgF2 de-
pend on their concentration. The Brønsted-basic nature of surface hydroxyls was ex-
perimentally observed at very high concentration on the surface of nanostructured
material [12], in agreement with observations on polycrystalline MgF2 [21]. In the
present theoretical study a similar behaviour is observed in the context of HF ad-
sorption on hydroxylated terminations. The F-end of the molecule coordinates to
the cation and the H-end forms a symmetric hydrogen bond to the hydroxyl, indi-
cation of a tendency for re-fluorination of the surface along with formation of H2O.
According to experimental findings [31], surface hydroxyls at low concentration ex-
hibit Brønsted-acidic activity. The modelled adsorption systems are not suitable for
the investigation of hydrogen-donating properties. However, surface hydroxyls show
acidic behaviour in some occasions, acting as adsorption sites for H2O.
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The basicity of surface fluorines is evident in all calculated structures, as adsorbates
always lie approximately parallel to the surfaces. Based on data from IR spectroscopy,
Wuttke et al. [31] proposed two adsorption schemes for H2O on MgF2 surfaces, in-
volving two or one hydrogen bonds to surface fluorines. The present study confirms
both schemes, depending on the availability of surface anions for the formation of
hydrogen bonds. The same is true for HF: the F-end interacts with surface cations
while the H-end with surface anions. As a consequence H2O adsorbs preferably on
fourfold, whereas HF on fivefold coordinated cations.
In discussions concerning the catalytic activity of nanoscopic metal fluorides, the fo-
cus is usually on the Lewis-acidity of coordinatively unsaturated cations. The theo-
retical results show that the basicity of the ligands can play a role of similar impor-
tance. The calculated adsorption energies of H2O and HF show a dependence on
hydrogen bonding to the basic sites. The observed adsorption structures in principle
support the scheme proposed byAstruc et al. [17] forMgF2/HF as fluorinating agent,
although the formation of chains of adsorbed HFmolecules on surface fluorines was
not explicitly modelled. Also the mechanism proposed by Teinz et al. [18] for dehy-
drohalogenation on metal fluorides is supported by the theoretical findings.
The second aim of this work was to develop a model for the prediction of the mor-
phology of magnesium fluoride crystals at conditions of finite temperature and pres-
sure. To this end, quantum chemical calculations were combined with surface ther-
modynamics. The resulting phase diagrams illustrate the relative stability of differ-
ent terminations, depending on temperature and pressure. Using the data from the
phase diagrams, Wulff plots were created as a model for MgF2 crystals at different
conditions. It was shown that pure MgF2 terminations are the most stable at vacuum
conditions, regardless of the temperature. The presence of H2O or HF in the gas
phase favours the adsorption of the corresponding molecules, affecting the relative
stability of the surfaces, and as a consequence the shape of the crystallites. Hydroxy-
lated surfaces occur with increasing temperature in presence of H2O. Unfortunately,
the predictions of the model can not be validated for the case of sol-gel synthesized
material, due to the lack of suitable experimental data.
The comparison of quantum chemical methods shows that their performance de-
pends on the nature of the addressed question. Pure MgF2 structures are described
adequatelywithHartree-Fock, but hydroxylated surfaces and adsorption interactions
require treatment on a higher level of theory. The relative stability of these surfaces
and the prediction of the crystal morphology is satisfactory with DFT/B3LYP. How-
ever, MP2 is required for the detailed description of adsorption interactions. The
expertise gained in this work is not specific to MgF2. It provides information on the
limits of each method, that can be valuable for the theoretical investigation of other
similar systems.
An insight was gained in the individual interactions behind the catalytic activity of
magnesium fluoride, supporting some of the experimental observations. From the
results it is evident that numerous factors influence the interaction of the surfaces
even with small molecules. Since the nanoscopic material has a high density of de-

104



fects, modelling the crystallites beyond the periodic model is an intriguing task. To
this end, a force field for MgF2 was developed for the use in classical simulations.
As it has been parametrized to reproduce the DFT energies, the force field is partic-
ularly suited for multiscale models: Structures based on Wulff plots can be used as
starting point to simulate nanocrystalswith classical force fields, extending themodel
in the mesoscale. An equally intriguing question concerns the predictive strength of
the model for the surface properties of MgF2. Towards this direction, the next step
would be the development of a suitable experimental setup for the validation of the
theoretical model. It is now the experiment’s turn to challenge the theoretical results,
so that the scientific journey can go on.
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