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ABSTRACT 

Invariants (conservation laws) have served as the ultimate cornerstones of 

mathematical and physical theories from the early days of science to modern times. 

For example, the initial name of Einstein's theory was “Invariantentheorie”, and Klein 

in the “Erlanger Programm” saw geometry as the study of invariants under a group of 

transformations. However, in molecular evolution theories, the widely observed 

phenotype invariance, i.e. its preservation through generations, is not matched with 

any genomic sequence invariants. On the contrary, the genomic sequences are 

perceived to be quite fluid, evolving rapidly and opportunistically, frequently 

“neutrally”. The classical models of molecular evolution were elaborated more than 

40 years ago with an extreme paucity of data. The consequent development of 

molecular evolution theory was primarily haphazard and superficial: minor ad hoc 

assumptions were introduced to fit newly obtained data but the core of these models 

remained unchanged. The concepts were expanded upon with more details and 

assumptions, becoming cumbersome and losing the ability of making verifiable 

predictions or explanations of observable phenomena. This lack of general 

fundamental principles has led to the crisis of molecular evolution theory. Current 

technologies supply us with an enormous amount of molecular data, allowing a 

deeper look into genome functionality, and demand a more profound understanding of 

genomic functionality. 

This work introduces a novel paradigm into molecular evolution theory by proposing 

an invariant property of the genomic sequence, which does not vary at all or only 

slowly from generation to generation, while allowing the underlying sequences to 

change rapidly. The introduction of the invariant leads to more a “physical” and less 

opportunistic view on sequence evolution and provides testable predictions. The well-

developed apparatus of Shannon’s informational theory is used as a mathematical 

framework of the model. A functional site is regarded as a positional probabilistic 

pattern, where each position of the pattern is a four-vector of nucleotide probabilities 

in the equilibrium population (i.e. abstract infinite population that has evolved for an 

infinite time without any disruptive events). Introducing the invariant allows us to 

simulate the genetic information dynamics and to apply basic physical principles such 

as the optimal efficiency and channel capacity. The model demonstrates a 

fundamental possibility of error-free information storage in sequences possessing 

arbitrarily low conservation. I show that the rate of beneficial mutations can be high 

in general—the lower the sequence conservation the higher the frequency of 

beneficial mutations. Experimental data demonstrates the tendency of real functional 

sites to optimization according to the proposed optimality criterion. The model allows 
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a fresh look at the well-known phenomena (e.g. it demonstrates that the “Molecular 

clock” and “Drake’s rule” possibly emerge out of common underlying process). It is 

also able to provide reasonable explanations for some paradoxes (e.g. “Paradox of 

Variation”) which are lacking a clear interpretation in the framework of classical 

theories. Therefore I believe that further development of the model will facilitate a 

deeper understanding of molecular evolution and population genetics processes. 

OUTLINE 

The thesis consists of three main sections: Introduction, Results and Discussion. 

In the Introduction section I will survey basic theoretical concepts of molecular 

evolution, trace their historical development and discuss their current state. Here I will 

also briefly describe a number of noteworthy phenomena and paradoxes observed in 

molecular data. More attention will be paid to the “Quasispecies model”, because it 

touches some aspects which are relative to the model presented in the Results section. 

Next I will outline some fundamental notions of Shannon’s information theory, which 

will be hereinafter used in the model. Drawing a line under the Introduction, I will 

consider interrelations between information theory and molecular evolution. 

In the first part of Results, the model of positional information storage in sequence 

patterns is introduced. First I discuss underlying assumptions and specific notions. 

Then the core principal of the model—the principle of sequence pattern 

conservation—is presented. Experimental evidence of pattern conservation is 

demonstrated in the example of human and mouse slice sites. After positing the 

conservation law, I suggest a criterion according to which the pattern can be 

optimized. The criterion is formulated in the form of a nonlinear constrained 

minimization problem which is then solved. The traces of expected optimal 

compositions of nucleotide frequencies are demonstrated in real binding sites. The 

second part of Results is entirely devoted to the “Drake’s rule” phenomenon. I present 

its interpretation in the framework of the model. The proposed explanation is 

discussed in details and compared with conventional explanation.  

The last section represents the overall discussion with some philosophical digressions. 

I speculate about the impact of the model on the status quo in molecular evolution 

theory, emphasizing the novelties introduced by this work. 
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1   INTRODUCTION 

1.1   Concepts of molecular evolution 

The literature of molecular biology contains a great variety of models of molecular 

evolution, however most of these models can be classified into two major types 

according to their theoretical foundations. The two most well-known concepts of 

molecular evolution are selectionism and neutralism. To some extent they represent 

the two extremes of an explanatory spectrum for understanding patterns of molecular 

evolution and the emergence of evolutionary innovation. The tension between these 

two concepts began when Motoo Kimura proposed his neutral theory of molecular 

evolution at the end of the 1960s, so it is without exaggeration almost as old as the 

field of molecular evolution itself. Historically, the most ferocious debates between 

selectionists and neutralists were focused around explanations for genetic variation 

either between populations of different species, divergence or in a population of 

single species, polymorphisms. In general, in explaining observed genetic variations, 

proponents both of neutralism and selectionism agree that deleterious mutations occur 

frequently in the course of evolution, but there is a deep discord between their 

positions on the relative importance of effectively neutral and beneficial mutations 

(Wagner 2008). Both mainstream concepts consider fixation of the mutation in a 

population as an elementary act of evolution. In this context, considering the observed 

spectrum of mutations, neutralists argue that beneficial mutations are rare and are 

fixed less frequently than neutral or slightly deleterious mutations (Kimura and Ohta 

1974). Selectionists, by contrast, assert that beneficial mutations are abundant, so the 

majority of mutations that go to fixation in a population would be beneficial, or are at 

least linked to beneficial mutations. Considering polymorphic alleles, neutralists 

suggest their intermediate frequencies are simply a transient state in a continuously 

ongoing process of random genetic drift among neutral (i.e. functionally equivalent) 

alleles, while selectionism states that they provide selective advantage and thus are 

maintained by natural selection. 

Here I need to digress briefly to explain the notion of random genetic drift, which is 

quite important for understanding both classical models described in this section, and 

the new model which is elaborated in the framework of this thesis. Furthermore, I will 

often refer to random genetic drift as genetic drift, or more simply as drift. However, 

randomness is a crucial feature of this process. According to the definition from the 

textbook, genetic drift is “random changes in allele frequency from one generation to 
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the next in biological populations due to the finite samples of individuals, gametes, 

and ultimately alleles that contribute to the next generation” (Hamilton 2009). In 

contrast to natural selection, drift affects only alleles that have no effect on the fitness 

of organism (or whose effect is negligibly small). So the frequencies of such alleles in 

the population, due to their finite size, are determined by chance due to random 

sampling. 

For a long time molecular evolution suffered from the a lack of real biological data; it 

was a field characterized by a wealth of theory and a paucity of data. However, over 

the last half-century rapid progress in nucleotide sequencing and other advanced 

investigation methods of molecular biology provided a vast amount of data and 

significantly changed our understanding of intercellular processes. These data made it 

possible at last to test theoretical predictions, to refine and supplement theoretical 

concepts. Under the influence of new experimental data, both selectionism and 

neutralism experienced a number of modifications, which made them closer in some 

aspects, but did not affect the core postulates of the theories. New knowledge also 

facilitated an emergence of a number of offshoot models. Primarily, they were 

generated simply by adding some minor assumptions to one of two major concepts 

and thus can scarcely be considered truly separate. However, there were a few (e.g. 

the near neutral theory (Ohta 1973, 1976)) that introduced new rather significant 

assumptions and thus can be treated as fully independent theories. There are also 

concepts, e.g. the so called quasispecies model (Eigen and Schuster 1977), which 

incorporate features of both selectionism and neutralism, thus attempting to reconcile 

them. In my opinion the latter models are the most interesting and therefore deserve 

special attention. 

Although the last two decades demonstrate, somewhat, a decreasing tension about 

genetic variation between neutralists and selectionists and a convergence of their 

positions in some questions, the underlying discord persists. In fact, implications of 

this tension go far beyond explanations of genetic variation and envelope one of the 

most fundamental, however still unresolved, problems of evolutionary biology: the 

problem of the origin of evolutionary innovations (Wagner 2008). 

1.1.1   Selectionism 

Historically, selectionism was the first paradigm of molecular evolution. It appeared 

when molecular evolution came into its own in the late 1950’s and early 1960’s. At 

that time the majority of the molecular biologists saw the world through the lens of 

panselectionism (Neo-Darwinism) (Dietrich 1994), the broad evolutionary concept 

that grew in 1920’s and 1930s from the synthesis of Mendalian genetics with the ideas 
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of Darwin and Wallace, with Darwin’s notion of natural selection playing the 

dominant role. Panselectionism states that the strongest (perhaps even sole) driving 

force of evolution is natural selection, which acts as a purifying force removing 

deleterious alleles and promoting those that are beneficial. Natural selection thereby 

gradually improves the fitness of a population, and evolution represents a slow 

“directed” process consisting of a continuous sequence of minor variations.  

Perhaps due to its earlier appearance and connection with Darwin’s ideas, the concept 

of selectionism is also sometimes called the classical theory. It is also worth noting 

that selectionism does not deny random drift and the formative influence of 

mutations, however, their role is considered to be minor. The ideas of selectionism 

were advocated by many outstanding scientists including R. A. Fisher, J. B. S. 

Haldane, G. G. Simpson , T. G. Dobzhansky, E. W. Mayr and others. These authors 

were aware that natural populations are far from genetic homogeneity and may 

potentially comprise a large variety of mutants. However, in general they assumed 

that there would be little genetic variation in populations. For this reason their work 

was primarily focused on the “wild-type” (i.e. the most prevalent allele) as a target of 

selection. Classical models are usually deterministic and consider infinite populations. 

These models usually contain mutation essentially as a 'perturbation term' in the 

differential equations describing selection. This term changes specific features of the 

solution, but the concept of the individual “wild-type” remains unchallenged (Eigen 

1996). An assumption of infinite population size seems to be very strong and had 

been already questioned by Sewall Wright in early 1930s, before the molecular nature 

of DNA became known. He was the first who considered models with finite 

populations and proposed that fluctuations in allele frequencies due to stochastic 

effects (i.e. random genetic drift) can play an important role (Wright 1931). However, 

at that time there was very little knowledge regarding sizes of real populations or 

frequency of bottlenecks, and absolutely nothing was known about the physical nature 

of genes and DNA in general (Hughes 2007). Indeed, before the 1960s conventional 

models assumed that natural populations are large enough to ignore stochastic 

fluctuations of alleles. Due to this misconception, Wright’s models were found to be 

unrealistic and dismissed by the broad scientific community (Fisher and Ford 1950). 

The lack of knowledge gave rise to unrealistic views that were laid in the foundation 

of Neo-Darwinism and, despite the fact that most of postulates were later revised 

according to up-to-date experimental data, transferred (often implicitly) to 

selectionism concept when it was formed. 

To summarize, we can say that from the perspectives of selectionism, evolutionary 

innovations emerge through both beneficial mutations, each changing the properties 
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of a given phenotype very slightly, and natural selection which amplifies the 

frequency of beneficial alleles in the population. 

1.1.2   Neutralism 

Selectionism was a mainstream theory for less than a decade. During this period 

fragmentary information on molecular structure and mechanisms became available, 

changing insights into molecular evolution. In 1968 the Neutral theory of molecular 

evolution was proposed by Motoo Kimura (Kimura 1968), one year later essentially 

the same idea was proposed independently by King and Jukes (King and Jukes 1969). 

The idea quickly gained popularity among the scientific community partially due to 

strict and clear formulation carried out by Kimura, partially because it was able to 

explain numerous phenomena observed in experiments, which before had no clear 

interpretation in the framework of classical theory. Among these are such famous 

phenomena as Haldane’s dilemma (Haldane 1957)—an inconsistency of predicted 

(according to classical model) to empirically estimated rates of mutation 

accumulation, and unexpectedly high genetic variability of real populations. In 

contrast with typical models of the time, which were often based on the 

mathematically convenient, but obviously unrealistic, assumption of an infinite 

population size, Kimura examined the consequence of finite population on natural 

selection and genetic drift. The hypothesis proposed by Kimura was quite radical 

because it fundamentally contradicted the prevailing concept of molecular evolution. 

He assumed that evolutional innovations might be facilitated by mutations which, 

when they first arise, do not affect molecular functions (and hence are not targets for 

natural selection). In other words, he argued that genetic drift, rather than beneficial 

mutations, is the dominant process in evolution both within populations and over 

evolutionary time. This of course does not mean that all mutations are neutral, only 

that the vast majority of observed mutations are neutral. Initially his view was based 

mainly on the observation that the rate of amino acid substitutions among different 

groups of animals is roughly the same, and partially on the fact that genetic code is 

degenerate, which was already known at that time (Kimura 1968). It is also worth 

noting that Kimura did not deny the important role of natural selection. What he did is 

make a clear distinction between two types of selection: (1) purifying (or negative 

selection) which aims to remove deleterious alleles, and (2) positive (Darwinian 

selection) which favors advantageous mutants, causing rapid directional shift in 

alleles’ frequencies (Hughes 2008). Relying on existing data and knowledge he 

reasoned that because advantageous mutations are rare events, positive selection is a 
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rare phenomenon. Deleterious mutations, in contrast, are common and, therefore, 

purifying selection is ubiquitous. 

Declaring genetic drift to be the dominant process of molecular evolution, Kimura 

avoided making intricate assumptions about the potentially quite complex process of 

selection. This allowed him to reduce molecular evolution to a succinct, clear 

stochastic model with only two major parameters: population size and mutation rate. 

The neutral theory then provides a baseline hypothesis from which numerous testable 

predictions can easily be derived. Despite its simplicity, Kimura’s was able to 

demonstrate explanatory and forecasting power from the very beginning.  

Next I would like to discuss the history of two famous and popular concepts that are 

directly connected with the neutral theory. Preceding the invention of the neutral 

theory Zuckerkandl and Pauling (1962) noticed that the number of amino acid 

substitutions in  and  hemoglobin chains change roughly linearly in different 

lineages with time. The same observation was later made for cytochrome c 

(Margoliash 1963). These experiments led to the suggestion of a currently well-

known technique called the molecular or evolution clock, which is now broadly used 

in phylogenetics for estimation of the speciation time, and building phylogenetic 

trees. The idea behind the concept of the molecular clock is that the evolution rate of 

DNA and protein sequences (i.e. the speed of accumulation of changes) is relatively 

constant over time and among different organisms. From this, it immediately follows 

that the genetic difference between any two species depends linearly on the time since 

their last shared common ancestor. Hence, if we accept this hypothesis, it can be used 

for estimation of evolutionary timescales. Initially the molecular clock was proposed 

based on purely empirical data estimated from fossil evidence. This phenomenon had 

no clear explanation in the framework of the classical concept of the molecular 

evolution, and to a great extent contradicted it. On the other hand, Kimura’s theory 

states that the overwhelming majority of amino-acid substitutions are neutral, so if 

this holds true the constant rate of mutations’ accumulation becomes an evident 

consequence. Thus, the neutral theory provides theoretical justification for the 

molecular clock. Another thing worth mentioning concerns the discrepancy of 

evolution between the functional and non-functional regions of a DNA sequence. 

Molecular biologists normally consider as self-evident the statement that functionally 

important sequences are conserved (i.e. evolve slowly). Many basic bioinformatics 

tools, such as homology searchers and sequence aligners are based on the fact that 

functionally essential sequences accumulate variations slower than sequences which 

have secondary importance or bear no function at all. However, this assumption is a 

prediction of the neutral theory that directly contradicts the prediction made by 

selectionists (Hughes 2007).  
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Soon after its presentation the neutral theory was brought to the center of evolutionary 

genetics, it showed forecasting power and provided a mechanism for the investigation 

of deep issues concerning molecular genetics. Very quickly, it gained strong influence 

in the scientific community and moved the classical theory from its dominant 

position. However, subsequent experimental evidence exposed phenomena 

contradicting to predictions of the neutral theory, which, however, could be better 

explained by the classical paradigm. A hot dispute between selectionists and 

neutralists continued. This has led to a revision of some key positions of neutralism 

and to the creation of the near neutral theory. 

1.1.3   Near neutral theory 

As was already mentioned, the core tenets of the neutral theory were established in a 

tight shortage of molecular data. When new experimental data became available, 

inconsistences between predictions of the neutral theory and observations emerged. 

E.g. the neutral theory (in its original form) predicts the so called generation-time 

effect, i.e. creatures with longer generation time will evolve slower in real time than 

those with shorter generation time. However, it was shown that proteins do not exhibit 

a strong generation-time effect, while noncoding DNA does (Kohne 1970). The 

reliance of the neutral theory on random genetic drift also fails to explain the 

"paradox of variation" (Lewontin 1974), where genetic diversity has not been found 

to depend strongly on the size of different populations. Although these observations 

do not contradict directly the possibility that many (or even most) substitutions are 

neutral it is thought that they can be better explained if allele frequency dynamics is 

driven by selection at the linked sites rather than by random genetic drift (Hahn 

2008). The problems arising from the neutral theory promoted the development of 

new approaches in understanding the principles of molecular evolution. Taking key 

concepts of the neutral theory as a basis, Kimura’s associate Tomoko Ohta 

emphasized the role of a certain class of mutations with small selection coefficients 

(especially slightly deleterious). This class can be described as nearly neutral 

mutations. Her theoretical generalization of the neutral theory by including the 

concept of "near-neutrality" gave rise to the near neutral theory (Ohta 1973, 1976). 

Here I digress slightly to clarify the notion of “effective population size”, because it 

can be found throughout theoretical papers on molecular genetics. This term is used in 

the original neutral theory; however, it is especially important for understanding the 

near neutral theory and will be often used further in this work. The concept of the 

effective size of a population was initially introduced by Sewall Wright (Wright 

1931). Speaking simply, the effective population size indicates the number of 
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individuals actually contributing alleles to the next generation. Due to various reasons 

(including sexual selection, sex ratio, inability of reproduction etc.) this number is 

usually smaller than the total number of individuals in the population (however, these 

two numbers usually correlate). 

Returning to our topic, it should be noted that the fate of near neutral alleles, in 

contrast with strictly neutral, depends on effective population size. So if the effective 

population size becomes small enough, slightly deleterious mutations will behave as 

real neutral, i.e. they can drift to a higher frequency or even to fixation. But when the 

effective population size is large during a long enough time, these mutations will be 

eliminated from the population by selection. Slightly advantageous mutants are 

supposed to behave similarly to slightly deleterious, but they are expected to be less 

common than slightly deleterious. 

Revisiting the generation-time effect we can now demonstrate how it can be 

potentially explained in the framework of the near neutral theory. Large organisms 

tend to have small population sizes and rather long generation times as compared to 

small organisms. Hence, according to the near neutral theory, the former will 

accumulate more slightly deleterious mutations. So the generation-time effect can be 

(at least partially) compensated by the difference of population sizes. So, according to 

the near neutral theory, population size plays a very important role in the formation of 

observed allele patterns. It is expected that when the population undergoes a 

bottleneck the power of natural selection is reduced, many slightly deleterious alleles 

become neutral, and their frequency in the population increases. However, if after the 

bottleneck effective population size increases, the efficiency of natural selection rises, 

these mutations again become slightly deleterious and are purged from the population.  

The emergence of a bottleneck effect can be potentially demonstrated by the structure 

of single-nucleotide polymorphisms (SNPs) in the human population, which 

presumably underwent the last bottleneck nearly 70,000 years ago when, after the 

eruption of the Toba volcano in Indonesia, the total number of individuals was 

reduced to approximately 10,000 (Dawkins 2004). Zhao et al. (2003) has shown that 

the ratio of non-synonymous to synonymous mutations in human coding regions is 

less than half of that expected under the neutral mutation theory. This phenomenon is 

often interpreted as evidence of non-neutral evolution. However, there is at least one 

potential explanation in the framework of the near neutral theory. According to this 

explanation, the strength of the natural selection was reduced after the bottleneck and 

an abundance of slightly deleterious mutations spread over the population. The ratio 

of non-synonymous to synonymous mutations at that time was extremely high (as 

would be expected according to the strictly neutral theory). However, as the size of 



INTRODUCTION 

Concepts of molecular evolution 

 

8 

 

human population (as well as the effective population size) again started to grow, the 

pressure of purifying selection increased and began wiping out non-synonymous 

alleles (which are likely to be slightly deleterious), decreasing the ratio of non-

synonymous to synonymous mutations. This process is ongoing, so currently we 

observe an intermediate state and this ratio will likely continue to decline as the size 

of human population is growing constantly. Bottlenecks are rather regular phenomena 

in different natural populations, so a correct understanding of how they affect the 

process of molecular evolution is very important. 

Concluding this topic, I want to emphasize that perhaps it is not fully correct to 

consider the nearly neutral theory as an alternative theory competing with the neutral 

theory. Although the core assumption of the Kimura’s theory (namely that the 

majority of fixed mutations and polymorphisms within species are neutral) is 

modified in the near neutral theory, it may be more precise to say that the latter 

represents a corollary of the neutral theory that particularly focuses on the issues of 

slightly deleterious alleles.  

1.1.4   Conclusion about neutralist-selectionist 

debates 

The controversy between selectionists and neutralists was a main topic of population 

genetics and molecular evolution discourse from the late 1960s till the early 1990s. 

Starting with the severe lack of experimental data the debates were freshly innervated 

in the middle of 1970s, when DNA sequencing technology became available, which 

together with other technical innovations provided an exponential growth of 

molecular data. There was a hope that this large bulk of data would allow for the 

revelation of the real nature of molecular evolution mechanisms and facilitate a rapid 

resolution of the controversy. However, this expectation was ill-conceived. The 

abundance of DNA sequencing data shifted the main subject of the debates from 

proteins to DNA evolution, but it did not turn the balance towards neutralism or 

towards selectionism. In the late 1980s the debates quietly withered and came to an 

indeterminate demise (Hey 1999).  Since the end of 1980s the situation can be 

characterized by a massive gathering of data and substantial lag of theoretical 

understanding (directly opposite to what we have seen in the beginning of debates). 

The state of affairs seemed so sad that proponents of both concepts proclaimed a 

looming crisis in the theory of molecular evolution, stating that all current theoretical 

models suffer either from unrealistic assumptions or are unable to describe known 

phenomena (Ohta and Gillespie 1996). So what are the current states of the debate 

and the problems of molecular evolution theory in general? I would say that this is 
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largely a philosophical question. Exploring this question it is easy to dive deep into 

numerous arguments provided by supporters of both schools and get lost in them. As 

such, at the end of this section I will try to give a brief overview of current status quo. 

Historically assuming that natural selection is the driving creative power in the 

processes of evolution, selectionists chose a more complicated position. Natural 

selection can take countless forms and it is not possible to elaborate a general testable 

mathematical model describing it. On the other hand the neutral theory (here I mean 

the original, i.e. strict neutral theory) provides a succinct and elegant model that can 

easily be tested. Until very recently most of noncoding DNA was considered non-

functional. Non-functional sequence, by definition, avoids the pressure of natural 

selection, experiencing random genetic drift. That is why the discovery of the fact that 

a bulk of DNA in large genomes represents a noncoding sequence provided 

considerable vitality to the neutral theory. 

As shown above, the neutral theory is able to explain much of observed phenomena. 

However, there are also a lot of cogent examples where its predictions are 

significantly violated. McDonald and Kreitman (1991) studied the mutational 

spectrum within coding regions of different Drosophila subgroups. They 

demonstrated that the ratio of fixed non-synonymous mutant alleles (i.e. alleles which 

differ between species but remain constant within them) to polymorphic non-

synonymous alleles (i.e. alleles which show variation within species) often greatly 

exceeds the ratio between synonymous fixed and polymorphic mutations. This fact 

contradicts the neutral theory but can be easily interpreted as an emergence of positive 

selection. The inconsistency of neutral theory predictions to observed bias of 

alternative codon usage was described by Akashi (1995). There are also many lines of 

evidence against strictly neutral evolution of protein features (Kreitman and Akashi 

1995), e.g. so called overdispersion of the molecular clock, i.e. an extremely high 

variance in the rate of protein evolution, which is much higher than predicted by the 

neutral theory (Takahata 1987). These are only some of the most notable examples 

where molecular data can be better explained assuming that natural selection rather 

than genetic drift plays the dominant role in molecular evolution. However, more can 

be easily found in the literature, for example see (Hahn 2008). Many of above 

mentioned phenomena can also be explained in the framework of Ohta’s near neutral 

theory, but the explanations and the theory behind this are “necessarily complex and 

cannot generate simple predictions in the way the strictly neutral model does” (Hey 

1999). Despite uncertainties about the neutral theory it should be emphasized that all 

investigations regarding detection of the natural selection would have been impossible 

without the neutral model, which is always used as a viable and testable null 

alternative to selection (Kreitman 1996). 
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As can be seen, both theories are able to explain some spectrum of observable 

phenomena. Sometimes both models can provide a satisfactory explanation, in other 

cases one can be more convincing than the other, but often both concepts fail to give 

any reasonable interpretation. So, despite longstanding controversy, we still lack any 

general realistic model of molecular evolution. However, there is no doubt that 

desperate neutralist-selectionist debates were quite useful in vividly demonstrating 

that understanding mechanisms of molecular evolution is a fundamental problem of 

biology and that solution of this problem is quite complicated (Nei 2005). However, 

the truth comes only in discussion. The development of theoretical conceptions of 

molecular evolution resembles the classical reasoning triad: “Thesis, antithesis, 

synthesis”, most fully developed in Hegel’s philosophy, where two opposite extremes 

are logically followed by their fusion. By the early 1990s Li and Graur (1991) fairly 

noted in their book that any contemporary adequate theory of molecular evolution 

must be consistent with both natural selection and genetic drift.  

From the very beginning of the controversy it is possible to trace convergence 

tendencies in both theories. These trends are sustained to this day. Recently, an 

interesting model combining both concepts was suggested by Wagner (2008). 

However, a good example of reconciliation of neutral and classical theories can be 

found in the much earlier work of Eigen (1971). In this seminal paper he speculated 

about the origin of life and proposed a strict mathematical model of evolution of self-

replicating entities (potentially describing the evolution of early life). Later the model 

was named the “quasispecies model”. It intrinsically combines features of both 

concepts. However, for a long time this model did not receive proper attention from 

the community of evolutionary geneticists. Perhaps this can be partially explained by 

the fact that Manfred Eigen focused primarily on aspects and modes of molecular 

evolution which were not interesting for population and molecular geneticists at that 

time. I find this model quite appealing. For another thing, many of its aspects are 

similar to those of the model presented in the results section below. For this reason, I 

have decided to devote the whole next section to its detailed description, 

concentrating in particular on features that intersect with the features of the model 

developed in this work. 

1.2   Quasispecies model 

The quasispecies model will be described here in detail because some of its aspects 

are quite related to the model presented in the results section. However, this section 

(despite its name) is not only about the quasispecies model itself. Through the 
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example of this model I will introduce some terms and describe some concepts 

important for the understanding of the results of this thesis. 

The concept of quasispecies was introduced by Manfred Eigen in the early 1970s 

(Eigen 1971), but the term “quasispecies” was initially proposed later in his joint 

work with Peter Schuster devoted to the origin and evolution of life (Eigen and 

Schuster 1977). In that work they considered a process of Darwinian evolution in an 

infinite population consisting of asexual, self-reproducing, mutable entities (in 

particular DNA or RNA sequences) within the framework of physical chemistry. In 

the original work of Eigen and Schuster (Eigen and Schuster 1977) the term 

“quasispecies” is defined as an equilibrium distribution of mutants, which arises and 

is maintained under mutation-selection process. In a simple terms, quasispecies can be 

described as a large group, a cluster or a cloud of closely related molecular 

‘organisms’ (nucleic acid sequences) which evolve asexually in the presence of a high 

mutation rate, so that each descendant is expected to contain several mutations 

relative to its parent.  To avoid rather common misunderstanding it is also worth 

noting again that a quasispecies is not an arbitrary ‘swarm’ of mutants, but is a well-

defined concept that requires specific conditions (presented in the next section) to be 

fulfilled. In addition to already mentioned prerequisites (namely: an infinite 

population of asexual replicators at high mutation rate), the model also needs time for 

‘equilibration’ to occur, i.e. populations should evolve for a sufficient time without 

any disturbing events. In the framework of certain above mentioned assumptions the 

theory of quasispecies provides a strict mathematical model of molecular evolution 

described below.  

1.2.1   Mathematical description 

Several different variations of mathematical models of quasispecies exist, which 

contain different levels of details including different parameters such as death rate and 

concentration of energy-rich building material etc. (Eigen and Schuster 1977). Here I 

will not go into deep specific details and present only the essence, the most common 

model which can be found in (Nowak 1992). 

Imagine that we have an infinite population of nucleotide sequences. Let’s assume 

that there are N different sequences s1, s2, …, sN (usually sequences of the same 

length are considered, however, in general it is not necessary). Sequences are able to 

self-replicate with corresponding rates of replication denoted by ri, i  [1,2, …, N]. 

These values can be considered as selective or fitness values of the certain alleles. The 

process of replication can be thought of as error-prone copying. So in general an 

offspring is not an exact copy of its parent, but has several mutations, thus parent 
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sequence sj spawns an offspring si, and in general i  j. Let the mutation rate pij 

corresponds to the probability that parent sj will produce a descendant si. Commonly, 

only point mutations where all substitutions are equiprobable are considered, so if we 

assume that the probability of each point substitution is equal to p (and all sequences 

have the same length) then pij = pji = p
d
, where d is a hamming distance between si 

and sj. The closer the sequences are, the higher the transition probability between 

them is. The quantities pij, i, j  [1,2, …, N] form the so-called mutation matrix P, and 

∑ 𝑝𝑖𝑗𝑖 = 1. With this notation we can construct a system of ordinary differential 

equations, which describes the time evolution of the population of these sequences. 

 𝑑𝑥𝑖(𝑡)

𝑑𝑡
=∑𝑟𝑗𝑝𝑖𝑗𝑥𝑗      𝑖 ∈ [1, … , 𝑁]

𝑁

𝑗=1

 (1) 

Where xi(t) is a concentration (a fraction) of sequence si in the population (for the 

sake of brevity, I will often omit the time argument t). Let us denote the vector of 

concentrations as X = (x1, x2, …, xN) and assume, that ∑ 𝑥𝑖𝑖 = 1 (we always can 

normalize the vector to achieve this), so at each moment of time X forms a 

distribution of alleles in the population. From this ODE system we can see that within 

the quasispecies model a frequency of a given sequence in the population does not 

depend on its replicative value alone, but also on the probability with which it is 

generated by erroneous replication of other sequences, their frequencies in the 

population and their replication rates. When time goes to infinity the distribution of 

sequences in the population eventually stabilizes. The resulting equilibrium 

distribution is called quasispecies. In mathematical terms this equilibrium is reached 

when the system is in steady state. Thus, it is possible to find an equilibrium 

distribution by solving the standard eigenvalue problem of linear algebra: WX = X, 

where matrix W contains replication rates and probabilities of mutation: 

 

𝑊 = (

𝑟1𝑝11 𝑟2𝑝12
𝑟1𝑝21 𝑟2𝑝22

⋯
𝑟𝑁𝑝1𝑁
𝑟𝑁𝑝2𝑁

⋮ ⋱ ⋮
𝑟1𝑝𝑁1 𝑟2𝑝𝑁2 ⋯ 𝑟𝑁𝑝𝑁𝑁

) (2) 

So, in mathematical terms, quasispecies can be defined as the dominant eigenvector 

Xmax, which belongs to the largest eigenvalue max of the matrix W. The components 

of this eigenvector Xmax completely determine the structure of population in the 

equilibrium state: the sequence si corresponds to the frequency xmax,i. 
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1.2.2   Survival of the flattest 

One important outcome of the quasispecies model, which discriminates it from the 

standard population genetics, is a prediction (under certain conditions) of the 

equilibrium state of the population. This equilibrium population is a stable mixture of 

closely related organisms (defined by the dominant eigenvector of matrix W), which 

in general is not required to contain the fittest organism. Due to high rate of mutations 

and mutation coupling among variants, organisms in the model are not independent 

entities, and instead, the entire distribution of alleles acts coordinately and can be 

considered as a single organism. In this situation mutants with lower individual fitness 

can outperform organisms with higher fitness because they have a better support from 

their mutational neighbors (Wilke et al. 2001). 

Schuster and Swetina (1988) were the first to describe this phenomenon in their 

theoretical work. They studied the dynamics of the population on a fitness landscape 

with two equally or almost equally fitted peaks. A fitness landscape is a metaphorical 

concept introduced by Wright (1932) used to illustrate the relationship between the 

fitness of the organism, which determines the height of the landscape, and its 

genotype. The distance between organisms on the surface of the fitness landscape is 

assumed to be proportional to the similarity of their genotypes, e.g. the hamming 

distance between their functional genomic sequences. They found that in the case 

when both peaks have the same height, the population always moves to the flatter 

peak (i.e. the peak with stronger mutational support). In the case when the flatter peak 

was slightly lower, the behavior of the population depended on the mutation rate: for 

lower rate of mutations the higher peak would be occupied by the population, but for 

higher mutation rates, a lower peak with higher mutational support would be 

favorable. Later on, it was demonstrated in the experiments with digital organisms 

that even in the case when organisms residing on the high narrow fitness peak 

replicate 10 times faster than organisms on the low flat peak, the latter can be 

preferable at a mutation rate of about 1.25 per genome per replication (Wilke et al. 

2001), because mean fitness of this group will be higher. Mutation rates of this order 

can be observed in nature, e.g. they are common in viral populations (Drake and 

Holland 1999). 

Thus we can summarize that under the high mutation pressure, the lower but flatter 

peak in the fitness landscape will be preferred over the higher (fitter) narrow peak, 

making the population more robust against mutations and allowing higher average 

fitness. In comparison to the Darwinian “survival of the fittest” this effect is usually 

called “the survival of the flattest” (Wilke et al. 2001). Figure 1 schematically shows 

how it works. 
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1.2.3   Error threshold and error catastrophe 

Another important inference of the quasispecies theory is the existence of an error 

threshold of replication leading to an error catastrophe. Eigen described it as a limit to 

the amount of information that can be stored in the population with some fixed rate of 

mutations (Eigen 1971). The amount of information in the population could be 

viewed in the framework of the quasispecies model as a degree of localization of the 

population in a space of all possible sequences. So it is inversely proportional to the 

variance of the distribution of alleles’ number, contained in the population. Hence the 

maximum value of information is achieved only when all organisms in the 

equilibrium population are the same (only one allele is contained in the population, 

i.e. the eigenvector corresponding to the maximum eigenvalue has a single non zero 

component), thus the entire population is concentrated in a single point of sequence 

space. This, in turn, is possible only if the replication is error free (probability of 

mutation is equal to 0), so that when time goes to infinity, the fittest (the fastest 

replicating) organism will solely dominate in the population. However, in this case the 

evolution is impossible and the population will be static. On the other hand, if the 

probability of mutation is equal to 1, alleles in the population will be uniformly 

distributed in the sequence space and the population will contain no information. It is 

intuitively clear that for a probability of mutation between 0 and 1 some intermediate 

distributions will arise. The quasispecies model allows us to calculate this distribution 

for a given fitness landscape (i.e. for the fixed replication rates and probabilities of 

mutation). 

 

Figure 1. Schematic demonstration of “survival of the flattest” effect (Wilke and Adami 

2003). 

Left (A) and right (B) parts of the figure represent the same fitness landscape with 

different mutation rate. Under low mutation pressure the population occupying steep peak 

(A-I) outperform the population on the flat peak (A-II). On the other hand, when the rate 

of mutations is high, most organisms located on the steep peak (B-I) cannot hold on at the 

top and tumble down to the low fitness values. However, organisms of the population on 

the flat peak (B-II) are able to keep fitness values close to the local optimum. In the latter 

case the average fitness will be higher for the population on the flat peak. 
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Let’s consider a single-peak fitness landscape, so there is one allele that is the most 

fitted (it is usually called a master sequence). It can be shown (Nowak and Schuster 

1989) that for low mutation rate values, the population consists of organisms 

concentrated in the neighborhood of the master sequence, and the master sequence 

itself dominates in the population. But when mutation exceeds the certain critical 

value, the distribution of sequences in the population spreads out rapidly to populate 

all possible sequences uniformly. Figure 2 shows the common shape of fraction of the 

master sequence in the population of binary sequences of length 50 as a function of 

the total mutation rate. There are 2
50

 different binary sequences of length 50, so as the 

mutation rate increases the fraction of master sequence (as well as the fraction any 

other sequence) approaches to 2
-50

 and the distribution becomes uniform. 

This behavior resembles a phase transition which is quite common in different 

physical phenomena. Drawing a physical analogy, a mutation rate could be thought as 

a sort of temperature that "melts" the fidelity of the molecular sequences above the 

critical “temperature”. 

The concepts of error threshold and error catastrophe may seem not intuitive, and 

probably they are the most misunderstood in the quasispecies theory. Thus I would 

 

Figure 2. Diagram of the common shape of the logarithm of the fraction of the master 

sequence in the population as a function of the mutation rate. 

A quick transition from the state where master sequence dominates in the population to the 

state where its fraction diminishes to virtually zero is observed near the critical value of 

per-base mutation rate equals to 0.1. 
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like to sum up once again the ideas of this paragraph. There is a value of mutation 

rate, beyond which the structure of a population breaks down and organisms rapidly 

disperse over the sequence space. This critical value of mutation rate is termed the 

error threshold. It depends on the length of genome, as well as on the shape of fitness 

landscape. For mutation rates below this value, the master sequence dominates in the 

population but when mutation rate is above this critical value, the fraction of master 

sequence rapidly drops down to practically zero and the population distributes 

uniformly in the sequence space. This phase-transition-like phenomenon, when 

information about the master sequence in the population is rapidly dissipated, is called 

the error catastrophe (Eigen and Schuster 1977). 

A somewhat related phenomenon in finite populations is predicted by “Muller’s 

ratchet” (Haigh 1978). “Muller’s ratchet” describes an irreversible process of 

accumulation of deleterious mutations in the genome of organisms reproducing 

without recombination. In contrast with infinite population, stochastic effects of 

random genetic drift play a dominant role. The essence of the model relies on the fact  

that if back mutations are rare events and most mutations are detrimental, then after 

some finite time any finite asexual population will reach the state when each organism 

will carry at least one deleterious mutation so that the wild-type organism will be lost. 

Further accumulation of deleterious mutations will lead to a reduction in population 

fitness and eventually to random drift in the sequence space. 

1.2.4   Viral Quasispecies 

Because of its strong basic assumptions about the properties of the population under 

investigation, namely: asexuality, infinite population size, and high-mutability (high-

mutability per se is not necessary, however, it is required to observe interesting effects 

predicted by the model), the quasispecies model is usually considered to be relevant to 

a limited number of real organisms. RNA viruses are among them (Domingo et al. 

2002). They exhibit high mutation rates: around one mutation per genome per round 

of replication or even higher (Drake and Holland 1999) and viral populations, while 

not infinite, are extremely large.  

The first attempt to demonstrate that populations of RNA viruses behave in 

accordance with the quasispecies model was made in the late 1970s by Domingo et al. 

(1978). In this classical in vitro experiment with Q phage it was shown that though 

the genome of the phage is statically defined (i.e. averaged “wild-type” remains the 

same from generation to generation) the structure of the equilibrium population is 

quite heterogeneous. Most of individuals differ in a few positions from the average 

sequence and the actual “wild-type” constitutes less than 15 %. Later, a number of 
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studies for different viruses were presented which supported the importance of the 

quasispecies theory for viral populations: HIV (Hoffmann 1994), hepatitis C virus 

(Forns at al. 1999), vesicular stomatitis virus (Steinhauer et al. 1989), and foot-and-

mouth disease virus (Domingo 1992) for example. An elegant mathematical basis and 

vivid experimental evidence have paved the way for the quasispecies concept to 

become the dominant paradigm for RNA virus evolution (Domingo et al. 1985). 

However, several authors have reasonable doubt whether the quasispecies theory has 

any relevance for virus evolution (Jenkins et al. 2001; Holmes and Moya 2002). 

Others, while recognizing the importance of the quasispecies concept for RNA viruses 

evolution, argue that it contradicts conventional population genetics (Comas et al. 

2005). The proponents of quasispecies, on the other hand, are persistent in defending 

their position, pointing out that the evidences against the theory are usually based on 

misinterpretation and incorrect application of the model (Eigen 1996; Wilke 2005). 

The model itself is quite appealing and arguments for it are strong enough to allow 

further development of the experimental aspects of the theory, with particular regard 

to RNA viruses. 

1.2.5   Model limitations and discussion 

For all its virtues the quasispecies model in practice faces difficulties which impede 

experimental validation of its predictions. Its rigid assumptions are quite convenient 

for building a mathematical model, but they are often incorrect for real biological 

populations. It is clear that all mathematical models assume some simplifications of 

real physical phenomenon they describe. After a simplifying assumption is made the 

question arises whether the model is still useful or if some crucial features of 

described phenomenon are violated and predictions of the model meaningless. Below, 

the most important shortcomings of quasispecies theory will be described and 

discussed. 

The conventional model of quasispecies, as described above, deals with an infinite 

population. However, all real biological populations obviously have finite size. In 

particular, we have a situation when even for modest genome lengths, the number of 

possible genome sequences is much larger than the number of individuals in the 

population. For example, the largest observed populations of RNA viruses are on the 

order of 10
12

 viral particles within a single infected organism (Moya et al. 2000) while 

their genome contains 10
3
-10

4
 nucleotides, and hence the total size of the sequence 

space is approximately 10
6000

 >> 10
12

. We can expect that even the region of sequence 

space with high fitness is typically much larger than the size of a real population in 

nature, so a population of realistic size will never cover it. In this situation we expect 
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evolution to be governed mainly by random genetic drift which then renders the 

deterministic equations of the quasispecies model inapplicable (Jenkins et al. 2001). 

In order to get a better understanding of the limits of model's applicability, it should 

be tested whether phenomena observed in the conventional model persist in the case 

of finite population or if the stochastic effects of genetic drift become crucial and 

violate consistency of the model. 

A lot of works were devoted to adopt the quasispecies theory to finite population sizes 

(Nowak and Schuster 1989; Campos and Fontanari 1999; Park et al. 2010). The 

authors of these studies usually take deterministic equations from the conventional 

model and then add a stochastic component to describe the influence of genetic drift 

in the finite population. These modifications can yield cumbersome results, and 

appealing analytical inferences of the original model transform into bulky expressions 

that are often difficult to interpret. It would be tempting to have a succinct model 

which at the same time would be able to estimate the main features of the finite 

population behavior. 

It was shown, that at least in some cases, the information about the whole sequence 

space (which is available for infinite population) is not required and the behavior of 

the finite population residing in the vicinity of some local optimum in the sequence 

space can be described from deterministic equations (van Nimwegen et al. 1999b). I 

expect that it is possible to observe phenomena predicted by the quasispecies model in 

finite populations. First I would like to mention that the effect of the survival of the 

flattest was observed in extremely small digital populations, having a size lower by 50 

orders of magnitude than the complete sequence space (Comas et al. 2005). However, 

the most noteworthy phenomenon is the emergence of quasispecies themselves, i.e. 

the formation of a population’s structure which facilitates the minimization of the 

mutational load via accumulating closely related sequences and thus reducing the risk 

to suffer from deleterious mutations (Bornberg-Bauer and Chan 1999; Wilke 2001). 

This phenomenon has been called the evolution of mutational robustness (van 

Nimwegen et al. 1999a). Van Nimwegen et al. (1999a) demonstrated the somewhat 

surprising fact that the population has the tendency to evolve toward highly connected 

regions of the sequence space as long as M>>1, where  is mutation rate per genome 

per replication and M is the size of the population. If M>>1 this tendency is 

independent of evolutionary parameters such as mutation rate, selection advantage 

and population size. In many RNA viruses the number of mutations per genome per 

replication exceeds 1 (Drake and Holland 1999), thus, even relatively small 

populations of RNA viruses can be good candidates for experimental validation of the 

theory. 
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The core of the quasispecies model is quite general. However, most papers concerning 

the model focus on the narrow case of a single-peak fitness landscape in which a 

single fittest sequence (master sequence) has superior fitness 1+s while all other 

sequences have fitness 1 (Tannenbaum  et al. 2004; Campos and Fontanari 1999; 

Swetina and Schuster 1982). As a result they lose much of generality of the original 

model and, what is even more unfortunate, move away from natural biological 

conditions. Another unrealistic feature contained in most existing models based on the 

quasispecies concept (which is, however, not inherent to the general quasispecies 

theory) is that they consider a type of selection where all sequences in the sequence 

space are assumed to have positive replication rates, that is, there are no lethal 

mutations and each genotype is able to produce a progeny. Such selection is termed 

“soft selection”. Under soft selection only relative differences in fitness are important, 

the population size is held constant and hence the population cannot go extinct. The 

effect of the error threshold is usually studied in the framework of such special-case 

models (i.e. models with single-peak fitness landscape and absence of lethal 

mutations). Nonetheless, it is often presented as a general prediction of a quasispecies 

theory (Nowak 1992; Tannenbaum et al. 2004) and cited as an underlying theory for 

the concept of lethal mutagenesis for viruses, which has already proved its worth 

(Crotty et al. 2001; Pariente et al. 2005; Anderson et al. 2004). This, however, is not 

correct. Although, the concept of lethal mutagenesis seems to be similar to the 

concept of error catastrophe, these two concepts are not the same: an error catastrophe 

is a mere dissolution of population information in the sequence space, whereas 

extinction is a drop in the absolute abundance of individuals in the population which 

can lead to its complete extinguishing (Bull et al. 2007). It was demonstrated on a 

simple example (Summers and Litwin 2006) and strictly mathematically proven 

(Wagner and Krall 1993), that the complete absence of lethal mutations is the 

necessary condition for the existence of the error threshold and hence, when studied in 

the framework of the quasispecies model with soft selection, the error threshold per se 

makes no statements about population extinction.  

On the other hand, the abundance of lethal mutations in biological organisms and in 

particular RNA viruses is now beyond doubt (Sanjuan et al. 2004). So we can expect 

that alternative models, based on a hard selection process in a finite population would 

be more adequate for description of lethal mutagenesis. If selection is hard, some 

organisms become unviable and do not participate in evolutionary competition. 

Therefore some fraction of a population will always remain in viable areas of the 

fitness landscape preventing uniform spread of the population in the sequence space 

and thus the complete loss of information. However, when hard selection is 

considered the population size will decline as the mutation rate increases and 
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eventually the population can go extinct. Such extinction due to mutation pressure is 

usually called mutational meltdown (Lynch et al. 1993; Gabriel et al. 1993). Wilke 

proposed a simple graphical explanation for understanding the difference between the 

concepts of error threshold and lethal mutagenesis (Figure 3). 

Summarizing these problems, I can say that nothing prevents the application of the 

quasispecies model to finite populations with hard selection. However, multiple 

additional, non-obvious assumptions are required to construct such models, leading to 

the difficulty of validation, and loss of generality and reliability. 

To draw a line under this discussion on the quasispecies model I would like to say that 

I do not think the quasispecies theory should oppose classical theoretical population 

genetics, rather it should be viewed as a subset of it. Furthermore, it was shown that it 

is mathematically equivalent to the classical theory of mutation-selection balance 

(Wilke 2005). The main reason why these two concepts are usually considered as 

separate theories is that for a long time they were developed in parallel by more or 

 

Figure 3. A diagram comparison of error threshold (A-I and B-I, soft selection) and lethal 

mutagenesis (A-II and B-II, hard selection) concepts under different mutational pressure 

(Wilke 2005). 

If the mutation rate is low (A), both concepts give a similar picture: the population 

occupies the top of the fitness peak. However, when the rate of mutations becomes high 

enough (B), the selective strength becomes insufficient to hold back this pressure and the 

population, unable to retain its position on the peak, is scattered over the sequence space. 

If in the latter case a fitness landscape has a positive minimum (B-I) then the majority of 

organisms are pushed to this minimum level, while keeping their ability to reproduce. As 

a result they are still able to compete with individuals on the peak and win this 

competition by sheer abundance. On the other hand, if a fitness landscape has no positive 

minimum level (A-II and B-II), the high rate of mutation pushes a large fraction of the 

population to zero fitness (B-II). Organisms with zero fitness are unviable (gray dots in B-

II), so they do not compete with organisms on the peak and, therefore, some fraction of 

the population will always remain there. It is worth noting, that all this reasoning is 

correct only if the population is infinite. Otherwise, stochastic pressure of random drift 

will move the population away from the peak (effect of Muller’s ratchet) and the 

population will either drift across the sequence space (in case of soft selection, A-I and B-

I) or go extinct (in the case of hard selection, A-II and B-II), demonstrating the mutational 

meltdown effect. 
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less independent groups of scientists representing different schools. That is why 

authors have been focused on different phenomena and their aspects, whereas the 

basic principles of both theories are the same. While the quasispecies model mainly 

focuses on high-dimensional sequence spaces, explicitly considering multiple loci 

under high mutational pressure, classical works in population genetics usually treat 

models with one or two alleles (Wilke and Adami 2003). Another common aspect 

which distinguishes quasispecies theory from the majority of works on conventional 

population genetics is the size of the population under investigation. While most 

current conventional models (based on Kimura’s neutral theory) usually consider 

finite populations, taking into account different stochastic effects, the quasispecies 

model is originally a deterministic description of infinite populations. However, in 

recent years a lot of works on quasispecies model also incorporate stochastic 

components, so the boundaries between quasispecies model and models based on 

neutral theory became increasingly blurry. 

1.3   Information theory. Basic concepts 

In contrast with the overwhelming majority of scientific theories, the theory of 

communication or information theory (IT), as it is usually called, has an identifiable 

beginning—it is a paper from Claude Shannon called "A mathematical theory of 

communication", which was published in 1948 (Shannon 1948). One year later the 

theory appeared in a book by Shannon and Weaver (1949). Shannon was not the first 

who tried to create a mathematical framework for the data communication process. 

However, only a few isolated works, mainly focused on some specific applications, 

touched upon this topic. On the other hand, Shannon’s work represents a unifying 

general idea that revolutionized the area of communication. 

In his 1948 paper Shannon suggested innovative ideas and concepts which paved the 

way for the beginning of the digital age. First, Shannon demonstrated that the actual 

data content is irrelevant, any information can be represented as a sequence of 0’s and 

1’s. He established two fundamental limits: the limit for possible degree of data 

compression (Shannon's source coding theorem) and the limit on a speed of the error-

free data transmission for a given level of noise, measured in binary digits per second 

(Shannon’s noisy-channel coding theorem). The former pertains to the concept of 

entropy, the latter relates to the notion of the mutual information and is also known as 

the channel capacity. Shannon showed that there are actually two alternative ways for 

reliable transmission of a given amount of information over a noisy channel: to use 

high power and low bandwidth, or high bandwidth and low power. While increasing 

the signal’s power was at that time a common way to enhance the reliability of 
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communication, the idea of using bandwidth extension as an alternative way to the 

same goal was groundbreaking.  

Nonetheless, the fate of IT was not as easy as it may seem at first glance, and it took 

some years to fully appreciate the meaning of Shannon’s work. In the beginning IT 

was primarily a theoretical study. Its practical applications were rare and had no 

essential demand. Indeed, at that time engineers preferred to simply use more 

bandwidth and power to achieve reliable communication in the presence of noise, 

instead of using complicated coding schemes for better compression and error 

correction. In addition, IT suffered heavily from hardware technological limitations: 

sophisticated coding algorithms require more processing power which was 

unavailable. These circumstances in turn contributed heavily to the poor funding of 

the information theoretical research. Eventually, lack of interest, technology and 

funding led the theorists to announce the “death” of IT in the mid-fifties.  

However, the launch of the Sputnik in 1957 changed everything. The space race 

began and instantly IT received its first serious attention due to the tough efficiency 

demands in space flight communications. Indeed, signal transmission in deep space 

has features which make IT perfectly suited for it: foremost among these is the fact 

that power in space is quite expensive. Secondly, there is plenty of bandwidth which, 

as was shown by Shannon, is necessary for reliable energy-efficient communication. 

Extensive financial support from the military and rapid progress of computers and 

other hardware ensured swift flourishing of IT. Nowadays we use the achievements of 

Shannon’s theory in almost all spheres of our lives often not even realizing it. 

Although the theoretical basis of IT was completely developed in the first years of its 

existence, algorithmic aspects continued to evolve dynamically over the last half-

century. The rather recent (1993) invention of so called “turbo codes” provided 

doubling of the transmission efficiency, so significant breakthroughs are still possible 

and the progress is still far from complete. The story of the information theory is a 

unique possibility to trace the development of the idea initially expressed in a single 

theoretical paper that, during only few decades, evolved to a broad scientific field 

with widespread applications allowing for the beginning of current Digital Age (Aftab 

et al. 2001). 

In the next few sections I will briefly describe some basic results of the information 

theory (mainly based on (Cover and Thomas 2006)) which are relevant to the 

framework of the model of molecular evolution developed below in the results 

section. A more detailed description of all these concepts and many others can be 

found in (Cover and Thomas 2006), for detailed introduction to information theory 

with clear examples and historical notes you can refer to (Pierce 1980). 
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1.3.1   Entropy, joint entropy, relative entropy and 

mutual information 

Entropy and information are two basic concepts in Claude Shannon’s information 

theory. However, in the literature they are often used in a conflicting manner. Below I 

will give mathematical descriptions of both notions, emphasizing their intuitive 

features, which, I hope, should facilitate precise understanding and the ability to 

distinguish between these two concepts. 

First I would like to note that the notion of entropy is also present in thermodynamics 

and statistical mechanics. Although all three of these concepts were designed to 

describe phenomena in essentially different areas, they are somewhat similar. 

Sometimes this can lead to confusion. So to avoid misunderstanding, the entropy 

arising in information theory is usually called information entropy. Since in this work 

we are only interested in the specific aspects of this concept, for brevity I will use the 

term entropy as a synonym of information entropy. 

Information entropy is usually defined as a measure of uncertainty (unpredictability or 

variability) of a random variable. Sometimes it is also called a self-information of a 

random variable, because, as shown below, it is equal to the amount of information 

required to describe the random variable. Let’s consider discrete random variable X 

taking values from the set X and having probability mass function pX(x) = Pr(X = x), 

x  X. Then the entropy of X is defined as: 

 𝐻(𝑋) = − ∑ 𝑝𝑋(𝑥) log2 

𝑥∈Ω𝑋

𝑝𝑋(𝑥) (3) 

Further in this work I will always use the base of the logarithm equal to 2, which 

corresponds to the entropy measured in bits. Other typical units for entropy 

measurement are nats and bans, corresponding to logarithm bases e and 10. Also I 

will use the convention that 0log 0 = 0. This can be easily verified using L'Hôpital's 

rule: 

 
lim
x → 0

(𝑥 log𝑥) = lim
x → 0

(log𝑥
1

𝑥
⁄ ) = lim

x → 0
(log𝑥)′ (

1

𝑥
)
′

⁄ = lim
x → 0

(
1

𝑥
) (−

1

𝑥2
)⁄

= lim
x → 0

𝑥 = 0 

(4) 

Thus, adding terms of zero probability does not change the entropy. It is also worth 

pointing out that entropy is a function only of the distribution of X, so it does not 

depend on the actual values taken by the random variable X, but on the probabilities. 

From logical considerations it is clear that the result of a random trial is most 

unpredictable when all possible outcomes are equally likely. Thus, the entropy of 
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probability distribution is maximal if all outcomes are equiprobable. So for discrete 

random variable X with finite number of outcomes || = M the entropy can be 

bounded from above: 𝐻(𝑋) ≤ −∑
1

𝑀
log

1

𝑀

𝑀
𝑖=1 = log𝑀, with equality if and only if all 

outcomes have the same probability of 
1

𝑀
. For example the maximum entropy of 

binary random variable is 1 bit, corresponding to the Bernoulli distribution with 

probability of success p = 0.5. The above mentioned properties of the entropy show 

that the measure of uncertainty defined in this way naturally possesses many intuitive 

features.  

In the same manner as we defined the entropy of a single random variable, we can 

define the entropy of a pair of random variables. The joint entropy H(X,Y) of a pair of 

discrete random variables with a joint distribution pXY(x,y) is defined as: 

 𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝𝑋𝑌(𝑥,𝑦) log 𝑝𝑋𝑌(𝑥, 𝑦)

𝑦∈Ω𝑌𝑥∈Ω𝑋

 (5) 

There is nothing actually new in this definition because we can consider a pair (X,Y) 

as a single vector-valued random variable. In the same way entropy of multiple 

random variables can be considered. 

Also we can define conditional entropy of a random variable Y given another random 

variable X as an expected value of the entropies of the conditional distributions, 

averaged over the conditioning random variable: 

 𝐻(𝑌|𝑋) = ∑ 𝑝𝑋(𝑥)𝐻(𝑌|𝑋 = 𝑥)

𝑥∈Ω𝑋

=

= − ∑ 𝑝𝑋(𝑥) ∑ 𝑝𝑌(𝑦|𝑥)

𝑦∈Ω𝑌𝑥∈Ω𝑋

log 𝑝𝑌(𝑦|𝑥) =

= − ∑ ∑ 𝑝𝑋𝑌(𝑥, 𝑦) log 𝑝𝑌(𝑦|𝑥)

𝑦∈Ω𝑌𝑥∈Ω𝑋

 

(6) 

An intuitive property of conditional entropy is that it is always less than or equal to 

the unconditional: 𝐻(𝑌|𝑋) ≤ 𝐻(𝑌), with equality if and only if X and Y are 

independent. Therefore, additional information cannot hurt. 

The naturalness of the definition of joint entropy and conditional entropy is also 

manifested by the fact that the entropy of a pair of random variables is equal to the 

entropy of one plus the conditional entropy of the another: 𝐻(𝑋, 𝑌) = 𝐻(𝑋) +

𝐻(𝑌|𝑋). So, entropy is an additive function if its arguments 𝑋1, 𝑋2, … , 𝑋𝑁 are 

independent random variables: 
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𝐻(𝑋1, 𝑋2, … , 𝑋𝑁) =∑𝐻(𝑋𝑖)

𝑁

𝑖=1

 (7) 

For further discussion we will also need the notion called mutual information. 

Consider two random variables X and Y with a joint probability mass function pXY(x,y) 

and marginal probability mass functions pX(x) and pY(y). The mutual information 

I(X,Y) is expressed as: 

 
𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝𝑋𝑌(𝑥,𝑦) log

𝑝𝑋𝑌(𝑥, 𝑦)

𝑝𝑋(𝑥)𝑝𝑌(𝑦)
𝑦∈Ω𝑌𝑥∈Ω𝑋

= 𝐻(𝑌) − 𝐻(𝑌|𝑋)

= 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

(8) 

It is easy to see that mutual information is a symmetric function. It represents the 

reduction in the uncertainty (entropy) of X or Y due to the knowledge of another, Y or 

X correspondingly. For example, for independent X and Y mutual information I(X,Y) 

is equal to zero. On the other hand, if X = Y then I(X,X) = H(X) (that is the reason why 

the entropy is sometimes called self-information). Speaking simply if I(X,Y) > 0, then 

the knowledge of one variable makes the predictions about the other more accurate, 

this is exactly what we mean by information in our common language. Summarizing, 

I want to point out that information can only be defined relative to two systems 

(random variables), it measures the correlation between these two systems and, 

therefore, in contrast with entropy, the information is always about something and 

never absolute. 

1.3.2   Asymptotic equipartition property 

Asymptotic equipartition property (AEP) is one of the fundamental results of the 

information theory. It is an analog of the law of large numbers in the IT and could be 

obtained as a direct consequence of the weak law of large numbers. The weak law of 

large numbers states that if we take a sum of N independent and identically distributed 

(i.i.d.) random variables (X1, X2, …, XN), divided by N it will converge to the expected 

value of X as N approaches infinity: lim𝑁→∞
1

𝑁
∑ 𝑋𝑖 = 𝐸(𝑋)𝑖 . In turn, AEP (in its 

original form) states that the value of 
1

𝑁
log

1

𝑝𝑋(𝑋1, 𝑋2,…,𝑋𝑁)
 converges in probability to 

the entropy H(X), as N → ∞, where pX(X1, X2, …, XN)  is the probability of observing 

the sequence X1, X2, …, XN. Speaking informally the probability of any actually 

observed sequence X1, X2, …, XN will be close to 2
−NH(X)

 when the number of 

observations is large enough. 
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This fact become clear if we note that entropy can be also interpreted as the expected 

value of random variable log
1

𝑝𝑋(𝑋)
, where X is drawn according to the probability 

mass function pX(x): 𝐻(𝑋) = 𝐸𝑝𝑋 (log
1

𝑝𝑋(𝑋)
). Now applying the weak law of large 

number to a sequence of i.i.d. random variables (log
1

𝑝𝑋(𝑋1)
, log

1

𝑝𝑋(𝑋2)
, … , log

1

𝑝𝑋(𝑋𝑁)
) 

we immediately obtain the statement of the AEP. 

The requirement of independence and identical distribution are necessary for the 

proof on the basis of the weak law of large numbers. However, it is intuitively clear 

that the statement of the AEP is more general and the assumption of identical 

distribution is not essential for the AEP to hold. If identical distribution is not 

assumed, we need just a slight reformulation of the statement: 
1

𝑁
log

1

𝑝𝑋(𝑋1, 𝑋2,…,𝑋𝑁)

𝑁 → ∞
→   𝐻̅(𝑋) in probability, where X1, X2,…, XN are independent random variables and 

𝐻̅(𝑋) =
1

𝑁
𝐻(𝑋1, 𝑋2, … , 𝑋𝑁) =

1

𝑁
∑𝐻(𝑋𝑖) is an average entropy. The case when the 

variables are independent but not identically distributed will be exploited in the model 

developed in the results section below. Additionally, it was proven that the 

requirement of independence can also be relaxed - for details see (Girardin 2005). 

1.3.3   Typical and high-probability sets 

For simplicity in this and the next section, I will consider the original form of AEP 

and thus use sequences of independent identically distributed random variables. 

However, all presented results can be easily generalized on the case of non-identical 

distribution.  

AEP allows us to divide the set of all sequences SN = (X1, X2, …, XN) into two sets. 

The first (typical) set contains elements with probabilities close to 2−𝑁𝐻(𝑋) =

2−𝐻(𝑆𝑁), where 𝐻(𝑆𝑁) =  𝐻(𝑋1, 𝑋2, … , 𝑋𝑁) = ∑𝐻(𝑋𝑖) = 𝑁𝐻(𝑋). The second 

(nontypical) set contains all other sequences. AEP states that as N grows the 

probability to get typical sequence converges to 1. Thus most of our attention will be 

concentrated on the typical sequences. Since any property that is true for the typical 

sequences will then be true with high probability and will determine the average 

behavior of the sequence, assuming that it is long enough. 

To clarify this notion let’s consider a simple example. Suppose we have a binary 

random variable X  {0, 1} with probability mass function p(x), x  X, defined as 

p(1) = p and p(0) = 1—p = q. If X1, X2, …, XN are i.i.d. according to p(x), the 

probability of sequence x1, x2, …, xN is ∏ 𝑝(𝑥𝑖)
𝑁
𝑖=1 . E.g., the probability of (0, 1, 0, 0, 

1 0, 1) is p∑𝑋𝑖q𝑁−∑𝑋𝑖 = p3q4. There are in total 2
N
 sequences of length N, and it is 
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clear that in general not all of them have the same probability. However, if we ask for 

the probability p(𝑋1, 𝑋2, … , 𝑋𝑁) of the outcomes 𝑋1, 𝑋2, … , 𝑋𝑁, where Xi, i = 1,2, .., N 

are i.i.d. distributed according to p(x), what rational prediction can we make? It is 

reasonable to expect that the observed sequence will contain the number of 1’s close 

to Np, thus the probability of such sequence will be close to p
Np

q
Nq

. The entropy of 

this probability distribution is: 𝐻(𝑋) = −p log p−q log q. Now let’s note that p
Np

q
Nq

 

= 2
- NH(X)

. So expected sequence has a probability close to 2
- NH(X)

 and, according to 

AEP, the longer the sequence we observe (bigger N) is, the larger the fraction of 

sequences having probability close to 2
- NH(X)

 in the set of all possible sequences of 

length N. 

In the two previous paragraphs I tried to give a somewhat informal explanation to the 

concept of typical set. In fact, in the framework of the thesis this explanation is 

sufficient. However, for correctness, I will also give the strict definition. The typical 

set 𝐴𝜖
(𝑁)

 with respect to the probability distribution with mass function pX(x) is the set 

of sequences (x1, x2,…, xN)  Ω𝑋
𝑁 with the property: 2−𝑁(𝐻(𝑋)+𝜖) ≤ 𝑝(𝑥1, 𝑥2, … , 𝑥𝑁) ≤

2−𝑁(𝐻(𝑋)−𝜖). Taking this, the simple corollary from the AEP statement is that for 

rather large values of N (for long enough sequences) the typical set has probability 

close to 1, all elements of the typical set are nearly equiprobable, and the number of 

elements in the typical set is nearly 2
 NH(X)

. Considering  the example with Bernoulli 

random variable X having probability of success equal to p, we can see that the size of 

its typical set is equal to the number of all possible sequences of length N if and only 

if H(X) = 1. This, in turn, is the case only if p = 0.5. In all other cases the size of 

typical set is smaller than the number of all possible sequences. 

Let’s also introduce the notion of a high-probability set 𝐵𝛿
(𝑁)

. For each N = 1, 2, …, 

let 𝐵𝛿
(𝑁)

⊂ Ω𝑋
𝑁 be the smallest set satisfying the condition: 𝑃𝑟{𝐵𝛿

(𝑁)
} ≥ 1 − 𝛿. To 

illustrate the difference between a typical set (𝐴𝜖
(𝑁)

) and a high-probability set (𝐵𝛿
(𝑁)

), 

let’s once again consider a sequence of Bernoulli random variables X1, X2, …, XN  

with parameter p = 0.8. The typical sequences in this case are the sequences with the 

fraction of 1’s close to 0.8. However, this does not include the most likely single 

sequence, which is the sequence of all 1’s. On the other hand the set 𝐵𝛿
(𝑁)

 by 

definition contains all the most probable sequences and therefore includes the 

sequence of all 1’s. 

From the definition of the typical set it is clear that it is a rather small set that 

concentrates most of the probability. It is not clear, however, whether this set is the 

smallest such set and how it compares to a high-probability set. From the definition of 

high-probability set it is clear, that for a given level of probability concentration  and 
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sequence length N, the number of elements in 𝐵𝛿
(𝑁)

 is less than or equal than in 

minimal typical set 𝐴𝜖𝑚𝑖𝑛

(𝑁)
 having the same probability, i.e.    and N |𝐵𝛿

(𝑁)
| ≤

|𝐴𝜖𝑚𝑖𝑛

(𝑁)
|, where 𝐴𝜖𝑚𝑖𝑛

(𝑁)
= min𝜖 {𝐴𝜖

(𝑁)
|𝑃𝑟{𝐴𝜖

(𝑁)
} ≥ 1 − 𝛿}. However, it can be shown 

that 𝐴𝜖𝑚𝑖𝑛

(𝑁)
 and 𝐵𝛿

(𝑁)
 have significant intersection and, moreover, have about the same 

number of elements. Speaking more strictly, it is proved that the typical set has 

essentially the same number of elements as the high-probability set, to the first order 

in the exponent. 

1.3.4   Channel capacity 

Another important concept of the IT is the Channel Capacity. To define it we first 

need a definition of the communication channel itself. Generally speaking, a 

communication channel is a physical or logical transition medium which is used to 

convey information from the transmitter (T) to the receiver (R). Here only a case of 

the memory-less discrete channel will be considered, because it is exactly the case we 

need in this work. A discrete memory-less channel is a system comprising input 

(source) alphabet X, output alphabet Y and a transition probabilities p(y|x) that 

defines the probability of observing the output symbol y given that the symbol x was 

sent, where the probability distribution of the output depends only on the current input 

and does not depend on previous input or output symbols. So T communicates with R 

means that T induces some state in R. In reality any communication is a physical 

action which causes transmitted information to be affected by the ambient noise as 

well as by distortions induced by sender or receiver. Communication is considered 

successful if the transmitter T and the receiver R agree on what was sent. The 

schematic diagram of physical communication system is presented in Figure 4. 

An initially transmitted message (M) is encoded using source alphabet (X). Then the 

encoded sequence (X1, X2, …, XN) is transmitted through communication channel, 

which maps source symbols from input sequence into the sequence (Y1, Y2, …, YN) 

 

Figure 4. Schematic diagram of a general communication system. 
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of output symbols (Y). Usually, due to the presence of noise this correspondence is 

not exact, thus the output symbols are random but their distribution depends on input 

(p(y|x)). After receiving the output sequence, we attempt to decode the received 

(output) message and recover the original transmitted message. If the communication 

is error free, having an output sequence we can easily identify the required input 

sequence. In this case the reconstruction of the original message is a trivial task 

(because the procedure of message encoding is assumed to be a known deterministic 

process). However, the presence of noise in the system (which is always the case in 

real communication) can hinder the unambiguous reconstruction of the original 

sequence since each possible input sequence induces a probability distribution on the 

output sequences.  

In general, the same input sequences can be mapped into different output sequences 

and different input sequences may give rise to the same output sequence. It is 

intuitively clear that higher levels of noise generate wider output distributions of input 

sequences with larger overlap with each other, which in turn makes recognition of the 

original message more difficult. To avoid this ambiguity we should add redundancy in 

the input coding procedure, i.e. expand spaces of potential input and output sequences 

(often, this is the same space, i.e. X = Y) and choose our input sequences to be 

rather dissimilar, so even after distortion, induced by different sources of noise, we 

can still identify with high confidence from what input sequence each particular 

output came. In his noisy-channel coding theorem Shannon showed (Shannon 1948) 

that by mapping the source into the appropriate “widely spaced” input sequences to 

the channel, it is possible to transmit a message with arbitrary low probability of error 

and reconstruct the source message at the output. However, this procedure usually 

requires increasing the length of code words, so the encoded (input) message becomes 

longer and the overall rate of transmission decreases. The theoretical maximum rate 

of reliable information transfer through the channel, for a particular noise level is 

called the capacity of the channel. The formal definition of the channel capacity (C) 

for discrete memory-less channel, defined above, can be formulated as follows: 

 𝐶 = max
𝑝(𝑥)

𝐼(𝑋, 𝑌) (9) 

where the maximum is taken over all possible input distributions p(x). 
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1.4   Information theory and molecular 

genetics 

Application of IT approaches in molecular genetics has a long history. Although it is 

not directly related to the topic of this section, it is interesting and worth noting here 

that the PhD thesis of Claude Shannon (the father of IT) was devoted to the 

development of an algebra for studying dynamics of Mendelian populations. 

However, immediately after receiving his degree, Shannon went to work for Bell 

Laboratories, where he began his studies in the field of communications and never 

returned to population genetics (Crow 2001).  

During the last 60 years a lot of work focused on various aspects of molecular 

genetics was done using information theory as a theoretical framework. For instance, 

Adami and Cerf (2000) studied information content of bacterial tRNA. IT-based tools 

were also suggested and effectively applied for determining secondary and tertiary 

structures of nucleic acid sequences (in particular tRNA and different subunits of 

rRNA) (Chiu and Kolodziejczak 1991; Gutell et al. 1992) and proteins (Gibrat et al. 

1987; Thompson and Goldstein 1997). Another pressing concern where approaches 

utilizing concepts of information theory were successfully applied is the identification 

of DNA protein-binding regions (promoters, enhancers, splicing sites etc.) (Erill and 

O'Neill 2009) and protein-protein interactions. It was also demonstrated that IT 

methods can be useful in rational targeted drug design (Hamacher 2007). 

Most of above mentioned works represent ad hock algorithms and therefore have 

purely practical orientation. However, it was shown that IT based approach gives 

possibility to reveal obscured general regularities of the genetic information structure. 

Gatlin (1966, 1968) suggested a coefficient based on the entropy of nucleotides 

distribution along the genome sequence (horizontal entropy). Gatlin’s model actually 

represents a first order Markov chain. Given a probability distribution p(x) and 

conditional probability distribution p(y|x), where x is a nucleotide in a given genome 

and y is a nucleotide which follows x, he calculated the value K = H(X)—H(Y|X), 

where X and Y are random variables distributed correspondingly as p(x) and p(y|x). 

So, the parameter K can be interpreted as a divergence from independence. As we see, 

the model is quite simple. However, Gatlin showed that broad classes of organisms 

(phage, bacteria and vertebrates) form clear clusters according to the value of this 

parameter, so, potentially it can reflect the emergence of deep forces acting behind the 

scene and shaping information structure of genomes. In more recent research Grosse 

et al. (2000) also studied horizontal correlations between nucleotides. He proposed a 

parameter which is based on mutual information and showed that its usage provides a 
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possibility to discriminate protein coding regions from noncoding ones. In contrast 

with previous studies pursuing the same goal, here the authors were able to 

demonstrate that their approach is species independent. 

Let’s now move closer to the topic of this thesis. One of the key tasks in molecular 

genetics, which is also relevant to the material presented in the results section, is 

finding conserved regions in DNA, RNA or protein sequences. This problem is 

important because it is reasonable to suggest that a well-preserved sequence is (or 

was, not so long ago) under selective pressure and thus has (or had) a biological 

function (Fabris 2008). However, as is already known, nature has developed a variety 

of reliable methods for tolerating mutations in sequences without affecting their 

functionality: redundancy of amino acid protein sequences and functional DNA sites 

(in particular, the most well-known example is the redundancy of genetic code, 

however, noncoding functional sequences can possess much stronger redundancy), 

different intricate error-correction mechanisms etc. Thus, functional sequences are 

usually not absolutely conserved, but to some extent admit variability (sometimes 

rather strong). So the task of finding sequences which have the same function as the 

assigned probe becomes less trivial because we have to find not only completely 

identical sequences, but also sequences which are similar to our probe in some 

suitable sense. IT has proved to be a useful tool for the identification of these 

hypothetically meaningful sequence polymorphisms. However, in contrast with 

studies of Grosse (2000) (clustering of different groups of organisms) and Gatlin 

(1966, 1968) (discriminating between coding and noncoding regions of the genome) 

horizontal correlations alone cannot help in discovering functional polymorphic 

sequences, because the meaning of the sequence emerges only through the interaction 

with environment (i.e. the meaning is relative). Horizontal variability tells us nothing 

about actual information carried by the sequence, because a sequence per se does not 

bear any information about its function, rather this information is stored in 

correlations (interactions) between the sequence and environment which it describes 

or to which it corresponds (Adami 2004). The environment for the sequence can be 

given by the binding proteins and other intra-cellular components which somehow 

interplay with the sequence. In the light of the arguments expounded above, it seems 

apparent that we may never detect functional polymorphic sequences if we are only 

given a single sequence. However, it is possible to do so if we consider vertical 

entropies in the set of functionally equivalent sequences, i.e. aligning sequences from 

this set under each other and studying the patterns of nucleotide substitutions in each 

position. This strategy was initially introduced by Schneider et al. (1986) who 

investigated ribosome binding sites. His approach, though often criticized (e.g. see 

page 46 in (Yockey 2005)), proved its consistency. 
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Although, as we just saw, there are attempts to apply IT to a wide range of issues 

arising in molecular genetics, IT is not considered a conventional approach and is not 

widely used.  Besides, almost all above mentioned works have an applied focus, 

whereas it is quite tempting to apply IT principals to elaborate a general theoretical 

model of information fluctuations in biological sequences.  
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2   RESULTS 

2.1   The model of positional information 

storage in sequence patterns 

Essentially, all models are wrong, but some are useful. 

Box GEP and Draper NR (1987) Empirical Model Building and 

Response Surfaces, p. 424. 

At the dawn of the era of molecular biology there was a strong held belief that the 

vast majority of any genome is occupied by genes. However, by the end of 1960s it 

became apparent that protein coding regions of genomes alternate with noncoding 

regions, and in large genomes the former usually constitutes only a minor fraction. 

The human genome was always of particular interest and at that time there were fierce 

debates over what fraction thereof is functional. Several different estimates were 

proposed, however, all agreed that the fraction of protein coding sequences within the 

human genome does not exceed 10%. In the beginning of 1970s Susumu Ohno 

published two landmark works in which he tried to explain the origin and role of 

noncoding DNA (Ohno 1970, 1972). According to his assumption, the majority of 

noncoding DNA originates from gene duplication followed by sequence degeneration 

and eventual loss of function by the duplicates. In line with this view he called 

noncoding sequence the “junk” DNA. Generally, this point of view was supported by 

the broad scientific community, and the insight into genome functionality was mainly 

restricted to protein-coding sequences. It is worth mentioning that the factors which 

impede our understanding of noncoding functionality lay mostly in the technical area. 

Genes are conserved, well-structured and have a universal mechanism of information 

encoding: the genetic code, which was discovered in the beginning of 1960s. Because 

of these properties, genes can be localized easily and investigated both experimentally 

and computationally. On the other hand, there is still no generic concept of 

informational storage for noncoding functional DNA, which looks quite variable, 

unstructured and thereby, difficult to recognize and study. In the light of all above 

mentioned it is not surprising that the majority of experimental research for decades 

was focused on the investigation of coding regions, while noncoding sequences were 

usually treated as nonfunctional garbage simply undergoing random drift. This 
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approach created strong observational bias affecting theoretical studies and led to 

misconceptions about mechanisms of molecular evolution. In this regard classical 

models of molecular evolution are no exception as they were designed and verified 

according to contemporary data. They were tuned to describe the evolution of coding 

regions, where sequence conservation is reliable evidence of functionality, and 

noncoding DNA was primarily considered evolutionary junk.  

Today our view of DNA functionality is gradually changing. Current technological 

advances provide an opportunity to look much deeper into genome functionality than 

was possible even a decade ago. The concept of “junk” DNA still holds true to some 

extent (the human genome is full of pseudogenes). However, it is apparent now that 

the picture is much more complex than was previously believed. While protein coding 

genes usually make up more than 90% of bacterial or archaeal genomes, their fraction 

in the human genome is only about 1.2% (The ENCODE Project Consortium 2012). 

There was never a doubt that at least some fraction of noncoding DNA is functional. 

Regions of noncoding sequence enriched with binding sites (promotors, enhancers, 

introns and etc.) and microRNA provides a mechanism for regulation of gene 

expression, ribosomal and transfer RNA mediates protein synthesis. These are just 

some of the more well-known examples of noncoding functionality. However, what 

fraction of noncoding DNA in human genome is functional remains largely unclear.  

Recent extensive studies in the framework of The ENCODE (The Encyclopedia of 

DNA Elements) Project Consortium (2012) revealed that the proportion of the human 

genome potentially possessing some function is much higher than it was thought 

before, reaching 80.4%. This number is probably an overestimation. However, even 

for the most conservative estimates, the fraction of the human genome likely involved 

in direct gene regulation is about 8.5%, significantly exceeding the proportion 

ascribed to protein coding sequences (The ENCODE Project Consortium 2012). With 

these data, it is reasonable to suggest that more information in the human genome is 

responsible for regulation of gene expression than for biochemical properties of 

protein sequences. This fact can be also indirectly supported by the evidence that less 

than 10% of disease-associated single nucleotide polymorphisms (SNPs) are located 

in protein-coding exons, while the rest remains in intronic and intergenic regions 

(Kumar  et al. 2013). So it is now beyond doubt that a significant fraction of 

noncoding DNA serves some purpose and thus is not “junk”. However, the majority 

of functional noncoding elements exhibit strong variability (of the sequence) not only 

between different species but also within single species, thus avoiding reliable 

detection by conventional conservation-based methods. On the other hand, there is 

evidence that deletion of some ultraconserved elements from the mouse genome does 

not have any apparent effect on the phenotype (Nóbrega et al. 2004; Ahituv et al. 
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2007). It is now becoming clear that conservation-based approaches in the 

investigation of functional elements within the genome have led to overemphasizing 

the importance of sequence conservation, and that sequence conservation, while being 

a useful indicator, is neither necessary nor a sufficient criterion of functionality (Elgar 

and Vavouri 2008). Despite preliminary efforts to characterize noncoding functional 

elements, understanding how information can be reliably stored in sequences 

possessing such a strong variability is still strongly lacking. However, at least one 

appropriate solution for this problem was already demonstrated by Claude Shannon 

more than 60 years ago in the framework of the information theory (IT).  

As it was discussed in the introduction, Shannon considered an artificial 

communication system where a useful signal is clouded with noise. He showed that 

there are two alternatives to achieve reliable recognition of the message: increase the 

power of the signal or increase the redundancy of the coding scheme. While the 

former approach is straight and obvious (it was well-known long before Shannon’s 

work and for a long time remained the only approach used by communication 

engineers) the latter is not so intuitive and it took significant amount of time to see its 

true value. Genetic information is encoded by nucleotide sequences. This information 

is transmitted from generation to generation, forming a kind of natural communication 

system. Drawing the analogy between artificial and natural communication systems 

further, we can suggest that different parts of genetic information are encoded using 

different coding systems. In particular “natural” codes can possess different degree of 

redundancy. It is worth noting that the only DNA code we truly understand now is the 

genetic code that provides correspondence between DNA sequence and amino acid 

sequence of proteins. As a rule, alterations in an amino acid sequence change the 

chemical properties of protein and disrupt functionality leading to nonviable 

phenotypes. Although the genetic code is redundant (each codon is a triplet of 

nucleotides, thus 4
3
=64 codons are mapped to 20 “standard” amino acids and stop 

codons), 3 bases per codon is the most compressed configuration to encode a set of 

“standard” amino acids and a stop signal unambiguously, using 4 different coding 

symbols (nucleotides). Such conciseness of the genetic code is probably dictated by 

the tough demand for energy efficiency and other physical constraints in the early 

stages of the evolution of life, when the current variant of the genetic code was 

presumably shaped and stabilized at least since the last universal common ancestor of 

all modern (cellular) life forms (Koonin and Novozhilov 2009).  

Once the genetic code becomes frozen, adding redundancy is quite cumbersome and 

inevitably leads to loss of viability. So, reasoning in the framework of IT, we can 

presume that it is very likely that nature, in its unconscious aspiration to efficiency, 

was compelled to enhance the reliability of transmission of protein coding 



RESULTS 

The model of positional information storage in sequence patterns 

 

36 

 

information by “increasing the power of the signal”, which in biological terms 

corresponds to conservation of the sequence. That is exactly what we see—protein 

coding genes usually possess very high levels of conservation. On the other hand, as 

we already know, noncoding functional sequences can be extremely variable. This, 

however, does not mean that information contained in these sequences is not 

important. Presumably, regulatory mechanisms encoded in noncoding DNA are not 

subjected to such strong evolutionary constraints as are core protein coding 

sequences. So they are much more flexible, having the ability to evolve gradually 

while at each moment maintaining sufficient fitness of the population. According to 

ideas developed in IT, we can suggest that the nature was able to resort to alternative 

approach achieving reliability of noncoding genetic information transfer. Instead of 

maintaining high level of sequences conservation, which is apparently a very costly 

procedure, more redundant coding system is applied. As already known from the 

lesson of IT, a message, encoded with high redundancy can tolerate a lot of mutations 

without loss of meaning thus demonstrating high variability while preserving 

transmitted information. That is what we presumably observe in noncoding functional 

sequences. 

In this section I try to adapt Shannon’s approach to molecular genetics and show the 

possible mechanism of reliable maintenance and evolution of genetic information in 

variable sequences. I suggest a model where genetic information represents well-

defined values, expressed through the positional variability in the sequence pattern 

specified by the set of given (functional) sequences (e.g. nucleotide sequences of 

DNA/RNA or amino acid sequences of proteins). Looking ahead I would like to 

mention that in this framework it is convenient to consider a “sequence pattern” as a 

“fuzzy sequence”, where each position represents the probability distribution of 

nucleotides. When a pattern is defined, the effect of any mutation can be estimated. In 

the framework of the model it is possible to show that the frequency of beneficial 

mutations can be high in general and the same mutation, depending on the pattern’s 

context, can be either advantageous or deleterious. The model allows treating 

positional information (i.e. information related to a specific position in the 

corresponding sequence pattern) as a physical quantity, formulating its conservation 

law and modeling its continuous evolution in a whole genome. It provides the 

possibility for meaningful applications of basic physical principles such as optimal 

efficiency and channel capacity. I also suggest a plausible, according to the model, 

option for optimization of information storage, formulate it in strict mathematical 

form as a minimization problem, derive its solution and demonstrate experimental 

evidences of this phenomenon. The model shows that, in principle, it is possible to 

store error-free information in sequences with arbitrary low conservation. The 



RESULTS 

The model of positional information storage in sequence patterns 

 

37 

 

suggested approach shares features both from neutralism and selectionism. However, 

it possesses considerable originality and thus cannot be directly attributed to any 

conventional theoretical schools. The  described  theoretical  framework  allows  one  

to  approach,  from  a novel  general  perspective,  such long-standing paradoxes as 

excessive “junk” DNA in large genomes or the corresponding G- and C-values 

paradoxes. It can also shed light on some fundamental concepts of population 

genetics, including the cost-of-selection dilemma, error catastrophe and others. The 

model of positional information storage in sequence patterns presented in the next 

paragraphs was published in June 2013 (Shadrin et al. 2013). 

2.1.1   Prior discussion and assumptions of the model 

Information theory originally describes the process of sending discrete data over a 

noisy channel. It was already pointed out above that this process seems to be quite 

similar to transmitting DNA sequences through generations with mutational errors. 

Some applications of IT to molecular biology were attempted in order to exploit this 

similarity: for review see (Johnson 1970; Yockey 2005). However, despite the 

revolutionary role of the IT in communications engineering and the strong analogy 

between DNA sequences and discrete messages, the use of the IT in molecular 

genetics is disappointingly limited. In his seminal work Eigen (1971) indicated that 

the main challenge faced by researchers in adapting IT to the molecular genetics is 

how best to quantify the biological value of a sequence. The value that counts is the 

transmission of sequence (or a pattern, in the case of our model) to next generations. 

As was discussed in the introduction section, it is sensible to speak about information 

only in the context of system where there are more than one object interacting. To 

give a physical meaning for information we should provide a context, i.e. make 

information “relational” (information should be for something and about something). 

In the original IT problems the information is defined as a degree of correlation 

between sender and receiver in communication system. In the model presented I 

suggest considering an interaction of 3D molecular shapes between interacting 

molecules as an environment for information, where the degree of specificity of an 

interaction signifies corresponding amount of information.  

All molecular interactions can be thought as being more or less a specific search 

(“homing”) for an interacting partner with subsequent “docking” and energy 

dissipation. Perhaps the most remarkable and well-known examples of specific 

molecular interactions can be found in biological objects. For instance let’s consider a 

“binding factor”—a protein (or protein complex) which seeks and binds to a specific 

spot (sequence) on DNA (“binding site”) in order to regulate an expression of some 
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gene. Usually binding sites are located in noncoding regions of DNA and can vary a 

lot while retaining their function, i.e. many binding factors recognize not a single 

specific sequence but a large set of sequences that have certain properties, forming the 

pattern for recognition. In other words a binding site for each binding factor is 

encoded with high redundancy. As mentioned above, the fact that a single binding 

factor is able to recognize a set of different binding sites could be explained by 

important IT-related reasons (later we will return to the discussion of this problem in 

more details). The theoretical model presented here describes the evolution of such 

sets and corresponding patterns. Using abundant and well-annotated splice sites of a 

several mammalian genomes I was able to provide support for my conclusions. 

Previous applications of IT in molecular genetics were mainly focused on the 

problems of binding sites and factors operations in a genome. Combinatorial and 

thermodynamic properties of binding, such as their specific recognition mechanisms, 

were addressed by von Hippel and Berg (1986). Later these authors also attempted to 

adapt concepts of statistical-mechanics for descriptions of molecular affinity and 

binding dynamics (Berg and von Hippel 1987). Stormo (2000) focused on the purely 

practical problems of computational prediction and analysis of binding sites. 

Conversely, in this work I want to shift to the higher level of abstraction, presuming 

that the patterns for recognition are already established and known. Then, in the 

framework of this assumption, fundamental aspects of molecular evolution can be 

addressed, namely: how such patterns are maintained and evolve through generations, 

or how random mutations in patterns are redistributed between negative and 

advantageous. With enough data, the generality of this approach makes it possible to 

model information dynamics not of a single binding site but of the whole genome. 

Berg et al. (2004) studied properties of the molecular evolution of binding sites, 

however, in the investigation they used the classical model of adaptive evolution (i.e. 

evolution through variants amplification and fixation). Frank (2012) demonstrated 

another interesting approach to connect genetic information with environmental 

information but it was also based on the classical adaptive evolution formalism. 

While the approaches for modeling adaptive selection are numerous and well-

developed, the formalism for purifying (maintenance) selection are practically absent 

because this problem is usually considered merely a removal of negative mutations 

and is thus of no particular interest. This point of view likely holds true if sites under 

strong evolutionary constraints, where almost each mutation is strongly deleterious, 

are considered. Nonetheless, here I argue that in the case of functional sequences 

possessing sufficiently high variability (i.e. functional elements encoded with rather 

strong redundancy) the impact of maintenance evolution becomes significant, playing 

the dominant role in formation of the observed sequence compound. As far as I know 
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the issue of pattern maintenance without progressive evolution, where a population 

acts as a “digital repeater” of stored information, has not been explored before. The 

preservation of genetic information through stability of the pattern, formed by the set 

of functionally allowed sequences, and achieved by keeping constant positional allele 

frequencies, has not been suggested before and represents a novel concept in 

population genetics. Another interesting and somewhat surprising thing I show here is 

that purifying selection without need of allele amplification (fixation) can potentially 

enjoy abundant beneficial mutations in functional sequences, allowing for high levels 

of variability. It will be shown how positive mutations can significantly ease the effort 

of removing negative alleles and that the pattern composition can be adjusted in order 

to optimize mutational load under different circumstances. Here I use the term 

“beneficial (positive) mutation” in a broader sense than it is commonly used. This 

extension of the concept is made in accordance with the proposed model and is 

discussed in details below. It is also important to mention that the problem of choice 

from a set (i.e. searching for a site in a genome) per se does not require a 

comprehensive application of IT and can be considered a simple combinatorial 

problem. Typical set, channel capacity and asymptotic equipartition property (in its 

basic version called Shannon-McMillan-Breiman theorem) are core and the most 

prominent concepts of IT and paved its way to the worldwide success. It is therefore 

quite tempting to adapt these notions to molecular and population genetics. However, 

neither of these concepts was applied for the positional information in molecular 

genetics. Therefore in the present work I make an attempt to integrate fundamental IT 

approaches into models of genetics. 

2.1.2   Measure of genetic information 

The genetic information (GI) can be viewed as positional in a very general sense. It 

defines the process of homing and consequent specific binding between molecules 

which also includes a binding of a molecule to itself, which is quite a common event 

for RNAs and proteins (i.e. secondary and tertiary structures). These processes 

transform sequential (one-dimensional) DNA information into 3D shapes and external 

energy inflow supplies binding/unbinding kinetics, unfolding the temporal dimension. 

An organized dynamic 3D structure with hereditary information stored in a molecular 

sequence provides all the basic “physical” properties of living system. 

In this work I often use DNA binding sites to illustrate different phenomena. 

However, binding sites are merely convenient objects for visual demonstration of 

general phenomena. For example, the process of protein synthesis starts from 

transcription of DNA template; transcription in turn can be represented as a series of 
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various homing, binding and unbinding events, therefore the notion of positional 

information is quite universal. 

Now let’s resort to an analogy again. Imagine we have an engineering problem: we 

have a set (population) of mutable self-replicating symbolic sequences (e.g. 

nucleotide sequences) and we want to maintain positional information during the 

course of iterative rounds of replication with mutagenesis and selection. The nature of 

sequences does not matter for a mathematical formulation of the problem. However, 

having our final goal in mind, for further simplicity I will consider and perform all 

calculations for nucleotide sequences. So each position in the sequence can take four 

different values corresponding to one of four nucleotides: A (adenine), G (guanine), C 

(cytosine), T (thymine). For our purposes we can design recognizers that respond to 

specific sub-sequences (e.g. binding factors and binding sites correspondingly). For 

instance if we want a sub-sequence (binding site) to determine a unique position in a 

(quasi-random) sequence of length L, we must use at least log2 𝐿 bits of information, 

which requires half of this number of nucleotide positions (log2 𝐿 2⁄ ) to define (as far 

as each nucleotide position has 4 different states thus providing 2 bits). The total 

number of unique binding sites of this length obviously is 4log2 𝐿 2⁄ = 𝐿. However, in 

this case maintaining of stability in the system will be quite challenging because any 

mutation in the site will break the recognition, thereby erasing the information. As 

such, information can be retained only if all mutations are avoided. This is possible if 

the mutation rate is sufficiently low while the rate of reproduction is high. In this case 

at least some of the progeny sequences will have no mutations, so the information can 

be maintained by discarding all mutated sequences. The latter case can be considered 

an extreme example of purifying selection. It is clear that this (trivial) mode of 

maintenance in reality can be potentially accomplished only in the very small 

genomes of microbes. However, usually mutations in binding sites cannot be avoided. 

What can be done in this situation? To resolve this problem we should deploy 

redundant coding in terms of IT, as it was discussed above. So, after adding 

redundancy to the code, a binding factor must recognize not a single sequence but a 

set of (“synonymous”) sequences. When information is stored in redundant patterns 

there is a probability that even after mutation the sequence will be recognizable. After 

the mutagenesis round only recognizable sequences will be retained by selection in 

the population, keeping the ensemble of patterns unchanged as a whole. 

Next I will define terms which will be frequently used in further discussion. Some of 

them were already mentioned. Here I use the term “site” (or “functional site”) to 

define a specific site in a genome (usually bearing some specific function), “a 

(typical) set” means a set of functionally acceptable sequences for a site which keeps 
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its functional performance (a phenotype) within acceptable limits, and “a pattern” (or 

“sequence pattern”) brings a set together with its equilibrium frequencies because 

some sequences in a set might be more frequent than others. 

I am not interested here in how selection chooses individual sequences or what 

mechanisms govern different schemes of binding factors functioning. For my 

purposes it is sufficient to know the final result—the shape of patterns and 

corresponding sets in the “homeostasis” (equilibrium state). Binding factors usually 

support general-purpose mechanisms of gene expression regulation (i.e. the same 

binding factor can facilitate regulation of many different genes). However, it is clear 

that sets of acceptable sequences and/or equilibrium distribution of sequences within 

the set for gene-specific binding sites of the same binding factor can differ 

significantly, depending on individual regulation requirements. Therefore 

corresponding patterns, although they are used by the same binding factor, should be 

considered different. However, currently in most real population the time since the 

last common ancestor of a site is insufficient to obtain site-specific patterns directly. 

Because of this, common computational methods involving GI formalism usually 

ignore discrepancies in site-specific patterns. 

If the only purpose is reliable storage of hereditary information then the mutation rate 

can be simply pushed to a minimum. On the other hand, zero mutation rates will stop 

evolution as a species will not be able to resist the challenges of a changing 

environment and become extremely vulnerable on a geological time scale. So 

apparently the balance between information maintenance and evolvability is required. 

It is reasonable to suggest that the change of total genomic information is usually a 

very slow process and can be observed only on geologically large time scales (e.g. the 

human and chimpanzee genomes are ~ 99% identical). On the other hand, it is likely 

that maintenance evolution acts much more actively; its footprints are distinguishable 

on very short time scales and constitutes the majority of observed features in a 

genome sequence. This work therefore will be mainly devoted to the phenomenon of 

maintenance evolution. Once the maintenance mode is clarified transition to modeling 

of progressive evolution becomes relatively apparent. 

For clarity and simplicity I will consider asexual population in equilibrium (i.e. a 

population that evolved a sufficiently long time without any disruptive events and 

progressive evolution), a constant population size and a genome with equal 

proportions of all four nucleotides.  I also assume that positions of the pattern are 

independent, i.e. there are no correlations between different positions of the pattern. 

Under this assumption a sequence pattern can be viewed as a fuzzy sequence, where 

each position represents not a single nucleotide but a probability distribution of 
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nucleotides (i.e. a four-component vector, with components equal to nucleotide 

probabilities (frequencies) in the position), derived from the underlying set of 

functional sequences. So a nucleotide sequence can be viewed as a pattern where at 

each position a single nucleotide has a frequency of 1 and all other have zero 

frequencies. Independence of pattern position could be a rather strong simplification 

and, of course, more sophisticated “encoding” schemes can be evaluated. However, at 

this stage, without loss of generality I prefer to keep things simple, because the main 

predictions and conclusions of the model are sufficiently interesting for the suggested 

simple encoding scheme. Another important assumption concerns the process of 

mutagenesis. In this work I will consider only single base substitutions, ignoring the 

role of indels and different mechanisms of genomic rearrangements. Epigenetic and 

ploidy effects as well as recombination and variability or evolution of recognizers are 

also out of scope of the thesis. So the concise IT “engineering” problem as defined 

above is considered. However, all mentioned phenomena can be added as interesting 

extensions to the model without interfering with general conclusions drawn from the 

basic model. 

In accordance with the notion of a sequence pattern as presented above, the term 

“single position site” or simply “position” (𝑃) will be used bearing in mind not a 

single specific nucleotide, but a four-component vector (𝑓𝐴, 𝑓𝐺 , 𝑓𝐶 , 𝑓𝑇), where each of 

𝑓𝑁 , 𝑁 ∈ {𝐴, 𝐺, 𝐶, 𝑇} is a frequency of the corresponding nucleotide in a given position 

of “population”, as shown in Figure 5. “Population” denotes here a set of sufficiently 

diverged functional sites. It is important to note that in a validation experiment 

presented below, the sequences were actually taken from a single genome. However, 

in the idealized conditions of an engineering model of infinite asexual equilibrium 

population, the “population” can be taken literally. Moreover, in this model it is also 

possible to define sites’ GIs precisely, without making the simplifying assumption 

“one binding factor to one pattern”. However, in real populations this assumption is 

unavoidable due to insufficiency of data. In order to investigate sequence patterns in 

actual genomes (which is, however, not a goal of this work) one has to assume that 

position-specific patterns are sufficiently similar, i.e. properties of corresponding 

binding sites are sufficiently uniform. So the visualization of the pattern presented in 

Figure 5 represents essentially the average of exon-specific patterns (which are 

unobservable individually). Of course some exon-specific differences are expected in 

the set of human acceptor splice sites used to produce a pattern for Figure 5. 

However, Figure 5 is a vivid illustration for the definition of the sequence pattern. 

If the composition of position does not affect the phenotype, selection ignores it. Such 

a position contains no information by definition (this definition is consistent with 

intuitive understanding of information). Due to random mutagenesis in an equilibrium 
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infinite population, this position will be occupied by four nucleotides in equal 

proportions (i.e. the frequency of each of four nucleotides will be equal to 1/4). 

However, if the site is functional, its composition will be affected by selection and 

nucleotide frequencies will deviate from uniform distribution. The variability of a 

single position site (𝑃) can be naturally quantified by the informational entropy 

(𝐻(𝑃)). Using formula (3) and the notation described above, it takes form of: 

 𝐻(𝑃) = − ∑ 𝑓𝑁 log2 𝑓𝑁
𝑁∈{𝐴,𝐺,𝐶,𝑇}

 (10) 

Non-functional positions with frequencies of 1/4 have, according to formula (10), the 

maximum variability of 2 bits. For a fully preserved site with a single acceptable 

nucleotide (i.e. one frequency equals 1, three are zero) the variability is zero. To 

obtain the measure of positional genetic information (𝐺𝐼(𝑃)) we have to take the 

reciprocal value: 

 𝐺𝐼(𝑃) = 2 − 𝐻(𝑃) (11) 

So it is easy to see that for a fully conserved site, GI takes the maximum of 2 bits. For 

non-functional sites GI is equal to zero, while intermediate values quantify the degree 

of conservation. Hence GI determines the biological value of the position.  

GI does not depend on permutations of components in the vector of nucleotide 

frequencies, and each value of GI, except for the degenerate cases of GI = 0 bit and 

GI = 2 bits, can be obtained with infinitely many variants of nucleotide frequency 

vectors. 

Presented by formula (11), the definition of genetic information was proposed by 

Schneider et al. (1986) more than 25 years ago and soon became a standard tool for 

visualization of sequence pattern composition called “sequence logo” (Schneider and 

 

Figure 5. Illustration of sequence pattern and sequence logo; definition of genetic 

information. 
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Stephens 1990). The sequence logo of human acceptor splice site is shown in Figure 

5. Acceptor splice site along with donor splice sites on pre-mRNA molecule are 

recognized by spliceosome—a protein complex, performing splicing of introns. 

2.1.3   Typical sets and positional information 

It was proposed (Stephens and Schneider 1992) and supported by simulations 

(Schneider 2000) that GI is additive and interpretable as localization (positional) 

information 𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∑ 𝐺𝐼(𝑃𝑖)𝑖 ,  i.e., the sum of GIs of individual positions in a 

binding site is equal to the information necessary to locate it in corresponding 

sequence context. It can then be hypothesized that apart from indicating the degree of 

conservation, 𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔 has additional interpretations. Obviously the hypothesis is 

interesting and biologically important. However, its validation is not a trivial task 

because although both 𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔 and localization information are measured in bits, 

their definitions are different and have no direct relationship. It is clear that the proof 

of this can significantly facilitate sensible GI-modeling applications. 

In terms of IT, an abstract binding site can be described as a “source” which 

“generates” particular sequences (its realizations in a population, i.e. binding sites). In 

the framework of this schematic representation, 𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔 and localization 

information can both be related by means of asymptotic equipartition property (AEP) 

(Girardin 2005). AEP applied to the described scheme effectively states that the 

majority of realizations of a binding site of length L mostly fall into a “typical set” 

and have similar values of 𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔 (Cover and Thomas 2006). This means that while 

for non-degenerate GIs any sequence (out of possible 4L) can be an outcome, the 

sequences actually observed, with high probability (tending to 1 when L tends to 

infinity) belong to the typical set, which has about 22𝐿−𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔 members distributed 

with approximately equal probabilities. The exponent value 2𝐿 − 𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔 reflects 

the entropy of a “source” or variability of a binding site. It is required log2 𝑁 bits of 

information to select a single position site from a sequence of length N, which can be 

interpreted as a minimum number of yes/no questions required for the task. It is 

intuitively clear that a less specific search requires less information, e.g. selection of 

any item belonging to a set 𝑁𝑠𝑒𝑡 requires log2𝑁 − log2𝑁𝑠𝑒𝑡 bits. If we now return 

again to our scheme and recall that a binding factor defines a corresponding typical 

set of binding sites, recognizing sequences belonging to it and ignoring all others, it is 

then easy to see that corresponding localization information is equal to 𝐺𝐼𝑏𝑖𝑛𝑑𝑖𝑛𝑔.  

This result provides a natural connection between continuous transversal (vertical) 

variability (i.e. across population, orthogonal to multiple sequences alignment) and 
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discrete longitudinal (horizontal) localization on the sequence. It is also worth noting 

that due to its definition typical set of nucleotide sequences of length L represents a 

well-connected set (region) in the space of all possible L-nucleotide sequences with 

hamming distance. So a lot of mutations in typical sequences (i.e. sequences from 

typical set) will not throw them out of the typical set. Hence the structure of content 

of a typical set might provide a biological error protection mechanism, because if after 

mutation a sequence is still in the typical set, then this mutation is effectively 

“synonymous”. The “additivity” of GI, to our knowledge, was always used as an ad-

hoc conjecture without a strict proof, since it is not possible to prove it without AEP. 

Here I want to focus the attention upon the “additivity”. It should not be confused 

with a simple additivity of information entropy, which obviously follows from 

formula (7) if we assume independency of positions in the pattern. This additivity 

concerns the statement that the sum of GIs for a functional site (or a whole genome) is 

linearly linked to the positional information (specificity of molecular interactions). 

Additivity in this sense is a critical property for whole-genome modeling of 

information dynamics and the form of function for measuring GI plays here very 

important role. One could use some other measure of frequencies biases (biases from 

the uniform distribution)—why is the defined GI function, based on information 

entropy “fundamental”? If we want the sum of GIs for the site to have informational 

meaning, the number of allowable functional sequences for the site (the size of its 

“typical set” in the context of above discussion) must depend exponentially on the 

defined site's variability (the value reciprocal to the sum of GIs). This exponential 

dependence is the nontrivial result of IT (AEP). The corresponding “natural choice” 

of the logarithmic function for information measure was discussed briefly in the 

introduction section and a detailed discussion can be found in the classical Shannon's 

paper (Shannon 1948). Having such a well-defined measure of positional information 

it is possible to build a formal (“mechanistic”) model of “molecular machines” 

evolution. The concept of sequence “typicality” (as an object for selection force) also 

may prove useful as it represents the collective property of a binding site, naturally 

accounting for a single position’s cumulative effects, as opposed to modeling the 

interaction of a large number of separate selection coefficients for each allele in each 

position. In the context of typicality the same mutation can either make a site more 

typical or less typical, depending on other positions of the site. Hence, selective 

values of the same mutation can be either positive or negative, depending on the 

background. 

According to these ideas the conventional notion of “beneficial/positive mutation” (as 

well as reciprocal notion of “deleterious/negative mutation”) should be reformulated. 

Conventionally, a “beneficial mutation” is defined as a mutation that increases fitness 
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(i.e. survival and reproductive success) of the carrier organism. I.e. conventional 

definition considers only contemporary effect of the mutation, on the other hand, the 

concepts of pattern and typicality allows us to naturally estimate the far-ranging 

effects of mutation (i.e. whether mutation increases or reduces the typicality of the 

carrier). In this work, therefore, all mutations that increase typicality of the sequence 

for a given pattern are considered beneficial and vice versa, while all mutations 

decreasing typicality are deleterious. In other words, beneficial mutation moves the 

sequence closer to the center of the functionally allowable set (where all sequences 

probably have insignificant differences in fitness and thus can be considered equal) 

providing more flexibility (more available mutations without loss of functionality) in 

the next generation. In the framework of classical concepts, such mutations are 

considered neutral, because they do not directly affect an organism’s fitness. 

However, these variations increase tolerance to mutations in the next generation, 

making genetic information more robust in the course of maintenance evolution. The 

latter is assumed to be a ubiquitous process, occurring permanently in all loci of 

genome (in contrast with progressive evolution). Thus it seems reasonable to account 

these mutations to be beneficial. 

2.1.4   Principle of conservation of sequence pattern 

According to the conventional definition “population genetics is the study of allele 

frequency distribution and change” (Postlethwait 2009). If we consider a site with 

different alleles in the population, in the framework of classical models, the 

frequencies of these alleles will be not stable. If different alleles have different fitness, 

then such sites will evolve through fixation and carrying only the most advantageous 

allele, while all other (deleterious) alleles will be purged from the population by 

selection. If some alleles have equal or indistinguishably different fitness (e.g. if the 

site is nonfunctional, all alleles have the same fitness) their fate will be subject to 

genetic drift, due to which each allele can be either fixated or lost simply by chance. 

All these scenarios are transient. In spite of the “homeostasis” notion being ubiquitous 

in living systems, there are no valid terms or concepts for the description of evolution 

of weakly conserved sites in population genetics (e.g. the “tail” of the pattern in 

Figure 5), where what matters is the stable bias of frequencies rather than a neutrality, 

fixation or loss (which are the limiting cases for the model presented here, where GI is 

0 or 2 bits correspondingly).  

For brevity here I will not consider fitness of particular alleles altogether; the only 

thing I am formally concerned with is GI value. Traditionally the selective value for 

an allele is assigned somewhat ad hoc and its destiny in a population is traced using 
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some mathematical model. In contrast with this conventional atomistic approach in 

this work more general and abstract concept of sequence pattern is suggested. Once a 

pattern (or a whole-genome pattern set) is defined, the value of any mutation is also 

defined (through its contribution to sequence typicality). Hence the pattern can be 

considered the lowest level phenotype, because higher level phenotypes are 

mechanistically derived from it. Having the pattern there is an opportunity to model 

whole-genome phenotype conservation without explicitly defining a high-level 

phenotype. 

Classical models usually consider sites with only two different alleles since, due to 

common observations, the vast majority of observed variations (e.g. SNPs in the 

population) have two states because insufficient time has passed since the last 

common ancestor. However, here I suggest considering an idealized situation where 

time goes to infinity in a stable population without progressive evolution and other 

disruptive events. Understanding of underlying equilibrium dynamics in turn will 

pave the way for exploration of the evolution of variability “snapshots” created by 

recurring population bottlenecks, which are conspicuous but largely secondary 

companion processes. 

The conservation laws of energy or momentum are the cornerstones of physical 

sciences. Here I suggest the law of conservation of sequence pattern in population 

genetics. It can be formulated as follows: a position with any intermediate value of GI 

can be at equilibrium, maintaining constant GI and nucleotide frequencies (hence the 

pattern and positional information of the corresponding binding site). So-called 

“balancing selection”, where the frequencies may be stable due to heterozygote 

advantage (Charlesworth 2006, Levene 1953) is apparently different from our 

generalization (the possibly interesting ploidy effects are not explored here for 

brevity). 

2.1.5   Progressive and maintenance evolution 

Progressive and maintenance evolution usually occur in the population 

simultaneously. Both represent important factors which affect allelic composition of 

the population. However, the effect of these phenomena is different and can be 

described in the framework of the model presented as follows: while progressive 

evolution reshapes the sequence pattern by changing the underlying set of functional 

sequences, maintenance evolution preserves the set of acceptable functional 

sequences, allowing only fluctuations inside this set. Thus the pattern remains 

unchanged. The model discussed focuses on characterizing a population in the static 

mode of evolution, which is essentially the maintenance evolution. Interestingly, a 
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similar situation is classically described by the Hardy-Weinberg principle (Hardy 

2003): constant allele frequencies in the absence of mutations and selection. However, 

we generalize this condition to functional sites explicitly including mutations and 

selection. The motivation behind the static mode of evolution is that the information 

already accumulated in a genome requires maintenance to prevent mutational 

degradation. When the maintenance is clarified, the next step can be exploration of 

how information in genome is redistributed or how novel information is added—

progressive evolution. However, it is reasonable to suggest that increments of 

information are small in comparison with “what’s already there”, thus the majority of 

accumulated mutations (in functional sites) reflects the maintenance. Traditional 

models are often based on historical observational biases. Reasons for this are usually 

quite simple: for instance, it is easier to observe and study Mendelian traits compared 

to low penetrance effects (Houlston 2006). Other examples are the dramatic “selective 

sweeps” and “bottlenecks”, which we believe are spectacular but special evolutionary 

events, scrambling the mundane maintenance phenomena as populations variability 

collapses. However, these events per se contribute negligibly to the bulk of genetic 

information, which is in the maintenance mode. Due to these collapses the observed 

variability of a site in a real population is typically much smaller than “potential” or 

“acceptable” variability which should be used to define the corresponding GI. Thus 

the actual sequence pattern for a specific splice site is usually unavailable (because the 

underlying sequence set is not available). However, this pattern exists in a platonic 

sense and if a site had a chance to diverge in a population without disturbances for 

sufficiently long time, functionally acceptable regions of the sequence space would be 

explored and actual patterns could be revealed, provided enough data. 

Preemptively, it is possible to argue that mutational expansion into potential 

variability of functionally acceptable sites is commonly perceived as a “neutral 

evolution”. However, in fact it is a “maintenance evolution” where observed 

deleterious (for GI value) mutations are compensated by approximately equal amount 

of beneficial mutations, preserving the sequence pattern. Thus, maintenance evolution 

suggests that while each individual mutation in general is not neutral, the cumulative 

effect of a large number of mutations can be considered neutral. The role of beneficial 

mutations is usually overlooked in classical models, as common wisdom dictates that 

they are rare, so that all the maintenance is carried out by purifying selection which is 

a special case in our model when GI is close to 2 bits. 
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2.1.6   Pattern conservation in the framework of the 

quasispecies model 

As described in the introduction, an equilibrium population in the quasispecies model 

represents a “cloud” of organisms (sequences) with well-defined frequencies of 

alleles. Assuming for simplicity as before, that all sequences have the same length, by 

aligning them under one another we obtain a sequence pattern and corresponding GI 

profile. As quasispecies equilibrium is given by the steady state of the ODE system, 

equilibrium frequencies of alleles will hold static once the equilibrium state is 

reached. This, in turn, apparently leads to the conservation of the sequence pattern and 

GI profile, which is postulated in the model presented here. However, one should not 

be confused with the passing resemblance between these two models. The original 

model of quasispecies operates with infinite populations and obtains conservation of 

the sequence pattern as a corollary of stable alleles’ compound of the population at the 

equilibrium. In contrast, here the sequence pattern is implied as an inherent 

fundamental property of any functional site (or the whole genome, because the latter 

can be viewed as a composite functional site) which is predefined. It is suggested that 

the conservation of the pattern emerges naturally from the necessity of maintaining 

genetic information content, which ensures the viability of the population. Also I lay 

emphasis on the positional character of genetic information, stemming from the nature 

of molecular interactions. Besides, although the concept of pattern conservation is 

formulated in terms of infinite equilibrium population, I suppose that the phenomena 

of conservation might be also observed in finite natural populations (or their subsets) 

assuming that they are not extremely small and were not subjected to extensive 

positive selection, recent bottlenecks or other external influences abruptly distorting 

allelic composition of the population. Due to the finite sizes of real populations 

(leading to stochastic effects) and inevitability of disturbing impacts I expect that 

precise estimation of “ideal” sequences patterns will be impossible and the observed 

picture will represent a somewhat distorted reflection of the real underlying sequence 

pattern. However, for a population of rather large size that is stably evolving without 

drastic external pressure, the deviation of the observed sequence pattern from its 

“ideal” prototype will diminish over time. 

2.1.7   Conservation of genetic information in splice 

sites 

The constancy of sequence pattern postulated above can be exemplified by the 

divergence of splice site patterns between human and mouse—the difference between 
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mouse and human splice site logos is quite small despite the large number of 

mutational and selective events that have happened since our divergence (Figure 6). 

The maximum divergence of GI (less than 0.08 bit) can be observed in the fifth 

position of donor splice site. Notably, the number of splice sites is in the hundreds of 

thousands; the example in Figure 2 shows the phenomenon of constant pattern for the 

total of millions of nucleotide positions for a period of tens of millions of years. 

Obviously such an invariant, in such a fluid matter as genomic sequence, deserves 

close attention. As the average length of human exons is ~100 nucleotides, splice sites 

constitute a significant amount of the genomic sequence compared to coding 

sequences. Furthermore, splice sites are only one example of low-conservative 

functional noncoding sequences. So it is natural to assume that this mode of evolution 

affects a significant fraction of a genome besides splice sites. However, splice sites 

provide a unique opportunity for analysis because of their large number and well-

defined locations in a genome. Other commonly known binding sites tend to be of 

sufficient length and high conservation (computational methods) and/or high binding 

affinity and specificity (experimental methods), creating observational biases with the 

preference for long sites with high GI per nucleotide. 

2.1.8   Mutational load and its optimization 

Optimality principles such as Maupertuis’ or Hamilton's and their different 

applications represent the foundations of physics, but they are applied moderately in 

life sciences. However, it is apparent that the drive to optimality is central in 

biological systems as well. All other things being equal, species with better energy 

efficiency have more available resources. 

Examples of optimization are well-known in molecular genetics. E.g. the assignment 

of codons in the genetic code provides robustness due to the fact that a lot of 

mutations are synonymous (i.e. do not change the corresponding amino acid). It 

seems reasonable to suppose that before eventual stabilization, the genetic code was a 

 

Figure 6. Comparison of splice sites sequence logos of Homo Sapiens and Mus Musculus. 
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subject to optimization by reassignment of codons in order to achieve better resistance 

to mutations. We can expect that tuning of noncoding functional elements, due to 

their high redundancy, is much more flexible. Thus many likely are (or recently were) 

affected by some kind optimization. However, in contrast with protein coding 

sequences, where the structure of information is known and provides clear 

understanding for potential mechanisms of optimization (which can be easily seen in 

the assignment of codons, as discussed above), the structure of information in 

noncoding functional elements is not so straight. However, our model suggests a 

universal approach for the representation of genetic information. On the basis of this 

representation we are able to propose a direct testable criterion, based on the notion of 

genetic load, according to which noncoding information can be optimized. However, 

it is not a unique option for optimization; other possibilities exists that are not 

considered in this work. 

One classical definition states: “Genetic load is the reduction in selective value for a 

population compared to what the population would have if all individuals had the 

most favored genotype” (Crow 1958). If considered in the context of the proposed 

model, this definition describes a site with 𝐺𝐼 = 2 bits. However, if a site has a GI 

value lower than 2 bits, the load arising due to its maintenance should be defined in 

another way. 

It is common practice to model equilibrium states through their stability to 

perturbations, i.e. if an equilibrium state is externally disturbed it should be restored 

by some stabilizing force. In the discussed case, the perturbations are random 

mutations, and counteracting stabilizing force is a (purifying) selection that tries to 

compensate for deviations from equilibrium. Therefore there is a straightforward way 

to model the maintenance of a pattern. Consider a single position site and assume that 

initially it is in equilibrium and has nucleotide frequencies (fA, fG, fC, fT), 

∑ 𝑓𝑁 = 1𝑁∈{𝐴,𝐺,𝐶,𝑇} . Then mutagenesis pushes them into (fa, fg, fc, ft), after which these 

frequencies are corrected by reproduction and selection, returning nucleotides 

frequencies back to the initial values and preserving the initial value of GI: 

 

(

𝑓𝐴
𝑓𝐺
𝑓𝐶
𝑓𝑇

)

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
→      

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
←      

(

 

𝑓𝑎
𝑓𝑔
𝑓𝑐
𝑓𝑡)

  (12) 

The changes in frequencies are assumed to be small. 

Mutations can be divided into two different types: transitions change a purine to 

another purine or a pyrimidine to another pyrimidine: 𝑡𝑖 = {𝐴 ↔ 𝐺, 𝐶 ↔ 𝑇} and 

transversions represent all other mutations: 𝑡𝑣 = {𝐴𝐺 ↔ 𝐶𝑇}. Here, for brevity, I 
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assume that all 4 transitions as well as all 8 transversions are equiprobable. The 

system for descendant nucleotide frequencies (fa, fg, fc, ft) can be written using the 

formula of total probability as follows: 

 

{
 
 
 
 

 
 
 
 𝑓𝑎 = (1 − 𝑝)𝑓𝐴 + 𝑝 [𝑘𝑓𝐺 +

(1 − 𝑘)

2
(𝑓𝐶 + 𝑓𝑇)]

𝑓𝑔 = (1 − 𝑝)𝑓𝐺 + 𝑝 [𝑘𝑓𝐴 +
(1 − 𝑘)

2
(𝑓𝐶 + 𝑓𝑇)]

𝑓𝑐 = (1 − 𝑝)𝑓𝐶 + 𝑝 [𝑘𝑓𝑇 +
(1 − 𝑘)

2
(𝑓𝐴 + 𝑓𝐺)]

𝑓𝑡 = (1 − 𝑝)𝑓𝑇 + 𝑝 [𝑘𝑓𝐶 +
(1 − 𝑘)

2
(𝑓𝐴 + 𝑓𝐺)]

 (13) 

where p stands for probability of mutation and k is a probability of transition, upon 

condition that a mutation occurred. For mammals k  2/3 (Collins and Jukes 1994) 

corresponding to the ratio of transversions to transitions 𝑡𝑖 𝑡𝑣⁄ = 1 2⁄ . It is easy to see 

that for descendant nucleotide frequencies the property ∑ 𝑓𝑛 = 1𝑛∈{𝑎,𝑔,𝑐,𝑡}  also holds 

true. Hence the deviation of nucleotide frequencies from the equilibrium due to 

mutagenesis is: 

 

{
 
 
 
 

 
 
 
 ∆𝑓𝐴 = 𝑓𝐴 − 𝑓𝑎 = 𝑝 [𝑓𝐴 − 𝑘𝑓𝐺 −

(1 − 𝑘)

2
(𝑓𝐶 + 𝑓𝑇)]

∆𝑓𝐺 = 𝑓𝐺 − 𝑓𝑔 = 𝑝 [𝑓𝐺 − 𝑘𝑓𝐴 −
(1 − 𝑘)

2
(𝑓𝐶 + 𝑓𝑇)]

∆𝑓𝐶 = 𝑓𝐶 − 𝑓𝑐 = 𝑝 [𝑓𝐶 − 𝑘𝑓𝑇 −
(1 − 𝑘)

2
(𝑓𝐴 + 𝑓𝐺)]

∆𝑓𝑇 = 𝑓𝑇 − 𝑓𝑡 = 𝑝 [𝑓𝑇 − 𝑘𝑓𝐶 −
(1 − 𝑘)

2
(𝑓𝐴 + 𝑓𝐺)]

 (14) 

From equation (13) it is clear that mutagenesis will always push frequencies of 

nucleotides to uniform distribution, hence GI of the descendant frequencies vector is 

always less or equal to initial GI (equality happens only if initial GI = 0 or p = 0). As 

the target for potential optimization (among many alternatives) I suggest a variant of 

mutational load (ML), which is defined as Manhattan norm of frequencies deviation 

vector: 

 𝑀𝐿 = |∆𝑓𝐴| + |∆𝑓𝐺| + |∆𝑓𝐶| + |∆𝑓𝑇| (15) 

Minimizing mutational load in the form as defined in equation (15) will minimize the 

number of mutations rejected by selection, thus minimizing the rate of “genetic 

deaths”, making this measure of ML biologically plausible. From the expression for 

optimal solution, presented in equation (17), it is easy to see that in this case: −∆𝑓𝐴 =
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∑ ∆𝑓𝑁𝑁∈{𝐺,𝐶,𝑇} , and ∆𝑓𝑁 > 0, ∀𝑁 ∈ {𝐺, 𝐶, 𝑇}, assuming A to be the highest frequency 

allele in the position. So after mutagenesis the selection can move frequencies back to 

the initial simply by removing variants whose frequencies have increased (i.e. G, C 

and T). For optimal frequencies, the number of individuals which must go extinct is 

proportional to the ML is defined by equation (15), and equal to 2∆𝑓𝐴. 

In this work I consider the equilibrium state of a population, so in order not to 

overcomplicate matters, population size will be kept constant. In contrast with 

classical models, the size of a population does not really matter for maintenance 

evolution of GI. Population size matters for non-equilibrium phenomena such as 

selective sweeps, caused by spontaneous appearance and consequent fixation of a site 

with GI = 2 bits. Such events are out of scope of this model. 

If the mutagenesis is biased (𝑘 ≠ 1 3⁄ ), different compositions (e.g. permutation of 

nucleotides) of nucleotide frequencies 4-vector with the same GI can produce 

different ML. A simple example demonstrating this fact is shown in Figure 7. When 

two major nucleotides (Figure 7 left) are connected by transition, the impact of 

mutagenesis is largely compensated as the most probable mutations are counteracting 

transitions. In the right half of Figure 7 the opposite effect can be seen—non-

compensated composition—where the major nucleotides “leak” strongly into the 

minor ones, hence causing larger ML. 

The task of finding nucleotide frequencies providing the lowest value to ML for a 

given GI can be formulated as the following optimization problem: 

 

{
  
 

  
 
𝑀𝐿(𝐺𝐼)

𝑓𝐴,𝑓𝐺,𝑓𝐶,𝑓𝑇
→        𝑚𝑖𝑛                            

∑ 𝑓𝑁 = 1

𝑁∈{𝐴,𝐺,𝐶,𝑇}

                                         

2 + ∑ 𝑓𝑁 log2 𝑓𝑁 = 𝐺𝐼 = 𝑐𝑜𝑛𝑠𝑡

𝑁∈{𝐴,𝐺,𝐶,𝑇}

 (16) 

 

Figure 7. Variation of nucleotide frequencies and reduction of GI due to mutagenesis with 

transitions prevalence in positions with different nucleotide frequency vectors. The two 

most frequent mutations in a position are marked with colored arrows. 
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ML(GI) is a mutational load, which has to be minimized by adjusting the 4-vector of 

nucleotide frequencies for a given value of GI. It is easy to see that solution of 

problem (16) does not depend on the probability of mutation p. The solution was 

found numerically, using a homemade implementation of the evolutionary algorithm 

presented in (Runarsson and Yao 2000). However, its analytical representation, which 

in general case can be written in a parametric form, was also obtained and shown in 

formula (17). 

 

(

𝑓1
𝑓2
𝑓3
𝑓4

)

𝑜𝑝𝑡

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

{
 
 

 
 𝑓2 =

1

4
+ (𝑓1 −

1

4
)
3𝑘 − 1

3 − 𝑘

𝑓3 =
1

2
− 𝑓2                          

𝑓4 =
1

2
− 𝑓1                          

              𝑖𝑓 𝑓1 ∈ [
1

4
,
1

2
)        

{
𝑓2 =

1

4
+ (𝑓1 −

1

4
)
3𝑘 − 1

3 − 𝑘
𝑓3 = 1 − 𝑓1 − 𝑓2                 
𝑓4 = 0                                   

              𝑖𝑓 𝑓1 ∈ [
1

2
,

1

𝑘 + 1
)

{

𝑓2 = 1 − 𝑓1
𝑓3 = 0         
𝑓4 = 0         

                                        𝑖𝑓 𝑓1 ∈ [
1

𝑘 + 1
, 1]

𝐺𝐼 = 2 +∑𝑓𝑖 log2 𝑓𝑖

4

𝑖=1

                                                         

 (17) 

where f1 is the highest frequency, f2 is the frequency connected to the f1 by transition, 

f3 is maximum of transversions to f1, f4 is transition to f3, k is the probability of 

transition, upon condition that the mutation has occurred. 

The vector of optimal nucleotide frequencies vs. GI, representing the solution of 

optimization problem (16), is demonstrated in Figure 8 A. It is noteworthy that 

assignment of certain nucleotides to the vector of optimal frequencies allows some 

permutations remaining in its optimality. In the presence of mutational bias (𝑘 ≠

1 3⁄ ), top and bottom pairs of frequencies must be occupied by nucleotides connected 

through transition. In the case k = 1/3 (no mutational bias) all four frequencies are 

permutable with each other. 

The solution shows a phenomenon resembling phase transitions: derivative 

discontinuities near 0.5 and 1 bits, with corresponding changes in the number of 

“degrees of freedom” and permutation symmetries. Phase transitions are generally 

assumed to be highly non-analytic as they stem from non-linear interactions of large 

numbers of objects. In this model the interactions in a population are effectively 
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hidden and are described by the optimal selection outcome. Detailed investigation of 

this phenomenon can potentially give an interesting result. 

2.1.9   Experimental evidences of mutational load 

optimization 

After the theory is presented, it is quite tempting to see its evidence in real data. The 

conservation of sequence pattern was already demonstrated by the comparison of 

human and mouse splice sites’ sequence logos (Figure 6). In this section, verification 

of the theory will be continued. Above it was shown that in the framework of the 

model it is possible to minimize mutational load by arranging nucleotide frequencies 

in a way that results in specific compositions of the pattern. So if the proposed model 

adequately describes the process of maintenance evolution of genetic information and 

an assumption that the majority of this information is in maintenance mode holds true, 

we can hypothesize that the traces of optimization, in a form proposed above (i.e. 

specific distribution of nucleotide frequencies in the positions of sequence pattern) 

can be revealed in real sets of related functional sequences. To test this hypothesis we 

need to have sufficient reliable statistics of the site under investigation. For this reason 

 

Figure 8. Minimization of mutational load. Comparison of nucleotide frequencies and 

mutational load observed in human splice sites (donor and acceptor) with optimal ones. 

A (left): Nucleotide frequencies minimizing mutational load (k = 2/3) vs. GI and 

nucleotide frequencies of human splice sites. The red line (f1) is the highest frequency 

nucleotide. The yellow line (f2) is the frequency of nucleotide, connected to the f1 by 

transition. The blue line (f3) is maximum frequency of the remaining nucleotides coupled 

through transition. The green line (f4) transition to f3. Circles represent frequencies of 

Homo sapiens donor and acceptor sites (each circle represents single position of the site). 

B (right): Minimum and maximum mutational load (k = 2/3) vs. GI and mutational load of 

human splice sites. Mutational load is normalized so that its maximum value equals 1. 

The green dashed line is the mutational load of optimal nucleotide frequencies (minimum 

mutational load). The red dashed line is the maximum mutational load. Blue and yellow 

circles are the mutational load of human acceptor and donor sites respectively. 
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I decided to opt for human splice sites (because they are abundant and readily 

available) and some transcription factor binding sites from the open access database, 

for which sufficiently large samples of sequence variants are available. 

However, even for these specially selected sites, due to a variety of reasons it is quite 

unlikely that experimental data will match this particular optimization precisely 

because on the one hand other optimization parameters are possible (for instance a 

total site length to optimize the transcription speed), and on the other hand, the pattern 

(i.e. the logo) itself was derived with the simplified assumptions outlined earlier (e.g. 

ignoring exons-specific individual patterns differences). Moreover, due to specific 

regulatory demands it is natural to expect that no optimal compositions exist. 

2.1.9.1   Splice sites 

Chromosome sequences and locations of human exons were retrieved from Ensembl 

database (Flicek et al. 2012) using the BioMart data mining extension (Kasprzyk 

2011). Then, donor and acceptor splice sites were extracted. In order to avoid the 

influence of minor spliceosome, which may have a significantly different sequence 

pattern (Tarn and Steitz 1996), only the sites which conform to so-called “GT-AG” 

rule were kept. As a result more than 180 thousand of each donor and acceptor splice 

site sequences were obtained. For further analysis I took 70 acceptor and 50 donor 

positions adjacent to exon. Corresponding nucleotide frequency vectors together with 

optimal frequencies providing a minimum to ML are presented in Figure 8 A. It can 

be seen that the trajectories of nucleotide frequencies in splice site positions are fairly 

consistent with the optimal. Although some fine features of its behavior (e.g. 

collapsing of bottom pair of frequencies) are not reproduced by the model, the basic 

predicted trend, namely that the top and bottom pairs of nucleotide frequencies are 

connected through transition, is observed in 85% of positions with GI content higher 

than 0.05 bit (a total of 26 positions, with the arrangement of nucleotide frequencies 

in 22 corresponding to the model’s prediction). 

It is also possible to find nucleotide frequencies providing a maximum ML for a given 

GI. It was done using the same evolutionary algorithm as I used for finding a 

minimum of the ML. Figure 8 B demonstrates the ML of human splice sites in 

comparison with maximum and minimum mutational load. According to Figure 8 B 

the strongest optimization is possible for position with a value of GI close to 1 bit 

where maximum and minimum ML differ most strongly. Such positions in principle 

would be favorable for the storage of genetic information. I also found that the higher 

mutational bias (lower tv/ti) provides an opportunity for better optimization in this 

region (i.e. reduces minimum ML), hence organisms with higher mutational bias are 
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able to achieve better optimization and we can expect that selection can somehow 

promote an increase of mutational bias. 

Here I also want to note one interesting feature that I was able to observe in splice 

sites. Using pairwise alignments of human versus rhesus and chimpanzee, obtained 

from the UCSC Genome Browser database (Fujita et al. 2011), I compared the 

substitution rates for splice sites divergence between human and these two other 

primates (Figure 9). 

I found that the conservation of the acceptor “tail” is quite weak: positions with GI < 

0.4 bits have substitution rates higher than 80% of the neutral rate. However, the tail 

stores about 50% of positional information, i.e. approximately 5 bits as compared to 

~10 bits of total acceptor information, 4 bits of which are provided by the “AG” site 

(Figure 5). 

2.1.9.2   Transcription factor binding sites 

Splice sites, as mentioned above, are rather unique genomic objects which may have 

special properties. It is therefore desirable to find evidences of mutational load 

optimization in other functional sites. For this purpose I selected 8 reliable 

transcription factor binding sites (TFBS) of vertebrates from the JASPAR open access 

database (Sandelin et al. 2004). In order to have enough statistics for building a 

reliable sequence pattern, only sites with average position coverage more than 1500 

from JASPAR core database were selected. As a result 6 mouse sites (JASPAR IDs: 

MA0039.2, MA0035.2, MA0145.1, MA0141.1, MA0002.2, MA0140.1) and 2 human 

sites (IDs: MA0137.2, MA0138.2) were obtained. Their sequence logos are shown in 

Figure 10. 

 

Figure 9. Normalized mutation rate of acceptor (blue) and donor (red) splice sites. 

Mutation rate was obtained from pairwise alignment of human vs. rhesus (diamonds) and 

human vs. chimp (circles) and then normalized to make mutation rate of positions with GI 

close to zero equal to 1. 
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Vectors of nucleotide frequencies for the positions of these TFBS are shown in Figure 

11 A. The optimization of nucleotide frequencies is not as clear as in the case of 

splice sites. This might be partially explained by observational biases towards highly 

conserved sites with underrepresented “tails” of patterns. The example of splice sites 

demonstrates that weakly conserved tails are well optimized while highly conserved 

positions are not. 

Figure 11 A demonstrates rather a chaotic range of nucleotide frequencies. To 

suppress data noise and to reveal the obscured trend, I averaged nucleotide 

frequencies by kernel smoothing. Also in order to demonstrate non-random behavior 

of real sites, for each pattern of 8 selected TFBS, 10 000 random patterns were 

generated. Each position of random pattern has the same GI as the corresponding 

position of its real prototype, but its nucleotide frequencies were generated randomly. 

To get a single value of nucleotide frequency for random patterns in each position, 

nucleotide frequencies of corresponding nucleotide in corresponding positions were 

averaged over all 10 000 random patterns. The resulting (averaged) vectors of 

nucleotide frequencies of random patterns along with smoothed frequencies of 

sequence patterns of real sites are presented in Figure 11 B. 

The most noticeable difference between random and real patterns in Figure 11 B is the 

mutual arrangement of the second and the third nucleotide frequencies. Real sites tend 

to pull up transition to nucleotide with the highest frequency (yellow), performing an 

optimization according to mutational load minimization. In contrast, random 

 

Figure 10. Sequence logos of 8 transcription factor binding sites. For each logo JASPAR 

ID of corresponding transcription factor binding site is indicated. Vertical axes represent 

log2-scaled GI measured in bits. 
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generated patterns demonstrate behavior, where the second largest frequency 

nucleotide is transversion to one with the highest frequency. This could be easily 

explained from a mathematical point of view, as the probability of such outcome 

(second highest frequency nucleotide is transversion to the highest frequency 

nucleotide) is twice higher, because there are two transversions and only one 

transition to each nucleotide. 

The tendency of TFBS towards minimization of mutational load becomes clearer if 

we directly compare the mutational load of real site patterns and random patterns, 

generated according to the procedure described above (Figure 12). 

Here I also add human acceptor and donor sites to analysis. The sites under 

investigation have different lengths, therefore, in order to make possible a general 

comparison between them, the mutation load for each pattern was represented in 

terms of Z-score (distance from the mean in units of standard deviation). 

Significant deviation from optimality observed in some sites can stem from the 

incompleteness of the data caused by the observational bias. However, it can be also 

an important signal, indicating that possibly some other mechanism of genetic 

information processing is involved in the evolution of the site. This site can be subject 

to ongoing progressive evolution. Another example could be so-called CpG sites. 

These sites are hyper-mutable and highly underrepresented in mammalian genomes. 

Thus they are costly in terms of maintenance, requiring either some special 

mechanisms of protection from mutations in functional regions or simple 

 

Figure 11. Optimization of nucleotide frequencies in TFBS. 

A (left): Nucleotide frequencies vectors for positions of real TFBS patterns compared with 

optimal frequencies. Solid lines are optimal nucleotide frequencies. Circles are nucleotide 

frequencies of real TFBS patterns. 

B (right): Averaged nucleotide frequencies of random generated patterns and real patterns 

of TFBS versus optimal frequencies. Solid lines are optimal nucleotide frequencies. 

Circles are smoothed frequencies of nucleotides in positions of real TFBS patterns. Dashed 

lines are averaged nucleotide frequencies in positions of random generated patterns. 

Color scheme corresponds to one that was used in Figure 8. 
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intensification of purifying selection. Also, as we observe CpG enrichment in 

functional promoters, we can suppose that they have additional informational value. 

2.1.10   Simulation of single position evolution 

In an attempt to get a deeper understanding of how the pattern is maintained and 

evolves in the framework of the proposed model, a simple simulation was 

constructed. The simulation describes the process of evolution of a single position site 

(i.e. individual organisms of our artificial population are simply single nucleotides). 

There are two processes counteracting each other in the course of simulation—

mutation and selection. Mutation changes one nucleotide into another, with the 

probability of transition twice higher than probability of transversions (k = 2/3) and 

with equal probabilities of both transversions. The pattern of the site is not predefined, 

however, for each moment we define minimum level of GI, which must be 

maintained in the population (i.e. GI of single position site). According to simulation 

procedure, mutations, which reduce GI in a population, are called negative, and GI-

rising mutations are positive. Selection in our simulation operates in a way similar to 

(back-) mutation. The act of selection replaces an individual with less frequent alleles 

by more frequent variants. Thus, after selection act the population GI increases. The 

most effective selection action replaces a nucleotide with the lowest frequency, by the 

nucleotide with the   highest one. However, it is unlikely (similarly to Haldane's 

arguments) that selection on multiple sites in a genome has a chance to operate in the 

most efficient way for each of them. It is more realistic if selection increases GI in 

 

Figure 12. Normalized mutational load (Z-score, i.e. distance from the mean in units of 

standard deviation) of real binding site patterns (acceptor, donor and TFBS; for TFBS 

their JASPAR IDs are indicated) compared to distribution of 100 000 randomly generated 

patterns (10 000 for each real site). Z-scores of real patterns are indicated by colored flags 

with brief descriptions, which contain: the pattern’s ID and the percentage of random 

patterns with lower mutational load, total GI and the length of corresponding site. 
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probabilistic manner—any increase of GI will do—not only through the most efficient 

replacements. It is noteworthy that neither mutation nor selection changes the size of 

population, thus it always remains constant. 

Evolution of the population proceeds through stages simulating gradual increase of 

GI. All stages have a predefined minimum level of GI for the population (GImin), 

which increases from stage to stage. Each stage in turn is divided into two steps: slight 

increase of GImin level with consequent progressive evolution, during which 

frequencies of nucleotides adjust in order to reach the new level of GImin, and 

maintenance evolution when GImin is maintained in time. Initially, GImin is set equal 

to 0 and frequencies of all nucleotides are set to 0.25, (fA, fG, fC, fT) = (0.25, 0.25, 0.25, 

0.25). During each stage the population is subjected to mutagenesis and selection: if 

after a mutation the level of GI falls below current GImin, selection starts to act. Acts 

of selection are repeated until the level of GI is restored to GImin. Thus, several acts 

of selection can occur after a single mutation. On the other hand, it is possible that 

selection is not required, because GI can rise due to positive mutations. As it was 

already noticed, most mutations lower the level of GI, and with increases of GImin, 

the fraction of such mutations increases as well, so selection has to generate more 

replacements. However, it is worth noting that the fraction of positive mutations 

remains considerably large until GI reaches the level of 1 bit. Figure 13 A 

demonstrates that approximately 25% of random mutations in a population with GI = 

 

Figure 13. Simulation results. 

A (left): All observed (not erased by selection) and positive mutations as a fraction of all 

mutations occurred in the simulation for a corresponding level of GImin. 

The orange line represents the percentage of mutations which are observed in a 

population. 

The purple line represents the percentage of GI -increasing mutations in a population. 

B (right): Modeled nucleotide frequencies in comparison with real and optimal. Color 

denotes the same as in Figure 8. 

Continuous transparent lines represent modeled nucleotide frequencies. Dashed lines 

represent optimal nucleotides frequencies. Circles represent frequencies of Homo sapiens 

donor and acceptor splice sites. 
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1 bit are positive. 

The described simulation represents a simple way to model equilibrium and 

accumulation of genetic information in the population in the context of discussed 

pattern-centered concept. Its only principle is to maintain the required information 

content of the site. The trajectories of simulated nucleotide frequencies are presented 

in Figure 13 B. Their shape is very similar to the shapes of both frequencies observed 

in real splice sites and optimal nucleotide frequencies. Moreover, modeled 

frequencies even reproduce some subtle features of real splice sites’ frequencies: the 

flipping of the second and the third frequencies near GI = 0 and collapse of the 

bottom pair of frequencies near GI = 0.1 bit. Hence, simulated trajectories of 

nucleotide frequencies in Figure 13 B demonstrate a somewhat surprising 

concordance between simple simulation and the perceivably complex behavior of 

millions of nucleotides involved in splice sites. 

The simulation process is stochastic, so it is entirely possible that the observed picture 

occurred just by chance. In order to be sure that the behavior of the nucleotide 

frequencies is robust the same simulation was performed 20 times. Each time very 

similar trajectories of nucleotide frequencies were observed, so the result, presented in 

Figure 13, is highly-reproducible. 

2.2   Drake’s rule phenomenon 

In the early 1990s John W. Drake (1991) examined the rate of spontaneous mutations 

in seven DNA-based haploid microbes, including two single stranded and two double 

stranded bacteriophages, a yeast, a bacterium and a filamentous fungus. Applying 

refined techniques for calculation of mutation rates he revealed a remarkable genomic 

regularity: the average mutation rate per base pair per replication is inversely 

proportional to the size of genome. Moreover, despite the significant differences 

between organisms, whose genome size varies 6500-fold and average mutation rates 

per base pair vary 16,000-fold, variation of their mutation rates per genome is only 

2.5-fold with a mean value of 0.0033 per DNA replication, demonstrating a somewhat 

surprising invariance. Drake concluded that such constancy of genomic mutation rate 

indicates that this rate is highly evolved and “have been shaped in response to 

evolutionary forces of a very general nature, forces independent of kingdom and 

niche” (Drake 1991). Further he assumed that such regularity may be extrapolated 

over all microbial organisms. The pattern of mutation rate observed by Drake in 

microbes, i.e. the inverse relationship between mutation rate per nucleotide site per 
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generation and total size of genome along with essential constancy of mutation rate 

per genome per generation has been called “Drake’s rule” for its discoverer. 

Initially Drake’s conjectures faced reasonable skepticism because they were based on 

just seven species. However, during further investigations the set of species for which 

accurate estimates of the mutation rate is available was substantially extended, 

including not only DNA-based microbes but a broad variety of organisms from 

different taxa, from RNA and DNA viruses to plants and vertebrates (Lynch 2010a). 

These data provide strong support for “Drake’s rule” with respect to viruses, bacteria 

and many of unicellular eukaryotes. However, there are some outliers among 

unicellular eukaryotes, which demonstrate the reverse trend, i.e. positive scaling 

between genome size and per base mutation rate. For instance, while documented 

microbes span four orders of magnitude in genome size, the range of their mutation 

rates per genome per replication (excluding above mentioned outliers) is remarkably 

narrow (less than ten folds) (Sniegowski and Raynes 2013). If instead of total size of 

genome the proteome size is regressed on the mutation rate however, then to a great 

extent the inverse relation between these two parameters also holds true for all 

documented microbes (including aforementioned outliers) (Massey 2013). 

In striking contrast to the microbial pattern of mutation rate, multicellular eukaryotes 

demonstrate a strong positive relation between genome size and mutation rate per 

genome per generation (Sung et al. 2012). However, this last inconsistency can be at 

least partially explained by the drastic difference in the structure of genome between 

high eukaryotes and microbes. While the fraction of (conserved) protein coding 

sequence in microbial genomes usually exceeds 90%, in multicellular species its 

proportion is generally more than one order of magnitude less than that in the 

microbes and tends to decrease with the growth of total genome size (e.g. only ~1.5% 

of human genomic sequence encodes proteins). It should also be noted that estimated 

mutation rate per nucleotide site per generation for vertebrates (in particular for 

human) is approximately two orders of magnitude higher than for prokaryotes (Lynch 

2010a). However, while for microbes the notions of “generation” and “replication” 

are synonymous, it is not so for higher eukaryotes. Thus for multicellular eukaryotes, 

and especially for vertebrates, the number of germ-line cell divisions can be large 

enough to play a substantial role. If this factor is taken into account, the mutation rate 

per cell replication in human germ-line is lower than that in any other species for 

which a reliable estimation of mutation rate is available (Lynch 2010b). 

How mutations accumulate in genomes and what are the forces that shape genomic 

mutation rates are central questions of molecular evolution theories. Obtaining data to 

clarify this issue is laborious and technically challenging. Recent advances in high-
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throughput sequencing allowed rapid accumulation of data shedding light on 

mechanisms and rates of appearance of new mutations. However, the understanding 

of these processes is far from complete. 

One potential and perhaps currently the most popular interpretation of observed 

mutation rate patterns, which is often used in particular to explain “Drake’s rule”, is 

given by the “Drift-barrier hypothesis” (Lynch 2010a; Sung et al. 2012). To put it in a 

nutshell the main idea of this hypothesis is that an observed pattern of mutation rates 

is a product of balance between two counteracting forces: natural selection and 

random genetic drift. More specifically, considering that the majority of mutations in 

functional sites are harmful, natural selection generally favors the alleles providing 

lower mutation rates. However, a reduction in the mutation rate can be achieved only 

by some physiological cost (e.g. slower replication speed, utilization of more complex 

schemes of preventing/correcting mutations etc., eventually leading to an increase in 

resources expenditure). Thus natural selection pushes mutation rate down, gradually 

increasing the fitness until any further advantages become smaller than the power of 

random drift. At this point selection is incapable of reducing the rate of mutations any 

further and the process freezes. The power of random genetic drift in turn is inversely 

proportional to the effective population size (1/Ne and 1/(2Ne) for haploid and diploid 

organisms correspondingly, where Ne is the effective population size). So according 

to the “Drift-barrier hypothesis” species with higher Ne are expected to have lower 

rate of mutation. As a consequence, microbial populations that typically have large 

Ne, will demonstrate per a base mutation rate lower than multicellular eukaryotes (and 

especially vertebrates), whose effective population size is expected to be substantially 

lower. 

Sung et al. (2012) regressed available estimations of per-base mutation rate in 

effective genome (which was estimated as a product of mutation rate/bp/generation 

and the size of protein-coding genome) on estimates of Ne (which, in turn, were 

obtained on the basis of average nucleotide heterozygosity estimated at silent sites). 

Consistency with predictions of the “Drift-barrier hypothesis” the regression 

demonstrates a strong negative relationship, largely independent of phylogenetic 

background (Figure 1 A in Sung et al. (2012)). However, Sung et al. acknowledge that 

estimation of Ne is “fraught with difficulties”. This parameter cannot be estimated 

directly and its value can vary significantly, depending on estimations of other factors. 

Moreover, this study does not account for germ-line cell divisions, which, in my 

opinion, are important and if considered would substantially affect the observed 

picture. Although the “Drift-barrier hypothesis” suggests a possible explanation for 

observed patterns of mutation rate, the understanding of the mutation rate evolution 

and the phenomenon of “Drake’s rule” is still far from being clear. However, it is 
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beyond doubt that a clear conception of this process would shed the light on the 

evolutionary process. 

Here I want to suggest an alternative interpretation of the “Drakes’s rule” based on a 

formal model of storage of genetic information presented above. I will support a 

proposed hypothesis with numerical simulations, demonstrating that postulated by the 

“Drakes’s rule” relation between mutation rate per genome per replication and 

genome size naturally emerges within the framework of the model of positional 

information storage. Random mutations deteriorate genomic information and must be 

compensated for by selection to maintain the total genomic information. Considering 

this process under informational equilibrium and suggesting that the genome of any 

species operates near its maximum informational storage capacity and the mutation 

rate is near its upper limit, a simple general explanation with minimal assumptions 

will be proposed for the “Drakes’s rule”. This part of results is based on (Shadrin and 

Parkhomchuk 2014). 

2.2.1   Absolute and relative fitness 

“Fitness” has been a key parameter in modeling Darwinian selection for almost a 

century. It determines which organisms are left to live and reproduce and which will 

be eliminated from the population. Generally, different alleles (“variants”) are 

presumed to have different fitness. Mutations affect allele frequencies (density) in the 

population. The dynamics of the latter is traced with some mathematical model. 

Numerous models with different assumptions were proposed to simulate allele 

dynamics in real populations correctly. For instance the “Moran process” (Moran 

1962) represents a model with “overlapping generations”, defining an elementary 

time step as either death or reproduction of a random individual in the population, 

providing analytical solutions for this simple scenario. The “Wright-Fisher model” 

(Durrett 2008) represents an alternative, presuming non-overlapping generations, such 

as annual plants. There is no conventional approach of how the cumulative fitness for 

a few independent variants should be calculated, taking into account the effects of 

newly appearing variants, and many other subtleties. Traditional models usually 

consider the fitness as a relative value without any fixed baseline, so fitness value is 

distributed around the unit. Sometimes formulas analogous to what is introduced here 

are used for calculation of cumulative fitness for multiple alleles (Ofria et al. 2008; 

Strelioff et al. 2010; Frank 2012). The absolute value of the fitness in these cases is 

not interpreted so in fact it can also be normalized. For instance, in traditional 

approaches, there is no sense to take into account sites that are not variable in a 

population (i.e., sites where any variation is lethal) while calculating the fitness. 
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However, most of the genome usually is not variable in realistic modeling. In contrast 

for our formula it is essential to sum overall sites to obtain proper interpretation of 

fitness. Hence, for relative fitness, there is no fixed “baseline”—fitness can be 

assigned to an individual only in the context of the rest of the population. So a 

comparison of fitness between an elephant and a bacterium is impossible. Fitness 

defined in that way does not keep population history—a gain (or loss) of fitness for a 

whole population cannot be traced, after the fitness of the population increases the 

organisms are competing with each other in formally the same way. In this context the 

progressive evolution represents an opportunistic non-directional “Brownian” 

motion—fixation of accidental “positive” mutations. However, it is quite tempting to 

have a fitness measure that is “absolute”, a baseline measure that reflects the 

organismal complexity: the total “genetic information” or “evolutionary progress”. 

Such a measure can be naturally used as a fitness function within the population for 

modeling and also provides a possibility to compare different species. The model 

presented above is capable of recapitulating all traditional dynamics (e.g., “fixation”, 

“drift”, etc.); moreover, it quantifies an additional dimension—total genetic 

complexity. Modeling evolution without tracing this value can easily lead to “un-

physical” outcomes—when the complexity is allowed to drift arbitrarily in the course 

of sequence evolution. From common observations provide natural expectation: 

genomic complexity of a given species is a sufficiently preserved on an evolutionary 

timescale, while underlying genomic sequence may undergo numerous ongoing 

changes. If the complexity has changed significantly in the course of simulation, the 

end product should be accounted as a different species. Modeling speciation events 

per se is a very different subject from modeling species preservation. Here, in essence, 

a very basic biological phenomenon is modeled: the preservation of form, while the 

matter (e.g., cells) in this form is continuously renewed. Instead of the matter, the 

model shows how functional genomics sequences can be continuously renewed while 

preserving species-specific phenotype, so the phenotype (typical set) and hence the 

total genomic information are invariants. 

Besides introducing the total genomic information invariant, the “physical” property 

of the presented approach can be further illustrated by the notion of stability: in order 

for a system to be robust against external perturbations (e.g. random mutagenesis) it 

must reside in a “potential well”. So perturbations are compensated for by forces 

returning the system to the initial state. In the absence of such compensations, the 

system would “smear out” in Brownian fashion. Random mutagenesis can both 

increase and decrease genetic information (GI), and in our case, these compensating 

forces are selection, which tries to increase GI, and the channel capacity limit, which 
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makes impossible maintenance of GI level above a certain value and increasingly 

costly approaching the limit from below. 

Despite the large number and diversity of existing models their explanatory power 

remains arguably limited. It is for this reason that Ohta and Gillespie (1996) declared 

the “looming crisis” referenced earlier, admitting that “all current theoretical models 

suffer either from assumptions that are not quite realistic or from an inability to 

account readily for all phenomena.” The limitations of current models are likely 

rooted in the basic definition of fitness and/or the absence of suitable genomic 

information measure, because if similar in all models, their behavior and fundamental 

predictions will not change drastically after reshuffling other parameters. Proposed 

above information-theoretical model provides potential “absolute” measure (GI), 

estimating the total genomic information, which can be used for the fitness 

calculations, sensibly accounting for interactions of any number of variants in a 

genome. Technically, such fitness measure quantifies the degree of “typicality”, the 

size of corresponding “typical set” is related to genomic information or complexity. 

Fitness connection with complexity is the most essential difference of our model from 

the traditional approaches, while the modes of reproduction and other parameters are 

of secondary importance. As the proposed fitness function is somewhat unique, 

possessing novel features, the properties of the model should be explored starting 

from the very basic considerations, omitting for the moment phenomena that are 

routinely considered in standard models such as the influences of recombination, 

linkage, sexual selection, fluctuating environment, etc. Nevertheless, it is clear that 

these phenomena are interesting and important, so it would be tempting to investigate 

them in the subsequent research and to compare the results with traditional 

approaches. 

It is worth noting that technically any fitness expression including “relative” can be 

applied in the simulation used here to explain the Drake’s rule. However, if “relative” 

fitness is used, additional care should be taken to monitor the equilibrium condition 

and the complexity dynamics, while the proposed “absolute” fitness expression 

automatically makes these tasks trivial. 

Adami et al. (2000) proposed an interesting approach for quantifying complexity and 

modeling its increase for digital organisms. Approach considered here is different: 

information is quantified by a mechanistic model of molecular interactions and the 

main focus is on the preservation of such information with mutation/selection balance. 

It is intuitively clear that the size of genome and total genomic information are 

somehow related. While in general this relation can be complex and multifactorial, it 
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is clear that accounting for this information might shed light on the coevolution of the  

genome size and mutation rate, and thus on Drake’s rule. 

The concept of the “molecular clock” states that the rate of mutation accumulation is 

roughly proportional to the time of divergence from the last common ancestor. It is 

likely that both phenomena the “molecular clock” and the “Drake’s rule” emerge from 

the same underlying principal. Roughly speaking, the idea is that the clock is a 

manifestation of the Drake’s rule on the evolutionary timescale, because in spite of 

the variations in genome size and numerous properties of the population in the course 

of divergence (assuming the generation time changing slowly), the clock is 

sufficiently monotonic when comparing protein coding sequences (i.e., mutation rate 

and density are constant). Common explanation of the clock involves the neutral 

theory: the majority of mutations behave “as if” they were neutral (Kimura 1983). 

However, the proper application of the neutral theory to the molecular clock is not 

straightforward: the clock is ticking monotonously but at a different pace in strongly 

and weakly conserved genes. Should then some kind of differential “neutrality 

density” be introduced in order to accommodate “neutrality” for the explanation? A 

cleaner approach would be to treat mutations with a continuous spectrum of effects—

from zero to lethal (fully conserved position). In latter case, it is obvious that zero 

point (pure neutrality) is not special, because the next infinitesimally close value 

(minuscule functional) will have indistinguishable properties. It seems that the object 

in focus of the neutral theory is not the point zero per se, but some loosely defined 

region in its vicinity. 

The assumption of neutrality served as a necessary simplification at the time if its 

appearance explaining a number of phenomena. Its postulate that the majority of 

mutations avoids the pressure of selection and is driven by the stochastic process 

allows investigating evolutionary dynamics of populations without computationally 

expensive simulations. However, consider a mutation in a “non-functional” genomic 

region, first it will change replication dynamics due to different weights, shapes, and 

abundances of nucleotides, then it will affect the local chromosome or chromatin 

shape. Of course, these changes can be minuscule; however, in a strict mathematical 

sense the resulting organism is different. Thus, the strict neutrality is rather an 

exception than a rule. Now the computers are enough powerful to model all mutations 

as functional, with arbitrarily small effects if required. 

Here, I show that while the majority of genomic dynamics can be attributed to the 

mutations with small effects (as expected), the less recognized aspect is that their 

cumulative contribution to genomic complexity evolution can be significant because 

of their abundance. There are also experimental indications of this phenomenon 
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(Yuan et al. 2013). Indeed, collectively such mutations can behave “as if” they were 

neutral. However, the reason such behavior is not their weak functionality per se 

(moreover it is shown below that a degree of functionality does not have a significant 

influence), but the “saturation” of genomes with information, the proximity to the 

“channel capacity”. 

2.2.2   Prerequisites of the simulation 

Let’s recall, in our model of positional information storage a functional site (actually a 

group of functional sites or even the whole genome can be treated as a single 

“composite” site) is represented by the corresponding sequence pattern determining 

GI profile, so that for each position corresponding 4-vector of acceptable equilibrium 

frequencies and hence a value of GI (Formula 11) is defined. Then position-specific 

GIs can be used to calculate the total amount of information contained in functional 

site/genome as a simple sum over all positions: 

 

𝐺𝐼𝑡𝑜𝑡𝑎𝑙 = 2𝐿 +∑ ∑ 𝑓𝑗𝐵 log2 𝑓𝑗𝐵
𝐵∈{𝐴,𝐺,𝐶,𝑇}

𝐿

𝑗=1

 (18) 

Where fjB, 1 ≤ j ≤ L, B  {A, G, C, T}, is the frequency of nucleotide B at the position 

j and L is a length of the site. So it is obvious that the equilibrium population with 

allelic frequencies which are more biased from the uniform distribution contains more 

information. Let’s also define an average density of genetic information in a 

population as GIρ = GItotal/L bits per site. It is obvious that 0 ≤ GIρ ≤ 2. 

Here, for technical simplicity, individual positions in pattern are assumed to be 

independent (no epistasis effects), without this assumption it would be necessary to 

deal with general “typical sets” and the computation of GI would be much more 

complicated. However, it is reasonable to suggest that this assumption will not change 

the essential conclusions drastically. While covariable sites are well-known, the 

problem can be circumvented by grouping significantly correlated sites in “pseudo-

sites” (now with more than four states) so that correlations can be broken up with a 

proper basis selection. However, it is clear that irrespectively of correlations between 

different sites in genome the latter still have some total genomic information (the 

formal calculation of GI in this case will be, however, very complicated). Simplified 

calculations described here merely illustrate the general principles: the interplay 

between the total genomic information, genome size, and mutation rate. While 

complexities of formal GI calculations in specific cases can be interesting to 

investigate, the basic principles of genomic complexity evolution, which are discussed 

here, are invariant. 
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It was already discussed that the equilibrium condition is very important for the 

correct definition and evaluation of GI. However, in general real populations are far 

from the equilibrium. It is important to understand that GI profile is a “prior”, inherent 

characteristic of molecular functionality. For instance, a protein domain can retain its 

functionality only within a certain set of sequences. In terms of GI it means that 

conserved protein domain has high GI value and hence small size of “typical set”. It is 

reasonable to suggest that functional genes are conserved in a similar manner (unless 

some novel mechanisms of molecular functioning are introduced). A simple corollary 

of this is that the average density GIρ cannot be significantly different in close species. 

The predefined GI profile and a population history (e.g. bottlenecks, selective sweeps 

and other disruptive events) determine an actual variability of alleles in a population. 

Here I will model the dynamics of asexual population, which consists of sequences of 

same length, subjected to mutagenesis and selection. A series of such simulations for 

different lengths of sequences will be performed. By means of this numerical 

experiment I want to demonstrate that in the course of evolution with some predefined 

minimum level of total genetic information that must be maintained in order to keep 

the population viable, the pattern of observed mutations will follow the trend 

postulated by the “Drake’s rule”. In the simulation I assume that GI profile of the 

equilibrium population and thus the total GI is known (however, the underlying set of 

allowable sequences is unknown). Additionally, I will investigate observed mutational 

pattern considering the population already being in the equilibrium state, so that I am 

spared from having to take into account the population history. However, the 

equilibrium population is infinite and thus cannot be simulated directly. Due to this, 

the dynamics of its slice (small subset) will be simulated. This slice generally (except 

for the degenerate cases when extremely strong conservation is required) has smaller 

variability than the whole equilibrium population, but the properties of their 

mutational spectrums presumably will be the same. Realistic biological populations 

represent such a subset. It is often the case that they have recently (relatively to the 

mutation rate) undergone a bottleneck event and experienced the “founder effect”—

all individuals are closely related through a few recent population founders. The 

variability in real populations is then very small and does not reflect correctly the 

underlying GI profile. However, this profile still “exists”, though more as an “ideal”, 

abstract object like “universals” in Plato’s philosophy. This profile could potentially 

be revealed if this subset was allowed to diverge for a sufficiently long time without 

disturbances (in reality only attainable for species with rather small genomes such as 

viruses and microbes). So the equilibrium population demonstrates the principle limit 

on the maintainable pattern (total GI, quantifying the total amount of allelic 

frequencies bias from the uniform distribution), which is defined solely by the 
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mutation rate and reproduction/selection population properties, since the dynamical 

part (“history”) is excluded. However, it is clear that, with other things being equal, 

this limit plays the same limiting role for the “collapsed” population (after a 

bottleneck event). 

Actually, the phenomenon to be demonstrated here is somewhat similar to the effect 

of “error threshold” in the quasispecies model. Also of significance is that modes of 

mutagenesis and maintenance of variability, which I want to investigate here, are 

similar to those in quasispecies theory: "The quasispecies concept becomes important 

whenever mutation rates are high. This is often the case in viral and bacterial 

populations" (Nowak 1992). In quasispecies theory a population represents a cluster 

of diverged genotypes. However, the distinction between “normal” species and 

quasispecies is blurred, and nothing prevents us from considering a “normal” 

population as the aforementioned subset of quasispecies (in the process of 

divergence). I presume that the mode of evolution when the mutation rate is high is of 

most interest and thus deserves careful examination. It is beyond doubt that viral and 

microbial populations have such mode of evolution. However, I suppose that it is also 

so for large genomes of higher organisms. What really matters is the mutation rate per 

genome per generation (this is actually the important corollary of the Drake’s rule) 

and it is known now that this parameter is quite large in mammals as well—about 

several hundred mutations, with few in coding regions. In order not to delve too 

deeply I presume that selection has an opportunity to act in a compensatory manner 

(to increase GI) in between generations only, however, as discussed above in 

metazoans germ-line selection issues may play a substantial role. Selection does not 

"see" a genome size or per-base mutation rate, what it does "see" is the effect of a 

number of functional mutations, for which it tries to compensate through genetic 

deaths—removal of the (most unfitted) genomes from a population. So, the natural 

“units” for selection actions are a genome and a bunch of mutations in it. Those are 

the reasons for focusing on mutation rates per genome per generation. 

The theory of quasispecies was employed to characterize the evolution of HIV, which 

undergoes 1—10 mutations per replication, thus from the perspective of selection the 

functional impact (at least in terms of GI) is comparable with the evolution of 

mammals. These studies infer that HIV population “seems to operate very close to its 

error threshold” (Nowak 1992). In other words, even a slight increment of mutation 

rate will lead to a population’s inability to retain its spatial localization in the 

sequence space, genomic information will dissipate and the population will go extinct 

(however, it was discussed in the introduction that quasispecies theory says nothing 

about extinction because the model implies infinite population with soft selection). 

My main postulate here is the existence of this “threshold” for all species. With the 
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provided IT framework, such a threshold seems to be well-defined and ready for 

modeling. The main differences between viral and mammalian populations seem to be 

the time of generation and the size of genome. The “cloud” of allowable viral 

genotypes can be potentially observed empirically. On the other hand, generation of 

the actual equilibrium "cloud" for a large, slowly replicating genome would take an 

astronomically long time and large population size. The latter fact, however, does not 

mean that it is impossible to explore features of this limit theoretically and then admit 

that these features will also reflect evolutionary characteristics of the aforementioned 

population slice. The mode of evolution where allelic variability is maintained in 

equilibrium is also considered in the quasispecies model. However, in the 

quasispecies model the fitness is a characteristic of the whole population, not of an 

individual organism (Nowak 1992). After the definition of a sequence pattern, genetic 

information and a fitness function based on them are introduced, we are able to 

measure absolute fitness for each individual in the population and arrive at the 

simulation procedure proposed here. 

Here the analogy with quasispecies model should be taken very carefully since this 

model and the model presented here differ in some fundamental considerations. In 

contrast with the quasispecies model, where the “cloud” of genotypes arbitrarily 

depends on replication/mutation rates and other parameters, and has no deeper 

meaning, the “cloud” of genotypes in our model represents the typical set, defined as 

all genotypes producing a species-specific phenotype (defining species total GI, 

which is missing in quasispecies model). The threshold in presented model is based 

on the IT notion of channel capacity. Although it is conceptually similar to the “error 

threshold” from the quasispecies model (the central idea of both is an inability to 

maintain species-specific phenotype) (Eigen 1971), they have substantial differences. 

While quasispecies model considers dynamics of infinite populations with non-lethal 

mutagenesis, presented here model readily suits for modelling of finite populations 

with lethal mutagenesis. Moreover, Eigen’s error threshold is not equivalent to 

channel capacity, in the sense that the latter does not necessarily entail “error 

catastrophe”—information can persist with arbitrarily low sequence conservation, 

where information density can be arbitrarily low. Similarly, in IT reliable 

transmission is possible with any noise level, but the rate will be lower for higher 

noise. 

One relative issue concerns the fact that the “quasispecies dynamic” requires 

sufficiently high mutation rate in order to be invoked, otherwise the expediency of the 

quasispecies approach can be challenged (Holmes and Moya 2002; Wilke and Adami 

2003; Wilke et al. 2001). However, some microbes (e.g., wild-type Escherichia coli) 

have mutation rates substantially lower than 1 per-genome per-generation, but still 
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they acceptably fit into Drake’s rule because it holds on a logarithmic scale. When 

mutation rate is so low, a simple simulation presented below will converge to 

monoclonal population, which will actually reflect in vivo situation for a separate 

bacterial colony. To regain Drake’s rule as well as molecular clock phenomenon, 

some simplifying assumptions should be revised. Constant environment is a good 

candidate for this purpose: if the environment fluctuates, then we in fact have many 

different GI-profiles (or one multidimensional profile) where the global population is 

distributed and individuals are shifting from one environment to the other. In this 

case, after averaging over all sub-environments and transfers of the population 

between them, the effective (global) mutation rate must be higher and we will see a 

“cloud” instead of monoclonal population. Speaking simply, for a species in a 

fluctuating environment to have some “memory” about different and recurring sub-

environments would be an advantage, so they do not need to adapt de novo when the 

environment changes. In that case, the decreased mutation rate can provide this 

improved memory. If considered in a single sub-environment, such species would 

look excessively complex and the mutation rate would be below the Drake’s rule 

prediction. Lineages with higher mutation rate were erased by the environmental 

fluctuations. 

These speculations lead to an interesting conclusion: microbes residing in more stable 

environments should have higher (properly normalized) mutation rates. This seems to 

be in line with observations: wild-living microbes usually have lower mutation rates 

in comparison with parasitic relatives who enjoy a host’s homeostasis. Traditionally 

the increased mutation rate is interpreted in the context of the “arm-race” with an 

immune system of the host. However, the real story might be more complicated—the 

arm-race (an increased mutagenesis) could be restricted to a few specific genes (the 

phenomenon observed in some real cases, e.g., cell-surface proteins and so on) while 

elevation of the whole-genome mutation rate is costly and has no clear motivation. 

When wild-living microbes “compete” with a rapidly oscillating environment, it 

might impose genome-wide “racing” pressure, because of large differences in entire 

metabolism in different environments. 

Presumably, in the case of equilibrium maintenance evolution (for GIρ < 2 bit) a large 

number of allowable sequences (constituting “typical set”) are nearly synonymous 

and thus can coexist in a population. However, they are not completely synonymous 

and thus prevent stochastic effects from inducing significant variations in allelic 

frequencies. The process of selection is capable of maintaining the sequence pattern 

by discarding the most deviant (“atypical”) sequences. The proposed model allows us 

to meaningfully quantify the information contained in the sequence pattern, given in 

addition a weight matrix of desired conservation profile, the model provides selective 
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values of individuals accounting for all mutations, present and de novo. As shown 

above the substitution rate in functional sequences can be arbitrarily close to the 

neutral rate (see Figure 9), so in general the fraction of positive mutations can be 

substantial. A trivial requirement for the balance of GI is that about 50% of retained 

mutations must be “positive”. 

Feverati and Musso (2008) simulated evolution using the approach based on the 

formalism of Turing machines. The simulation procedure proposed here is somewhat 

similar and can be described as a “population of machines”, which operate on 

symbolic sequences of limited length, reading out positional information and 

recognizing corresponding patterns (via typical sets) of molecular interactions and 

calculating a high-level phenotype. It should be noted that technically, for a general 

typical set the assumption of positional independence is not necessary. However, in 

comparison with the sequential algorithmic Turing machine, the approach presented 

has at least one clear advantage that makes it closer to real molecular mechanics; 

specification of the phenotype calculations per se is not required. Once sequence 

patterns and typical sets in genome are specified the problem of its maintenance or 

progressive evolution can be addressed (e.g. the cost or speed of the pattern’s 

preservation or change). In this work I focus on the maintenance properties, treating 

such machines as genetic information storage device that must resist the random noise 

of mutagenesis. Selection uses a “typicality” of genome as a fitness measure, 

accounting for all variants (Equation 19). Actually, this fitness function possesses 

basic “common sense” features that are similar to traditional fitness functions—for 

instance a mutation in highly conserved site (i.e. site with high GI) will drop the 

fitness significantly. However, the described equilibrium mode of evolution, where 

mutation rate is close to its maximum value for which population remains viable, is 

robust to the changes of specific form of the fitness function. What really matters is 

the limited number of organisms (genomes) which can be eliminated by selection 

without leading to the extinction of the population. So it is important to understand 

that irrespective of the specific form of the fitness function, a limit to the amount of 

transferable genetic information will exist. Thereby results presented below are 

considerably general. Another thing worth mentioning is that in this model all sites 

and variants are functional. Thus there is no need to postulate “neutral” (Kimura 

1983) or “near-neutral” (Ohta 1973) variants (to explain the high rates of sequence 

evolution)—in the described case, the equilibrium can be interpreted as the 

cumulative neutrality of all mutations remaining in a population, while assuming the 

individual neutrality of all or most mutations would be throwing the baby out with the 

bathwater. 
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2.2.3   Simulation terms 

Describing a simulation process I will use some terms specifically, not generally, 

which will facilitate brevity and ease of understanding. 

An “organism” is represented by the nucleotide sequence of given length (L), O = 

[B1, B2, …, BL], where  i  [1,L], Bi  {A,G,C,T}. A “population” is a set of 

organisms (sequences) of the same length. The parameters that govern the process of 

simulation are shown in Table 1. 

Table 1. Simulation parameters. 

Notation Description 

N Number of organisms in the population (population size). 

L 
Length (number of bases) of genome of each organism in the 

population. 

nd 

Number of descendants each organism produces in a single round of 

reproduction. 

Pm Probability of mutation per base. 

Pti Probability that an occurring mutation will be a transition mutation. 

W = (Wj | j  [1,L]) 

Selection weights of nucleotides in each position. Where Wj = (wjA, 

wjG, wjC, wjT), Wj(B) = wjB, B  {A,G,C,T} represents the selection 

weight of the corresponding nucleotide B in j-th position. 

The mutational bias (Pti) is included in the code for universality, but has no effect on 

the trends we investigate here. As discussed above species-specific biases can play an 

interesting role for GI storage optimization and may slightly affect species dispersion 

along the Drake’s rule trend line. However, for brevity, here it is assumed to be 

constant. With this notation each organism (O) in a population can be associated with 

a fitness value (weight) specified by the weight matrix W: 

 

𝑊(𝑂) = 𝑊([𝐵1, 𝐵2, … , 𝐵𝐿]) =∑𝑊𝑖(𝐵𝑖)

𝐿

𝑖=1

 (19) 

A “typical” probability of the sequence/organism is its expected probability for a 

given sequence pattern. It is equal to the product over all positions of corresponding 

nucleotide probabilities. Ideally a “typical” probability of the organism should be used 

as its weight. Here, for computational convenience, we define the fitness (Equation 

19) through summation of position-specific weights. These weights are assigned in 

accordance with a given sequence pattern so that a nucleotide with higher probability 

has larger weight. However, as discussed above, the specific form of the fitness 

function is not crucial for the investigation of equilibrium evolution if it induces the 
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same topology as “typical” probability on fitness landscape of organisms of the given 

length. The form of fitness function can only affect the resulting GItotal and the 

magnitude of its fluctuations, not the existence of the limit to GItotal itself. 

We do not know exactly the resulting GI-profile before the simulation is performed, 

because the weight matrix defines only a general direction of selection pressure and 

the final shape of pattern conservation, not the actual GI-profile per se. So the 

components of the weight matrix are used to determine preferences of selection which 

tries to maintain a pattern. In my experience, the particular recipes for selection 

actions (e.g. probabilistic/deterministic) and reproduction modes (overlapping/non-

overlapping generations) play little role for the described trends as long as the main 

purpose of these actions is to maintain a pattern—a biased frequencies distribution, 

while the opposing force—random mutagenesis, tries to flatten the bias. Each round 

of mutagenesis decreases the genome’s "typicality", on average. So a more "typical" 

genome has higher reproductive success because its progeny is more likely to stay 

typical and avoid elimination. As mentioned, GI can be viewed as a convenient 

measure of the functionally acceptable variant’s frequencies biases. Such a fitness 

definition, in my opinion, is the key departure from traditional models. For example, 

it seems to be inherently difficult to approach the Drake's rule explanation with a 

fitness function that is relative—it reveals no information on an organisms’ degree of 

complexity, hence, taken alone, it is “blind” to the size of a genome. In our case the 

total GI (reflecting organismal complexity) is measured by the amount of a pattern's 

(functionally acceptable) biases. It seems to be an intuitively appealing 

quantification—the larger the total amount of biases (further from the uniform 

distribution), the higher the information content and corresponding maintenance costs. 

However, such an approach is a necessary simplification—it works under the 

assumption that the rest ("higher order") information unfolding processes are 

approximately the same, which should at least work for similar species. 

It is reasonable to suppose that sophisticated error correction mechanisms such as 

DNA repair constitute a biological burden. We can therefore question what value of 

mutation rate is the highest compatible to a given total GI. The differences of GIρ of 

functional sequences are assumed to be small for close species. Formally, for our 

phenotype-calculating machines, the conservation of GI is equivalent to the whole 

phenotype conservation, because as we reasoned describing the model of positional 

storage of genetic information, the GI conservation preserves positional information 

of molecular interactions so that a phenotype is mechanistically derived from the 

whole genome pattern. 
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2.2.4   Simulation process 

The entire simulation process can be divided into three successive stages: 

initialization, spawning and selection. Initialization occurs only in the very beginning 

and then spawning and selection are repeated in a loop until the simulation process is 

stopped. 

Initialization: the initial population consisting of N organisms (sequences) of length L 

is generated. All organisms in the initial population are identical and have the 

maximum possible weight according to matrix W, i.e. at each position j of each 

organism stands a nucleotide Bj: 𝐵𝑗 = [𝐵|𝑤𝑗𝐵 = max𝐵∈{𝐴,𝐺,𝐶,𝑇}(𝑤𝑗𝐵)]. 

Spawning: the progeny is spawned. Each organism in the population produces nd 

descendants (here we consider in detail only the case of binary fission, i.e. when nd = 

2). A descendant organism has the same length as its parent and is obtained by 

copying the parental sequence with a certain probability of per base mutation (Pm) and 

a bias of mutational spectrum (Pti). The parental organism is excluded from the 

population after the reproduction, so that generations are non-overlapping, resulting in 

a population consisting of nd*N organisms. 

Selection: selection reduces the number of organisms in the population back to the 

initial size. It acts deterministically, leaving N organisms, whose weight W(O) 

determined by formula (19) is larger. 

The choice of procedure of the initial population generation does not affect the steady 

state of the simulation process, so we can simply generate a random initial population. 

However, generating the initial population as described above will provide the faster 

convergence to the steady state—the equilibrium condition that reveals the “error 

threshold”—the goal of our experiments. In order to keep things simple I decided to 

describe here the mode of reproduction with non-overlapping generations. However, I 

also experimented with overlapping generations (similarly to “Moran process”) and 

found that the resulting trend is invariant. 

2.2.4   GI behavior in the course of simulation 

Since all organisms in the initial population are identical, GIρ of the initial population 

is equal to 2 bits. However, as I discussed earlier this is not the “correct” functional 

GI but a value formally computed in the course of simulation. If we start the 

simulation process as described above with the probability of mutation Pm high 

enough to allow occurring mutations to propagate in the population, diversity will 

emerge and GIρ will start to decrease. GIρ will finally reach the level where 
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mutagenesis is balanced by the force of selection and in consequent iterations will 

fluctuate in the vicinity of some value (referred to here as the “steady state” or 

“equilibrium state”, though more akin to a “semi-steady state”, strictly speaking). The 

existence of the balance (mean GIρ) is clear because the capacity (the averaged effect) 

of random mutagenesis to decrease GI monotonically drops from some value at GIρ = 

2, to zero at GIρ = 0, while the corresponding selection capacity to increase GI 

behaves reciprocally—showing a non-zero value at GIρ = 0 and zero at GIρ = 2, thus 

these two functions intersect at some equilibrium point. In the numerical experiments 

I consider that the population has reached the equilibrium state if during the last T 

generations (T = 100 in our tests) two conditions are met: the sum of all GIρ changes 

between consequent generations is less than a specified threshold (1e-3 in our tests), 

and the maximum number of consequent generations increasing or decreasing GIρ is 

less than 0.1*T. The convergence of GIρ for different parameters is presented in 

Figure 14. 

Fluctuations around the equilibrium depend on particular modeling features. 

However, in my experience, the fluctuations are smaller for larger population sizes 

but the mean value of GIρ does not vary significantly because he equilibrium state 

does not depend on the population size, which is natural to expect for the population 

 

Figure 14. Convergence of GIρ for different parameters. 

Common parameters for all demonstrated cases are: N = 1000; nd = 2; Pti = 2/3; W = (Wj = 

(0.8, 0.2, 0, 0) if j is even, else Wj = (0.5, 0.3, 0.1, 0.1)). Color determines organism length 

(L): green corresponds to L = 100, blue to L = 200 and red to L = 400. Line style 

determines probability of mutation per base (Pm): solid corresponds to Pm = 0.01 and 

dashed corresponds to Pm = 0.04. 
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maintaining constant allele frequencies. Even if we assume a more complicated 

scenario where fluctuations do not settle, the aforementioned capacities of 

mutagenesis and selection to change GI cannot depend significantly on the population 

size because they operate on the variant’s frequencies, which are disentangled from 

the absolute population size. Hence the balance (even the dynamic balance) between 

these two forces is also free from the population size dependence.  

Here I will call the state of the simulation when the population has already reached 

equilibrium as the GI-steady state and denote the mean value of GIρ in the equilibrium 

population as GIsteady. So GIsteady represents a maintainable level of genetic 

information for a given species. It can be also called a "mutation-selection balance". 

However, it is clearly different from Fisher's balance (Crow 1986), who considered a 

single site. In our case the balance is due to the compensatory effects of multiple 

positive and negative mutations. Other authors considered a balance similar to ours 

when the frequency of positive mutations is high so that they cannot be easily brought 

to fixation as in one-by-one case (Sniegowski and Gerrish 2010; Desai and Fisher 

2007). This approach also differs from the approach described here. The most notable 

difference is that here we are not concerned with the fixations at all, and we quantify 

the limit on genomic complexity—as we discussed earlier, without considerations for 

this limit, a formal modeling might easily result in “un-physical” solutions. It should, 

however, be clearly understood that “steady” here connotes only the genetic 

information (and hence the phenotype). Individual genomes remain variable because 

new mutations still appear with a constant rate (Figure 15). The “molecular clock” is 

ticking and its empirical steadiness on the evolutionary scale is another indirect hint 

that the average GI density is a slowly varying parameter. For example, mutations are 

more frequent in a position with lower GI value, so if the density fluctuates strongly 

on the evolutionary scale, the clock will behave erratically. As already argued, GI 

increasing (positive) mutations constitute a significant fraction of random mutations 

(especially when GI in a position is low), thus allowing the same fraction (in the GI 

equivalent) of negative mutations to remain in the population. The monotonous 

molecular clock is traditionally explained by the neutrality assumption, which seems 

to be an oversimplification of reality. However, the proposed model provides the 

same prediction without resorting to implausible assumptions. Also the provided 

model shows that the steadiness of the clock is intimately connected with Drake's rule 

and the “error threshold”, while the neutral theory is inherently unable to make such 

connections. 
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2.2.5   Counting mutations 

In contrast with in vitro experiments in the simulation, the number of fixed (observed) 

mutations per generation can be counted directly. Following the common notation I 

denote the number of observed mutations per base per generation as ub, and observed 

mutation rate per generation per genome as ug. Despite the fact that the values ub and 

Pm are closely related, ub is always less or equal than Pm because the organisms with 

more mutations are more likely to be eliminated at the selection stage. 

In the first experiment described above, all parameters from Table 1 were fixed and 

the convergence of GIρ to its limiting (equilibrium) value (GIsteady) was traced (i.e. the 

value of GIsteady was not predefined, it was determined in the course of simulation). 

 

Figure 15. Fluctuation of positional nucleotide frequencies during GI-steady state for 

different selection weights (W) and population sizes (N). Common fixed parameters are: 

Pm=2
-6

, Pti=2/3, L=128, nd=2. In all three subfigures (A, B, C) the line style defines 

population size: the dash and dot line correspond to N=10000, the solid line to N=100. 

A: Fluctuations of nucleotide frequencies in a position (P) with selection weights 

WP=(0.4, 0.38, 0.12, 0.1). 

B: Fluctuations of nucleotide frequencies in a position (P) with selection weights 

WP=(0.5, 0.3, 0.1, 0.1). 

C: Dynamics of GIsteady. 
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Now let us look at the somewhat inverse experiment: we can fix the value of GIsteady 

and all parameters from Table 1 except Pm, and then numerically find the value of Pm 

which corresponds to the fixed parameters. This procedure was performed for all 

combinations of different organism lengths L{64, 128, 256, 512, 1024}, different 

values of GIsteady{1.2, 1.4, 1.6} and different weights W{[Wj=(0.8, 0.2, 0, 0) if j is 

even, else Wj=(0.5, 0.3, 0.1, 0.1)], [Wj=(0.9, 0.1, 0, 0) if j is even, else Wj=(0.4, 0.3, 

0.2, 0.1)]}. Other parameters in all experiments were fixed: N=1000, nd=2; Pti=2/3. In 

the experiments we estimated the number of mutations observed in the GI-steady state 

and compared ub parameters for different genome lengths. The results are summarized 

in Figure 16. 

 

Figure 16. Relationship between the mutation rate per site per generation (ub) and the 

genome size (L) observed in the simulation. Color determines density of genetic 

information in the steady state (GIsteady): red—GIsteady=1.2 bit/site, blue corresponds to 

GIsteady=1.4 bit/site, green to GIsteady=1.6 bit/site. The shape of the marker determines 

selection weights (W): the pentagon corresponds to Wpentagon=(Wj=(0.8, 0.2, 0, 0) if j is 

even, else Wj=(0.5, 0.3, 0.1, 0.1)), the triangle corresponds to Wtriangle=(Wj=(0.9, 0.1, 0, 0) 

if j is even, else Wj=(0.4, 0.3, 0.2, 0.1)). Lines represent linear regression on a log-log 

scale. Dark red/blue/green lines correspond to light red/blue/green markers; dash and dot 

lines correspond to pentagons, dashed lines correspond to triangles. 

Regression lines and corresponding correlation coefficients (r2): 

GIsteady=1.2, Wpentagon (red dash and dot line): log2 𝑢𝑏 = −0.68 − 0.98 log2 𝐿, (r2=0.99) 

GIsteady=1.2, Wtriangle (red dashed line): log2 𝑢𝑏 = −1.02 − 0.97 log2 𝐿, (r2=0.99) 

GIsteady=1.4, Wpentagon (blue dash and dot line): log2 𝑢𝑏 = −1.29 − 0.98 log2 𝐿, (r2=0.99) 

GIsteady=1.4, Wtriangle (blue dashed line): log2 𝑢𝑏 = −1.52 − 0.97 log2 𝐿, (r2=0.99) 

GIsteady=1.6, Wpentagon (green dash and dot line): log2 𝑢𝑏 = −2.31 − 0.93 log2 𝐿, (r2=0.99). 

GIsteady=1.6, Wtriangle (green dashed line): log2 𝑢𝑏 = −2.23 − 0.96 log2 𝐿, (r2=0.99). 
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Figure 17 demonstrates total genetic information (GItotal) and density of genetic 

information (GIρ) depending on the genome length (L) when the rate of mutations 

(Pm) is fixed. For each population displayed GIρ and GItotal were averaged over 1000 

generations after the population reached GI-steady state. 

Defining weight matrices in a different way, various scenarios of the GI density 

distribution were tested: homogeneous GI distribution in a genome (where all 

positions have the same distribution of weights, i.e  B  {A, G, C, T},  i, j  [1, L] 

Wj(B) = Wi(B)) and bimodal. In the latter case one half of a genome consists of highly 

conserved (“lethal”) sites to model the regions such as conserved protein domains, 

and the other half consists of weakly conserved sites to model the variable parts of 

proteins and weakly conserved non-coding regulatory DNA. I found that the meaning 

of the obtained results for the regression of the average GI density on the mutation 

rate at the equilibrium remains the same for different modes, so the observed trend is 

stable. 

2.2.6   Manifestation of Drake’s rule as a 

consequence of approaching channel capacity 

As demonstrated in Figure 14 starting from some initial distribution of allelic 

frequencies, after a number of reproduction/selection rounds (during which all 

parameters from the Table 1 are fixed, simulating the evolution process without any 

disruptive events) the population comes to equilibrium state. This means that in the 

 

Figure 17. Dependence of total genetic information (GItotal) and density of genetic 

information (GIρ) on the length of genome (L) when the rate of mutations (Pm) is fixed. 

Each point represents a population with organisms having genome of size L[100, 120, 

…, 1080, 1100]. For convenience of orientation some points are colored in red and 

genome size of corresponding population is labeled. Mutation rate (Pm) was fixed to 

0.007. Also, all other parameters were identical for all populations, namely: N=1000; 

nd=2; Pti=2/3; W=(Wj=(0.8, 0.2, 0, 0) if j is even, else Wj=(0.5, 0.3, 0.1, 0.1)). 
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consequent iterations the density of GI (GIρ) fluctuates in the vicinity of the GIsteady 

value, preserving the total amount of information (GItotal) contained in the population. 

The value of GIsteady depends strongly only on the rate of mutagenesis (Pm) and 

intensity of reproduction (nd, which determines selection potential). Changes of other 

parameters have minor effects. Since in the presented study the value of nd is fixed in 

all experiments, GIsteady is determined by Pm. The value of GIsteady represents the 

maximum amount of information per position (averaged over all positions in genome) 

that is possible to maintain in the population from generation to generation with a 

given mutation rate (Pm). If we reduce mutation rate, GIsteady will expectedly increase, 

allowing for the transmission of more information in toto (GItotal). E.g. in the case of a 

mutation rate equal to zero (Pm = 0) GIsteady will be 2 bits. For another extreme case, 

when Pm = 1, GIsteady will obviously be zero. 

Here I assume that the mutation rate in species is near the upper limit of tolerable 

values, so even a slight increase will make population unstable and eventually leads to 

extinction (the background of this assumption will be discussed in the next section). 

So from the viewpoint of IT, GIsteady can be naturally interpreted as a channel capacity 

that transmits the information about the underlying pattern from generation to 

generation, for a given level of noise (mutation rate).  

Let’s now take a look on channel capacity from the perspective of fitness. In the 

course of equilibrium evolution, genomes of species migrate within the set of 

allowable sequences (which determines corresponding sequence pattern), having for 

the most part very close fitness. It is reasonable to assume that allowable set forms a 

connected set (probably having rather simple shape at least locally) in the sequence 

space with Hamming distance. More conserved genomes form smaller allowable sets, 

e.g. in the limiting case when absolute conservation is required, the allowable set 

contains only one sequence. However, for all real species such sets are extremely 

large (probably much larger than their population sizes, especially for species with 

large genome). Positive mutation moves sequence “deeper” into the allowable set, 

increasing the distance from the exterior, negative conversely pushing the sequence 

towards the exterior. From these geometrical considerations it is clear that in general 

if an organism undergoes a positive mutation then its descendants will more likely 

experience further negative mutations. An assumption that mutation rate is at its upper 

tolerable limit suggests that most of the organisms are very close to the boundary of 

the allowable set (the neighborhood of the boundary contains most typical sequences). 

So from the viewpoint of fitness, the size of allowable sequence set of the population 

determines the channel capacity. 
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Remember now the second experiment, where for the given value of GIsteady, the 

corresponding mutation rate (Pm) was estimated, and after reaching the equilibrium 

state the number of fixed mutations was calculated for different lengths of genomes. 

In light of the above I can say that by fixing the value of GIsteady we determine the 

minimum value of average GI density required for viability of the population. Thus 

the second experiment allows us to estimate the upper limit of the mutational rate and 

the corresponding mutational spectrum for the equilibrium population having a 

predefined average density of GI. Let’s recall the “Drake’s rule” in its original form: 

there is an inverse relation between mutation rate per base per generation (ub) and the 

size of genome (L) in microbes, so that mutation rate per genome per generation (ug) 

is approximately constant. That is exactly what is demonstrated in Figure 16, which 

shows a clear inverse relation between genome size (L) and mutation rate per site per 

generation (ub), while mutation rate per genome per generation (ug) remains almost 

constant. For both values of GIsteady presented in Figure 16, the variation of ug is less 

than 5% of the average ug value among all experiments with corresponding GIsteady. 

The variations of ug in real microbes are larger than in our in silico experiment. This 

may be due to the fact that while closely related species have s similar values of GI 

density (GIρ), these values are not identical (like in our simulation). The variations of 

GIρ among microbes probably are quite small, because in general more than 90% of a 

microbial genome constitutes protein coding sequence, a characteristic presumably 

conserved in different species to the same extent, so the general trend of relation 

between ug and genome size in microbes remains clear. On the other hand, I expect 

that GI density in genomes of higher organisms is much lower than in microbes, 

because usually only a small fraction of their genomes encodes proteins, a significant 

part of functionality is borne by non-coding DNA possessing low conservation and 

thus low density of GI and potentially substantial part with no function. Figure 16 also 

demonstrates that species with lower density of GI can tolerate higher mutation rates 

(for a fixed length of genome). It is also clear from Figure 17 that for a fixed mutation 

rate longer genomes are capable of transmitting more information. These two facts 

possibly explain the reverse relation (direct proportionality) between ub and L 

observed in multicellular eukaryotes. That said, however, if we consider only protein 

coding sequences, the relation between ub and L observed in microbes mostly holds 

true for multicellular eukaryotes as well. The latter fact props up once again the 

presented explanation of the observed pattern of mutational rate, because as I 

mentioned above, what really matters is the GI density of the sequence, and the GI 

density of protein coding sequences is likely very similar among the vast majority of 

all biological species.  
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3   DISCUSSION 

… every item of the physical world has at bottom—at a 

very deep bottom, in most instances—an immaterial 

source and explanation; that what we call reality arises 

in the last analysis from the posing of yes-no questions 

and the registering of equipment-evoked responses; in 

short, that all things physical are information-theoretic 

in origin and this in a participatory universe. 

Wheeler JA (1989) “Information, physics, quantum: the search for 

links”, Proceedings III International Symposium on Foundations of 

Quantum Mechanics, p. 354-368. 

Only about 1.5% of human genome encodes protein sequences, while the functional 

significance of leftover noncoding DNA still remains largely unclear. Nonetheless, 

technological progress of the last decade gave us a substantial insight into noncoding 

functionality. Recent studies demonstrate that the manifestation of purifying selection 

in noncoding DNA is a widespread phenomenon (Kamal et al. 2006). According to a 

number of estimates the proportion of functional noncoding DNA in human genome 

may be more than 10-fold larger than the share of coding sequence (Smith et al. 2004; 

Ponting and Hardison 2011; The ENCODE Project Consortium 2012). Such estimates 

are often based on indirect evidence of functionality such as transcriptional activity 

(in case of in vitro experiments), or intricate techniques for detection of inter-species 

sequence conservation requiring precise calibration and nontrivial assumptions (in 

silico studies). Therefore the variance of these estimates is very high: while the most 

conservative suggest that the fraction of functional noncoding sequence is about 8% 

of human genome, the boldest estimates give a value which is one order of magnitude 

higher, reaching 80% of genome. However, whatever estimate is correct, it is clear 

now that a substantial part of genetic information in large genomes is concentrated in 

noncoding DNA. Functional noncoding elements are usually characterized by a high 

turnover rate, avoiding detection and investigation by conventional conservation-

based methods. Up to now it remains largely unclear how genetic information can be 

reliably stored in such highly-variable sequences. So, despite the fact that the 

significance of noncoding functionality is currently apparent, we still lack an adequate 

model to describe the evolution of functional sequences experiencing a high mutation 

rate. The model of positional information storage in sequence patterns presented in 

this work is addressed to fill this gap. The model shows that, in principle, it is possible 



DISCUSSION 

 

 

86 

 

to store any amount of error-free genetic information with arbitrarily high substitution 

rates provided sufficiently long sequences. Considering the analogy between genetic 

and digital information transmission, this possibility is ensured by the noisy-channel 

coding theorem—one of the core results of Shannon’s IT. Before Shannon’s 

revelation, a high signal/noise ratio was accepted, in practice, with some errors during 

transmission to be unavoidable. However, the IT demonstrated that energy efficient 

error-free communication is possible given any level of noise. A similar situation is 

observed in genetics: the intuition that functional sites must possess high conservation 

(high signal/noise ratio) went as far as to call all weakly conserved sequences “junk 

DNA”, while in this work I speculate (keeping faith in nature’s thriftiness) that 

weakly conserved functional sequences (constituting an overwhelming majority in 

large genomes) represent evolutionary innovation for increasing efficiency. In spite of 

the strong analogy with Shannon’s classical communication scheme, the situation 

considered here has a unique (somewhat counter-intuitive) feature: the proposed 

model suggests that a large fraction of random mutations is “positive” (i.e. is 

compensatory for GI storage as shown in Figure 7), while in the traditional IT model 

all noise is “bad”. It was shown that the composition of positional nucleotide 

frequencies can be optimized to minimize the impact of GI-decaying mutations, 

taking advantage of compensatory (GI-increasing) mutations. However, for low GI 

values about 50% of mutations are “good”, regardless of the nucleotide frequency’s 

vector optimality. 

It is clear that the applicability of the model to the evolution of real molecular 

machines should be thoroughly investigated since any formal model has its limits. For 

instance the interaction between particular alleles is apparently more complex than it 

is described by the model and as mentioned above, such interaction can be accounted 

for by constructing more complex typical sets. However, based on a few reasonable 

assumptions the model provides simple explanations for observable phenomena and 

operates similarly to our understanding of the machinery of molecular interactions, 

which could then be easily implemented in software. For these reasons I believe that 

this model deserves careful attention. 

While classical models usually consider evolution of defined sequences, the paradigm 

in this work is shifted to model the evolution (and conservation as a special case of 

particular importance in this work) of probabilistic sequence patterns. In this 

framework, a mere shift of allele frequencies, rather than a fixation of allele is 

considered as an elementary act of evolution. This seems to have little sense for a 

single allele. However, applying this scheme to millions of alleles in a population and 

considering that frequency of beneficial mutations can be high we come to the mode 

of evolution which is in marked contrast to the traditionally considered mode. Instead 
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of modeling fixation dynamics of single alleles with arbitrary assigned selective 

values, the framework, due to additivity of GI, allows us to model quantitatively the 

evolution of the total genomic information. A high frequency of beneficial mutations 

brings up the issue of determining the forces restricting the potential of progressive 

evolution and their limits, e.g. why some species are stable for millions of years.  

Interestingly, we can consider the model as a simple generalization of the Hardy-

Weinberg equilibrium (HWE) (Hardy 2003) where maintenance of functional sites is 

included explicitly. This may explain the persistent (half-century) illusion of the 

neutrality—mutations arising during maintenance evolution of equilibrium population 

will pretend to be neutral in the usual tests (e.g. Tajima's D test (Tajima 1989)) which 

actually assess the (local—in the case of recombining population) equilibrium 

condition, rather than the individual mutations neutrality. Below I discuss possible 

consequences for our understanding of evolution of real genomes, presuming that the 

model is sufficiently valid. 

To prevent possible criticism, I want to emphasize that the model as presented above 

describes features of an idealized population. One interesting feature of the model is 

that it can potentially reconcile the “heated” debates between neutralists and 

selectionists, since it suggests that evolution is mostly neutral (in stasis) but this 

neutrality is maintained by the selection of the most typical individuals. I believe that 

the investigation of abstract models, regardless of their immediate relevance to “actual 

practice”, is a normal epistemological practice since the corresponding applicability 

domains can be rather specific and are not yet well established and delimited. 

Naturally, this does not imply that the role of classical phenomena is ignored. For 

instance “selective sweeps” caused by “strong selection” are apparently non-

equilibrium events and are out of scope of the equilibrium model. Roughly speaking, 

such an event provokes replacement of the whole population. However, in terms of GI 

this large-scale dramatic incident alone provides only 2 bits of GI for a given site. 

Generally any phenomena caused by a changing environment represent non-

equilibrium events. The model assumes a constant environment and infinite time for 

equilibration, so all such events would occur with time for variability of the genome 

to settle around a new phenotype (allele composition). However, I propose that, even 

if a changing environment is considered, the model describes the “background” of 

such (presumably relatively rare) events. The frequency of such events should be 

limited by Haldane-type arguments (Haldane 1957), so it is reasonable to assume that 

the remaining mutational background can be better explained by the provided model 

than by the classical neutral approximation. Actually, according to the model a 

mutation (regardless of its selective value) per se, while changing the typicality or 

fitness of an individual organism, cannot affect the amount of total GI in the 
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equilibrium population (this phenomenon will be discussed below). Therefore the 

model presented in this thesis has a well-defined, restricted applicability domain. 

However, through abrupt or gradual changes of a GI-profile, it is possible to extend 

the model to certain non-equilibrium scenarios of changing environment. Admittedly, 

the majority of variants in real populations have weak effects, however, their number 

can be quite large making their collective effects far from negligible (as in the 

simplistic interpretations of the neutral theory), here a consistent way to account for 

such effects is suggested. 

As pointed out by Lynch (2010a): “mutation is the ultimate source of all variation, 

both adaptive and deleterious, a mechanistic understanding of the evolutionary 

process will be incomplete until a detailed account has been made of the rate of 

origin, molecular nature, and phenotypic consequences of spontaneous alterations for 

a diversity of organisms”. So it is clear that understanding of how mutations 

accumulate in genomes is crucial for the comprehension of the evolutionary process. 

According to Drake (Drake et al. 1998) the genomic mutation rate “is likely to be 

determined by deep general forces, perhaps by a balance between the usually 

deleterious effects of mutation and the physiological costs of further reducing 

mutation rates”. It is important to note that reflecting on the nature of genomic 

mutation rate, Drake did not include considerations for adaptive properties of 

evolution, practically solving the problem by hinting that it is rather a maintenance-

related phenomenon. In the presented model maintenance is interpreted as the 

equilibrium in alleles’ frequencies (and as a consequence, conservation of GI 

profile)—the main property of the model. In the framework of such interpretation, the 

size of population is obviously out of the equation (as in the case of HWE). 

The key assumption of an explanation of the “Drake’s rule” proposed here is that the 

total genomic information is saturated to its maximum maintainable level, or 

equivalently, that the mutation rate is near its upper limit for a given total GI of the 

species. I assume that the mutation rate and hence the total GI change slowly on an 

evolutionary timescale and hypothesize that the decrease of the rate is a basic 

prerequisite for progressive evolution. When after some spontaneous variation the 

mutation rate decreases, the total GI is gained promptly, reaching a new maximum 

maintainable level and restoring the equilibrium. Judging by the speed of convergence 

to the steady state demonstrated in Figure 14, equilibrium can be regained very 

quickly (~100 generations). The difficult question here is how the stability of the 

mutation rate for a given species can be motivated. So why does the rate of mutations 

not decrease or increase? Both an increase and decrease of the mutation rate have 

positive and negative impacts on evolution for different timescales. 
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On one hand, decreases in the mutation rate give an advantage that allows higher 

levels of total genetic information. However, this advantage is long-term because 

some generations must pass to fill newly accessible GI (if a niche requires it, which 

does not have to be the case in general). On the other hand it brings immediate 

disadvantages—“physiological costs”—since the lower mutation rate, in principle, 

must be associated with a slower replication rate and/or additional energy 

expenditures. Everything is exactly the opposite when we consider an increase of the 

mutation rate: it provides a long-term disadvantage, reducing the level of total GI and 

instant benefits, as well as “physiological costs”. So why does the mutation rate not 

degrade? For higher organisms, it is possible to speculate that an increased somatic 

mutagenesis might also cause short-term detriment, speeding up aging and promoting 

carcinogenesis. Besides somatic mutagenesis, there may be many other selectively 

important traits that are somehow linked to the changes of mutation rate. 

Another idea asserts that while the decrease of the mutation rate must run into some 

“physiological costs”, the way back is not so easy—a mutation that degrades the rate 

does not necessary reduce the “physiological costs” back to the previous values. Such 

a mutation must be a rather specific “back-mutation” or, even more likely, a number 

of them. Thus it is practically almost impossible to achieve simultaneously both the 

increase of the mutation rate and a reduction of costs. Therefore, rates can only go 

down, locked from above by both short- and long-term disadvantages. The 

maintenance of mutation rate, in turn, might require a regular renewal of the 

population, described below. Of course there are plenty of examples demonstrating 

regressive evolution—such evolution can be easily caused, for instance, by moving to 

a simpler niche (habitat)—“use it or lose it”. It is woth noting that for the model 

presented here, regressive evolution is not a priory less frequent than progressive. If 

the niche is separated sufficiently, a subpopulation with increased mutation rate will 

degrade to a simpler species. The blind salamander living in caves is a potential 

example of such (organ-specific) decrease of complexity. This salamander has an 

atavism: rudimental eyes (sometimes the eyes are absent completely). If we had more 

data on such reversed “atavisms”, we could assess how popular “degrading” evolution 

is.Technically, it is not reasonable to reject the possibility that a number of simpler 

species might “devolve” from more complex ones. While the latter must have 

ascended from some simpler ancestors. In fact, it is likely that the topology of the 

evolutionary tree resemples a willow tree (i.e., numerous descending branches, from a 

few thick nearly horizontal branches—“living fossils”). 

Hypothetically a slight change of the mutation rate is able to change species 

phenotype drastically and promptly (on the evolutionary timescale), since a minor 

relative change of mutation rate can cause a substantial modification of total 
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accessible GI and a correspondingly significant change of the phenotype. Such 

argumentation can be used for an explanation of “punctuated equilibrium” 

phenomenon. In principal this hypothesis can be verified experimentally—the model 

predicts that population (for instance) of flies with a reduced mutation rate has an 

opportunity to give rise to an advanced species of flies. If we were able to select flies 

for lowered mutation rate, this prediction could be tested. However, a reduced rate of 

mutation is not enough to stimulate evolutionary progress. Another required 

prerequisite is a properly challenging environment which will provides an impetus to 

progressive evolution, thereby promoting an increase in complexity. 

Due to the discreet nature of mutations modifying mutation rate and their 

(presumably) rather limited number, it is reasonable to expect that the mutation rate 

can take only a finite number of values (i.e. it is highly discrete). In this context it is 

possible to hypothesize about speciation scenarios. Consider a large population and 

suppose that the mutation rate is heterogeneous, so that the population has some 

average rate. Then imagine that a small group of organisms becomes separated from 

the main population. Suppose the group has much lower variance of mutation rates 

and the average mutation rate is far different from that of the origin population. These 

“founders” will produce a new population and the difference in mutation rate will lead 

to fast phenotype changes relative to the parent population.  

It is presumed that the evolution of the size of a functional genome occurs by dint of 

gene duplications (Ohno 1970) so that sizes of “gene families” increase. This 

standpoint also promotes the postulate discussed above of slow changes of GIρ for 

functional sequences because of the likelihood that molecular functions of new 

sequences are in some way similar to those of the original. The theory presented 

predicts that partial or whole genome duplications accelerate the rate of sequence 

evolution and is followed by a shrinking back of the (functional) genome size and the 

loss of extra copies of genes due to an inability to maintain higher total GI without 

changes in mutation rates. Thus the reduction in mutation rate and/or the adjustment 

of lower GIρ functionality (Figure 17), rather than duplications per se, provide the 

basis for the evolutionary progress (an increase in complexity and total GI). It is also 

worth noting that duplications are relatively frequent events, whereas a slowdown of 

mutagenesis and involvement of functional sequences with lower density of GI are 

assumed to be “slow” processes. This hypothesis can be reinforced by recent 

experimental studies of RNA viruses. It is known that large- and intermediate-sized 

nidoviruses encode an enzyme implicated in controlling RNA replication fidelity, 

while other single stranded RNA viruses, with smaller genomes, do not encode the 

enzyme (Lauber et al. 2013). On one hand it is reasonable to argue that an acquisition 

of this enzyme have promoted genome extension (Nga et al. 2011). On the other hand, 
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Eckerle et al. (2007) demonstrated that viruses containing a defective mutant of the 

enzyme-encoding gene possess an enhanced mutation accumulation rate. However, it 

is clear that progressive evolution is affected by external conditions (niche or habitat), 

which must be sufficiently complex to support the increase of species complexity. 

Duplications can lead to reproductive isolation. This fact, along with the hypothesis 

about the founder-specific mutation rate discussed above, provides a potential way to 

speciation and progressive evolution. 

The IT notion of “channel capacity” is sufficiently weighty and general enough that I 

therefore suggest it can provide adequate comprehension of the “Drake’s rule”. 

Moreover, such an approach also readily allows numerical simulations of the process. 

Channel capacity is the tightest upper limit on the rate of error-free information 

transmission for a given level of noise. Real communication systems (currently) have 

a rate of transmission that is somewhat below this theoretical bound. Engineers make 

great efforts trying to approach this limit because the closer to it a communication 

system is, the more energy can be saved. Hence another principal consideration is that 

the nature is “thrifty” so it is not clear why it would not utilize the genomic 

informational capacity to its full extent, avoiding wasting resources on unused 

capacity. Selection should favor the thriftiness (though there are some opposing ideas 

of “selfish” or “parasitic” sequences). It is reasonable to presume that early genetic 

systems operated at the “error threshold”. If this holds true it is not clear at which 

point and wherefore the departure from this limit occurred. To stay always at the 

threshold seems to be the fastest and most energy-efficient way to progress, while the 

threshold itself (i.e. capacity) is pulled up by the enhancements of replication fidelity 

and possibly other mechanisms. If we consider the “costs”, it is difficult to come up 

with even a synthetic reason to push the fidelity beyond necessity. Thus, until we find 

at least some strong argument against, we have to admit (following “Occam's razor”) 

that contemporary species also operate at the “error threshold”. Taking this threshold 

into account can profoundly deepen our understanding of evolutionary processes, 

while ignoring it in evolutionary modeling is fraught with loss of adequacy. 

Curiously, the problem of approaching channel capacity in the framework of IT has 

no general solution suitable for all practical situations, as it is related to the problem 

of achieving the best compression rate and, in practice, is limited by computational 

costs and memory. Following the reasoning of Chaitin (Chaitin 2012) it is possible to 

speculate that “molecular machines”, while attempting to approach the limit, have an 

infinite field for exercising mathematical creativity. The latter can be also used as an 

argument for the drive to complexity in living systems. Of course, the simple model 

presented here is able to capture only crude properties of the genetic information 

process as there are many features of real processes that are not included in the 
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model—epigenetics, recombination, genomic rearrangements, the roles of 

transposable and repetitive elements, multiple ploidy, etc. 

Large genomes contain a lot of repetitive and transposable elements (usually highly 

variable) at first glance this contradicts to the thriftiness notion. However, as shown in 

Figure 17 in case of informational saturation utilization of low-density GI sequences 

might be advantageous (e.g., the ENCODE project (The ENCODE Project 

Consortium 2012) seems to support the broad functionality of intergenic regions). 

From the IT point of view (semantically), the information content will not change if 

we will repeat the same message many times. Thus what really matters is not 

repetitive sequences per se but their structural properties. 

Genome size of plants and animals can be both much larger and much smaller in 

comparison with mammalian genomes, while the number of genes is approximately 

the same. On one hand it is reasonable to suggest that the size of genome does not 

strongly affect organism performance. On the other hand, there should be a balance 

between the proliferation of these elements and some counteracting force ( otherwise 

unconstrained multiplicative process would lead to an exponential growth). This 

balance represents independent from usual substitutions degree of freedom for 

phenotype tinkering, and its model can be developed similarly to the presented model. 

It is likely that the tinkering affects large-scale chromatin organization and is not 

much different from the usual mutagenesis. However, it could be useful that it is 

independent from it. Once the 3D nuclear organization became functionally 

important, some means of tinkering provided additional dimensions of variability. 

Presumably, substitutions and small indels cannot substantially affect nuclear 

organization (directly), so they are not well suited for this dimension of phenotype 

tinkering, in comparison with large-scale rearrangements and mobile elements. 

However, it is important to understand that proliferation of such elements does not 

immediately imply progressive evolution, an increase in complexity (which yet has to 

be defined formally for such elements). Similarly to the mutation-selection balance of 

normal mutations, the increase of complexity requires special “creative” events that 

affect the balance (mutation rate decrease etc.), and that balance is restored again 

quickly after such events. 

Another thriftiness-based (posterior) “prediction” concerns CpG sites. Due to their 

hypermutability these sites are heavily under-represented in mammals and some other 

lineages. However, 

it is known that highly conserved “CpG islands” exist in some functional regulatory 

regions. Either they are protected from mutagenesis by some special mechanisms or 

by simply purifying selection apparently they produce additional costs for their 
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carriers. These costs must be balanced by some benefits, and indeed they have an 

additional informational capacity obtained due to the ability to be methylated. Similar 

reasoning may be applied to other over-conserved sequences (e.g. histones). 

Also, the “silent” substitutions (which do not affect protein sequence) are unlikely to 

be strictly neutral, since organisms would capture unused informational capacity. 

Their applicability for calibration purposes should be carefully evaluated. Indeed, 

there are many reports which show their functionality potential. 

Comparing the proposed above interpretation of the “Drake’s rule” with another 

recently suggested (Sung et al. 2012), it is worth mentioning that the explanation 

presented here does not require additional difficult-to-define entities like “molecular 

refinements”, “drift barrier” or “effective population size” -- the estimates of the latter 

are admitted by Sung et al. to be “fraught with difficulties”. The verification of that 

evolutionary model in silico seems to be quite problematic, since genome-wide 

functionality and conservation are not defined. Hence there is no specific model for 

selection actions and many arbitrary parameters. As a consequence it is not clear how 

that model can be simulated. However, the ability to simulate and to assess the 

robustness in the parameter space is a very desirable feature of any “mechanistic” 

evolutionary model. Comparing Figure 1A in (Sung et al. 2012) with Figure 16, it is 

possible to hypothesize that eukaryotes have lower GI density on average, which is 

consistent with weaker genomic conservation observed. Figure 17 shows that storing 

genetic information in functional sequences with lower density can be advantageous. 

So perhaps eukaryotes resorted to this strategy. In general GI storage strategy can be 

affected by particular demands for optimization. Viruses and bacteria may prefer 

compact genomes with high density of GI, for example, utilizing the double stranded 

and overlapping coding and avoiding weakly conserved regulatory noncoding DNA 

because of their need to replicate fast and have small physical size. 

One important conclusion that can be drawn from the above reasoning is that the 

molecular evolution on average is not about a continuous increase of total GI. This 

can shed light on the naive but still valid question of why we see “living fossils” (a 

species that “stopped evolving” and keeps its phenotype unchanged for millions of 

years), while on the other hand we can observe an amazing phenotypic plasticity (e.g. 

dogs pedigrees or Cetacean evolution). Despite being “adaptive” for a given 

environmental change, evolution is not “progressive” in terms of total GI, as I posit 

that each species already has the maximum total GI allowed by the mutation rate, 

which is assumed to vary slowly. Having this in mind it is also tempting to revisit the 

popular evolutionary concept stating that genes are near their best functional 

performance, balancing at the brink of “chaos and order”. In terms of the proposed 
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model we can say that performance is as good as allowed by the corresponding 

channel capacity, so that, in general, a random mutation has a high chance of being 

positive.  

The postulated dependence of the “evolvability” on the size of the population is 

dogmatized in classical theories. This stems perhaps from the historically formed 

opportunistic “Brownian” concepts of the evolution. In my opinion, strong 

dependences on the population size in conventional models may have led to some 

contradictions with observed phenomena, such as Lewontin’s “Paradox of Variation” 

(Lewontin 1974). Not to mention that the general tendency shows that on average 

more highly evolved species have smaller population sizes. However, the presented 

model allows us to reconsider the role of population size in the evolutionary process 

at least for the maintenance mode. The model suggests that if a population evolves at 

the limit of total GI, the gain of advance in one function entails losses for other. In 

this case, as I showed, the impact of population size may be diminished, at least for 

the maintenance mode of evolution. In this scenario, when an individual receives an 

advantageous mutation, its progeny will tolerate and keep more disadvantageous, new 

mutation-hitchhikers (and the outcomes of recombination), which will eventually 

nullify the effect of the initial mutation. Qualitatively, similar information “jamming” 

was also explored in the chapter “Conflict Resolution” in Forsdyke (2011). Moreover, 

the model presented here allows us to draw a scenario for evolvability vs. population 

size that is somewhat opposite to the conventional models: random mutations, if they 

have no instant deleterious effect, will on average increase the rate of mutations. So in 

the long-term a large population is able to accumulate many alleles, which enhances 

the average mutation rate, leading to degradation. Then the possible solution lies in a 

population bottleneck, i.e. the population must be periodically refreshed by 

establishing subpopulations, having decreased (below the average) mutation rate. 

Presumably, such subpopulation will quickly take advantage and overcome the parent 

population. This phenomenon can be called “genetic ageing of the population”, in a 

sense, it resembles somatic ageing, however, occurs on the level of population. From 

this viewpoint bottlenecks, reproduction barriers and speciation events are necessary 

for progress and thus are inevitable companions of evolution, rather than peculiar 

accidental features. It is worth repeating that positive mutations are abundant in the 

framework of the model, therefore the role of population size and slow speed of 

evolution is not as significant as in classical models.  

Breeders are well aware of the phenomenon that adaptation to new demands of 

selection occurs at a price to reduction of adaptation to other demands. In the 

framework of the presented model this is expressed in reshaping the genomic GI 

profile (which results in phenotype changes) while the total GI amount remains 
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constant. From the biological point of view this phenomenon represents a directional 

decrease of variability (reflected in the model as the growth of corresponding GI) of 

one phenotypic characteristic, while the variability of the others increases (GI drops 

down). Except for some analogs of the “error threshold” (which are usually applicable 

only in some ad hoc cases), the notion of channel capacity is absent in conventional 

models. Therefore fitness functions traditionally used are relative and thus incapable 

of distinguishing among such “reshaping” and “progressive” modes of evolution. 

However, the suggested IT framework is sufficiently general allowing for direct 

modeling of such “reshaping selection”, evaluating its basic features and impacts of 

different evolutionary strategies. I expect that such evolutionary plasticity is to a 

greater extent inherent in functional sequences possessing low density of GI (e.g. 

most of eukaryotic noncoding functional sequences). 

Despite its conceptual and practical importance, IT remains poorly known outside the 

communication engineering community. However, nature has to solve many 

engineering tasks in the course of evolution and many living processes (e.g. 

transmission of genetic information to next generation) seem to be exclusively 

relevant to literal communication, making an adaptation of IT to biology natural and 

highly promising (Battail 2013). Other things being equal, an optimization of GI 

storage makes species more efficient, providing higher informational capacity of the 

genome, increasing reliability of hereditary information transfer, and decreasing 

genetic load which eventually implies better survival rates. Natural selection leads to 

the “survival of the fittest”, which is equivalent to the survival of the most efficient, 

naturally including the efficiency of information processing. IT shows that in order to 

achieve better efficiency of information transmission we should apply more 

sophisticated algorithms of decoding and encoding. So in general, increasing memory 

and computational complexity is inevitable if we want to move closer to the channel 

capacity limit. Hence the IT provides a natural link between the drive to efficiency 

and the drive to complexity. While the former is usually considered as self-evident the 

comprehension of the latter presents considerable difficulties. Traditionally, biological 

complexity is assumed to passively emerge as simple rules (interactions), applied 

recursively. Such schemes are able to generate perceivably complex patterns, but 

these patterns remain simple algorithmically. In contrast, the lesson learned from IT is 

that an active drive to increase algorithmic complexity is necessary in order to be 

efficient. In this regard an instructive example is the “evolution” of IT itself. As it was 

mentioned in the introduction, the role of the IT among scientific and engineering 

communities was insignificant until the tough demand in energy-efficient 

communication appeared due to the beginning of the space race (Aftab et al. 2001). 

This demand boosted theoretical and practical developments, promoting the invention 
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of complex hardware and algorithms allowing us to approach the channel capacity 

limit, and resulting in readily accessible various worldwide digital communication 

media. It is tempting to speculate that similar evolution with a drive to complexity 

occurs on the level of “molecular machines”. 

Invariants are the cornerstones of physical and mathematical theories. However, no 

invariants were proposed in the theory of evolution. Filling this gap, the invariance of 

a GI pattern in an equilibrium population is proposed in this work. Having this 

invariant and complementing it with a few reasonable assumptions I come up with a 

model of molecular evolution, which, to a wide extent, represents a completely novel 

conception. The use of Shannon’s IT as a mathematical foundation for the model 

provides it with high level of abstraction and generality. The model allows to look at 

many evolutionary phenomena from a fresh perspective. New interpretations of some 

well-known phenomena have been already introduced in this thesis. Further 

theoretical elaboration and experimental verification of the model will promote a 

deeper understanding of molecular evolution and population genetics processes. 
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APPENDIX 

Zusammenfassung 

Invarianten (Erhaltungssätze) dienten mathematischen und physikalischen Theorien 

als grundlegende Eckpfeiler, von der Frühzeit der Wissenschaft bis in die Neuzeit. So 

war beispielsweise die erste Bezeichnung für Einsteins Theorie „Invariantentheorie“ 

und Klein erachtete die Geometrie in seinem „Erlanger Programm“ als das Studium 

von Invarianten unter einer Transformationsgruppe. In den Theorien der molekularen 

Evolution hingegen wird die vielfach beobachtete Invarianz des Phänotyps, d. h. sein 

Erhalt über Generationen hinweg, nicht mit invarianten Genomsequenzen 

gleichgesetzt. Im Gegenteil, die Genomsequenzen werden als recht veränderlich 

betrachtet; sie entwickeln sich schnell und opportunistisch, oftmals „neutral“. Die 

klassischen Modelle der molekularen Evolution wurden vor mehr als 40 Jahren 

entwickelt, wobei damals keine umfassenden Datenmengen zur Verfügung standen. 

Die folgende Entwicklung der Theorie der molekularen Evolution war zunächst 

willkürlich und oberflächlich: unwesentliche Ad-hoc-Annahmen wurden eingeführt, 

um neu gewonnenen Daten zu entsprechen. Der Kern dieser Modelle blieb jedoch 

unverändert. Die Konzepte wurden mit mehr Details und Annahmen weiter 

ausgeführt, wodurch sie kompliziert wurden und die Fähigkeit verloren, nachweisbare 

Vorhersagen oder Erklärungen zu beobachtbaren Phänomenen abzugeben. Das Fehlen 

allgemeiner Grundprinzipien führte zur Krise der Theorie der molekularen Evolution. 

Heutige Technologien versorgen uns mit einer Unmenge an molekularen Daten, was 

einen tieferen Einblick in die Funktionsweise von Genomen ermöglicht und ein 

tiefgehenderes Verständnis der Funktionsweise von Genomen erfordert. 

Diese Arbeit führt ein neues Paradigma in die Theorie der molekularen Evolution ein, 

indem eine invariante Eigenschaft der Genomsequenz eingebracht wird, die sich nicht 

oder nur langsam von Generation zu Generation ändert, während sich die 

Grundsequenzen schnell ändern können. Die Einführung der Invariante führt zu einer 

eher „physikalischen“ und weniger opportunistischen Sicht auf die Sequenzevolution 

und liefert prüfbare Vorhersagen. Das weit entwickelte System aus Shannons 

Informationstheorie wird als mathematischer Rahmen des Modells verwendet. Ein 

funktioneller Ort wird als ein positionell wahrscheinliches „Pattern“ betrachtet, wo 

jede Position des „Patterns“ einen Vierervektor von Nukleotidwahrscheinlichkeiten in 

der Gleichgewichtspopulation (d. h. abstrakte unendliche Population, die sich über 

einen unbegrenzten Zeitraum ohne störende Ereignisse entwickelt hat) darstellt. Die 

Einführung der Invariante ermöglicht uns die Simulation der 

Geninformationsdynamiken und die Anwendung grundlegender physikalischer 
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Prinzipien, wie die optimale Effizienz und Kanalkapazität. Das Modell beweist die 

grundsätzliche Möglichkeit einer fehlerfreien Informationsspeicherung in Sequenzen, 

deren Erhaltung willkürlich gering ist. Ich beweise, dass die Rate vorteilhafter 

Mutationen im Allgemeinen hoch sein kann. Je geringer die Sequenzerhaltung, desto 

höher die Frequenz der vorteilhaften Mutationen. Die Versuchsergebnisse zeigen die 

Tendenz wirklich funktioneller Orte zur Optimierung, in Übereinstimmung mit dem 

eingebrachten Optimalitätskriterium. Das Modell ermöglicht einen frischen Blick auf 

das wohlbekannte Phänomen (es zeigt beispielsweise, dass die „Molekulare Uhr“ und 

„Drake’s Rule“ möglicherweise aus einem gemeinsamen Prozess heraus entstehen). 

Es kann ebenfalls sinnvolle Erklärungen für einige Paradoxa (z. B. „Paradox of 

Variation“) liefern, denen es im Rahmen klassischer Theorien an einer eindeutigen 

Interpretation mangelt. Daher glaube ich, dass die Weiterentwicklung des Modells ein 

tieferes Verständnis der molekularen Evolution und populationsgenetischer Prozesse 

vermitteln wird. 


