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Abstract

In this thesis we consider the following three free boundary value problems for (hyper-)surfaces
that are governed by the mean curvature of the (hyper-)surface:

1. A monotonicity formula for free boundary surfaces with respect to the unit ball

We prove a monotonicity identity for compact surfaces with free boundaries inside the
boundary of the unit ball in R™ that have square integrable mean curvature. As one con-
sequence we obtain a Li-Yau type inequality in this setting, thereby generalizing results
of Oliveira and Soret [RV95, Proposition 3], and Fraser and Schoen [FS11, Theorem
5.4]. Then we derive some sharp geometric inequalities for compact surfaces with free
boundaries inside arbitrary orientable support surfaces of class C2. Furthermore, we ob-
tain a sharp lower bound for the L!-tangent-point energy of closed curves in R? thereby
answering a question raised by Strzelecki, Szumanska, and von der Mosel [SSvdM13].

2. Relative isoperimetric properties of asymptotically flat support surfaces

We define a notion of mass for asymptotically flat hypersurfaces S of euclidean space
and prove a positive mass theorem in all dimensions. Then we establish a free boundary
version of an obstruction discovered by Schoen and Yau in their proof of the positive
mass theorem [SY79b], and refined by Eichmair and Metzger [EM12], and very recently
by Carlotto [Carl4]: positive mean curvature of S C R3 is not compatible with the
existence of (certain) stable free boundary minimal surfaces. We then use this to prove
that given a compact set K of R3, all volume-preserving stable free boundary constant
mean curvature surfaces with respect to S of sufficiently large boundary length will
avoid K, thereby obtaining a free boundary version of the main result in [EM12]. Fi-
nally, inspired by ideas of Eichmair and Metzger [EM13b] we prove the existence of
arbitrarily large isoperimetric regions relative to S.

3. Weak solutions of nonlinear mean curvature flow with Neumann boundary condition

We propose a new flow approach to obtain relative isoperimetric inequalities. As a
first step in this program we develop a weak level set formulation for mean curvature
flow and positive powers of mean curvature flow with Neumann boundary condition.
We prove the existence of weak solution under natural conditions on the supporting sur-
face and derive some properties for the evolving surfaces. The case of surfaces without
boundary has been treated by Schulze [SchO08§].






Introduction

Geometric calculus of variations deals with the question of the existence of optimal geometric
objects and their properties. One of the oldest problems in geometric calculus of variations,
dating back to Greek antiquity, is the so-called isoperimetric problem. The problem can
be stated as follows: “How much n-dimensional area is needed to bound a given (n + 1)-
dimensional volume in a given (n + 1)-dimensional ambient space?”

This interesting mathematical problem also serves as a model problem for other geometric
variational problems (with constraints). Moreover, the isoperimetric problem has strong rele-
vance in physics. Not only do optimizers of this problem serve as a model for the description
of soap bubbles, but the isoperimetric behavior of asymptotically flat 3-manifolds is strongly
related to the concept of mass in the theory of general relativity [Bra97, Hui06, Hui09, EM13b].

The critical points of the isoperimetric problem, i.e. critical points of the area functional
under a volume constraint, satisfy the nice property that they have constant mean curvature,
and are thus referred to as constant mean curvature (CMC) hypersurfaces. Critical points
of the area functional without a volume constraint, which serve as a model for soap films
spanned by a wire or as the black hole horizons of initial data sets in general relativity, are
called minimal hypersurfaces since they locally minimize area. Understanding minimal and
CMC hypersurfaces not only helps to find and understand optimal shapes for the isoperimet-
ric problem but these surfaces can also be used to foliate asymptotically flat manifolds in a
geometrically natural way leading to concepts such as the center of mass of an initial data set
in general relativity [HY96, Ye96, Met07,QT07, Hual0, Mall,EM13b, Ner14]. Moreover, min-
imal hypersurfaces have been successfully employed to solve other important mathematical
problems in geometry such as the positive mass theorem [SY79b] and the Willmore conjec-
ture [MN14].

The relative isoperimetric problem, also known as partitioning problem, or Dido’s problem,
after Dido, Queen of Carthage, is the problem of minimizing relative area subject to a volume
constraint inside a fixed domain G (open, connected) with non-empty boundary (or more
generally, a Riemannian manifold with boundary). Le.

minimize area(92 N G) in the class of sets Q@ C G with vol(Q) = V.

Note that we do not account for the area of Q) N IG as G is open. Optimizers are used to
model liquid drops under negligible gravitation and adhesion effects. Identifying optimizers
for the relative isoperimetric problem, also known as relative isoperimetric domains, remains
mainly unsolved. So far, they have been explicitly characterized only for very few domains
G. E.g. euclidean balls by Bokowski and Sperner [BS79], and Almgren [Alm87], slabs by
Athanassenas [Ath87], Vogel [Vog87], and Pedrosa and Ritoré [PR99], solid cones by Lions
and Pacella [LP90], and Ritoré and Rosales [RR04], and recently convex solid cylinders (under
the condition that the prescribed volume is sufficiently large) by Ritoré and Vernadakis [RV14].

Existence of optimizers inside bounded domains easily follows from standard compactness
results for functions of bounded variation. Local interior regularity of their relative boundary



was first established by Giusti [Giu81], see also Gonzalez, Massari, and Tamanini [GMT83].
Local boundary regularity was proved by Griiter [Grii87]. Fall [Fall0] proved that relative
isoperimetric domains inside bounded domains G concentrate along points of maximal mean
curvature of G as their volume tends to zero.

While existence of optimizers inside bounded domains is always ensured, relative isoperi-
metric regions inside non-compact domains need not exist in general as minimizing sequences

can drift off to infinity. However, the relative isoperimetric profile I of a domain G is always
well defined by

I¢(V) :=inf{area(0QNG) : Q C G,vol(Q) =V}, 0<V <vol(G)/2.

Sternberg and Zumbrun [SZ99] proved concavity of the function I for bounded convex do-
mains G C R"! and concluded geometrical and topological consequences for relative isoperi-
metric domains. Kuwert [Kuw03] observed that in fact in this case the renormalized profile
Iglﬂ)/ " is concave. Bayle and Rosales [BR05] derived more general second order differen-
tial inequalities for I5 for convex domains G inside Riemannian manifolds and proved sharp
comparison theorem for convex bodies.

A strongly related question, which is sometimes equivalent to Dido’s problem, is the search
for optimal inequalities that bound enclosed volume by relative boundary area of sets inside
a given domain; so called relative isoperimetric inequalities. In other words, this problem

consists of computing the number

n+1

inf {IG(V) .

% :0<V<V01(G)/2}.

Such inequalities (in cases optimizers are not explicitly known) have been obtained by Choe,
Ghomi, and Ritoré [CGROT7] (see also [CRO7]) for sets in the complement of convex sets. A
key ingredient in their proof is to find sharp lower bounds on the maximum mean curvature
of the relative boundary of certain subsets in the complement of convex sets, as these in turn
yield a lower bound on the first derivative of the relative isoperimetric profile.

Critical points of Dido’s problem have relative boundaries with constant mean curvature,
meeting the boundary of the domain orthogonally. These hypersurfaces are referred to as
free boundary constant mean curvature hypersurfaces. Volume-preserving stable CMC hy-
persurfaces with free boundaries, i.e. critical points of Dido’s problem with non-negative
second variation, have been characterized in very few special cases only, see e.g. [Ath87,
Vog87,RV95, PR99, RR04]. We also refer to [Ros05] for an overview of known results about
volume-preserving stable free boundary CMC hypersurfaces inside convex domains.

Critical points of the area functional in the class of hypersurfaces inside Riemannian man-
ifolds G the boundaries of which are confined to lie inside the boundary of G without a
volume constraint are known as free boundary minimal (hyper-)surfaces, and have already
been studied for a long time with first existence results going back to Courant [Cou40]. We
refer to [DHS10,DHT10b,DHT10a| for an almost up to date historical account on the subject.

Very recently, there has been great interest in the study of free boundary minimal hy-
persurfaces inside compact Riemannian manifolds with boundary. Exemplarily, we mention
the works of Fraser [Fra00, Fra02|, Fraser and Schoen [FS11,FS13b,FS13a], Brendle [Brel2],
Ambrozio [Amb13], Li [Lil4b, Lil4a], Fraser and Li [FL14], and Maximo, Nunes, and Smith
[MNS13].



Of particular interest is the interplay between curvature of the boundary manifold and
the free boundary minimal hypersurfaces via the second variation of area. For example, as
can be seen by a simple calculation involving the second variation, there are no compact im-
mersed stable free boundary minimal hypersurfaces inside a strictly convex domain. This fact
stands in analogy to the fact that Riemannian manifolds of strictly positive Ricci curvature
do not contain closed immersed stable minimal hypersurfaces. Moreover, it was observed by
Ros [Ros08, Proposition 2] that every immersed stable free boundary minimal surface inside
a bounded mean convex domain is a topological disk, which parallels the result of Schoen and
Yau [SY79a, Theorem 5.1] that every immersed stable minimal surface inside a closed Rie-
mannian manifold of positive scalar curvature is a topological sphere. This structural analogy
between boundaryless Riemannian manifolds, positive Ricci curvature, positive scalar curva-
ture, and minimal surfaces on the one hand, and domains in euclidean space, strict convexity,
strict mean convexity, and free boundary minimal surfaces on the other hand, goes in fact
much further and is also reflected in results about the relative isoperimetric problem or about
free boundary CMC surfaces. As another example we mention the analogy between closed
minimal hypersurfaces in the standard sphere, and free boundary minimal hypersurfaces in
the unit ball: Almgren [Alm66] showed that the equator is the only immersed minimal surface
in S? of genus zero (up to congruences), whereas Nitsche [Nit85] could show that the flat unit
disk is the only immersed free boundary minimal disk inside the unit ball B of R? (up to
congruences). The recent proof by Brendle [Brel3| of the Lawson conjecture that the only
properly embedded minimal torus inside S? is the Clifford torus (up to congruences) suggestes
the conjecture by Fraser and Li [FL14] that the only properly embedded free boundary min-
imal annulus inside the unit ball B of R3 is the critical catenoid (up to congruences), which
however is still unsolved.

The L?-gradient flow of the area functional for free boundary hypersurfaces is the so-called
mean curvature flow with Neumann boundary condition (sometimes also called mean curva-
ture flow with Neumann free boundary condition).

Stahl [Sta96b]| proved short-time existence and uniqueness of solutions on a maximal time
interval, and showed that in case this interval is bounded the curvature of the evolving hyper-
surfaces blows up as time approaches the final existence time. Moreover, Stahl [Sta96a] could
show that under mean curvature flow with Neumann boundary condition, convex free bound-
ary hypersurfaces end up in a Type I singularity, and become asymptotically hemispherical
after rescaling. Buckland [Buc05] derived a monotonicity formula for mean curvature flow
with Neumann boundary condition and was able to classify the boundary singularities for
mean convex evolving hypersurfaces. Koeller [Koel2] established a local monotonicity for-
mula for mean curvature flow with Neumann boundary condition and proved estimates on
the size of the singular set under certain regularity assumptions on the flow.

The non-parametric mean curvature flow of graphs with orthogonal contact angle on
cylindrical domains had been studied earlier by Huisken [Hui89]. More recent results for
the graphical mean curvature flow with Neumann boundary condition were obtained by
Wheeler [Whel4b, Whel4a].

The L?-gradient flow for Dido’s problem is the volume-preserving mean curvature flow with
Neumann (free) boundary condition. First results were obtained by Athanassenas [Ath97,
Ath03] for rotationally symmetric surfaces with free boundaries inside two parallel planes,
and by Athanassenas and Kandanaarachchi [AK12] for rotationally symmetric surfaces with



free boundary inside a plane. Very recently, Médder-Baumdicker [MB14] proved a monotonicity
formula for the volume-preserving mean curvature flow with Neumann boundary condition.
For the evolution of curves she could show longtime existence and convergence to a circular
arc for certain initial configurations.

Outline of main results

A monotonicity formula for free boundary surfaces with respect to the unit ball

In Chapter 1 we consider compact free boundary surfaces with respect to the unit ball B in
R™, i.e. compact surfaces ¥ C R", the boundaries 9% # () of which meet the boundary 0B of
the unit ball B orthogonally.

The main result of this chapter is a monotonicity identity for these surfaces (see Theo-
rem 1.1), which is analogous to Simon’s monotonicity identity [Sim93] for closed surfaces.
Inspired by the interpretation of Simon’s test vector field, a desingularized-cut-off version of
the vector field Y (z) = (x — xq)|r — x| 72, as the gradient of the Newtonian potential of
R? evaluated in R™, the main idea of the proof is to test the first variations identity with a
desingularized-cut-off version of the gradient of the Neumann Green’s function of the Lapla-
cian with respect to the unit disk in R? evaluated in R™.

As a consequence we obtain area bounds, and as a limiting case of the monotonicity identity
we obtain the following theorem.

Theorem 0.1. For any F': X — R", immersed, compact free boundary surface with respect
to the unit ball in R™, we have

1 N 1 1
Omazr < 5= H|?* dH2. / . dH . =def — F
_877/2’ |“dHF D 8233 Vo AH pes 27TW( ),

where Opq, denotes the mazimal multiplicity of F(X). In particular

W(F) > 2r, (0.1)

and if
W(F) < 4,

then F' is an embedding. Moreover, equality in (0.1) implies that F(X) is a round spherical
cap or a flat unit disk.

This theorem can be seen as a generalization of a sharp isoperimetric inequality for free
boundary minimal surfaces with respect to the unit ball in R due to Fraser and Schoen [FS11,
Theorem 5.4] (see also Brendle [Brel2]) to not necessarily minimal surfaces.

We also prove the following geometric inequalities:

Proposition 0.2. Let Q C R™ be convex set such that h?jﬁ < kd;j. Then for every compact
free boundary surface ¥ that meets 0 from the inside we have

o < 1/ |H|? dH? + kH (9%).
P



Let Q0 C R™ be convex set such that h;?jQ > k6;5. Then for every compact free boundary surface
Y that meets 02 from the outside we have

o < i/ |H|? dH? — kH (0%).
b

Moreover, equality holds if and only if 3 is a spherical cap or a flat unit disk.
Using a new observation we are able to prove the following proposition.
Proposition 0.3. Let ' be a closed curve in R? of class C1 for some o € (0,1). Then
2dist(x — y, T,.T
2rlength(T") < // e |(:1: y‘; Z )d’Hl(m) dH(y),
rJr r—y

with equality only if T is a planar, convexr curve.

Proposition 0.3 confirms a conjecture by Strzelecki, Szumariska, and von der Mosel [SSvdM13].

Relative isoperimetric properties of asymptotically flat support surfaces
In Chapter 2 we investigate relative isoperimetric properties of a certain class of non-compact
hypersurfaces. Inspired by an analogy with asymptotically flat Riemannian manifolds we de-
fine a class of hypersurfaces called asymptotically flat hypersurfaces, which outside a compact
set can be written as a graph of a function u which has a controlled decay of its first and
second derivatives at infinity.

Similar to the ADM mass of asymptotically flat Riemannian manifolds we can assign a
number to these asymptotically flat hypersurfaces. We define the extrinsic mass m(S) of an
asymptotically flat hypersurface S in R”*! by

m(S) := lim ! / %d”ﬂ”_l,
=00 Wy, _1 8B (0) ov
where v denotes the euclidean outward unit normal to BJ*(0) C R", and where w,_1 =
area(0B7(0)). The extrinsic mass is a well defined geometric quantity (see Proposition 2.6).
An interesting subclass of asymptotically flat hypersurfaces are asymptotically catenoidal
hypersurfaces which have the defining property that

u(z) =a+ énp(r) + O(r*”H) as r = |z| = oo,

o (r) = {Mlog]\(p "

- (n_Q)rn72 , I > 37

where

for some constants M, a € R, and where we require this expansion to hold up to and including
second order derivatives.

We then define a class of hypersurfaces that we call exterior hypersurfaces, which are simply
asymptotically flat hypersurfaces with some extra condition in case their boundary is non-
empty. Using a maximum principle argument we obtain a positive mass theorem:

Theorem 0.4. (Positive Mass Theorem) Let S C R™"! be an asymptotically catenoidal
exterior hypersurface of non-negative mean curvature. Then

m(S) = 0,

with equality if and only if S is a hyperplane.



Guided by this analogy we adapt methods by Eichmair-Metzger [EM13b] to prove the
partial solvability of Dido’s problem in this context:

Theorem 0.5. Let S = 0G be an asymptotically catenoidal exterior hypersurface of R™H1.
There ezists a sequence of relative isoperimetric regions Q; C G with L™(Q;) — 0.

Inspired by the minimal surface proof of Schoen-Yau’s positive mass theorem [SY79b] and
works of Eichmair-Metzger [EM12] we prove the following results for free boundary surfaces
in dimension 3. See also the recent results of Carlotto [Carl4].

For non-compact stable free boundary minimal surfaces we have the following rigidity theo-
rem:

Theorem 0.6. Let S be an asymptotically catenoidal exterior surface in R3 such that S has
non-negative mean curvature. Let 3 be a complete, non-compact, properly embedded, stable
free boundary minimal surface with respect to S. Then S is a plane and ¥ is a half-plane
meeting S orthogonally.

Moreover, we prove that volume-preserving stable free boundary CMC surfaces of suffi-
ciently large boundary length must be outlying, i.e. avoid a given compact region:

Theorem 0.7. Let S be an asymptotically catenoidal exterior surface in R? of non-negative
mean curvature that is not a plane. For every compact set K C R? and every © > 0 there
exists a constant L = L(S,0, K) > 0 with the following property:

Let X3 be a connected, compact volume-preserving stable free boundary constant mean cur-
vature surface with respect to S with H*(X N B,) < ©¢? for all o > 1 and with H'(0%) > L.
Then XN K = ().

Nonlinear mean curvature flow with Neumann boundary condition

In Chapter 3 we consider a new geometric flow called nonlinear mean curvature flow with
Neumann boundary condition. It deforms a given initial hypersurface M \ OM C G of R**!
with free boundary OM inside a given support surface S = 90G along its normal direction
with speed given by a positive power k > 0 of its mean curvature H, while maintaining an
orthogonal contact angle along the evolution. In technical terms, one tries to find a family of
immersions {F, : M — R""1},.1 ;) that satisfies the following system of equations

4F(p,t) = —H(p,)* v(p,t), (p,t) € M x (0,T),
F(p,O):id, peEM

(x) § F(p,t) € S, (p,t) € OM x [0,T),
(v,v0 F)(p,t) =0, (p,t) € OM x [0,T),
F(p,t) € G, (p,t) € (M \OM) x [0,T).

Here H(-,t) denotes the mean curvature and v(-,t) denotes a unit normal field of the immer-
sion F}.

As mentioned in the introduction the case K = 1, i.e. mean curvature flow with Neu-
mann boundary condition has been studied in the classical setting by Stahl [Sta96b, Sta96a],
Buckland [Buc05] and Koeller [Koel0,Koel2], and by Huisken [Hui89] and Wheeler [Whel4b,
Whel4a] in the graphical case.



Even though smooth solutions under special geometric assumptions exist until the enclosed
volume goes to zero (cf. [Sta96a]), singularities in general may occur in the interior as well as
on the supporting hypersurface (cf. [Koel0]) before the enclosed volume vanishes. In order to
continue the flow past those singularities we replace (x) by the following level set formulation.

Here we assume that M is the closure of the relative boundary 02 N G of some bounded
domain 2 C G, and that the evolving hypersurfaces are then given by the relative boundaries
of the superlevel sets of a function u : @ — R>g, u =0 on 0PQ := 90N G via

My =0{x e Q:u(z)>t}NG.

The system (%) is then replaced by the following degenerate elliptic mixed boundary value
problem.

. 1
div (@—Z‘) = —|Du|™* in ,

(*)su=0 on 9P and
g—:::'yiDiuzo on VQ,

where &V Q := 9Q \ 0PQ and where 7 denotes the outward unit normal to S. This formula-
tion is inspired by the work of Schulze [Sch08] for the H*-flow, which in turn was inspired by
the work of Evans-Spruck [ES91] and Chen-Giga-Goto [CGG89] on mean curvature flow and
by work of Huisken-Ilmanen [HIO1] on the inverse mean curvature flow. A level set formu-
lation for inverse mean curvature flow with Neumann boundary condition was put forward
independently by Marquardt [Mar12].

In this setting using the so called elliptic regularization we obtain the following result:

Theorem 0.8. Let G C R™! be a smooth domain and let Q C G be such that 9PQ =f
0N G is a smooth strictly mean convex free boundary hypersurface with respect to S := 0G.
If (xx) admits a supersolution, then (%x) has a weak solution u € C%'(Q). Moreover, the
superlevel sets {u >t} are minimizing area from the outside relative to G.

A sufficient condition to ensure the existence of a supersolution of (%) is that &V is
graphical over part of a sphere (see Lemma 3.5).






Notation

Let n > 2 be an integer. Unless otherwise stated submanifolds of euclidean space will always
be smooth, complete, properly embedded, orientable, two-sided, and possibly have non-empty
boundary. As usual 2-dimensional submanifolds are called surfaces. Manifolds of dimension
n and hypersurfaces in R*™! will usually be denoted by M. Manifolds of dimension 2 and
surfaces in euclidian space (of higher codimension) will be denoted by X.

The scalar second fundamental form A = {h;;} of a hypersurface M C (N1, g) with outward
unit normal v is the symmetric 2-tensor that is given by

hl] = g(Deiy, ej)a

where {e;}i—1,..n denotes a local orthonormal frame for 7'M, and where D denotes the Levi-
Civita connection of (N, g). The mean curvature H of M is defined to be the trace of A, i.e.
H = divys(v). For a surface ¥ C R? with non-empty boundary 0% the geodesic curvature Kg
of 0% is defined to be the mean curvature of 9% as a submanifold of X..

A free boundary (hyper-)surface M C R"! with respect to a support hypersurface S C R"*1,
is a (hyper-)surface in R"*! the boundary dM of which is a subset of S and such that M
and S meet orthogonally. In case S = JG for a domain G C R™! we sometimes say that
M is a free boundary (hyper-)surface with respect to G. We will always denote by v the
outward unit normal of a free boundary hypersurface M, n will always denote its outward
unit conormal. The outward unit normal of a support surface S will always be denoted by ~.
Its mean curvature and second fundamental form will be denoted by Hg and Ag, respectively.

We remark here that in the different chapters and certain sections we will make certain ad-
ditional assumptions on what we mean by a free boundary (hyper-)surface. E.g. that ¥ C G
such that ¥ NG = 9%.

For a set A C R™! we denote by w4 the nearest point projection onto the set A wherever it
is well defined. The distance function of A will be denoted by da, i.e. da(z) := inf{|x —al :
a € A}. For an open set A and a positive number 6 > 0 we let A5 :={x € A :dpa(z) > d}.

For sets A1, Ay C R" we set 94,41 := 0A; N As.

The letter = (x!,...,2"*!) will be used to denote a point in R"*! and also to denote
the position vector in R™*!, depending on the context.

We will often identify, without further mentioning, the hyperplane R™ x {0} ¢ R"*! with the
space R". For w € S C R"! we set R := {x ¢ R"" : 2. w = 0}.

Numerical constants will be denoted by capital C. In case we want to emphasise their depen-
dencies we write them in brackets. E.g. C(a, p) denotes a constant that depends on « and p.

11



Universal constants will be denoted by a small ¢. All these constants may vary from line to
line. Reappearing specific constant will be numbered with positive integers in their subscript.
These numberings are however only valid in their respective chapters.

In Chapter 2 we will frequently have to choose an initial radius large enough. We will
denote radii of this kind by oy and emphasise their dependencies in brackets. These radii
may change from line to line. Reappearing initial radii will be denoted by a capital R and
will be numbered with positive integers in their subscript.
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1 A monotonicity formula for free boundary
surfaces with respect to the unit ball

The main goal of this chapter is to establish a monotonicity formula for compact free boundary
surfaces (unless otherwise stated this means 2-dimensional, smooth, embedded) with respect
to the unit ball in R™. The corresponding result for closed, i.e. compact and boundaryless,
surfaces was proved by Simon [Sim93]. (See also Kuwert and Schétzle [KS04] for a generaliza-
tion to integer rectifiable 2-varifolds with square integrable generalized mean curvature.) For
a closed surface X, and radii 0 < ¢ < p < co Simon’s monotonicity identity reads as follows.

2

1
9o (P) — Gzo (U) = — dH2a

/ 1~ (z—mz)t
T JENB,(20)\Bs (z0)

SH T
4 +\x—xg|2

where

H*(2 N By(zo)) | 1 12 72,2 1 5 2
- 1 i 1 Aol — .
oo (1) | o VR /. o B )

This monotonicity formula plays an important role in the existence proof of surfaces mini-
mizing the Willmore functional [Sim93]. It also yields an alternative proof of the so called
Li-Yau inequality [LY82]. Very recently, Lamm and Schétzle [LS14] used it to establish
a quantitative version of Codazzi’s theorem, thereby extending results of De Lellis and
Miiller [DLMO05, DLMO06] to arbitrary codimension.

In this chapter we prove a monotonicity identity for compact free boundary surfaces with
respect to the unit ball in R™, i.e. compact surfaces with non-empty boundary meeting the
boundary of the unit ball orthogonally. In fact, our results hold in the varifold context (see
Section 1.1 for the precise assumptions).

As a consequence we obtain area bounds, and the existence of the density at every point
on the surface. As a limiting case of the monotonicity identity we obtain the Li-Yau type
inequality

1 -
270 mar < / |I_I|2 dHQ +/ x - ndHl, (11)
4Js 0%

where 6,4, denotes the maximal multiplicity of the surface ¥ (see Theorem 1.5).

A special case of (1.1) (for free boundary CMC surfaces inside the unit ball in R3) has
appeared in a work of Ros and Vergasta [RV95, Proposition 3|, attributing the result to
Oliveira and Soret. The proof given in [RV95] seems to also work for any compact free
boundary surface with respect to the unit ball in R™. Unaware of this result Fraser and
Schoen independently established the inequality for free boundary minimal surfaces inside
the unit ball in R (see [FS11, Theorem 5.4]). In this context we also mention the work
of Brendle [Brel2] in which the author generalizes the inequality [FS11, Theorem 5.4] to
higher-dimensional free boundary minimal surfaces inside the unit ball in R™.
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The chapter is organized as follows. In Section 1.1 we introduce the notation and describe
the setting we work in. In Section 1.2 we establish the monotonicity formula (Theorem 1.1)
and prove the existence of the density (Theorem 1.4). In Section 1.3 we give some geometric
applications that follow from the results of Section 1.2. Finally, in Section 1.4 we prove sharp
geometric inequalities for compact free boundary surfaces with respect to arbitrary orientable
support surfaces of class C?. We also include a sharp lower bound for the L'-tangent-point
energy of closed curves in R3.

I would like to thank Dr. Simon Blatt for bringing the paper [SSvdM13] to my attention.

1.1 The setting

We use essentially the same notation as in [KKS04]. Unless stated otherwise we assume that
 is an integer rectifiable 2-varifold in R™ of compact support X := spt(u), ¥ N OB # 0, with
generalized mean curvature H € L?(u; R™) such that

/EWXW:—/ﬁX@ (1.2)

for all vector fields X € C}(R",R") with X -y = 0 on OB, where y(x) = z denotes the outward
unit normal to B (the open unit ball in R™). Furthermore, we assume that u(0B) = 0.

It follows from the work of Griiter and Jost [GJ86b] that u has bounded first variation
ou. Hence, by Lebesgue’s decomposition theorem there exists a Radon measure o = |[0u|.Z
(Z ={z € R": D,|op|(x) = +00}) and a vector field n € L'(c;R™) with |n| = 1 o-a.e. such
that

p(X) :def/dngXd,u:—/ﬁ-Xd,uﬂ—/X'nda (1.3)
for all X € CH(R™, R"). Tt easily follows from (1.2) that
spt(c) COB and ne€ {£y} o-ae.

We shall henceforth refer to such varifolds p as compact free boundary varifolds (with respect
to the unit ball).

In case p is given by a smooth embedded surface ¥ (i.e. u = H?.Y) 7 is the outward unit
conormal to ¥ and o = H!'LOY, and we say that X is a compact free boundary surface (with
respect to the unit ball).

Note that since X is compact we may use the position vector field as a test function to
obtain

mmﬂz—/ﬁmw+/xmw. (1.4)

1.2 The monotonicity formula

The following monotonicity identity is the free boundary analogue of the monotonicity identity
[Sim93, (1.2)], [KS04, (A.3)].
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Theorem 1.1. (monotonicity identity) For xo € R™ consider the functions gz, and g,
given by

w(By(zo)) 1 / =19 1 / =
oo (1) = ER2T00) HI%d H-(z—xz0)d
Gao (T) 2 T im Br(m)l |“dp + 272 |y o (x — o) dp

and

90 (1) = Ge(ao) (/] 0l)
_ 1 o ()2 o)
_ ﬂ_(|x0‘_1r)2 /ér(xo)(’ 5( O)| +Px( g( O)) )dﬂ

. min(r—2,1
go(r) = _(27r ) /x -ndo.

=
3
o
&
Il
\a
[
=)
S
QL
o>

+(70) = By jjzo|(§(%0)). Then for any 0 < o < p < 0o we have

2
dp

1> (z—mz)t
CHay 0
4 + |z — xo|?

_ L2
. / A 1. (z 5(960))2
T J B, (20)\Bo (x0) | 4 |z — &(x0)]

= (920 (P) + 20 () = (92 (0) + Gao(0),

.
T J By(20)\Bo (z0)

1

du (1.5)

where the second integral in (1.5) is to be interpreted as 0 in case vg = 0. Here (x — xg)* 1=
(x —x0) — Py(x — x0), where P, denotes the orthogonal projection onto Tyu, the approzimate
tangent space of u at x. In particular, g+ § is non-decreasing.

Before we give a proof of the above theorem we note (cf. [DiB10]) that the Neumann Green’s
function of the disk of radius R in R? is, up to a multiplicative and additive constant, given

) =1og(x o) + o (“Tietw) — 1) + 5P

where £(x) = RQﬁ. We have, for R =1,

PO =~ ey Y

Proof. (of the theorem) Let zp € R™. We define

T

veaq | a—€(wo)
¥ (z) = { ool T Tegta)z ¢ %0 70
wE T ,xg = 0.
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For 0 < 0 < p < oo we define the vector field X by
X(z) = Xi(z) + Xo(x), (1.6)
where we set
Xi(x) = (Jz = 2ol;* = p7)* (& — x0)

and
(I — E(x0)[;2, 1 — lwol?0~2) (@ — £(a0))

—o 2 min(|zgl||z — &(20)], 0)%x

—2 _ 2
+p~* min(|zol|z — §(zo)l, p) ;@ # 0

—o?min(1,0)%x + p~2 min(1, p)%z ;20 =0,

Xo(z) :=

and where |v|, := max(|v|, o).
First, assume that x¢g # 0. Then, we set for r > 0

A

Br(xO) = Br/|x0| (5(370))

To simplify notation, we shall write B, and B, instead of B, (xp) and Er(xo), respectively.
We may decompose R” into a disjoint union over the elements of the family of sets /7 or F»
given by

Fi:={By, B,\ B,, R"\ B,} and F»:={B,, B,\ B,, R"\ B,},

respectively. For x € 0B we have |x —xg| = |zo||z —&(x0)|. Therefore, 0B can be decomposed
into a disjoint union over the elements of the family of sets Fyp given by

Fop = {0B 0 (B, 0 By), 9B ((B,\ B,) 1 (B, \ B,)), 9B\ (B, U B,)},
and so we have for x € 0B
(072 = p |z —20]?Y(z) ,0<|z—20| <0
X(z) =Y () —p 2z —20]?Y(z) ,o<|z—20|<p (1.7)
0 P < o — ol
This implies that X is a valid test vector field in (1.2) in case dB,,dB,, 0B, and 8Bp have

1 measure zero, i.e. for a.e. o and p. We compute

/ divsX;dp and / H-X;du
A A

for all sets A € F;, i = 1,2, separately. We have

/ diveXodp = ) / divs X, du
A

AeFy
= 2|z0’0 2 1u(By) — 2laol*p 1u(B))

PN /B & — E(xo)? du + 2laol2p~2 / & — E(a0)|? d

By
P / Py(z — €(x0)) - 2 dpu + 2aol2p~? / Pyl — E(z)) - 2 dp
Bs B,
(& — E(z0) P
2 - > 77 d
- /B,,\B[, o — el
_2M(ép\‘§0)7

18



and

/ﬁ-XQdM: > /ﬁ-XQdu
AeFs A
— |zo[?0™ / H - (2 — &(a0)) dp — |02~ / i - (2 — &(a0)) du

B, BP

oo /B B - (jo — &(xo) ) dp + |07 /B B - (jo - &(xo) ) du
- x—&(x0) =

+/ H~d,u,—/ H-zdy.

BB, T —&(®0)l? Bo\Bo

Using the fact that for any vector v € R"

2

1 - 1 .
2‘4}[—1—1)L :§|H|2+2]1)J‘]2+H-v,

where we used Brakke’s orthogonality theorem (cf. [Bra78, Chapter 5]), we get that

/dngXg du + /F[ - Xodp
1

= 2laafPo2u(B) 2ol (B~ 5 [
By\Bs

+ fofo? /B B - (x — £(x0)) dys — |ol2p~? /B - (@ — E(x0)) dp

H dp

9o /B & — E(z0)? dpu + 2lzolp2 / & — E(x0)|? ds

P

~2aoPo [ Pala— €lan)) aduc+ Al ? [ Pula =€) -y

oo /B H - (| — €(a0) P) dpi + o 2072 /B B - (| — (o) P) dp

1, (@ geo)*[

T e |

~2(B,\ Bo) - |

ﬁ-xd,u—i—2/
Bo\Bo

By\Bs

Similarly, (in fact exactly as in [KS04]) we get that

/dngde,u—i—/ﬁ-de,u

_ _ 1 -
— 20 u(B) ~ 2By — ¢ [ 1P
By\Bo

+ 072 I:_i-(x—:co)du—p_2/ ﬁ-(w—xo)du
Bo BP
2

dpt.

1= (z =)t

4 |z — 2o/

(1.8)
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Since, as mentioned above X = X + X is an admissible vector field for (1.2), we get after
rearranging that
—-H + 3

2 / dpi+2 /
B,\B, a BB, |4 [z — &(zo
2

=202 u(By) — 20 *u(By) + 2lao*p i B,) — 2Jwo|*o 2 u(By)
1 . 1 — N N
+/ \Hy2du+/ |HPPdp+2u(B, \ B,)
8 /B,\B 8 .

P o
ﬁ-(w—xo)du—a2/ H-(x—x0)du

+ p*2 /
By

+ 2o / H - ( — €(x0)) dya — |ol?0™2 / i - (o — &(x0)) dy
B, B,

2 2
1. _ 1
g, w—w)- dy

4 |z — xo|?

1o (2 —E&(x))t
)|

o\

= wol?p™? / B - (2 — &(zo) ) dya + o 202 / B - (|jz — &(xo) ) dp
B, B,
9o /B Pyl — €(x0)) - 2 dp + 2Jp 202 /B Py(z — €(x0)) - 2 dp

a2 / & — £(z0) 2 dyt + 2l 202 / & — £(0) 2 du

P Bs
+ / H-z dp.
B,\B,
In view of the definition of g and § we may rewrite this as
2

1 1
/ -
T J Bp(20)\Bo (z0) T J Bp(20)\Bo (20)

= (920(P) + 20 () = (92 (0) + o (0))-

2
(x — x)t dy

i (z — &(x0))*

1 -
“H+
4 4 |z — &(0)]?

|z — o|?

Now, assume that g = 0. Then (1.7) still holds, and we may again test (1.2) with X. (Again
first for a.e. o and p.) We write B, instead of B,(0), and may decompose R" into a disjoint
union over the elements of the family of sets F given by

F:={B,, B,\ By, R"\ B,}.

Recalling that
Xi(2) = (|2l;* = p7*) "

and

Xs(z) := (min(p~2,1) — min(o 2, 1))z,
we compute

/ divs X1 dp  and / H- Xy du
A A
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for all sets A € F. We have

/dngX dp = /diVEXl du + /dngXg du

=20"°u(B,) — 29_2N(Bp)

12
+2/ g
B,\Bo ||

4+ 2(min(p~2,1) — min(o2, 1)) u(R™)

and

In view of the definition of gy and gp, and equation (1.4) we may rewrite this as

),
T J B,(0)\ B (0)

This equality which was proved for a.e. ¢ and p is obviously also true for every ¢ and p by
an approximation argument. O

2
dp = (go(p) + Go(p)) — (go(0) + Go(0))-

1 - zt
ZH 4+ 2
1 T

Proposition 1.2. For every xg € R" the tilde-density

T o <M(Br(xo)) n u(szo))) 20 20,

2 m(|zo|~1r)?

(Br(0))
2

lim,«w B o

02 (11, x0) =

exists. Moreover, the function x +— 92(,u,:c) 18 upper semicontinuous in R™.

Remark 1.3. Since B,(x¢) = B,(z) for zo € OB we have that §2(u,-) = 262(,-) on dB.
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Proof. Set, in case xg # 0,

1 -
27rr2/ H-. dMJFW BTH‘(CE—i(CCO))dM

- /Bf'w €(eo)l? + Pule — E(x0)) - )

- T (e — E(z0) 22
ey (= o)) du

We estimate with Holder’s inequality

o (2 (1 e (221 (2 o)

:U'(fr) +d <W(’ZE‘B_T1)T)2>§ <M(f7’)>

+d (“(fr)y <417T/B ‘FI‘Qd,U,>2, (1.9)

where d := sup{|z| : € ¥}. Moreover, for ¢ > 0

pB) 1 / : pBr) 1 / :
<
|R(r)| <e p— +167r5 \H?>dp + ¢ (o112 +16m—: \H|? dy

N(ér) N(ér) 1 ( r) / 2 QM(B )
—d? H dp+d
O 87r(|:zo\_17‘)2 + 4e - in 1A + 47

=

_|_

_l’_

On the other hand, we have

1(Bo) M(Bo) < 1(Bp)

A

1(By) 1

< + +— / HI? du
mo?  w(lwo|~te)> T wp?  w(|lzol ) 167 J(B,uB,)\(B.UB,) 1]
1 . B,\ B,
— H-xdu—l—M—FR(p)—R(a).
2w B,\Bo s
Using (1.9) and
N 1 - N
[ dewdp< [ VAP A @ulB,)
B,\B, 4/5,
we infer, upon redefining 0 < € < 1, that
wBs) | u(Bs) wB,) | (B
<1
e (P T L R W (PR
4 C(e)/ A2 dpe + 0(5)/ A2 dy
B, B,
+C(e) (1+ ) u(By). (1.10)

We infer that

| W(By) | n(By)
|
”ﬁfo“p< w0? " alaol o) ) <%
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and in view of (1.9) that
lim |R(r)| = 0.
rl0

Theorem 1.1 implies that the tilde-density 52(u, xg) exists, and that

§Q(N’ 330) = Lif&(gxo (U) + Jap (U))

Hence also

) M(BP) M(BP)
0%(p,z0) < (1 +¢) ( T2 ﬂ(\xol_lp)2>

P

+C(5)/ ]ﬁ]zdu+0(5)/ A2 dy
By

+C(e) (1+d*) w(By).

Now, assume x¢ = 0, then set

1 .
= H-xd
R)= 5oy [ adn

and we have that
1

o< (M5) (52, vivan)

1(Br) 1 / 7712
R < H|"dpu.
| (r)’ € 7TT2 + 1677-8 Br ‘ ‘ lu‘

and for e > 0

M) <1490 o) [ AP du+ Co1 - minG %, 1) 0(08),

o Bp

where we used that spt(c) C 0B. We infer that

B
lim sup ul g) < 00,
cl0 Yixea
and in view of (1.12) that
lim |R(r)| = 0.

rl0

Theorem 1.1 implies that the density 62(u,0) exists, and that

0% (1 0) = lim.go (o),

where we used that go(r) = —% [x-ndo for all 0 < r < 1. Hence also

P(0,0) = (0,0 < (1450 o) [P d

+ C(e)(1 — min(p~2,1)) 0(dB).

(1.11)

(1.12)

(1.13)
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Now, let z; be a sequence in R™ such that z; — xg. Then (1.11) and (1.13) with o replaced

by z; implies
w(B,)  u(B,) . w(By(z;)) | w(By()))
+ > limsu +
102wz )2 = P \ T p? m(jz;["1p)?
> lim sup (52(u,xj) — C(s)/ \H|? dy
€ jooo By (x;)UB(z;)
— CE)(1+ d)u(B,y(x;)) — C(e)(1 — min(p~2,1)) a(aB>.)
|H* du

1 < . iy
> lim sup 6°(u, z;) — 0(5)/
]_ + g Jj—00 J B2p(EO)UB2p(ZO)
-C

(€) (14 &) n(Bay(ao)) ~ C()(1 ~ min(p™ 1) o(2B). ).

where we interpret ET(O) = () and % = 0. Letting p | 0 and then ¢ | 0 implies the
O

upper semicontinuity.

Since ¥ is compact we may estimate

Lo 2, \F L Cld o)) -
< —

rR<r>_2Wu<Br>2</ 1| du) + = (B,

1

ot ([ :

2 on Bt | [ A

Hence,
lim |R(r)| = 0.

Also, by (1.3) and (1.4),
p(R™)

))_&T/|H\ du+27T/H-xdu+ i

1 - 1
:&r/|H|2d,u~|—27T/x-nda

lim (gaq (1) + Gao (7

7—00

for xg # 0, and

1 .
li go(r)) = — [ [H|* dp.
im (90(r) + 60(r) = 7 [ VA dn

r—00
Summarizing, we have proved the following theorem:

Theorem 1.4. For every xg € R™ the tilde-density

~ limrw (M(BT:T(QZO)) + W’z(ﬁ;'(mlor))é) , L0 7’é 07
0%k, wo) 1= (B, (0))

limrw o)

exists. The function x — 52(u,a:) s upper semicontinuous. Moreover, we have for all 0 <

o< p<oo
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1. (area bound)

{U_Qu(Ba(x )) + (0/laol) Pu(Bo(w0)) < C a0 #0,

for C = C(d, p(R™), || H]| 12),

2. (density bound)

A

#(Bp(0))
(|zol = p)?

B (1

+C(€)/ |ﬁ|2du+0(5)/ A2 dy
B, (z0)

By(xo

0% (1, m0) < (1 +¢

+C(e) (14 ) u(By(a0))

and

.0 < (145 1 0e) [ AR+ ) - minGe 2 1) 0(08),

By,

and

2

3. (integral identity)
i 1o (&))"
“H 40 du

i/ ‘“‘*H 17 o (o) P

1 - 1 ~
= o 1P+ o= [aonde Pl Joran 20,

1. (z—m)t

4 |z — 20|?

and

1 1
Lgooh

2
1 . 1
dp=— [ |H?du+ — [ =-ndo —6? :
1 op| 167T/I | M+27T/33 ndo —67(,0)

-/

1.3 Applications

The Willmore energy W(F) of a smooth immersed compact orientable surface F' : ¥ — R"”
with boundary 0% is given by

1
W(F) = 4/2H2 d%%‘*é‘{'/@z Hg dH}.?*&,

where kg4 denotes the geodesic curvature of 9% as a submanifold of ¥ (cf. [Sch10]). By the
Gauss equations and the Gauss-Bonnet theorem we have that

1 o
W) = 5 [ AP s + 23,
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where A° denotes the tracefree part of the second fundamental form, and x(X) denotes the
Euler characteristic of ¥. Since x(X) = 2 —2¢(X) —r(X), g(X) = genus of ¥, 7(X) = number
of boundary components of ¥, we have that

W(F) > 2w

for topological disks. For free boundary surfaces with respect to the unit ball we have that
kg=Dm-1=D:(n-xz)-T=x-n (reT(0%),|r|=1)

hence the Willmore energy may be rewritten as

1 -

Motivated by the smooth case we may define the Willmore energy W(u) of a free boundary
varifold p with respect to the unit ball by

1 -
W(;L):4/\H2d,u+/x~nda.

Theorem 1.5. For any immersion F : X — R™ of a compact free boundary surface with re-
spect to the unit ball in R™ and the image varifold p = 0H*_F (), where 0(z) = HO(F~1({z})),
we have

HOE ({2,€(2)})) = () < - W(F),

1
o
in particular

W(F) > 2, (1.14)

and if
W(F) < 4,

then F' is an embedding. Moreover, equality in (1.14) implies that F parametrizes a round
spherical cap or a flat unit disk.

Proof. The inequalities follow from Theorem 1.4. Assume now equality in (1.14) holds. In
particular, we have that F' is an embedding, and we may identify ¥ with F/(X). The proof
now follows from Proposition 1.7 below. O

Remark 1.6. The estimate is sharp, as can be seen by taking the union of two distinct free
boundary flat disks.
It is also interesting to note that in case 0 € X we have the stronger inequality

1 .,
20t (0,0) + [ VAP du < W)
Proposition 1.7. Let p # 0 be a compact integer rectifiable free boundary 2-varifold with

respect to 0B such that
W(u) = 27

Then p = H2LY, where ¥ is a round spherical cap or a flat unit disk.
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Proof. It follows from Theorem 1.4 that the tilde-density 62 (1, x) exists and is > 1 for every
2 € ¥. The assumption together with Theorem 1.4 then yield that 62(y,z) = 1 for every
x € ¥. In particular, we conclude that 6%(u,z) = 1 for every x € ¥\ 9B and 60?(u,z) = 1/2
for every x € ¥N9IB. Since p # 0 and X is compact the area estimate in Theorem 1.4 implies
that there exists a radius R > 0 such that X\ Br(x) # () for all z € X. Pick any point z¢ € X,

then
2 2
1 1~ (z—mz)t 1/ 1~ (z—&(m))t 1
1+ — -H+-~——1 d — -H+—> | dy=— =1.
i = R i e R0
We conclude that ( )L
1~ T — X

In particular,

- (x —20)* 8

H =4|-~——— | < = for u-a.e. Y\ B .

| (l‘)| |$_$0’2 =R Or p-a.e. T € \ g(xO)

And similarly, picking a second point 21 € ¥\ Bg(zo) we conclude that |H ()| < }% for p-a.e.
2 € X\ Br(z1). Since Br(x9) N Br(z1) = 0 we have that |H(z)| < 8 for prae. x € X. In
2 2 2

particular, |ﬁ | € L>®(u). By Allard’s regularity theorem [All72], Griiter-Jost’s free boundary
version [GJ86b], and Theorem 1.4 we conclude that ¥ is a C1'® manifold with boundary. We
consider two cases:

First suppose that 3 is a free boundary minimal surface (cf. [Brel2]). Then writing
locally as the graph of a C1® function elliptic regularity theory (see for example [LUG6S])
implies that X is smooth. For any given point y € ¥ we have that

(z —y)*

p— =0 forxzeX\{y},

where 1+ stands for the orthogonal projection onto the normal space of ¥ at x. In particular,
y—x € T, % for all y € 0% and all points = € X\ 0%. Hence, 0% is contained in a 2-dimensional
plane. The maximum principle implies that > is itself contained in this plane. Since X is
compact and 0¥ C 9B, ¥ must be equal to a flat unit disk.

Now assume that ¥ is not minimal. Then there exists a point g € ¥ \ 0¥ such that
H (xg) # 0 and equality holds in (1.15). After possibly rotating > we may assume that
T, X = span{ej, ea} and that H(zo) = %63 for some r # 0. This implies that for j =4,....n

= (z — o)

OZH(.T())'B]‘:4 M

1.16
|z — 202 (1.16)

. 6]' =4
for all x € ¥\ {zo}. (First for u-almost all points, and by continuity in x of the right hand
side of equation (1.16) for all points.) This implies that ¥ C zg + R3 x {0}. On the other
hand,
2 — (l‘ — x())g
S_f ceq = 4 70)3
r ($0) €3 ’.’L‘ — xO‘Z )

ie 1

Lz — zo|* = 2(z — m0)3, or equivalently

r? = (z —x0)] + (& — 20)5 + ((x — mo)s — 1) = |z — (w0 + re3)|?

for all z € ¥\ {zo}, and ¥ C 0B, (w0 + 1e3) N R3 x {0}. Since 9% C OB we must have that
either ¥ = (0B, (zo +re3) NR3 x {0}) N B or X = (0B, (wg + re3) NR3 x {0})\ B. O
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An immediate corollary of Theorem 1.5 is the following very special case of a Theorem due

to Ekholm, White, and Wienholtz [EWW02].

Corollary 1.8. Any immersed compact free boundary minimal surface with respect to the
unit ball of boundary length strictly less that 4w (or equivalently of area strictly less that 27)
must be embedded.

Remark 1.9. Bourni and Tinaglia [BT12] have extended the result of Ekholm, White, and
Wienholtz to surfaces with small LP-norm of the mean curvature with p > 2.

1.4 Geometric inequalites for free boundary surfaces

In this section we consider free boundary surfaces with respect to an orientable C2-hypersurface
S with outward unit normal v that meet S from the inside. More precisely, we make the fol-
lowing assumptions.

We assume that p is an integer rectifiable 2-varifold in R™ of compact support 3 := spt(u),
¥ NS # 0, with generalized mean curvature He LP(u;R™), p > 2, such that

/diszdu:—/ﬁ-Xd/H—/X-vda (1.17)

for all X € CYR",R"), and where 0 = |6pu|.Z (Z = {x € R" : D,|éu|(x) = +00}). By
[GJ86b, Corollary 3.2] we have that the density

p(Br(x0))

92(#,1‘0) = lim 2

rl0 wr
exists at every point zg € spt(u), and that 02(u,z) > 1/2 for every point o € spt(o).
Lemma 1.10. For every zg € R™ we have

lrlﬁjl o(Br(zp)) = 0.

Proof. Let xy € spt(o) C S. For r > 0 small enough so that the oriented distance function
ds of S is of class C2. Let ¢ € CL(R"), 0 < ¢ < 1, be such that ¢ = 1 on B,.(xq), ¢ = 0
outside Ba,(z9), and |Dy| < ¢ for some constant ¢ independent of r. Testing (1.17) with
X = —p Ddg we obtain

o (Br(x)) < / odo < / | D?ds| + | D] dpi + / | dy

Bay (o

< (8)+ ) uBartao) + [ |ldu

Bar(0)
which by [GJ86b, Theorem 3.4] goes to zero as r | 0. O
We need the following definition.

Definition 1.11 (cf. [ALM13]). (interior and exterior ball curvatures) The interior
(exterior) ball curvature &(z) (k(x)) of (S,v) at x € S is defined by

R(z) = sup Z(z,y) k(z) = inf Z(z,y)]|,
yes\{z} yeS\{z}
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where
Zay) = 20

The ball curvature k(z) of S at v € S is defined by x(x) := max{k(z), —k(z)} > 0. For a
subset A of S we set

Fa(z) = S Z(x,y) (m(a?) = yei?\f{x} Z(z, y)) ;
and k(z) == max{ka(z), —k4(z)} > 0.

Remark 1.12. In case S = 91 for a bounded and convex set {2 the interior (exterior) ball
curvature is the curvature of the largest (smallest) ball enclosed by (enclosing) €2 and touching
o) at x.

Writing S locally as a graph over its tangent plane one easily verifies the following lemma.

Lemma 1.13. For any compact sets K1, Ko C S we have

sup ki, < 00.
Ky

We test equation (1.17) with X = p|z —x0|72(z — ), where p(z) = (Jx—xo|;2—p~2) T |z —
zo|? > 0, and where 29 € S. We have

/X-ndaza_Q/ (:L‘—xo)-'yda—p_Q/
B, B

where the double usage of the symbol o should not lead to confusion. Then for a.e. 0 < o <

p < 0o we have
1/ i Wzt _ 1 L“EOQ) .
T J B, (20)\Bo (x0) | 4 |z — o] AT | B, (20)\Bo (o) 1T — Zo0l
= (G0 () + bz (p)) = (9o (0) + by (7)),

(:U—xo)-'yda—i—/ 33—7%02 ~vdo,
" B,\Bs |z — ol

_ o L?
(z — o) Y do

where
1

272

bao(1) =~z | (o= 20) 7o

We note that this identity was originally derived in [Sim93] for smooth surfaces. Using Lemma
1.13 and the fact that (by Lemma 1.10)

bag ()] < 22

e s;p Kept(o) > 0 asr —0

r

one easily concludes that one can let p — co and ¢ — 0 to obtain

2
2 1~ (z—mz)*
262 — | |-H+-——5| d
(M7x0)+ 7_‘_/ 4 + |$—LE0|2 K
1 - 1 2(x —xg) -y
= — H]?d — [ —————do. 1.18
877/‘ | M+27r/ |z — ]2 ’ (1.18)
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Even though the identity (1.18) is well known [Sim93], the geometric interpretation of the
boundary term does not seem to have been exploited thus far. The quantity

2(x — x0) - v(@)
|z — x0|?

is the curvature of the tangent ball, plane, or ball complement of S at x passing through x.

Proposition 1.14. We have

1 .
27T§ 4/|}I|2 d/“j’—l_/K’Spt(a') do.

Moreover, equality holds if and only if 3 is a round spherical cap or a flat unit disk.

Proof. The inequality follows immediately from (1.18), the definition of g (,), and the fact
that the density at a boundary point is at least 1/2. Now assume that equality holds. Then
for o-a.e. = € spt(o) we have that

Fspt(o)(2) = Z(z,y) for all y € spt(o) \ {z}. (1.19)

Moreover, by (1.19) we see that spt(c) must lie on the tangent sphere of S at x. Since this is
true for o-a.e. point = € spt(o) there exists a single sphere that is the tangent sphere of S at
every point = € spt(o). After rescaling and translating we are in the situation of Proposition
1.7, which completes the proof. O

Remark 1.15. A weaker, but also sharp, inequality that can be obtained from (1.18) was
observed by Riviere [Riv1l3, Lemma 1.2].

Lemma 1.16. Let Q be a convex domain of class C%. Then

sup K = sup A‘m(v,v) and inf k= inf Aaﬂ(v,v),
RAY) veT(89),|v|=1 zeof veT(09),|v]=1

where A% denotes the second fundamental form of O with outward unit normal ~.

Proof. We have

®(x) > limsup Az —y) ) = sup  A%(2)(v,v),

y—w |I - y|2 vETLON,|v|=1

which establishes one inequality. Now assume by contradiction that the inequality is strict,
i.e.
SUp® > sup  A%(v,v). (1.20)
PYy) VET, 0, v|=1

By (1.20) we can find two distinct points Z,7 € 92 such that

Z(Z,7) = supk =: R~ L.
oN

By definition of £ we have that for every z € 92

Br(x — Ry(x)) C Q,
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1 we also have that

and since Z(7,7) = R~
Yy € O0Br(T — Ry(T)). (1.21)
W.lo.g. we assume that T — Rvy(Z) = 0. Since § is convex we have that

Qc{z+z:2-2<0}nN{y+z:2-y<0} =W

That is, Q) is contained inside the slab or the wedge bounded by its affine tangent spaces at
T and §. We consider two cases. First assume that W is a wedge, i.e.

P := span{Z, 7}

is a 2-dimensional subspace of R™. Then 2 N P is contained inside the cone W N P. By
convexity and by definition of supgn & = R~ we must have that the segment

OBR(0) N {z: z- (v(z) + (7)) = 0} N P
is completely contained inside 92, which however contradicts (1.20). Now, assume that W is
a slab, i.e. T and 7 are co-linear. Choose a point z € 9Q N W. (If no such point existed, we
would have Q = W, contradicting (1.20).) Now let

P := span{Z, z}.
Arguing similarly to the first case we see that 0€2 must contain a circular segment of radius R

inside P connecting T and z, which again contradicts (1.20). This establishes the first claim.
The proof of the second claim is similar. ]

Corollary 1.17. Suppose S = 0N) for a convex set Q@ C R™ such that h?jQ < kdi;. Then
1 712 n
27r§1 |H|*dp + ko(R™).
Suppose S = O(R™\ Q) for a convex set Q@ C R™ such that h?jﬂ > k. Then
1 772 n
27r§1 |H|* dp — ko (R™).

Moreover, equality holds if and only if 3 is a round spherical cap or a flat unit disk.

Remark 1.18. The assumption that H € LP(p; R™) with p > 2 was only needed to ensure
that the singular part o of the total variation measure |du| has no point masses which ensures

that the integral
W — :
/ (@ —20) 7y .
|z — @o[?

exists, and to ensure that the density at every boundary point is at least 1/2. Alternatively,
we could have supposed that p = 2 and that p is the image varifold of a C'-immersion.
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Some observations concerning the L!-tangent-point energy

Integration of (1.18) yields
2dist(z 1,00
o < - /\H\Qd +][/ = ‘ — 9 LY 4oy do(y).
Tz —

yl?

We note that in case o is 1-rectifiable the double integral can be estimated in terms of the so
called (cf. [SvdM12]) L'-tangent-point energy &£ (o). By definition we have

o[ Wdo«c) do(y),

where Ryp(z,y) denotes the so called (cf. [SvdM12]) tangent-point radius of o at (z,y) given
by
|z — yl”

R .
w(T,y) = 2dist(z — y, Ty0)

This leads to the following.

Proposition 1.19. Let ' be a closed curve in R3 of class CY* for some o € (0,1). Then
2nHI(T) < &(T), (1.22)

with equality only if T is a planar, convexr curve.

Proof. Let ¥ be a compact orientable minimal surface with boundary 9% = I'. Such a surface
may be obtained by solving the Plateau problem. See for example [HS79] and the references
therein. The identity (1.18) in this context still holds with + replaced by 7, the outward unit
conormal of ¥. Integrating the identity (1.18) over 9% =T yields

" +4//’
Iér—yl4

n(@) .1 1
= —d?—[ x)dH (y),
/r/r [z =yl =) dH W)
which is no greater than

/ / 2d18t|x B0 i () ar (y) = (D).

yl?

d’HQ(fﬂ)’)’i1 )

This establishes the inequality (1.22). Now assume that equality holds in (1.22). Then for
any given point y € T’
(z—y)*
——— =0 forzeX\{y}
[z —y|?
Arguing as in the proof of Proposition 1.7 we see that ¥ is contained in a 2-dimensional plane.
Since in the equality case we have equalities everywhere in our estimates we also conclude
that

(x —y) -n(x) =dist(x —y,T,T') >0 forall z,y €T.

That is, I' is convex. In particular, I' must be connected. O

32



Remark 1.20. After informing Simon Blatt about our inequality (1.22) he communicated
to us the following alternative proof of Proposition 1.19 that works for closed C'-curves in
R™,

Proof. ( [Blal4]) Let y € T'. Choose an arc length parametrization starting at y, i.e. let
¢ :]0,L] = R™ be a curve with ¢(0) = ¢(L) =y, |'(s)| = 1, and trace(c) = I'. We define the
curve w by

c(s) — ¢(0)

le(s) — c(0)]°
The curve w is of class C' on the open interval (0, L), has limits lim,ow(s) = ¢/(0) and
limgyz, w(s) = —c/(0), and maps into the unit sphere S*~!. Thus we have

w(s) :=

L—e¢ L
7 = limdist(w(e), w(L —¢)) < liminf/ |w'(s)] ds = / [w'(s)] ds.
el0 el0 c 0

A straightforward calculation shows that
w'(s)| =

and therefore

1
o< | ———— dH ().
7T_/F-Rtp(xvy) ( )

Integrating over y yields the desired inequality. Note that we have equality if and only if the
curve w is a geodesic in S"~1, that is if and only if ¢ is planar and convex. O

Applying Hélder’s inequality twice we immediately obtain the following.
Corollary 1.21. Let I be a closed curve in R™ of class C1. Then for any p > 1 we have
2r < M) P H(T) 7
with equality if and only if I' is a round circle.

Remark 1.22. Corollary 1.21 answers a question raised by Strzelecki, Szumanska, and von
der Mosel [SSvdM13].
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2 Relative isoperimetric properties of
asymptotically flat support surfaces

The main goal of this chapter is to derive relative isoperimetric properties of a certain class
of non-compact support hypersurfaces in euclidean space which we call asymptotically flat
and asymptotically catenoidal hypersurfaces. Our results turn out to almost perfectly parallel
results for asymptotically flat and asymptotically Schwarzschildian Riemannian manifolds
cf. [SY79b, Lam11, EM12,EM13a, Car14].

The chapter is organized as follows. In Section 2.1 we introduce the classes of support
hypersurfaces that we are interested in, define a geometric invariant associated to these hy-
persurfaces which we call extrinsic mass, and prove a positive mass theorem (Theorem 2.8).
In the graphical case we also obtain a Penrose type inequality (Proposition 2.9).

In Section 2.2 we study non-compact stable free boundary minimal surfaces and com-
pact stable free boundary constant mean curvature surfaces with respect to asymptotically
catenoidal support surfaces. Our two main results (Theorem 2.13 and Theorem 2.16) are free
boundary analogues of [Carl4, Theorem 1] and Theorem [EM12, Theorem 1.5], respectively.

2.1 Extrinsic mass for asymptotically flat hypersurfaces in
euclidean space

In this section we define the classes of support (hyper-)surfaces that we will be studying in the

sequel. The study of these (hyper-)surfaces can be motivated by a certain structural analogy

to asymptotically flat Riemannian manifolds that manifests itself in the validity of a positive
mass theorem.

Definition 2.1. (asymptotically flat hypersurface) We say that a connected hypersurface
S in R™ with outward unit normal v, and possibly with compact boundary, is asymptotically
flat if it satisfies the following conditions:

1. There exists a vector w € S", a domain E C R? := {z € R""! : x.w = 0} that is
diffeomorphic to R™\ B1(0), and a function u € C*°(E) such that

S\ K = graph(u) := {z + u(zx)w : z € E},
for some compact set K C R+,

2. There ezists constants c1,c2 < 00, and € (0,1) such that

sup (max(1, |z[) = u(z)]) < e,
el

and

sup (|2~ | Du(a)| + |o" | D?u(x)|) < cs.
zeE
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3. The outward unit normal v of S coincides with the downward normal of uw with respect
to w.

4. The mean curvature Hg of S is H"-integrable, i.e. Hg € L*(H".S).
We will refer to (w, E,u) as asymptotically flat coordinates.

Definition 2.2. (asymptotically catenoidal hypersurface) We say that an asymptoti-
cally flat hypersurface S in R"1 (with asymptotically flat coordinates (w, E,u)) is asymptot-
ically catenoidal if there exists a number M € R and a function R € C*°(E) such that

u(z) = ¢u(lz]) + R(x),

where
M log(r) ,n=2
du(r) =
r) —W ;> 3,
and where

sup (Jz[""|a = R(z)| + [2["| DR(=)| + 2| D*R(x)|) < cs,
zeE
for some constants a € R and c3 < 0.
In this case we will refer to (w, E,u) as asymptotically catenoidal coordinates, or for short
just asymptotic coordinates. Note that in this case w = —limycg |z|—o0 V(T)-

Definition 2.3. (exterior hypersurface) We say that an asymptotically flat hypersurface
S in R™1 with asymptotic coordinates (w, E,u) is an exterior hypersurface if it satisfies the
following condition:

If 0S is non-empty then there exist a compact orientable free boundary minimal surfaces N
such that 35S = ON, the outward unit normal v of S coincides with the exterior unit conormal
on N. There are no other compact free boundary minimal surfaces with respect to S. The
union S U N is the boundary OG of a domain G C R*H1,

In case S is asymptotically catenoidal, we call S an asymptotically catenoidal exterior
hypersurface.

Notation
We denote by F,(8,c1,c) the class of asymptotically flat hypersurfaces S C R"*! with
constants (3, ¢1, co as in Definition 2.1. We also set F,,(c1,c2) := U,Be(O,l) Fn(B,c1,c2).

We denote by C,(M,c3) the class of asymptotically catenoidal hypersurfaces S C R™+!
with constants M, c3 as in Definition 2.2.

Example 2.4. The model example of an asymptotically catenoidal exterior hypersurface is
an n-dimensional upper half-catenoid.

Similar to the ADM mass of asymptotically flat Riemannian manifolds we can assign a
number to asymptotically flat hypersurfaces in R"*1.

Definition 2.5. (extrinsic mass) Let S be an asymptotically flat hypersurface of R with
asymptotic coordinates (w, E,u). We define the extrinsic mass m(S) of S by

m(S) := lim ! / @d’H”_l, (2.1)
0B (0)

T—00 (Wn_1 ov
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where v denotes the euclidean outward unit normal to B¥(0) C R and H"~! denotes the
(n —1)-dimensional Hausdorff-measure with respect to the euclidean metric in R, and where

wn_1 = H""1(0BY(0)).

Proposition 2.6. (well definition of extrinsic mass) The extrinsic mass m(S) of an
asymptotically flat hypersurface S is well defined.

Proof. Assume w.l.o.g. that w = e, 1, and set Q(r) := SN (B?(0) x R). For large enough
r, we have that Q(r) is a subset of S with C? boundary consisting of S N (9B7(0) x R) and
0S. The outward unit conormal 7,y of £2(r) can be obtained by projecting the outward unit
normal (2//]2'|,0) of B*(0) x R onto S and normalizing. ILe.

(@ +|Du?)2’ — 2’ - DuDu,z’ - Du)
O A DS [DuP) P = @ Du)

‘We have that
Du x

Cn+1 " TQ(r) = \/1 T+ |Du\2\/(1 ¥ |Du|2) _ (:U//‘ZL'/’ . DU)2 ‘ |$/‘

Assuming that the limit (2.1) exists, making use of the asymptotics, and using the area
formula, we compute

/
m(S) = lim — / __Du T e
oB7(0)

T Wy VI+Du? o]

En+1 " 1Q(r) dn"!

= lim /
700 Wn—1 J(9B7(0)xR)NS

1
— ] N . d n—1 _ n . d n—1
- (/mme i 017 = [ -y )

1 .
= lim / HS *€nt1 den - / €n+1°Ms dHn_l
= Wn—1 \Ja(r) a8

1 -
= / Hg - epi1 dH" — / ent1 s dH" L. (2.2)
S oS

Wnp—1

Wn—1

Since by assumption Hg € L!'(H"_S) we can read the above calculation in the reverse sense
to conclude that indeed the limit (2.1) exists.

Now suppose that (w, E,u) and (o, E',u’) are two sets of asymptotic coordinates for S.
The rescaled surfaces Sy := A-S, XA | 0, converge to R, and R, locally uniformly away from
the origin. This implies that w = +w’. By point 3. in Definition 2.1 w = w'. O

Remark 2.7. In case S is asymptotically catenoidal it is easy to see that m(S) = M.

Theorem 2.8. (Positive Mass Theorem) Let S C R™™! be an asymptotically catenoidal
exterior hypersurface of non-negative mean curvature. Then

m(S) =0,

with equality if and only if S is a hyperplane.
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Proof. Suppose M < 0. Since outside a compact set K C R™*! we have that
S\ K = graph(¢u(|z]) + O(1)) \ K,

where ¢, is as in Definition 2.2, the function z — z - w restricted to S U N attains its
maximum a some point g € S U N. In other words we can touch S U N from one side with
the plane {zo} + R at zo.

Suppose the maximum is attained at a point in N. Since Ay (z-w) = 0 on N, the maximum
principle implies that zg € N, and hence

(- w)

o< —~
- Onn

(z0) = w - n (o) = w - ¥ (o).

This contradicts the fact that the plane {x¢} + R[], touches from the inside. Hence, the
maximum has to be attained at some point zo € S\ 95, and y(z9) = —w. Let Sy be the
connected component of the set {x € S : y(x) - w < 0} that contains . By assumption
Ag(x - w) = Hg-w > 0on Sy. The strong maximum principle implies that v - w = const on
So, and thus Sy C {zo} + R!. By connectivity and smoothness of S we have that 95y, = 9S.

But clearly 95 = (), since otherwise we could find a point 1 € N with z1-w > z¢-w. Whence
S ={x0} +R. O

Proposition 2.9. (Extrinsic Penrose type inequality in the graphical case) Let S C
R be an asymptotically catenoidal exterior hypersurface of non-negative mean curvature
that is entirely graphical, and such that n = —w on 0S # (). Then the following Penrose type
inequality holds.

n—1

n

n—1

)" M (N) (2.3)

m(S) > (

with equality if and only if S is an oriented half-catenoid.

Wn—1

Proof. The inequality follows immediately from the equation (2.2) and by applying Almgren’s
isoperimetric inequality [Alm86] in R™*1. Assuming equality the isoperimetric inequality
implies that N is a a round n-ball and 0S5 is a round (n — 1)-sphere. Moreover, (2.2) implies
that S is a minimal surface. A result of Kuwert [Kuw93, Theorem 2] implies that S is a
half-catenoid. O

We see that in this context the half-catenoid with neck radius m plays the role of the spacial
Schwarzschild manifold of mass m. It is now natural to make the following conjecture (due
to Huisken): The inequality (2.3) is true for any exterior hypersurface of non-negative mean
curvature.

In this context we mention the PhD thesis of Marquardt [Mar12], in which the author
verifies that an extrinsic Hawking type mass in monotone under inverse mean curvature flow
with Neumann boundary condition with respect to support surfaces of non-negative mean
curvature, however assuming smooth existence of the flow. For convex support surfaces that
are graphical and asymptotically cone-like Marquardt was able to prove the existence of weak
solutions for inverse mean curvature flow with Neumann boundary condition.

In order to more easily emphasize the dependencies of constants in the following, we shall
make use of the following technical lemma, the easy proof of which we shall obmit.
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Lemma 2.10. (technical) Let S € F,(5,c1,c2) be an asymptotically flat hypersurface of
R with asymptotic coordinates (w, E,u). There exists a radius Ry = Ry(diam(E), 3,¢c1) >
2 such that the following conditions are met:

1. RP\ B%, C E
5
2. For everyo > Ry: x € S\ By = |Prrx| > 5.
Here Pgn denotes the orthogonal projection onto R.

2.2 Noncompact free boundary minimal surfaces and free
boundary constant mean curvature surfaces

Throughout this chapter a free boundary surface ¥ with respect to an exterior surface S C R3
will mean, unless specified otherwise, a free boundary surface with respect to S such that
¥ C G (with G as in Definition 2.3).

A free boundary minimal surface ¥ with respect to a support surface S is a free bound-
ary surface with respect to a support surface S with zero mean curvature. These surfaces
are critical points for the area functional in the class of surfaces with boundaries that are
confined to lie inside the support surface S.

Using min-max methods Griiter and Jost [GJ86a] proved the existence of free boundary
minimal disks inside arbitrary strictly convex bounded domains in R3. Li [Lil4a] was able to
prove the existence of free boundary minimal surfaces inside arbitrary compact Riemannain 3-
manifolds with boundary that do not contain closed minimal surfaces. Very recently, Maximo,
Nunes, and Smith [MNS13] proved the existence of free boundary minimal annuli inside
compact, strictly functionally convex Riemannian 3-manifolds of non-negative Ricci curvature.

Stable free boundary minimal surfaces are free boundary minimal surfaces that have non-
negative second variation of area. Compact stable free boundary minimal surfaces inside
mean convex domains were studied by Ros [Ros08].

Definition 2.11. Let S be a smooth hypersurface of R, and let ¥ be a free boundary
minimal hypersurface of R™ T with respect to S. We say that ¥ is stable if

og/ yv2f|2dw—/ |A|2f2d7-l”—/ Ag(v,v) f2dH" ! (2.4)
b b ox

for every f € CLH(X). Here V> is the tangential gradient along X.

Example 2.12. Let G C R be a bounded strictly conver domain. Then there are no
stable free boundary minimal hypersurfaces inside G. This follows by testing equation (2.4)
with f = 1.

In dimension n + 1 = 3 one can make use of the Gauss-Bonnet theorem to conclude that

every stable free boundary minimal surface inside a mean convexr domain G is a topological
disk, cf. [Ros08, Proposition 2].

In this section we prove the following theorem about non-compact stable free boundary
minimal surfaces, which is a free boundary analogue of [Carl4, Theorem 1].
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Theorem 2.13. Let S be an asymptotically catenoidal exterior surface in R such that S has
non-negative mean curvature. Let 3 be a non-compact stable free boundary minimal surface
with respect to S. Then S is a plane and ¥ is a half-plane meeting S orthogonally.

To our knowledge this is the first result about non-compact free boundary minimal surfaces
in the literature.

A free boundary constant mean curvature surface ¥ with respect to a support surface S
is a free boundary surface with respect to a support surface S with constant mean curvature.
These surfaces are critical points for the area functional in the class of surfaces enclosing a
prescribed volume and with boundaries that are confined to lie inside the support surface S.

Stable free boundary constant mean curvature surfaces are free boundary CMC surfaces
that have non-negative second variation of area with respect to admissible volume-preserving
variations. Compact stable free boundary CMC surfaces inside convex and mean convex
domains were studied by Ros and Vergasta [RV95], and Ros [Ros08], respectively. For a
survey on volume-preserving stable free boundary CMC surfaces inside convex domains we
refer to [Ros05]. Surprisingly, it is still an open problem whether or not the unit ball in
R3 contains volume-preserving stable free boundary CMC surfaces other than the round free
boundary spherical caps or the flat free boundary unit disks. Ros and Vergasta [RV95] have
shown that such a surface would have to have genus one and at most two connected boundary
components.

Definition 2.14 ( [RV95]). Let S be a smooth hypersurface of R™1, and let ¥ be a free
boundary constant mean curvature hypersurface of R"1 with respect to S. We say that ¥ is
volume-preserving stable if

o</ ]V2f|2d’H”—/ ]A\szd”H”—/ Ag(v,v) f2 dHn 1 (2.5)
b b 0%

for every f € CL(X) with [y, fdH™ = 0.
We say that X is strongly stable if (2.5) holds for every f € CL(X).

Remark 2.15. Volume-preserving stable free boundary CMC surfaces naturally arise as
stable critical points of the relative isoperimetric problem, also known as Dido’s problem.

In this section we prove the following properties about compact stable free boundary CMC
surfaces. This is to some extend a free boundary analogue of [EM12, Theorem 1.5].

Theorem 2.16. Let S be an asymptotically catenoidal exterior surface in R of non-negative
mean curvature that is not a plane. For every compact set K C R? and every © > 0 there
exists a constant L = L(S,0, K) > 0 with the following property:

Let X3 be a connected, compact volume-preserving stable free boundary constant mean cur-
vature surface with respect to S with H*(X N B,) < © a2 for all o > 1 and with H'(0%) > L.
Then XN K = .

2.2.1 Preparatory results

In this subsection we derive the necessary results that are needed in order to prove Theorems
2.13 and 2.16. These include for example new curvature estimates for stable free boundary
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CMC surfaces (Propositions 2.28 and 2.29) and new free boundary length estimates (Corol-
lary 2.19 and Proposition 2.19).

As in the works of Huisken and Yau [HY96], Eichmair and Metzger [EM12], Chodosh [Chol4],
and Chodosh, Eichmair, and Volkmann [CEV14] a crucial ingredient to studying sequences
of connected volume-preserving stable free boundary CMC surfaces of diverging area is the
following Christodoulou-Yau type inequality due to Ros and Vergasta [RV95].

Proposition 2.17 (Essentially [RV95, Theorem 5] ). Let ¥ be a connected compact volume-
preserving stable free boundary constant mean curvature surface with respect to a support
surface S C R®. Then

3 1
HgdH' + / H? dH? + / |A°|2 dH? < 147
ox 4 Js 2 /s
In case X is a topological disk the bound on the right hand side can be improved to 10m.

The following proposition will allow us to estimate boundary integrals by means of integrals
over the interior of the surface. First length estimates for the free boundary of compact
partially free boundary minimal surfaces were obtained by Hildebrandt and Nitsche [HN83,
Theorem 1].

Recall that for A C S

ka(z) = inf{ka >0:|y(x) (x—y)| < g\x —y|*forally € A}.

It is easy to see that this definition agrees with the one given in Definition 1.11 of Chapter 1.

Lemma 2.18. (free boundary length estimate) Let G C R3 be a domain with C? bound-
ary S = 0G such that kg < A < oo for some A > 0. For every connected compact free
boundary surface ¥ C G one has the following estimate

H(O%) §8A”H2(E)+/ \H| dH2.
by

Proof. Let A := {x € G : ng(x) is a well defined}. By our assumption {z € G : dg(z) <
A~} C A. For all x € A we have that

x =m7g(x) + ds(x)Ddg(z)

and therefore
|D7s|| < 2 4 ds| D*ds]|-

By [GT01, Lemma 14.17] we have the pointwise estimate

, |As(ms(x))(v,v)]
[D7ds(z)]| < oot 1 — |[Ag(ms(x)) (v, 0)|ds (@)’

and hence for all z € A such that dg(z) < SA~! we have that

ID?ds ()] < 2max [As(ms(2)) (v, v)| < 2A.
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We define a Lipschitz function ¢g on A by
wo(x) := (1 — 3Adg(z))"

Then |Dgo|(x) < 3A. Mollifying ¢y we obtain a smooth function ¢ € C?(A) such that
0<p<1 p=10nS, spt(p) C {ds < (2A)~'}, and |Dy| < 4A. Now set 7 := —¢ Ddyg.
Since ¥ is compact we may use 7 as a test function in the first variation identity to obtain

H(OS) = — / divs (o Dds) dH — / ol - Dds dH2
b by

g/ ]D<p|d7-t2+/ ]Dng\d’H2+/cp\H\dH2
by En{ds<(2A)1} 3

§8AH2(E)+/ |H| dH?.
%

Combining Proposition 2.17 and Corollary 2.18 we obtain using Hoélder’s inequality:

Corollary 2.19. Let G C R? be a domain with C? boundary S = OG of non-negative mean
curvature Hg and such that kg < A < co. For every compact volume-preserving stable free
boundary constant mean curvature surface X inside G one has the following estimate

s
3

=

HL(O%) §8A’H2(E)+< >2%2(2) .

Proposition 2.20. Let S be an exterior surface in R3, and let Ry > 2 be as in Lemma 2.10.
Let X2 be a free boundary surface with respect to S such that >N.S = 9%. Then for any p € R
and a.e. Ry <o <p< oo

/ rPdH' < C(p,c2/Ry) / P a?
BEHA(,,,, EmAd,p

+ C(c2/Ry) / TP H? dH?
YNAs

+Cea/Rr) (p PN (ENOB,) + 0 PH (BN OB,))
where Ay, = B, \ By, and cy is as in Definition 2.1.

Proof. We test the first variation identity with the vector field —r~Pw to obtain for a.e.
O0<o<p<oo

/ pr_p_lvzr cwdH?
$NAs,,

:/ T_pﬁ'wd")'-ﬂ—/ r_pw-nd?ll—/ rPw -y dHY,
SNAo, 94, ,N3 95NA,.,

where 7 denotes the outward unit conormal of ¥ N A, ,. Applying Young’s inequality yields

: 1
/ WY g
95NA,, TP

1
<(3 +p>/ r TP AR 4 2/ r' P H? dH?
YNAo,p ENAs,p

+p PHY S NOB,) + o PH (X NIB,).
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On the other hand, we have for o > o¢(> 0) that
1 1

w:-y = > .
TR e

Whence

/ 1 dH' < C(p, cQ/Rl)/ P K2
P P SN As.,

YNAg,, T

+ Cles/Ry) / PP 2 132
TNAq.,

+ C(ea/Ry) (p*pﬂl(z NOB,) + o PH (LN 830)) .
O

Corollary 2.21. Let ¥ be a free boundary surface with respect to an exterior surface S such
that ¥ has square-integrable mean curvature and such that H*(X N By) < © 02 for allo > 1.

Then for allp > 1
1
/ — dH! < .
o TP

Curvature estimates for stable free boundary CMC surfaces

Now we prove curvature estimates for volume-preserving stable free boundary constant mean
curvature surfaces. Inspired by the work of Eichmair and Metzger [EM12] these will be
obtained by blow up arguments and will rely on the following characterization of volume-
preserving stable (free boundary) constant mean curvature immersions in R3(N{z® > 0}).

Theorem 2.22 ( [BAC84,Pal86,DS87,LR89]|). Let M be a 2-dimensional orientable connected
smooth manifold. Let F : M — R3 be a complete immersion of constant mean curvature that
is volume-preserving stable. Then F(M) C R3 is either a plane or a round sphere.

At this point we also recall the following older characterization of stable minimal immersion
in R3.

Theorem 2.23 ( [dCP79,FCS80]). Let M be a 2-dimensional orientable connected smooth
manifold. Let F : M — R3 be a complete stable minimal immersion. Then F(M) C R3 is a
plane.

We will also need the corresponding results for free boundary surfaces inside a half-space.
The theorem for stable free boundary minimal surfaces may be directly inferred from Theo-
rem 2.23 by a reflection argument. Theorem 2.22 on the other hand cannot be concluded from
the corresponding theorem for closed surfaces by such an argument. However, it is straight-
forward (since all the boundary terms vanish) but rather lengthy to adapt the proof in [DS87]
to the case below. To get an idea of the adaptations involved, we refer to Subsection 2.4.3 of
this chapter’s appendix. However, for the sake of brevity we shall omit the (complete) proof
of the following theorem.

Theorem 2.24. Let M be a 2-dimensional orientable connected smooth manifold with bound-
ary OM # 0. Let F : M — R®>n {2z > 0} be a complete immersion of constant mean
curvature that is volume-preserving stable and has free boundary inside {x® = 0}. Then
F(M) c R¥n{a® > 0} is either a free boundary half-plane or a free boundary round half-
sphere.
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Remark 2.25. We point out that the immersions in Theorems 2.22, 2.23, and 2.24 are not
required to be proper. This will be relevant in the proof of Propositions 2.28 and 2.29 below.

Before we state our curvature estimates we need a technical lemma that gives an estimate
on the ball curvature kg of asymptotically flat surfaces S outside a sufficiently large compact
region.

Lemma 2.26. Let S € F,(B,c1,c2) be an asymptotically flat hypersurface of R™1 with
asymptotic coordinates (w, E,u). There exists a radius oo depending only onn,diam(E), 3, c1, ca
such that for all x € S\ B,,

rg(r) < 8lz| 7L

Proof. W.l.o.g. we assume that w = e,;1 and R"\ Br, C E, where Ry is as in Lemma 2.10.
For the duration of this proof z, 2z will denote points in R" \ Bg,. We set F(z) := (x,u(z)).
Now let z € R™\ Bag,. Suppose that there exists a point z € R" \ Bg,, 2 # x, such that
F(z) € 0Bgr(p), for a tangent sphere 0Br(p) to S at z, and with some radius R < |z|/4.
Then

0=1|p—F(z)]> - R’
(~Du(x), 1) ",

= |F(@) = P(e) £ Ry — R
—Du(x), 1
— |F(x) — F(2) + 2R(F(2) — F(2)) M
(x — 2) - Du(x) u(x) — u(z)

= :L‘—Z2 u\xr) — ulz 2 R RN
= o= 2 ul@) —u) 7 2R e T+ Dula)]
Hence,
| @) — () _ 2R |(u(2) = u(z)) = Du(z) - (= —2)| (2.6)

|z — 2|2 1+ |Du(x)|? |z — 2|2

The right hand side of (2.6) is no greater than

|(u(2) — u(@)) — Du(z) - (2 — x) — 3D*u()(z -z, 2 — )|
|z — z|? |z

2R
Set f(t) := u(z + t(z — x)). Then there exists a 7 € [0, 1] such that
£1(0) =

F(1) = £(0) = £1(0) = (f"(r) = £7(0)).

DN |

2

Hence,

u(z) —u(z) — Du(x) - (z — ) — %Dzu(x)(z -,z —x)

= % (Dzu(:c +7(z—2)) — DQU@)) (2 — 2,2 —x),
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and we infer from (2.6) and (2.7) that

|(u(2) — u(z)) — Du(z) - (z — ) — 3D?u(z)(z @,z —2)| | e

R '<2
- |z — 2 ||
< sup |D*u(x +7(z — ) — D*u(x)| + C—2n
7€[0,1] ||

<2 sup |DPu(y)| + o

yEBaR(x) |x|
<2 sup C—Qn C—Qn

yEB2R($) |y| ‘:L‘|

C2 (&)

<2 .
= “Tal = 2R " o

Using the fact that R < % we get a contradiction for |z| > (co(1 + 27+1)/4)Y (=D We
conclude that for |z| > max(2Ry, (c2(1 + 2"*1)/4)1/(71*1))

Using the estimate |F(z)| < |x| 4+ |u(z)| < 2|z|, which holds for all |z| > maX(Rl,c}/ﬂ), the
claim follows. O]

Remark 2.27. Varying the proof slightly one can prove the existence of a constant C' =
C(c2) < oo such that
Ks\B, < Co™2

for all o > R;.

We omit the proof of the following proposition as its proof is easier and may be derived
similarly, to the one of Proposition 2.29.

Proposition 2.28. (free boundary CMC curvature estimate) Let S = 0G C R3 be a
surface with kg < A, for some A < oco. There exists a constant C1 = C1(A) < oo such that for
every orientable, immersed volume-preserving stable free boundary constant mean curvature
surface ¥ C G with respect to S with |H| < 1 satisfies supsy, |A| < Cj.

Proposition 2.29. (free boundary CMC weighted curvature estimate) Let S be an
exterior surface and let K C R? be a compact set. There exists a constant Co > 0 depending
on S and K such that

sup (max{[z|, 1}|A|(z)) < C;

€Y

for every connected volume-preserving stable free boundary constant mean curvature surface
Y. with respect to S that satisfies |H| < 1 and XN K # ().

Proof. Assume by contradiction that the theorem is false. Then there exists a surface S as in
the statement and connected volume-preserving stable free boundary CMC surfaces Y with
|Hi| <1 and XN K # 0, and points 2 € X \ By (by Proposition 2.28) such that

|| ) )
= max — —|z—z ALl(z) ) = 00 as k — oo.
Tk 2€X,NB 4, | (k) << 2 | ol ) 14l (2)

2
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By Proposition 2.28 we have that |zx| — oo. In fact we even have that |z} | — oo, since
otherwise we could pass to a subsequence such that B|., | (xx) NS = 0, which would contradict
2
the interior curvature estimate [EM12, Proposition 2.3]. Now choose zj, € ;N B lagl (k) such
2
that

X
(‘;' — |z — $k|) | Ak|(2k) = Vis

and set ry 1= |%“' — |2z — xx|. Then, since for all z € Bry (21), 5 < @ — |z — x|, and since
2

B%k(zk) C Bay (v), we have
2

2
owp <2 s () 1)

Bry (21) Th 2€SuNBry (21) 2
2 2
2 Tk
<2 (B al) ade)
Tk ZEE]CQB‘IM (:ck)
2
= 2| Ag|(2x)-

On the other hand, we trivially have that

|Ak|(zr) < sup |Agl|.

Bry, (zx
2

We consider the rescaled surfaces 3 := hi(3y) and Sy, := hy,(S), where

Tk

hi(z) :== E(x —zi) = |Ag|(zx) (2 — 2k).
Then 0 € 5, |A|(0) = 1, and
sup |Ag| < 2.
B’YTI@(O)

We consider two cases:

Yk dist(zk ,aEk)
Tk

In this case we have that 835, N Bey (0) = 0 for o, = min(yg, dist(0,8%;)/2), and
2

we can argue as in [EM12, Proposition 2.3|, making use of Theorem 2.22, to obtain a
contradiction.

1. limsupy,_,., dist(0,05;) = limsup;,_, = 00.

Yk diSt(Zk ,82k)
Tk

Noting that dist(Brg (21),0) — oo as k — oo, we have that
2

2. limsupy, ., dist(0,0%) = lim supy_, ., =A< oo

S N B (0) = graph(dy,) N By

2

ax(y') = Z—: (u (;]:y’ —|—z,’€) — zk-w> , Yy eR2.

We aim to show that we can pass to a subsequence such that 4 converges to a constant
function in C?_(R2).

(0),

SIS

where
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Firstly, notice that since |z}| — oo we also have that |z;,|] — co. Now pick a se-
quence pi € S of nearest points to zy, i.e. |zx — pr| = dist(zg, S). Since, in particular

lim SUPj_ae dist(zg,S)

. = 0, we have (after passing to a subsequence) that

Tk
il 2 latl = = prl 2 (ri+ 120) — o) 2.

Hence, |px| — oo and therefore py € graph(u) for sufficiently large k.

Moreover, our cases-assumption together with (2.8) implies that

|ze — pr| < o(1)[px]- (2.9)

On the other hand, Lemma 2.26 implies that |py| < 8kg(pr)~!, which implies that
pr = ms(zk) is the unique nearest point of S to zx for all sufficiently large k. By
asymptotic flatness of S we have

Ipr] < 2|p)| for k sufficiently large. (2.10)
Using the identity pr = 2z = |2z — pr|v(pk) together with (2.9) and (2.10) we infer that

|2k| < 8|25 for k sufficiently large. (2.11)

We are now ready to estimate the C?-norms of the rescaled functions ;. On By (0) C

B> /16(0) we estimate using (2.11) and the fact that ry < | 2|

(&) 1602

sup |Day| < for k sufficiently large

B%(0) 2l = 22 p =

and

sup !DU|) |25 — |
w Z/
o(L)yr \7k

16
Cz) for k sufficiently large.

|2k

IN
=2
—
—
+

§2A(1+

Hence,

sup |ag| < |ag(0)| + p sup | Dy

By (0) By (0)
1 1

<2A (1 + 662) + p& for k sufficiently large.
|2k |2k
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We conclude that we can pass to a subsequence such that i converges to a constant
function in C?_(R2), and Sy converges to a plane in C7_. On the other hand, we
can apply a standard argument as in [PR02, Theorem 4.39], but now together with
Lemma 2.42, to see that we may pass to a subsequence such that the accumulation set

of the sequence 3, N Boy (0) contains a complete (not necessarily properly) embedded
2

volume-preserving stable CMC surface Y4 in R3 N {23 > 0} with |4,|(0) = 1 and

(possibly empty) free boundary inside {2® = 0}. Theorem 2.24 or Theorem 2.22, re-

spectively, implies that Y, is a plane, a free boundary half-plane, a sphere, or a free

boundary half-sphere. The first two alternatives are excluded since by construction

|Asxo|(0) = 1. The latter two alternatives would imply that every X contains a far out

spherical component in Bjs,|(x)), contradicting the assumption that 3 is connected
2

and X, N K # (.
O

Graphicality and quadratic area growth

We now use the curvature estimates derived above to show, via blow-down, that non-compact
stable free boundary minimal surfaces with respect to asymptotically catenoidal exterior
surfaces only have finitely many ends which are each graphical on large ’annular’ sets. The
proof, which does not assume quadratic area growth (cf. [EM12, Lemma 3.5]), is inspired by
the work of [Carl4]|. The price to pay it that we need to assume that the support surface be
asymptotically catenoidal instead of only asymptotically flat.

Lemma 2.30. (graphical decomposition) Let S C R3 be an asymptotically catenoidal
exterior surface. Let X3 be a connected non-compact stable free boundary minimal surface with
respect to S. For every sequence oy, — oo there exists a subsequence o), — 0o and a plane II
such that the intersection of X with the normal cylinder above each annulus HﬁBgU;C \BC,;c is a

union of finitely many disjoint graphs above connected subsets Ufj, of this annulus. Moreover,
k
denoting by {wi, ..., w } these functions we have that
I
w
sup <|k‘| + |Dwk| + - ||D2w§€|> —0 asop — cc.
U, ’
&

Proof. W.l.o.g. we assume that we have asymptotic coordinates (w, F,u) with w = e3. Let

R; be as in Lemma 2.10. Consider the rescaled surfaces ¥y := ak_l Y in R3\ BRg, /o, (0), and

the rescaled support surfaces Sy := o}, 1. §. It is easy to see that for every index [ > 1 we

have that for £ > 1
S N{|2'| > Ri/oy} = graph(ug) N {|2| > Ri/oy},

where uy(2') = o} 'u(oy 2'). We set ¢y () := (2/,2° + up(2")). Then for all fixed ¢ > 0 and
all k£ > 1 sufficiently large (such that o > R1/c) we have that

o ({2® > 0} N {|2'| > e}, ¢48) — (G N {]a'| > £},9)

is an isometry. Moreover, we have for k > 1 sufficiently large that

sup |50 —6ls < sup |Duly/2 + |Dul? < oo,

|z |>e |z’ |>eo
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and which goes to zero as k — oo. Similarly, one easily verifies that for the first derivative of
the metric

sup |D(619)]5 < o,

| |>e
which also goes to zero as k — co. In particular, we see that for a given € > 0 and sufficiently
large k we have that

sup \Azzl <2 sup |A22,gk|gk =2 sup |Axl,

|2/ |>e |z |>e |z |>e

where we set g, := 10 and where X0 := ¢, 1 (X N {|2'| > Ri/ox}). Using the curvature
estimate of Proposition 2.29 we arrive at

2C:
sup |Aso| < 22 for all k sufficiently large.
|z |>e k €

Moreover, we have on 939 N {|2’| > £} that

sup |nso -es| >1—o0(1) ask — oco.
|z |>e k

We claim that we can pass to a subsequence, obtain a limit, and perform a reflection to obtain
a stable minimal lamination of R3\ {0}.

To see this, let zo € (R?\ {0}) N {z® = 0} and let p € (0, |xg|/2). Then for k sufficiently
large, depending on |zo|, X9 N B,(xg) are (possibly disconnected surfaces) with boundary
inside (0B,(xo) N {z3 > 0}) U {z® = 0}, and such that

4
sup  |Aso| < 4Cy for all k sufficiently large.
VT ol
B|ug| (w0) o
2

For the duration of this proof we set Z4(z) == {z € R® : |z —2-vv—z| < R} for R > 0
and |v| = 1. Moreover, we denote by nj the outward unit normal of 939 N {z3 = 0} as a
submanifold of {z® = 0}.

For k sufficiently large, we apply Lemma 2.42 with A > 1/2 and infer that for all xz €
ox9N Bi4,|/8(w0) the component of Y9N Z3¥ (x) through z is the graph of a function wy, over
the half-disk BE*(z) N{z® > 0} of radius R = )\% min {3, ﬁ} > ﬁ&u@} such that for
all y' € By (x) N {2 >0}

/
W 4Cy | _ _
LD 1D+ I = |0 < (87 A5l = o] + AV ).
— T

Hence, there exists a universal constant 6§ € (0,1) such that all connected components of
Z‘Z N Bagr(wg) with 622 N Byr(zg) # 0 can be written as graphs of functions w,%;, e w,]gv’C €
C?(Byk(z0) N {23 > 0}) for some unit vector vy € {z° = 0}, and with uniform C*bounds
(only depending on |zg| and C3). Here Nj is a finite non-negative integer depending on |xg|
and k. Now let x € £ N Byr(zo) such that = ¢ Uf\i“l graph(w}). Then distyo (z,0%) > OR,
and hence we may apply a standard graphical argument (see e.g. [PR02, Lemma 4.1.1]) to
conclude that, after possibly choosing 6 slightly smaller, all components of X{ N Bygr(zo) \

Uivzkl graph(w}) that run through Byr/2(wo) are graphical above Bypg/o(wo) N {2® = 0}.

49



Using the curvature estimates of Theorem 2.29 and a diagonal subsequence argument, we
conclude that there exists a subsequence o}, so that X} := (0})"! - ¥ converges to a (free
boundary) minimal limit lamination £ of {z3 > 0} \ {0} with respect to the support plane
{x® = 0}. Note that the free boundary of all the leaves of £ is empty if and only if 9% is
compact. Here one may argue as in [CM04, Appendix B, but now (in case 9% is non-compact)
also using the boundary Schauder estimates [GT01, Theorem 6.30] and boundary Harnack
inequality [Lie01, Theorem 4.3]. Thus, we may use a reflection argument across {2® = 0}
and obtain a minimal lamination £ of R3\ {0} that is complete away from the origin. Also
notice that each leaf in the foliation £ is stable (after possibly lifting to its universal cover).
By a removable singularity theorem of Gulliver and Lawson [GL86] this lamination must be
complete in R3. Theorem 2.23 implies that £ is a union of flat planes. Let us first assume
that 0% is non-compact. After possibly applying a rotation about the z3-axis we may assume
that £ =Y x R? for a closed set Y C R. Since planes in R? are totally geodesic the local
C2-convergence implies that in fact |A(z)| < o(1)|x|~! as |x| — oo. This implies that for o
large enough we have that [A(z)| < 1|z|~L.

Now let f: ¥ — R, f(z) = |z|>/2, then

Ayf=2>00onX¥ and V%f:x-fyonc?ﬁ.

On 90X\ Bg, we have that

2 y(z) = a'- Du(z') u(z")
V1+[Du(z)? 1+ |Du(2)]?
<]a\+M—i—03/\x’\_ M log |2/
T VIH[Du@@)? Y1+ [Du(a)]?
< 0,

provided |z'| > o9 = o¢(|a|, M, c3, R1) > R;. That is, f does not have a local maximum on
¥\ By, We also readily verify that

Nonf = Af = D*f(v,v) = D*f(v,7) = Df - vAs(r,7) = Df - vA(r,7)
=1l—-x vk, —x-7kg=1+2 K.
Here 7 € T(0%) with |7| = 1. We estimate
|R| < |6n| + |Kg| = |A(T, T)| + [As (7, 7)]

< 1 2M + C3,
s A e

which is no greater than 3|z|~! for |z| > o¢. Hence,

1
Aazf > 5

By a standard Morse theoretic lemma the sets {z € ¥ : f(x) <t} do not change topology for
all t > 0. Owing the structure of the limit lamination and using the properness assumption
we see that ¥ N B, \ By, is diffeomorphic to the disjoint union U§:1[2j —1,24] x (09, p) for
all p > o¢ and some fixed number [ > 1, independent of p > ¢g. The following arguments can
be made for each component separately, so we shall assume now w.l.o.g. that [ = 1.
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Since o}, — oo, we have that {0} x R? is a leaf of the lamination L. We can argue similarly
as in [Car14] to conclude that {0} x R? is the only leaf of £ : By [PR02, Lemma 4.1.1] and
Lemma 2.42 we have that for any ¢ > 0 there is an index kg such that for all £k > kg the
surfaces ¥} have a graphical component inside Bs, \ B, with C?-norms going to zero as
k — oo. Now assume that there exists another leaf of £ of the form ({t} x R?) N {z3 > 0} for
some ¢ # 0. Then ¥} will also have a graphical component inside Bjy/4(t,0,0) \Pm/g(t, 0,0)
for k large enough and with Lipschitz constants going to zero as k — oco. For o = |t|/2 we have
that the sphere OBy /6 intersects both Bz, \ Bo N {z' = 0} and Bjy/4(t,0,0) \ Bjys(t,0,0)
in a circle, which implies that it will eventually also intersect both graphical components in
an almost half circle. This however contradicts the fact that [ = 1.

The argument in case 9% is compact is similar but easier. O

Corollary 2.31. Let S C R3 be an asymptotically catenoidal exterior surface. Let ¥ be a
connected non-compact stable free boundary minimal surface with respect to S. Then there
are constants og < 0o and © < oo such that for every o > og

HY(ENIB,) < Oo.
Moreover, ¥ has quadratic area growth.

Proof. Let ¥i be as in Proposition 2.30. There exists an index kg such that for every k > ko
there exist m-valued functions ¢y (m independent of k) with graph(¢y) = X N By \ By and
lok| + | Dok < 1, and |y - x| < |z|/2. Suppose by contradiction, that the claim is false. Then
there exists a sequence s; — 0o as j — 0o such that

H' (SNOB,,) > js;.
For a subsequence k; we have s;/0y, > 1. But this implies
H'(Sk N OBy, /0,) >

which contradicts the graph property of ¥, for large k.
Moreover, we have that
Hz‘(sza\Bl):/g/ 12 dM* dt
1 Jenos, V5T

< 2/ HY(ZNOB,)dt <O
1

Stable free boundary surfaces and positive mean curvature

We now prove that non-compact stable free boundary minimal surfaces with respect to exte-
rior surfaces of non-negative mean curvature are totally geodesic, which is the main step in
the proof of Theorems 2.13 and 2.16.

Lemma 2.32 ( [EM12, Lemma 3.2] ). Let ¥ C R? be a non-compact surface with bounded
mean curvature, and such that H2(XNBy) < © 02 for all 0 > 1. For every e > 0 there exists a
Lipschitz function x. defined on > such that (i) x= has compact support and spt(x.)NB.-1 = 0,
(ii) [s|V=xe|? dH? < e, and such that (iii) 0 < xe <1 and [, xc dH? = 1.
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The following proposition establishes finite total curvature, and proves that non-compact
volume-preserving free boundary CMC surfaces with respect to exterior surfaces are in fact
strongly stable and minimal (cf. [EM12, Proposition 3.3)).

Proposition 2.33. Let S C R? be an exterior surface. Let ¥ be a non-compact volume-
preserving stable free boundary constant mean curvature surface with respect to S such that
HA2(XNB,) <O0? for allc > 1. Then ¥ is a (strongly) stable minimal surface and

/ |A|? dH? < —/ Ag(v,v) dH' < co.
% ox

In particular,

/|Kyd%2+/ g dH < oc.
b)) ox

Proof. First note that by Corollary 2.21 [, |Ag(v,v)|dH! < co. This is because

2
sup (max(1, [z])2|4s]) < oo, (2.12)
zes

Moreover, Corollary 2.21 implies that there exists a sequence ¢; | 0 as ¢ — oo such that

/ |As(v,v)| dH' = O(g;) as i — . (2.13)
OS\B__1

Now, fix f € C}() and let i be large enough such that spt(f) C B.-1. Let o := [5, f dH?.

Then f; :== f — axe,, with x¢, as in Lemma 2.32, is Lipschitz with cofnpact support and has
mean zero. Hence,

/ V> fil? dH? > / | A2 £2 dH? +/ As(v,v) f2 dH".
b 5 0%
As in [EM12, Proposition 3.3] we have
[IvEnpant = 195+ [ o ant = [ 922 4 o)
b b b b

and using (2.13) we have

LA+ [ aswosan

b 0%
> / |A? f2 aH? +/ Ag(v,v)f2dH' — O(e;).
b o%
Hence, letting i — oo we obtain
/ |VEFI2dH? > / |A)? £2 dH> +/ As(v,v) f? dH .

b b %

That is, ¥ is strongly stable. The fact that [i [A]* dH* + [55 As(v,v) dH' < 0 follows from

the log-cut-off trick:
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For o > 1 set ¥, := ¥ N B,. Let ¢ be the logarithmic-cut-off function (as in [SY79b]), i.e.

1 Yy
O, 0'2 x

pla) = { EELED v, (2.14)
0 T\ S,

Then have
|VE|z]| 1 _11

V| < < = .
Vel < =2 Toglo) = To] log(o)

(2.15)

Now, let g be a Lipschitz function on ¥ such that |g| < 1 and g = 1 outside a compact set
contained in X,. Since ¥ is strongly stable we may test with f = pg to obtain (for a.e. o)

/ AP dH+ / As(v,)p%g? dH' < / Vo2 + Vg2 a2
> ox >

1 / L e / S22 102
< iy | VR ane.
log(0)? /s ,\x, |2[? 2‘ |

Using the estimate [SY79b, (2.11)] and the estimate (2.12) with Corollary 2.21, we obtain
upon letting ¢ — oo that

/yA|2g2dH2 S/\V2g|2d7{2+/ |Ag(v,v)|g? dH .
> > )

Choosing g = 1 we get
/ |A|2 dH? < o0.
b

Similarly, we derive that
/ |A]2dH? < —/ Ag(v,v) dH! < .

b )

Since by Young’s inequality 2|K| < |A|?, and trivially |r4| < |Ag|, we also get that
/ K| dH? +/ g dH < oc. (2.16)
) )
Using the identities
Loy 1o
Ag(v,v) = Hg — kg and §|A] = §H - K,

we infer that

1
/ |AP> + H*dH? + | HgdH' < / K dH? +/ kg dH". (2.17)
2 s £} D) ox

Since ¥ has infinite area, we see that H = 0. [

Proposition 2.34. Let S C R? be an asymptotically catenoidal exterior surface. Let ¥ C R3
be a connected non-compact stable free boundary minimal surface with respect to S. Then

1
/ |A2dH?*+ | HgdH'<O0.
2)s oy
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Proof. First note that by Corollary 2.31 we know that ¥ has quadratic area growth. Assume
by contradiction that 3 [y, |A|?dH? + [, HsdH' > 0. We claim that this implies that
Y={z e C:Im(z) > 0}.

By (2.16) Huber’s theorem with boundary (cf. [SST03]) implies that 3 is finitely connected.
The boundary version of the Cohen-Vossen theorem [SST03, Theorem 2.2.1] gives

2y () — (/EKng +/6E ky dﬂ;) > 1y (05).

Since 0¥ # () we have that x(X) < 1, and therefore x(0X) < 1 by (2.17). On the other
hand, since ¥ in non-compact we have that x(93) > 1. As such x(X) = x(0X) =1, and ¥ is
homeomorphic to a half-plane. In particular, we have that 0% is non-compact.

Consider a sequence o}, — oo as in Lemma 2.30. W.lo.g. we may assume that the
asymptotic plane II is equal to {#! = 0}. For 0 > 1let P, := {z € R3 : 22 + 23 < o?}.
Lemma 2.30 implies that ¥ N G'PU;C consists of a union of disjoint simply connected curves
that are all graphical above II and are C? close to half-circles. The number of these curves
equals the multiplicity of II in the blow down limit.

A similar argument to the one we gave in Lemma 2.30 implies that each of these curves
bounds a topological disk in ¥ N ng;ﬁ.

By Lemma 2.30, these curves converge to round half-circles in IT upon blow down. Hence,
by scaling invariance, the total geodesic curvature of each of these curves in X OPQU;c converge
to 7 as k — oo. Moreover, since 7,/ (S) — {x! = 0} as k — oo we see that the contact angles
of these curves converge to m/2. By the Gaus-Bonnet theorem, this implies that

0 < lim / KdH2+/ kg dH!
k—oo0 NP, O8NP,

Cs,,
= lim (277)((2 NP,) —/ kg ¥ dH' — 7+ 0(1))
k—o0 k ,

k
=2r—m—7m=0,

a contradiction. O

2.2.2 Proof of Theorem 2.13

Proposition 2.34 implies that X is totally geodesic and that Hg vanishes along 9. In par-
ticular, we have that v is a constant vector. Moreover, the argument in the proof of Propo-

sition 2.34 shows that
/ Kg dH' = 0.
o

We modify an idea of Fischer-Colbrie and Schoen [FCS80] to obtain a contradiction: Fix
a point z¢ € X, and set ), := connected component of (X \ 03) N B,(zg) that contains xy.
For a.e. o > 0 we have that ), is a domain with piecewise smooth boundary such that
Q, NS C d%X N By(z0). Since ¥ is stable, and A = 0, we know that

0 <61(Qp) := inf {R(f, Q) f e Wy (Q, U MQU),/ F2aH! = 1} ,
1o}

NQO‘
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where

_ fQo \VEdeHQ — faNQU As(v, V)f2 dH!
faNQg f2 dH! 7

and 9PQ, := 99, \ S and NQ, = 00, \ 0PQ,. Note that on the vertex 0°Q, NS we have

R(f, Q) :

Ty

—7 < 0, (2.18)

o, =7 = 5

o 2

provided o > oy.

Since X is non-compact a standard contradiction argument using the Harnack inequality
implies that in fact ¢1(€2,) > 0, and the Fredholm-alternative (cf. [Lie86]) implies the existence
of a solution f € C?(Qy UNQ,) N C%(Q,) of

Asf=0 in Q,
f=0 on 0PQ, (2.19)
V?,f — Ag(v,v)f = Ag(v,v) on ANQ,.

We make the important remark that view of (2.18), [Lie89] implies that in fact f € C1(Q,),
which in turn implies that the classical (Perron) solution of (2.19) agrees with its weak
solution. Standard elliptic Schauder estimates imply that f is smooth away from the vertex
0PQ,NS. Then v :=1+ f is a solution of

AE’U =0 in QU
v=1 on 0PQ,
V%v — As(v,v)v =0 on AVQ,.

We claim that v > 0. It follows from the strong maximum principle that if v > 0 on Q, we
have that v > 0 on €,. Suppose now that Q* C Q, := {x € Q, : v(z) < 0} # (). Hence,
O* C Q, is a bounded domain, and thus ¢;(Q2*) > 0. However, Ayv = 0 in Q* and v = 0 on
00", and so v = 0 on ¥, contradicting the unique continuation property. This implies that
v > 0.

Setting g, := v(z0) 'v, we see that

Asg, =0 in Q4
go(z0) =1, ¢g,>0 on
V%go — As(v,v)go =0 on NQ,.

The (interior) Harnack inequality [GT01, Theorem 8.20] together with the boundary Har-
nack inequality [Lie0l, Theorem 4.3] locally near S imply the existence of a constant C' =
C(%,S,0) < oo such that for a.e. p > 20

gp < C  on Qy(zo).

Standard elliptic theory [GT01, Theorem 6.2] and [GT01, Lemma 6.29] implies that all deriva~
tives of g, are bounded uniformly in p on compact subsets of 3. By the Arzela-Ascoli theorem
and a diagonal sequence argument we see that we may choose a sequence p; — oo such that
gp; converges along with its derivatives on any compact subset of ¥ to a function g satisfying
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Ayg=0and g > 0in X, V,%g — Ag(v,v)g = 0 on 0%, and g(xg) = 1. The strong maximum
principle together with the Hopf boundary point lemma imply that g > 0 on 3.

Hence, we may set w := log(g). Then —Asgw = |V>w|? in ¥ and V?w = Ag(v,v) on 0%.
Now let ¢ be a smooth cut-off function such that

¢=1 inB,y ,(=0 in R\ B,
(>0 inR3 D¢ <ep! in R3.

Multiplying by ¢?, integrating by parts, and using Cauchy-Schwarz’ inequality we get
3
/ IVEw]2¢? dH? < 4/ IVEC]2dH? — / Ag(v, )¢ dH .
4 Js by s

Letting p — oo we arrive at

3/ |VEw|? dH? < —/ Ag(v,v)dH! = 0.

4 Js ox

Hence, w = const and Ag(v,v) = 0. Here we used that Ag(v,v) + k; = Hg = 0 along 0X.
On the other hand, an explicit expansion shows that unless M = 0, Ag(v,v) > 0 outside

a compact set: Assuming w.l.o.g. that we have asymptotic coordinates (w, E,u) of S with

w = eg we see that v-e3 = 0, and w.l.o.g. v = e;. Hence, we have on 0¥ \ K (for some

compact set K O Bj)

1 D?w(Du,v)Du - v
As(v,v) = ———— (D%(u, ) - 21D |DL|2 )

> 1 M 1_2(‘” ,,)2 _ Cles, M)
~ 1+ [Duf? r? r 3

Now notice that 03\ K = {Age1+tes : t € R\ I}, for some number \g € R and some compact
interval I. We infer that

2
As(r) > 1 M( B >\0>_C(C3,M)21M

1+ |Dul? 2

provided |z| =7 > o¢(Ao, c3, M). O

2.2.3 Proof of Theorem 2.16

Assume by contradiction that there exists a sequence {¥;} of connected compact volume-
preserving stable free boundary constant mean curvature surfaces with respect to .S such that
H2(X; N By) < ©0? for all ¢ > 1 and all i € N, and such that H1(9%;) > i, but with the
property that ¥; N K # (). It follows from Corollary 2.19 that also H?(X%;) 1 oo as i — oo.
These assumptions imply that max,ey, || — 0o as ¢ — oo. From Corollary 2.17 we have

that 56
H(S)HE, < =7,

which implies that Hy,, — 0 as ¢ — oo. Together with Proposition 2.20 we also get that
maxgzeoy, || — 00 as i — oo.
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Using the curvature estimates from Theorem 2.29 we can pass to a subsequential limit Y
(of possibly higher multiplicity) locally in C?. The components of Yo, are all unbounded.
Let f]oo be a connected component of ¥, such that f)oo N K # (. Clearly f]oo is a complete
non-compact embedded orientable volume-preserving stable minimal surface of quadratic area
growth, either without boundary or with free boundary inside S. If %00 = 0, then o is a
plane by Theorem 2.22. Since by assumption .S is not a plane, Theorem 2.8 implies that M >
0, which yields a contradiction. Hence, 934 # 0, however contradicting Theorem 2.13. [

2.3 Relative isoperimetric mass

Let S is an exterior hypersurface of R? and denote by G the domain as in Definition 2.3.

The relative isoperimetric profile Ag of S is defined by
Ag(V) :=inf{H?*(9Q) : Q C G is a Borel set of finite perimeter
with £3(Q) =V and x& =1 on N}. (2.21)

Here 952 denotes the reduced boundary of  inside G and x¢, denotes the inner trace of Q
on N. Minimizers of (2.21) are called relative isoperimetric regions.

The main goal of this section is to prove the following theorem.

Theorem 2.35. (existence of arbitrary large isoperimetric regions) Let S be an
asymptotically catenoidal exterior hypersurface of R3. There exists a sequence of relative
isoperimetric regions ; C G with £3(£);) — oo.

Remark 2.36. Theorem 2.35 in particular implies the existence of arbitrary large stable free
boundary CMC surfaces with respect to S.

Inspired by works of Huisken [Hui06, Hui09], and Eichmair and Metzger [EM13b] we make
the following definition.

Definition 2.37. (relative isoperimetic mass) We define the relative isoperimetric mass

of S as

4 1 3
o(S) =1 _ (v A3 ).
Miso () := limsup As(V) (V 187 SW)Q)

Theorem 2.38. Let S be an asymptotically catenoidal exterior hypersurface of R® with M >
0. Then
Miso(S) > m(S).

Proof. The proof works by an explicit comparison argument, somewhat inspired by the works
of Fan, Shi, and Tam [FST09].
W.lo.g. we use assume that we have asymptotical coordinates (w, E,u) of S are such that
w = e3 and R?\ BIQ%I/Q(O) C E. For r > Ry consider the surface X, defined by
Y, = {a(r)eni1 + p(r)v:v e S*ING,

where a(r) := a + ¢p(r) — r¢'y (r), where a and ¢ps are as in Definition 2.2, and where

p(r) =ry/1+ ¢, (r)? = Vr2+ M2, (In the special case where u = a+ ¢y the surfaces 3, are
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spherical caps meeting S orthogonally.) W.l.o.g. we may assume that 9%, N (B2 2 /2( )xR) =10

forall? > R;. Let z € X, \ (B12%1/2(0) x R), then u(z') < 23. Moreover, z € 9%, if and only

if u(2’) = 2. There exists a small number gy € (0,1) such that for every v € S' and every
sin(f) € [0,e0] we have that

O(r,0,v) := a(r)es + p(r)(sin(f)v, cos(d)) € &,

whenever r > Ry. For r > 09 = 0o(R1,¢0) and sin(f) € [0, 1] we have, by Definition 2.2, the
estimate

a+ om(p(r) Sin(9))(+/—)m (= / <) up(r) sin(f)v).

We define for [ € (g9,1)

FEW) = dar(p(r)l) — dar(r) + M ipﬁﬂ—mmwl—ﬂ

With this definition we have that
¥, C {<I>(7’, 0,v) :v € S' and sin(f) € [go, 1] is such that f,” (sin(f)) < 0}
U {<I>(r, 0,v) :v € S' and sin(f) € [0, o) } ,
and
XD {<I>(7“, 0,v) : v € S* and sin(f) € [go, 1] is such that f,"(sin(h)) < 0}
U{®(r,0,v) : v € S and sin(6) € [0,20) }-

For r > 09(c0, c3) we have (f)(I) > 0 on [g,1). For ¢ € (0,1) we have

T T'_l
f'r:’t ( :;(i) ) = ¢M(7" + €T_1) - d)M(r)

My—5 —er—1)2
+ p—— \/p (r—er—1)2.

Since ¢, > 0 we see that

F er—! . 2 —e2r2
AN G T TR e
which is < 0, provided r is sufficiently large depending on c3, M, ¢.

Similarly, we have

_(r+ert c3 2e +e2r2
fr Z - 1 + )
p(r) r+er M ++/M? — 2 — 2p2

which is > 0, provided 0 < e < M2/2, and r is sufficiently large depending on c3, M, ¢.
For the enclosed volume we have we have

£3( / / / ®) df dH* dr,
Ry JS? (ryv)

re( R1U
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for subsets [0,e9] C I(r,v) C [0,7/2), and where J(®) = p(r)?sin(0)(p'(r) + a'(r) cos(0)).

Noting that
[ M2 M?
p(r)2p' (r) = 31+ =2 and p(r)%d'(r) = Mr (1 + =2 >

one easily verifies that

r—er— L

arcsin(*—75—)
/ (@) de
0

M2 (r—er—1)2 M(r —er—1)?
2

- 1o [1-41=

" + r2 ( \/ r2 4+ M2 + 2r

M2 Mr Me Me?
:7,,2 1+ _T.\/Z\12+2€_527a—2+7r_7€+7g_
r2 2 r 2r3

Hence,

(U =)

€(R1,0)
aI‘CSln
> 271'/ / J(®)do dr
2 M? M
:—0(00,5)4—%0 (1—1—) +%02—7m2\/M2+25—520*2

M
— 2meM log(o) — 2—2£2
o

e?log {0' (M2+28+\/M2+25\/M2+25—520*2)]

+ 7
v M? +26
2 M? M
Z—C’(ao,e)—i—; <1+> +%02—7702\/M2+25

—o(0) as o — oo uniformly in € € (0, 1].

For the area we estimate

arcsin( - ;1)

HA(E,) <o | J(®,) do,
0

o+teo
[eg

where ®,.(6,v) = ®(r,0,v). We have J(®,) = p(r)? ). Hence,

sin (6
M? — 2¢ — 202
2
HA(Z,) < 270 (1—}—) (1 \/ 1ol )
Using these two estimates we infer
4 3
is0(S) > lims <£3Q H (S z)
Miso(S) > msup 2 Qo) — T&r (Eo)
> M + 2/ M2 — 2 — 2/ M? + 2¢.
The claim follows by letting ¢ | 0. 0
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Lemma 2.39. Let S be an exterior hypersurface of R with domain G as in Definition
2.3. There exists a constant C' = C(G) < oo such that for any bounded Borel set Q C G of
finite perimeter in G we have that

L) < CH(95Q) .

Proof. The inequality follows in the usual way from the Sobolev inequality

(/ Tk dﬁ'ﬂ“)”“ < c/ IDf|dL™ for all f € CHG).
G G

It is straightforward to adapt the proof of [EM13a, Lemma 2.4] (see also [SY79b, Lemma 2.3])
to prove the latter inequality. Here one combines, in a contradiction argument, the euclidean
Sobolev inequality of the form

n HLH R
(/ Visa d£n+1> < / IDf|dL™*! for all f e CHRYT),
Ri+l\Bl RTrl\Bl

where R’}fl = R 0 {21 > 0}, with Poincaré type inequalities on boundary coordinate
charts. O

The following Proposition is a slight extension of [RR04, Theorem 2.1] and is inspired
by [EM13a, Proposition 4.2] in which the authors consider isoperimetric hypersurfaces in
asymptotically flat Riemannian manifolds.

Proposition 2.40. Let S be an exterior hypersurface of R" 1 with domain G as in Definition
2.3. For given V > 0 there is p > 0 and an relative isoperimetric region & C G such that the
following hold:

(i) L + L) =V

(i) o=+ H™(O5Q) = As(V).

Moreover, if p >0 and L"1(Q) > 0 the mean curvature of 958 equals %.

Proof. The idea is to consider a minimizing sequence {€;}3°, for the relative isoperimetric
problem of volume V. Let
Vo = lim liminf £"7(Q; N B,).
r—00 1—00
Standard arguments from geometric measure theory, just as in [RR04, Theorem 2.1], show
that there is a relative isoperimetric region €2 in G of volume Vj. Let p > 0 be such that

wnanrl

DEEE G

Since S is asymptotically flat we may apply the relative isoperimetric inequality of the eu-
clidean half-space to replace the original minimizing sequence for volume V' by a sequence of
the form {QU R;}°, where R; = B,,(z;) N G for x; € OG diverging to infinity, and suitable
o; — p as i — oo. By an argument involving the coarea formula (cf. [RR04, Theorem 2.1])
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the additional perimeter that is created in this cut and paste procedure can be made to tend
to zero as ¢ — 00.

To see the second statement, first note that J5€ is a (smooth) free boundary CMC hyper-
surface with mean curvature H such that the singular set has Hausdorff-dimension at most
n — 7 (see [Grii87]). Now, n + 1 < 7, consider a vector field X € CL(R"T!; R"*!) such that
X-y=0o0n0G and X -v =1 on 95 E. We denote by {¢;} the flow associated to X. There
exists a smooth function ¢ — p; such that

wnp?Jrl + £n+1(¢ (Q)) =V (2 22)
2(n + 1) ner = ‘

By the minimizing property we have that

_d wn Py
0=3 2

nwpp "t d

2 dt

+H"(060:(D) | =0 = pili=0 + HH" (95:52).

Differentiating (2.22) at t = 0 and substituting into the above yields the claim. For higher
dimensions one may use a cut-off function argument (as in [SZ99]) since the singular set is
small. O

Proof. (of Theorem 2.35) In view of Theorem 2.38 we may assume that m;s,(S) > 0. Let
V > 0. By Proposition 2.40 there exists a, possibly empty, relative isoperimetric region 2 C G
and a sequence of balls By, (x;) centered on 0G with |z;| — oo and 0 < 0; — ¢ € [0,00) as
i — oo such that

(1) £3(Q) + L3(By,(z;)NG) =V for all i
(ii) H?(05Q) + H%(0g By, (i) — As(V) as i — oo.

Our goal is to show that for any given threshold A > 0 we can choose V' > 0 sufficiently large
such that £3(Q) > A. Now let V > 0 be sufficiently large such that

) > misg(s) .

N

4 1
Ag(V) <V - s

Using the lower bound Ag(V) > 27 02 we obtain

The fact that, by Lemma 2.39, limy _,~ Ag(V') = oo finishes the proof. O
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2.4 Appendix

2.4.1 Graphical estimates

Definition 2.41. (convergence of free boundary hypersurfaces) Let G C R"™! be
a domain. Let ¥; be a sequence of free boundary hypersurfaces inside G. We say that ¥;
converge in Cl]’gc(U), for some open set U C R™1, to a free boundary hypersurface ¥ inside
G if the following conditions are satisfied:

1. The surfaces %; \ 0% converge to X\ 0% in Ck _(U) in the usual sense of graphs.

2. For every point x € 0¥ N U the exists an open set V.C U with x € V and a C*
diffeomorphism ¢ : V. — B with the property that ¢(GNV) = BN {z' > 0} such that
#(2; NV converge to ¢(XNV) in CF (B) in the sense of graphs over BN {z' > 0}.

loc

Lemma 2.42 (cf. [PR02, Lemma 4.1.1]). Let U C R3 be an open set, and let ¥ C UN{z! > 0}
be a surface with X NU N {z' = 1} = 0¥ NU such that supy~y |A| < co for some constant
cp < 00. Forxy € 90X NU such that n(xzg) -e1 > X >0, v(xg) - e3 > A, and

R = Amin {dlSt(xO’ o), A} ,
2 4cq

the following holds:
The component of SN (B%(x) x R) through x is the graph of a function f € C*(B%(xo)N
{z! > 0}). The function f satisfies the following estimates on B%(xo) N {z! > 0}:

1 1)) < (8eoX =3y — | + A1V —32) |y —
2. IDf(Y)| < 8coA |y —ap| + A" IW1— A2
3. |D?*f| < 8co\ 3

Proof. W.l.o.g. assume that x¢g = 0. Hence, there exists a radius R > 0 with the following
properties:

1. ¥ can locally be written as a graph of a function f € C®(Bg N {z! > 0}).
2. U-e3=(1+|Df>)"Y2 > A/2 in B N {z! > 0},

where 7 :=vo F and F(2') := (2/, f(2')). We have

|D;o| < |A|o F\/1+|Df|%2 < 2coAL. (2.23)

Assume now that R > 0 is the maximal radius such that 1. and 2. are satisfied at xg = 0. Note
that if f were defined on B N {z! > 1} and 7 - e3 > \/2 were true along 0By N {z! > 1},
we could extend f to a larger radius, which would contradict the maximality of R. Hence,
one of the following possibilities must hold:

(a) The function f extends smoothly to a larger radius and there exists a point 3’ € 0B N
{z! > 1} such that o(y) - e3 = \/2.

(b) There exists a sequence y, € By N {z! > 1} with dist(F(y}),0U) — 0 as k — o0.
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In case (a) we have that for some 7 € [0, 1]
A2 < |(0(0) = 2(y)) - es] < [DoI(7y)]y'| < 2c0A7'R.
In case (b) we have, setting [0,y;] := {ty : t € [0, 1]}, that

1
F(y})] < HA(F(0, 54]) = / DF(ty}) - v} dt

1

<l [ i+ iDsRa
0

< 2\7IR.

Hence, dist(0,0U) < |F(y,)| + dist(F(y,),0U) < 2A"'R 4 o(1) as k — oo, which establishes
the first claim.

Moreover, we have using (2.23) that
D2.
T 0 D} F| = |D;0 - DiF| < co(1+|Df]?),
V1+I[DfF

and hence,
|D2f] < co(D - e3)™3 < 8coA ™3,

Using the mean value theorem we get
IDf(Y) < IDf(y') = Df(wp)| + [Df(20)] < 8coA™ly’ — ap] + A71V1 = A2,

Finally,
W) = 1) = F@p)] < (8o Py’ —ap| + A V1 =A%) |y — af.

2.4.2 Cohn-Vossen theorem for manifolds with boundary

Definition 2.43. We say that ¥ is finitely connected if there exist a compact 2-manifold
N and finitely many points p1,....,pr, € N for k > 1 such that ¥ is homeomorphic to N \

{pla 7pk‘}

If ¥ is homeomorphic to N \ {p1, ..., pr}, if p1,...,p; € int(N) and if p;yq,...,px € ON then
the Euler characteristic x(2) of ¥ is

() = x(N) 1.

‘We have that

where x(0X) is the number of unbounded components of 9.

Theorem 2.44 ( [SST03, Theorem 2.2.1]). Let (X,g) be a connected non-compact finitely
connected complete Riemannian 2-manifold. If 3 admits a total curvature and 0% a total
geodesic curvature and if fz Kd’Hg = — faz Kg d?—[; = 400 does not hold, then

2rx(X) — </2 Kd?-[g + /62 Kg d’H;) > wx(0%).

63



2.4.3 Complete non-compact finite index free boundary surfaces inside a
half-space

Let F: (M,g) — R3N {23 > 0} be an isometric immersion of constant mean curvature of
a 2-dimensional complete non-compact connected manifold with boundary dM, such that
F(OM) Cc {23 =0} and n-e3 = —1 on OM.

For a given function ¢ € C*°(M) we consider the operator L = Ay + ¢ — K. For a bounded
Lipschitz domain Q@ C M \ OM we let Ind(L, ) be defined as the index of the operator

L: WA (QuoVa) — w2 (Quavay,
where &V Q := 90\ 9PQ and §PQ := 9Q \ M.

Proposition 2.45. If M has finite index then there is a compact set C' in M so that M\ C
is stable and there exists a positive function u on M so that Lu =0 on M \ C and % =0 on
oM\ C.

Proof. Fix pg € M, let M denote the doubled surface, and let F : M — R3 denote the
reflected immersion given by F|y; = F and F‘M\M = Ro F, where R(z) = (21,22, —23).
Hence, F : (M , g = E *§) — R3 is an isometric immersion of constant mean curvature of
a 2-dimensional complete connected manifold (without boundary). Note that since M is
totally geodesic M carries a canonical smooth atlas, the smoothness of § follows from elliptic
regularity since F': M — R*N{z® > 0} is assumed to have constant mean curvature. Now let
B, denote the geodesic ball with respect to the metric § of radius p centered at pg. Moreover,
we let Bf := B, N M. Then B} has piecewise smooth boundary.

Now we can argue exactly as in [FC85, Proposition 1], only replacing B, by B;“ and replacing
the auxiliary function vg by the solution of the following mixed boundary value problem:

vg >0 on(BE\BTEO)ﬂQi
Lvp =0 on BE\BEO
vrp=1 on dP(Bg \BEO)

Gr—0 onoV(BE\Bf).

By a simple reflection argument one can easily verify that vg is smooth on all of B}: \ BEO. O

Theorem 2.46. Let ¢ > 0 and let Ind(L) < oco. Then M is conformally equivalent to a
compact Riemann surface with boundary punctured at a finite number of points, and

/ qd?-[?] < 00.
M

Proof. Let u be the function from Proposition 2.45. The function 4 : M — R, given by
U|pr = wand @ M\M(ib'l, 22, 23) = u(x!, 22, —23), is a smooth solution of Lit = 0 on M\ C. We

can argue exactly as in [FC85, Theorem 1] to conclude that g = 12 ds? and hence g := u? ds?
is a complete metric of non-negative Gaussian curvature on M and M, respectively. More
precisely,

A\
Ks=u" <q + Vs |9> > 0. (2.24)

’LVL2
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What is more, we have that r; = u kg + U_Q%: =0on oM \ C. It follows from [Hub57,
Theorem 13| that M , and thus also M are finitely connected. Hence, M is conformal to a
Riemann surface with a finite number of discs and half-disks deleted.

We now prove that | wa d?—[? is finite. Since M is finitely connected, Ky vanishes on OM \ C
and ngv is non-negative on M \ C', we may apply the Cohn-Vossen inequality for surfaces with
boundary (here Theorem 2.44) to conclude that

g

/ KEd’Hz < 2mx (M) —7x(OM) — / K~ dHE < 0.
M g oMNC g

It follow from the above and (2.24) that

/ qd?—[?] < Kgd/Hg < 00,
M\C M\C g

and since C' is compact that [ M qd?-[g is finite. O

2.4.4 Integral decay estimates

Lemma 2.47. Let S € Fa(3,c1,c) be an asymptotically flat surface in R3. There is a radius
oo and a constant C3 < oo both depending only on S such that for every o > oo for which
0B, and S are transversal, and every compact surface ¥ C R\ B, with XN (SUIB,) = 0%
such that 9% and S meet orthogonally one has the estimate

1
/ 1Jﬁgd’}-tl<(}30 H2d7{2+w _
dx\B, T Y\Bs o
Proof. By Proposition 2.20 we have that
C(co/Ry)
/8205 ] dH' < 0(5,62/R1)/ ngHQ 2/ ! / H? dH? (2.25)
HY (XN OB,)
+ 0(02/R1)T.

In order to estimate the second term on the right hand side of (2.25) we slightly modify an
idea of Huisken and Yau [HY96, Lemma 5.2]: For p € R we have

divy(r~Pz)=(2—-p)r P+ priP*Q\xJ‘IZ.

Testing the first variation identity with the vector field r Pz we obtain

/ (2—p)r P+ pr_p_2|acL|2 dH?
by

—/ rpfl‘xd’}-l2+/ rPx -y dH! +/ rPx-ndH",
% oxNsS 0XNOBs

where 71 denotes the outward unit conormal of . For p = 2 we thus have upon applying
Young’s inequality and absorbing

) 1
<i szH2+/ 2 g HEOOBs),
(o2
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On the other hand, choosing p = 2 4 3, we can estimate to arrive at

Eﬂﬁﬁ szgmm/ \aig s /H2
i /82ms |r2+g‘ dH' + %JF?B)
< % : |$:;|2 dH2+4iﬁ/ZH2dH2
1
! % osNS ’wﬂﬂ dH’ + W'

Combining the last two estimates we get

1 )
dH? < H? dH?
5 lz-v] 1 5HYENOB,)
— d -
507 s TG
Inserting the above estimate into (2.25) we obtain
/ 1+5 dHl (67 C;/Rl) / |a7 ’7| d%l 57 CQ/Rl / H2 dH2
oxns T g oxns T

HY (X NOB,)
+ OB c2/B)— 35—

Now for ¢ > Ry we have that

|z -y <eq+ clrl_ﬁ,

so we obtain

Ry) 5 C2 Ry)
d 1 (/BaChCQa 1 / d 1 ) ) /H2d 2
/azms rit+h " of %NS THB " "

H(SNOB,)
o8

+ C(B, c2, R1)

Choosing 0 > o¢ = 0¢(f, c1, c2, R1) and absorbing yields the desired estimate.

2.4.5 Bending energy and area growth

Lemma 2.48. Let S C R? be an asymptotically flat surface. There exists a radius og > 0
depending only on S such that for all og < o < p and every bounded surface ¥ C B, \ Bs

with ¥ N (0B, U S) = 0¥ and 0% meet S orthogonally, one has that

HA (D) < p2/ H?dH? + 20 H (2 N OB,).
b

Proof. Let Ry be as in Lemma 2.10, and assume that ¢ > R;. We test the first variation
identity with the position vector field, and apply Cauchy-Schwarz’, Hélder’s, and Young’s

inequality to obtain

2HA(S) < pH(S %</H2dﬂ2> +oH (% N OB,)

—i—/ ey dH
oS\ Bo
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Using the estimate |z - y| < ¢z + ¢17'™?, which holds on S\ Bg,, we can make use of
Proposition 2.20 to arrive at
1
1 2
2HA(E) < pHE(Z)2 </ H? d?-[2> +oHY(ENOB,)
b
+C(B,c1, 02, R1)o PHA(D)
+ C(ﬂa 1, C2, Rl)pQ_/B / H2 dH2
b
+C(B,c1,c9, R)o T PHY(Z N OB,).
Choosing o > o¢ = 0¢(3, c1, c2, R1) and absorbing yields the desired estimate. ]

Lemma 2.49. Let S C R3 be an asymptotically flat surface. There exists a radius oo and a
constant Cy < oo both depending only on S with the following property: Let ¥ C R®\ Bg be a
compact surface with XN (S UIBR) = 0¥ such that 0% and S meet orthogonally, and where
R > 0 is a fized radius. Then for all R< o < p < o0

HAENB,) _ cy (Hz(Eme) +/ HQd%QJrHl(zmaBR))'
b

o2 P> o

Proof. By a slight variation of Simon’s monotonicity formula (cf. [EM12, Lemma B.2], see
also Chapter 1) we have that

2(SNB, 2(¥NB
H( r; )SCH( 2 P)+C/ HQdHQ
o p YNB,

1 1
+C/ (2—2>’$')"d%1
dTNB,\Bos \T P

1 1
+C(2—2)/ |ZL"}/|dH1
g P XNSNB,

+c ( L :2) RHY(ZNABR).

o2

Here ¢ < oo denotes a universal constant. Now assume that R > Rj;, where R; is as in
Lemma 2.10. Then

|z -y <eq+ clrl”g,
and we infer

2 2
H<29B0>SCH (EQBP)—FC/ HQdHQ
o P ¥NB
P
1 (~noB
+C/ 75 d’].ll_*_cw‘
x\Br T o

Lemma 2.47 implies the desired estimate. O

Corollary 2.50. Let S be an asymptotically flat surface of non-negative mean curvature.
There exist constants C, oo depending only on S with the following property: Let ¥ be a
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connected compact volume-preserving stable free boundary constant mean curvature surface
with respect to S. Let og < s < o and assume that 3 intersects 0Bs transversally. Then

H (2N (By \ B))

o2

1
<o <1+H (Eﬂ@Bs))
S

If S has strictly positive mean curvature everywhere, then

HY(O% N By) 821211:80 Hg < 147  for all o > oy.

Proof. Applying Lemma 2.49 to the surface ¥\ By, i.e. R = s, and p = 2maxy |z| yields

H2(Z N (B, \ By)) <o, (H?(z) +/ 2 ai Hl(EﬂéBs))
by

o? - p? o

Lemma 2.48 implies that
H2(Z) < p2/ H? dH? + 2s H (X N OB,).
P

Combining the last two inequalities we arrive at

HENBAB) g, (/ a4 HE005) maBs)) .
» S

g

Now using the assumption that Hg > 0, Proposition 2.17 implies the first claim.

The second claim follows from Proposition 2.17. O

Remark 2.51. Corollary 2.50 establishes an a priori bound on the free boundary length

growth of 3 in case Hg > 0 everywhere. We suspect that it is possible to prove an a priori
1

bound on the quantity %, which would let us conclude quadratic area growth of X

instead of having to assume it in Theorem 2.16 (cf. [EM12, Theorem 1.6]).
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3 Nonlinear mean curvature flow with
Neumann boundary condition

Let M™ be a compact, orientable manifold with non-empty boundary oM, and let Fy : M —
R"*! be a smooth immersion. Further, let S = G be the boundary of a domain G' C R"+!,
Upon defining My := Fy(M) we assume that

MynS =0My and (vg,yoFp)(p)=0 forallpe dM.

Here vy and ~ denote the outer unit normal to My and .5, respectively.

Definition 3.1. (H*-flow with Neumann boundary condition) Let k > 1. A family
of immersions Fy = F(-,t) : M™ — R"*! + € [0,T), is an H*-flow with Neumann boundary
condition with respect to S = 0G, if the following equations are satisfied:

LF(p,t) = —H(p,t) v(p,t) ,(p,t) € M x (0,T)
F<'70) :FO

(*)s F(p,t) e S ,(p,t) € OM x [0,T)
(v,y70 F)(p,t) =0 ,(p,t) € OM x [0,T)
F(p,t)e G ,(p,t) € int(M) x [0,T).

Here H(-,t) denotes the mean curvature and v(-,t) denotes a unit normal field of the immer-
sion Fy such that —H(-,t)v(-,t) equals the mean curvature vector H(-,t).

Remark 3.2. For k = 1 our definition is what Koeller [Koel0] calls mean curvature flow with
Neumann free boundary condition on the solid support surface S. Removing the last condition
in (%) coincides with the original definition of Stahl [Sta96b], and is what Koeller [Koel2] calls
mean curvature flow with Neumann free boundary condition on the transversable support
surface S.

Now suppose that {F}};c[o,) is a smooth solution of (x) for some k > n — 1. Denote by
A(t) the area of My, and denote by V(¢) the enclosed volume inside G. Assuming that there
exists a positive constant ¢y > 0 such that

1
" n

inf H|"d > ,

tel(%vT) (/Mt ] Mt) T n+ 1c0

we have that the relative isoperimetric difference

n+1

AR — oV (1)

is non-increasing. In the closed case, i.e. for the H¥-flow without Neumann boundary condi-
tion, this monotonicity was first observed by Huisken and later exploited by Schulze [Sch08]
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to prove the standard isoperimetric inequalites in R**! for n < 7 and to give a new proof of
the 3-dimensional case of the Aubin-Cartan-Hadamard conjecture, the original proof of which
was put forward by Kleiner [Kle92]. The proof of this monotonicity in our case is identical
to the one given in [SchO8] for closed surfaces since all boundary terms vanish due to the
orthogonality condition.

If the flow existed until V' (¢) converged to zero, the monotonicity of the relative isoperimetric
difference would imply that

covol(2) < area(MO)nTH,

where 2 denotes the bounded region enclosed by My in G. Even though smooth solutions
under special geometric assumptions exists until the enclosed volume goes to zero cf. [Sta96a],
in general singularities may occur in the interior as well as on the supporting hypersurface
(cf. [Koel0]) before the enclosed volume tends to zero. In order to continue the flow past
those singularities we replace (x) by the following level set formulation:

Let ©Q be an bounded open subset of G such that its boundary 9€) may be decomposed
into a disjoint union of PQ := dQN G and IV Q := 90 \ 0PQ with the following properties.
9P and &V Q are smooth hypersurfaces with and without boundary, respectively, and in the
“vertex” V := 9PQ N S(= dPQNNQ) we have that (v,v) = 0, where v denotes the outward
unit normal to 9P€). Moreover, assume that the mean curvature of 9P is strictly positive.
The evolving hypersurfaces are then given by the relative boundaries of the superlevel sets of
a function u : Q = Rxg, u = 0 on 9PQ via

My =0{x € Q:u(z) >t} NG,
and (%) is replaced by the following degenerate elliptic mixed boundary value problem.

div (ﬁ) = —\Du|7% in Q,

| Dl
(%) u=0 on 9PQ and
g—x::’yi]_)iu:() on OVQ.

This formulation is inspired by the work of Schulze [Sch08] for H*-flow, which in turn was
inspired by the work of Evans and Spruck [ES91] and Chen, Giga, and Goto [CGG89] on mean
curvature flow and by work of Huisken and Ilmanen [HIO1] on the inverse mean curvature flow.
A level set formulation for inverse mean curvature flow with Neumann boundary condition
was put forward independently by Marquardt [Mar12].

As in [Sch08] we use the method of elliptic regularization to define a family of approximat-
ing problems to (*). Since the linear theory for mixed boundary value problem only yields
solutions that are Hoélder continuous up to the vertex it is not immediately possible to ensure
the existence of solutions of the regularized problems by means of a standard linearization ap-
proach. Therefore, we use yet another family of approximating problems. More precisely, we
approximate the domain €2 from the outside by a family of domains, the Dirichlet boundaries
of which have a contact angle with their Neumann boundaries of strictly less than /2, thereby
ensuring C1®-solutions of the associated linearized problems. We then prove existence to the
approximating problem, which satisfy a uniform a priori sub- and gradient-bound, and hence
subconverge to a Lipschitz continuous function on . We define any such limit function to
be a weak solution to (xx), and call it a weak H*-flow with Neumann boundary condition
generated by the pair (2, G).
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3.1 Short time existence in the smooth case

The short time existence of (x) for the case k = 1 was proved by Stahl [Sta96b]. Stahl defines
generalized Gaussian coordinates that are adjusted to the geometry of the supporting surface
S to be able to write the evolving surfaces {M;} as a graph over My for a short time, thereby
reducing the parabolic system (%) to a scalar parabolic Neumann problem, which can be
solved for a short time by standard results (see [LSU68]). This is a modification of an idea of
Ecker and Huisken [EH91] to prove the short time existence of mean curvature flow.

The same proof works to prove short time existence of (x) for the case k& > 0 under the
additional assumption that Hg > 0. This comes from the fact that the coefficients of the
leading order term in the scalar problem is of the form a” = kH¥ g%, where H and g are
the mean curvature and the first fundamental form of the evolving graphs, respectively, and
which is uniformly elliptic in case Hy > 0.

See also [Mar13] for a discussion on the short time existence of inverse mean curvature flow
with Neumann boundary condition.

Summarizing we have the following theorem.

Theorem 3.3. (Short time existence) Suppose that k = 1, or k > 0 and the mean
curvature Hy of My is strictly positive. There exists a T > 0 and unique solution F €
Ol 3 (M x [0,T], R 1) N C(M x (0, T],R™) of ().

3.2 Elliptic regularization and existence of weak solution

In order to define a weak solution of (xx) let us assume that the evolving surfaces M, are
given as the level sets of a function u : Q) — R, i.e.

O i={reQ:ulx) >t} and M;:= 0,

where we use the notation OgE := OE NG for a set £ C Rt
Then the H*-flow with Neumann boundary condition with respect to S = 9G is described
by the following degenerate elliptic PDE with mixed boundary values.

div (‘g—g) = —]Du|_% in Q

(%) du=0 on 8P
%::0 on &MQ,

where 9PQ := 9Q and AV Q := 9Q \ 9PQ denote the Dirichlet and the Neumann boundary,
respectively.

In order to solve (xx) we first define the following approximating equations known as the
elliptic regularization of ().

diV <\/‘$) = _(52 + ’.D’Uz{-:‘Q)ii iIl Q

(% )e uf =0 on 0P
%—“j =0 on OVQ.

As in the closed case we may interpret these approximating equations in a geometric way:

Given a solution u® of (x)., and setting 4 := %ua we see that 4° satisfies the following elliptic
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mixed boundary value problem:

div (JHD%TP) = —ci(1+|Dc[?)"% inQ

1 =0 on 9PQ
%ﬁ;:O on MV Q.

This equation means that the translating graphs

Ny ::{(:L‘,ﬂa(a:)—t> ::L‘EQ}, teR

9

solve the H*-flow in  x R with partial Neumann boundary condition

3/\/]\75 = {(w,ff(a})—z) :xE@NQ} C S xR
We refer to [Eck04, Chapter 2] for details. Unfortunately, in contrast to the closed case,
the linear theory for mixed boundary value problem only yields solutions that are Holder
continuous up to the vertex it is not immediately possible to ensure the existence of solutions
of the regularized problems by means of a standard linearization approach. Therefore, we use
yet another family of approximating problems. More precisely, we approximate the domain
Q) from the outside by a family of domains, the Dirichlet boundaries of which have a contact
angle with their Neumann boundaries of strictly less than /2, thereby ensuring C'**-solutions
of the associated linearized problems.

For a family {07} ¢, of domains Q™ C G, to be specified below, we define the following
family of approximating problems.

diV (%) = _(52 + |DU€’T‘2)7i in QT

(%*)e,r usT =0 on 9PQ7T
8152’7 =0 on VO

Approximating the domain
Let © C G be an open bounded set such that 9P and OVQ are smooth hypersurfaces
with and without boundary, respectively, that meet orthogonally, i.e. vgpg-v=0o0onV :=
APQANINQ. Let Hypg > dy for some positive 6y > 0.

Using a partition of unity and local graph representations of 9P near the vertex V, we
may employ a standard extension Lemma (see [GT01, Lemma 6.37]) to extend the surface

0P to a smooth compact hypersurface o0 with boundary across S such that the following
three conditions are met:

1. supgnvr |As| < %supaNQ |Ag|
2
2. Hoo > 260
3. For some ép € (0,1) the “signed distance function” f defined by

| =d(x) xeQ
f@) = {d(x) reG\Q,

with d := dist(@fDVQ7 -), is smooth on {p € G : d(p) < 20p} \ .
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We shall also assume that
|IDd -~y <c1d on SN (Q\Qas,) (3.1)

for some positive constant ¢; < oo, depending on the curvatures of 9P and SN (Q\ Qas,,)-
Now, let 0 € (0, 1] be such that the signed distance function fg is smooth in {dg < 25 }NK,
where K is a compact set with dist(Q, R"**\ K) > 0. We set ¢(s) := 6p ¢o(2s/6xn), where
¢o is the mollification of the function s — (1 — s)* with the standard mollifier n(s) =
coexp((s* —1)71)x(_1,1)(s) with [ nds = 1. Note that

dp

%p %p
63

H¢HCO(O,OO) < dp, Hgb,HCO(]R) < 25N

, and  [|¢" |l cory < 4co

For 7 € [0, 1] we now define the approximating domains 27 as follows:

Q" :={zeG: f(x) <Td(ds(x))}.

It is obvious from the definition that PQ7 converge to 9P in C? as 7 — 0. Hence, we may
assume w.l.o.g., after possibly multiplying the function ¢ by a small constant, that for all

7 € [0,1] dr := dist(0PQ7, ) smooth on {z € G: 0 < d,(x) < ép}, where

OPO" = (o + 1o (ds(2))v 50 (x) - w € HPQY.
Moreover, we may assume that Hopoo > 300, HAaDA& lco@arary < 2[|Allco@ara), and L£rHan) <
2L7FH(Q) for all 7 € [0,1]. On 9PQ7 we have (with obvious notation)

Vr = DfT = )\7' (Df - T¢/(ds)Dds) 5
where A, = |Df — 7¢/(ds)Dds|™". So in particular,
20

Vr = Ay (Df — TD7> on VT :=9PQ"NS.
oN

We wish to choose parameters as to guarantee that

for every sufficiently small 7 > 0. Making use of (3.1) we estimate on V"

270p
VT'VZ)\T(Df'/Y_ S >
N
276
<A (cld ~ = D)
on
2
<Ar (Cl - ) TOp
oN
S _)\TT)
provided §y < 1‘3571%D’ where we used that d(xg) < 7dp whenever zy € V7. By the triangle

inequality, we have that A\; > 1/2 for all 7 < dn5/(20p). We conclude that (3.2) holds for all
7 < dn/(20D).

Summarizing, we have constructed a family of domains {Q7} (0., 70 < dn/(20p), with
the following properties:
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1. Q7 C G and have smooth boundaries 82Q7 and &V Q"

2. QC QO forall 7

3. LMHH(QT) < 2L7HH(Q) for all T

4. diam(Q7) < 2diam(Q2) for all 7

5. 0PQ" — 9PQin C? as 7 — o0

6. vr -y < —3, where v denotes the outward unit normal to oPQT
7. Hypgr > £60 and supgoq- |A7| < 2supgog |A|

8. supgnvor [As| < 2supgng [As]

We remark that the special form of the approximating sequence is not relevant for the
sequel, but rather that the above properties are satisfied.

A priori estimates for (xx). -

In order to prove existence of solutions to (xx). , we need to prove a priori sup- and gradient-
bounds.

Lemma 3.4. (sup-estimate) Suppose there exists a foliation {N;}icr of an open neigh-
borhood U of Q, Q CC U, consisting of C?-hypersurfaces Ny = {w = t} for some function
w € C%(U) such that the mean curvature Hy, = div (vy,) of each surface Ny is bounded from
below by some positive constant 6y > 0 and such that they intersect S with a non-positive
angle, i.e. vy, -y <0, and where vy, = Dw/|Dw|, then

sup[u™| < Cy = Gy (k,eo, 1) inf | D, ||\Dwr—1D2wuco<U)) (3.3)
QT

for any solution u®™ € C%(Q7) N CHQT) of (3*)-r with T < 79 such that Q7 C U, and with
e € (0,1].

Proof. Since for every 0 < ¢ <1, 0 < 7 < 79 the constant zero function is a subsolution of
(*%)e,r the maximum principle implies that u®7 > 0. It remains to construct a supersolution
of (xx),r. For the mean curvature Hy, of N; we have

) ( Dw ) Aw D?w ( Dw Duw >
Hy, = div = - , )
| Dw| | Dw| | Dw| |Dw|” | Dw|

We make the ansatz ®(x) := ¢ (w(x)) for some function 1) with ¢’ < 0 to be determined, and
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we compute
. Do
div | ———=
Ve2 + |DPJ?

¥ (w) ¥ (w)
BT <D <\/52 +w'<w>2|Dw\2> ’D“’>
)
(@)D

\/€2+w’w
2, (2w Dw

S

(

S

W(w)mw\? ¢/ (0)}(D*w) (Dw, Dw)
(€2 + ' (w)2[Dw[2)2  (e2 + ¢/ (w)2|Dwl?)?
W (w)| Dul £2 (w)| Dw|?

TV dPDul (2 1 (w)?| Dwl?)E

2 (w)| Dw| D*w Dw Duw
(1 0/ (w2 D)} (\Dw!> (1Dt 1w (34)

This should be less than — (g2 + w’(w)2|Dw|2)_ﬁ for ® to be a supersolution. We use the
assumption on the positivity of the mean curvatures H,, and the assumption ¢’ < 0 to see
that a sufficient condition for this is that

0> _ 2y (w)| Dw| B g2 D?w (Dw Dw>
PT P (w) (@ + ¢ (w)?DwP) &+ ¢/ (w)?[Dwl \ [Dw| ) \[Du]” |Du|

- W( 4 (w)2| Duf?) (3.5)

Clearly, we may assume w.l.o.g. that w > 1 and that |Dw| > 1. Let 0 > 0 be a constant, to
be chosen later, and take ¢ (t) = o(k + 1)~ (T¢™ — t5+1), which gives

Y'(t) = —oth and ¢"(t) = —kott L.

The inequality (3.5) then becomes

0o

v

2k| Dw| g2 D? (Dw Dw)
w(52+a2w2’f!Dw|2) 52+02w2k|Dw|2 |Dw| ) \|Dw|" | Dw|
1

2k L

Dropping the first term on the RHS, a sufficient condition for (3.6), and hence for ® to be a
supersolution, is that

k—1

2 i
l1Dwl ™ Doy + = iz +1])
ok O'Qka‘Dw‘Q

6y >
0=1%s2

Hence, we can choose o large enough depending on k, 6y and H]Dw|_1D2wHCO(U), but in-
dependent of £ and 7, such that the above condition is satisfied for all points in 2™ and
0 < e <1. To ensure that ® is a supersolution of (xx)., we need to make sure that

Zq) 0 ondVQ .
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We compute

0P 0

3, = V)5 = —out Du-y = —ouw*|Dul v, -7
which is non-negative on #VQ7 by assumption. Choosing Ty = [wllcory we see that ® > 0
on 9PQ7 for all 7. Thus ® is a positive supersolution on every Q7 and all 0 < ¢ < 1. The
maximum principle implies the desired C%-estimate. 0

A sufficient condition for which a foliation as in the assumptions of Lemma 3.4 exists is
that &V is compactly contained in a graph over some ball that is disjoint from

Lemma 3.5. Suppose that there exists a point xg € R" T\ Q such that
(x —m0) -y <0 ondNQ.
Then there exists a foliation {Ni}ier as in the statement of Lemma 3.4.

Proof. Setting U := R"™! and w(x) := |z — z0|?, the requirements of Lemma 3.4 are easily
seen to be satisfied. O]

Remark 3.6. A necessary condition to obtain a sup-bound which for € = 0 corresponds to a
finite existence time in the parabolic flow is that {2 does not contain a free boundary minimal
surface with respect to S. Consider for example S =catenoid and My =spherical cap with
boundary meeting S orthogonally. The MCF with Neumann condition of Mj exists for all
times and converges to the free boundary minimal disk inside the catenoidal neck [Whel4b].
We suspect that this condition is also sufficient to obtain a sup-bound.

This example also shows how the Neumann boundary strongly influences the evolution of
surfaces flowing by MCF with NBC. The spherical cap in the above example would self-
similarly shrink to a point in finite time under ordinary MCF, i.e. without a Neumann
condition.

For the gradient-estimate we aim to apply the maximum principle for |u®7|. Instead of
trying to derive an equation for |u®7| we use a more geometric approach (like in [Sch08]).
Setting v := /1 + |D@57]? one computes, see for example [Sch08] for details, that

2
AM'U = ;‘VMU‘Q — U2<VMH,W>RTL+2 + ’U|A’27 (37)

where w = (0,...,0,1) € R""! x R, and where H and A are the mean curvature and the
second fundamental form, respectively, of M := graph(4©7) in R"*! x R with respect to the
upward unit normal v. Here we have identified the function v with the function v given by
o(z, z) = v(z) on 7 x R. Then M is orthogonal to S" := S x R. On the boundary &V Q™ x R
we compute

ov _
o Do) (v, w) ™)

= —1)2<D(%0)V, w)
_UQAM((’Y? 0)7 WTM>

=02 Ag (v, wT™)
= —v 1Ag(Da5T, DS
= —o LAg(Vo0ST, VIuET), (3.8)
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where we used the fact that Ag/(v,{) = —Axm((7,0),¢) for any vector ( € TM N TS,
which follows from differentiating the identity (v, (,0)) = 0 in the direction of ¢ (cf. [Sta96a,
Proposition 2.2]).

In case S is a convex hypersurface the right hand side of (3.8) is non-positive. The Hopf
boundary point lemma then implies that a boundary-gradient-estimate only needs to be
established on the Dirichlet boundary 0PQ7. This observation goes back to work of Mierse-
mann [Mie84].

In order to establish a gradient-estimate for arbitrary support surfaces we use a modified
test function: We define w := exp(—n z) and ¢ := exp(fe) for some 7, 3 > 0 to be determined,
and where g is a “regularized” distance function on Q1, i.e. ¢ = dg in a neighborhood of &V Q?,
0 <o <2dg, |Dg| <2, and D%g > —Cp d;4, for a constant Cp = Cp(Fynvg) > 0.

We denote by D, EZ, A the gradient, the Hessian, and the Laplacian in R"2, respectively.
We have

VMw = —nu(w —v™1w), Apw = nPw(l —v™?) + o~ Hu
VMg = v My, A = 76|V Mo” + oA meo.
Hence,
Apm(we) = dApmw + wApé + 2V Mw - VMo
= wo (11— v=?) + o H + BIVMol? + BAme — 208V Mo w) . (39)

Combining (3.7) and (3.9) yields
2 oM M, 20 oo
Apm(vwd) = wPApmv + vA M (we) + ;V (vwe) - Vo — T|V V|
= vwe (—UVMH cw \A|2)
+ vwe (772(1 — o ) o H + B2 VMo + BAMmo — 208V Mo - w)
2
+ ;VM (vwe) - VMu.
Whence,
A log(vwe) = —vVMH - w + A2
+ (1= 0™ T H 4 B2V + BAme — 208V w
+ 2VMiog(vwe) - VMlog(v) — [V M log(vwe)|?.
On &V we have in view of (3.8) and the Neumann condition

0l
dlog(vwd) _ —v 2 Ag(VIaST, VOaET) — B. (3.10)

sy
Note that

VMo =Do—Do-vv=(Dg,0)+v 'Do- Duv
and
Amo=Bo— (D*0)(v,v) — HDdg - v
= Ao — v 3(D?p)(Du, Du) + v 'HDyg - Du
> —nCp+v 'HDop- Du.
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Hence,
VMo-w=v"2Dp-Du

and
VMo yg = ((D& 0)+v 'Do- Duu) (7,00 =—=1 on V.
Furthermore,
1 M
vMp — gV
k v
1_VMuwe) 1 _VMw 1 VMg
=——H —-H —-H——
k VWP * k w + k 10)
1 1 1
= —%HVM log(vwe) — %Hn(w —v ) + EHBVMQ.
Set
Cy4:= sup (\/W exp(ﬁg)) :
orQr

Let us suppose, by contradiction, that

su <\/€2 + |Dus7|? exp(—guE’T + ﬂg)) > max{Cy, exp(48diam(2))}.

QT

We now choose 3 := max {O, —2inf{Ag5((,() : C € TS, |(| =1,z € MQ}} By the Hopf
boundary point lemma and in view of (3.10) the supremum of vw¢ is attained at an interior
point zg € 2. We compute at xg:

A log(vwe) = —oVMH - w + |A?
+ P (1= v7?) T H + B2Vl + BAMe — 208V 0w
1 1
=nvH + BuTH(1 - E)DQ - Du + |AJ?
1
+ (1 =07+ H (L = ) + B2V gf?
+ BAp — Bv2(D?0)(Du, Du) — 2nfv—2Dg - Du

1 1
1 _
= gg(av)k% — (nCp+4n+2 (5@)7%)5.

By our assumption we have that ev > 1. Choosing n = 2¢kf3 (2% + nCp) we obtain

A log(vwe) > S <2k;1 + nCB) (1 —8ekp),

which is a contradiction for all e < (8k3)~!. We conclude that

sup/e? + [Dus7|?2 < sup (1 + /€2 + ]Du5’7|2> exp(4f [diam(Q) + (k — 1 + nkCp)u®T]).

Qr aPQr
(3.12)
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Remark 3.7. In case &VQ! is convex we may choose 8 = 0. In case G = R 11 \ K for a
closed convex set K we may choose Cp = 0, and if on top k = 1 the bound (3.12) does not
depend on a sup-bound.

The idea for the choice of our test function vw¢ is the following: We use the function ¢
to push maxima of our test function away from the Neumann boundary by increasing the
test function exponentially with increasing distance to the Neumann boundary. This works
fine when flowing by mean curvature flow (k = 1) outside a convex set. In the general case
however, since free boundary minimal surfaces may exist inside €2, we need to make explicit
use of a sup-bound (corresponding to finite existence time and non-existence of free boundary
minimal surfaces) via the function w to obtain our estimate.

Summarizing we have the following lemma.

Lemma 3.8. For any solution u®™ € C3(Q7) N C3(Q" U dNQT) N CYQT) of (+x)-, with
e € (0,g0] and 7 € (0,1] we have

supy/e? + |[DusT|?
QT

< sup (1 e yDuwP) exp(4C. [diam () + (k — 1+ nkCy)us™)),  (3.13)

arQr
where Cy := max{(), —2inf{Ag5((,¢) : C € T,.S,[(| = 1,z € GNQ}}, Cp = Cp(Fynq), and
€ = (8k0A>71.

Lemma 3.8 above reduces the gradient-estimate to a boundary-gradient-estimate.

Before we come to the boundary gradient-estimate we stress the point that since Dd, -
v > 0 on the vertex V; we can find a non-negative constant A < oo, depending only on
supgrqr |AT| and supgnq- |As| (which by construction/assumption only depend on supgyrq | 4|
and supgnq |Ag|) such that for all 7 € [0, 1]

Dd,-y>—Ad, ondVQ (3.14)
We begin by estimating the gradient on the Dirichlet boundary 0Q)7:
Lemma 3.9. (Dirichlet boundary gradient-estimate) Any solution u®™ € C?(Q7) N
CHQ7) of (3*)er with e € (0,1], T € [0,70] satisfies the estimate

sup |Du®"| < Cy = Ca(n, k, dp, sup |Al, sup |Agl, C1), (3.15)
aPQr PO NQ

where Cy is the sup-bound from Lemma 3.4.

Proof. For a given 7 € (0, 7] we construct a barrier at the Dirichlet boundary 9. Since

u®T > 0 we only need to construct an upper barrier. We would like to use the standard

barrier x — ad,(z) for some suitable @ > 0. However, the Neumann condition that needs

to be satisfied for this function to be a supersolution might not be satisfied away from the

vertex. The idea is to “bend up” the graph of i locally near S to obtain the desired barrier.
We make the following ansatz:

Or(z) := ¢(dr(2)) - ¥s(ds(x)),
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where ¢(s) = as for some a > 0 to be determined later. Then

0,

oy

which should be non-negative for ®.. to be a supersolution. We make the following ansatz:
¢S(3) =1+ ¢(S)a

where ¢(s) := gbo(g—j) for some 62 < Oy that shall be chosen appropriately later. Here ¢
denotes a mollified version of the function s — max(0,1 — s) as above. Just note that

V' (dr)s(0) Ddr -y — Y5(0)y(dy) on IVQT,

2
[¢llcoqoo0y) <1, N9 llcomy < 5’ and |¢"]|com) < =
Then, using (3.14) we get that
D, 2 _
a@fy =aDd; v+ 5—204 d; > a(267 1 — AN)d,,

which is non-negative provided do < A~!. Observe that in Q7 \ Q5 we have Ad, = —H M
where Hjyr is the mean curvature of the hypersurface M := {d; = r}. Also notice that in
{ds < on}NQ7, 7 € [0,1], we have Adg = —Hgds, where Hg, is the mean curvature of the
hypersurface S, := {dg = r}. Suppressing the arguments in the notation we calculate

SD(1%, ) = Y30 Dy + 0 (05)2 D+ 60 Dis + U5 Vs Dils
+ (s (V) ¥ Dd- + Yipstisy” Dd: ) Dd. - Ddg
+ (v (¥5)*Dds + dibsw'$4Dds ) Dd; - Dds
+ sV ((D?d,)(-, Dds) + (D*ds)(Ddy, )

We note that in Q7 \ Qf = we have that (D%d,)(Dds, Dds) = —A™" (VM dg, V™" dg)|,=d.,
where A" = {h;g} is the second fundamental form of the hypersurface M. Also notice that
in {ds < dny}NQ7, 7 € [0,1], we have (D?ds)(Dd,, Dd,) = —Ag, (Vo d;, V5 d;)|,—dg, where
Ag, = {hi’"ﬂ} is the second fundamental form of the hypersurface S,. Reasoning similarly to
Lemma 3.4 we compute on Q7 \ QF

N D&,
WV —F/—V—
e + D, |2
Wibg s
e Hyy — e H,
2+ [De, P e DS
9 I 7 2 2.0 0,0,
+e(¢) ¢S+¢T/k§)+ Vs g Dd; - Dds
@1 IDEp) @ D)

[ PSS + O Rs (W) (1 (Dd; - Dds)?)
(52 + ‘DCI)T|2)2
200 (1 (. Dde)?
(€2 + | DO, |2)? ( i D )
Phs'y

— —————=2— (Yys(D*d;)(Dds, Dd '(D*dg)(Dd,, Dd.)),
(EQ+‘D¢T‘2)g(wwS< )(Dds, Dds) + s/ (D?ds)( )
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where we used that (D?d,)(Dd,,-) = 0 and (D?dg)(Ddsg,-) = 0. Inserting our ansatz this is
equal to

a(l + ¢(ds)) ag'(ds)
LT OS) gy - APNES) g g
VEZ+ DT, 2 M T T Do, s
2 /! 2 /
e“ad”(ds) i+ 2e%aq(ds) Dd. - Dds

(€2 + |D®,[2)? (e2 + |D®,[2)?

a?(1 4 ¢(ds))*¢" (ds)
(2 + |D®,[2)2

203 (1 + ¢(ds))¢' (ds)? 2

"t Do) (1= (Dd; - Dds)?) d;

o?(1+ ¢(ds))¢/ (ds)
(2 + |D®,|2)2

(@'(dg)dr A (VM dg, VM dg) g, + (1 + 6(ds)) As, (V7 dr, V7 dr) oy ) i

(1 (Dd - Dds)?) d-

This should be less than — (g2 + \D@TP)_i in Q7 \ QF for some d; < dp to be determined
later. The evolution equation of Hpsr along a geodesic is given by

0
—Hyr = Ay |* >0,
or r ’
which implies that for 0 < r <
do
Let cq = 2||Allco@ra), en = [|Asllco@rar), and cp = sup,¢joy [[A7[|cograr). Suppose

w.lo.g. that sup cp 1] [|A™"lcoarr) < 2¢p for all r < ép and || Ag, [[co(arar),) < 2cn for all
r < dn. Hence, a sufficient condition to ensure that ®. is a supersolution is that

oo 4n 4cg 4 g2
_ D d. P —
2t N T T S, 2 D, P
40? 4o 202 4 (2
5 54t 55— d- +2 d-
+€2+!D@T\2 52 + 24 Db, |252< cpdr + czv)
1 2 2\ k-1 T T
< ——(e"+|D®-|")* on Q7 \ QF,. (3.16)
a
Note that 5 1
DO * > (1 - > =
DO 2 a%(1-85) = Ja?,
provided g—; < -&. Then a sufficient condition again for (3.16) is that
(50 4dn 400 8 1
- = dr + —dr
+ 5 <~ CNOr + (52 +5 o2
3260 32cp o5 32cn
d d? d
gy et T+ T
1 -
< -~ (24 |DB|H) T on 07\ Q. (3.17)
a
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We estimate the right hand side of (3.17) on Q7 \ QF :

1 1 e _
(2 4+ |D®, 2T < —2% |De, T, if |D®,| > 1
(6] [0

11
< =500 DP |, if [DO, | > 2" 16k55*
al

< %50«1 +9(ds)) + |6/ (ds) ;)

< §50(1+5152—1)
1

< —

>~ 4507

where in the last line we again used the provisor that ¢; < d2/16. A sufficient condition for
(3.17) is then that

cp +cCN 8 1 1
36n ———|d; + ——= < =4g.
<52 5 ) T a2 =1
Since 0p,dn < 1 it is sufficient that

144n

1
6%{<CO+CD+CN)61+Q2} S(SO (318)

We proceed as follows: first we choose dy < min{éy, A~1}, and then we choose

51 < 52min{ 50 6

1
2881 (Co +cp + CN) } .

Hence,

(87
Do, | > —.
o] >

So choosing

o > max{12v/26; 2, 2%50_]"’}

we see that condition (3.18) is satisfied (for all ,7 € [0,1]). If on top
o = max{12v/26;2,2°% 55%, C167},

then @, > u>" on 9(7\ Qf ), and the gradient-estimate follows from the maximum principle.
O

Approximate existence
We now use the a priori estimates that we derived above to prove existence of solutions to
the approximating problems (xx). . via the method of continuity. These solutions will be

constructed in weighted Holder spaces HQ( _a)(QT) for « € (0, 1) depending on e, 7 > 0. For
a precise definition of these spaces we refer to the appendix. We only remark here that we
have the following inclusions:

C2(@) ¢ HS Q) € @) n cEen).

loc
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To show the existence of solutions to (x*).r we study solutions of the following family of
equations

div (DU> = —s(e2 + |Dus™5 )" in Q7

/82+‘Du577”3‘2

(5% )e,r,s us TS = () on 9PQ7T
%:;’:5 =0 on VO

for s € [0,1], € € (0,e0], and 7 € (0,7p]. In the following we show that for any fixed pair
e € (0,e0] and 7 € (0,70] we have uniform a priori sup- and gradient-estimates in s. Since
s < 1it is easy to check that (3.3) and (3.15) also hold for solutions v € C?(27) N C1(Q7) of
(%, %)e 75t
sup [u™*| < Cy and  sup |[DuT%| < Oy, (3.19)
Qr aPQ™
for all s € [0,1]. Here C} is the constant from Lemma 3.4 and Cs is the constant form Lemma
3.9. For the global gradient-estimate we fix a pair € € (0,ep] and 7 € (0, 79|, and consider the
hypersurface

U£7T7S

M = graph( )

for a solution u*™* € C3(Q7) N C2(Q” UNOT) N CHAT) of (x%)c.r.s. Equation (#)c., s then
implies that the mean curvature H of M is given by

S

H=

I

1
EkV

As in the proof of Lemma 3.8, but now keeping the good term n?(1—v72) in (3.11), we obtain
that at an interior maximum of vwe@, we have the inequality

1 1
0> n vl + (1 —v" %) —26H ‘1 = k‘ — CanCp — 4nCy
-1

>l —v?) - QSCA(EU)_% b —nCaCp — 4nCy

> 772(1 — U_Q) — (nCp +4n+ 26_1)C’A,
which yields a contradiction for n > 10C4 +nCp + 2¢~1 and v > /2. On the other hand, the

same calculation as in (3.10) implies that the maximum of vw¢ cannot be attained on Nar.
We infer that

sup \/e2 + | Dus 7|2 (3.20)

QT

< sup <1 +4/e2 + \Du577’3|2) exp (40Adiam(ﬂ) +e71(10C4 +nCp + 26_1)u‘”’5)

orQr
for all s € [0, 1].

Lemma 3.10. (approximate existence) Under the assumptions of Lemma 3.4 there exists
an o =afe,7) € (0,1) and a unique solution u®™ € HQ(__HIX_O‘)(QT) of (x%)e.r-
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Proof. We wish to apply the method of continuity. We fixed ¢ € (0, 0] and 7 € (0, 79], and
define the following Banach spaces:

X = {u € Hé;i_a)(QT) s u|gpgr = 0 and g:bf\’m = O}

and

Y = H{(=9(Q").

Here o € (0,1), to be chosen below, will depend on the contact angle between 0PQ7 and
VO, For s € [0,1] we define the operator QF, given by

Du 1
S(u) i=div | ——— | + s(e2 + |Dul?)" 2%
Q@) ( €2+‘Du,2> (=2 + [Dup)
- ————— | Dfu+ s(e® + |Du 2k
Ve? 4 [Dul? ( €2+!Du\2> K ( [Dul’)

=4I ¢"(Du)D};u+ B(Du,s),

and the map F': X xR — Y defined by F(u,s) := @Q*(u). The well-definition of F' follows
from Lemma 3.22 by the following argument: v € X implies Du € Hl(:rg)(QT) and Lemma
3.22 yields ¢(|Du|) € H{_T_Z) (Q7) for any ¢ € C*°(R), which implies that Q*(u) € qi= Q7).
It is then clear that FF € C1(X x R,Y). Let

I:={se]0,1]: Ju e X s.t. F(u,s) =0}.
Then clearly 0 € I. We show that I is relatively open an closed:

To see that I is relatively open we linearize F' about a solution: Let s € I and u € X
such that F(u,s) = 0. The linearization of Q° about u in the direction ¢ € X is given by

DiuDIuy

= = " |\ p2
Dl ) v
p'p’
1+ [p[?

DQ(u)p = (L+ |Duf) 4 (6” -

0
+ —

31?1 )1 |p:DuDi2jUD190

(1+[p?) 2 (6“ -

1 0 2\ — L
+ 553 o (14 )75 | pmpuDig
=def a”(Du)D%gp + b'(Du, D*u, 5) D;¢.

We want to apply the inverse function theorem to the operator @Q°. We need to check that
DQ*(u) is a homeomorphism.

The maximum principle together with the Hopf boundary point Lemma, imply that the
linearization is injective. The linear existence theory and Schauder estimates for mixed bound-
ary value problems [Lie86] and [Lie89], together with the C%-estimate [GTO1, Theorem 3.7]
imply that DQ®(u) is a surjective in case a € (0, 1) is sufficiently small depending on 7. Here
we used the fact that v - v, < —7/2(< 0) on the vertex V7. Since F' is linear in the second
argument the implicit function theorem implies that the set I is open.
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To see that I is closed we note that the a priori estimates (3.19) and (3.20) imply uni-
form C1(Q7)-bounds (independent of s and 7) and thus the operators Q° are uniformly
elliptic. Here, we also used that solutions of (xx).rs are of class C?3 up to the Neumann
boundary &V by standard local Schauder estimates. Moreover, we have for the coefficients
av € H{;z) (Q7) and b* € H{ (Q7). The local (interior) De Giorgi-Nash-Moser estimates
(see [GTO01, Theorem 13.6]) then yield

[Du®]gor < C(n,Cy, Cs, diam(Q), )67,

where 5 = f(n,C1,Cs,e). Hence, Du® € HS?)(QT) and therefore a" € Hg,))(QT), where
o/ = min{a, } € (0,1). Applying Lieberman’s Schauder estimates [Lie89, Theorem 4] we
obtain uniform (in s) bounds in Héjri,_a/)(QT). By the Arzela-Ascoli theorem for weighted
Holder spaces [Lie85], and using once more [Lie89, Theorem 4], we infer that I is closed. [

Existence

Let © C G be a bounded domain that satisfies the condition of Lemma 3.4, such that its
relative boundary 02N G is a smooth free boundary surface with respect to S = 9G of
strictly positive mean curvature H > dg > 0. Lemma 3.10 ensures the existence of solutions
u®" of (%%) ; for all sufficiently small €, 7 > 0. The a priori estimates (3.3), (3.13), and (3.15)
guarantee uniform bounds in C!(Q), independent of € and 7. Thus, given any sequence
(€i,7) — (0,0), we can pass to a subsequence such that

ufT sy

in CY(Q) to a function u € C%!(Q). This suggests the following definition (cf. [Sch08, Defini-
tion 3.11]):

Definition 3.11. (weak H*-flow with Neumann boundary condition) Let (g;,7;) —
(0,0) and corresponding solutions u®"™ to (%*)s, r, be given. Assume that u*>™ — wu in
CO(QQ), where u,us"Ti are uniformly bounded in C%1(QY). We then call u a weak H*-flow with
Neumann boundary condition generated by the pair (2, G).

Hence, we proved the following theorem.

Theorem 3.12. (existence) Let G C R"™! be a smooth domain and let Q C G be such
that its relative boundary 02 N G is a smooth strictly mean convex free boundary surface with
respect to S = 0G. Assume that S satisfies the condition of Lemma 3.5. Then there exists a
weak H*-flow with Neumann boundary condition generated by the pair (2, G).

3.3 Further properties of weak solutions

In this section we investigate further properties of the (super) level sets of u. We follow the
exposition of [Sch08] and making necessary changes to deal with the Neumann boundary
condition. In contrast to the work of Schulze [Sch08] we have to pay slight attention to
whether we speak about the level sets of u as a function on 2 or on . We use the following
notation

W™ >t} i={r e Q" :u""(x) >t} and {u®" =t} :={xc Q" :u""(z) =t}
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Throughout this section let @ C G C R™*! be a fixed open and bounded set with smooth
Dirichlet boundary 0P such that H = Hypg, > 0. Let u € C%1(Q), u > 0, be a weak H*-flow
with Neumann boundary condition generated by the pair (€2, G), i.e. there exist sequences
g; \¢ 0, 7; \, 0 and solutions v € C1(Q7) N C>(Q7 \ V) of (s*)e, -, that are uniformly
bounded in C%!(Q;R>g) converging to u in C°(Q2). Then the hypersurfaces N} C G x R,

defined by
. o €i,Ti t o
N} = N7 = {(%zi(av)_) LT € Q},
i Eq
which are level sets {U7 = t} of the function U7 (z,2) = w7 (x) — g;z on Q7 x R, are

translating solutions of the H*-flow with (partial) Neumann condition (x). Equation (%%) ;.7
implies that the mean curvature H{ of N is given by

1
(62 + [Dusism )

i __

t =

To fix some further notation define the following subsets of Q7 x R:
El:={U%T >t} N (Q7 xR), Ej:={U>t}n(Q7% xR),

where U(z,z) := u(z) on Q7 x R. The set E; can be written as E, = E; x R, where
E;:={u>1t}NQ C Q. A first observation is that the sets E} are minimzing hulls in Q™ x R
relative to G’ := G x R.

Lemma 3.13. The sets E! are perimeter minimizing from outside relative to G' in V' =
Q x R, that is ‘

|0 Ef N K| < |06 F N K|
for measurable F with Ei ¢ F, F\ E! ¢ K C (Q% UdVQ™) x R, where K is compact.
Proof. The outward unit normal to the surface N}, which is given by v := —DU®"7 /| DU®7i|
is a smooth vector field on (QU&VQ) x R with div(v)(z) = Hyjeimi(gy = | DU _%(a:) > 0.

Suppose w.l.o.g that K is of class C%!. We may also suppose w.l.o.g. that |9, E, NOK| = 0.
Employing the trace theorem and using v as a calibration we derive:

|ag§,E;‘mK|—/ | DU |~ & dLnT2
EinK

:/ (Vgi,v)dugi —/ div(v) dLm+?
GnK ! ¢ EinG'NK

= / XEZ <VGIQK, V> d,HnJrl
I(G'NK)

— [ et [ g ) aet!
OG'NK OKNG’

H H
= / X; (vic,v) dH" !
OKNG’

= / (vp,v)dup — / div(v)dLn? — / i (ver, v) dH" !
G'NK FNG'NK 0G'NK

< |05 FNK| —/ | DU "% dL 2,
FNG'NK
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where we used that (v, ) = 0. This follows from the fact that v = (vg,0). Since E} C F
this yields

0 Ei 1 K| +/ DU |4 dL™? < |05, F 1 K.
(F\E}))NG'NK
O
Corollary 3.14. (mass bound) Let Q" := Q x [a,b]. Then
H (NI N Q) < (b— a)H™(9gR) + 2H"TH(Q) (3.21)

for allt € R.

Proof. Let ; CC QU N Q be a sequence of relatively open sets, such that 0gQ; — 0gf) =
0P in C. Then Fj := Q; x (a,b) U E} are valid comparison sets and the above lemma gives

HY (NI N Q) = |05 Bl N Q|
<H" oL F; N Q)
<H"™ (095 x (a,b)) NG N Q")
+HTH(Q) x {a,b}) NG N Q")
+H" (OB} (9 % [a,b])) NG N Q)
= (b— a)H"(969)) + 21" ()
+H YO EI NG N Q" \ (Q x [a,b]))
— (b— a)H"(0cQ) + 2H"T(Q),

as j — o0o. Here we used the continuity from above for Radon measures and the fact that
0" Fj = (09 x (a,b)) \ By U (2 x {a,0}) \ B; UO"E; \ ( x [a, ).
O

Like in [Sch08] we can use this a priori mass bound and the lower bound on the mean
curvature of 9P together with evolution equations to deduce space-time bounds, independent
of E;.

Lemma 3.15. Let I :=[a,b] C R be a bounded interval. Then
/ / HF L aH™ 1 dt < (b — a)H™ (0aR) + 2H"T1(Q). (3.22)
—oo J NiIN(QxI)

Proof. Observe that by the coarea formula

/ |DUS™i |~ % dL"“:/ / | DU | =% L gy dt
QxI —oo J{UEHTi=t}N(QxT)
:/ / (€2 + [Dus™[2) 50 an ™ dt
—c0 J{USiTi=tn(Qx )

_ / - / HF gyt gy,
—o JNin(@xD)
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On the other hand, using the comparison sets 2; from Corollary 3.14 and proceeding as in
Lemma 3.13, we get for all £ € R that

/ ’DU&‘I-’T,L-|—% d£n+2 < (b _ CL)H”(@GQ) + 2Hn+1(Q)
(OXD\E}

Choosing t sufficiently large such that ( x I) N E} = ) proves the claim. O

Lemma 3.16. The weak H*-flow with Neumann boundary condition u is non-fattening, i.e.
L {u=1t}) =0 for all t € [0,T], where T = sup, u.

Proof. Let Q" := Q x (0,1). Then for any ¢1,t2 € R, t; < t we have by the coarea formula
together with (3.21), (3.22), and Holder’s inequality that

. . t2
|[’n+2(EZ1 N Q//) - [’11—&-2(‘E1%2 N Q//)| — / / » sz den—i-l dt
t1 LN

EfL O\ FET
1 to k
< |tg — ty |71 / / HF daH™+? dt
t1 NingQ

1 t2 kLJrl ) &
< ’tQ — tﬂm / / Hik—i-l dHn+1 dt Hn—‘rl(Ntz N Q”) or1)2
i nQ

1 1
< (H(060) +2£7TH@)) F 1 — f| 7T

Observe that since U7 — U in C2 ((QUAVQ) x R) we have that

ocC
El - E, (3.23)

in L}, (QUNQ) x R), provided that £*+2({U = t}) = 0. Thus (3.23) holds for all ¢ up to

a countable set Sy = {t € [0,T] : L*"2({U =t}) > 0}. Taking the limit we have
L2 (B, N Q") — L7 (), N Q)] < Clty — 1|7,
N
for all ¢1,t2 € R\ Sp, where C = (H"(0c9) + 2£”+1(Q))1 &+12 - Now let tp € Sy and pick
sequences ¢ o, t; \, to, where t, tj+ € R\ Sp. Since

E%%{UE%L ﬂjﬁﬂhﬁd

this implies that L*"2({U = to}) = 0, and thus Sy = 0. O

We have seen before that the sets E} are minimizing area from outside in € x R relative to
G x R. As in the boundaryless case [Sch08] this property passes to limit.

Lemma 3.17. Let U C G C R*™! be open and E), C U a sequence of Caccioppoli sets in U,
which converge in L}, (UUS) to E C U such that |0LE,NK| < C(K) forall K CUUS, K
compact, independent of h. If all the Ej are minimizing area from outside in U relative to G
then so does E.

Proof. Exactly as in [Sch08, Lemma 5.6]. O
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Corollary 3.18. The sets E| are minimizing area from the outside in Q xR relative to G x R
forallt € (0,T). Moreover, the sets E; are minimizing area from the outside in ) relative to
G for allt € (0,T).

Proof. The first statement follows from Lemma 3.17. For the second statement let F' be a valid
comparison set for By in Q, i.e. By C F, F\E; C K € QUNQ. Define F' := (Fx (—1,1))UE,
which is a valid comparison set for F;. Thus for K’ := K x [— + 1,1 4 1] we have

0t ELN K| < |05 F' N K|,

and hence
2(0LE: N K| < 2105F N K| +2L"T(F\ E).

The second claim now follows by letting [ — oc. O
Corollary 3.19. The function t — |05LEy], t € [0,T), is monotonically decreasing.
Proof. Use E, s > t, as a comparison set in Corollary 3.18. ]
Lemma 3.20. There exists a set B C [0,T] of full measure such that

H"({u =1t} \ 9gEL) =0
forallt € B.

Proof. First note that since H"(0VQ) < 0o and

o0

{t>0:H"({u:t}\Q)>O}CU{t>0:?—[”({u:t}\§2)>}},

=1

we see that the set of times ¢ € [0, 7] such that H"({u = t} \ @) > 0, is countable. Since
u € C%(Q) c BV(Q) we can compare the coarea formula for BV-functions and Lipschitz-
functions to get

T T T
/0 H"(@EEt)dt:/Q\Dqu:/o ’H”({u:t}ﬂQ)dt:/o H ({u = 1)) dt.

Since the integrals are finite, this yields

T
| =\ ar

which implies the statement. O
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3.4 Appendix

For basic facts about weighted Holder spaces we refer to [Liel3]. Here we only give their
definition and prove one technical lemma that is needed in the proof of Lemma 3.10.

Definition 3.21. (weighted Holder spaces) Let U C R™"! be a bounded domain and let
k,l € No, a,y € (0,1] be such that | +~v < k + a.

—l- k—l+o—
ulied) = s {8 Tl e o

where Us := {x € U : dist(z,0U) > 0}. We define the following weighted Holder spaces:

- o i
H ) = {ue CE2U) - fulihd) < o}

loc

It is not hard to see that C**(U) C H,g;l;w(U) c CL1(U) N CE ().

loc

Lemma 3.22. Suppose 0 < o« < < 1, and let ¢ € C'll(;f(R) and u € Hl(lg)(U) Then
voue H{D(U).

Proof. Firstly, note that since u € C°(U) its image u(U) =: K is a compact set. Let § €
(0,diam(U)), and set d := diam(U). We have:

5Pl o ulous < |[Wllcoyd T7 and
51D o w)lows < oo lul (32
Now let x,y € Us, then
1D(tp o u)(z) = D(¥ o u)(y)] < (1Y [loo () |Dulz) — Du(y)| + [] 5, i [u(z) — u(y)]# | Dulow;-

Hence,
[D(¥ 0 w)]asus < 19/l cogre) [Dulasws + ] we[ul 50, Dutlou, -

Noticing that C%#(U) = Héfﬁ)(U) C H{;ﬁ)(U), we conclude that

|4 o u!&l@U < llcoyd T~ + (2 + [“]BE;U)Hw”cl'%(m‘u'g;@ﬂ <o
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German abstract

In der vorliegenden Arbeit betrachten wir drei freie Randwertprobleme fiir (Hyper-)Fliachen
welche durch die mittlere Kriitmmung der (Hyper-)Fléche beschrieben werden:

1. Fine Monotonieformel fir Flichen mit freiem Rand beziiglich der Finheitskugel

Wir beweisen eine Monotonieidentitéat fiir kompakte Flachen mit freien Réndern in dem
Rand der Einheitskugel des R™ welche quadratisch integrierbare mittlere Kriimmung be-
sitzen. Als eine Konsequenz erhalten wir eine Ungleichung vom Li-Yau Typ fiir diesen
Fall, wodurch wir Resultate von Oliveira und Soret [RV95, Proposition 3], und Fraser
und Schoen [FS11, Theorem 5.4] verallgemeinern. Im Anschluss leiten wir einige scharfe
geometrische Ungleichungen fiir kompakte Flachen mit freien Réndern in beliebigen ori-
entierbaren Stiitzflichen der Klasse C? her. AuBerdem erhalten wir eine scharfe untere
Schranke an die L'-Tangentialpunktenergie fiir geschlossene Kurven im R?, wodurch
wir eine Frage von Strzelecki, Szumanska, und von der Mosel [SSvdM13] beantworten.

2. Relative isoperimetrische Figenschaften asymptotisch flacher Stitzflichen

Wir definieren einen Massebegriff von asymptotisch flachen Hyperflichen S des euk-
lidischen Raums und beweisen ein positive-Masse-Theorem in allen Dimensionen. Im
Anschluss leiten wir eine freie-Randwert-Version einer Obstruktion her, welche von
Schoen und Yau in ihrem Beweis des positive-Masse-Theorems [SY79b] entdeckt, und
durch Eichmair und Metzger [EM12], und sehr kiirzlich von Carlotto [Carl4] verfeinert
wurde: positive mittlere Kriimmung von S C R? ist nicht kompatibel mit der Ex-
istenz (gewisser) stabiler Minimalflichen mit freiem Rand. Wir benutzen dies dann
um zu zeigen, dass fiir gegebenes Kompaktum K des R3, alle stabilen Flichen mit
konstanter mittlerer Krimmung und freiem Rand beziiglich S mit hinreichend grofier
Randkurvenlinge K entgehen, wodurch wir eine freie-Randwert-Version des Hauptre-
sultats in [EM12] erhalten. Schliefllich, inspiriert durch Ideen von Eichmair und Met-
zger [EM13b], beweisen wir die Existenz von beliebig grolen isoperimetrischen Mengen
relativ zu S.

3. Schwache Lésungen vom nichtlinearen Mittleren Krimmungsfluss mit Neumann Randw-
erten

Wir schlagen einen neuen Flussansatz vor um relative isoperimetrische Ungleichun-
gen zu erhalten. Als ersten Schritt dieses Programms entwickeln wir ein schwache
Niveauflachenformulierung fiir den Fluss entlang der mittleren Kriimmung und entlang
positiver Potenzen der mittleren Kriimmung mit Neumann Randwerten. Wir beweisen
die Existenz von schwachen Losungen unter natiirlichen Bedingungen an die Stiitzflache
und leiten einige Eigenschaften der evolvierenden Flachen her. Der Fall fiir Fldchen ohne
Rand wurde von Schulze [Sch08] behandelt.
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