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CHAPTER 1 

CONSTRUCTION OF CONTINUOUS SOLUTIONS OF SECOND ORDER 

PARTIAL DIFFERENTIAL EQUATIONS IN THE PLANE WITH FUCHS 

OPERATOR IN THE MAIN PART 

 In the present chapter varieties of continuous solutions of Fuchs type 

equations are constructed. Particular kinds of this equation arise in the theory of 

infinitesimal bendings of surfaces of positive curvature with flattening point and 

are considered in the works  [28,29,30].  

 If solutions of the investigated equation are looked for in the form of a 

double series ∑∑
∞

=

∞

=0 0k l

lk

kl zza , so with the relation ϕirez =  we have ∑
∞

=0

)(
k

k

k rV ϕ . 

Therefore solutions are searched by A. Tungatarov’s methods. The received 

variety of solutions are used in second chapter to solve boundary value problems. 

 

    

1.1. Model second order partial differential equations in the plane with 

Fuchs operator in the main part and specified right hand side. 

 

 Let πϕ 20 1 ≤<  and { }
10,0: ϕϕϕ <<∞<≤== rrezG i

.  Consider the 

equation  

GzrfVbVzVzzVz zzzzzz ∈=+++ ,)()(444 22 λϕϕγβα ,             (1.1) 

in G  when ],0[)(),( 1ϕϕϕ Cfb ∈  and 0,,, >λγβα  are real parameters. 

 Particular kinds of equation (1.1) can be applied in the theory of 

infinitesimal bendings of surfaces and are studied in [5,20].  
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Following, we using these operators in polar coordinates:  
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 In work [21] the Dirichlet problem for equation (1.1) in the unit disk is 

investigated, where the parameters 0>α , 0>β , 0=γ  and 0)()( ≡≡ ϕϕ fb  are 

concerned. 

The solutions of equation (1.1) are searched for in the S.L. Sobolev class [21] 

                                                            )(
2

GWp                            (1.3) 

where 2,12,
2

2
1 ≥><

−
<< λλ

λ
ifpandifp .  

From the Sobolev imbedding theorem follows  )()(
2

GCGW p ⊂ . 

1. Let γαβ +≠ . Using formulas (1.2), equation (1.1) in polar coordinates is 

written in the form 
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For solving equation (1.4) the method of separation of variables is applied. Let 

)(),( ϕψλϕ rrV = ,                  (1.5) 

where )(ϕψ   is a new unknown function from [ ]1

2 ,0 ϕC , satisfying the equation 
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ψϕϕψγβαλλλγβα

ψλγαψγβα

)()())())(((

)1)((2)(
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+′−−−′′+−−
  

Substituting 

     )()exp()( ϕϕϕψ Pa= ,                (1.6)  

where 
q

i
a

)1)(( −−
=

λγα
,   γβα +−=q  and )(ϕP   is the new unknown function 

from  [ ]1

2 ,0 ϕC , the last equation becomes  

( ) ( )ϕϕϕϕνϕ 11 )()()( fPbPP +=−′′ ,                     (1.7) 
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Solving equation (1.7)  by applying the method of variation of constant, we have 
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For the construction of solutions of equation (1.8) the following functions and 

operators are used: 

γγγϕϕ
ϕ

νν dIbI kk ∫ −=
0

1,, )(),()( , γγγϕϕ
ϕ

νν dJbJ kk ∫ −=
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1,, )(),()( ,  k≤1 , 
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2 ),()( ,   

))(())(( 1 ϕϕ fBBfB kk −= , k≤2 , ))(())(( 1 ϕϕ BffB =  

For these functions it is easy to check that 

)())))(((( 1,, ϕϕϕ νν += kk IccIB , )())))(((( 1,, ϕϕϕ νν += kk JccJB ,                  (1.9) 
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where  с  is any complex number, 
],0[0 1ϕC

ff = . 

Using the specified notations, equation (1.8) is written in the form 

                      )()()())(()( 0,20,12 ϕϕϕϕϕ νν JcIcfBPP +++=                   (1.11) 

If we apply the operator B  to both sides of equation (1.11), we have in view of 

(1.9)  

)()())(())(())(( 1,21,12

2 ϕϕϕϕϕ νν JcIcBfPBBP +++=       (1.12)  

From (1.11), (1.12) it follows 

)()(

)()()())(())(()(

0,20,1

1,21,122

2

ϕϕ

ϕϕϕϕϕϕ

νν

νν

JcIc

JcIcfBfPBP

++

+++++=
         (1.13)  

If we again apply the operator B  to both sides of equality (1.13), we have in view 

of (1.9)   
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From (1.11) and (1.14) it follows 
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Continuing this process 2n-1 and 2n-2 times, respectively we receive at the 

following representations for solutions of equation (1.7)  
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If we pass to the limit as ∞→n  in the representations (1.15), by virtue of (1.10) 

we receive 
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Using the inequalities (1.10), we receive the estimates 
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By means of these estimates it is easy to show, that the function )(ϕP , given 

by formula (1.16), is a solution of equation (1.7) from the class  [ ]1

2 ,0 ϕC . 

From  (1.16), (1.6) and (1.5) we find  

))()()()())(((),( 1,21,12,22,1 ϕϕϕϕϕϕ νννν
ϕλ QcPcQcPcBFerrV a ++++=    (1.17)  

 

Thus, the following result holds 

Theorem 1.1. When γαβ +≠ , 0>λ  the equation (1.1) is solvable in the 

class (1.3). The general solution of equation (1.1) from the class (1.3) is given by 

formula (1.17). 

 

 2. Let γαβ += . Using formulas (1.2), equation (1.1) in polar coordinates is 

written in the form  
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∂
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If finding the solution of equation (1.18) with substituting (1.5), then   

ψϕϕψλλγβαψλγα )()())(()1)((2 2 bfi −=−+++′−−−               (1.19) 

Consider varies cases of (1.19) with respect to λγα ,, : 

1. If  γα =  or 1=λ ,  then equation (1.19)  has the view  

ψϕϕψ )()( bfA −=                                          (1.20) 

where ))(( 2 λλγβα −++=A . 

Solving the equation (1.20) when  Ab ≠)(ϕ , obtain: 

22 )(

)()()(
)(
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−
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In case, when Ab =)(ϕ , for the solvability of equation (1.20) it is sufficient 

and necessary that the conditions  

0)))(()(Im(,0)))(()(Re( =+=+− AbfAbf ϕϕϕϕ ,      (1.22) 
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are fulfilled. When the condition are fulfilled the solution are given by the 

formulas 
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where )(ϕθ  is any real function, )(1 ϕψ is any complex function.  

2. If  γα ≠  and 1≠λ , then equation (1.19) is written as 

)()( 11 ϕψϕνψψ fbi +=+′ ,                   (1.24)            
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f
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Solving equation (1.24) by applying the method of variation of constant, we have 

)(),()(),()( 0
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ϕγγϕγγψγϕϕψ
ϕϕ

cIdfdb ++= ∫∫ ,             (1.25) 

where c is an arbitrary constant, 

,))(exp()(),( 1 ϕγνγγϕ −= ibb    ,))(exp()(),( 1 ϕγνγγϕ −= iff  

 )exp()(0 νϕϕ iI −= .   

For the construction of a solution of equation (1.25) the following functions 

and operators are used: 
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For these functions it is easy to check that 
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)!1(
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1
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k ϕϕ ≤  k≤0 . 

Here 
],0[0 1ϕC

ff = . 

Using the specified notations, equation (1.25) is written in the form 

                          )()())(()( 02 ϕϕϕψϕψ cIfB ++=             (1.27) 

If we apply the operator B  to both sides of equation (1.27), we have in view of 

(1.9)  
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From (1.27), (1.28) it follows 
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If we again apply the operator B  to both sides of equality (1.29), we have in view 

of (1.9)  
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From (1.27) and (1.30) it follows 
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Continuing this process 2n-1 and 2n-2 times, respectively we receive the  
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for solutions of equation (1.24). If we pass to the limit as ∞→n  in the 

representation (1.31), by virtue of (1.26) we receive 

)()())(()( 12 ϕϕϕϕψ PсcPBF ++= ,            (1.32) 

where  
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c  is any complex number.   

Using the inequalities (1.26), we receive the estimates 
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By means of these estimates it is easy to show, that the function )(ϕψ , given by 

formula (1.32), is a solution of equation (1.24) from the class [ ]1

1 ,0 ϕC . 

From (1.32) and  (1.5) we receive  

))()())(((),( 12 ϕϕϕϕ λ PccPBFrrV ++=      (1.33) 

 

Thus, the following results hold. 

Theorem 1.2. When one of the condition are satisfied:    1) γαβ += , γα =  

and Ab ≠)(ϕ  or γαβ += , 1=λ   and  Ab ≠)(ϕ          and          2) γα ≠ , 1≠λ   

the equation (1.1) is solvable in the class (1.3).  When 1) holds then equation (1.1) 

has a unique solution in the class (1.3). This solution is given by the formulas 

(1.5), (1.21).   When 2) holds the equation (1.1) has a general solution. This 

solution is given by the formulas (1.5), (1.32).  When γα =  or 1=λ  and 

Ab =)(ϕ  in some point 10 ϕϕ ≤≤   for the solvability of equation (1.1) in the class 

(1.3) condition (1.22) is necessary and sufficient. In this case the solution of 

equation (1.1) from the class (1.3) is given by the formulas (1.5), (1.23). 

 

 

1.2. Nonhomogeneous model second order partial differential equations 

in the plane with Fuchs operator in the main part  

 Let πϕ 20 1 ≤<   and  { }
10,0: ϕϕϕ <<∞<≤== rrezG i

.  Consider in G  

the  equation 
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GzrgVbVzVzzVz zzzzzz ∈=+++ ),,()(444 22 ϕϕγβα ,          (1.34) 

where ],0[)( 1ϕϕ Cb ∈ ; γβα ,,   are real parameters.  

 Assume, what the function ),( ϕrg  is satisfying conditions (А): in the 

domain G   the function ),( ϕrg  is given in the form ∑
∞
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0 !
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ϕ ,  where 
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νϕ
ϕ  converges in G . 

Particular kinds of equation (1.34) are studied in [8,9]. 

The solution of equation (1.34) are searched for in the S.L. Sobolev class [21] 
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1. Let γαβ +≠ . Using formulas (1.2), equation (1.34) in polar coordinates 

is written in the form  
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Solutions of equation (1.36) from the class (1.35) are searched in the form  
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where )(ϕkV , k≤0  are new unknown functions from ],0[ 1

2 ϕС  such that the given 

series and the series differentiated with respect to r  and ϕ  as far as appearing in 

equation (1.37) converge in G . 

Substituting (1.37) in (1.36) and comparing coefficients of  krν  for 0=k  and 

0>k  we have 
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Substituting 
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Applying the method of variation of constant, we have for systems (1.40) the 

equivalent system of integral equations  
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For the construction of solutions of equation (1.41) the following functions and 

operators are used:   
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For this functions and operator it is easy to check that: 
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s≤0 , k≤1 . 

Here 
],0[0 1ϕC
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Using the specified notations and consider )()( 00 ϕϕ PV = , the system of equations 

(1.41) is written in the form 
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If we apply the operator kB  to both sides of equation (1.44) we have in view of 
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Continuing this process 2n-1 and 2n-2 times, respectively we receive the following 

representations for solutions of equation (1.41) 



 28 

∑∑∑

∑∑

=
−

=
−

−

=

−

=

−

=

+++

+++=

n

s

skk

n

s

skk

n

s

skk

n

s

skk

n

s

k

s

kk

n

kk

JcIcJc

IcfBPBP

1

12,2,

1

12,1,

1

0

2,2,

1

0

2,1,

12

0

2,

2

)()()(

)())(())(()(

ϕϕϕ

ϕϕϕϕ
 

and                         (1.48) 

∑∑∑

∑∑

=
−

=
−

=

==

+

+++

+++=

n

s

skk

n

s

skk

n

s

skk

n

s

skk

n

s

k

s

kk

n

kk

JcIcJc

IcfBPBP

1

12,2,

1

12,1,

0

2,2,

0

2,1,

2

0

2,

12

).()()(

)())(())(()(

ϕϕϕ

ϕϕϕϕ
 

If we pass to the limit as ∞→n  in the representations (1.48), by virtue of (1.43) 
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Using the inequalities (1.43), we receive the following estimates: 
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By means of these estimates it is easy to show, that the function )(ϕkΡ , given by 

formula (1.49), is a solution of equation (1.40) from the class [ ]
1

2 ,0 ϕC . 
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From (1.37), (1.39) and (1.49) we receive  
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It is easy to check, that the function, given by formula (1.50), is a solution of 

equation (1.34) from the class (1.35). 

Thus, the following result holds. 

 

Theorem 1.3. When γαβ +≠  the equation (1.34) is solvable in the class 
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The solution of equation (1.51), from the class (1.35) are searched for in the form 

(1.37).   

Substituting (1.37) in (1.51) and comparing coefficients of the same power of νr  

lead for k≤0   to the equation 
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This equation is considered in various cases for the parameters νγβα and,, . 

 

a) If  γα =  or 1=kν ,  then equation (1.52)  has the form  
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where )(ϕθ k  is any real, )(ϕkс  is any complex function. 

 

c) When γα ≠ and 1≠kν  equation (1.52) has the form 
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Solving equation (1.59) by applying the method of variation of constant, we obtain 

the integral equation 

)(),()(),()( 0,

00

ϕγγϕγγγϕϕ
ϕϕ

kkkkkk IcdfdVbV ++= ∫∫ ,       (1.60) 

where 

))(exp()(),( γϕτγγϕ −= kkk bb  , ))(exp()(),( k,0 γϕτγγϕ −= kk gf ,  

)exp()(0, ϕτϕ kkI =   

For the construction of solutions of equation (1.60) the following functions 

and operators are used: 

γγγϕϕ
ϕ

dIbI skksk ∫ −=
0

1,, )(),()( ,   γγγϕϕ
ϕ

dfbfB kkkk )(),())((
0

∫= , 

γγϕϕϕ
ϕ

dfFFB kkkk ∫==
0

0 ),()())(( ,   ))(())(( 1 ϕϕ fBBfB s

kk

s

k

−= ,  s≤1 .  

For these functions it is easy to check that 

( ),exp)( 0

, ϕτ
τ

ϕ ks

k

s

k

sk

b
I ≤ ,

)!1(
)(

1

00,0

+
≤

+

s

gb
FB

s

k

s

k

k

s

k

ϕ
ϕ         (1.61) 

!
)( 00

s

fb
fB

ss

ks

k

ϕ
ϕ ≤ .    

Here 
],0[0 1ϕC

ff = .                   

Using the specified notations, equation (1.60) is written in the form 

                      )()())(()( 0, ϕϕϕϕ kkkkkk IcFVBV ++=                                       (1.62) 

If we apply the operator kB  to both sides of equation (1.62), we have in view of 

(1.42)  
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From (1.62), (1.63) it follows 
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If we again apply the operator kB  to both sides of equality (1.64), we have in view 
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If we pass to the limit as ∞→n  in the representations (1.66), by virtue of (1.61) 
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kс , k≤0 , are any complex numbers. 

 

Using the unequalities (1.61), we get the estimates 
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By means of these estimates it is easy to show, that the functions )(ϕkV , given by 

formula (1.67), is a solution of equation (1.59) from the class [ ]1

1 ,0 ϕC . 
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From (1.67) and (1.37) we find 

∑
∞

=

++=
0

1,2,1,
!

))()()((),(
k

k

kkkkk
k

r
PcPcFrV

ν

ϕϕϕϕ       (1.68) 

 

Thus, the following results holds. 

Theorem 1.4. Let γαβ += .  Of one of the condition holds:     1) γα =  and  

kb υϕ ≠)(   or 1=kν  and kb υϕ ≠)(        2) γα ≠ , 1≠kν  equation (1.34) is 

solvable in the class (1.35).  If 1) is satisfied equation (1.34) has a unique solution 

in the class (1.35). This solution is found by the formulas (1.37), (1.55). If 2) is 

satisfied equation (1.34) has a general solution. This solution is given by the 

formulas (1.37), (1.67). If γα =  or 1=kν  and kb υϕ =)(  in some point 10 ϕϕ ≤≤  

for the solvability of equation (1.34) in the class (1.35) condition (1.57) is 

necessary and sufficient. In this case the solution of equation (1.34) in the class 

(1.35) is given by the formulas (1.37), (1.58). 

 

1.3 Second order partial differential equations in the plane with Fuchs 

operator in the main part and specified right hand side  

 Let πϕ 20 1 ≤<  and { }
10,0: ϕϕϕ <<∞<≤== rrezG i

.  Consider the 

equation   

ϕλϕϕϕϕϕ i

zzzzzz rezGzrfVdVzcVzzbVza =∈=+++ ,,)()()(4)(4)(4 22 ,      (1.69) 

in G , when ],0[)(),(),(),(),( 1ϕϕϕϕϕϕ Cfdcba ∈ , λ  is a real parameters.  

The equation (1.69) when consta =)(ϕ ., constb =)(ϕ . and constc =)(ϕ . are 

studied in the section 1.1. 

The solution of equation (1.69) are searched for in the class (1.3), where 

2,12,
2

2
1 ≥><

−
<< λλ

λ
ifpandifp . 

1. Let )()()( ϕϕϕ cab +≠ . Using formulas (1.2), equation (1.69) in polar 

coordinates is written in the form  



 35 

.)()())()()(())()()((

))()((2))()((2))()()((

2

2

2

2

2
2

λϕϕ
ϕ

ϕϕϕϕϕϕ

ϕ
ϕϕ

ϕ
ϕϕϕϕϕ

rfVd
V

cba
r

V
rcba

r

V
rcai

V
cai

r

V
rcba

=+
∂
∂

+−−
∂
∂

+−−

−
∂∂

∂
−+

∂
∂

−−
∂
∂

++

      (1.70) 

We are searching for the solution of equation (1.70) in the form (1.5), where )(ϕψ  

is a new unknown function from  [ ]1

2 ,0 ϕC , satisfying the equation 

.)()(

)))()()(()))(()()(((

)1))(()((2))()()((

2

ψϕϕ
ψϕϕϕλλλϕϕϕ

ψλϕϕψϕϕϕ

df

cbacba

caicba

−=

=+−−−+++

+′−−−′′+−−

    (1.71) 

Let  )(),( 21 ϕψϕψ  be two linearly independent solutions of the related 

homogeneous equation  

.0)))()()(()))(()()(((

)1))(()((2))()()((

2 =+−−−+++

+′−−−′′+−−

ψϕϕϕλλλϕϕϕ

ψλϕϕψϕϕϕ

cbacba

caicba
          

 Solving equation (1.71) by applying the method of variation of constant we 

obtain the integral equation 

)()(),()(),()( 0201

00

ϕϕγγϕγγψγϕϕψ
ϕϕ

JcIcdfdb +++= ∫∫ ,              (1.72) 

where 

))()()()())(()()((

))()()()()((
),(

2121

2112

γψγψγψγψγγγ
γψϕψγψϕψγ

γϕ
′−′+−

−
=

cba

d
b  ,    

))()()()())(()()((

))()()()()((
),(

2121

1221

γψγψγψγψγγγ
γψϕψγψϕψγ

γϕ
′−′+−

−
=

cba

f
f .    

For the construction of solutions of equation (1.72) the following functions 

and operators are used: 

),()( 10 ϕψϕ =I ),()( 20 ϕψϕ =J γγγϕϕ
ϕ

dIbI kk ∫ −=
0

1 )(),()( , 

γγγϕϕ
ϕ

dJbJ kk ∫ −=
0

1 )(),()( ,   k≤1 , 
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γγγϕϕ
ϕ

dfbBf )(),())((
0

∫= , γγϕϕ
ϕ

dfF ∫=
0

),()( ,  γγϕϕ
ϕ

dfFB ∫=
0

0 ),())((  

))(())(( 1 ϕϕ fBBfB kk −= , k≤2 , ).)(())(( 1 ϕϕ BffB =  

For these functions it is easy to check that 

!
))((

0 k
bfB

k
kk ϕ

ϕ ≤ ,  
)!1(

))((
1

00 +
≤

+

k
bfFB

k
kk ϕ

ϕ  , 

!
)(

010 k
bI

k
k

k

ϕ
ψϕ ≤ , 

!
)(

020 k
bJ

k
k

k

ϕ
ψϕ ≤ , k≤0 .               (1.73) 

Here 
],0[0 1ϕC

ff = . 

Using the specified notations, equation (1.72) is written in the form 

                          ).()()())(()( 0201 ϕϕϕϕψϕψ JcIcFB +++=                   (1.74) 

If we apply the operator B  to both sides of equation (1.74), we have in view of 

(1.9)  

).()())(())(())(( 1211

2 ϕϕϕϕψϕψ JcIcBFBB +++=        (1.75)  

From (1.74), (1.75) it follows 

).()(

)()()())(())(()(

0201

1211

2

ϕϕ

ϕϕϕϕϕψϕψ

JcIc

JcIcFBFB

++

+++++=
        (1.76)  

If we again apply the operator B  to both sides of equality (1.76), we have in view 

of (1.9) 

).()(

)()())(())(())(())((

1211

2221

23

ϕϕ

ϕϕϕϕϕψϕψ

JcIc

JcIcBFFBBB

++

+++++=
      (1.77)  

From (1.74) and (1.77) it follows 

).()())()((

))()(()())(())(())(()(

1211022

021

23

ϕϕϕϕ

ϕϕϕϕϕϕψϕψ

JcIcJJc

IIcFBFFBB

++++

++++++=
 

Continuing this process 2n-1 and 2n-2 times, respectively we receive the 

representations for solutions of equation (1.71)  
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and                    (1.78) 
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If we pass to the limit as  ∞→n  in the representations (1.78), by virtue of (1.73) 

we receive 

)()()()()()( 121122211 ϕϕϕϕϕϕψ QcPcQcPcF ++++= ,          (1.79) 

where 

,)()(
0

1 ∑
∞

=

=
k

k
FBF ϕϕ ,)()(

0

22 ∑
∞

=

=
k

kIP ϕϕ ∑
∞

=
−=

1

121 )()(
k

kIP ϕϕ , ∑
∞

=

=
0

22 )()(
k

kJQ ϕϕ , 

∑
∞

=
−=

1

121 )()(
k

kJQ ϕϕ .  

Using inequalities (1.73), we receive the estimates 

)exp()(
0

0

0
1 ϕϕ b

b

f
F ≤ ,  )()(

012 ϕψϕ bchP ≤ , )()(
011 ϕψϕ bshP ≤ , 

)()(
022 ϕψϕ bchQ ≤ , ).()(

021 ϕψϕ bshQ ≤  

By means of these estimates it is easy to show, that the function )(ϕψ , given by 

formula (1.79), is a solution of equation (1.71) from the class [ ]1

2 ,0 ϕC . 

From (1.5) and (1.79) we find  

))()()()()((),( 121122211 ϕϕϕϕϕϕ λ QcPcQcPcFrrV ++++=       (1.80)  

 

Thus, the following result holds. 
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Theorem 1.5. When )()()( ϕϕϕ cab +≠  the equation (1.69) is solvable in the 

class (1.3). The general solution of equation (1.69) from the class (1.3) is given by 

formula (1.80). 

 

2. Let )()()( ϕϕϕ cab += . Using formulas (1.2), equation (1.69) in polar 

coordinates is written in the form  

λϕϕ
ϕ

ϕϕ

ϕ
ϕϕϕϕϕ

rfVd
r

V
rcai

V
cai

r

V
rcba

)()())()((2

))()((2))()()((

2

2

2
2

=+
∂∂

∂
−+

+
∂
∂

−−
∂
∂

++

         (1.81) 

We are searching the solution of equation (1.81) in the form (1.5), and receive  

)()()(

)))(()()(()1))(()((2 2

ϕψϕϕ

ψλλϕϕϕψλϕϕ

df

cbacai

−=

=−+++′−−−
             (1.82) 

Consider any case of equation (1.82) depending on the values of the 

functions )(),(),( ϕϕϕ cba  and the parameterλ . 

1. If  )()( ϕϕ ca =  or 1=λ ,  then equation (1.82) has the form  

ψϕϕψϕ )()()( dfA −= ,                                                      (1.83) 

where )))(()()(()( 2 λλϕϕϕϕ −++= cbaA . 

Solving equation (1.83) when )()( ϕϕ Ad ≠ , we have 

2
)()(

)()()()(
)(

ϕϕ

ϕϕϕϕ
ϕψ

dA

fdfA

−

−
=                   (1.84) 

In case, when )()( ϕϕ Ad = , for the solvability of equation (1.83) the 

condition   

0)))()(()(Im(,0)))()(()(Re( =+=+− ϕϕϕϕϕϕ AdfAdf            (1.85) 

are necessary and sufficient. When these conditions are fulfilled the solution can be 

found by the formula 
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where )(ϕθ , )(1 ϕψ are arbitrary functions.  

2. If  )()( ϕϕ ca ≠  and 1≠λ , then the equation (1.82) is written in the form      

)()()( 11 ϕψϕψϕτψ fd +=+′ ,                  (1.87) 

where 

,
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d
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λϕγϕα

ϕ
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f
if  

Solving equation (1.87) by applying the method of variation of constant, we have 

the integral equation 

     )(),()(),()( 0

00

ϕγγϕγγψγϕϕψ
ϕϕ

cIdfdb ++= ∫∫ ,              (1.88) 

where 
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For the construction of a solution of (1.88) the following functions and operators 

are used 

γγγϕϕ
ϕ

dIbI kk ∫ −=
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1 )(),()( , γγγϕϕ
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dfbBf )(),())((
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∫= ,  
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For these functions it is easy to check that 
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Using these specified notations, equation (1.88) is written in the form 

                      ).()())(()( 0 ϕϕϕψϕψ cIFB ++=                                        (1.90) 

If we apply the operator B  to both sides of equation (1.90), we have in view of 

(1.9) 

).())(())(())(( 1

2 ϕϕϕψϕψ IсBFBB ++=                   (1.91)  

From (1.90), (1.91) it follows 

).()()())(())(()( 01

2 ϕϕϕϕϕψϕψ cIIсFBFB ++++=          (1.92)  

If we again apply the operator B  to both sides of equality (1.92), we have in view 

of (1.9) 

)()())(())(())(())(( 12

23 ϕϕϕϕϕψϕψ IсcIBFFBBB ++++=          (1.93)  

From (1.90) and (1.93) it follows 

).())()(()())(())(())(()( 102

23 ϕϕϕϕϕϕϕψϕψ IсIIcFBFFBB ++++++=  

Continuing this process 2n-1 and 2n-2 time, respectively we receive the following 

representations for solutions of equation (1.87) 
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If we pass to the limit as ∞→n  in the representations (1.94), by virtue of (1.89) 

we receive 
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с  an arbitrary complex number. 

Using the inequalities (1.89), we receive the estimates 
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By means of these estimates it is easy to show, that the function )(ϕψ ,  given by 

formula (1.95), is a solution of equation (1.87) from the class [ ]1

1 ,0 ϕC . 

From (1.5) and (1.95) we find 

)).()()((),( 121 ϕϕϕϕ λ PccPFrrV ++=                             (1.96) 

 

Thus, the following result holds. 
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Theorem 1.6. Let )()()( ϕϕϕ cab += .  When one of the following conditions 

holds:    1) )()( ϕϕ ca = , )()( ϕϕ Ab ≠  or 1=λ , )()( ϕϕ Ab ≠     and    2) 

)()( ϕϕ ca ≠ , 1≠λ    the equation (1.69) is solvable in the class (1.3).  When 

condition 1) holds equation (1.69) has a unique solution in the class (1.3). This 

solution is given by the formulas (1.5), (1.84). When condition 2) holds equation 

(1.69) has a general solution. This solution is given by the formulas (1.5), (1.95). 

When )()( ϕϕ ca =  or 1=λ  and )()( ϕϕ Ab =  in some point 10 ϕϕ ≤≤  for the 

solvability of equation (1.69) in the class (1.3) condition (1.85) is necessary and 

sufficient. In this case the solution of equation (1.69) from the class (1.3) is given 

by the formulas (1.5), (1.86). 

 

1.4 Nonhomogenuous second order partial differential equations in the 

plane with Fuchs operator in the main part 

 

  Let πϕ 20 1 ≤<  and  { }
10,0: ϕϕϕ <<∞<≤== rrezG i . Consider the 

equation 

GzrgVdVzcVzzcaVza zzzzzz ∈=++++ ),,()()(4))()((4)(4 22 ϕϕϕϕϕϕ ,          (1.97) 

in G , when ],0[)(),(),( 1ϕϕϕϕ Cdca ∈ , )()( ϕϕ ca ≠ , 0
)()(

)()(
Im ≥

−
+

ϕϕ
ϕϕ

ca

ca
. 

The function ),( ϕrg  satisfies the conditions: in G  it has the form 

∑
∞

=

=
0

)(),(
k

k

k rgrg νϕϕ , where ],0[)( 1ϕϕ Cg k ∈ ,  0>ν  is a real parameter, k≤0   

and the series ∑
∞

=

=
0

)(),(
k

k

k rgrg νϕϕ  is convergent in  G . 

 

The solution of equation (1.97) is searched for in the class (1.35), where 

2,12,
2

2
1 ≥><

−
<< νν

ν
ifpandifp . 
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Using formulas (1.2), equation (1.97) in polar coordinates is written in the 

form  

),()(

))()((2))()((2))()((2 2

ϕϕ

ϕϕϕϕϕϕ ϕϕ

rgVd

rVcaiVcaiVrca rrr
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Solutions of equation (1.98) are searched for from the class (1.35) in the form   

∑
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=
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k rVrV νϕϕ  ,                  (1.99) 

where  )(ϕkV , k≤0   are new unknown functions from the class ],0[ 1

2 ϕC , so that 

the series (1.99) is convergent  in G . 

Substituting (1.99) in (1.98) and compare the coefficients at same power of νr , we 

have 

         )()()()()()( 0, ϕϕϕϕϕτϕ kkkkkk gVdVV +=+′ ,             (1.100)               
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Solving equation (1.100) by applying the method of variation of constant, we get 

the integral equation 
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where 
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For constructing solutions of equation (1.101) the following functions and 

operators are used: 
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Here 
],0[0 1ϕC

ff = .                       

Using the specified notations, equation (1.101) is written in the form 

                      ).()())(()( 0, ϕϕϕϕ kkkkkk IcFVBV ++=                                      (1.103) 

If we apply the operator kB  to both sides of equation (1.103), we have in view of 

(1.42) 

).())(())(())(( 1,

2 ϕϕϕϕ kkkkkkkk IcFBVBVB ++=                (1.104)  

From (1.103), (1.104) it follows 

).()()())(())(()( 0,1,

2 ϕϕϕϕϕϕ kkkkkkkkkk IcIcFFBVBV ++++=                         (1.105) 

If we again apply the operator kB  to both sides of equation (1.105), we have in 

view of (1.42) 

).()())(())(())(())(( 1,2,

23 ϕϕϕϕϕϕ kkkkkkkkkkkk IcIcFBFBVBVB ++++=             (1.106)  

From (1.103) and (1.106) it follows 

).())()(()())(())(())(()( 1,0,2,

23 ϕϕϕϕϕϕϕϕ kkkkkkkkkkkkk IcIIcFFBFBVBV ++++++=
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Continuing this process 2n-1 and 2n-2 times, respectively we receive the following 

representations for solutions of equation (1.100) 
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and                       (1.107) 
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If we pass to the limit as ∞→n  in the representations (1.107), by virtue of (1.102) 

we receive 

)()()()( 1,2,1, ϕϕϕϕ kkkkkk PcPcFV ++= , k≤0 ,                          (1.108) 

where ∑
∞
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kс , k≤0 , are any complex numbers. 

 

Using the inequalities (1.102), we receive the estimates 
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By means of these estimates it is easy to show, that the function )(ϕkV ,  given by 

formula (1.108),  is a solution of equation (1.100) from the class [ ]1

1 ,0 ϕC . 

From (1.99) and (1.108) we find  
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∑
∞

=

++=
0

1,2,1, ))()()((),(
k

k

kkkkk rPcPcFrV νϕϕϕϕ                         (1.109) 

Thus, the following result hold. 

Theorem 1.7. When )()()( ϕϕϕ cab +=   the equation (1.97) is solvable in the 

class (1.35). The general solution of equation (1.97) from the class (1.35) is given 

by formula (1.109). 


