CHAPTER 1
CONSTRUCTION OF CONTINUOUS SOLUTIONS OF SECOND ORDER
PARTIAL DIFFERENTIAL EQUATIONS IN THE PLANE WITH FUCHS
OPERATOR IN THE MAIN PART
In the present chapter varieties of continuous solutions of Fuchs type
equations are constructed. Particular kinds of this equation arise in the theory of
infinitesimal bendings of surfaces of positive curvature with flattening point and

are considered in the works [28,29,30].

If solutions of the investigated equation are looked for in the form of a

k=0 [=0

double series ZZa,dsz’ , so with the relation z=re'” we have ZVk(go)rk.

k=0
Therefore solutions are searched by A. Tungatarov’s methods. The received

variety of solutions are used in second chapter to solve boundary value problems.

1.1. Model second order partial differential equations in the plane with

Fuchs operator in the main part and specified right hand side.

Let 0<¢, <27 and Gz{z:rei"’:OSr<oo, O<(p<¢)1}.

Consider the
equation

402V + 432V, + 42V, +b(o)V = f(p)r*, zeG, (1.1)
in G when b(¢), f(¢) € C[0,¢9,] and a, B,y,A >0 are real parameters.

Particular kinds of equation (1.1) can be applied in the theory of
infinitesimal bendings of surfaces and are studied in [5,20].

Here

o_1lfo .01 o0_1fo9 .0

oz 2lox oy) oz 2lox oy S
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Following, we using these operators in polar coordinates:

0 _e"fo i0) 0 _e"fo i
oz 2\or rop) oz 2 \or rop)

0> ezl‘(ﬂ(a2 20 2 8 190 162J

(1.2)

= _— + — _——
ozoz 4 \or* r*op rordp ror r o’

o> 1(e* 10 1 ¢
= Azttt e )
0zoz 4\or" ror r°op

o (8 L0 20 10 1@ ]
0z0z 4 \or’ r*0p r ogor ror r’oQ’

In work [21] the Dirichlet problem for equation (1.1) in the unit disk is
investigated, where the parameters a>0,£>0,7y=0 and b(¢p)= f(p)=0 are
concerned.

The solutions of equation (1.1) are searched for in the S.L. Sobolev class [21]

W (G) (1.3)

where 1< p < if A<2 and p>1,if 1>2.

2
2-2"
From the Sobolev imbedding theorem follows sz (G)c C(a) :

1. Let S # a+y. Using formulas (1.2), equation (1.1) in polar coordinates is

written in the form

2 2
(05+,B+7/)r2 0 Iz/—(a—;/)2ia—V+(a—7/)2ir ov —
or op oro (1.4)
ov oV _ i '
—(a=f+yr———(a=-p+y)—5+ble)V = f(p)r
or op
For solving equation (1.4) the method of separation of variables is applied. Let
Virp)=rtv (@), (1.5)

where /(@) is a new unknown function from C? [O, @, ], satisfying the equation
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—(a=B+yy"=2i(a-y)1-y'+
+(a++y)A =)= Ma-B+1)y = f(p)-blew
Substituting
v (@) =exp(ap)P(p), (1.6)

ila—-y)A-1)
. ;

g=a - f+y and P(p) isthe new unknown function

where a =

from C?[0, ¢, ], the last equation becomes

P"(9)—vP(p) =b,(0)P(9) + £,(), (1.7)

where

_ay =X +2(Bla+y)—dap)i-(a—y)’

q
b(ql,)exp(— 2ia -~y JA-1)p f((p)exp(_ ile - y)q(z, = 1)¢j
q q '

q J
blp)= . filp)=-
Solving equation (1.7) by applying the method of variation of constant, we have

14

P(g) = [blo, ) P()dy + [ f(@. 1)y +c 1,4 (9)+ o], (@), (1.8)
where

b(y) S
ﬁsh(ﬁ«o ), if v >0,

b(w)=<%sm(ﬁw—y»,ww,

b(y)p—-y),if v=0,

f%)shw«o—y»,ww,

flp.y)= %sin(ﬁ«o—y»,ifwo,

L Me=y),if v=0,
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eﬁ‘”,ifv>0, eV Lif v>0,
[v,0(¢): COS(V_V(D)’lfV<OM Jv,o(go): sin(v—vgo),ifv<0,
o,if v=0, 1,if v=0.

For the construction of solutions of equation (1.8) the following functions and

operators are used:

[ . [
L @) = [N, ()Y I, (@) = [B@. ) g (PMy , 1<k,
0 0

(B N@)=[blo. N )y » 12(@)= [ f @, 1)y,

(B f)(@)=B(B*" f) @), 25k, (B' f)(¢) = (Bf (@)

For these functions it is easy to check that

(B(cl,  (@IN@)=cl, ;.1 (@), (B(c],  (@N@) =), ;. (9), (1.9)

sh(ﬁco])\b\(ﬁ”]k\f L if v>0

gV K

b k
(B*/)(@)] < ‘q“&i ] ‘J:;) if v <0,

ﬂ(ﬂ] 7,

q| | @R

if v=0,

sh(ﬁcol)\b\owf o iryso

gV b, (k+ 1)1

k ‘b‘ogo - ‘f‘o :
(B* £,)(p)| < PR ‘b‘o(kﬂ)!,szo, (1.10)

oy 11,97
" 2k +2)1

if v=0,
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[ Sh(\/;¢1)‘b‘o¢}k exp(\/;(pl) if v>0

\q\x/; k!

bl Y1
]v,k(¢)‘g ‘q‘\/(): E’ lf‘V<O,

‘b‘ok §02k+1 .
) = Oa
lq| 2k +1)! v

k
sh(\Nvp)ble) 1 .
D IR

k
b | 1 .
']V,k(qp)‘S ‘q“‘fj ;!9 l](‘V<09

bl," o™
lq|" (2k)!

if v=0,

where c¢ is any complex number,

f‘o :HfHC[O,(/)l]'
Using the specified notations, equation (1.8) is written in the form
P(p)=(BP)(@)+ (@) +cd, o (@) +¢yJ, o (9) (1.11)
If we apply the operator B to both sides of equation (1.11), we have in view of
(1.9)
(BP)(p) = (B*P)(p) +(Bf,)(@) +¢1,,(p) +&,J,,(9) (1.12)
From (1.11), (1.12) it follows

P(p) = (B*P)(@) + (Bf,)(@) + fr(p) +c 1, (p) + ¢,/ () +

(1.13)
+ Cllv,O (@) + C2Jv,0 (@)

If we again apply the operator B to both sides of equality (1.13), we have in view
of (1.9)

(BP)(9) = (B’ P)(@) + (B> [,)(@) + (Bf,)(@) + ¢, 1, , (@) + ¢, ], , (@) +
+ 51[\/,1 (@) + EZJV,I ()

From (1.11) and (1.14) it follows

(1.14)
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P(p) = (B*P)()+ (B* 1,)(@) + (B,) @) + [, (@) + ¢, (L, , (@) + 1, ,(9)) +
te,(J,,(@+J, (@) +cl, (p)+c,J,, ()

Continuing this process 2n-1 and 2n-2 times, respectively we receive at the

following representations for solutions of equation (1.7)

P)= (B PY@)+ Y B (0 + 6 2 Lo (@) + 612 i)+

+¢ Z I,,.(p)+c, Z VA7)
k=1 k=1
and (1.15)
2n n n
P(p)=(B*'P)@)+ Y B (@) +c, D 1, (@) +¢, > J, (@) +
k=0 k=0 k=0

+¢ Z 1,,.(p)+c, Z Sy 211(9)
= il

If we pass to the limit as » — o in the representations (1.15), by virtue of (1.10)

we receive

P(p) =(BF)(@) +¢,F, ,(9)+¢,0,,(p) +¢,F, ,(9)+,0, ,(9), (1.16)

whete (BE)Y@)=2B' £,(0), Pa(@) =21, (@): Py(@) = 1,0,(0),

0.a@ =2 T2, 0s@) = 1),

Using the inequalities (1.10), we receive the estimates

o B L)

(BF)(@)| < 7l exp it @]—ll,if v <0,
gN=v

7, J%o]_l}ifv_o’

exp
Bl LVl
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P, (p)|<

Qv,z((ﬁ)‘ <

0, ((p)‘ < J

F,, ((0)‘ <3S

pl,sh(vg)

exp (x/;(pl )Ch[M—ﬁ

]

gp],ifv>0,

B,

W],ifv<0,
Jol,

Jlal
explve, )sh[

],lfVZO,

B, sh(\ve,)

M—\/;(P],ifl/>0,

],
B, sh(\ve,)

exp(pv )Ch[‘q‘—\/;

(p],ifv>0,

B,
lgN-v

oIt
9

ch

j,ifv<0,

ch

Jd

exp(colﬁ)sh(

],ifvz(),

B, sh(xve)

M—\/;(P},if‘/>0,

B,

lgN-v

sh ],z'fv<0,

ch

(ﬂm ifv=0
‘q‘ 2 M

Jd
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By means of these estimates it is easy to show, that the function P(¢), given

by formula (1.16), is a solution of equation (1.7) from the class C 2[O, (pl].
From (1.16), (1.6) and (1.5) we find

Vr,p)= ’”lew((BF)(¢) + ClR/,z(¢) + Csz,z (p)+ EIR/I (p)+ Esz,l () (1.17)

Thus, the following result holds
Theorem 1.1. When [ #oa+y, A>0 the equation (1.1) is solvable in the

class (1.3). The general solution of equation (1.1) from the class (1.3) is given by
formula (1.17).

2. Let f=a+ y. Using formulas (1.2), equation (1.1) in polar coordinates is

written in the form

2 2
(a+ B+’ 0 12/ —(a - ;/)Zia—V + (a — y)2ir ov +b(p)V = f(p)r’ (1.18)
or op orop
If finding the solution of equation (1.18) with substituting (1.5), then
=2i(a =)A=y +(a+ B+ )AL =Dy = f(p) - blp)y (1.19)

Consider varies cases of (1.19) with respect to a, y, 4 :
1.If a=y or A =1, then equation (1.19) has the view

Ay = f(p)- bl (1.20)
where A=(a+ B+ )X -2).

Solving the equation (1.20) when ‘b((o)‘ # ‘A

, obtain:

Af (9)—b(p) f (p)
A ~|b(p)

, for the solvability of equation (1.20) it is sufficient

y(p)= (1.21)

In case, when |b(p)| =|4

and necessary that the conditions

Re(f(@)(=b(p) + A)) =0, Im(f(p)(b(p) + A))=0, (1.22)
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are fulfilled. When the condition are fulfilled the solution are given by the

formulas
Re f(@)+i0(p)(4+b(p)) .
Re(b() + A) ,if Re(b(p)+ A) =0,
_ ). Ref(p)-0(p)(4+b(p)) . B
w(p) =11 Im(0) - A) ,if Im(b(p) — A) # 0, (1.23)
v, (¢), if Re(b(p)+A)=0 and Im(b(p)—A4)=0,

where O(¢) is any real function, y,(¢)1is any complex function.

2.1f a#y and A#1, then equation (1.19) is written as

' +ivy =b (e + f(9), (1.24)
where
_ (@+BnA _. b PAC)
Y ey M 0oy MY T e ey

Solving equation (1.24) by applying the method of variation of constant, we have

w(p) = [b(o. 1w ()dy + [ (0. 7)dy +cl(p), (1.25)

where c is an arbitrary constant,
b(p,y) =b,(r)exp(iv(y =), f(@.7)=f(y)exp(iv(y — @),
1,(p) = exp(=ivp).
For the construction of a solution of equation (1.25) the following functions

and operators are used:

(@) = [bl@. NI )y » 1<k, (BN)@)=[ble.7) Wy, [,(9) = | [ (@, 1)y,

(B f)(@)=B(B*" f)@), 2<k (B f)@) =(Bf )p).

For these functions it is easy to check that

7y
k'

(B" £)(@)| < (b, 0)"
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k k+1 ‘fl‘o
‘(B fz)((ﬂ)‘ﬁ(‘bl‘()(!’) W—H)!’ (1.26)

1
‘Ik(¢)‘ < (‘bl‘()@)kﬁ, 0<k.

Here ‘f‘o :HfHC[O,gol]'
Using the specified notations, equation (1.25) is written in the form

w (@) =(By) @)+ f,(p)+cl (@) (1.27)

If we apply the operator B to both sides of equation (1.27), we have in view of
(1.9)

(By) (@) = (B*w) () + (Bf,)(@)+cl,(p) (1.28)
From (1.27), (1.28) it follows
w(p)=(Bw)(@)+(B) (@) + fr(p)+cl (p)+cl(9) (1.29)

If we again apply the operator B to both sides of equality (1.29), we have in view
of (1.9)

(By)(p) = (B'w)(@)+ (B £,)(@) +(Bf,) (@) +cl,(p) + 1, (p) (1.30)
From (1.27) and (1.30) it follows

w (@) = (Bw) (@) + (B> £,)(@) + (B,)(@) + fr(9) + (L, (9) + 1,(9)) + 1, ().

Continuing this process 2n-1 and 2n-2 times, respectively we receive the

representations
2n—1 n—1 n
v (p)=(B*w) @)+ Y B f,(@)+cD L () +c ) 1, (p)
k=0 k=0 k=1
and (1.31)

2n—2 n—1

V(@) =B W)@+ X B L0+ e L@ 4T Y L, ()

for solutions of equation (1.24). If we pass to the limit as n — o in the

representation (1.31), by virtue of (1.26) we receive

()= (BEF)(@)+ch(p)+ch(p), (1.32)

where
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(BF)Y@) =Y B' £2(0). Pi(9) =2 1 (), R(@) =2 L, (9),

¢ 1s any complex number.

Using the inequalities (1.26), we receive the estimates

A
(BE)(p)| <77
‘ ‘ ‘bl‘o

(exp(fp|, -1,

P,(p) < ch(p,0)

R(p)|<sh(b),@) .

By means of these estimates it is easy to show, that the function w (@), given by

formula (1.32), is a solution of equation (1.24) from the class C' [0, @, ]

From (1.32) and (1.5) we receive

V(r,@)=r"((BF)(@)+cP,()+CF(p)) (1.33)

Thus, the following results hold.

Theorem 1.2. When one of the condition are satisfied: 1) f=a+y,a=y
and ‘b((o)‘;t‘A‘ or f=a+y, A=1 and ‘b((o)‘;t‘A‘ and QDa+y, A#1
the equation (1.1) is solvable in the class (1.3). When 1) holds then equation (1.1)
has a unique solution in the class (1.3). This solution is given by the formulas

(1.5), (1.21). When 2) holds the equation (1.1) has a general solution. This
solution is given by the formulas (1.5), (1.32). When a=y or A=1 and

‘b(go)‘ = ‘A‘ in some point 0< @<, for the solvability of equation (1.1) in the class

(1.3) condition (1.22) is necessary and sufficient. In this case the solution of
equation (1.1) from the class (1.3) is given by the formulas (1.5), (1.23).

1.2. Nonhomogeneous model second order partial differential equations

in the plane with Fuchs operator in the main part
Let 0<¢, <27 and G:{z:rei‘" :0<r<on, 0<(p<(p1}. Consider in G

the equation
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40zV +AfzzV_ + 42"V + b(e)V =g(r.9), z€G, (1.34)
where b(¢p) € C[0,9,]; a, B,y are real parameters.

Assume, what the function g(r,@) is satisfying conditions (A): in the

) vk

domain G the function g(r,¢) is given in the form g(r,¢) = Z%, where
k=0 .

v 1s some positive constant, g,(¢)eC[0,p,], 0=k and the series

‘gk ((0)""/](
k!

converges in G.

g(r,p)= i

Particular kinds of equation (1.34) are studied in [8,9].
The solution of equation (1.34) are searched for in the S.L. Sobolev class [21]

W (G) (1.35)

whelrel<p<22 Jf v<2 and p>1,if v>2.

From the Sobolev imbedding theorem follows sz (G) c C(G).

1. Let f# a+ y. Using formulas (1.2), equation (1.34) in polar coordinates

is written in the form

2 2
(a+ B+y)r’ 0 Iz/—(a—;/)2i8—V+(a—7)2ir o _
or op orop
(1.36)
oV oV _
—(a=p+yr———(a=p+y)—5+blpV =g(r,p)
or op
Solutions of equation (1.36) from the class (1.35) are searched in the form
0 vk
V(r,p)= Vo : (1.37)

i K
where V, (¢), 0<k are new unknown functions from C*[0, ¢, ] such that the given
series and the series differentiated with respect to » and ¢ as far as appearing in
equation (1.37) converge in G.

Substituting (1.37) in (1.36) and comparing coefficients of " for k=0 and

k >0 we have
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—2i(a - WV(@)—(a - B+ V(@) +b(p)V, = g,(9),
(a+ B+ vk =)= (a— B +y) ViV, (p)+ (1.38)
+2i(a =)k =WV (@)= (a - B+ V()= g, (0)-b(e)V, (p)

Substituting
Vi(p)=exp(a,p)b(9), 1<k, (1.39)

where
4= i(a—y)(vk-1)

k ’

a-p+y

and P (p) are new unknown functions from C 2[0, (p]], the system of equations

(1.38), reduce to the form
V(@)= 2Vi(0) = by (@, + f1,(9)

" — (1.40)
F'—t. B =b(p)B + f.,(p), 1<k,

where

0

=D =22 =82 gma-pry
4 0 q > JO0,1 q H s
_ k) (ay — )~ vk ey ~ 20 ~2f) ~ (@~ 1)’

5

q
bo) exp(— 2i(a - y)(vk - 1)¢j
bu(p) = p 1 ,
2.(0) exp(_ i(a - y)(vk - 1)40]
Jei(p)=~ . 9

Applying the method of variation of constant, we have for systems (1.40) the

equivalent system of integral equations

Vo(@) = [y @ Vo + [ £ 0, )y + €4, 1o (@) +€4,1T40 (),
¢ ° (1.41)

PAp) = [b (2. B(Ddy + [ [0, 1)y + o L o () + €00 o (@),
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where

2D expiry (-1 ) =21

7, 7,

IO,O (@) = GXp(T()gD) > Jo,o (p)=1,

by(,7) =

(exp(z,(¢—y)) -1,

%D o= ). if 7, >0
NN Jr }
k(7/)

b (p,y)= \/—sm(\/ . (p—7),if 7, <0,

b(y)e-y),if 7, =0,

f?fl)sh(ﬁw—y»,#wo,

0.y = Q(—f) sin(y=7, (9~ 7). if 7, <0,

fk,1(7)(¢ 7),if 7, =0,

exp(\/7,0) . if 7, >0, exp(—\/7,0) ,if 7, >0,
]k,o (@)= COS(\/ -7,9),if 7, <0, Jk,o(@) = Sin(\/ -7,0),if 7, <0,
@,if 7, =0, l,if 7z, =0.

For the construction of solutions of equation (1.41) the following functions and

operators are used:

I (@)= [b (@ ()Y s I, (9) = [b (0. 7) ()Y

B f)@) = [blo iy, fra(@) = fi(p.7)dy, 1<5,

(B; f)@)=B,(B;" f)@), 2<s, (B, f)@)=(B, [)p), 0<k.

For this functions and operator it is easy to check that:

B (e (NP =cl 1 (9), (B (], [(@N@) =), ,.(0), (1.42)
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(B3 fy2)()| <27 AT

(B{P)(p)|<

(B, f..)(p)| <

I, (p) <2 20—,
s!

i

b\, ®

S s

b, ‘;gos

‘To

UNC B3

9

S‘S!

s s

by| | f1],@
Bs _2S 0 0
(B (@) < e[

s+1
®

bO

Jo

N
0

(s +1)!

iz

sh( Tk¢1)‘bk‘o¢]S‘Pk‘0 if r,>0
s k 2

I

s!

‘bk‘o(D] P‘o ,lka<0,
-7,

k
s!
Wbl (;)"J;!,if 7, =0,

sh(\/7, ¢, )‘bk‘O(D a ‘fka“o
Jro be|, (s +1)!

‘bk‘oqp ]Hl ‘ﬁ"l‘o
I ARCES))

‘bk OS ﬁ(,l‘o ¢2S+2
(2s+2)!

Jif 7, >0,

,if 7, <0,

Jif 7, =0,

o,

“

sh( Tk¢1)‘bk‘0(0] exp(/7, ;)

‘bk‘0¢

Ik,s((o)‘ < H] i

s 2s+l
Plo P

2s+1)!

' ,if 7, >0,
s!

7

1 if 7, <0,

Jif 7, =0,

26
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sh( Tk%)‘bk‘ ¢ Sl j
\/Z 0 ]E,lfrk>0,

b,|, @ B
‘Jk,s(¢)‘s< \/_Oiz-k 59 lf\z-k <09

‘bk S¢2S . 3

Wa#rk_o’
0<s,1<k.
Here |f ‘O:Hf qu,w.]'

Using the specified notations and consider V(@) = P, (¢), the system of equations
(1.41) is written in the form
B(@)=(B.E)N@) + [i2(@) + ¢ Ly o (@) + ¢ 1T 1o (@) (1.44)
If we apply the operator B, to both sides of equation (1.44) we have in view of
(1.42)
(BP)(@) = (B:B)@)+ (B, f, )@) + T L, (9) +E, 1T, (). (1.45)
From (1.44), (1.45) it follows

P(0)=(B:R)@) +(B o) @)+ fo @)+ €L, (0) 46,1, (9) + a6
+ Ck,llk,O (p)+ Ck,2Jk,O ().

If we again apply the operator B, to both sides of equality (1.46), we have in view
of (1.42)

(B.P,)@) = (BLP)(@)+ (BL f,)@)+ (B f, )@) + ¢, T, () +

+C0Js (@) + Coalis (p)+ Cead i ().

From (1.44) and (1.47) it follows

P.(p)=(B.P,) @)+ (Blffk,z @)+ (B fi2)( @)+ fi, (@) +

+ ck,llk,z (p) + ck,llk,O (p) + ck,2Jk,2 (p) + ck,2Jk,0 (@) + Ek,llk,l (p) + Cra Jk,l (p)

(1.47)

Continuing this process 2n-1 and 2n-2 times, respectively we receive the following

representations for solutions of equation (1.41)
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2n—1

P.(p)=(B"P,)(¢p)+ Z(B ﬂ2>(co>+ck121m<¢)+

+Cn z Jk,25 (p)+ Cri Z [k,2s—1 (p)+ Cia Z Jk,2s-1 (@)
s=0 s=1 s=1
and (1.48)
2n n
P(9)=(B""P)@)+ > (B [ ) @)+, D L, (@) +
s=0 s=0

TCin Z o (@) +¢;, Z Ly (@) +¢; Z Ji251(P)-
s=0 s=1 s=1

If we pass to the limit as » — o in the representations (1.48), by virtue of (1.43)

we receive
P (p)=(BF), (@) + ¢, P, (@) +¢,0,,(@)+c, P (p)+¢,,0,,(9), (1.49)

where

BF) (@)=Y (B £,)0)s Pa@ =3 1150, Pu@)= 2 Lo (@),

Qk,2 (p)= i‘]k,h (), Qk,l (p)= i J ke ().

Using the inequalities (1.43), we receive the following estimates:

b,
‘(BF)O( )‘—“ “ [expi“ “ ] J: 02(¢)‘ Ch[ “ “ ]
2b
\Poxco)ksh( “ “ ] ROE ch( H ] ,(go)\<sh[ HO (p},

‘fk,l‘o exp ‘bk‘osh( Tk(p])(DJ_IJ’ika>O’

‘bk‘o \/Z
/i b
‘(BF)k((D)‘S % exXp %(B]—l],ifﬁ<0,
klo k
il

°(eXp(w/ @)=, if 7, =0,
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b.| sh
exp( qu)l)Ch[‘ k‘OS\/LTkwl) §0] Jif 7, >0,
Tk

‘bk‘o .
L(p)= 0
1
\/WSh(\/‘bk‘0¢)azfrk :Oa
klo

exp(4/ 7, ¢’1)Sh(‘bk‘osil/(7rk #) (0] Jif 7, >0,
k
‘bk‘o

P < _ITklo .

‘ k,l(¢)‘< Sh[\/—iz'k¢},szk <0,
| —

\/WS}Z( ‘bk‘0¢)9l.]pfk:03
klo

by sh(7 )

exp( Tk(Pl)Ch[ 7 (oj Jif 7, >0,
k

‘bk‘o .
‘Qk’z(gp)‘g Ch[\/—irkq) ,if 7, <0,
Ch(\/ ‘bk‘()@) s lf T, = 09

bilysh(7e0)

exp( Tk(DI)Sh{ \/7 @) 5 l]p T, > 0,
k

‘bk‘() .
‘Qk,1(¢)‘£ S}{H¢ ,if 7, <0,
Ch(\/ ‘bk‘()(”)a lf T, = 09

By means of these estimates it is easy to show, that the function P, (¢), given by

formula (1.49), is a solution of equation (1.40) from the class C* [0, o, ]
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From (1.37), (1.39) and (1.49) we receive

V(rp) =Y exp(a,)[(BF) () + ¢, Pry(@) + ¢ .00 » (9) +
=0 (1.50)

vk

_ _ r
+¢, B (@) +¢,.,0;, (¢’)]F ,
O’ lf‘ k = Oa

where a, =<i(a—-y)k-1) if 1<k
a-B+y o

It is easy to check, that the function, given by formula (1.50), is a solution of

equation (1.34) from the class (1.35).
Thus, the following result holds.

Theorem 1.3. When B #a+y the equation (1.34) is solvable in the class

(1.35).The general solution of equation (1.34), from the class (1.35) is given by
formula (1.50).

2. Let f=a+y. Using formulas (1.2), equation (1.34) is written in polar

coordinates in the form

oV oV a4 —
(ax+ [+ ;/)r2 2 —(a— 7/)21% +(a—y)2ir orop +b(@)V =g(r,p). (1.51)

The solution of equation (1.51), from the class (1.35) are searched for in the form
(1.37).
Substituting (1.37) in (1.51) and comparing coefficients of the same power of r"

lead for 0 <k to the equation
2i(a = )k =DVi(@) + (@ + B+ y Wik =DV, (9) = 2, (9) =)V, (p).  (1.52)

This equation is considered in various cases for the parameters «, B, y and v.

a) If o=y or vk =1, then equation (1.52) has the form

vV (@) +D(P)V, () =g,(9), (1.53)
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where
v, =(a+p+yWVk(k-1)
This equation has unique solution just only, when
2 2
b)) # vl (1.54)

By this condition the solution of equation (1.53) is found in the form

V (o) = SOV =2 ((9) s
k(¢) ‘Uk‘z —‘b(@)‘z ( )
b) In case
(@) =lo.| (1.56)

for the solvability of equation (1.53) it is necessary and sufficient that the

conditions

Re(g, (p)(v, —b(9))) =0,
Im(g, (@)(v, +b(p))) =0

are fulfilled. If these conditions are satisfied the solution of equation (1.53) is

(1.57)

found as
Reg, (p)+i0,(p)(v, +b(9)) .
Re(v, +b(p)) ,if Re(u, +b(p)) %0,
I/k((o) — l Re gk(¢) B 9k(¢)(uk + b(¢)) ,l-f‘ Im(_Uk + b((ﬂ)) + O, (1 58)

Im(-v, +5(p))
¢, (9),if Re(v, +b(9)) =0, Im(-v, +b(9)) =0,

\

where 6, (@) is any real, ¢, (¢) 1s any complex function.

c) When a # y and vk #1 equation (1.52) has the form

Vi) =1V () =b (o) (9)+g,,(9), (1.59)
where
_(a+p+y)vk _ . &l
Ty TR G T
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b(p)
2(a—y)(vk-1)

b (p)=i

Solving equation (1.59) by applying the method of variation of constant, we obtain

the integral equation
%4 4
V(@) = [b (@ We(dy + [ (o, )y +¢,1, o(9). (1.60)
0 0

where
b (@,7)=b,()exp(z, (¢ —7)) , fi(@,7) =g (V)exp(z,(¢-7)),
1, o(p) =exp(z,9)

For the construction of solutions of equation (1.60) the following functions

and operators are used:

I (@)= [b @ ()Y, (B f)@) = [b,(0.7) [, (1)

(ByF @) =F ()= [ fi(@.)dy, (B;f)@)=B.(B;" f)g), 1<s.

For these functions it is easy to check that

‘bk . s ‘bk‘(s)‘gk,o‘ o™
1 ()| < mi’ exp(t, ), |BiF(p) < ST (1.61)
B ) < PRTL

Here ‘f‘o = HfHC[O,(o,]'
Using the specified notations, equation (1.60) is written in the form

Vi(@)=(B,V: )@)+ F, (p)+ v (@) (1.62)

If we apply the operator B, to both sides of equation (1.62), we have in view of
(1.42)

(B (@) = (B, ) @) +(BF)@)+¢.1,,(p) (1.63)
From (1.62), (1.63) it follows
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Vi(p)= (Blg Vo(e) + (B, F (@) + Fi (@) + Eklk,l (p) + Ck[k,o (@) (1.64)

If we again apply the operator B, to both sides of equality (1.64), we have in view
of (1.42)

(B )@) =BV, @)+ (B E @) + (B E)@) + ¢ L, (0)+¢ 1, (9)  (1.65)
From (1.62) and (1.65) it follows

V()= (BV,) (@) +(BIF)@) +(BF)@) + F(p)+ ¢, (L ,(9) + 1, o(9) + T 1, ().
Continuing this process 2n-1 and 2n-2 time, respectively we receive the

representations for solutions of equation (1.60)

2n—1 n—1 n

V(@)= (B"V,)(p)+ Z B EN @)+, 0 L, ()46, 1, ,(9)

s=0 s=1

and (1.66)

2n n

V(@) =BV @)+ X (BFENO+6 Y L @)+ D 51 (0)

If we pass to the limit as » — o in the representations (1.66), by virtue of (1.61)

we receive

Vilp)=F, (p)+c.F,(p)+ . B (9), (1.67)

where Fk,1((0) = Z(B;Fk)((ﬂ) » By (p)= Zlk,2s (9), P, (@)= Z Iy 00 (),
s=0 s=0 s=1

¢,, 0<k, are any complex numbers.

Using the unequalities (1.61), we get the estimates

5 b
Fa(p)< | k’o‘o exp(b|, @), | P, (9)|< eXP(Tk(D)ch(MJ’
‘bk‘o ‘Tk‘o
< Bely
P, (@) < exp(r,p)sh ‘ ,
Tk‘o

By means of these estimates it is easy to show, that the functions V, (¢), given by

formula (1.67), is a solution of equation (1.59) from the class C' [0, o, ]
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From (1.67) and (1.37) we find

vk

V(r,p)= Zw: (Em (p)+ Ckpk,z (p)+ Ech,l ((0))7'_

1.68
0 k! (169

Thus, the following results holds.
Theorem 1.4. Let f =a + y. Of one of the condition holds: 1) ¢ =y and

b(p) #|v,| or vk=1 and |b(p)| #|v,| 2a#y vk #1 equation (1.34) is
solvable in the class (1.35). If 1) is satisfied equation (1.34) has a unique solution
in the class (1.35). This solution is found by the formulas (1.37), (1.55). If 2) is

satisfied equation (1.34) has a general solution. This solution is given by the
formulas (1.37), (1.67). If a« =y or vk =1 and ‘b((p)‘ =‘l)k‘ in some point 0 <@ < @,
for the solvability of equation (1.34) in the class (1.35) condition (1.57) is

necessary and sufficient. In this case the solution of equation (1.34) in the class

(1.35) is given by the formulas (1.37), (1.58).

1.3 Second order partial differential equations in the plane with Fuchs

operator in the main part and specified right hand side

Let 0 < ¢, <27 and G:{z:rei"’ :O£r<oo,0<(p<(p1}. Consider the
equation
4a(@)z°V,. +4b(@)zZV., +4c(@)2’V_+d(o)V = f(p)ir*, zeG, z=ré"?, (1.69)
in G, when a(e), b(@), c(p), d(¢), f(p) e C[0,p,], A is areal parameters.
The equation (1.69) when a(@)=-const., b(¢p)=const. and c(p)=const. are

studied in the section 1.1.

The solution of equation (1.69) are searched for in the class (1.3), where

I<p< if A<2 and p>1,if 1>2.

2-47
1. Let b(p)# a(@)+c(ep). Using formulas (1.2), equation (1.69) in polar

coordinates 1s written in the form
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2 2

(a(@) +b(@) + (@) ‘Z Y 2ita(p) (o) 2L+ 2i(a(0) — cppyr 2L
¥ op orop

1.70
oV (1.70)

P +d()V = f(p)r".
¢

—(a(p)—b(p) +c(@)r 2—1: —(a(p) —b(@) +c(9))

We are searching for the solution of equation (1.70) in the form (1.5), where (@)

is a new unknown function from C°* [O, ?, ], satisfying the equation
—(a(p) = b(p) + c(P)y" = 2i(a(p) —c(p))(1 - Ay’ +
+ ((a(@) + b(@) + c(@))(A* = 1) = A(a(@) — b(p) + c(p))y = (1.71)
= f(p)—d(p)y.
Let y,(¢), v,(p) be two linearly independent solutions of the related

homogeneous equation

—(a(p) = b(p) + c(@)y " - 2i(a(p) — c(p)(1- Dy +
+((a(@) + b(p) + c(@P)(A* = 2) = Aa(p) — b(@) + c(9))y =0.

Solving equation (1.71) by applying the method of variation of constant we

obtain the integral equation

v (@)= [blo. W ()dy + [ f(@.7)dy + e 1, (9) +,J (), (1.72)

where

d(y)w, (o, (y) -y, (@)v,(7))
(a(y)=b()+cONW, (7)) —w (N, (7))

b(gp,y) =

(@)= J N (@, (1) =, (@, (7)) |
(a(y)=b(y)+ (N (N (7) =i (W, (7))

For the construction of solutions of equation (1.72) the following functions

and operators are used:

L@ =y, (@), J(@=v,(@), ()= [blp. )] ()dr,

Ji(@) = [blp. )T (r)My, 1<k,
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BIN@) = [blp. ) f )y, F(o)=[ [, 1)y, (B°F)@)= [ f(p,r)dy

(B f)(@)=B(B"" [)¢), 2<k,(B')(p) = (Bf )(p).

For these functions it is easy to check that

<|f1,Ipl;

b

(B" f)(9) s\b\’; (k w

<|pf! “/’Z‘oﬂ 0<k. (1.73)

L)<, 2

Here | /], =1/l 0
Using the specified notations, equation (1.72) is written in the form
y (@) = (By)(@)+ F(p)+cl,(p)+c,J, (). (1.74)
If we apply the operator B to both sides of equation (1.74), we have in view of
(1.9)
(By) (@)= (Bw)(@)+(BF) (@) +c1,(p)+&,J (). (1.75)
From (1.74), (1.75) it follows

w(p)=(B’w)(@)+(BF)(@)+ F(p)+¢l (p)+2,J,(p)+

(1.76)
+e (@) +c,J (@)

If we again apply the operator B to both sides of equality (1.76), we have in view
of (1.9)

(By)(p)=(B’y) @)+ (B F)@)+(BF)(@)+c1,(p)+c,J,(p) +
+cl(p)+6,J,(9).

From (1.74) and (1.77) it follows

(@)= (B'y)(@)+(B*F)@)+(BF)(p)+ F(p)+c,(L,(p) +1,(p) +
+¢,(JL (@) +J (@) + 1 (p) +c,J, (@)

Continuing this process 2n-1 and 2n-2 times, respectively we receive the

(1.77)

representations for solutions of equation (1.71)
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2n-1 n—1 n—1

v (p)=(B"w)(p)+ Z_:BkF (@)+c, ) L (@) +czzJ2k(¢)) -

k=0

+ C_ﬁzlqu (p)+ 5ZZJ2k_1((p)
k=1 P
and (1.78)

(@)= B (@) + S BFE@) 46> L) +6,Y 1o () +

k=0 k=0 =0
+ C_.lzlzk—l (p)+ Ezz']zk—1 (9)
= =

If we pass to the limit as n — o in the representations (1.78), by virtue of (1.73)

We receive
w (@) = Fi(p)+c (@) +c,0,(0) + ¢, B(p) +,0,(9), (1.79)

where

F@=Y B F@LP@)=X @), @)=Y L (0), @)=Y 1 (@),

0 (p) = ijqu (9).

Using inequalities (1.73), we receive the estimates

P(o)|<|w|sh(b] @),

R <l exo(t, o), 1)<y lch(8], 0.

[el,

0,(@)| <|w,|ch(b|, @), |0, (@)| < |w,|sh(b],p)-

By means of these estimates it is easy to show, that the function (@), given by

formula (1.79), is a solution of equation (1.71) from the class C*[0, ¢, .
From (1.5) and (1.79) we find
V(r,p)=r"(F(p)+cP(@)+c,0,(9) + T P(p) + 5,0 (9)) (1.80)

Thus, the following result holds.
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Theorem 1.5. When b(p) # a(@) + c(@) the equation (1.69) is solvable in the

class (1.3). The general solution of equation (1.69) from the class (1.3) is given by
formula (1.80).

2. Let b(p)=a(p)+c(p). Using formulas (1.2), equation (1.69) in polar
coordinates is written in the form
oV oV
—2i(a(p)—c(p))—+
57 (a(@) —c(@) o0

. (1.81)
orop +d(p)V = f(@)r

(a(p) +b(p) +c(p)r’

+2i(a(p) —c(p)r

We are searching the solution of equation (1.81) in the form (1.5), and receive

= 2i(a(p) - c(@)(1 - Dy’ +(a(p) + b(p) + (@)X - Ay = (1.82)
= f(@)—d(@)y (9)

Consider any case of equation (1.82) depending on the values of the

functions a(), b(¢), c(¢p) and the parameter 4.

1. If a(p)=c(p) or 1=1, then equation (1.82) has the form

Al = f(p)—d(y ,
where A(¢) = (a(@) +b(p) + c(@)) (X - A).

(1.83)

Solving equation (1.83) when |d(¢)| #|A(¢)

, we have

A(p) f(p)—d(9) f (@)
w(p)= ; (1.84)
[A(p)|—d(p)

In case, when |d(p)|=|4(p)

, for the solvability of equation (1.83) the
condition

Re(f(@)(=d (@) + A(p))) = 0, Im(f (p)(d(p) + 4(9))) =0 (1.85)
are necessary and sufficient. When these conditions are fulfilled the solution can be

found by the formula
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[Re £ () +i0(p)(A(p) +d(9))
Re(d () + A(p))

[ ReS(@)=0@NAD+d@)) 11 4y 20

, if Re(d(p)+ A(@)) # 0,

= 1.86
Vo) Im(d(p) - 4(p) (150
v, (@),if Re(d(p)+ A(p)) =0 and Im(d(p)—A(p))=0,
where O(¢), v, (@)are arbitrary functions.
2. 1If a(¢)#c(¢p) and A #1, then the equation (1.82) is written in the form
v’ + (@ =d\(@) + (@), (1.87)
where
__ @@ +b@) et d(p)
O <oy 0T -
figy=-iz L@

2(a(p) =~y (@NA -1
Solving equation (1.87) by applying the method of variation of constant, we have

the integral equation

v (@)= [blo. 1w )y + | [, 7)dy +cly(9), (1.88)

where

4

b(p,y)=4d,(y) eXp(—I T(md%j S, n)=f(y) eXp(— Tf(n)d%j,

e

I,(9) = exp[— Ir(y)dyj.

For the construction of a solution of (1.88) the following functions and operators

are used

1,0) = [bp. NI (My (BY@) = [ bl ) (1)
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@

(BF)@)=F(p)=[ f(p.r)dy. (B'f)p)=BB"" f)p), 1<k.
0

For these functions it is easy to check that

Ly _ tr (@) +b(y)+c(r)A _
102 oot o] - fin ORI 0L

.exp(_ [ CIARL ARSI AY d%}
s 2at) ()

1
(k+1)!

T (@(n)+ () + e )A -
exp| — (k+1)[ Im BLZZIITENDE gy |
exp( (k+ )}[ m 2(a(y,)—c(ry)) 7’}

(B F)(p)| < ANV

@) +b)+e2 |
2a(y)—c(7,)) 1

Using these specified notations, equation (1.88) is written in the form

v (@)= (By)()+F(p)+cl(9). (1.90)

If we apply the operator B to both sides of equation (1.90), we have in view of

(1.9)

(B" f)()| < %\dl\ﬂf\owk exp[— kT Im

(By)(p) = (B'w)(¢)+(BF ) @)+, (). (1.91)
From (1.90), (1.91) it follows
(@) = (B y)(@)+(BF)(@)+ F(p)+cl,(p) +cl,(9). (1.92)

If we again apply the operator B to both sides of equality (1.92), we have in view
of (1.9)

(By)(@) = (B'y)(p)+(B*F) (@) +(BF)(¢)+cl,(p) +¢l,(p) (1.93)
From (1.90) and (1.93) it follows
v (p) =(B'y)(@)+ (B’ F)(@)+(BF) @)+ F(p)+c(l,(9) +1,(9) +I,(9).
Continuing this process 2n-1 and 2n-2 time, respectively we receive the following

representations for solutions of equation (1.87)

40



2n-1 n—

v (@) =(B'w)(p)+ Z(BkF N @)+ L (9) +Ei Ly, ()

k=0

and (1.94)
V(@) =B )0) + X (B FYO+ X L (@) +EY Ly 1(0)

If we pass to the limit as #» — o in the representations (1.94), by virtue of (1.89)

we receive

w(p)=F (p)+cP,(p)+ch(p), (1.95)

whete F(¢) = > (B'F)9). Pi(@)=2 1 (@), B(0) = L (0).

¢ an arbitrary complex number.

Using the inequalities (1.89), we receive the estimates

Al T (@(r)+b(r)+c(r))A
F <=0 d, —|1 ! 1 ' dy, ,
Ftohs g el @ m e ey

t (a(71)+b(71)+c(71))ﬂ*
P,(9)| <exp(—[1 dy,
P (p)| < exp( !m 2aG-cry

T (a(y)+b(y)+c(y)A
h| |d -1 d ,
‘ {‘ b exp[( i e ey IWD

tro (@) +b(y) +c(r)A
P < —|1 d
‘ 1(¢)‘<6Xp( '([ " 2(a(y,) —c(1)) 2

1 (@) +b(y) +e(r)A
h |d {1 dy)o ||
’ [‘ b exp(( ey WB

By means of these estimates it is easy to show, that the function w(¢), given by

formula (1.95), is a solution of equation (1.87) from the class C' [O, g/)l].
From (1.5) and (1.95) we find
V(r,p)=1r"(F(p)+cP(p)+Th(p)). (1.96)

Thus, the following result holds.
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Theorem 1.6. Let b(p)=a(@)+ c(p). When one of the following conditions

holds: 1) a(p)=c(p),|b(p)| = |A(@)| or 2=1, |b(p)+|A(p) and 2
a(p)#c(p), A#1  the equation (1.69) is solvable in the class (1.3). When

condition 1) holds equation (1.69) has a unique solution in the class (1.3). This
solution is given by the formulas (1.5), (1.84). When condition 2) holds equation
(1.69) has a general solution. This solution is given by the formulas (1.5), (1.95).
When a(p)=c(p) or A=1 and |b(go)|:|A(¢)| in some point 0@ <@, for the

solvability of equation (1.69) in the class (1.3) condition (1.85) is necessary and
sufficient. In this case the solution of equation (1.69) from the class (1.3) is given
by the formulas (1.5), (1.86).

1.4 Nonhomogenuous second order partial differential equations in the

plane with Fuchs operator in the main part

Let 0<¢, <27 and G = {z:re“" 0<r<m, O<¢<¢1}. Consider the
equation

4a()2°V.. +4a(p) + (@) 22V +4c()Z’V,. +d(9)V = g(r,9), 2€G, (1.97)

alp)+c(o) 5

in G, when a(¢), c(p), d(p) e C[0,9,], a(p) # c(¢), Im >
a(p)—c(p)

The function g(r,¢) satisfies the conditions: in G it has the form

g(r,p)= ng (@)™, where g, (9)eC[0,¢,], v>0 is a real parameter, 0<k
k=0

and the series g(r,@) = Z‘ g, ((p)‘rv" is convergentin G.
k=0

The solution of equation (1.97) is searched for in the class (1.35), where

1<<2
P=5

Jif v<2 and p>1, if v>2.
—v
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Using formulas (1.2), equation (1.97) in polar coordinates is written in the

form
2(a(p)+c(@)rV,, = 2i(a(p) - c(p)V, +2i(a(p) —c()rV,, +
+d(p)V =g(r,0)

Solutions of equation (1.98) are searched for from the class (1.35) in the form

(1.98)

Vo)=YV or™ (1.99)

where V, (¢), 0<k are new unknown functions from the class C?*[0,¢,], so that
the series (1.99) is convergent in G.

Substituting (1.99) in (1.98) and compare the coefficients at same power of ", we

have
Vi) +o (oW (9)=d (o), (@) + g, (), (1.100)
where
__.(a(@) +c(p)vk _ 2. (p)
(@)= a(p)—c(p) grolp) = 2(a(p) - c(@)(vk—1)’
d,(p)=i 4(9)

2(a(p) —c(@)(vk 1)
Solving equation (1.100) by applying the method of variation of constant, we get

the integral equation

V(@) = [0V (P)dy + [ £l )y + 0,4 (9). (1.101)
where

b (@,7) :dk(V)eXp(_]eTk(%)d%j . Je(@,7) :gk,0(7)eXp(_TTk(7l)d7/1js

I,(p)= exp(— Jr (y)dy].

For constructing solutions of equation (1.101) the following functions and

operators are used:
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I (@) = [b (@, ()Y (B f)@) = [b,(0.7) [, (1)

(BIE @) =F (9) = /(9.7}y (B.f)9)=B,(B;" [)p), 1<5s.

For these functions it is easy to check that

L For o] s fim @)+, )
L 0)< gl e"p[ P ey ]

(L (al) ek
exp( !Im ar)—cr) j

s 1
(BiF)(@)|< m\dk

N
0

8ol @ exp —(SﬁLl)TIm(a(m+C(7‘))Vkary1 C(1.102)
o y a(yl)_c(yl)

s Ly s T (a(y)+c(y))Vvk
(B.)@)| <~ ld.[;|/],0* exp [ m QAP
S. ) a(71)_c(71)
Here ‘f‘o - HfHC[0,¢,]'
Using the specified notations, equation (1.101) is written in the form
Vi(p) = (BYV ) @)+ Fi (@) +cd, (@) (1.103)

If we apply the operator B, to both sides of equation (1.103), we have in view of

(1.42)
BV, @) =BV )9) +(BF)@)+C,.1,,(9). (1.104)

From (1.103), (1.104) it follows

V(@)= (BT )@) +(BE)@) + F(p) +E 1, ,(p) + ¢, 1, (). (1.105)

If we again apply the operator B, to both sides of equation (1.105), we have in
view of (1.42)

(B (@) =(BV, @) +(BF)p)+(BENP) + ¢ 1, ,(9)+E,1, (). (1.106)
From (1.103) and (1.106) it follows

V(@)= BV @)+ (BIF)@) + (BENP) + F () + ¢, (L ,(9) + 1 o(9)) + T, (9).
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Continuing this process 2n-1 and 2n-2 times, respectively we receive the following

representations for solutions of equation (1.100)

2n-1 n—1 n

V(@)= (B"V (@) + Z (B F (@) +¢, Z I, (p)+c, Z L5 (9)
and (1.107)

V(o) =(B;"V,)(p)+ Z (B F (@) +¢, Z L, (@)+¢ Z L 201(@).

If we pass to the limit as » — o in the representations (1.107), by virtue of (1.102)

We receive

Vk((”):Fk,1(¢)+CkPk,2(¢)+EkPk,1(¢)’ 0<k, (1.108)

where Fy (9)= S (BIE)@). Pos@) =31 1.@). Py (@)=Y 111 ().

s=0 s=0 s=1

¢,,0 <k, are any complex numbers.

Using the inequalities (1.102), we receive the estimates

810, % (aly)+c(y,)Vvie
7, (9)|< R d,|, exp (—! e e |

P (9)]< exp[‘f s d%j -

0 a(71)_c(71)

_ b (a(y) +e(r))vk
Ch[\dk\oexp[( !Im (7 ) —c(r) d%)cons

(a(r) + GV 4 J
a(y,)—c(y,) 1

. _(p (a(y) +c(r))vk
of o] im0t

4
P, ,(9)|< exp[— [im
0

By means of these estimates it is easy to show, that the function V, (¢), given by

formula (1.108), is a solution of equation (1.100) from the class C' [O, ?, ]
From (1.99) and (1.108) we find

45



V(r.0) =Y (F(@)+ 6, Po(9) + 8By (@)™ (1.109)

k=0
Thus, the following result hold.
Theorem 1.7. When b(p) = a(@p)+c(¢) the equation (1.97) is solvable in the
class (1.35). The general solution of equation (1.97) from the class (1.35) is given
by formula (1.109).
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