4 Ergebnisse

4.1 Inklusivitäts- und Exklusivitätsstudie (Spezifität)

Es wurden zunächst Spezifitätsmessungen im miniVIDAS® und Singlepath® System mit non-Campylobacter Stämmen und Stämmen, die dem Genus Campylobacteraceae nahe stehen, durchgeführt (Nicht-Zielkeime). Die ausgewählten Typ- bzw. Qualitätskontrollstämme sind als Reinkulturen in Suspension dem jeweiligen System zugeführt worden, um eventuell auftretende Matrixeffekte zu minimieren oder auszuschließen.

Weder das miniVIDAS[®] (ELFA) noch das Singlepath[®] (GLISA) System zeigten positive immunologische Signale bei den verwendeten non-*Campylobacter* Stämmen in der jeweils vorliegenden Beimpfungskonzentration. Ausschließlich Stämme der Spezies *Campylobacter* zeigten positive Signale bei der jeweils eingesetzten Keimkonzentration (Tabelle 19).

Festzustellen ist, dass neben den von den Herstellern genannten Zielkeimen (siehe Kapitel 3.3) auch andere *Campylobacter* spp. positiv getestet werden konnten. So erbringen *Campylobacter*-Keime der Spezies *Campylobacter upsaliensis* und der Subspezies *Campylobacter fetus fetus* ebenfalls positive Signale im GLISA und ELFA.

Anzumerken ist jedoch, dass nach mikroaerophiler Anreicherung dieser Keimspezies in Preston-Bouillon bei 42 °C über 24 h und anschließendem Ausstrich auf Selektivagar nach Karmali kein Koloniewuchs feststellbar war. Das immunologische Ergebnis konnte demnach im Hinblick auf den Nachweis der vom Gerät erfassten Zielkeime nicht bestätigt werden.

Tabelle 19: Immunologisches Testergebnis der verschiedenen Keimspezies im ELFA- und GLISA-System

Familie	Spezies, Herkunft	Beimpfungs- konzentration [KbE/ml]	Ergebnis ELFA	Ergebnis GLISA
Bacillaceae	Bacillus cereus ATCC 10876	4,3 x10 ⁸	negativ	negativ
Bacillaceae	Cl. bifermantans DSM 630	8,9 x10 ⁸	negativ	negativ
	Citrobacter freundii L 30/1	2,5 x10 ⁹	negativ	negativ
	Enterobacter cloacae EN 45	1,6 x10 ¹⁰	negativ	negativ
Enterobacteriaceae	Escherichia coli ATCC 25922	3,2 x10 ⁹	negativ	negativ
Enteropacteriaceae	Proteus mirabilis ATCC 14153	7,8 x10 ⁹	negativ	negativ
	S. Typhimurium var. C H 7.2	1,5 x10 ⁹	negativ	negativ
	Yersinia enterocolitica ATCC 9610 ^T	8,0 x10 ⁹	negativ	negativ
Lactobacillaceae	<i>Lactobacillus sakei</i> C1 104/2	1,2 x10 ⁸	negativ	negativ

Fortsetzung Tabelle 19: Immunologisches Testergebnis der verschiedenen Keimspezies im ELFAund GLISA-System

Familie	Spezies, Herkunft	Beimpfungs- konzentration [KbE/ml]	Ergebnis ELFA	Ergebnis GLISA
Micrococcaceae	Micrococcus luteus ATCC 9341	4,7 x10 ⁷	negativ	negativ
Wildiococcaceae	Staphylococcus aureus DSM 1104	6,4 x10 ⁹	negativ	negativ
Pseudomonadaceae	Pseudomonas aeruginosa DSM 50071 [™]	9,7 x10 ⁸	negativ	negativ
Streptococcaceae	Enterococcus faecalis DSM 2570	2,1 x10 ⁹	negativ	negativ
Sireptococcaceae	Enterococcus faecium DSM 2146	9,3 x10 ⁸	negativ	negativ
Vibrionaceae	Aeromonas hydrophila ATCC 30187 [†]	2,4 x10 ⁹	negativ	negativ
	<i>Arcobacter skirrowii</i> DSM 7302 [™]	9,1 x10 ⁸	negativ	negativ
	<i>Arcobacter cryaerophilus</i> DSM 7289 ^T	1,0 x10 ⁹	negativ	negativ
	<i>Arcobacter butzleri</i> DSM 8739 [™]	1,2 x10 ⁹	negativ	negativ
Campylobacteraceae	Campylobacter fetus fetus DSM 5361 ^T	1,8 x10 ⁸	positiv ¹	positiv ¹
Campylobacteraceae	Campylobacter upsaliensis DSM 5365 ^T	2,3 x10 ⁸	positiv ¹	positiv ¹
	Campylobacter jejuni jejuni DSM 4688 ^T	1,4 x10 ⁸	positiv	positiv
	<i>Campylobacter coli</i> DSM 4689 [™]	1,8 x10 ⁸	positiv	positiv
	Campylobacter lari DSM 11375 ^T	1,1 x10 ⁸	positiv	positiv
	<i>Listeria innocua</i> DSM 20649 ^T	9,8 x10 ⁹	negativ	negativ
Lintaviana	Listeria ivanovii DSM 20750T	3,9 x10 ⁹	negativ	negativ
Listeriaceae	Listeria monocytogenes DSM 12464	2,8 x10 ⁹	negativ	negativ
	Brochothrix thermosphacta ATCC 11509 ^T	3,0 x10 ⁸	negativ	negativ

^{1:} nach mikroaerophiler Anreicherung in Preston-Bouillon bei 42 °C über 24 h und anschließendem Ausstrich auf Selektivagar nach Karmali kein Koloniewuchs feststellbar; T: Typstamm

4.2 Nachweis von *Campylobacter* spp. in nativ kontaminierten Proben

4.2.1 Schlachthofproben

Kloakenkottupferproben (n = 161) von Putenherden aus vier Mastbetrieben (A - D) wurden auf das Vorkommen von *Campylobacter* spp. untersucht. Der kulturelle, immunologische bzw. molekularbiologische Nachweis wurde parallel in den unterschiedlichen Systemen erbracht (Tabelle 20, Anhang F).

Von den 158 kulturell *Campylobacter*-positiven Kotproben erwiesen sich 9 (5,7 %) als *Campylobacter coli*-positiv und 149 Proben (94,3 %) als *Campylobacter jejuni*-positiv.

Drei Kotproben waren kulturell *Campylobacter*-negativ (2 Überwucherungen), wobei hiervon zwei Proben (Mäster B und D) jeweils einen positiven Testwert (TW) im immunologischen Nachweissystem und ein *Campylobacter*-negatives bzw. *Campylobacter*-positives Ergebnis in der PCR zeigten.

Die nach Herstelleranweisung verlangte anschließende kulturelle Bestätigung der zwei immunologisch positiven TW konnte nicht erbracht werden. Eine Überwucherung der Nährbodenoberfläche durch nicht näher bestimmte Mikroorganismen war bei diesen Proben festzustellen.

Nur eine Tupferprobe war in allen drei Systemen negativ getestet worden (richtig-negatives Ergebnis).

Tabelle 20: Paralleler Nachweis von *Campylobacter* spp. aus Kotproben über unterschiedliche Systeme

		Nachweissystem (siehe Kapitel 3)		
Mäster	Anzahl	Kulturell	Immunologisch	Molekularbiologisch
(A-D)	Kotproben	(ISO 10272)	(miniVIDAS®)	(PCR n. OYOFO)
		[positiv/negativ]	[positiv/negativ]	[positiv/negativ]
Α	25	25 (100 %) / 0	25 (100 %) / 0	25 (100 %) / 0
В	76	74 (97 %) / 2 (3 %)	74 (97 %) / 2 ¹ (3 %)	74 (97 %) / 2 (3 %)
С	10	10 (100 %) / 0	10 (100 %) / 0	10 (100 %) / 0
D	50	49 (98 %) / 1 (2 %)	49 (98 %) / 1 ¹ (2 %)	50 (100 %) / 0
A-D	161	158 (98 %) / 3 (2 %)	158 (98 %) / 3 (2 %)	159 (99 %) / 2 (1 %)

^{1:} hiervon konnte ein immunologisch positives Ergebnis (positiver TW-Wert) kulturell nicht bestätigt werden: *Campylobacter*-negatives Gesamtergebnis.

Die kulturelle, immunologische sowie molekularbiologische Nachweisrate aus den Kotproben unterscheidet sich nicht signifikant voneinander (χ^2 = 0,20; Irrtumswahrscheinlichkeit α = 0,05; signifikant, wenn $\chi^2 \ge 3,84$; χ^2 = n(ad-bc)²/n₁n₂(a+c)(b+d); n₁=a+b, n₂=c+d (LORENZ, 1992)).

4.2.2 Lebensmittel

490 lose und verpackte Geflügelproben, gezogen im Berliner Einzelhandel, wurden kulturell auf *Campylobacter* spp. untersucht. Dabei entfielen 252 Proben auf Geflügelinnereien (gefroren 52, frisch 200), sowie 238 Proben auf Gefügelfleischprodukte (gefroren 67, frisch 171).

Von insgesamt 490 untersuchten Proben waren 281 (57,3 %) kulturell *Campylobacter*-positiv befundet worden. Hiervon ließen sich 151 Proben (30,8 %) den Geflügelinnereien und 130 Proben (26,5 %) dem Geflügelfleisch zuordnen (Tabelle 21).

Betrachtet man die *Campylobacter*-positiv getesteten Proben, ist eine hohe Isolationsrate aus frischen Geflügelprodukten (83,3 %) im Gegensatz zu den gefrorenen Waren (16,7 %) auffallend.

Die *Campylobacter*-Isolationsrate aus frischen Geflügelproben ist signifikant höher als aus gefrorenen Proben ($\chi^2 = 20.5$; Irrtumswahrscheinlichkeit $\alpha = 0.05$; signifikant, wenn $\chi^2 \ge 3.84$ (LORENZ, 1992)).

Die niedrigste *Campylobacter*-Nachweisrate wurde aus gefrorenen Proben von Geflügelinnereien (7,4 %), die höchste Nachweisrate bei der Produktgruppe frischer Geflügelinnereien (46,3 %) erzielt.

		Probenart		gesamt
		Fleisch	Innereien	3
	fui la	104	130	234
Proben- zustand	frisch	37,0 %	46,3 %	83,3 %
Proben- zustand		26	21	47
L N	gefroren	9,3 %	7,4 %	16,7 %
Campy	lobacter-	130	151	204 (400 0/)
oositiv		46,3 %	53,7 %	281 (100 %)

Tabelle 21: *Campylobacter*-positive Geflügelproben (n_{positiv} = 281)

Bei Bezug auf die Probenart (Fleisch/Innereien) war auf der Seite der Innereien eine etwas höhere Isolationsrate von *Campylobacter* spp. zu verzeichnen (53,7 %) als auf Seiten der Geflügelfleischwaren (46,3 %). Eine Signifikanz ist hierbei nicht festzustellen (($\chi^2 = 1,40$; Irrtumswahrscheinlichkeit $\alpha = 0,05$; signifikant, wenn $\chi^2 \ge 3,84$ (LORENZ, 1992)).

Puten- und Hähnchenfleischerzeugnisse

Bei Aufschlüsselung des Probenspektrums in Puten- und Hähnchenfleischerzeugnisse konnten folgende Ergebnisse verzeichnet werden:

Von 148 untersuchten Putenerzeugnissen wurde in 54,1 % *Campylobacter* spp. nachgewiesen. 201 Hähnchenproben waren *Campylobacter*-positiv (58,8 %). Bezogen auf die Probenart (Fleisch/Innereien) war bei beiden Tierarten eine jeweils höhere Nachweisrate bei den Innereien festzustellen (Tabelle 22).

Von insgesamt 106 untersuchten Leberproben waren in 61 (57,5 %) *Campylobacter* spp. nachzuweisen (36/62 Proben Hähnchenleber, 25/44 Proben Putenleber).

Im Vergleich zu allen untersuchten Proben der Tierart Pute (n_2 =148) konnten bei Proben der Tierart Hähnchen (n_1 =342) eine relativ höhere Nachweisrate ermittelt werden, die jedoch nicht signifikant höher ist (χ^2 = 0,94; Irrtumswahrscheinlichkeit α = 0,05; signifikant, wenn χ^2 ≥ 3,84; χ^2 = n(ad-bc)²/n₁n₂(a+c)(b+d); n₁=a+b, n₂=c+d (Lorenz, 1992)). In der Gruppe "Putenund Hähnchenfleisch" wichen die Isolationsraten signifikant voneinander ab (χ^2 = 0,57). Es konnten signifikant mehr *Campylobacter* Keime innerhalb der Gruppe "Innereien" bei der Tierart Hähnchen isoliert werden (χ^2 = 0,49).

Tabelle 22: *Campylobacter*-positive Geflügelfleischerzeugnisse (n_{Pute} = 148, $n_{Hähnchen}$ = 342), aufgeschlüsselt nach der Probenart

		Probenart		
		Fleisch positive Proben (Anzahl untersuchter Proben)	Innereien positive Proben (Anzahl untersuchter Proben)	gesamt
	Pute	34 (67)	46 (81)	80 (148)
Tierart		50,7 %	56,8 %	54,1 %
Ţ.	Hähnchen	96 (171)	105 (171)	201 (342)
		56,1 %	61,4 %	58,8 %

Schlüsselt man die Proben (n = 490) nach gefrorene (n_2 = 119) und frische Proben (n_1 = 371) auf, ergibt sich die aus der Tabelle 23 ersichtlichen Nachweisraten. So war hier eine signifikant niedrigere Isolationsrate bei den gefrorenen Proben als bei den frischen Proben zu verzeichnen (χ^2 = 20,5; Irrtumswahrscheinlichkeit α = 0,05; signifikant, wenn χ^2 ≥ 3,84; χ^2 = n(ad-bc)²/n₁n₂(a+c)(b+d); n₁=a+b, n₂=c+d (LORENZ, 1992)). Von den untersuchten gefrorenen Puten- und Hähnchenerzeugnissen wurden in 47 Proben (39,4 %) thermophile *Campylobacter* spp. nachgewiesen, bei den frisch angebotenen Waren war dies in 234 Proben (63,1 %) der Fall.

Die niedrigste Isolationsrate verzeichneten gefrorene Putenerzeugnisse (28,0 %) (Tabelle 23). Es wurden signifikant weniger *Campylobacter* spp. in gefrorenen Putenproben als in Hähnchenproben isoliert ($\chi^2 = 4,77$). Hingegen unterschied sich die *Campylobacter*-Isolationsrate zwischen frischen Proben von Pute und Hähnchen nicht signifikant voneinander ($\chi^2 = 1,04$).

Tabelle 23 : Campylobacter-positive Geflügelfleischerzeugnisse (n _{Hähnchen} = 342, n _{Pute} = 14	48),
aufgeschlüsselt nach ihrem Angebotszustand	

		Angebot		
		gefroren positive Proben (Anzahl untersuchter Proben)	frisch positive Proben (Anzahl untersuchter Proben)	gesamt
	Pute	14 (50)	66 (98)	80 (148)
art		28,0 %	67,3 %	54,1 %
Tierart	Hähnchen	33 (69)	168 (273)	201 (342)
		47,8 %	61,5 %	58,8 %

4.3 Sensitivitätsvergleich unter Verwendung von *Campylobacter*-Reinkulturen (ohne Matrix und Anreicherung)

ELFA-System

Die in diesen Untersuchungen festgestellte untere gerätespezifische Nachweisgrenze, ermittelt anhand von *Campylobacter*-Reinkulturen in Brucella-Bouillon, beträgt für das miniVIDAS®-System:

- Campylobacter coli (DSM 4689^T): 1,4 x 10⁵ KbE Campylobacter/ml,
- Campylobacter jejuni (DSM 4688^T): 2,9 x 10⁵ KbE Campylobacter/ml,
- Campylobacter lari (DSM 1137^T): 2,1 x 10⁵ KbE Campylobacter/ml.

In Vorversuchen konnte ermittelt werden, dass mit einer Keimzahl von ca. 1×10^7 KbE/ml zu rechnen ist, wenn eine Brucella-Bouillon (5 ml) mit einer Öse Koloniematerial beimpft und anschließend mikroaerob bei 42 °C über 24h bebrütet wird.

Zunächst wurden die *Campylobacter*-Konzentrationen der bebrüteten Ausgangsbouillon anhand der ausgezählten Kolonie-bildenden Einheiten (KbE) von drei dezimalen Verdünnungsstufen (Spatelverfahren: 0,1 ml Auftragsvolumen) ermittelt:

Bouillon 1	Bouillon 2	Bouillon 3
Campylobacter coli	Campylobacter jejuni	Campylobacter lari
10 ⁻³ : 146, 121	10 ⁻⁴ : (>300), 286	10 ⁻⁴ :203,218
10 ⁻⁴ : 26, 10	10 ⁻⁵ : 36, 23	10 ⁻⁵ :18, 20
10 ⁻⁵ : 6, 8	10 ⁻⁶ : 2, 4	10 ⁻⁶ :2, 3

Dies entspricht einer Gesamtkeimzahl von 1,4 x 10^6 KbE *Campylobacter coli/*ml, 2,9 x 10^7 KbE *Campylobacter jejuni/*ml und 2,1 x 10^7 KbE *Campylobacter lari/*ml in der Ausgangsbouillon.

Die jeweiligen Verdünnungsstufen (10⁰ bis 10⁻⁴) fanden im Doppelansatz Eingang in das immunologische Testsystem. Die Tabelle 24 zeigt die Untersuchungsergebnisse der einzelnen Verdünnungsstufen der jeweiligen *Campylobacter*-Spezies im ELFA-Testsystem (miniVIDAS®). Dabei war festzustellen, dass hohe Keimdichten von bis zu 2,1 - 2,9 x 10⁷ KbE *Campylobacter*/ml zu positiven Testresultaten führten.

Tabelle 24: Bestimmung der Nachweisgrenze anhand von *Campylobacter*-Reinkulturen (*C. coli, C. jejuni, C. lari*) im ELFA-Testsystem

Verdünnungsstufe	KbE <i>C. coli</i> pro ml	ELFA-Testsystem ² (Doppelansatz)
10 ⁰ (Original)	1,4 x 10 ⁶	positiv/positiv
10 ⁻¹	1,4 x 10 ⁵	positiv/positiv ¹
10 ⁻²	1,4 x 10 ⁴	negativ/negativ
10 ⁻³	1,4 x 10 ³	negativ/negativ
10 ⁻⁴	1,4 x 10 ²	negativ/negativ
Verdünnungsstufe	KbE <i>C. jejuni</i> pro ml	ELFA-Testsystem ² (Doppelansatz)
10 ⁰ (Original)	2,9 x 10 ⁷	positiv/positiv
10 ⁻¹	2,9 x 10 ⁶	positiv/positiv
10 ⁻²	2,9 x 10 ⁵	positiv/positiv
10 ⁻³	2,9 x 10 ⁴	negativ/negativ
10 ⁻⁴	2,9 x 10 ³	negativ/negativ
Verdünnungsstufe	KbE C. lari pro ml	ELFA-Testsystem ² (Doppelansatz)
10 ⁰ (Original)	2,1 x 10 ⁷	positiv/positiv
10 ⁻¹	2,1 x 10 ⁶	positiv/positiv
10 ⁻²	2,1 x 10 ⁵	positiv/positiv
10 ⁻³	2,1 x 10 ⁴	negativ/negativ
10 ⁻⁴	2,1 x 10 ³	negativ/negativ

¹⁾ niedriger Testwert (0,28/0,21); 2) ELFA-Testwert negativ < 0,10, Testwert positiv ≥ 0,10

GLISA

Analog der Vorgehensweise zum ELFA-System (s. o.) fanden die jeweiligen Verdünnungsstufen von *Campylobacter jejuni*, *Campylobacter coli* und *Campylobacter lari* Eingang ins GLISA-System.

Hohe Keimdichten von 2.9×10^7 KbE *Campylobacter jejuni*/ml führten zu positiven Testresultaten, hingegen eine Keimdichte von 2.1×10^7 KbE/ml bei *Campylobacter lari* zu negativen Testergebnissen führte.

Bei der Keimkonzentrationsstufe 2,9 x 10⁵ KbE *Campylobacter jejuni/*ml traten sehr schwache Testzonen bei gleichzeitig positiven Kontrollzonen auf (negatives Ergebnis).

Die in diesen Untersuchungen festgestellte untere gerätespezifische Nachweisgrenze beträgt für das GLISA-System:

- Campylobacter coli (DSM 4689^T): 1,4 x 10⁶ KbE Campylobacter/ml,
- Campylobacter jejuni (DSM 4688^T): 2,9 x 10⁶ KbE Campylobacter/ml,
- Campylobacter lari (DSM 1137^T): >2,1 x 10⁷ KbE Campylobacter/ml.

Polymerase-Kettenreaktion

Dezimale Verdünnungsstufen, die aus einer zuvor artifiziell mit *Campylobacter coli* bzw. *Campylobacter jejuni* beimpften Brucella-Bouillon gewonnen wurden, sind auf Karmali-Agar aufgetragen und bebrütet worden. Die Keimzahl pro ml Bouillon wurde von jeder Verdünnungsstufe über das Colony Counter System (Synbiosis ProtoCOL) bestimmt. Parallel wurde jede Verdünnungsstufe über das PCR-Nachweissystem auf die Zielkeime hin untersucht. Die Ergebnisse dieser Nachweise werden aus der Tabelle 25 ersichtlich.

Die in diesen Untersuchungen festgestellte gerätespezifische Nachweisgrenze (inklusive des DNA-Extraktionsschrittes) beträgt für das molekularbiologische Nachweissystem (Primerpaar pg3/pg50) für:

- Campylobacter coli (DSM 4689^T): 3,0 x 10³ KbE Campylobacter/ml und für
- Campylobacter jejuni (DSM 4688^T): 1,7 x 10⁴ KbE Campylobacter/ml.

Diese Werte sind aus jeweils zwei Versuchsreihen (V-1, V-2) ermittelt worden (arithmetisches Mittel), wobei für die Berechnung nur vom System positiv detektierte Proben mit der jeweils niedrigsten *Campylobacter*-Konzentration berücksichtigt wurden.

Beispielhaft ist in Abbildung 11 das Ergebnis der gelelektrophoretischen Auftrennung der Versuchsreihe V-1 für *Campylobacter jejuni* gezeigt. Deutlich sind die in ihrer Intensität abnehmenden Amplifikationsbanden (ca. 450 bp) bei höherer Verdünnungsstufe zu erkennen. Bei Keimkonzentrationen von unter 1,8 x 10³ KbE *Campylobacter jejuni/*ml (Lane 4, 5, 9, 10) in der Ausgangsbouillon sind keine Amplifikationsbanden mehr erkennbar (negatives Testergebnis).

Tabelle 25: Molekularbiologisches Ergebnis der in unterschiedlicher Keimkonzentration artifiziell kontaminierten Bouillon

Versuchsreihe V-1 (Verdünnungsreihen a/b) – Campylobacter coli			
Proben-ID	KbE <i>C. coli</i> pro ml	PCR-Ergebnis	
IV-1.15a	1,0 x 10 ¹	negativ	
IV-1.14a	$2,6 \times 10^2$	negativ	
IV-1.13a	2,8 x 10 ³	positiv ²	
IV-1.12a	1,8 x 10 ⁴	positiv	
IV-1.11a	3,1 x 10 ⁵	positiv	
IV-1.19b	2.0×10^2	negativ	
IV-1.18b	2,2 x 10 ³	positiv ²	
IV-1.17b	n. b. ¹	n. b. ¹	
IV-1.16b	2,7 x 10 ⁵	positiv	

¹⁾ n. b.: nicht bestimmbar (kein Wuchs, PCR negativ, Pipettierfehler?)

Versuchsreihe V-1 (Verdünnungsreihen a/b) – Campylobacter jejuni

Proben-ID	KbE <i>C. jejuni</i> pro ml	PCR-Ergebnis	Amplifikat in Abbildung 11
IV-1.5a	1.8×10^2	negativ	Lane 5
IV-1.4a	1.7×10^3	negativ	Lane 4
IV-1.3a	1,9 x 10 ⁴	positiv ²	Lane 3
IV-1.2a	1,8 x 10 ⁵	positiv	Lane 2
IV-1.1a	1.7×10^6	positiv	Lane 1
IV-1.10b	2.5×10^2	negativ	Lane 10
IV-1.9b	1,8 x 10 ³	negativ	Lane 9
IV-1.8b	2,1 x 10 ⁴	positiv ²	Lane 8
IV-1.7b	2.0×10^5	positiv	Lane 7
IV-1.6b	1,9 x 10 ⁶	positiv	Lane 6

²⁾ schwache Amplifikationsbande

Versuchsreihe V-2 – Campylobacter coli

Proben-ID	KbE <i>C. jejuni</i> pro ml	PCR-Ergebnis
IV-2.5	4.9×10^2	negativ
IV-2.4	4.0×10^3	positiv ²
IV-2.2	1,3 x 10 ⁵	positiv
IV-2.1	1,2 x 10 ⁶	positiv

²⁾ schwache Amplifikationsbande

Versuchsreihe V-2 - Campylobacter jejuni

Proben-ID	KbE C. jejuni pro ml	PCR-Ergebnis
IV-2.5	1,4 x 10 ²	negativ
IV-2.4	1,1 x 10 ³	negativ
IV-2.3	9,7 x 10 ³	positiv ²
IV-2.2	7.4×10^4	positiv
IV-2.1	8,5 x 10 ⁵	positiv

²⁾ schwache Amplifikationsbande

²⁾ schwache Amplifikationsbande

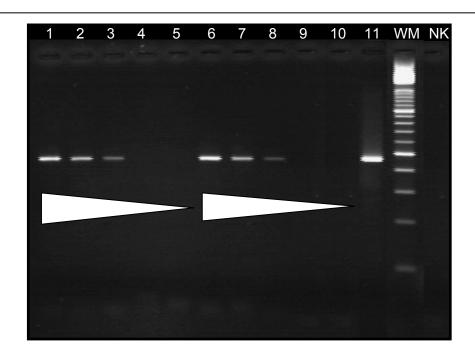


Abbildung 11: Ergebnis der Gelelektrophorese der Versuchsreihe V-1 (*Campylobacter jejuni*)

Lane 1-3 und Lane 5-8: *C. jejuni*-Amplifikat; Lane 4, 5, 9, 10: keine sichtbaren Amplifikate; Lane 11: *C. jejuni* bei 450 bp (DSM 4688^T); WM: Weight Marker (100 bp); NK: Negativkontrolle.

4.4 Methodenabhängige Spezifität, Sensitivität, Übereinstimmungsgrad

Die verschiedenen alternativen Nachweisverfahren sind hinsichtlich ihrer relativen Sensitivität, Spezifität und ihrem Übereinstimmungsgrad (Accuracy) zum kulturellen Nachweisverfahren (Goldstandard) untersucht worden. Die eingesetzte Probenmatrix wurde mit *Campylobacter* spp. artifiziell als auch natürlich kontaminiert.

4.4.1 Artifiziell kontaminierte Proben

Die artifiziell kontaminierten Proben wiesen unterschiedliche Inokulationskonzentrationen auf und wurden parallel den verschiedenen Systemen (GLISA, ELFA, PCR, Goldstandard) zugeführt.

Die Ergebnisse der 24 h-Kultur zur Herstellung der Dotierungssuspension ergaben eine Vermehrung von *Campylobacter jejuni* auf 3,0 bis 8,5 x10⁸ KbE/ml Brucella-Bouillon. Die ermittelten Werte sind in Tabelle 26 zusammengefasst. Die Gehalte in der Fleischmatrix errechnen sich aus der Verdünnung von 20 ml Dotierungssuspension in 2000 g Modellbrät. Im Versuch I und II ist vor Anreicherung das dotierte Brät quantitativ auf *Campylobacter* spp. untersucht worden. Diese Werte der ermittelten Keimzahlen bewegen sich an der

Nachweisgrenze (5,0 x 10¹ KbE/g) des angewandten Verfahrens. So wurden niedriger dotierte Bräte quantitativ nicht untersucht.

Tabelle 26: Dotierte Campylobacter jejuni in KbE/g Fleisch (berechnet / ermittelt)

	Brucella Bouillon 24 h Kultur	Dotierungssuspension	Berechneter mittlerer Gehalt in der Fleischmatrix
Versuch	$\overline{\mathrm{x}}$ in KbE/ml	$\overline{\mathrm{x}}$ in KbE/ml	(direkt isoliert; Standardabweichung) \overline{x} in KbE/g
I	4,2 x10 ⁸	4,2 x10 ⁴	4.2×10^{2} $(1.8 \times 10^{2}; s = 0.29)^{a}$
II	3,1 x10 ⁸	3,1 x10 ⁴	3.1×10^{2} $(1.7 \times 10^{2}; s = 0.20)^{a}$
III	5,6 x10 ⁸	5,6 x10 ³	5,6 x10 ¹
IV	3,0 x10 ⁸	3,0 x10 ³	3,0 x10 ¹
V	4,5 x10 ⁸	4,5 x10 ²	4,5 x10 ⁰
VI	4,0 x10 ⁸	4,0 x10 ²	4,0 x10 ⁰
VII	8,5 x10 ⁸	8,5 x10 ²	8,5 x10 ⁰
VIII	5,2 x10 ⁸	5,2 x10 ¹	5,2 x10 ⁻¹
IX	4,1 x10 ⁸	4,1 x10 ¹	4,1 x10 ⁻¹

a = direkt isolierte KbE/g, arithmetisch gemittelter Wert aus 6 Proben, KbE/g; Standardabweichung (s) der log₁₀-transformierten Probeneinzelwerte

Die Tabellen 26 und 27 zeigen die Einmischversuche I bis IX mit ihren jeweilig ermittelten Einmischkonzentrationen sowie die nach 24- bzw. 48-stündigen Bebrütungphase vorhandene *Campylobacter*-Konzentration in der Preston-Anreicherungsbouillon. Angegeben sind zudem die Test-Ergebnisse in den unterschiedlichen Nachweissystemen.

Über den in den jeweiligen Versuchen I-IX erhobenen Keimstatus (mesophile Gesamtkeimzahl, *Pseudomonadaceae, Enterobacteriaceae, Lactobacillaceae, Micrococcus, Staphylococcus aureus*) gibt der Anhang D Auskunft.

Die mesophile Gesamtkeimzahl bewegte sich in den Versuchen zwischen 3,0 x 10⁵ und 2,1 x 10⁷ KbE/g. Hohe Keimzahlen waren insbesondere in den Familien *Pseudomonadaceae* und *Enterobacteriaceae* zu verzeichnen.

Ergebniss

Tabelle 27: Testergebnisse der unterschiedlichen Nachweissysteme in Beziehung zur *Campylobacter*-Konzentration in der Anreicherungsbouillon (24 h / 48 h Anreicherung)

Dotierungs- versuch	Proben- Nummer	Quantitativ nach 24 h Anreicherung [KbE/ml]	Referenzverfahren 24 h Anreicherung	Quantitativ nach 48 h Anreicherung [KbE/ml]	ELFA 48 h Anreicherung	GLISA 48 h Anreicherung	PCR 48 h Anreicherung
	1	1,3 x10 ⁷	positiv	6,7 x10 ⁸	positiv	positiv	positiv
	2	3,2 x10 ⁷	positiv	3,6 x10 ⁸	positiv	positiv	positiv
ı	3	4,0 x10 ⁵	positiv	3,0 x10 ⁸	positiv	positiv	positiv
	4	3,8 x10 ⁶	positiv	2,3 x10 ⁸	positiv	positiv	positiv
	5	2,2 x10 ⁵	positiv	2,6 x10 ⁸	positiv	positiv	positiv
	6	3,0 x10 ⁶	positiv	4,0 x10 ⁸	positiv	positiv	positiv
	1	2,7 x10 ⁵	positiv	1,6 x10 ⁸	positiv	positiv	positiv
	2	6,2 x10 ⁵	positiv	3,6 x10 ⁸	positiv	positiv	positiv
l II	3	1,5 x10 ⁴	positiv	2,4 x10 ⁷	positiv	positiv	positiv
. 11	4	6,5 x10 ⁵	positiv	2,2 x10 ⁸	positiv	positiv	positiv
	5	1,8 x10 ⁶	positiv	4,6 x10 ⁸	positiv	positiv	positiv
	6	1,1 x10 ⁶	positiv	4,8 x10 ⁸	positiv	positiv	positiv
	1	4,6 x10 ⁵	positiv	1,3 x10 ⁸	positiv	positiv	positiv
	2	6,0 x10 ³	positiv	1,7 x10 ⁸	positiv	positiv	positiv
III	3	1,3 x10 ⁴	positiv	6,9 x10 ⁷	positiv	positiv	positiv
111	4	1,3 x10 ⁴	positiv	9,2 x10 ⁷	positiv	positiv	positiv
	5	n. a.	positiv	3,6 x10 ⁷	positiv	positiv	positiv
	6	1,7 x10 ⁵	positiv	1,8 x10 ⁸	positiv	positiv	Positiv

Fortsetzung Tabelle 27

Dotierungs- versuch	Proben- Nummer	Quantitativ nach 24 h Anreicherung [KbE/ml]	Referenzverfahren 24 h Anreicherung	Quantitativ nach 48 h Anreicherung [KbE/ml]	ELFA 48 h Anreicherung	GLISA 48 h Anreicherung	PCR 48 h Anreicherung
	1	9,0 x10 ³	positiv	3,5 x10 ⁶	positiv	positiv	positiv
	2	1,1 x10 ³	positiv	1,7 x10 ⁶	positiv	positiv	positiv
IV	3	n. n.	negativ	n. n.	negativ	negativ	negativ
10	4	1,0 x10 ³	positiv	3,4 x10 ⁷	positiv	positiv	positiv
	5	3,0 x10 ³	positiv	1,1 x10 ⁶	positiv	positiv	positiv
	6	5,3 x10 ⁴	positiv	4,2 x10 ⁷	positiv	positiv	positiv
	1	n. a.	positiv	6,3 x10 ⁵	positiv	positiv	positiv
	2	n. n.	negativ	n. n.	negativ	negativ	negativ
V	3	n. n.	negativ	n. n.	negativ	negativ	negativ
V	4	n. n.	negativ	n. n.	negativ	negativ	negativ
	5	n. n.	negativ	n. n.	negativ	negativ	negativ
	6	n. n.	negativ	3,0 x10 ⁴	negativ	negativ	negativ
	1	6,5 x10 ²	positiv	8,3 x10 ⁶	positiv	positiv	positiv
	2	1,2 x10 ³	positiv	3,4 x10 ⁶	positiv	positiv	positiv
VI	3	2,2 x10 ³	positiv	3,6 x10 ⁶	positiv	positiv	positiv
VI	4	1,6 x10 ³	positiv	4,5 x10 ⁷	positiv	positiv	positiv
	5	1,4 x10 ³	positiv	2,5 x10 ⁷	positiv	positiv	positiv
	6	3,6 x10 ³	positiv	5,1 x10 ⁶	positiv	positiv	positiv

ı	T
	7
4	3
C	D
ζ	3
-	7
7	Ξ
Š	חַ
2	ņ

Fortsetzung Tabelle 27									
Dotierungs- versuch	Proben- Nummer	Quantitativ nach 24 h Anreicherung [KbE/ml]	Referenzverfahren 24 h Anreicherung	Quantitativ nach 48 h Anreicherung [KbE/ml]	ELFA 48 h Anreicherung	GLISA 48 h Anreicherung	PCR 48 h Anreicherung		
	1	5,4 x10 ⁵	positiv	1,1 x10 ⁸	positiv	positiv	positiv		
	2	6,1 x10 ⁴	positiv	5,1 x10 ⁷	positiv	positiv	positiv		
	3	2,1 x10 ⁴	positiv	6,3 x10 ⁷	positiv	positiv	positiv		
	4	3,4 x10 ⁴	positiv	6,9 x10 ⁷	positiv	positiv	positiv		
	5	4,7 x10 ⁴	positiv	8,0 x10 ⁷	positiv	positiv	positiv		
VII	6	9,7 x10 ⁴	positiv	4,4 x10 ⁷	positiv	positiv	positiv		
VII	7	7,6 x10 ⁴	positiv	6,7 x10 ⁷	positiv	positiv	positiv		
	8	2,8 x10 ⁴	positiv	7,4 x10 ⁷	positiv	positiv	positiv		
	9	2,9 x10 ⁵	positiv	1,3 x10 ⁸	positiv	positiv	positiv		
	10	8,8 x10 ³	positiv	1,4 x10 ⁸	positiv	positiv	positiv		
	11	2,8 x10 ⁴	positiv	1,2 x10 ⁷	positiv	positiv	positiv		
	12	4,5 x10 ⁴	positiv	1,9 x10 ⁷	positiv	positiv	positiv		
	1	n. a.	präsumtiv positiv ^a	1,6 x10 ⁷	positiv	positiv	positiv		
	2	1,4 x10 ³	positiv	1,2 x10 ⁷	positiv	positiv	positiv		
	3	2,0 x10 ²	positiv	1,3 x10 ⁷	positiv	positiv	positiv		
VIII	4	n. n.	negativ	n. n.	negativ	negativ	negativ		
VIII	5	n. n.	negativ	n. n.	negativ	negativ	negativ		
	6	n. n.	negativ	n. n.	negativ	negativ	negativ		
	7	n. a.	präsumtiv positiv ^a	1,4 x10 ⁷	positiv	positiv	positiv		
	8	n. a.	präsumtiv positiv ^a	1,3 x10 ⁷	positiv	positiv	positiv		

Fortsetzung Tabelle 27

Dotierungs- versuch	Proben- Nummer	Quantitativ nach 24 h Anreicherung [KbE/ml]	Referenzverfahren 24 h Anreicherung	Quantitativ nach 48 h Anreicherung [KbE/ml]	ELFA 48 h Anreicherung	GLISA 48 h Anreicherung	PCR 48 h Anreicherung
	9	n. n.	negativ	n. n.	negativ	negativ	negativ
	10	4,2 x10 ²	positiv	1,0 x10 ⁷	positiv	positiv	positiv
VIII	11	n. n.	negativ	n. n.	negativ	negativ	negativ
	12	n. n.	negativ	n. n.	negativ	negativ	negativ
	1	2,6 x10 ²	negativ	1,0 x10 ³	negativ	negativ	negativ
	2	3,8 x10 ²	negativ	2,0 x10 ³	negativ	negativ	negativ
	3	5,4 x10 ²	negativ	3,0 x10 ³	negativ	negativ	negativ
	4	6,2 x10 ²	positiv	6,0 x10 ⁵	positiv	negativ	positiv
	5	8,7 x10 ²	positiv	3,4 x10 ⁶	positiv	positiv	positiv
ıx	6	9,0 x10 ²	negativ	5,0 x10 ³	negativ	negativ	negativ
	7	2,4 x10 ²	positiv	3,6 x10 ⁴	negativ	negativ	positiv
	8	4,0 x10 ²	negativ	1,0 x10 ³	negativ	negativ	negativ
	9	4,7 x10 ²	negativ	3,0 x10 ³	negativ	negativ	negativ
	10	6,5 x10 ²	positiv	9,8 x10 ⁴	negativ	negativ	positiv
	11	1,6 x10 ²	positiv	1,2 x10 ⁵	positiv	negativ	positiv
	12	2,1 x10 ²	positiv	5,0 x10 ³	negativ	negativ	negativ

n. a.: nicht auswertbar (überwuchert mit Begleitkeimen); n. n.: nicht nachweisbar; a: siehe Anhang B

In der Tabelle 28 sind die drei alternativen Testsysteme dem klassisch-kulturellen Nachweissystem (Goldstandard) gegenübergestellt. Der Goldstandard wies in 54 von 72 künstlich kontaminierten Proben *Campylobacter* spp. nach, 18 Proben wurden *Campylobacter*-negativ getestet.

Die drei alternativen Testsysteme (GLISA, ELFA, PCR) besitzen eine sehr gute Spezifität (100 %), wobei keine Positivabweichungen auftraten. Eine unterschiedlich hohe Sensitivität ist jedoch festzustellen: Im GLISA-System wurden fünf Proben, im ELFA-System drei Proben und im molekularbiologischen System eine negativ-abweichende Probe ermittelt. Das molekularbiologische System zeigte hier die höchste Sensitivität (98,2 %), dann folgten die immunologischen Systeme mit 94,4 % (ELFA) und 90,7 % (GLISA).

Die PCR besitzt im Vergleich zu den immunologischen Systemen den höchsten Übereinstimmungsgrad (98,6 %) zum Goldstandard. Das ELFA-System folgt mit 95,8 %, die Accuracy des GLISA beträgt 93,1 %.

Das alternative ELFA-Verfahren zeigte im Vergleich zum Goldstandard nicht signifikant mehr Positiv- bzw. Negativabweichungen der Testergebnisse (McNemar-Test: χ^2_{ELFA} = 1,33; χ^2 = (|a-b|-1)²/(a+b), wenn a = Proben positiv im ELFA und negativ im Goldstandard, b = Proben negativ im ELFA und positiv im Goldstandard; Signifikanz, wenn χ^2 > 3,84 und p = 0,05). Ebenso zeigten das GLISA- und das molekularbiologische Verfahren keine Signifikanz (χ^2_{GLISA} = 3,2; χ^2_{PCR} = 1, p = 0,05).

Tabelle 28: Relative Sensitivität u. Spezifität des ELFA, GLISA und der PCR, artifiziell kontaminierte Proben (n_{qesamt} = 72; Kappa 1 = vollständiger Zusammenhang)

		ISO positiv	ISO negativ	
GLISA	positiv	49	0	n = 72
GLISA	negativ	5	18	Übereinstimmungsgrad 93,1 %
\rightarrow		Sensitivität 90,7 %	Spezifität 100 %	Карра 0,83
		L		1
ELFA	positiv	51	0	n = 72
	negativ	3	18	Übereinstimmungsgrad 95,8 %
	\rightarrow	Sensitivität 94,4 %	Spezifität 100 %	Карра 0,89
		L		
DCD.	positiv	53	0	n = 72
PCR	positiv negativ	53 1	0 18	n = 72 Übereinstimmungsgrad 98,6 %

4.4.2 Nativ kontaminierte Feldproben

Natürlich-kontaminierte Feldproben (n = 394) aus dem Einzelhandel und vom Schlachthof wurden parallel im kulturellen sowie im alternativen ELFA-System auf *Campylobacter* spp. untersucht.

Festzustellen ist, dass die immunologische Methode dem kulturellen Referenzverfahren mit einem hohen Übereinstimmungsgrad von 99,0 % korrelierende Resultate liefert (Tabelle 29). Eine kulturell-positive Probe konnte vom alternativen ELFA-System nicht erkannt werden (Negativabweichung, Sensitivität 99,6 %), drei Positivabweichungen sind zu verzeichnen (Spezifität 97,2 %). Bei den drei Positivabweichungen ist festzuhalten, dass durch hohe Begleitkeimflora in der Referenzmethode ein negatives Ergebnis erzielt wurde. Die Negativabweichung des ELFA-Systems entstand durch ein kulturell nicht bestätigtes immunologisch-positives Testergebnis (starke kokkoide Begleitkeimflora).

Das alternative ELFA-Verfahren zeigte im Vergleich zum Referenzverfahren in natürlich kontaminierten Proben nicht signifikant mehr Positiv- bzw. Negativabweichungen (McNemarTest: $\chi^2_{ELFA} = 0.25$; $\chi^2 = (|a-b|-1)^2/(a+b)$, wenn $a = Proben positiv im ELFA und negativ im Goldstandard, b = Proben negativ im ELFA und positiv im Goldstandard; Signifikanz, wenn <math>\chi^2 > 3.84$ und p = 0.05; untere Vertrauensgrenze/Confidence limit bei p=95 % für $CI_{Sensitivität}(@95\%) \approx 99$ %, $CI_{Spezifität}(@95\%) \approx 94$ %, $CI_{Übereinstimmungsgrad}(@95\%) \approx 98$ %).

Tabelle 29: Relative Sensitivität und Spezifität des ELFA, natürlich kontaminierte Proben (n = 394)

	ISO positiv	ISO negativ	Summe				
ELFA positiv	284	3	287				
ELFA negativ	1	106	107				
Summe	285 72,3 %	109 27,7 %	394 100 %				
\rightarrow	Sensitivität 99,6 %	Spezifität 97,2 %	Übereinstimmungsgrad 99,0 %				
\rightarrow	Voraussagewert positive Diagnose: 99,0 % Voraussagewert negative Diagnose: 99,1 %						

Innerhalb der Gruppe der **Lebensmittel** (n = 233) zeigte das ELFA-System mit 126 *Campylobacter*-positiven und 104 *Campylobacter*-negativen Übereinstimmungen zum kulturellen Nachweissystem eine hohe relative Sensitivität (98,4 %) und Spezifität (99,0 %). Der Übereinstimmungsgrad des ELFA gegenüber dem kulturellen Verfahren beträgt 98,7 %.

Der höchste Kontaminationsgrad mit *Campylobacter* spp. (60,9 %) wurde in Geflügelinnereien festgestellt (Tabelle 30).

Werden die natürlich kontaminierten Proben in frisches und gefrorenes Geflügelfleisch, frische und gefrorene Geflügelinnereien sowie Kottupfer kategorisiert, so wurden die in Tabelle 30 dargestellten Ergebnisse bezüglich der Sensitivität und der Spezifität im ELFA gewonnen. Insgesamt wurden hohe Sensitivitäten und Spezifitäten beobachtet, wobei Unterschiede dieser Parameter zwischen den verschiedenen Probentypen festzustellen waren.

In der Kategorie **frische Lebensmittel** wurden weder Positiv- noch Negativabweichungen erzielt. Innerhalb der Gruppe **gefrorenes Lebensmittel** war im Geflügelfleisch eine Negativund eine Positivabweichung zu verzeichnen.

In der Kategorie Geflügelfleisch wird die Sensitivität mit 97,7 % und die Spezifität mit 98,0 % beziffert.

Das ELFA-System besitzt in der Kategorie **gefrorene Geflügelinnereien** eine Negativabweichung, positive Abweichungen sind nicht ermittelt worden. Die in der Kategorie Geflügelinnereien ermittelte Sensitivität beträgt 98,8 %, die Spezifität 100 %.

In der Kategorie **Geflügelkottupfer** sind 161 frische Proben untersucht worden. Hiervon erwiesen sich 158 Proben kulturell wie auch immunologisch *Campylobacter*-positiv. Zwei weitere Proben sind vom ELFA-Verfahren, jedoch nicht im kulturellen Nachweisverfahren, als präsumtiv *Campylobacter*-positiv detektiert worden. Festzustellen war im kulturellen Verfahren eine bakterielle Überwucherung der Agarplatten mit nicht näher definierten Keimen (Mischflora).

In einer Kottupferprobe wurde weder kulturell noch immunologisch *Campylobacter* spp. nachgewiesen, Negativabweichungen traten in dieser Kategorie nicht auf. Eine hohe Sensitivität ist hier feststellbar (100 %). Die Spezifität wurde wegen einer zu geringen Anzahl *Campylobacter*-negative befundeter Proben nicht ermittelt.

Natürlich-kontaminierte Feldproben (n = 143) aus dem Einzelhandel wurden parallel im kulturellen sowie im alternativen molekularbiologischen System auf *Campylobacter* spp. untersucht. Die Ergebnisse gehen aus den Tabellen 31 und 32 hervor.

Bei den vier Negativabweichungen der Lebensmittelproben sind in drei Proben Suppenhuhn (1 x gefroren, 2 x frisch) kulturell *Campylobacter lari* und in einer Probe Hähnchenleber (1x gefroren) *Campylobacter coli* nachgewiesen worden (Tabelle 32). Zwei Positivabweichungen

traten in einer Probe gefrorenen Putenfleisches und in einer Probe gefrorener Hähnchenherzen auf.

Tabelle 30: Relative Sensitivitäten und Spezifitäten des ELFA in Abhängigkeit von der Probenart natürlich kontaminierter Feldproben (n_{gesamt} = 394)

			_ebensmitte	lproben (n=2				
			Geflügelfleisch (n=95)		Geflügelinnereien (n=138)		Geflügelkottupfer (n=161)	
		R	RV positiv	RV negativ	RV positiv	RV negativ	RV positiv	RV negativ
ųς	ELFA pos	itiv 2	28	0	68	0	158	0
frisch	ELFA nega	ativ 0)	21	0	25	0	3 ^a
ren	ELFA pos	itiv 1	15	1	15	0	-	-
gefroren	ELFA nega	ativ 1	1	29	1	29	-	-
		4	14	51	84	54	158	3
TO	TOTAL		16,3 %	53,7 %	60,9 %	39,1 %	98,1 %	1,9 %
\rightarrow			Sensitivität 97,7 %	Spezifität 98,0 %	Sensitivität 98,8 %	Spezifität 100 %	Sensitivität 100 %	Spezifität n. e.

n. e.: nicht ermittelt; RV: Referenzverfahren; a: hiervon 2 präsumtiv positive im ELFA

Das alternative PCR-Verfahren zeigte im Vergleich zum Goldstandard in der Gruppe der natürlich kontaminierten Proben nicht signifikant mehr Positiv- bzw. Negativabweichungen (McNemar-Test: $\chi^2_{PCR} = 0,17$; $\chi^2 = (|a-b|-1)^2/(a+b)$, wenn a = Proben positiv in der PCR und negativ im Goldstandard, b = Proben negativ in der PCR und positiv im Goldstandard; Signifikanz, wenn $\chi^2 > 3,84$ und p = 0,05).

Tabelle 31: Relative Sensitivität und Spezifität der PCR, natürlich kontaminierte Lebensmittelproben (n = 143)

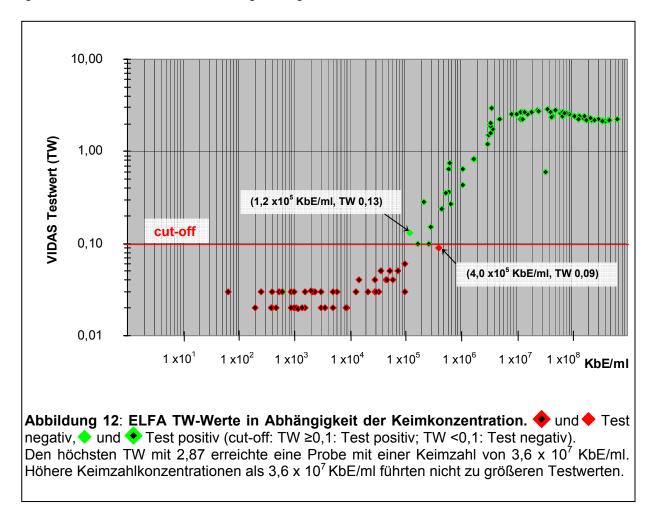
	ISO positiv	ISO negativ	Summe				
PCR positiv	1 /u		81				
PCR negativ	4	58	62				
Summe	83 58,0 %	60 42,0 %	143 100 %				
\rightarrow	Sensitivität 95,2 %	Spezifität 96,7 %	Übereinstimmungsgrad 95,8 %				
\rightarrow	Voraussagewert positive Diagnose: 98,0 %						
	Voraussage	wert negativ	ve Diagnose: 94,0 %				

Unterschiede in der Spezifität zwischen den Gruppen Geflügelfleisch und Geflügelinnereien liegen nicht vor. In beiden Gruppen liegt die Spezifität bei 96,7 %. Die Sensitivität beträgt für die Gruppe Geflügelfleisch 90,9 % und bei Innereien 98,0%. Die Sensitivität bei der Gruppe Geflügelkottupfer liegt bei 100 %, die Spezifität ist hier nicht ermittelt worden (Tabelle 32).

Tabelle 32: Relative Sensitivitäten und Spezifitäten der PCR in Abhängigkeit von der Probenart natürlich kontaminierter Feldproben (n_{gesamt} = 304)

Lebensmittelproben (n=143)								
			Geflügelfleisch (n=63)		Geflügelinnereien (n=80)		Geflügelkottupfer (n=161)	
			RV positiv	RV negativ	RV positiv	RV negativ	RV positiv	RV negativ
ř	PCR	positiv	15	0	35	0	158	1
frisch	PCR	negativ	2 (C. lari)	13	0	14	0	2
ren	PCR	positiv	15	1	14	1	-	-
gefroren	PCR	negativ	1 (C. lari)	16	1	15	-	-
			33	30	50	30	158	3
ТО	TOTAL		52,4 %	47,6 %	62,5 %	37,5 %	98,1 %	1,9 %
\rightarrow	•		Sensitivität 90,9 %	Spezifität 96,7 %	Sensitivität 98,0 %	Spezifität 96,7 %	Sensitivität 100 %	Spezifität n. e.

n. e.: nicht ermittelt ; RV: Referenzverfahren


4.5 Gerätespezifische Nachweisgrenze unter Verwendung einer artifiziell kontaminierten Bouillon (KbE/ml)

ELFA-System

In der Abbildung 12 ist in Abhängigkeit von der jeweils vorhandenen *Campylobacter jejuni*-Konzentration in der Anreicherungsbouillon das Ergebnis des miniVIDAS-Testsystems als Testwert (TW) grafisch dargestellt (grün: präsumtiv positiv; rot: präsumtiv negativ).

Die minimale Keimkonzentration, bei der das System ein präsumtiv positives Ergebnis erbrachte, betrug 1.2×10^5 KbE/ml (TW 0.13). Das präsumtiv positive Ergebnis konnte kulturell bestätigt werden. Bei einer Probe mit 4.0×10^5 KbE/ml betrug der TW 0.09 und erbrachte aufgrund der vom Hersteller definierten cut-off-Schwelle (threshold) ein negatives Ergebnis.

In zwei positiven Proben entsprach der TW exakt dem des cut-off Wertes von 0,1. Mit Ausnahme einer Probe $(4,0 \times 10^5 \text{ KbE/ml}, \text{ TW 0,09})$ waren alle Proben, die eine Keimzahl größer $1,2 \times 10^5 \text{ KbE/ml}$ besaßen, größer/gleich dem cut-off Wert.

In der Tabelle 33 sind in Abhängigkeit von der jeweiligen *Campylobacter jejuni* Konzentration der Anreicherungsbouillon die Ergebnisse des ELFA-Testsystems dargestellt. Die minimale Keimkonzentration, bei der das System ein positives Ergebnis erbrachte, betrug 1,2 x 10⁵ KbE/ml. Nur eine Probe mit einer Keimzahl von größer 1,2 x 10⁵ KbE/ml wurde negativ getestet.

Tabelle 33: ELFA Ergebnisse in Abhängigkeit der Keimkonzentration (n_{qesamt} = 116)

Campylobacter-Konzentration (KbE/ml Anreicherungsbouillon)			Ergebnis VIDAS (Anzahl)
2.0×10^2 bis 9.8×10^4			negativ (50)
1,2 x 10 ⁵ bis 2,9 x 10 ⁵	2 x 10 ⁵ bis 2,9 x 10 ⁵		positiv (5)
4,0 x 10 ⁵			negativ (1)
4,6 x 10 ⁵ bis 6,7 x10 ⁸		positiv (60)	

GLISA-System

In der Tabelle 34 sind in Abhängigkeit von der jeweiligen *Campylobacter jejuni* Konzentration in der Anreicherungsbouillon die Ergebnisse des GLISA-Testsystems dargestellt. Die minimale Keimkonzentration, bei der das System ein positives Ergebnis erbrachte, betrug 6,3 x 10⁵ KbE/ml. In drei Proben, die eine Keimzahl von über 6,3 x 10⁵ KbE/ml besaßen, wurde ein negatives Testergebnis festgestellt.

Tabelle 34: GLISA Ergebnisse in Abhängigkeit der Keimkonzentration (n_{gesamt} = 116)

Campylobacter-Konzentration (KbE/ml Anreicherungsbouillon)			Ergebnis GLISA (Anzahl)
2,0 x 10 ² bis 6,2 x 10 ⁵			negativ (60)
6,3 x 10 ⁵			positiv (1)
6,5 x 10 ⁵			negativ (1)
1,1 x 10 ⁶	0 ⁶		negativ (1) / positiv (1)
1,7 x 10 ⁶			positiv (1)
1,8 x 10 ⁶			negativ (1)
3,0 x 10 ⁶ bis 6,7 x 10 ⁸			positiv (50)

Polymerase-Kettenreaktion

In der Tabelle 35 sind in Abhängigkeit von der jeweiligen *Campylobacter jejuni* Konzentration in der Anreicherungsbouillon die Ergebnisse des PCR-Testsystems dargestellt. Die minimale Keimkonzentration, bei der das System ein positives Ergebnis erbrachte, betrug 8.8×10^3 KbE/ml. Fünf Proben, die eine Keimzahl von über 8.8×10^3 KbE/ml besaßen, sind im Testergebnis negativ befundet worden.

Tabelle 35: PCR Ergebnisse in Abhängigkeit der Keimkonzentration (n_{gesamt} = 116)

Campylobacter-Konzentration (KbE/ml Anreicherungsbouillon)			Ergebnis PCR (Anzahl)
$6.5 \times 10^1 \text{ bis } 6.0 \times 10^3$		negativ (32)	
8,8 x 10 ³			positiv (1)
9,0 x 10 ³ bis 1,5 x 10 ⁴			negativ (4)
2,1 x 10 ⁴ bis 2,8 x 10 ⁴		positiv (3)	
3,0 x 10 ⁴			negativ (1)
3,4 x 10 ⁴ bis 6,7 x 10 ⁸			positiv (50)

4.6 Methodenabhängige Nachweisgrenze unter Verwendung eines artifiziell kontaminierten Fleischbräts (KbE/g)

Werden die künstlich kontaminierten Proben in Dotierungsklassen mit unterschiedlichem Kontaminationslevel (hoch, mittel, niedrig) gruppiert, ist festzustellen, dass in hoch und mittel dotierten Proben alle Ergebnisse der unterschiedlichen Nachweissysteme mit 12 bzw. 11 positiv erkannten Proben übereinstimmten (Tabelle 36).

Alle 12 (100 %) mit *Campylobacter* spp. hochdotierten Testbrätproben (3,1-4,2 x 10² KbE/g) wurden vom ELFA-, GLISA-, und PCR-System auch als positiv erkannt.

Von 12 mittelhochdotierten Proben (3,0-5,6 x 10¹ KbE/g) wurden 11 Proben vom jeweiligen Nachweissystem positiv getestet.

Für die ausführliche Darstellung bezüglich der Probenergebnisse im dotierten Modellbrät wird auf den Anhang E verwiesen. Aus ihm sind die ermittelten Keimkonzentrationen der Einzelprobe nach Anreicherung ersichtlich.

Tabelle 36: Ergebnisse der künstlich-kontaminierten Proben in den verschiedenen Nachweissystemen ($n_{gesamt} = 72$)

Dotieru	ngslevel				positives Tes	tergebnis	
(Kb	E/g ^a MPN/g)	Dotierungs -versuch	Proben- anzahl	Referenz- verfahren	ELFA	GLISA	PCR
niedrig	(0,4-8,5)	V-IX	48	31 (65%)	28 (58%)	26 (54%)	30 (62%)
mittel	(30-56)	III-IV	12	11 (92%)	11 (92%)	11 (92%)	11 (92%)
hoch	(310-420)	I-II	12	12 (100%)	12 (100%)	12 (100%)	12 (100%)
gesamt			72	54 (75 %)	51 (71 %)	49 (68 %)	53 (74 %)
Negativ- Kontrollen ^t	o (0)	_c	11	0	0	0	0

a: berechneter mittlerer Gehalt in der Matrix der jeweiligen Versuche (\overline{X} in KbE/g)

In der Dotierungsklasse mit niedrigem Kontaminationslevel wies das kulturelle Verfahren die meisten positiven Proben nach. So konnten von 48 niedrigdotierten Proben (4,1 x 10⁻¹ MPN/g bis 8,5 x10⁰ MPN/g) 31 Proben (65 %) im Referenzverfahren, 28 Proben (58 %) im ELFA-System, 26 Proben (54 %) im GLISA-System und 30 Proben (63 %) in der PCR als *Campylobacter*-positiv erkannt werden. In diesem Dotierungslevel sind keine signifikanten

b: neben den methodenspezifisch/herstellerseitig verlangten Positiv-/Negativkontrollen

c: im Rahmen der Vorversuche: Chargenkontrollen auf Abwesenheit von Campylobacter spp. (siehe Kapitel 3.3)

Unterschiede zwischen dem Referenzverfahren und den alternativen Systemen feststellbar (Tabelle 37).

Tabelle 37: Prüfung auf Signifikanz im Vierfelder-Chi-Quadrat-Test (niedriges Dotierungslevel)

Verfahrensvergleich	Chi-Quadrat	
Referenzverfahren ↔ ELFA	$X^2 = 0.26$	
Referenzverfahren ↔ GLISA	$X^2 = 1,08$	
Referenzverfahren ↔ PCR	$X^2 = 0.04$	

(Irrtumswahrscheinlichkeit α = 0,05; signifikant, wenn $\chi^2 \ge 3,84$): χ^2 = n(ad-bc)²/n₁n₂(a+c)(b+d); n₁=a+b, n₂=c+d (LORENZ, 1992))

Die Begleitkeimflora (GKZ) war in allen drei Gruppen hoch (Anhang D) und bewegte sich durchschnittlich bei 1.7×10^5 KbE/g ("niedriges Dotierungslevel"), 5.6×10^6 KbE/g ("mittleres Dotierungslevel") und 1.0×10^{-7} KbE/g ("hohes Dotierungslevel"). Sie führte in drei Proben des VIII. Dotierungsversuches zu präsumtiv positiven Ergebnissen (siehe Kapitel 4.4.1, Kapitel 5.3.4, Anhang B).

4.7 Vergleich der Systeme unter Verwendung einer 24 h und 48 h bebrüteten Anreicherungsbouillon

Die Ergebnisse der unterschiedlichen Nachweissysteme bei Einsatz einer über 24 h sowie 48 h angereicherten artifiziell kontaminierten Bouillon zeigen die Abbildungen 13 und 14.

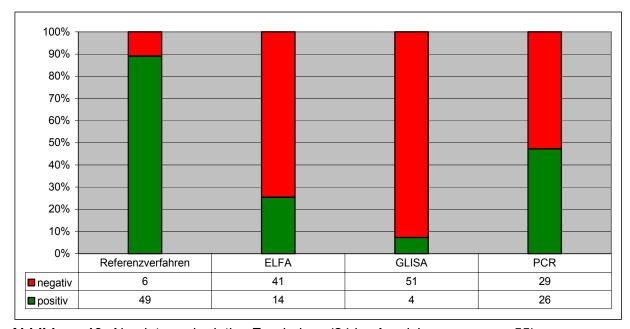


Abbildung 13: Absolute und relative Ergebnisse (24 h - Anreicherung; n_{ges.} = 55)

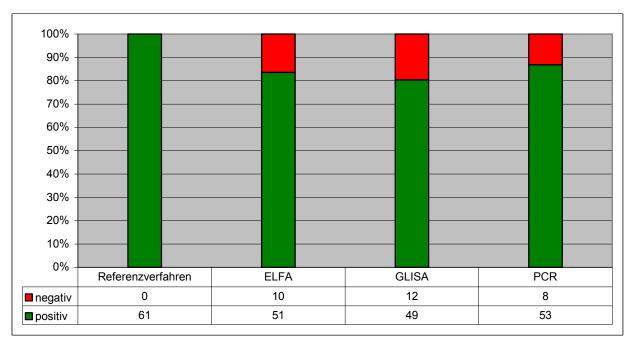
Bei allen Systemen sind die *Campylobacter*-Nachweisraten aus der 48 h Anreicherung signifikant höher als aus der 24 h Anreicherungsbouillon (Tabelle 38).

Tabelle 38: Prüfung auf Signifikanz im Vierfelder-Chi-Quadrat-Test (Nachweisrate aus 24 h und 48 h angereicherte Bouillonproben)

Verfahren	Nachweisrate aus der Bouillon	Chi-Quadrat
Referenzverfahren		$X^2 = 7.02$
ELFA	24 h Bouillon ↔ 48 h Bouillon	$X^2 = 39,70$
GLISA		$X^2 = 62,20$
PCR		$X^2 = 20,90$

 $(\alpha = 0.05; \text{ signifikant, wenn } \chi^2 \ge 3.84): \chi^2 = n(\text{ad-bc})^2/n_1n_2(\text{a+c})(\text{b+d}); n_1 = \text{a+b}, n_2 = \text{c+d} (\text{LORENZ}, 1992))$

Die Referenzmethode weist sowohl in der über 24 h als auch in der über 48 h angereicherten Bouillon signifikant mehr *Campylobacter*-Keime in den dotierten Proben nach als die drei alternativen Testsysteme (Tabelle 39). So sind 75 % der Proben (24 h Anreicherung) bzw. 85 % der Proben (48 h Anreicherung) kulturell positiv.


Tabelle 39: Prüfung auf Signifikanz im Vierfelder-Chi-Quadrat-Test (24 h und 48 h angereicherte Proben)

Proben	Verfahrensvergleich	Chi-Quadrat	
24 h angereichert	Referenzverfahren \leftrightarrow ELFA	$\chi^2 = 45,5$	
	$Referenzverfahren \leftrightarrow GLISA$	$X^2 = 73.7$	
	Referenzverfahren \leftrightarrow PCR	$X^2 = 22,2$	
	Referenzverfahren ↔ ELFA	$X^2 = 10.9$	
48 h angereichert	$Referenzverfahren \leftrightarrow GLISA$	$X^2 = 13.3$	
	Referenzverfahren \leftrightarrow PCR	$X^2 = 8.6$	

 $(\alpha = 0.05; signifikant, wenn \chi^2 \ge 3.84): \chi^2 = n(ad-bc)^2/n_1n_2(a+c)(b+d); n_1=a+b, n_2=c+d (LORENZ, 1992))$

Keine signifikanten Unterschiede zwischen den alternativen Systemen waren bei den über 48 h angereicherten Proben festzustellen (Tabelle 40).

Das ELFA System erfasste 19 % (24 h Anreicherung) bzw. 71 % (48 h Anreicherung), das GLISA System 6 % (24 h Anreicherung) bzw. 68 % (48 h Anreicherung) der Proben als *Campylobacter*-positiv. Der molekularbiologische Nachweis konnte über eine 24 h Anreicherung in 36 % der Proben bzw. über eine 48 h Anreicherung in 74 % der Proben erbracht werden.

Abbildung 14: Absolute und relative Ergebnisse (48 h – Anreicherung; n_{ges.} = 61)

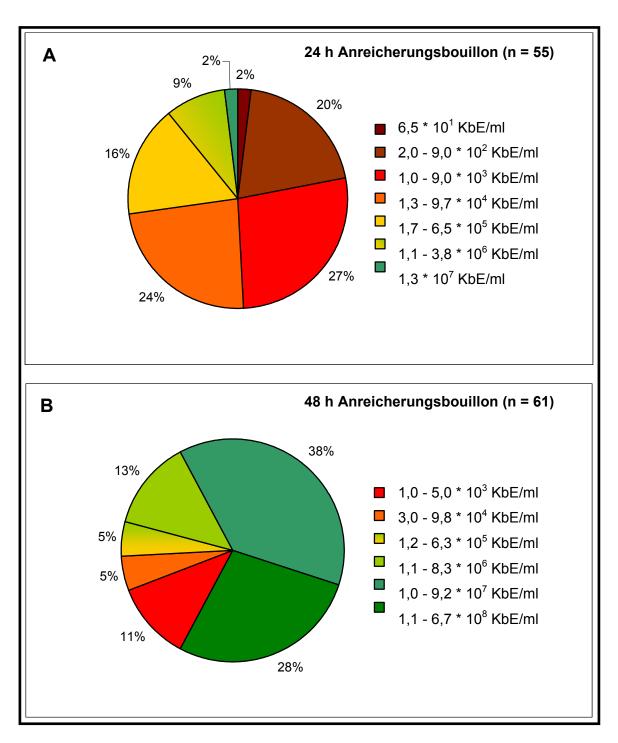

Die Kreisdiagramme in Abbildung 15 verdeutlichen die prozentuale Verteilung der unterschiedlichen *Campylobacter*-Konzentrationen innerhalb der Proben aus der 24 h bzw. 48 h Anreicherungsbouillon und lässt mögliche Rückschlüsse auf die oben beschriebene Nachweisrate *Campylobacter*-positiver Proben in den verschiedenen Systemen zu.

Tabelle 40: Prüfung auf Signifikanz im Vierfelder-Chi-Quadrat-Test (48 h angereicherte Proben)

Proben	Verfahrensvergleich	Chi-Quadrat	
	$ELFA \leftrightarrow GLISA$	$X^2 = 0.22$	
48 h angereichert	$ELFA \leftrightarrow PCR$	$X^2 = 0.26$	
angereienere	$GLISA \leftrightarrow PCR$	$X^2 = 0.96$	

 $(\alpha = 0.05; \text{ signifikant, wenn } \chi^2 \ge 3.84): \chi^2 = n(\text{ad-bc})^2/n_1n_2(a+c)(b+d); n_1=a+b, n_2=c+d (LORENZ, 1992))$

Bei Proben mit einer Keimzahlkonzentration von ≥3,0 x 10^6 KbE/ml (Abbildung 15.A) und ≥6,3 x 10^5 KbE/ml (Abbildung 15.B) stimmten die Testergebnisse der alternativen Systeme überein und es wurden alle Proben auch als *Campylobacter*-positiv erkannt.

Abbildung 15: Campylobacter-Konzentrationen in den Bouillonproben

4.8 Multiplex-Realtime-PCR

Amplifikationsbanden, die in der Standard-PCR nahe der Positivkontrollbande lagen (Proben Nr. L4_48h, L5_48h, K3_48h) wurden zusätzlich unter Einsatz der Realtime-PCR verifiziert (siehe Anlage F).

Dabei stellte sich heraus, dass in Proben mit Banden, die der spezifischen Größe von 450 nm nahe kamen (Primersystem pg3/pg50), über die Realtime-PCR keine Quantifizierung möglich war. Die Amplifikationsbanden der Standard-PCR konnten als richtig-negativ verifiziert werden. Es handelt sich somit nicht um Amplifikate der Spezies *Campylobacter jejuni* oder *Campylobacter coli*.

Proben mit unscharf abgegrenzten (G-370, SHM-61) oder schwachen Amplifikationsbanden (SHM 145, SHM-140, SHM-151) in der Standard-PCR konnten in der Realtime-PCR als richtig-positiv quantifiziert werden. Es handelt sich um Amplifikate der Spezies *Campylobacter jejuni* bzw. *Campylobacter coli*.

Zwei Proben, in denen die bei Hausgeflügel eher selten anzutreffende Spezies *Campylobacter lari* kulturell isoliert und biochemisch bestätigt werden konnte, wiesen kein Signal in der Realtime-PCR auf. Dies deckt sich mit den Ergebnissen der Standard-PCR. Beide Primersysteme sind nicht in der Lage diese *Campylobacter*-Spezies zu detektieren.