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3 Inexact Newton Continuation

A program may fail, but it must not lie.
— Beresford Parlett —

3.1 Predictor-Corrector Methods

Interior point methods are a means of defining a homotopy for the difficult
to solve KKT systems, with a homotopy parameter µ such that the problem
F (v;µ) = 0 is far easier to solve for µ ≈ 1 than for µ = 0. The path v(µ)
defined implicitly by F (v(µ);µ) = 0 converges to the solution v∗.

The homotopy structure is then exploited by some continuation or path-
following method, most often used in predictor-corrector form. Starting from
v(µn), first a predictor is applied for the reduced homotopy parameter µn+1 <
µn to generate a point vn+1 ≈ v(µn+1). A very popular and simple predictor is
the tangential Euler predictor

vn+1 := v(µn) + (µn+1 − µn)v
′(µn)

with the derivative of the path given by v′(µ) = Fv(v(µ);µ)−1Fµ(v(µ);µ). Sub-
sequently, a corrector is applied to compute the solution v(µn+1) of F (v;µn+1) =
0, starting from the point vn+1. In general, a Newton type corrector is used.

Many different continuation algorithms have been suggested, using different
predictors and correctors as well as different adaptive step size selection meth-
ods. For an overview, we refer to the textbook by Allgower and Georg [1].

In the following, we will develop a continuation method that is especially
well suited for following the central path of the complementarity formulation
of optimal control problems in function space. First we will consider the New-
ton corrector step, and its convergence and behavior under linear transforma-
tions are investigated. Then we will construct a predictor-corrector continuation
scheme and, finally theoretically near-optimal parameter settings for controlling
the algorithm are derived.

3.2 Affine Invariance

In the following we will state the standard assumptions that are assumed to
hold throughout the section.
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Assumption 3.2.1. Suppose V and Z are Banach spaces, D ⊂ V is open and
F : D → Z is Gâteaux-differentiable. Additionally, assume Fv(v) is invertible
for all v ∈ D.

For the solution of nonlinear equations of the form

F (v) = 0, (3.1)

Newton’s method

Fv(v
k)∆vk = −F (vk)

vk+1 = vk + ∆vk

in one of it’s many variants is a useful tool. One interesting property of Newton’s
method is its invariance with respect to linear transformations. Let A : Z → Z
and B : V → V be isomorphisms and consider the transformed problem

F̂ (y) := AF (By) = 0 (3.2)

with the domain transformation v = By. Clearly, the solution is just trans-
formed as the whole space: v∗ = By∗. Using equivalent initial values v0 = By0

for problems (3.1) and (3.2), respectively, Newton’s method generates equiva-
lent sequences of iterates:

∆vk = −Fv(v
k)−1F (vk) = −B(AFv(v

k)B)−1AF (vk)

= −BF̂ (yk)−1F̂ (yk) = B∆yk

implies vk = Byk by induction. This is a very desirable property, meaning
that Newton’s method does indeed work simultaneously on the whole class
of problems that differ only by a linear transformation. Of course, we would
like to have a convergence theory and actual implementations inheriting this
invariance property.

Unfortunately, this is not possible to full extent, since for convergence to
be measured there has to be a norm applied on the function values (or the
Newton corrections, respectively). Therefore one can only hope to formulate a
convergence theory that is invariant under a certain subset of all transforma-
tions of the general type (3.2). With no actual problem at hand, we just state
the existence of a set of meaningful transformations.

Conjecture 3.2.2. For each problem of type (3.1) there exists a subgroup
T (F ) ⊂ L(Z)×L(V ) of meaningful transformations, under which convergence
theory and actual implementation should be invariant.

What transformations are meaningful is specific for the problem type and
reflects its structure.
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Affine invariant Newton theory and algorithms have been developed for
several types of transformations (cf. [21, 28, 22, 23, 51]). For an overview we
refer to the forthcoming textbook by Deuflhard [19].

Since an affine invariant convergence theory must be formulated in terms
of an invariant norm, we have to define what makes a norm an affine invariant
one.

Definition 3.2.3. Suppose the Assumptions 3.2.1 are satisfied. A family of
norms || · ||v : Z → IR with v ∈ D is called affine invariant for problem (3.1), if
for all pairs (A,B) ∈ T (F ) of meaningful transformations

||F̂ (ξ)||y = ||F (Bξ)||By

for all v, ξ ∈ D, where F̂ (ξ) := AF (Bξ). It is said to form a γ-continuous family
of norms, if

||r||v+ξ ≤ (1 + γ||Fv(v)ξ||v)||r||v (3.3)

for all ξ ∈ V .

Convergence theories and algorithms which are based solely on invariant
norm values are then invariant under transformations from T (F ).

Assumption 3.2.4. Suppose the Assumptions 3.2.1 are satisfied. Addition-
ally, let || · ||v : Z → IR form a continuous family of norms.

3.3 Inexact Newton Corrector

Since we have to deal with function space problems, we cannot compute the
Newton correction exactly. Discretization errors and possibly truncation errors
from iterativly solving linear systems have to be taken into account. Therefore,
we consider inexact Newton methods, where an inner residual remains:

Fv(v
k)δvk = −F (vk) + rk

vk+1 = vk + δvk

Inexact Newton methods have been studied by Bank and Rose [3] and
Dembo, Eisenstat, and Steihaug [16]. Ypma [53] formulated an affine
invariant theory, and adaptive affine invariant algorithms were designed by
Deuflhard [18].

The relative accuracy of the inexact Newton correction δvk, given by

δk :=
||rk||vk

||F (vk)||vk

, (3.4)

will play a crucial role in the convergence analysis as well as in the implemen-
tation of inexact Newton methods.
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Theorem 3.3.1. Assume the standard assumptions 3.2.4 are satisfied. Let γ
and ω be constants such that the family of norms is γ-continuous and the affine
invariant Lipschitz condition

||(Fv(v + tξ)− Fv(v))ξ||v+ξ ≤ tω||Fv(v)ξ||2v (3.5)

holds for all v, ξ ∈ V such that co{v, v + ξ} ⊂ D. Let Θ < 1 and

L(v) :=
{
ξ ∈ D : ||F (ξ)||ξ ≤

(
1 +

γ

ω

)
||F (v)||v

}
.

Assume that v0 ∈ D, the level set L(v0) is closed, and define hk := ω||F (vk)||vk .
If h0 < 2 and the inner iteration is controlled such that

1

2
(1 + δk)

2hk + (1 + (1 + δk)γ||F (vk)||vk)δk ≤ Θ , (3.6)

then the iterates are well defined for all k ∈ IN, stay in L(v0), and the residuals
converge to zero at a rate of

hk+1 ≤ Θhk .

Furthermore,

||F (vk+1)||vk ≤
(
δk +

1

2
(1 + δk)

2hk

)
||F (vk)||vk . (3.7)

Proof. By induction, let L(vk) be closed and ω||F (vk)||vk < 2. Then

F (vk + sδvk) = F (vk) +

∫ s

0

Fv(v
k + tδvk)δvk dt (3.8)

= (1− s)F (vk) + srk +

∫ s

0

(Fv(v
k + tδvk)− Fv(v

k))δvk dt (3.9)

for all s ∈ [0, 1] with co{vk, vk + sδvk} ⊂ D. From (3.4) we have

||Fv(v
k)δvk||vk = ||F (vk)− rk||vk ≤ (1 + δk)||F (vk)||vk .

Using the Lipschitz continuity (3.5), the continuity of the family of norms (3.3),
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and the accuracy requirement (3.6), we have

||F (vk + sδvk)||vk+sδvk

≤ (1− s)||F (vk)||vk+sδvk + s||rk||vk+sδvk

+

∫ s

0

||(Fv(v
k + tδvk)− Fv(v

k))δvk||vk+sδvk dt

≤ (1− s)(1 + sγ||Fv(v
k)δvk||vk)||F (vk)||vk

+ s(1 + sγ||Fv(v
k)δvk||vk)||rk||vk +

∫ s

0

tω||Fv(v
k)δvk||2vk dt

= (1 + sγ(1 + δk)||F (vk)||vk)((1− s)||F (vk)||vk + sδk||F (vk)||vk)

+
ω

2
s2(1 + δk)

2||F (vk)||2vk

≤
(
(1 + sγ(1 + δk)||F (vk)||vk)(1− s + sδk)

+
1

2
s2(1 + δk)

2hk

)
||F (vk)||vk .

Defining χ := γ||F (vk)||vk and using s ≤ 1, δk < 1, and (3.6), we have

||F (vk + sδvk)||vk+sδvk

||F (vk)||vk

≤ (1 + s(1 + δk)χ)(1− s+ sδk) +
1

2
s2(1 + δk)

2hk

≤ (1 + s(1 + δk)χ)(1− s) + sΘ

≤ (1 + 2sχ)(1− s) + s ≤ 1 +
χ

2

= 1 +
γ

2
||F (vk)||vk ≤ 1 +

γ

ω

and thus

||F (vk + sδvk)||vk+sδvk ≤
(
1 +

γ

ω

)
||F (vk)||vk .

If vk + δvk 6∈ D, then there is some s∗ ∈ [0, 1) with co{vk, vk + s∗δvk} ⊂ D but
vk + s∗δvk 6∈ L(vk), i.e. ||F (vk + s∗δvk)||vk+s∗δvk > (1 + γ/ω)||F (vk)||vk , which is
a contradiction. Thus, vk+1 ∈ D. Furthermore, setting s = 1 we have

||F (vk+1)||vk+1 ≤ Θk||F (vk)||vk (3.10)

and therefore L(vk+1) ⊂ L(vk). Since L(vk) is closed, every Cauchy sequence
in L(vk+1) converges to a limit point in L(vk), which is, by continuity of the
norm, also contained in L(vk+1). Hence, L(vk+1) is closed.

From (3.9) we conclude in a similar way

||F (vk+1)||vk ≤ ||rk||vk +
1

2
(1 + δk)

2hk||F (vk)||vk

≤
(
δk +

1

2
(1 + δk)

2hk

)
||F (vk)||vk .
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Remark 3.3.2. The linear convergence result (3.10) of inexact Newton meth-
ods can be strengthend to quadratic convergence if the accuracy matching is
strengthened to δk = O(||F (vk)||2vk). /

Remark 3.3.3. For the application to optimal control problems, the Lipschitz
condition (3.5) implies the use of a norm that is at least as fine as L∞ (cf. Sec-
tion 2.3). The consequence is, that possible discontinuities in the Newton cor-
rector must be located exactly at discretization grid points. /

3.3.1 Computable Estimates

For actual implementation of the inexact Newton method analyzed in Theo-
rem 3.3.1 we need easily computable estimates of the unknown constants ω
and γ in order to satisfy the accuracy matching (3.6). From (3.7) we gain the
a posteriori estimate

[ω] :=
2

(1 + δk)2||F (vk)||vk

( ||F (vk+1)||vk

||F (vk)||vk

− δk

)
≤ ω (3.11)

and [hk] := [ω]||F (vk)||vk
. The estimates can be expected to be reliable only if

||F (vk+1)||vk > (ρω + 1)δk||F (vk)||vk (3.12)

with some suitable safety factor ρω > 0. The requirement (3.12) of being able
to reliably estimate the Lipschitz constant ω motivates an additional accuracy
requirement for δk. Because of

||F (vk+1)||vk ≈
(
δk +

hk

2
(1 + δk)

2
)
||F (vk)||vk

≥
(
δk +

hk

2

)
||F (vk)||vk

≥ (ρω + 1)||F (vk)||vk

we end up with the requirement

δk ≤ ρω
[hk]

2
.

This requirement implies quadratic convergence and is therefore too restrictive.
In actual computation, linearly convergent Newton methods are to be preferred
because of the more fine-grained control of the iteration’s termination they
provide. Hence the conclusion is that the estimate (3.11) has to be used with
care in case (3.12) is violated.

From (3.3) we get the estimate

[γ] := ||Fv(v)δv||−1
v

( ||F (v + δv)||v+δv

||F (v + δv)||v
− 1

)
(3.13)
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in case ||F (v + δv)||v+δv ≥ ||F (v + δv)||v or the approximate estimate

[γ] := ||Fv(v)δv||−1
v

∣∣∣∣
||F (v + δv)||v+δv

||F (v + δv)||v
− 1

∣∣∣∣ ,

otherwise. In general, most of the values that must be computed for evaluating
[γ] are needed during the course of the Newton iteration anyway, such that the
estimate comes at little additional cost.

Because invariant norms are frequently defined in terms of F itself, ω and γ
are theoretically coupled since both describe aspects of the nonlinearity of F .
Nevertheless, computation of the estimates [ω] and [γ] is completely decoupled.
In particular, [γ] does not depend on δ. The independence of the estimates
increases the reliability of the computed values.

Having estimates for ω and γ at hand, the termination of the inner iteration
of the inexact Newton method can be controlled by

[hk]

2
(1 + δk)

2 + (1 + (1 + δk)[γ]||F (vk)||vk)δk ≤ Θ

with some contraction factor Θ between [hk]/2 and 1.

Remark 3.3.4. For the implementation of the estimators in the context of
adaptively refined discretizations it is of vital importance that the norms are
evaluated using the same discretization, unless the discretization error is unrea-
sonably small. Otherwise, the norm values can be noncontinuous for ||δvk|| → 0,
rendering the computed estimators unusably wrong. /

3.4 Inexact Tangential Predictor

At the topmost level, interior point type methods use a continuation scheme
to follow the central path v(µ) to the solution point v(0). Several efficient
and sophisticated algorithms have been proposed, ranging from general pur-
pose methods like [17, 20] to highly specialized higher order predictors for IP
methods [41].

Most of them use a tangential or higher order predictor and propose a
step length based on F (v − ∆µp;µ − ∆µ) = O(∆µs), where p is the predic-
tor of order s. Accordingly, those methods implicitly assume that ||F (v;µ)|| �
||F (v − ∆µp;µ − ∆µ)|| for every reasonable µ. This is justified for finite di-
mensional problems, where Newton’s method or quasi-Newton methods with
quadratic or at least superlinear convergence rate are used. But for function
space problems, a reduction of ||F (v;µ)|| is in general quite expensive, since it
requires a reduction of the discretization error. Fortunately, it is not necessary
to obtain a highly accurate corrector solution in the course of the continuation,
since we are only interested in v∗ = v(0), as opposed to v(µ) for µ > 0.
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Figure 3.1: Exact tangential predictor (left) and its inexact counterpart
(right).

Hence, an efficient continuation algorithm for function space problems will
follow the path in an inexact way: The termination criterion for the corrector
will be ||F (v;µ)|| ≤ aδTOL with aδTOL relatively large. The predictor will be
computed only up to a suitably chosen accuracy, thus accepting smaller con-
tinuation step sizes in favor of a cheaper discretization. The consequence of
this tradeoff is, that the deviation from the central path has to be taken into
account when computing a new step size suggestion. Moreover, the higher ac-
curacy of higher order predictors will only pay off if the predictor is computed
with high accuracy, too. Therefore, we will use a tangential predictor with a
step size suggestion based on

F (v −∆µp;µ−∆µ) = F (v;µ)−∆µFv(v;µ)p+O(∆µ2) .

In the following we will establish a continuation method that takes this into
account.

The step size selection mechanism is based on the assumption of a slowly
varying curvature of the path, thus suggesting a step size that would have
been optimal for the last step. For function space complementarity methods,
though, the curvature of the central path can be expected to constantly increase
for µ → 0, at least in the presence of bang-bang control. Without step size
control, a reduction of µ by a constant factor instead of a constant difference
would be appropriate. Therefore, we will use a scaled homotopy parameter
τ := − logµ, such that a slowly varying step size ∆τ translates into a slowly
varying reduction factor for µ.

Lemma 3.4.1. Suppose the Assumptions 3.2.4 are satisfied. Let γ and β be
constants such that the pair of norms is γ-continuous and that

||F (v + ∆τδv; τ + ∆τ)||v
≤ ||F (v; τ)||v + ∆τ ||Fv(v; τ)δv + Fτ (v; τ)||v + β∆τ 2 (3.14)
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holds for v, δv ∈ V and ∆τ ∈ IR such that v + δτδv ∈ D. If for some tolerance
δTOL ≥ ||F (v; τ)||v the inexact tangential predictor p defined by Fv(v; τ)p =
−Fτ (v; τ) + r is used together with a step size ∆τ satisfying

(1 + γ∆τ ||Fv(v; τ)p||v)(||F (v; τ)||v + ∆τ ||r||v + β∆τ 2) ≤ δTOL , (3.15)

then

||F (v + ∆τp; τ + ∆τ)||v+δτp ≤ δTOL . (3.16)

Additionally,

||F (v + ∆τp; τ + ∆τ)||v ≤
δTOL

1 + γ∆τ ||Fv(v; τ)p||v
. (3.17)

Proof. Inequality (3.17) is easily verified. The main statement (3.16) is then a
direct consequence of the γ-continuity of the local norms.

3.4.1 Computable Estimate

For actual implementation we need an easily computable estimate for the un-
known constant β. From (3.14) we get the estimate

[β] :=
1

∆τ 2
(||F (v + ∆τp; τ + ∆τ)||v − ||F (v; τ)||v −∆τ ||r||v) ≤ β , (3.18)

which is reliable if ||F (v+ ∆τp; τ + ∆τ)||v − ||F (v; τ)||v > (ρβ + 1)∆τ ||r||v with
some safety factor ρβ > 0. In order to obtain reliable estimates we derive the
accuracy requirement ||r||v ≤ ∆τ

ρβ
[β] from

||F (v + ∆τp; τ + ∆τ)||v − ||F (v; τ)||v ≈ ∆τ ||r||v + β∆τ 2 .

Because of the high computational effort that must be spent on reducing the
discretization error, we will impose a lower bound on the requirement:

||r||v ≤ max

{
∆τ

ρβ
[β], rmin

}
. (3.19)

Note that in contrast to the computation of the Newton correction there is
no definite upper bound on the tolerance for computing the inexact tangential
predictor if only [β] is sufficiently large. However, too large deviations from
the exact tangential predictor lead to unreasonable small step sizes and hence
inefficiency.
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3.4.2 Step Size Selection

In order to be able to continue the homotopy method along the path, we will re-
quire the corrector to converge, starting from the predicted point (v+∆τp, τ +
∆τ). Clearly this imposes an upper bound on how far from the path the pre-
dicted point may be:

δTOL <
2

ω
.

Then we can substitute the unknown quantities β, γ, and ω by their estimates
[ω], [β], and [γ], and suggest a suitable stepsize via (3.15). Since the estimates
may be too small, the proposed step size can be too large, such that we need
to

• select δTOL < 2/[ω].

• introduce a safety factor 0 < ρ < 1 and compute a step size ∆τ satisfying

(1 + [γ]∆τ ||Fv(v; τ)p||v)(||F (v; τ)||v + ∆τ ||r||v + [β]∆τ 2) ≤ ρ3δTOL .
(3.20)

• do a step size reduction if the corrector does not converge.

For efficiency reasons, we propose a three level step size reduction scheme:

1. Test for ||F (v + ∆τp; τ + ∆τ)||v ≤ ρ2δTOL. If the test fails, update the
estimate [β] and compute a smaller step size based on the new estimate.
In general, this will require one function evaluation.

2. Test for

||F (v + ∆τp; τ + ∆τ)||v+∆τp

≤ ρ−1(1 + [γ]∆τ ||Fv(v; τ)p||v)||F (v + ∆τp; τ + ∆τ)||v .

If the test fails, update [γ] and [β] according to the new information and
compute a smaller step size based on the new estimate. In general, this
will require one derivative evaluation and one system solve.

3. Test for corrector convergence. If the corrector does not converge, update
the estimates [ω], [γ], and [β] according to the new information and com-
pute a smaller step size based on the updated δTOL. In general, this will
require one function evaluation and one system solve.

Theorem 3.4.2. Under the assumptions of Lemma 3.4.1, the step size reduc-
tion scheme defined above terminates after finitely many reductions.
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First we prove that the tests 1 to 3 are passed if only the estimates are suffi-
ciently accurate.

Lemma 3.4.3. Under the assumptions of Lemma 3.4.1, the step size suggested
in (3.20) will pass the step size reduction tests if ρβ ≤ [β], ργ ≤ [γ], and
ρω < [ω].

Proof. By (3.14) and (3.20) we have

||F (v + ∆τp; τ + ∆τ)||v
≤ ||F (v; τ)||v + ∆τ ||Fv(v; τ)p+ Fτ (v; τ)||v + β∆τ 2

≤ 1

ρ
(||F (v; τ)||v + ∆τ ||Fv(v; τ)p+ Fτ (v; τ)||v + ρβ∆τ 2)

≤ 1

ρ
(||F (v; τ)||v + ∆τ ||Fv(v; τ)p+ Fτ (v; τ)||v + [β]∆τ 2)

≤ 1

ρ

ρ3δTOL

1 + [γ]∆τ ||Fv(v; τ)p||v

≤ ρ2δTOL

1 + [γ]∆τ ||Fv(v; τ)p||v
.

(3.21)

Thus, the reduction test 1 is satisfied. Because of

||F (v + ∆τp; τ + ∆τ)||v+∆τp

≤ (1 + γ∆τ ||Fv(v; τ)p||v) ||F (v + ∆τp; τ + ∆τ)||v
≤ ρ−1(1 + [γ]∆τ ||Fv(v; τ)p||v) ||F (v + ∆τp; τ + ∆τ)||v

(3.22)

the reduction test 2 is passed, too. Combining (3.21) and (1) we have

||F (v + ∆τp; τ + ∆τ)||v+∆τp ≤ ρδTOL ≤
2ρ

[ω]
<

2

ω
.

The predicted point is inside the local convergence domain of the Newton cor-
rector, such that the final reduction test 3 is satisfied.

Now we can prove Theorem 3.4.2.

Proof. First we show that whenever the reduction test 1 fails, a finite number
of step size reductions suffices to pass the test. If the test fails for the step size
defined by (3.15), i.e.

||F (v + ∆τp; τ + ∆τ)||v > ρ2δTOL ,
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the new estimate [β]new for β computed from (3.18) is

[β]new >
1

∆τ 2
(ρ2δTOL − ||F (v; τ)||v −∆τ ||r||v)

≥ 1

∆τ 2

(
ρ3δTOL

1 + [γ]∆τ ||Fv(v; τ)p||v
− ||F (v; τ)||v −∆τ ||r||v

)

+ (1− ρ)
ρ2δTOL

∆τ 2

= [β] + (1− ρ)
ρ2δTOL

∆τ 2
.

Thus, [β] is increased by an amount that is bounded from below, which im-
plies that a finite number of step size reductions suffices to satisfy the passing
condition ρβ ≤ [β].

If, on the other hand, the first test is passed but the second test fails, i.e.

||F (v + ∆τp; τ + ∆τ)||v+∆τp

> ρ−1(1 + [γ]∆τ ||Fv(v; τ)p||v)||F (v + ∆τp; τ + ∆τ)||v ,

the new estimate [γ]new for γ computed from (3.13) is

[γ]new > (∆τ ||Fv(v; τ)p||v)−1

·
(ρ−1(1 + [γ]∆τ ||Fv(v; τ)p||v)||F (v + ∆τp; τ + ∆τ)||v

||F (v + ∆τp; τ + ∆τ)||v
− 1
)

=
ρ−1 − 1

∆τ ||Fv(v; τ)p||v
+ ρ−1[γ] ,

which is implies that [γ] is geometrically increasing. Actually, the updated
estimate [β] may be smaller than before, but the reduction test 1 is guaranteed
to pass again after a finite number of reductions.

Finally, if the tests 1 and 2 are satisfied but test 3 fails, i.e.

||F (v + ∆τp+ δv; τ + ∆τ)||v+∆τp ≥ ||F (v + ∆τp; τ + ∆τ)||v+∆τp ,

the new estimate [ω]new for ω computed from (3.11) is

[ω]new ≥
2(1− δ)

(1 + δ)2||F (v + ∆τp; τ + ∆τ)||v+∆τp

=
2(Θ− δ + (1−Θ))

(1 + δ)2||F (v + ∆τp; τ + ∆τ)||v+∆τp

≥ 2((1 + δ)2 [ω]
2
||F (v + ∆τp; τ + ∆τ)||v+∆τp + δ − δ + (1− Θ))

(1 + δ)2||F (v + ∆τp; τ + ∆τ)||v+∆τp

= [ω] +
2(1−Θ)

(1 + δ)2||F (v + ∆τp; τ + ∆τ)||v+∆τp

,
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which is greater than [ω] by an amount that is bounded from below indepen-
dently of [ω], [γ], and [β]. Actually, the updated estimates [γ] and [β] may be
smaller than before, but the reduction tests 1 and 2 are guaranteed to pass
again after a finite number of reductions.

So far the step size selection relies on the quality of the path curvature
estimate (3.14). When applied to the complementarity formulation (2.9), the
estimate is good only as long as the predictor does not cross the bend of the
complementarity function ψ near the origin, which is especially sharp for small
µ. Therefore it is highly advisable to restrict the predictor step in order to stay
in the feasible region if possible. Although this additional restriction is not
required for the algorithm to work, it helps to stabilize the step size selection
mechanism a lot.

3.5 Accuracy Matching

Within the computationally available bounds (3.19) and (3.20), the predictor
step size and accuracy and the corrector termination criterion can be chosen
arbitrarily. In this section we will develop a simplified model of the computation
process such that we are able to determine algorithmic parameters maximizing
the overall efficiency, i.e. the information gain per unit work:

maximize Q :=
∆τ

work

In order to achieve the maximal step size per unit work, the whole cycle of pre-
diction and correction has to be taken into account. This cycle is characterized
by three quantities:

• the norm nP := ||F (vP ; τ)||v at the predicted point vP , corresponding to
the predictor target ρδTOL

• the norm nC := nCj
:= ||F (vCj

; τ)||v at the subsequent corrector result vCj

obtained by j Newton steps, corresponding to the corrector termination
criterion

• the norm nR := ||F (vCj−1
; τ) + Fv(vCj−1

; τ)δvCj−1
||v = δCj−1

nCj−1
of the

last inner residual, corresponding to the relative accuracy δCj−1
imposed

on the solution of the last Newton corrector

To ease the derivation, we will neglect the difference of the local norms and use
a fixed norm || · || instead, thus assuming γ = 0.

In the context of adaptive methods for differential equations, the inner
residual is essentially the discretization error, and the amount of work can be
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assumed to be proportional to the mesh size when using optimal solvers. We
make the simplistic assumption that both predictor and corrector are computed
using the same discretization. In contrast to pure inexact Newton methods, all
corrector steps use the discretization that stems from the previous continua-
tion cycle and that is assumed to be sufficiently fine to represent the Newton
corrector steps δvCi

, i = 0, . . . , j−1, with the required accuracy δCi
. The size of

the common mesh and hence the work required for one Newton step is asymp-
totically proportional to n

−1/q

R , where q denotes the approximation order of the
discretization scheme. The convergence of the Newton corrector is quadratic
until the accuracy gain is limited by the discretization error, at which time the
corrector iteration reaches the requested accuracy and is terminated. Therefore,
the number of corrector steps can be estimated as

j ≈
⌈

log log ωnC

2
− log log ωnP

2

log 2

⌉
.

Remark 3.5.1. Of course it is possible to start every corrector iteration on a
coarse discretization and save some work during the first few corrector steps,
but this imposes the difficulty that an error estimator may fail to detect the
need for refinement when the error is visible only on a much finer grid than the
coarse grid, terminating the corrector iteration on prematurely coarse grids. /

Since in addition to the corrector one predictor step is performed, the com-
plete work for one cycle is

work ∼ n
− 1

q

R

⌈
1 +

log log ωnC

2
− log log ωnP

2

log 2

⌉
.

The largest possible predictor step size is

∆τ =
1

2β

(√
||r||2 + 4β(nP − nC)− ||r||

)
. (3.23)

Since both computations are done on the same discretization, we assume
that ||r|| ≈ nR. Thus, we end up with the theoretical efficiency indicator

Q =

√
n2

R + 4β(nP − nC)− nR⌈
1 +

log log
ωnC

2
−log log

ωnP
2

log 2

⌉ n
1
q

R .

A short visual inspection shows that the choice of j = 1, i.e. one Newton cor-
rector step, is optimal over a reasonably wide range of the involved parameters
nP , nC , nR, β, ω, and q, except for nearly straight paths (β � 1) and pre-
dictors very close to the boundary of the corrector’s domain of convergence.
In these cases, the choice of more Newton corrector steps may be more effi-
cient, although the difference is in general not significant. Furthermore, small
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Figure 3.2: Theoretically optimal values of δ (left) and ωnP (right) for q =
1, . . . , 4 plotted versus ωβ.

β are more difficult to estimate correctly and predictors near the boundary of
the domain of convergence are unfavorable because of robustness reasons. The
standard choice will therefore be j = 1, leading to the efficiency indicator

Q = n
1
q

R

(√
n2

R + 4β(nP − nC)− nR

)
.

With j = 1 we have nR = δnP and, assuming equality in (3.6), nC =
((1 + δ)2 ω

2
nP + δ)nP :

Q = (δnP )
1
q

(√
(δnP )2 + 4βnP

(
1− 1

2
(1 + δ)2ωnP − δ

)
− δnP

)

This theoretical efficiency indicator may now easily be maximized numeri-
cally with respect to δ and nP for relevant ranges of β and ω and different q.
As it turns out, the optimal parameters δ and nP do depend only on q and
the product ωβ, but not on the quotient β

ω
. The optimal values of δ and ωnP

are plotted versus ωβ in Figure 3.2 for different values of q. In the numerical
examples in Section 4 we use the even simpler constant choice δ = 0.1 and
nP = 0.9.

3.6 Affine Invariant Norm

In the light of Section 2.3 we have to work out two different norms, a coarse
norm in which convergence of the path is measured, and a fine norm required
for continuous differentiability.

Solving optimization problems, the actual error ||x−x∗|| of an approximate
solution x is in general of little interest. Instead, solution points are naturally
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characterized by feasibility (c(x) = 0 and g(x) ≥ 0) and optimality (J(x) −
J(x∗) = 0). The meaningful transformations under which the algorithm is
expected to be invariant must therefore leave the constraints untouched, such
that an appropriate norm of their violation can be taken. Since the dual space
is directly coupled to the constraints space, the Lagrange multipliers will not be
transformed. Furthermore, the cost functional values must not be transformed,
such that cost improvements can be appropriately measured.

The remaining transformations are just the transformations of the domain
space X, and, correspondingly, the dual space X∗. Transforming the domain
space as Bξ = x

min J(Bξ) subject to
c(Bξ) = 0
g(Bξ) ≥ 0

transforms F by the chain rule as B∗
4F (B4φ), where

B4 :=




B
I

I
I


 and B4φ = v .

The derivative of F is then transformed as B∗
4F (B4φ)B4. Since the adjoint

equation

J ′(x)− c′(x)∗λ− g′(x)∗η = 0 .

is transformed, the canonical norm of F in Z is not invariant. Instead, an
invariant norm has to be constructed explicitly.

3.6.1 A Norm for Equality Constrained Problems

The elimination of the inequality constraints from the complementarity system
as in the proof of Theorem 2.5.4 yields a pure saddle point operator

S(v) :=

[
H(v) −c′(x)∗
−c′(x)

]

with the same structure as a Kuhn-Tucker system for an equality constrained
optimization problem. For those problems an affine invariant norm has been
developed recently in the context of augmented Lagrangian SQP methods [51].

If we assume that the modified Hessian

H(v) := Lxx(x, λ, η) + g′(x)∗Ψη(w, η;µ)−1Ψw(w, η;µ)g′(x)

is positive definite on the nullspace of the equality constraints c′(x) as in The-
orem 2.5.4, we can utilize the induced norm on ker c′ to construct an affine
invariant norm on X̂∗.
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Let us introduce the bounded linear operator T (v) : ker c′(v)×Λ2 → X∗
2 by

T (v) :=
[
H(v) −c′(x)∗

]
.

Lemma 3.6.1. Under the assumptions of Theorem 2.5.4, T (v) is an isomor-
phism.

Proof. For arbitrary r ∈ X∗
2 the equation T (v)ξ = r for ξ = (ξ1, ξ2)

T ∈
ker c′(v)× Λ2 is equivalent to

S

[
ξ1
ξ2

]
=

[
r1
0

]
.

Because of the assumptions 1 and 3 of Theorem 2.5.4, c′ satisfies the inf-sup-
condition and H is positive definite on ker c′, such that S is an isomorphism
(cf. [8]). Thus, ξ is uniquely determined and ||ξ||X×Λ2 ≤ const ||r||X∗

2
.

Additionally, we define the bounded, linear, symmetric positive definite op-
erator R(v) : ker c′(v)× Λ2 → X∗

2 × Λ2 by

R(v) :=

[
H(v)

IR

]
.

Here, IR : Λ2 → Λ∗
2 denotes the Riesz isomorphism.

Using R and T , we can now define an affine invariant norm.

Lemma 3.6.2. The mapping ||| · |||v : X∗
2 → IR defined by

|||r|||2v := 〈R(v)T (v)−1r, T (v)−1r〉 (3.24)

is an affine invariant norm, which is equivalent to the canonical norm on X ∗
2 .

Proof. Since R(v) is coercive and T (v) an isomorphism, ||| · |||v defines indeed a
norm which is equivalent to the canonical norm on X∗

2 :

const ||r||2X∗

2
≤ const ||T (v)−1r||2X∗

2×Λ2

≤ 〈R(v)T (v)−1r, T (v)−1r〉
≤ const ||T (v)−1r||2X∗

2×Λ2
≤ const ||r||2X∗

2

for all r ∈ X∗
2 .

Note that H transforms as

B∗Lxx(Bξ, λ, η)B + (g′(Bξ)B)∗Ψη(w, η;µ)−1Ψw(w, η;µ)g′(Bξ)B

= B∗H(B4φ)B
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and c′(x) as c′(Bξ)B. Thus, R(v) and T (v) transform as

B∗
2R(B4φ)B2 = B∗

2R(v)B2

and

B∗T (B4φ)B2 = B∗T (v)B2 ,

respectively, where

B2 :=

[
B

I

]
.

The norm defined above is invariant, since the transformations cancel out:

|||B∗r|||2B4φ = 〈B∗
2R(B4φ)B2(B

∗T (B4φ)B2)
−1B∗r, (B∗T (B4φ)B2)

−1B∗r〉
= 〈B∗

2R(v)B2B
−1
2 T (v)−1B−∗B∗r, B−1

2 T (v)−1B−∗B∗r〉
= 〈B∗

2R(v)T (v)−1r, B−1
2 T (v)−1r〉

= 〈R(v)T (v)−1r, T (v)−1r〉
= |||r|||2v .

Note that the equivalence between the invariant norm and the canonical norm
is not uniform for v ∈ D.

In order to define a norm on the whole image space Z2 we take additionally
the norms of the equality constraints, the slacks, and the complementarity
equations, since these are not transformed. Together with the norm (3.24) on
X∗

2 × Λ∗
2 they define the following affine invariant norm on Z:

|||(z1, z2, z3, z4)T |||2v := |||z1|||2v + ||z2||2Λ2
+ ||z3||2W2

+ ||z4||2W2
.

Remark 3.6.3. Note that albeit its nontrivial definition, the norm (3.24) is
comparatively easy to compute. By definition of R(v) and T (v) it is clear that

|||z1|||2v = 〈H(v)ξ, ξ〉+ ||l||2Λ2

where

S(v)

[
ξ
l

]
=

[
z1
0

]
. (3.25)

By Step 1 in the proof of Theorem 2.5.4, ξ and l can be computed as solution
of

Fv(v)(ξ, l, s1, s2)
T = (z1, 0, 0, 0)T ,

where the s1 and s2 components are ignored.
Thus, computation of the affine invariant norm requires the solution of one

more linear system with the same operator and a different right hand side. In
actual computation, the required discretization Fv(v) will already be assembled
for computation of δv. In case a factorization of Fv(v) is available, it can be
reused to compute ||| · |||v with negligible cost. /
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Concerning the finer norm || · ||v that is required for the Newton theory, we
note that under the assumptions of Theorem 2.5.4

〈Hξ, ξ〉 =

∫

Ω

ξ(t)TH(t)ξ(t) dt

and

ξ(t)TH(t)ξ(t) ≥ const |ξ(t)|2 .

Thus the norm

||(z1, z2, z3, z4)T ||v := ||z1||2v + ||z2||2Λ∞ + ||z3||2W∞
+ ||z4||W∞

where

||z1||2v := ||φ||L∞ + ||l||2Λ∞ and φ(t) := ξ(t)TH(t)ξ(t)

is equivalent to || · ||V∞. Moreover, || · ||v forms a γ-continuous family of invariant
norms due to the Lipschitz continuity (2.19) of Fv.

Corollary 3.6.4. Under the assumptions of Theorem 2.5.4, the complemen-
tarity formulation (2.9) satisfies the affine invariant Lipschitz condition (3.5):

||(Fv(v + δv;µ)− Fv(v;µ))δv||v ≤ ω||Fv(v;µ)δv||2v .

Proof. The corollary is a direct consequence of the Lipschitz continuity of Fv

asserted by Theorem 2.5.2 and the equivalence of the norms ||·||v and ||·||V∞.

3.6.2 A Norm for Inequality Constrained Problems

The norm defined in (3.24) suffers from the increasing ill-conditioning of the
reduced complementarity saddle point operator H(v(µ)) for µ → 0. This ill-
conditioning has been introduced by the elimination step from (2.21) to (2.22),
after it had been avoided by the introduction of Lagrange multipliers for the
barrier formulation. To overcome this difficulty, we can resort to the splitting
of the inequality constraints into nearly active and nearly inactive constraints
introduced in Definition 2.6.1. Thus we can exploit a more careful elimination
as has been used in Theorem 2.6.5.

To this extent we combine equality constraints and nearly active inequality
constraints by setting Λρ := Λ∗

2 ×WA and defining Cρ(x) : X2 → Λ∗
ρ, D

ρ(v) :
Λρ → Λ∗

ρ, and Hρ(v) : X2 → X∗
2 as

Cρ(x) := −
[
c′(x)
g′A(x)

]
, Dρ(v) :=

[
0 0
0 ΨA

w(wA, ηA;µ)−1ΨA
η (wA, ηA;µ)

]
,
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and

Hρ(v) := Lxx(v) + g′I(x)
∗ΨI

η(w
I, ηI;µ)−1ΨI

w(wI , ηI;µ)g′I(x)

which yields the perturbed saddle point operator

Sρ(v) :=

[
Hρ(v) Cρ(x)∗

Cρ(x) −Dρ(v)

]
.

Then we can substitute T (v) and R(v) by their counterparts T ρ(v) : Xρ(v) ×
Λρ → X∗

2 ,

T ρ(v) :=
[
Hρ(v) Cρ(x)∗

]
,

and Rρ(v) : Xρ(v)× Λρ → X∗
2 × Λ∗

ρ,

Rρ(v) :=

[
Hρ(v)

IR

]
.

Because of the perturbation Dρ(v) in Sρ(v) we have to resort to

Xρ(v) := Sρ(v)−1(X∗
2 × {0Λρ})

instead of ker c′(x) as before. Note that Xρ(v) is almost ker c′(x), especially
for µ → 0, since (ΨA

w)−1ΨA
η tends to be small. This justifies the additional

assumption of the following theorem, the proof of which is completely analogous
to the proofs in the previous section.

Theorem 3.6.5. In addition to the assumptions of Theorem 2.6.5, suppose
that Hρ(v) is positive definite on Xρ. Then the mapping ||| · |||v : X∗

2 → IR

defined by

|||r|||2v := 〈Rρ(v)T ρ(v)−1r, T ρ(v)−1r〉

is an affine invariant norm, which is equivalent to the canonical norm on X ∗
2 .

Again, efficiently computable norms on Z2 and Z∞ can be defined by

|||(z1, z2, z3, z4)T |||2v := |||z1|||2v + +||z2||2Λ2
+ ||z3||2W2

+ ||z4||2W2

= 〈Hρ(v)ξ, ξ〉+ ||l||2Λρ
+ ||z2||2Λ2

+ ||z3||2W2
+ ||z4||2W2

(3.26)

and

||(z1, z2, z3, z4)T ||2v := ||φ||L∞ + ||l||2Λρ
+ ||z2||2Λ2

+ ||z3||2W2
+ ||z4||2W2

, (3.27)

respectively, where

Sρ(v)

[
ξ
l

]
=

[
z1
0

]
and φ(t) := ξ(t)THρ(v)(t)ξ(t) .
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Note that in general the norms || · ||v do not form a γ-continuous family,
except for fixed nearly active sets. This must be taken into account when using
the norm (3.27) for the continuation procedure.

For the special choice of ρ = 1 in the case of control constraints only,
however, a slightly weaker continuity property of the coarser norm ||| · |||v can
be shown.

Lemma 3.6.6. Using 1-nearly active sets and the Fischer-Burmeister comple-
mentarity function (2.7), there exists a constant γ, such that

|||z|||v1 ≤ (1 + γ||Fv(v1;µ)(v1 − v2)||v1)|||z|||v2

holds.

Proof. For z = (z1, z2, z3, z4)
T ∈ Z2,

Fv(vi;µ)




ξvi

λvi

ηvi

wvi


 =




z1
0
0
0


 , and lvi

=

[
λvi

ηA
vi

]
for i = 1, 2 (3.28)

consider

|||z|||2v1
− |||z|||2v2

= 〈Hρ(v1)ξv1 , ξv1〉 − 〈Hρ(v2)ξv2 , ξv2〉+ ||lv1 ||2Λρ(v1) − ||lv2 ||2Λρ(v2)

= 〈Lxx(v1)ξv1 , ξv1〉 − 〈Lxx(v2)ξv2 , ξv2〉
+ 〈DI(v1)ξv1, ξv2〉 − 〈DI(v2)ξv2 , ξv2〉
+ ||λv1||2Λ2

− ||λv2 ||2Λ2

+ ||ηA
v1
||2W2,A(v1) − ||ηA

v2
||2W2,A(v2) ,

where

D(v) := g′I(x)
∗ΨI

η(v)
−1ΨI

w(v)g′I(x) .

The first and third difference in the right hand side sum do not depend on the
partitioning of Ω in active and inactive sets. Therefore, they can be handled
by Lipschitz continuity of Fv as in Corollary 3.6.4. The remaining terms are
investigated below. Let Ωi

I := Ωρ
I(vi) for i = 1, 2. First consider

〈DI(v1)ξv1, ξv1〉 − 〈DI(v2)ξv2 , ξv2〉

=

∫

Ω1
I

ξT
v1

� ′(x1)
T ψw(v1)

ψη(v1)
� ′(x1)ξv1 dt−

∫

Ω2
I

ξT
v2

� ′(x2)
T ψw(v2)

ψη(v2)
� (v2)

′ξv2 dt

=

∫

Ω1
I\Ω2

I

ξT
v1

� ′(x1)
T ψw(v1)

ψη(v1)
� ′(x1)ξv1 dt−

∫

Ω2
I\Ω1

I

ξT
v2

� ′(x2)
T ψw(v2)

ψη(v2)
� (v2)

′ξv2 dt

+

∫

Ω1
I
∩Ω2

I

(
ξT
v1

� ′(x1)
T ψw(v1)

ψη(v1)
� ′(x1)ξv1 − ξT

v2

� ′(x2)
T ψw(v2)

ψη(v2)
� (v2)

′ξv2

)
dt .
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The third integral can again be handled by the Lipschitz continuity of the
involved functions. From (3.28) and (2.25) we infer

ψw(vi)
� ′(xi)ξvi

+ ψη(vi)ηvi
= 0

and thus

∫

Ω1
I\Ω2

I

ξT
v1

� ′(x1)
T ψw(v1)

ψη(v1)
� ′(x1)ξv1 dt

=

∫

Ω1
I\Ω2

I

ηT
v1

ψη(v1)

ψw(v1)

ψw(v1)

ψη(v1)

ψη(v1)

ψw(v1)
ηv1 dt =

∫

Ω1
I\Ω2

I

ηT
v1

ψη(v1)

ψw(v1)
ηv1 dt .

Let r := ||z||2v1
||Fv(v1;µ)(v1 − v2)||v1 . On Ω1

I\Ω2
I we have w1 ≥ η1 and w2 ≤ η2,

such that there is some v̄ with w̄ = η̄ on Ω1
I\Ω2

I and

||v̄ − v1||V∞ ≤ ||v1 − v2||V∞ ≤ const ||Fv(v1;µ)(v1 − v2)||v1 .

Then,

∫

Ω1
I\Ω2

I

ξT
v1

� ′(x1)
T ψw(v1)

ψη(v1)
� ′(x1)ξv1 dt =

∫

Ω1
I\Ω2

I

ηT
v1

ψw(v̄)

ψη(v̄)
ηv1 dt+O(r)

=

∫

Ω1
I
\Ω2

I

ηT
v1
ηv1 dt+O(r)

because of

ψw(v̄)

ψη(v̄)
=

√
w̄2 + η̄2 + 2µ− w̄√
w̄2 + η̄2 + 2µ− η̄

= 1 .

Consequently we have

〈DI(v1)ξv1 , ξv1〉 − 〈DI(v2)ξv2, ξv2〉 =

∫

Ω1
I\Ω2

I

ηT
v1
ηv1 dt−

∫

Ω2
I\Ω1

I

ηT
v2
ηv2 dt+O(r) .

On the other hand,

||ηA
v1
||2W2,A(v1) − ||ηA

v2
||2W2,A(v2) =

∫

Ω\Ω1
I

ηT
v1
ηv1 dt−

∫

Ω\Ω2
I

ηT
v2
ηv2 dt

=

∫

Ω2
I\Ω1

I

ηT
v1
ηv1 dt−

∫

Ω1
I\Ω2

I

ηT
v2
ηv2 dt

+

∫

Ω\(Ω1
I
∩Ω2

I
)

(ηT
v1
ηv1 − ηT

v2
ηv2) dt ,



3.6 Affine Invariant Norm 63

such that

〈DI(v1)ξv1, ξv1〉 − 〈DI(v2)ξv2 , ξv2〉+ ||ηA
v1
||2W2,A(v1) − ||ηA

v2
||2W2,A(v2)

=

∫

(Ω1
I\Ω2

I)∪(Ω2
I\Ω1

I )

(ηT
v1
ηv1 − ηT

v2
ηv2) dt+O(r)

= O(r)

and

||z||2v1
− ||z||2v2

= O(r) .

Finally we introduce a constant γ and conclude

||z||2v1
− ||z||2v2

≤ γ||z||2v1
||Fv(v1;µ)(v1 − v2)||v1

⇒ ||z||2v1
≤ (1 + γ||Fv(v1;µ)(v1 − v2)||v1)

2||z||2v2

⇒ ||z||v1 ≤ (1 + γ||Fv(v1;µ)(v1 − v2)||v1)||z||v2 .
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