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1 Optimization Problems and Techniques

Abstraction is selective ignorance.
— Andrew Koenig —

Due to the importance of optimization tasks, numerical optimization has a
long tradition and many algorithms have been proposed. In this chapter we
formulate the optimal control problem considered throughout this thesis and
give a necessarily brief and incomplete overview of the methods used to solve
this type of optimal control problems. Additionally, we will give a historical
overview of the development of interior point methods.

1.1 Optimal Control Problems

The type of optimal control problem considered in this thesis is

∫ 1

0

�
(y(t), u(t)) dt→ min (1.1)

subject to the equality constraints

ẏ(t) = f(y(t), u(t), t) (1.2)

r0(y(0)) = 0 (1.3)

r1(y(1)) = 0 (1.4)

and the control inequality constraints

� u(u(t)) ≥ 0 (1.5)

and the state (or path) inequality constraints

� y(y(t)) ≥ 0 (1.6)

for t ∈ [0, 1]. The functions f, r0, r1,
� y and � u are assumed to be at least twice

continuously differentiable.
Besides the Lagrange type cost functional (1.1), the Mayer cost function

J1(y(1)) → min
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and the Bolza cost function

J1(y(1)) +

∫ 1

0

�
(y(t), u(t)) dt→ min

are widely used. It is well known that all three formulations are mutually equiv-
alent.

1.2 Methods for Constrained Optimization

1.2.1 Indirect Methods

The classical approach to solving optimal control problems as formulated above
is based on Pontrjagin’s minimum principle [45]. The minimum principle
states the existence of adjoint variables λ (also called co-states) that satisfy
adjoint differential equations and transversality conditions, and characterizes
the optimal control u∗ as implicit function of the states y and the adjoint
variables λ.

Theorem 1.2.1. (Pontrjagin’s Minimum Principle) Let (y, u) be an optimal
solution of (1.1–1.5). Then there exist adjoint variables λ satisfying the adjoint
equations

λ̇(t) = −∂yf(y(t), u(t))Tλ(t) (1.7)

and Lagrange multipliers α0 and α1 satisfying the transversality conditions

λ(0) = r′0(y(0))Tα0 (1.8)

λ(1) = r′1(y(1))Tα1 . (1.9)

Furthermore, the Hamiltonian H(y, u, λ) :=
�
(y, u) + λTf(y, u) is pointwise

minimized by the optimal control u in the set of all admissible controls:

H(y(t), u(t), λ(t)) = min
� u(ũ)≥0

H(y(t), ũ, λ(t)) (1.10)

Often a partitioning u = (u1, u2) such that H(y, u1, u2, λ) = Hl(y, u1, λ) +
S(y, λ)Tu2 can be used to determine u as a function of y and λ in the case
of box control constraints β ≤ u2 ≤ γ. The nonlinearly occurring part u1 is
determined implicitly by Hl

u1
= 0, and u2 by

u2 =

{
β S > 0

γ S < 0
. (1.11)

Once the switching structure (1.11) of the optimal solution is known, the
necessary conditions (1.7) up to (1.9) together with the original state equa-
tion (1.2) and boundary conditions (1.3,1.4) lead to a boundary value problem.
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Introduction of the switching times τi as additional variables and the switch-
ing conditions S(y(τi), λ(τi)) = 0 then leads to a multipoint boundary value
problem in the simplest case (ignoring singular subarcs with S ≡ 0). These
multipoint boundary value problems can be solved by multiple shooting or col-
location methods, yielding the solution of the optimization problem in most
cases of real life applications.

In the presence of state constraints (1.6), additional differential algebraic
equations of possibly higher order may occur, and additional entry and exit
conditions associated with state constrained arcs must be satisfied.

Unfortunately, the switching structure is in general not known a-priori and
may be difficult to obtain for real life problems. Thus, an interactive iterative
process involving the solution of several multipoint boundary value problems
and analytic calculations is often necessary to determine the correct switching
structure. Both insight into the actual problem and understanding of the math-
ematical background are typically required for this task. Consequently, indirect
methods are most often applied when the expected improvement is significant
and enough time for obtaining the solution is available, e.g. in the aerospace
problem domain.

1.2.2 Direct Methods

In contrast to aerospace applications, industrial applications often require less
accurate solutions but impose restrictions on solution time and expense. There-
fore, the increasing demand for optimization in industrial applications led to
the development of direct methods.

In a first step, the control functions u are parameterized by, e.g. piecewise
constant or piecewise linear functions on a suitably chosen grid 0 = t1 < t2 <
· · · < tn = 1, substituting u with ui = u(ti). The state equation and accordingly
the state variables y are discretized by either a multiple shooting approach or
a collocation method. The inequality constraints are typically considered only
on the grid points in the form gu(ui) ≥ 0 and gy(yi) ≥ 0, where 1 ≤ i ≤ n,
accepting state inequality constraint violations of the order of the discretiza-
tion error. This discretization turns the optimal control problem into a finite
dimensional nonlinear program

J(u, y) → min

subject to

c(u, y) = 0

g(u, y) ≥ 0 .

In a second step, standard methods are used to solve the nonlinear pro-
gram. Most often, sequential quadratic programming methods are used, but
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occasionally augmented Lagrangian, projected gradient and penalty methods
are applied. They involve the solution of a sequence of linear equation sys-
tems or linear-quadratic programs, which in turn can be solved by some stan-
dard method or interior point method. See for example the textbooks by
Fletcher [27], Luenberger [36], or Polak [44] for an overview. Interior
point methods will be discussed in Section 1.3.

The Kuhn-Tucker conditions and the collocation or multiple shooting dis-
cretization lead to a special sparse structure of the arising linear equation sys-
tems. This can be utilized by standard band solvers or special recursive KKT
solvers [47] for an efficient solution process.

Direct methods do not need a-priori information about the switching struc-
ture. It is determined automatically in the course of the solution of the nonlinear
programs.

The direct method with multiple shooting and collocation approach has
been realized by Bock et. al. for parameter estimation problems in the codes
PARFIT and COLFIT [6] and by Bock and Plitt in the optimal control code
MUSCOD [7].

The respective advantages of direct and indirect methods can be favor-
ably combined in a two-stage approach proposed by Bulirsch, Nerz, Pesch,
and von Stryk [12], who compute the initial guess for the indirect multiple
shooting method using a direct collocation method. In particular, the Lagrange
multipliers of the solution of the discrete nonlinear programming problem can
be used to generate good estimates for the adjoint variables of the indirect
method, which are difficult to obtain otherwise.

1.3 Interior Point Methods

In this section we will give a necessarily short survey of the development of
interior point methods using the same notation as above instead of the standard
form popular in linear programming.

For finite-dimensional programs the requirement of the iterates to stay in
the feasible set M := {x : g(x) ≥ 0} can be achieved by the addition of a
penalty term to the original cost functional:

J̃(x) := J(x)− µ
∑

i

B(gi(x))

subject to c(x) = 0. If B(ξ) → −∞ for ξ → 0, the minimum of J̃ lies in the
interior of the feasible region M . Under suitable assumptions, following the
path x(µ) of minimizers to µ → 0 then leads to the solution x∗. Such barrier
methods, among which the logarithmic barrier method with B(ξ) = log ξ is par-
ticularly popular, have first been analyzed by Fiacco and McCormick [25]



1.3 Interior Point Methods 11

in 1968. Unfortunately, the resulting equality constrained minimization prob-
lems become more and more ill-conditioned for µ→ 0, due to the dominating
rank-1 terms in the Hessian

J̃ ′′(x) = J ′′(x)− µ
∑

i

g′′i (x)gi(x)− g′i(x)g
′
i(x)

T

gi(x)2

orthogonal to the nearly active constraints with gi(x) ≈ 0. Due to the numerical
problems introduced by the ill-conditioned subproblems and the necessity of
finding a feasible initial point, barrier methods (as penalty methods in general)
have been somewhat unpopular.

On the other hand, active set methods, frequently used in linear optimiza-
tion in the form of the well-known simplex method, exhibit an exponential
worst case complexity. Although not encountered in practice, the bad worst
case behavior of active set methods motivated the search for different algo-
rithms with polynomial complexity. The first of them, the ellipsoid method,
has been presented in 1979 by Khachiyan [33], but turned out to be much
slower for practical problems than the simplex method.

The breakthrough has been achieved by Karmarkar [31] in 1984 who
proved polynomial complexity for his algorithm, that achieved competitive per-
formance and turned out to be a logarithmic barrier method afterwards. Since
then, a remarkable revival of barrier methods has attracted a lot of research
in this direction, resulting in a large variety of highly efficient interior point
methods. By introduction of Lagrange multipliers

η :=
µ

g(x)
(1.12)

and reformulation of the multiplier equation (1.12) in the form η · g(x) = µ,
the ill-conditioning can even be overcome. Here, quotient and product /, · :
IR

n × IR
n → IR

n are to be taken component wise. The resulting primal-dual
interior point approach based on

J ′(x)− c′(x)∗λ− g′(x)∗η = 0

c(x) = 0

η · g(x) = µ

is generally assumed to be most efficient.

Nesterov and Nemirovskii [43] established a general convergence theory
for interior point methods applied to convex programming problems using self-
concordant barrier functions, where they can show superlinear convergence. At
present, primal-dual interior point methods seem to be more efficient than the
simplex method, especially for large linear programs.
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Currently, interior point methods are extended into four main directions.
Much attention is gained by the application of interior point methods to semi-
definite programming problems which arise as relaxations of discrete optimiza-
tion problems. Here, matrix-valued variables occur, and the inequalitiy A � 0
denotes the positive semidefiniteness of A.

A second branch of research activity is targeted at extending interior point
methods to nonlinear and nonconvex programming problems [24], though not
without difficulties [52].

The application of interior point techniques to the more general class of
nonlinear complementarity problems

〈x, c(x)〉 = 0

x ≥ 0 , c(x) ≥ 0
(1.13)

has been studied in the last decade. In this context, very similar noninterior
point or complementarity methods allowing iterates to leave the feasible region
have become popular [15].

The fourth direction aims at solving semi-infinite programming problems
involving an infinite number of inequality constraints. See the survey paper
by Reemtsen et. al. [46]. Although interior point methods are highly effi-
cient especially for large scale problems, most straightforward extensions to
(semi-)infinite problems seem to fail for two reasons: First, the sum over log-
arithmic barrier functions is replaced by an integral, which no longer forms
a self-concordant barrier function. In general, it does not even form a barrier
function at all [29]. Second, the convergence theory of interior point methods is
in general formulated in terms of the number of unknowns and constraints, and
currently the best known convergence rate estimates are of order O(1 − 1√

n
).

The decrease of convergence speed with increasing number of constraints seems
to be caused by the incompatibility of the norms in L2 and L∞. Nevertheless,
some progress has been made in showing convergence of some interior point
algorithms applied to a restricted class of infinite-dimensional problems, see
e.g. Todd [48], Todd and Tunçel [49] and Vanderbei [50].

Furthermore, interior point methods have been applied successfully in the
context of direct methods for solving optimal control problems [47] and topo-
logy optimization [37]. This indicates the applicability of interior point tech-
niques to infinite dimensional optimization problems, because even if only dis-
cretized problems are solved, the properties of the underlying infinite dimen-
sional problem tend to govern the solution process once the discretization is
sufficiently fine.

In the following chapter, we will address the difficulties that have to be
overcome when extending interior point methods to optimal control problems.
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2 Complementarity Methods for Optimal

Control

Life does not consist mainly,
or even largely, of facts and happenings.

It consists mainly of the storm of thought
that is forever flowing through one’s head.

— Mark Twain —

After stating the problem we will analyze the difficulties encountered by com-
plementarity methods applied to infinite dimensional optimization problems.
Subsequently, we will propose a way to overcome these difficulties.

2.1 Statement of the Problem

Let X := Xu×Xy be a function space over the domain Ω := [0, 1]. Assume Xy

contains functions of higher regularity than Xu such that ẏ ∈ Xu for y ∈ Xy.
We will always use x = (u, y) interchangeably for elements of X. Assume
�

: IR
nu× IR

ny → IR, � : IR
nu × IR

ny × IR
ny → IR

nc, � r : IR
ny × IR

ny → IR
nr , and � u :

IR
nu → IR

mu are at least twice, � y : IR
ny → IR

my at least three times Lipschitz-
continuously differentiable. We will consider the optimization problem

∫

Ω

�
(u(t), y(t)) dt→ min

subject to

� (u(t), y(t), ẏ(t)) = 0 a.e.
� r(y(0), y(1)) = 0

� u(u(t)) ≥ 0 a.e.
� y(y(t)) ≥ 0 a.e.

In order to achieve a more compact functional analytic notation, we define the
functional

J(x) :=

∫

Ω

�
(u(t), y(t)) dt
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and the equality constraints operator c on X by

c(x) :=

[
c̃(x)

� r(y(0), y(1))

]
,

where

c̃(x)(t) := � (u(t), y(t), ẏ(t)) for t ∈ Ω .

The inequality constraints operator g on X is defined in a similar way by

g(x) :=

[
gu(u)
gy(y)

]
,

where

gu(u)(t) := � u(u(t)) and gy(y)(t) := � y(y(t)) for t ∈ Ω .

The optimal control problem above can then be written as

J(x) → min

subject to

c(x) = 0

g(x) ≥ 0 .

Remark 2.1.1. The restriction to the domain Ω = [0, 1] is primarily for con-
venience and no limitation at all, since any domain [a, b] is easily mapped to Ω
by an affine transformation. This also holds for optimal control problems with
unknown end time, such as minimal time problems, where we map [T0, T ] to Ω
and introduce T as a new scalar control variable. /

2.2 Necessary and Sufficient Optimality

Conditions

Necessary optimality conditions have first been given by Karush [32] and
Kuhn and Tucker [34] in the context of (non)linear programming. Necessary
as well as sufficient optimality conditions have then been given in various forms
by several researchers, cf. the survey article by Kurcyusz [35] or the general-
ized conditions by Maurer and Zowe [40] for infinite dimensional problems.
Compared to the finite dimensional setting, stronger assumptions are neces-
sary to guarantee the existence of Lagrange multipliers for infinite dimensional
problems.
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In the most abstract setting, an optimization problem can be stated as

minimize J(x)

subject to g(x) ∈ K, (2.1)

where J is a functional defined on a real Banach space X, g a map from X
into a real Banach space Z and K a closed convex cone in Z. Since any closed
convex cone K ⊂ Z defines a partial ordering on Z, we will write z1 ≤ z2 and
z2− z1 ∈ K interchangeably. Let K+ := {l ∈ Z∗ : 〈l, k〉 ≥ 0 f.a. k ∈ K} denote
the dual (or polar) cone of K. J and g are assumed to be twice continuously
Fréchet differentiable. The following theorems have been proved in [40].

Definition 2.2.1. A point x ∈ X is called regular, if

0 ∈ int(g(x) + g′(x)X −K),

where int denotes the topological interior.

Theorem 2.2.2. (Necessary conditions) Let x be a regular solution of prob-
lem (2.1). Then there is some l ∈ K+ such that

J ′(x)− g′(x)∗l = 0

〈l, g(x)〉 = 0.
(2.2)

Theorem 2.2.3. (Sufficient conditions) Suppose x is a regular point of prob-
lem (2.1). Assume there is a Lagrange multiplier l ∈ K+ such that J ′(x) −
g′(x)∗l = 0 and 〈l, g(x)〉 = 0. Let L(x) = J(x) − 〈l, g(x)〉. Suppose that there
are δ > 0 and β > 0 such that

〈L′′(x)h, h〉 ≥ δ||h||2 (2.3)

for all h with g′(x)h ∈ K + IRg(x) and 〈l, g′(x)h〉 ≤ β||h||. Then there exists a
neighborhood U of x such that x is the unique local solution of (2.1) in U .

As has been observed by Maurer [39], the assumptions of Theorem 2.2.3
are in general not satisfied for optimal control problems, since most often the
solution x∗ is regular only if X ⊂ L∞, but the Hessian L′′(x∗) is coercive only
if L2 ⊂ X. This is illustrated in the following example.

Example 2.2.4. Consider the trivial optimization problem
∫

Ω

u2 dx→ min

subject to

−1 ≤ u ≤ 1 a.e.
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The optimal solution is trivially u∗ = 0 with completely inactive constraints
and therefore vanishing Lagrange multipliers η1 = η2 = 0.

Theorem 2.2.2 assumes regularity

0 ∈ int(g(u∗) + g′(u∗)X0 −K)

with g(u) = (u + 1, 1 − u)T and K := {(a, b)T : a ≥ 0, b ≥ 0} in order to
guarantee the existence of Lagrange multipliers satisfying the Kuhn-Tucker
conditions (2.2). Here,

U := int(g(0) + g′(0)Xu −K)

= {(1 + ν − a, 1− ν − b)T : ν ∈ Xu, a ≥ 0, b ≥ 0} .

For 0 to be in the interior of U there must be ν ∈ X0 and a, b ∈ K such that

1 + ν − a = εa
1− ν − b = εb

⇒ a + b = 2− εa − εb a.e.

for every εa, εb ∈ B(0, ρ) with sufficiently small ρ. Therefore u∗ is regular if and
only if Xu ⊂ L∞.

On the other hand, Theorem 2.2.3 requires L′′(u∗) to be positive definite on
the whole space Xu in this case. Since L′′(0)(h, h) = 2||h||22, this is only satisfied
if L2 ⊂ Xu, in contradiction to the requirement Xu ⊂ L∞ for regularity of u∗.
Therefore, Theorem 2.2.3 is not applicable. /

This two-norm-discrepancy can be addressed using two different norms for
the space itself and the coercivity condition (2.3):

Theorem 2.2.5. (Sufficient conditions) Suppose x is a regular point for prob-
lem (2.1). Assume that J and g are defined and twice continuously Fréchet dif-
ferentiable on some larger space Xp ⊃ X. Assume (2.2) holds and let L(x) =
J(x)− 〈l, g(x)〉. Suppose that there are δ > 0 and β > 0 such that

〈L′′(x)h, h〉 ≥ δ||h||2p

for all h with g′(x)h ∈ K + IRg(x) and 〈l, g′(x)h〉 ≤ β||h||p. Then there exists a
neighborhood U of x in Xp such that x is the unique local solution of (2.1) in
U .

For recent developments in the area of sufficient conditions in the presence
of two-norm discrepancy we refer to Malanowski [38].

2.2.1 The Role of Lagrange Multipliers

Besides allowing a characterization of the solution, the Lagrange multipliers l
associated with an optimal point x by the Kuhn-Tucker conditions (2.2) have
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an interpretation as sensitivities of the cost functional with respect to violations
of the corresponding constraints (cf. Luenberger [36]).

More technically, under suitable assumptions one can show that if x∗ is a
solution of (2.1) with associated Lagrange multiplier l, then there is a mapping
z 7→ x(z) for sufficiently small perturbations z ∈ Z, such that x(z) solves

min J(x) subject to g(x)− z ∈ K . (2.4)

Furthermore, the derivative of the optimal value of the perturbed problem (2.4)
is

∂zJ(x(z))|z=0 = l .

In particular, this equality constitutes the basis for the construction of weighted
error estimators for adaptive methods tailored for optimization problems [4].

Moreover, jointly vanishing Lagrange multipliers of (weakly) active con-
straints can indicate a nonunique solution.

Example 2.2.6. Consider the artificial optimization problem

min−y(1) subject to y(0) = 0
ẏ = u

u ≤ 1
y ≤ max(1− 3t, 0, 3t− 2)

with an obvious solution

y = max

(
0, t− 2

3

)
and u =

{
0, t < 2

3

1, t > 2
3

and the corresponding Lagrange multipliers

λ =

{
0, t < 2

3

1, t > 2
3

λr = 0

ηu = λ ηy = δ 2
3

satisfying the first order necessary conditions (2.2). The fact that the Lagrange
multipliers vanish on the whole interval [0, 2/3) already indicates that the so-
lution is not unique and the control u can be changed without altering the
functional’s value. In fact, every feasible control ũ with

∫ 2
3

0

ũ dt = 0

generates an optimal solution (cf. Figure 2.1). A similar situation is encountered
in the abort landing problem treated in Section 4.3.

Note, however, that Lagrange multipliers can vanish for unique solutions,
too, and thus do not imply nonuniqueness. If the cost functional in this example
is augmented with ε||u||2L2

, where ε is sufficiently small, then the solution is
unchanged (except for ηu on [2/3, 1]), but unique. /
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Figure 2.1: Some optimal solutions from Example 2.2.6. Recall that on [0, 2/3)
both Lagrange multipliers λ and η vanish, and that there is a
whole continuum of optimal solutions.

2.3 Infinite dimensional Complementarity

Methods

A quite common strategy for solving optimization problems of type (2.1) is
to compute Karush-Kuhn-Tucker points and Lagrange multipliers satisfying
(2.2) which are promising candidates for local solutions. This is a difficult task
because of the complementarity condition

〈g(x), η〉 = 0

g(x) ≥ 0, η ≥ 0 .
(2.5)

Formally, the complementarity approach is to substitute (2.5) by the equivalent
conditions

Ψ(w, η) = 0

w − g(x) = 0 ,
(2.6)

where Ψ results from the pointwise application of a complementarity function
ψ with

ψ(a, b) = 0 ⇔ ab = 0
a ≥ 0, b ≥ 0 ,
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and the introduction of slack variables w is as usual supposed to reduce non-
linear coupling between g and Ψ. In the optimal control context, the comple-
mentarity function Ψ can be divided into separate complementarity parts for
the control and state constraints, respectively:

Ψ =

[
Ψu

Ψy

]
.

Since no such complementarity function can be continuously differentiable,
a suitable smoothing of the complementarity function, in terms of a parameter
µ, is used to define a homotopy path that leads to the solution for µ→ 0. Such
complementarity methods have been studied recently by Kanzow [30], Burke

and Xu [13], and Chen and Xiu [14] for finite dimensional complementarity
problems.

Several smoothed complementarity functions have been suggested, e.g. a
family of smoothings of the plus function (a)+ := max(0, a) by Chen and
Mangasarian [15] or the smoothed Fischer-Burmeister function [26]

ψFB(a, b;µ) := a + b−
√
a2 + b2 + 2µ , (2.7)

which generates exactly the same homotopy as the usual interior point method
with ab = µ.

Remark 2.3.1. The use of complementarity functions has two main advan-
tages over primal-dual interior point methods:

• The iterates are not required to stay in the feasible region. Therefore,
infeasible starting points can be used, which may be easier to generate
than feasible starting points.

• If a step leaves the feasible region, no step size reduction is required for
the method to be well defined. With interior point methods, the addi-
tional algorithmic decision of how far away from the boundary to stay is
necessary. /

The homotopy problem defined by the complementarity formulation (2.6) is
usually tackled by Newton continuation algorithms, which require the involved
functions to be continuously differentiable. As demonstrated below, the com-
plementarity functions violate this requirement when applied to functions from
spaces less regular than L∞. Note that this is a distinct feature of the infinite
dimensional setting.

Consider the sequence

wi :=

{
1, t < 1

i

0, otherwise
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with wi → 0 in Lp for all p < ∞. Using the Fischer-Burmeister function (2.7)
we have

Ψw(wi, 0;µ)−Ψw(0, 0;µ) =
wi√
w2

i + µ
,

such that

||Ψw(wi, 0;µ)−Ψw(0, 0;µ)|| ≥ 1√
1 + µ

6→ 0 .

Thus, the differentiability requirement imposes the regularity requirement

w ∈ Lm
∞ and η ∈ Lm

∞ (2.8)

on slacks and Lagrange multipliers.
Note that the nondifferentiability is not specific to the complementarity

functions. The constraints � u and � are also affected, if u appears nonlinearly.

Remark 2.3.2. Interior point methods applied to infinite dimensional prob-
lems are affected in a similar pathologic way. Since the interior of the positive
cone is empty in Lp for p < ∞, there may occur continuation directions that
violate the positivity condition for every positive step size. Although this will
never be the case in actual computation with a reasonable discretization, the
performance of the method may deteriorate significantly in the course of adap-
tive refinement.

The fact that all estimations of convergence rates of IP methods for linear
programming get worse for more unknowns may have exactly that reason. For
an increasing number of unknowns, the hidden L2-structure of the problem
becomes visible and the possible step sizes get smaller. /

Remark 2.3.3. As pointed out recently by Wächter and Biegler [52], in-
terior point methods applied directly to nonlinear problems may fail to converge
for one more reason. They constructed a simple well posed example where for
a large set of starting points and every µ > 0 the Newton path for the interior
point corrector leads to the boundary of the feasible set. There the iteration
terminates prematurely with a singular derivative. /

On the other hand, the first order necessary conditions of Theorem 2.2.2
guarantee only ηu ∈ X∗

u ⊃ Xu and ηy ∈ X∗
y ⊃ Xy. In fact, measure val-

ued Lagrange multipliers occur frequently in state constrained optimal control
problems. Furthermore, convergence of the central path to the solution cannot
be expected in L∞, as the trivial example in the appendix shows.

To overcome this gap, we notice that with the additional assumption

x(µ) ≥ ε(µ) > 0 a.e.



2.4 Nemyckii operators in L∞ and W 1
∞ 21

for points x(µ) on the central path, the Lagrange multipliers are bounded by
η(µ) ≤ µ

ε(µ)
. Hence, the regularity requirement (2.8) can be satisfied for all

µ > 0.
Consequently, the choice of spaces is

X := Xu ×Xy := Lnu

∞ × (W 1
∞)ny

Λ := Lnc
∞ × IR

nr

W := Wu ×Wy := Lmu

∞ × (W 1
∞)my

with

V := X × Λ×W ×W

being the space of all unknowns v = (x, λ, η, w)T . Convergence will be discussed
in the space Vp := Xp × Λp ×Wp ×Wp for p < ∞ with Xp := Lnu

p × (W 1
p )ny ,

Λp := Lnc
p × IR

nr , and Wp := Lmu
p × (W 1

p )my .
Combining the KKT equations (2.2) and the complementarity formula-

tion (2.6), the system defining the central path v(µ) implicitly by F (v(µ);µ) = 0
is

F (v;µ) :=




J ′(x)− c′(x)∗λ− g′(x)∗η
−c(x)
w − g(x)
Ψ(w, η;µ)


 . (2.9)

This is the formulation to be attacked algorithmically.
In the following, we will investigate existence and convergence of the homo-

topy path defined by the complementarity formulation above.

2.4 Nemyckii operators in L∞ and W 1
∞

Since the optimization problem stated in Section 2.1 is made up of Nemyckii
operators, we first study basic properties of these operators in L∞ and W 1

∞.
The overall notation is borrowed from [54], Chapter 4.

Definition 2.4.1. For a domain Ω ⊂ IR
l and a mapping f : IR

n → IR
m the

corresponding Nemyckii operator on L1(Ω) is defined by f(u)(t) := f(u(t)).

Lemma 2.4.2. For k functions fj ∈ Lpk with k ≥ 1 and 1 ≤ p ≤ ∞ the
following extended Hölder inequality holds:

∥∥∥
k∏

j=1

fj

∥∥∥
Lp

≤
k∏

j=1

||fj||Lpk
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Proof. Let k′ := k
k−1

. Then, by Hölder’s inequality and by induction,

∥∥∥
k∏

j=1

fj

∥∥∥
Lp

=
∥∥∥

k∏

j=1

|fj|p
∥∥∥

1
p

L1

≤ |||fk|p||
1
p

Lk

∥∥∥
k−1∏

j=1

|fj|p
∥∥∥

1
p

Lk′

= ||fk||Lpk

∥∥∥
k−1∏

j=1

fj

∥∥∥
Lpk′

≤ ||fk||Lpk

k−1∏

j=1

||fj||L(k−1)pk′
=

k∏

j=1

||fj||Lpk
.

Theorem 2.4.3. If f : IR
n → IR

m is k times differentiable and its k-th deriva-
tive satisfies the Lipschitz condition

|f (k)(x)− f (k)(y)| ≤ κ|x− y| , (2.10)

the corresponding Nemyckii operator f maps Ln
∞ into Lm

∞ and is k times dif-
ferentiable. For p ≥ 1 its k-th derivative can be continuously extended to an
operator f (k)(u) : (

∏k
j=1 L

n
pk) → Lm

p that inherits boundedness and Lipschitz

continuity from f (k):

||f (k)(u)||( � k
j=1 Ln

pk
)→Lm

p
≤ sup

|x|≤||u||Ln
∞

|f (k)(x)| (2.11)

||f (k)(u+ δu)− f (k)(u)||( � k
j=1 Ln

pk)→Lm
p
≤ κ||δu||Ln

∞
(2.12)

Proof. For u ∈ Ln
∞ let M := ||u||∞. Since f is continuous by assumption, f is

bounded on the closed ball B(0,M). Therefore,

||f(u)||∞ = ess sup
t∈Ω

|f(u(t))| <∞ .

To begin with, Definition 2.4.1 can be written as f (0)(u)(t) = f (0)(u(t)). By
induction, assume i < k and the i-th derivative of f is given by

(f(u)hi . . . h1)(t) = f (i)(u(t))hi(t) . . . h1(t) for all t ∈ Ω.

Then we have

((f (i)(u+ hi+1)− f (i)(u))hi . . . h1)(t)

=
(
f (i)(u(t) + hi+1(t))− f (i)(u(t))

)
hi(t) . . . h1(t)

=

∫ 1

0

f (i+1)(u(t) + shi+1(t))hi+1(t)hi(t) . . . h1(t) ds

= f (i+1)(u(t))hi+1(t)hi(t) . . . h1(t) + r(t)

with

r(t) =

∫ 1

0

(
f (i+1)(u(t) + shi+1(t))− f (i+1)(u(t))

)
hi+1(t)hi(t) . . . h1(t) ds ,
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which yields

||r||Lm
∞
≤
∫ 1

0

sκi+1||hi+1||2Ln
∞

i∏

j=1

||hj||Ln
∞
ds

≤ 1

2
κi+1||hi+1||2Ln

∞

i∏

j=1

||hj||Ln
∞

= O(||hi+1||2Ln
∞

)

for sufficiently small hi+1. Here, κi+1 is the Lipschitz constant of f (i+1) on the
ball B(0, 1 + ||u||Ln

∞
). Consequently, f has a i + 1-st derivative defined by

(f (i+1)(u)hi+1 . . . h1)(t) = f (i+1)(u(t))hi+1(t) . . . h1(t) .

f (k) is bounded on bounded sets due to its continuity, and hence

||f (k)(u)hk . . . h1||Lm
p
≤
∥∥∥ sup
|x|≤||u||Ln

∞

|f (k)(u)|
k∏

j=1

|hj|
∥∥∥

Lp

≤ sup
|x|≤||u||Ln

∞

|f (k)(u)|
k∏

j=1

|||hj|||Lpk
= sup

|x|≤||u||Ln
∞

|f (k)(u)|
k∏

j=1

||hj||Ln
pk

for all hj ∈ Ln
∞ by Lemma 2.4.2. Thus, f (k)(u) can be extended continuously

to an operator (
∏k

j=1 L
n
pk) → Lm

p satisfying (2.11).

Furthermore, using (2.10) and Lemma 2.4.2 we have

||f (k)(u+ δu)− f (k)(u)||( � k
j=1 Ln

pk
)→Lm

p

= sup
hj∈Ln

pk

||(f (k)(u+ δu)− f (k)(u))hk . . . h1||Lm
p∏k

j=1 ||hj||Ln
pk

≤ sup
hj∈Ln

pk

∥∥∥κ||δu||Ln
∞

∏k
j=1 |hj|

∥∥∥
Lp∏k

j=1 ||hj||Ln
pk

≤ sup
hj∈Ln

pk

κ||δu||Lm
∞

∏k
j=1 ||hj||Ln

pk∏k
j=1 ||hj||Ln

pk

= κ||δu||Lm
∞
.

Theorem 2.4.4. If f : IR
n → IR

m is k + 1 times differentiable and the k-th
and k + 1-st derivatives satisfy the Lipschitz conditions

|f (k)(x)− f (k)(y)| ≤ κ|x− y| and |f (k+1)(x)− f (k+1)(y)| ≤ κ|x− y| ,
(2.13)

the corresponding Nemyckii operator f maps (W 1
∞)n into (W 1

∞)m and is k times
differentiable. For p ≥ 1 its k-th derivative can be continuously extended to
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an operator f (k)(u) : (
∏k

j=1(W
1
pk)

n) → (W 1
p )m that inherits boundedness and

Lipschitz continuity from f (k) and f (k+1):

||f (k)(u)||( � k
j=1(W 1

pk
)n)→(W 1

p )m ≤ sup
|x|≤||u||Ln

∞

(k + 1)|f (k)(x)|+ |f (k+1)(x)| (2.14)

||f (k)(u+ δu)− f (k)(u)||( � k
j=1(W 1

pk)n)→(W 1
p )m ≤ (k + 2)κ||δu||(W 1

∞
)n

Proof. By Theorem 2.4.3, f maps (W 1
∞)n into Ln

∞. In addition, the weak deriva-
tive (f(u))t(t) = f ′(u(t))u̇(t) is bounded almost everywhere, and thus f(u) ∈
(W 1

∞)m.
For establishing the differentiability, we proceed as in the proof of Theo-

rem 2.4.3, but consider additionally the derivative of the residual term, which
turns out to be

ṙ(t) =

∫ 1

0

(
f (i+2)(u(t) + shi+1(t))− f (i+2)(u(t))

)
u̇(t)hi+1(t)hi(t) . . . h1(t) ds

+

∫ 1

0

sf (i+2)(u(t) + shi+1(t))ḣi+1(t)hi+1(t)hi(t) . . . h1(t) ds

+

∫ 1

0

(
f (i+1)(u(t) + shi+1(t))− f (i+1)(u(t))

)
ḣi+1(t)hi(t) . . . h1(t) ds

+

∫ 1

0

i∑

j=1

(
f (i+1)(u(t) + shi+1(t))− f (i+1)(u(t))

)
hi+1(t)

hi(t) . . . hj+1(t)ḣj(t)hj−1(t) . . . h1(t) ds .

This gives rise to

||ṙ||Ln
∞
≤ κi+2||hi+1||Ln

∞
||u̇||Ln

∞
||hi+1||Ln

∞

i∏

j=1

||hj||L∞

+
1

2
||f (i+2)|| ||ḣi+1||Ln

∞
||hi+1||Ln

∞

i∏

j=1

||hj||L∞

+ κi+1||hi+1||Ln
∞
||ḣi+1||Ln

∞

i∏

j=1

||hj||L∞

+
i∑

j=1

κi+1||hi+1||2Ln
∞

||ḣj||Ln
∞

∏

l 6=j

||hl||Ln
∞

= O(||hi+1||2W 1
∞

) ,

where κi+1 and κi+2 are the Lipschitz constants of f (i+1) and f (i+2), respectively,
on B(0, 1 + ||u||Ln

∞
). Thus, ||r||W 1

∞
= O(||hi+1||W 1

∞
), such that f : (W 1

∞)n →
(W 1

∞)m has a i+ 1-th differential.
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Let Mj := sup|x|≤||u||Ln
∞

|f (j)(x)|. Utilizing Lemma 2.4.2,

||(f (k)hk . . . h1)t||Lm
p

≤ ||f (k+1)(u)u̇hk . . . h1||Lm
p

+

k∑

j=1

||f (k)(u)hk . . . hj+1ḣjhj−1 . . . h1||Lm
p

≤Mk+1

∥∥∥|u̇|
k∏

j=1

|hj|
∥∥∥

Lp

+
k∑

j=1

Mk

∥∥∥|ḣj|
∏

i6=j

|hi|
∥∥∥

Ln
p

≤Mk+1||u̇||Ln
∞

k∏

j=1

||hj||Ln
pk

+Mk

k∑

j=1

||ḣj||Ln
pk

∏

i6=j

||hi||Ln
pk

≤Mk+1 + kMk

k∏

j=1

||hj||(W 1
pk

)n ,

for hj ∈ (W 1
pk)

n, where the constant depends on u and k. Together with the
corresponding result of Theorem 2.4.1, this confirms the result (2.14), such that
f (k)(u) can be continuously extended to an operator (

∏k
j=1(W

1
pk)

n) → (W 1
p )m.

Furthermore, using (2.13) and Lemma 2.4.2 we have

||f (k)(u+ δu)− f (k)(u)||( � k
j=1(W 1

pk
)n)→(W 1

p )m

≤ sup
h1,...,hk∈(W 1

pk)n

||(f (k)(u+ δu)− f (k)(u))hk . . . h1||Ln
p∏k

j=1 ||hj||(W 1
pk

)n

+ sup
h1,...,hk∈(W 1

pk)n

||((f (k)(u+ δu)− f (k)(u))hk . . . h1)t||Ln
p∏k

j=1 ||hj||(W 1
pk

)n

≤ κ||δu||Ln
∞

+ sup
h1,...,hk∈(W 1

pk
)n

κ||δu||(W 1
∞

)n(k + 1)
∏k

j=1 ||hj||(W 1
pk)n

∏k
j=1 ||hj||(W 1

pk
)n

≤ κ(k + 2)||δu||(W 1
∞

)n

Theorem 2.4.5. Suppose f : IR
n → IR

n is k times continuously differentiable.
If k ≥ 1, f ′(x) is symmetric, and coercive in the sense that

ξTf ′(x)ξ ≥ α|ξ|2

uniformly for all ξ ∈ IR
n and |x| ≤ R, then f ′(u) : Ln

2 → Ln
2 is symmetric

positive (semi-)definite for all u ∈ Ln
∞ with ||u||∞ ≤ R. Furthermore, f ′(u) :

Ln
∞ → Ln

∞ has an inverse bounded by α−1.
If k ≥ 1 and the derivatives of f : IR

n → IR
n and g : IR

n → IR
n commute,

then so do the derivatives of the corresponding Nemyckii operators f ′ and g′.
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Proof. If f ′(u(t)) is positive (semi-)definite for t ∈ Ω, then

(f ′(u)ξ, ξ)2 =

∫

Ω

ξ(t)Tf ′(u(t))ξ(t) dt ≥
∫

Ω

α|ξ(t)|2 dt = α||ξ||22

for all ξ ∈ Ln
2 . Furthermore, for every ζ ∈ Ln

∞ the function ξ defined by

ξ(t) := f ′(u(t))−1ζ(t)

with ||ξ||∞ ≤ α−1||ζ||∞ satisfies f ′(u)ξ = ζ.
If f ′(x) and g′(x) commute, then

〈f ′(u)g′(w)ξ, ζ〉 =

∫

Ω

ζ(t)T (f ′(u)g′(w)ξ)(t) dt

=

∫

Ω

ζ(t)Tf ′(u(t))(g′(w)ξ)(t) dt =

∫

Ω

ζ(t)Tf ′(u(t))g′(w(t))ξ(t) dt

=

∫

Ω

ζ(t)Tg′(w(t))f ′(u(t))ξ(t) dt =

∫

Ω

ζ(t)T (g′(w)f ′(u)ξ)(t) dt

= 〈g′(w)f ′(u)ξ, ζ〉

for all ξ, ζ.

2.5 Existence of the Central Path

Since the central path is defined by the homotopy (2.9) given by the com-
plementarity function Ψ, we first collect some results concerning boundedness,
continuity, and invertibility of the operators Ψw and Ψη occurring in the deriva-
tive Fv. Afterwards, the same properties of Fv are addressed.

Lemma 2.5.1. Using the Fischer-Burmeister complementarity function (2.6)
with µ ≤ 1/2, the derivative Ψw(w, η;µ) is symmetric positive semidefinite,
bounded by

||Ψu
w||Wu→Wu ≤ 2 , (2.15)

||(Ψu
w)−1||Wu→Wu ≤ max

(
4, 2

||w||2Wu

µ

)
, (2.16)

||Ψy
w||Wy→Wy ≤ 2 +

(||w||Wy + ||η||Wy + 1)2

2µ
, (2.17)

||(Ψy
w)−1||Wy→Wy ≤ 5

(2||w||Wy + ||η||Wy + 1)2

µ
, (2.18)

and Lipschitz continuous with a Lipschitz constant of 27µ−1. The corresponding
holds for Ψη(w, η;µ). Furthermore, the derivatives commute.
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Proof. From (1 + φ)−1/2 ≤ max(1− φ/4, 3/4) for φ > 0 we infer

min

(
µ

2a2
,
1

4

)
= 1−max

(
1− µ

2a2
,
3

4

)
≤ 1− 1√

1 + 2µ
a2

≤ 1− 1√
1 + b2

a2 + 2µ
a2

= 1− |a|√
a2 + b2 + 2µ

≤ ψa(a, b;µ)

≤ 1 +
|a|√

a2 + b2 + 2µ
≤ 2 .

Thus, ψa is uniformly positive definite. Due to Theorem 2.4.5, the derivative
Ψu

w(w, η;µ) of the Nemyckii operator Ψu is bounded by (2.15) and has an
inverse which is bounded by (2.16).

For estimating the operator norms of the derivative in the finer norm of Wy

for the state constraints, we first note that

∣∣∣
(√

w(t)2 + η(t)2 + 2µ
)

t

∣∣∣ =

∣∣∣∣∣
w(t)ẇ(t) + η(t)η̇(t)√
w(t)2 + η(t)2 + 2µ

∣∣∣∣∣

≤ |ẇ(t)|+ |η̇(t)| ≤ ||w||Wy + ||η||Wy a.e.

and therefore

|(ψw(w(t), η(t);µ))t|

=

∣∣∣∣∣∣

ẇ(t)
√
w(t)2 + η(t)2 + 2µ− w(t)

(√
w(t)2 + η(t)2 + 2µ

)
t

w(t)2 + η(t)2 + 2µ

∣∣∣∣∣∣
≤ (2µ)−1

(
||w||Wy(||w||Wy + ||η||Wy + 1) + ||w||Wy(||w||Wy + ||η||Wy)

)

≤ (2µ)−1(||w||Wy + ||η||Wy + 1)2 .

Together with (2.15) this confirms the result (2.17). Because of

ψa(a, b;µ)−1 =

√
a2 + b2 + 2µ√

a2 + b2 + 2µ− a

and

√
a2 + b2 + 2µ− a ≥ |a|

(√
1 +

2µ

a2
− 1

)

≥ |a|min
( µ

2a2
, 1
)

= min

(
µ

2|a| , |a|
)
≥
√
µ

2
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we have

|(ψw(w(t), η(t);µ)−1)t|

≤
∣∣∣∣∣
(
√
w2 + η2 + 2µ)t(

√
w2 + η2 + 2µ− w)

(
√
w2 + η2 + 2µ− w)2

∣∣∣∣∣

+

∣∣∣∣∣

√
w2 + η2 + 2µ(

√
w2 + η2 + 2µ− w)t

(
√
w2 + η2 + 2µ− w)2

∣∣∣∣∣

≤ (||w||Wy + ||η||Wy)(2||w||Wy + ||η||Wy + 1)
µ
2

+
(||w||Wy + ||η||Wy + 1)(||w||Wy + ||η||Wy + ||w||Wy)

µ
2

≤ 4
(2||w||Wy + ||η||Wy + 1)2

µ
.

Together with (2.16) this confirms the result (2.18). As for the Lipschitz con-
tinuity, we estimate

|ψaa| =

∣∣∣∣∣∣

√
a2 + b2 + 2µ− a√

a2+b2+2µ
a

a2 + b2 + 2µ

∣∣∣∣∣∣

≤
∣∣∣∣∣

1√
a2 + b2 + 2µ

∣∣∣∣∣+
∣∣∣∣∣

1√
a2 + b2 + 2µ

∣∣∣∣∣ ≤
√

2

µ

and

|ψab| =

∣∣∣∣∣∣

a b√
a2+b2+2µ

a2 + b2 + 2µ

∣∣∣∣∣∣
≤
∣∣∣∣∣

1√
a2 + b2 + 2µ

∣∣∣∣∣ ≤
√

1

2µ

to achieve a Lipschitz constant of 3(2µ)−
1
2 for ψa and hence for Ψu

w by The-
orem 2.4.3. Straightforward computation verifies the bounds |ψaaa| ≤ 3µ−1,
|ψaab| ≤ 2µ−1, |ψaba| ≤ 2µ−1, and |ψabb| ≤ 2µ−1, from which we conclude a
Lipschitz constant of 3 · 9µ−1 for Ψy

w by Theorem 2.4.4.
Because of symmetry, the analogous holds for Ψη, which commutes with Ψw

by Theorem 2.4.5.

Theorem 2.5.2. The complementarity system F defined in (2.9) is a contin-

uously differentiable mapping from V×]0, µ0] to Z := X̂∗×Λ×W ×W for all

µ > 0, where X̂∗ := Xu × (W−1
∞ )ny . Moreover, the derivative Fv satisfies the

Lipschitz condition

||(Fv(v + δv;µ)− Fv(v;µ))δv||Z2 ≤ constµ−1||δv||V2 ||δv||V . (2.19)
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Proof. First we note that the operators J , c, g, and Ψ can be written as Ne-
myckii operators of

�
, � , � , and ψ either directly or as J(x) = 〈J(x),

� 〉 and
c̃(x) = c(Tx) with

T =



I

I
∂t


 : Lnu

p × (W 1
p )ny → Lnu

p × (W 1
p )ny × Lny

p for 1 ≤ p ≤ ∞ .

Thus, Theorem 2.4.3 can be applied and yields

J ′(x) = J′(x)∗
� ∈ Lnu+nw

∞ ,

c′(x)∗λ =
[
T ∗c′(Tx)∗ ( � r)′(y(0), y(1))∗

]
λ ∈ Lnu

∞ × (W−1
∞ )ny ,

and

g′(x)∗η ∈ Lnu+ny

∞ .

Therefore, the adjoint equation component of F is contained in X̂∗. Further-
more,

c(x) ∈ Lnc

∞ × IR
nr = Λ ,

g(x) ∈ Lmu
∞ × (W 1

∞)my = W ,

and

Ψ(w, η;µ) ∈ Lmu
∞ × (W 1

∞)my = W

for every fixed µ > 0. Thus, F : V → Lmu
∞ × (W 1

∞)my = W .
Since the operators J , c, g, and Ψ are twice Lipschitz-continuously differ-

entiable by Theorem 2.4.3, the derivative

Fv(v, µ) =




L −c′(x)∗ −g′(x)∗
−c′(x)
−g′(x) I

Ψη(w, η;µ) Ψw(w, η;µ)




with

L = J ′′(x)− c′′(x)∗λ− g′′(x)∗η

is well defined and Lipschitz continuous. Because only Ψw and Ψη depend on
µ, the Lipschitz constant satisfies (2.19) due to Lemma 2.5.1.

The assumptions under which Fv(v;µ) is also invertible are very similar to
the sufficient second order conditions 2.2.3. Informally, the active or binding
constraints have to be linearly independent, and the Hessian of the Lagrangian
must be positive definite on the nullspace of the linearized active constraints.
We will derive a bound for the inverse which is later on used to establish the
existence of the central path, and hence has not to be sharp. We start with a
Lemma that will be used in the proof of the main theorem.
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Lemma 2.5.3. Let X and Z be Banach spaces with norms || · ||X and || · ||Z ,
respectively. Suppose there are inner products 〈x, x〉X̄ ≤ ||x||2X and 〈z, z〉Z̄ ≤
||z||2Z defined on X and Z, respectively, such that the closures X̄ := X

||·||X̄ and

Z̄ := Z
||·||Z̄ are Hilbert spaces. Let X̂ ⊂ X̄∗ and Ẑ ⊂ Z̄∗ be additional Banach

spaces. Assume the following conditions hold:

1. The linear operator C : X̄ → Z̄ satisfies the inf-sup-condition: There
exists a constant β > 0 such that

inf
ξ∈X̄

sup
ζ∈Z̄∗

〈ζ, Cξ〉
||ξ||X̄||ζ||Z̄∗

≥ β

2. The linear operator A : X̄ → X̄∗ is symmetric positive definite on kerC:
There exists a constant α > 0 such that

〈x,Ax〉 ≥ α||x||2X̄
holds for all x ∈ kerC.

3. A : X → X̂ and C : X → Z.

4. There exist splittings X = U ⊕Y and X̂ = Û ⊕ Ŷ inducing corresponding
operator splittings

A =

[
Auu Auy

Ayu Ayy

]
and C =

[
Cu Cy

]
.

5. Cy : Y → Z is an isomorphism.

6. C∗
y : Ẑ → Ŷ and C∗

u : Ẑ → Û are bounded and C∗
y is an isomorphism.

7. Ayy : Ȳ → Ŷ and Ayu : Ū → Ŷ are bounded.

8. There is some γ > 0 such that ||Auuu+Auyy||Û ≥ γ||u||U for all (u, y)T ∈
kerC.

Then the operator

G :=

[
A C∗

C

]
(2.20)

is an isomorphism X × Ẑ → X̂ × Z. Its inverse is bounded by

||G−1||X̂×Z→X×Ẑ ≤ const(1 + ||A||X→X̂)(1 + ||A||2X̄→X̄∗)

· (1 + ||Ayu||Ū→Ŷ + ||Ayy||Ȳ→Ŷ ) ,

where the constant does not depend on any further norm of A.
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Proof. Because of assumptions 3 and 6 the operator G maps X× Ẑ into X̂×Z,
such that we only need to establish injectivity and the boundedness of the
inverse. By conditions 1 and 2, G is an isomorphism X̄ × Z̄∗ → X̄∗ × Z̄, such
that for every system



Auu Auy C∗

u

Ayu Ayy C∗
y

Cu Cy





u
y
λ


 =



au

ay

b




with au ∈ Û , ay ∈ Ŷ and b ∈ Z there is a solution u ∈ Ū , y ∈ Ȳ and λ ∈ Z̄∗

with

||u||Ū + ||y||Ȳ + ||λ||Z̄ ≤ const(1 + ||A||2X̄→X̄∗)(||au||Ū∗ + ||ay||Ȳ ∗ + ||b||Z̄)

(cf. Braess [8]).
With assumptions 6 and 7,

Ayuu+ Ayyy︸ ︷︷ ︸
∈Ŷ

+C∗
yλ = ay︸︷︷︸

∈Ŷ

⇒ λ ∈ Ẑ

with

||λ||Ẑ ≤ const ||ay − Ayuu− Ayyy||Ŷ
≤ const(||ay||Ŷ + ||Ayu||Ū→Ŷ ||u||Ū + ||Ayy||Ȳ→Ŷ ||y||Ȳ )

≤ const(1 + ||Ayu||Ū→Ŷ + ||Ayy||Ȳ→Ŷ )

· (||ay||Ŷ + (1 + ||A||2X̄→X̄∗)(||a||X̄∗ + ||b||Z̄))

≤ constκ(||ay||Ŷ + ||a||X̄∗ + ||b||Z̄) ,

where κ := (1 + ||A||2
X̄→X̄∗

)(1 + ||Ayu||Ū→Ŷ + ||Ayy||Ȳ→Ŷ ). By condition 5 there
exists y0 ∈ Y with ||y0||Y ≤ const ||b||Z such that



Auu Auy C∗

u

Ayu Ayy C∗
y

Cu Cy






u
y − y0

λ


 =



au − Auyy0

ay − Ayyy0

0


 ,

in particular Cuu+Cy(y− y0) = 0. Consequently, assumptions 5 and 3 lead to

||y − y0||Y
||C−1

y ||Z→Y ||Cu||U→Z
≤ ||u||U .

Let x0 = (0, y0). Then

||x− x0||X ≤ const ||u||U
≤ const ||Auuu+ Auy(y − y0)||Û
≤ const(||a||X̂ + ||A||X→X̂ ||y0||Y + ||λ||Ẑ)

≤ const(1 + ||A||X→X̂)κ(||a||X̂ + ||b||Z)

because of assumptions 6 and 8.
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Theorem 2.5.4. Suppose the assumptions of Theorem 2.5.2 are satisfied. As-
sume there is a bounded set D ⊂ V and a constant 0 < µ0 ≤ 1/2 such that the
following conditions hold uniformly for v ∈ D and µ ≤ µ0.

1. The linearized state equation is solvable: There exists a constant β > 0
such that for every constraints variation δ ∈ Λp there is a state variation
δy ∈ Xy

p with

cy(x)δy = δ and ||δy||Xy
p
≤ β||δ||Λp

for p = 1, 2,∞.

2. the state equation � (u(t), y(t), ẏ(t)) = 0 is linear in ẏ(t).

3. The strengthened Legendre-Clebsch condition holds: There exists a con-
stant γ > 0 such that

ξ(t)TH(t)ξ(t) ≥ γ|ξ(t)|2

for almost all t ∈ Ω and x ∈ ker c′. Here,

H(t) :=
� ′′(x(t))− � ′′(u(t), y(t), ẏ(t))Tλ(t)− � ′′(x(t))Tη(t)

+ � ′(x(t))Tψη(w(t), η(t);µ)−1ψw(w(t), η(t);µ) � ′(u(t)) .

Then Fv(v;µ) has an inverse which is bounded by

||Fv(v;µ)−1||Z→V ≤ constµ−12

uniformly for v ∈ D.

Proof. We show that there is a unique solution of Fv(v;µ)∆v = z with ||v||V∞ ≤
||z||Z∞. The proof is performed in three steps. First the system is reduced to a
smaller one that meets the requirements of Lemma 2.5.3. In the second step,
the assumptions are checked and the Lemma is applied. Finally, the reduction
of the first step is reversed.

Step 1. For readability reasons we will omit the arguments x, λ, η, w, and
µ of the operators Lxx, c

′, g′, Ψη, and Ψw in the following. For any system

Fv(v;µ)∆v =




Lxx −(c′)∗ −(g′)∗

−c′
−g′ I

Ψη Ψw







∆x
∆λ
∆η
∆w


 =




za

zc

zs

zp


 ,

elimination of the slack variables ∆w = zs + g′∆x yields the equivalent system


Lxx −(c′)∗ −(g′)∗

−c′
Ψwg

′ Ψη






∆x
∆λ
∆η


 =




za

zc

zp −Ψwzs


 . (2.21)
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Space in

Theorem 2.5.4 Lemma 2.5.3

X X
Λ Z
X2 X̄
Λ2 Z̄

X̂∗ X̂

Λ Ẑ

Table 2.1: Matching of spaces in Theorem 2.5.4 and Lemma 2.5.3.

Due to Lemma 2.5.1, Ψη is invertible, such that by elimination of ∆η = Ψ−1
η (zp−

Ψw(zs + g′∆x)) (2.21) can be written as

[
H −(c′)∗

−c′
] [

∆x
∆λ

]
=

[
za − (g′)∗Ψ−1

η (zp − Ψwzs)
zc

]
(2.22)

where H := Lxx(x, λ, η) + g′(x)∗Ψη(w, η;µ)−1Ψw(w, η;µ)g′(x).

Step 2. Under the assumptions of the theorem, Lemma 2.5.3 can be ap-
plied to the system (2.22). To begin with, the involved spaces can be identified
as shown in Table 2.1. Then the conditions of Lemma 2.5.3 can be verified:
−c′ satisfies the inf-sup-condition and H is symmetric positive definite on the
nullspace of c′ due to assumptions 1 and 3. Condition 3 is satisfied due to The-
orem 2.5.2 and the Nemyckii structure of H. The space splitting is given by
X = Xu ×Xy. Condition 5 is satisfied because of assumption 1 with p = ∞.
Condition 6 is satisfied due to assumption 1 with p = 1, Theorem 2.4.3, and
the Nemyckii structure of cu. Condition 7 is satisfied because of assumption 2
and the resulting Nemyckii structure of H. Condition 8 is satisfied due to as-
sumptions 2 and 3.

Therefore, Lemma 2.5.3 is applicable and there exists a unique solution
∆x ∈ X and ∆λ ∈ Λ. As for the dependency on µ, any norm of H is affected
only via the term Ψw(w, η;µ)−1Ψη(w, η;µ). Since control and state constraints
are decoupled, the mixed term Hyu is independent of µ. By Lemma 2.5.1 and
the boundedness of D we have

||(Ψy
η)
−1Ψy

w||W y
2 →

�

(Xy
2 )∗
≤ ||(Ψy

η)
−1Ψy

w||W y
2 →W y

2
≤ constµ−2 ,

||Ψ−1
η Ψw||W→

�

X∗ ≤ ||Ψ−1
η Ψw||W→W ≤ constµ−2 , and

||Ψ−1
η Ψw||W2→X∗

2
≤ ||Ψ−1

η Ψw||W2→W2 ≤ constµ−2
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such that

||H||X→ �

X∗ ≤ constµ−2

||H||X2→X∗

2
≤ constµ−2

||Hyu||Xu,2→
�

X∗

y
+ ||Hyy||Xy,2→

�

X∗

y
≤ constµ−2 ,

and the inverse of the saddle point operator from (2.22) is bounded by constµ−8.
Thus, by Lemmas 2.5.3 and 2.5.1,

||∆x||X + ||∆λ||Λ ≤ constµ−8(||za − (g′)∗Ψ−1
η (zp − Ψwzs)|| �

X∗ + ||zc||Λ)

≤ constµ−10(||za|| �

X∗ + ||zp||W + ||zs||W + ||zc||Λ) .

Note that the constant is independent of µ.
Step 3. Tracing back the elimination chain from Step 1 yields

||∆η||W = ||Ψ−1
η (zp −Ψw(zs + g′∆x))||W

≤ constµ−2(||zp||W + ||zs||W + ||∆x||X
≤ constµ−12(||zp||W + ||zs||W + ||za|| �

X∗ + ||zc||Λ)

and

||∆w||W = ||zs + g′∆x||W
≤ constµ−10(||zp||W + ||zs||W + ||za|| �

X∗ + ||zc||Λ) .

Theorem 2.5.5. Suppose the assumptions of Theorem 2.5.4 are satisfied. Let
R > 0 and M := {v ∈ D : B(v, R) ⊂ D}. If there are v0 ∈ M and µ0 > 0 with
F (v0;µ0) = 0, then there exists a central path v(µ) ∈ M . Either the central
path leaves M for some µfinal > 0 or it is defined on the whole interval ]0, µ0].

Proof. By Theorem 2.5.4, Fv(v;µ)−1 is bounded uniformly on D × [ε, µ0] for
every ε > 0. Furthermore, both F and Fv are uniformly continuous on D× [ε, µ]
thru Theorem 2.5.2. Thus, by the implicit function theorem, the central path
exists and can be followed to v(ε) unless it leaves M (cf. [54], Theorem 4.B and
Proposition 6.10).

2.6 Convergence of the Central Path

As pointed out in Section 2.3 and in the appendix, convergence of the central
path in V∞ cannot be expected. This is particularly the case in the presence
of state constraints, where the Lagrange multipliers are often measure valued.
Therefore, the central path will not be bounded, not even in V2. In this respect,
Theorem 2.5.5 is as good a result as one might expect. To prove convergence
of the central path at least in V2, we have to resort to pure control constraints.
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One obstacle that has to be overcome is that Ψ−1
η Ψw is in general not

uniformly bounded for µ → 0. Thus, the elimination of ∆η in the proof of
Theorem 2.5.4 leads to the undesirable system (2.22), from which a bound of
F−1

v is difficult to obtain.
The key observation is that the usual splitting of the inequality constraints

into active (or binding) and inactive constraints can be utilized to perform
a more careful elimination step. In particular, active constraints can be sub-
stituted equivalently by corresponding equality constraints, whereas inactive
constraints can simply be dropped. Since in general the partitioning into active
and inactive constraints is not known a-priori, we need to define an approximate
splitting. In this way the system modifications are approached asymptotically
by elimination of ∆η only for the approximately inactive constraints.

Definition 2.6.1. For ρ > 0, the ρ-nearly active set for component i of the
inequality constraints g is defined by

Ωρ
A,i(v) := {t ∈ Ω : w(t) ≤ ρη(t)} .

The complete nearly active set is Ωρ
A(v) := {Ωρ

A,i : i = 1, . . . , mu +my}. Anal-
ogously, the nearly inactive set is Ωρ

I(v) := Ω\Ωρ
A.

Corresponding to the component wise splitting of the domain Ω into active
and inactive regions there is a function space splitting of W into active and
inactive constraints and multipliers:

W µ
A := {w|Ωρ

A
: w ∈ W}

W µ
I := {w|Ωρ

I
: w ∈ W}

(2.23)

The space splitting induces variable splittings w 7→ (wA, wI) and η 7→ (ηA, ηI)
and operator splittings g 7→ (gA, gI) and Ψ 7→ (ΨA,ΨI).

Lemma 2.6.2. The splitting (2.23) leads to the diagonal operator splittings

Ψw(w, η;µ) =

[
ΨA

w

ΨI
w

]
and Ψη(w, η;µ) =

[
ΨA

η

ΨI
η

]
,

where ||(ΨA
w)−1||W2A→W2A

and ||(ΨI
η)
−1||W2A→W2A

are bounded independently of
µ.

Proof. Due to the Nemyckii structure of Ψ, the operator splitting is diagonal
by Theorem 2.4.5.

For the nearly active set we infer

ψA
w(w, η;µ)−1 =

(
1− w√

w2 + η2 + 2µ

)−1

=

√
w2 + η2 + 2µ√

w2 + η2 + 2µ− w
≤
√

2(w2 + η2)√
w2 + η2 − w

.
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From sw = η with s ≥ ρ−1 we conclude

ψA
w(w, η;µ)−1 ≤

√
2(1 + s2)w2

√
(1 + s2)w2 − w

=

√
2(1 + s2)√
1 + s2 − 1

≤
√

2(1 + ρ−2)√
1 + ρ−2 − 1

.

By Theorem 2.4.3, ||(ΨA
w)−1||W2A→W2A

≤ const , where the constant depends
only on ρ. Analogously, the corresponding result is obtained for (ΨI

η)
−1.

For the proof of the main theorem we will use the following Lemma by
Braess and Blömer [9]1 on saddle point operators with penalty term.

Lemma 2.6.3. Let X and Z be Hilbert spaces. Assume the following condi-
tions hold:

1. The continuous linear operator C : X → Z satisfies the inf-sup-condition:
There exists a constant β > 0 such that

inf
x∈X

sup
ζ∈Z

〈ζ, Cx〉
||x||X ||ζ||Z

≥ β .

2. The continuous linear operator A : X → X∗ is symmetric positive definite
on the nullspace of C and positive semidefinite on the whole space X:
There exists a constant α > 0 such that

〈x,Ax〉 ≥ α||x||2X for all x ∈ kerC

and

〈x,Ax〉 ≥ 0 for all x ∈ X .

3. The continuous linear operator D : Z∗ → Z is symmetric positive semi-
definite.

Then, the operator

[
A C∗

C −D

]

is invertible. The inverse is bounded by a constant depending only on α, β, and
the norms of A, C, and D.

Lemma 2.6.4. Let X and Y be metric spaces and f : X → Y uniformly
continuous. If xn is a Cauchy sequence, then so is f(xn).

1Note that there is a misprint in Lemma B.1 in the article. The assumption that A is

positive semidefinite on the whole space is used in the proof without being stated.
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Proof. Let ε > 0 be arbitrary. Then there is a δ > 0 such that d(f(x), f(y)) ≤ ε
whenever d(x, y) ≤ δ. There is N ∈ IN such that d(xn, xm) ≤ δ for all n,m ≥ N ,
thus d(f(xn), f(xm)) ≤ ε. Therefore, f(xn) form a Cauchy sequence.

Theorem 2.6.5. Let my = 0. Suppose that the following conditions are satis-
fied uniformly for all v = (x, λ, η, w) on the central path.

1. For the nearly active constraints C := (c′(x), g′A(x))T the inf-sup-condition

inf
χ∈Λ2,ζ∈W ∗

2A

sup
ξ∈X2

〈Cξ, (χ, ζ)T〉
||ξ||X2(||χ||Λ2 + ||ζ||W ∗

2A
)
≥ β

holds for some β > 0.

2. The modified Hessian of the Lagrangian is positive definite on the null-
space of the nearly active constraints and positive semidefinite on the
whole space: There exists a constant α > 0 such that

〈Hx, x〉 ≥ α||x||2X2
for all x ∈ kerC

〈Hx, x〉 ≥ 0 for all x ∈ X2

where H := Lxx(x, λ, η) + g′I(x)
∗ΨI

η(w, η;µ)−1ΨI
w(w, η;µ)g′I(x).

If the central path v(µ) is defined on the whole interval (0, µ], it converges to a
limit point v(0) in V2 for µ→ 0. If, in addition, the control u enters linearly in
J , c, and g, then the limit point v(0) satisfies the first order necessary Kuhn-
Tucker conditions.

Proof. As in the proof of Theorem 2.5.4 we first eliminate ∆w from the system
Fv(v;µ)∆v = z to get



Lxx −(c′)∗ −(g′)∗

−c′
Ψwg

′ Ψη






∆x
∆λ
∆η


 =




za

zc

zp − Ψwzs


 . (2.24)

Using Lemma 2.6.2, we can write



Lxx −(c′)∗ −(g′A)∗ −(g′I)
∗

−c′
ΨA

wg
′
A ΨA

η

ΨI
wg

′
I ΨI

η







∆x
∆λ
∆ηA

∆ηI


 =




za

zc

zpA − ΨA
wzsA

zpI − ΨI
wzsI


 .

Since both ΨI
η and ΨA

w are invertible, we can eliminate ∆ηI = (ΨI
η)
−1(zpI −

ΨI
w(zsI + g′I∆x) and multiply the third row by −(ΨA

w)−1, which yields


H −(c′)∗ −(g′A)∗

−c′
−g′A −(ΨA

w)−1ΨA
η






∆x
∆λ
∆ηA




=



za + (g′I)

∗(ΨI
η)
−1(zpI − ΨI

wzsI)
zc

−(ΨA
w)−1zpA + zsA .


 (2.25)
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In a second step we will show that the inverse of the operator in (2.25) is
bounded independently of µ. First we note that (ΨA

w)−1, ΨA
η , (ΨI

η)
−1, and ΨI

w

are all bounded independently of µ by Lemmas 2.5.1 and 2.6.2. Then, using
Assumptions 1 and 2, we can apply Lemma 2.6.3 which guarantees the existence
of a unique solution ∆x ∈ X2, ∆λ ∈ Λ2, and ∆ηA ∈ W2A with

||∆x||X2 ≤ const ||za + (g′I)
∗(ΨI

η)
−1(zpI − ΨI

wzsI)||X∗

2

≤ const(||za||X∗

2
+ ||(g′I)∗||||(ΨI

η)
−1||(||zpI||W2 + ||ΨI

w||||zsI||W2))

≤ const(||za||X∗

2
+ const(||zpI||W2 + ||zsI ||W2))

≤ const ||z||Z2

and

||∆λ||Λ2 + ||∆ηA||W2 ≤ const(||zc||Λ∗2 + ||(ΨA
w)−1zpA − zsA||W2A

)

≤ const(||zc||Λ∗2 + ||(ΨA
w)−1||||zpA||W2 + ||zsI||W2)

≤ const(||zc||Λ∗2 + ||zpA||W2 + ||zsI ||W2)

≤ const ||z||Z2 ,

where the constants are independent of µ. Tracing the eliminations of Step 1
back yields

||∆ηI ||W2 = ||(ΨI
η)
−1(zpI − ΨI

w(zsI + g′I∆x))||W2

≤ ||(ΨI
η)
−1||(||zpI||W2 + ||ΨI

w||||zsI + g′I∆x)||W2)

≤ const(||zpI||W2 + ||zsI + g′I∆x)||W2)

≤ const ||z||Z2

and

||∆w||W2 = ||zs + g′∆x||W2 ≤ ||zs||W2 + const ||∆x||X2 ≤ const ||z||Z2 .

Hence, Fv(v(µ);µ)−1 is bounded independently of µ.
Finally, from

ψµ(w, η;µ) =
1√

w2 + η2 + 2µ
≤ µ−

1
2

and

Fµ(v(µ)) =
[
0 0 0 −Ψµ

]T

we infer for the derivative of the central path v(µ)

||v′(µ)||V2 = ||Fv(v(µ);µ)−1Fµ(v(µ))||V2

≤ ||Fv(v(µ);µ)−1||Z2→V2 ||Fµ(v(µ))||Z2 ≤ constµ−
1
2 .
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Therefore, the total length of the path,

∫ µ0

0

||v′(µ)||V2 dµ ,

is bounded and the path itself is uniformly continuous and thus converges to a
limit point v(0) as µ→ 0 by Lemma 2.6.4.

If the control enters linearly, both the path v(µ) and F are continuous.
Therefore we have F (v(0), 0) = 0, such that v(0) satisfies the first order opti-
mality conditions (2.2).

Remark 2.6.6. In general, Assumption 1 imposes an upper bound on the
choice of ρ due to the monotonicity

ρ1 ≤ ρ2 ⇒ W µ
A(ρ1) ⊂ W µ

A(ρ2) .

If W µ
A gets too large, C may become non-injective and thus no longer satisfy

the inf-sup-condition. /

Remark 2.6.7. Assuming coercivity of Lxx(v) on the nullspace of C is a too
strong requirement. Since ρ should be small, the estimated active set A tends
to be too small. Therefore the nullspace of C tends to be too large, leaving
room for Lxx(v) being indefinite on the gap even for well defined problems for
which the sufficient second order condition 2.3 holds. /
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