Function Space Complementarity Methods for Optimal Control Problems

Dissertation von Martin Weiser

eingereicht am Fachbereich Mathematik und Informatik der Freien Universität Berlin

im Februar 2001

Betreuer: Prof. Dr. h.c. Peter Deuflhard

Konrad-Zuse-Zentrum für Informationstechnik Berlin

 $\begin{array}{c} {\rm Takustr.} \ 7 \\ {\rm 14195} \ {\rm Berlin} \end{array}$

Gutachter: Prof. Dr. Dr. h.c. Peter Deuflhard

Prof. Dr. Fredi Tröltzsch

Datum der Disputation: 18. 07. 2001

Contents

In	trodı	ıction	3			
1	Opt	Optimization Problems and Techniques				
	1.1	Optimal Control Problems	7			
	1.2	Methods for Constrained Optimization	8			
		1.2.1 Indirect Methods	8			
		1.2.2 Direct Methods	9			
	1.3	Interior Point Methods	10			
2	Con	nplementarity Methods for Optimal Control	13			
	2.1	Statement of the Problem	13			
	2.2	Necessary and Sufficient Optimality Conditions	14			
	2.2	2.2.1 The Role of Lagrange Multipliers	16			
	2.3	Infinite dimensional Complementarity Methods	18			
	$\frac{2.3}{2.4}$		21			
		Nemyckii operators in L_{∞} and W_{∞}^1				
	2.5	Existence of the Central Path	26			
	2.6	Convergence of the Central Path	34			
3	Inex	cact Newton Continuation	41			
	3.1	Predictor-Corrector Methods	41			
	3.2	Affine Invariance	41			
	3.3	Inexact Newton Corrector	43			
		3.3.1 Computable Estimates	46			
	3.4	Inexact Tangential Predictor	47			
		3.4.1 Computable Estimate	49			
		3.4.2 Step Size Selection	50			
	3.5	Accuracy Matching	53			
	3.6	Affine Invariant Norm	55			
	0.0	3.6.1 A Norm for Equality Constrained Problems	56			
		3.6.2 A Norm for Inequality Constrained Problems	59			
4	lmp	lementation and Numerical Examples	65			
-	4.1	Solution of Linear Subproblems				
	4.2	Illustrative Examples				
	4.3	Abort Landing in the Presence of a Windshear				
	T.U	TIDOTO LANGUING III ONG I LOSCHOO OF A VVINUSHEAF	14			

2		Contents

		Mathematical Model	74 77
Conclusi	on		87
Appendi	х. А Т	rivial Bang-Bang Example	89
Symbols			91
Bibliogra	aphy		93
Zusamm	enfass	sung	99
Lebensla	nuf	<u>-</u>	101

Zusammenfassung

Für Probleme der optimalen Steuerung werden gegenwärtig entweder direkte oder indirekte Verfahren eingesetzt. Während die indirekten Methoden Einsicht in die Problemstruktur und eine aufwendige analytische Vorarbeit erfordern, lassen direkte Methoden durch die frühzeitige Diskretisierung die Einbettung in das kontinuierliche Problem vermissen. Die vorliegende Arbeit ist ein Ansatz, diese Lücke zu schließen.

Da sich Innere-Punkte-Methoden zur Lösung linearer Programme gerade bei hochdimensionalen Problemen bewähren, erscheint diese Verfahrensklasse für die Formulierung eines Algorithmus im Funktionenraum besonders attraktiv. Dabei fällt die Wahl auf Komplementaritätsmethoden, die auch nichtzulässige Iterierte erlauben.

Dem durch die Komplementaritätsmethoden definierten zentralen Pfad kann mittels eines Pfadverfolgungsalgorithmus bis zur Lösung gefolgt werden. Dabei stellt sich heraus, daß die durch einen Newton-Korrektor zu lösenden Gleichungen nur in der L_{∞} -Norm stetig differenzierbar sind, der zentrale Pfad jedoch nur in der schwächeren L_2 -Norm konvergiert. Daher muß in Theorie und Implementierung mit beiden Normen gearbeitet werden.

Die Formulierung der Homotopiemethode im Funktionenraum erfordert wegen der unvermeidlichen Diskretisierungsfehler die Entwicklung eines inexakten Newtonverfahrens als Korrektor und ebenso eines inexakten tangentialen Prädiktors. Die adaptive Steuerung verwendet dabei eine problemangepaßte Norm, die die spezielle Affin-Invarianzstruktur von Optimierungsproblemen berücksichtigt.

Die vorgeschlagene Methode ist robust und in der Lage, auch schwierige Probleme zu lösen. Dabei ist ein besonderer Vorteil, daß weder Vorwissen über die Lösungsstruktur noch analytische Vorarbeit erforderlich sind.

Lebenslauf

Name: Weiser

Vorname: Martin Ludbert

geboren am: 2. 12. 1970, Berlin

Familienstand: verheiratet

Staatsangehörigkeit: deutsch

Ausbildung: 1977–1990 Schulbesuch,

Abitur 6/1990

10/1990–5/1996 Studium der Mathematik,

Freie Universität Berlin,

Diplom 1996

Berufstätigkeit: 10/1992–9/1994 Studentische Hilfskraft mit

Lehraufgaben, FU Berlin

10/1994–9/1996 Studentische Hilfskraft,

Konrad-Zuse-Zentrum für

Informationstechnik Berlin

10/1996–9/1998 Wissenschaftlicher Angestellter,

Konrad-Zuse-Zentrum für

Informationstechnik Berlin

10/1998–12/1998 Zivildienst, Rudolf-Virchow-Klinikum

der Charité Berlin

seit 1/1999 Wissenschaftlicher Angestellter,

Konrad-Zuse-Zentrum für Informationstechnik Berlin