APPENDIX A

Representation theoretic interpretation

As has already been indicated in Section 2.1, the algebraic properties of a quasi—Hopf
algebra G may be translated into corresponding properties of its representation category Rep G.
This chapter gives a more detailed discussion, where we also provide a representation theoretic
interpretation of our notions of left, right and two—sided coactions. We also describe the diagonal
crossed products in representation theoretical terms. (In fact this has already be done by proving
Theorem 2.1, since algebra maps may be viewed as representations and vice versa.) In particular
the complicated formulas given in Lemma, 2.21 will be shown to be quite natural by identifying
them with certain commuting diagrams. Also the d—implementers and Ap—intertwiners will
give rise to certain morphism, where the coherence conditions may as well be expressed by
some commuting diagrams. As an application we show that the category RepD(G) of finite
dimensional representations of the quantum double D(G) coincides with what has been called
the double category of G-modules by S. Majid [Maj97].

This chapter is strongly related to Appendix B, where we introduce a graphical calculus,
which also relies on representation categorical considerations.

Let G be a quasi-Hopf algebra with invertible antipode S. Let Rep M and RepG be
the category of unital representations of M and G, respectively, where in RepG we only
mean to speak of finite dimensional representations. We denote the objects in RepG by

U, mv), Vywv), W,mw), ..., where U, V,W ... denote the underlying representation spaces
and my : G = Endc(V) the representation maps. Similarly, we denote the objects in Rep M by
(9,7%), (R, v8), (£,7¢),- .., where the Gothic symbols denote the representation spaces and

where v5 : M — Endc(9), etc. We will also freely use the G—module notation by writ-
ing a-v:=7y(a)v and V = (V,7y) (and analogously for M-modules £)). The set of mor-
phisms Homg (U, V) (also called intertwiners) is given by the linear maps f : U — V satisfying
fru(a) =my(a) f, Va€G.

The representation category of a quasi—-Hopf algebra. It is well known (see e.g.
[Dri90]) that for quasi-Hopf algebras G the category Rep G becomes a rigid monoidal category,
where the tensor product (V RW, 7y Ry ) of two representations (V, 7wy ) and (W, ) is given
by

VRW:=VeW, nyRry =y @aw)oA (A1)
whereas for morphisms ( = G-module intertwiners) f,g one has f X g := f ® g. (The symbol
® always denotes the usual tensor product in the category of vector spaces.) The associativ-

ity isomorphisms are given in terms of the reassociator ¢ by the natural family of G—module
isomorphisms

(vaw(U‘ZV)‘ZW—)Ug(V‘XW), ¢UVW = (7TU®’/TV®7rw)(¢)

The unit object (with respect to X) in Rep G is given by (C,¢). Throughout, if C is viewed
as a G—module it is always meant to be equipped with the module structure given by the one
dimensional representation €. The left and right dual of any representation (V, 7y ) are defined
by *V =V* =V := Hom¢(V,C) and
ey i=mh 08, my«i=7h oS
where ¢ denotes the transposed map. The (left) rigidity structure is given by the family of
morphisms (G-module intertwiners)
ay :*VRV — C, Qv (0| a-v)

. (A.2)
by :C— VXV, 11— f-v; @0,
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where v; € V and v® € V are a choice of dual bases and where a, B € G are the elements defined
in (2.15), (2.16). Drinfel’d’s antipode axioms for G precisely reflect the fact that ay and by are

morphisms in Rep G fulfilling the rigidity identities
(idv X av) o ¢V(*V)V o (bV X idv) = idV (A 3)
(ay ®id-y) o ¢@1V)V(*V) o (idsy K by) = id-y. '

Also note that one has *(V*) = (*V)* = V with trivial identification.
Next, we recall that in any left-rigid monoidal category one has natural isomorphisms
*(UKRV) =2*V X*U. As already mentioned in our case these isomorphisms are given by

Jov :URV — (*VR*U)*, u®v= (my @ mp)(f) (v u) (A.4)

where we trivially identify the vector spaces V@W = (V@W)" and where the twist f € G®G is
given by (2.26). The fact that fyy is indeed a morphism in Rep G follows from (2.28). Similarly,
by (2.31), we have a natural family of isomorphisms

hyy :URV — *(V*RU*), u®uve (my @ my)(h) (v @ u)
Coactions. Now a left G—coaction (A, ¢,) on M naturally induces a left action of RepG
on Rep M. By this we mean a functor
®: RepG x Rep M — Rep M,
where for (V,7) € RepG and ($),7) € Rep M we define (V © 9,7 ® ) € Rep M by
Vog=VeH 70v:=@mQ7)o0),

whereas for morphisms we put f ® g := f ® g. The counit axiom for A implies € ® v4 = 74 for
all (9,7s) € Rep M and the axioms for ¢, imply the quasi-associativity relations

(my R7w) © v 2wy B (mw © 75)
where the isomorphism is given by
dvws = (Tv @ Tw ® 75)(Pa)-

Finally, the pentagon axiom (2.35b) provides us with the analogue of McLane’s coherence
conditions, i.e. the following commuting diagram

¢(U®\V (URV)o (WeH) WW@»@)

(URV)RW) @ $ Uo(VoeoWes)

duvw © idsﬁ\A A] O dvws

PUVEW)S
UR(VEW))oH Ue (VRW)®H) (A.5)

With the obvious substitutions analogue statements hold for right coactions (p, ¢,), where now
these induce a right action ® : Rep M x RepG — Rep M given for (v,$) € Rep M and
(m,V) € Rep G by

HOV:=9HRV, yoOm:=(yQm) op.

Finally, a quasi-commuting pair (A, p, ¢x, $,,dr,) provides us with both, a left and a right
action of Rep G on Rep M, together with a further family of associativity equivalences
(v ®vg) @7y = 7y © (79 © my), where now the isomorphisms are given by

Pusv = (Tu @ 74 @ v )(Pap)-

Again, the conditions (2.51b) and (2.51c) imply further pentagon diagrams of the type (A.5)
with objects of the type UVHW or UHV W, respectively, in appropriate bracket positions.



Two—sided coactions. In the obvious way the above may also be generalized to arbitrary
two—sided coactions (d, ¥), in which case we would obtain a functor

RepG x Rep M x RepG — Rep M A6
U>H<V:=UHYV, 7TU>’)/fJ<7Tvi:(7i'U®’7§J®7Tv)O(5 ( )

with associativity isomorphisms (7y K 7y) > 74 < (mw M 7z) Z 7y > (7y > 79 < 7w) < 7z
given by

VYpvewz = (Tu @y @ 75 @ mw & 77)(¥) (A.7)

and obeying analogue “two—sided” pentagon diagrams. Note that the operations > and < are
not defined individually, i.e. only the two—sided operation > - < makes sense. According to
Proposition 2.8 the relation between two—sided and one—sided Rep G—actions is given by

Ty OV =Ty >75 <€, Yo Oy 1= €> Vg < Ty

(Tv ©75) Oy Ty > 95 <7y Z v O (19 © TU),

where here the intertwiners are given by (7y ® v4 ® my)(Uy,r), respectively, see Proposition 2.8.
Some families of natural transformations. We now give a representation theoretic

interpretation of the elements py,gx € G ® M given in (2.77)-(2.78) by defining for (V,7y) €

Rep G and (9,75) € Rep M the natural family of morphisms!
Pyg:9—V*0(VOH), hoviap (v;®h) A8
A8
Qve:"Vo(Von) —H uedh— (@@id)(qx-(v@)b))

By (2.103a) and (2.103b) these are indeed morphisms in Rep M, and (2.103c) and (2.103d)
imply the “generalized left rigidity” identities

Qv+(vos) © (idy © Prg) =idves (A.9)
(idv © Qvg) o Pry(vos) =idves '

Finally, (2.103e) implies the coherence condition given by the following commuting diagram:

va_, idv* ® PU(Vij)
9 Vo (Vo) VFe [U*eUoe(Vessn)
Pugv)s
URV*Q[(URV)G $H) idv+ © (idu+ ® dpyg)

f;*lU* ® id(UgV)QyJ

dvU+ [(URV)05)
(V*RU*)e[URV) o 9] - V*o [U*o (URV)e 9H)]

(A.10)
The reader is invited to draw the analogous diagram implied by (2.103f), now involving the
morphisms Qv .
Similar statements hold of course for the natural family of morphisms
Poy:H— (HOV)Q*V, hrp, (hov) v

(A.11)
Qov: (BOV)OV* — 5, hveir ([dod)(q- (hov))

1 Again a summation is understood, where {v;} is a basis of V with dual basis {v*}



Adjustments to weak quasi—Hopf algebras. Let us now shortly discuss the adjuste-
ments to be made for the case that G is a weak quasi—Hopf algebra. As already discussed in
Section 3.2, due to the coproduct being non—unital the definition of the tensor product functor
in Rep§ has to be slightly modified. First note that the element A(1) (as well as iterated
coproducts of 1) is idempotent and commutes with all elements in A(G). Thus, given two rep-
resentations (V, v ), (W, nw), the operator (my ® mw)(A(1)) is a projector, whose image is
precisely the G—invariant subspace of V' ® W on which the tensor product representation oper-
ates non trivial. Thus one is led to modify the tensor product X of two representations of G as
given in (A.1) as follows

VW := (7rv®7fw)(A(1))V®W, Ty |Z71’W = (7Tv®7fw)0A|V|gW (A.12)

One readily verifies that with these definition ¢yyw - restricted to the subspace (UX V)XW
- furnish a natural family of isomorphisms defining an associativity constraint for the tensor
product functor X. Moreover, Rep G becomes a rigid monoidal category with rigidity structure
defined as before by (A.2)-(A.3).

The left action of Rep G on Rep M induced by a left G—coaction (A, ¢)) on M has to be
modified analogously by defining

Von:=me7)AMIm)Ven mo0y:=me7)oAves

The modifications of right actions and of two—sided actions of Rep G on Rep M (induced by
(p, ¢p) and by (4, ¥), respectively) should by now be obvious and are left to the reader.

With these adjustments all categorical identities such as the definition of natural families
and commuting diagrams given above stay valid. Translating these into algebraic identities one
has to take some care with identities in higher tensor products of G. The only equations which
have to be modified are (2.103c),(2.103d), where the r.h.s. becomes A(1 ) instead of 1g ® 1 ¢
and similarly (2.104c/2.104d), where the r.h.s. has to be replaced by p(1x). This is rather
obvious from the categorical point of view, since for example (2.103c¢) is directly connected with
(A.9) where the r.h.s. is given by idygg = (7y @ 7g)(A(1 ).

0—Implementers. We now give a representation theoretic interpretation of our notion of
left and right é—implementers. To this end let (9,v4) be a fixed representation of M. Putting
A = Endc($)), we consider v = v¢ : M — A as an algebra map. This leads to

DEFINITION A.1. Let (4, ¥) be a two—sided G—coaction on M. A representation (£),7) of
M is called d—coherent if there exists a normal coherent left 6—implementer L € G ® Endc($))
(equivalently right d—implementer R € G ® Endc(9))).

Corollary 2.14 then says that a representation of M is d—coherent if and only if it extends
to a representation of the diagonal crossed products G Ms = Mg G.

We now provide a category theoretic description of d—coherent representations (£3,7). As-
sociated with a left é—implementer L € G ® A, A := End¢(9), we define a family of M-linear
morphisms

lv:V>9<V* — 9, v®b®@n—>((ﬁ®id)oLv)(v®h) (A.13)

where (V,my) € RepG and Ly, := (my ® id)(L) and where we have used the notation (A.6).
Eq. (2.64) guarantees that ly is in fact a morphism in Rep M. The normality condition for L
implies I¢c = idg and the coherence condition (2.66) for L translates into the following coherence
condition for the ly’s

lyaw © Wyaw-ve =lv o (idy ® ly @ idy+),
where Qfpapey. VW >H<W*) <V* - (VRW) > H < (VRW)* is the natural
M-linear isomorphism given by Qf o yey. = (idv ® idw ® idg ® fiw+v+) o lIl(,%,wJW*V* see
(A.4), (A.7) and (2.55). Similarly, a right —implementer R € G ® A gives rise to a coherent
family of M-linear morphisms

rviH—V*>9H<V, h=oRI}(hevy), (A.14)
where Ry, := (7y ® id)(R). As above, this means

Q‘}}*U*ﬁUV OTyRVYV = (ldV* ® ru & ldV) ory,

where O, . oy := Uvepeguv o (fily. ®idg ® idy ®idy), see (2.62) and (2.67).



Ap—Intertwiners. We finally give a representation categorical interpretation of the notion
of Ap—intertwiners and of their connection with §—implementers as stated in Proposition 2.19.
As before, given a fixed representation (,v) of M we consider v : M — A = End¢($)) as an
algebra map.

DEFINITION A.2. Let (A, @, p, $p, dap) be a quasi-commuting pair of G—coactions on M.
A representation (9,7v4) of M is called Ap—coherent, if there exists a normal coherent Ap—
intertwiner T € G ® Endc(9).

Proposition 2.19 then says, that Ap—coherence is equivalent to d;-coherence for §; = (A®id)o
p (or to §,—coherence for §, = (id ® p) o A). Associated with a Ap—intertwiner T € G ® Endc($))
we now define a family of M-linear morphisms

ty:VoH —H0V, vah= T (hew), (A.15)

where (V,7y) € Rep G and T?} := (id @ v )(T?!). Eq. (2.73) guarantees that ¢y is a morphism
in Rep M. The normality condition for T implies t¢ = idg and the coherence condition (2.74)
for T translates into the following coherence condition for ¢y

tyrw = dvws o (idy ® tw) o (ﬁ;%W o (ty ® idw) o pgvw - (A.16)

Note that (A.16) looks precisely like one of the coherence conditions for the braiding in a braided
quasi—tensor category with nontrivial associativity isomorphisms. Indeed, as has been shown
in Chapter 4, for the case M = G, the family of #y’s may be used to define a braiding in the
representation category of the quantum double D(G) = G < G.

Using the morphisms Py g, Pyy and Qvg, Qv given in (A.8) and (A.11), the relation
between Ap—intertwiners T, right §,—implementers R and left §;—implementers L. may now be
described by the following commuting diagrams connecting the intertwiner morphisms ty with
the maps ry (associated with R) and ly (associated with L) as given in (A.13) and (A.14).

Voo ov: v OWoeV)
ty @idy- / \ o ot
HoV)oV* oV o9

(A.17)

(Veon)ov)eV Pvesw: vy g g ddvor v g (V*eo®oV))

ty
ly ®idy Qv-(s0v)

Hov

Note that the commutativity of the above diagrams is in fact equivalent to the statements in
Proposition 2.19.

The representation category of the quantum double. We will now describe the
representation category of the quantum double in terms of the representation category of the
underlying quasi-Hopf algebra G. In this way we will show that D(G) is a concrete realization
of the quantum double as defined by Majid in [Maj97] with the help of a Tannaka-Krein-like
reconstruction theorem. We denote the monoidal category of finite dimensional unital represen-
tations of D(G) by Rep D(G). As an immidiate implication of Theorem 2.1 we state a necessary
and sufficient condition, under which a representation of G extends to a representation of D(G),
see also Definition A.2 for the case A = p = A. We only treat the case A(1) = 1 ® 1, the
generalization to the weak case being obvious.



COROLLARY A.3.
1.) The objects of RepD(G) are in one to one correspondence with pairs {(myv,V), Dy}, where
(myv, V) is a finite dimensional representation of G and where Dy, € G @ Endc(V) is a normal
coherent A-flip, i.e.
(i) (e®id)(D,) = idy
(i) Dy - (d®7y)(A(a)) = ([d® 7y)(A%(a)) - Dy, Vaeg
(iii) ¢3!2DI? (¢,,")132 D% ¢y = (A ®id)(Dy,), where ¢y = (id ® id @ 7y (¢)-
2.) Let {(my,V),Dy } and {(mw,W),Dy, } be as above, then
Hompg) = {t € Homg (V, W) | (id ® t)(Dy) = Dy }
ProoOF. Part 1.) follows from Theorem 2.1 by choosing A = p = A, A = End (V) and
v = 7y, see also (A.15). We shortly repeat the arguments. Define the extended representation
71 on the generators of D(G) by

Pip(a) : = my(a), a€g (A.18)
T2(D(9)) : = (¢ ®idpna, )Dy), ¢ €G (A.19)

Condition (i) implies that 7 is unital whereas conditions (ii),(iii) just reflect the defining
relations (4.2) and (4.3) of D(G), which ensures, that 7 is a well defined algebra morphism.
On the other hand, given a representation (7%, V) of D(G), we define

Dy := (idg ® 7)) (D)
which clearly satisfies conditions (i) - (iii). This proves part 1.). Part 2.) follows trivially. O

To get the relation with Majid’s formalism [Maj97] we now write a - v := 7y (a)v, a € G,v € V
and define By : V—G®V; v v o =Dy (1 ® v). With this notation we get

COROLLARY A.4. The conditions (i)-(iii) of Corollary A.3 are equivalent to the following
three conditions for By (as before denoting X' @Y ® Zt = ¢~ ):
(i’) (6 ® idv) ofBy =idy
(i) (a) -v)Maq) @ (ag) - 0)® =gV @ ag) 0@, VoeV
(iii") Zio® @ (Y- o@D Xig (¥i-v@)? =
(¢—1)321 . [(Zz . U)(i)(z) Vi (Zz _v)(I)(l) Xi® (Zz . U)(é) , YWweV

PRrROOF. The equivalences (i) < (i’) and (ii) < (ii’) are obvious. The equivalence (iii) <
(iii’) follows by multiplying (iii) with (¢3,")%!? from the left and with ¢};' from the right and
permuting the first two tensor factors. O

The conditions stated in the above Corollary agree with those formulated in [Maj97],Prop.2.2,
by taking G°P = (G, A%, (¢~1)32!) instead of (G, A, ¢) as the underlying quasi—bialgebra. Thus
we have identified the category Rep D(G) with what is called the double category of modules
over G in [Maj97]. This proves that our quantum double is a concrete realization of the abstract
definition given by S. Majid.



