CHAPTER 3

Generalization to weak quasi—quantum groups

In this chapter we will generalize the definitions and constructions of Chapter 2 to weak
quasi—Hopf algebras as introduced in [MS92]. This contains the physical relevant examples such
as truncated quantum groups at roots of unity. As will be shown, it is nearly straightforward
to extend all results obtained so far to the case of weak quasi-Hopf algebras. The new feature
of weak quasi-Hopf algebras is to allow the coproduct to be non unital, i.e. A(1) # 1 ® 1.
This results in a truncation of tensor products of representations, i.e. the representation (my ®
mw) o A operates only on the subspace VR W := (my @ mw)(A(1g))(V ® W). Also the
invertibility requirement on certain universal elements - such as the reassociator or the R—matrix
- is weakened by only postulating the existence of so—called quasi—inverses. Correspondingly
coactions and two—sided coactions of a weak quasi-Hopf algebra are no longer supposed to
be unital and the associated reassociators are only required to possess quasi-inverses. The
diagonal crossed products M; = G M may then again be defined by the same relations as
before, with the additional requirement that the universal A\p—intertwiner I' € G ® Mj has to
satisfy I' A\(1aq) = p°?(1p¢) T =T'. This will also imply that now as a linear space M; is only
isomorphic to a certain subspace G b1 M o C oM (or WM, > GcM ®g) More specifically
Theorem 2.1 now reads

THEOREM 3.1. Let G be a finite dimensional weak quasi—-Hopf algebra and let
(A 5,0, 85, 8y,) be a quasi-commuting pair of (left and right) G-coactions on an associative
algebra M. Then part 1. and part 2. of Theorem 2.1 stay valid with the additional requirement
that the normal elements T € G ® A satisfy not only (2.2)/(2.3) but also

TAa(lrm) =pF(AM) T =T (3.1)
Part 3. is modified as follows
3’. There exist elements py € G M and g, € M ® G such that the linear maps

pr:GOM3 (p@m) - (id ® puy)(g,) T(pe)m € M
pR:M®G3 (m® ) »ml(pa)) (9 @id)(pr) € M

are surjective
3. Let PL:GOM— GO M and Pr: M® G — M ®G be the linear maps given by

Pr(p®@m) = pxam :=pp) @ (g3 Qid® S (g0(1 ))(él(lM))m
Pr(m® @) =m g :=m(S " (p) ® idp ® 91)) (6:(1m)) ® @2

where 6 = (A®1id) o p and §, = (id ® p) o A. Then Py, and Pr are projections with the
same kernels as pur and pg, respectively.

Part 3.” and 3”. of Theorem 3.1 imply that we may put G M, = PL(G ® M) and
M, < G := Pr(M ® G) to conclude that analogously as in (2.6) and (2.7) the restrictions

pr G M, — My
pR:AMplegA—>M1

are linear isomorphisms inducing a concrete realization of the abstract algebra M; on the
subspaces G WM, C G ® M and WM, G C M ® G, respectively. As before, we call
these concrete realizations the left and right diagonal crossed products, respectively, associated
with the quasi—-commuting pair of G—coactions (A, p, x, @p, ¢r,) on M. To actually prove The-
orem 3.1 we follow the same strategy as in Chapter 2, i.e. we first construct these diagonal
crossed products explicitly and then show that they solve the universal properties defining M.
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3.1. Weak quasi—quantum groups
Quasi—inverses. We start with a little digression on the notion of quasi—inverses. Let A
be an associative algebra and let z,p,q € A satisfy
pr =1z =14 (3.2)
P=p =g
Then we say that y € A is a quasi—inverse of x with respect to (p, ¢), if
yr=q, TY=p, YIY=y (3.4)
Clearly, given (p,q), a quasi-inverse of z is uniquely determined, provided it exists. This is
why we also write y = 27!, if the idempotents (p,q) are understood. Also note that we have
qy =y = yp and zyxz = z and therefore z is the quasi—inverse of y with respect to (g,p). All
this generalizes in the obvious way to A-module morphisms z € Hom4(V, W), p € End 4(W)
and ¢ € End4(V), in which case the quasi—inverse would be an element z=! € Hom_4(W, V).
Note that in place of (3.2) we could equivalently add to (3.4) the requirement
YT =T (3.5)

In our setting of weak quasi—Hopf algebras the idempotents p, g always appear as images
of 1 € G of non—unital algebra maps defined on G, like A(1), A°(1), (A ®id)(A(1)),... etc.,
whereas the element x will be an intertwiner between two such maps, like a reassociator ¢,
and R—matrix R, etc. Hence, throughout we will adopt the convention that if a : G — A and
B:G — A are two algebra maps and x € A satisfies

za(g) =pB(g)z, Vgeg§
then the quasi-inverse y = 27! € A is defined to be the unique (if existing) element satisfying
yr =a(l), zy=pB(1)
xYr =, yry=y
Clearly this implies conversely

alg)y=ypB(g), VYgeg

and therefore = y~!. We also note the obvious identities

Blg) =zalg)z™, alg) =2 'B(9)=
za(l) =Mz =2, o)z '=z71p1)=2""
Weak quasi—Hopf algebras. After this digression we now define, following [MS92] a weak
quasi-bialgebra (G,1,A, €, $) to be an associative algebra G with unit 1, a non—unital algebra

map A : G - G® G, an algebra map € : G — C and an element ¢ € G ® G ® G satisfying
(2.8)-(2.10), whereas (2.11) is replaced by

(id ® e ® id)(g) = A(1) (3.6)

and where in place of invertibility ¢ is supposed to have a quasi-inverse ¢ = ¢~ with respect
to the intertwining property (2.8). Hence we have ¢ = ¢, pdd = ¢ as well as

9o =(>1d®A)(AQ1), ¢¢=(A®id)(A(1)) (3.7)
implying the further identities
(id® A)(Ae)) = ¢ (A®id)(A(a) §, Ya€G (3-8)
=0 (A®id)(A(1)), ¢=¢(d®A) (A1) (3.9)
(id ® e ®id)(4) = A(1) (3.10)

A weak quasi—bialgebra is called weak quasi—Hopf algebra, if there exists a unital algebra an-
timorphism S and elements «, 8 € G satisfying (2.15) and (2.16). We will also always suppose
that S is invertible. The remarks about the quasi-Hopf algebras G,,, G°°P and GgoP remain valid
as in Section 2.1.

As before we call G quasitriangular, if there exists an elment R € G ® G satisfying (2.17-
2.19), where instead of invertibility R is supposed to be quasi-invertible with respect to the
intertwiner property (2.8), i.e. there exists R € G ® G satisfying RR = A(1), RR = A°P(1).



A quasi-invertible element F' € G ® G satisfying (e ® id)(F) = (id ® €)(F) = 1 induces
a twist transformation from (G, A, ¢, d) to (G, Ar,€,¢r) as in (2.22) and (2.23), where G :=
(G,1,AF,¢,¢r) is again a weak quasi—bialgebra. The two bialgebras Gr and G are called twist—
equivalent.

Finally the properties of the twists f,h defined as in (2.26) and (2.31) are still valid. In
particular (2.27) defines the quasi-inverse of f with respect to the intertwining property (2.28).

Let us shortly indicate the implications on the representation theory of G. For more details
see Appendix A. Due to the coproduct being non—unital the definition of the tensor product
of representations has to be slightly modified. First note that A(1) € A(G) is central and
idempotent. Thus, given two representations (V,wy ), (W, mw ), the operator (my ® mw)(A(1))
is a projector, whose image is precisely the G—invariant subspace of V ® W on which the tensor
product representation operates non trivial. Thus one is led to define the tensor product X of
two representations of G by setting

VRW :=(ry aw)(AQ) VW, 7wy Raw := (7v ®7rw)0A|V|zW (3.11)

With this definition all considerations about the representation theory of G carry over to weak
quasi—Hopf algebras. In particular Rep G becomes a rigid monoidal category and a quasitrian-
gular R—matrix defines a braiding in Rep G.

Weak coactions. The notion of coactions may easily be generalized as well. By a left G—
coaction (A, ¢y) of a weak quasi—bialgebra G on a unital algebra M we mean a (not necessarily
unital) algebra map A : M — G ® M and a quasi-invertible element ¢) € G ® G ® M satisfying
(2.35a)-(2.35¢) as in Definition 2.3 and

(id ® e @ id)(¢x) = (e @ id ®id)(pn) = A1 p1) (3.12)

The definition of right coactions is generalized analogously. Lemma 2.4 about twist equivalencies
of coactions stays valid, where one has to make the adjustments that a twist U € M ® G only
is supposed to be quasi—invertible.

By now it should become clear how one has to proceed: Definition 2.5 of two—sided coactions
is generalized by allowing § to be non—unital and ¥ to be non—invertible but with quasi-inverse
¥ = ¥~ ! and by replacing (2.39d) by

(idg ®e®idpm ® e®idg)(P) = (e®idg ® idy ®idg ® €)(T) = §(1pm) (3.13)
The definitions of quasi—-commuting pairs of coactions, twist equivalencies of two—sided coactions
etc. are generalized similarly. With these adjustments all results of Section 2.3 stay valid for
weak quasi-Hopf algebras and are proven analogously.

The elements gx,px and ¢,,p, are defined as in (2.77)-(2.80) and obey all the relations
stated in Lemma 2.21 with the only modifications that in (2.103c) and (2.103d) the r.h.s.
becomes A(1¢) instead of 1g ® 1o and similarly (2.104c¢/2.104d) where the r.h.s. has to be
replaced by p(1pm), ie

@) pA[S7Hax) ® 1m] = A1) (3.14)

[S(P)) ® Tm] ga A(PX) = A1) (3.15)

p(a) pp 1M ® S(q2)] = p(1m) (3.16)

[1m ® S H®))] g0 p() = P(11) (3.17)

Going through the proof of Lemma 2.21, this follows from the fact that one uses (3.12) or the

corresponding identity for ¢,.

3.2. Diagonal crossed products

The definition of diagonal crossed products G b1 Ms and M 1 G as equivalent algebra
extensions of M, given in Definition 2.9/2.11 need some more care in the present context.
We will proceed in two steps. First we define an associative algebra structure on GoM (or
M ® G) exactly as in Definition 2.9 (or Definition 2.11). Unfortunately in general this algebra
is not unital unless the two—sided coaction 4 is unital. But the element 1 ® 14 is still a right
unit (1y ® 1 is still a left umt) and in particular idempotent. The second step then consists
in defining the subalgebra G My C G®M as the right ideal generated by 1 ® 144, i.e.



G Ms = (1®1pn)-(G®M) (the left ideal generated by 1y ® 1, ie. Ms a1 G =
(M®G)- (1 ®1)). These algebras are then unital algebra extensions of M = 1 01 M and of
M = M a1, respectively. As in Section 2.5 one may proceed to a description by left and right
d—implementers and equivalently by Ap—intertwiners, thus getting a proof of Theorem 3.1.

DEFINITION 3.2. Let (4, ¥) be a two—sided coaction of a weak quasi-Hopf algebra G on an
algebra M. We define G ®s M to be the vector space G ® M with multiplication structure given
as in (2.56) and the left diagonal crossed product G <1 M to be the subspace

GraMs:=(1®10)- (G ®5 M) (3.18)

Analogously M ®s G is defined to be the vector space M ® G with multiplication structure
(2.63) and the right diagonal crossed product Ms < G to be the subspace

MG = (M5 G) - (1 ®1) (3.19)

The elements spanning G > My and My > G will be denoted by, respectively
pram:=1®1m)Eem) = (9®1am)(AIu ®m) = 9@ ® (S Hea) > 1mapE)m (3.20)
mp:=mee)(Im®1)=(me1)(1m®¢) =m(pa)>1um 4.5'*1(@(3))) ®pe  (3.21)

Note that G @5 M = G ba My, if 6(1p¢) = 1g ® 1y ® 1g, which means that the above definition
generalizes Definition 2.9. We now state the analogue of Theorem 2.10.

THEOREM 3.3.
(1) G ®s M and M ®s G are associative algebras with left unit 1 ® 15 and right unit
1 ® 1, respectively. Consequently, the diagonal crossed products G va Mg and M5 =< G
are subalgebras on@aM and M®s _C’;, respectively, with unit given by 1< 1 = 110
and 1py a1 = 1 ® 1, respectively.
(ii) M=igM=1xMcCGxaMsand M=M®1=Mw1C Ms=G are unital

algebra inclusions.

ProOF. We will sketch the proof of part (i) for G ® M, the case M ® G being analogous.
From (2.56) one computes that

(pem)dA®1ym) =(pem)
A @ 1) (e ®m) = ) @ (ST ) > Lm <) m
=y 2= 5"1w) @1gm
where §(1r) = 1(_1) ® 1(g) ® 1(1). This shows that 1 ® 1 is a right unit in G ®5 M but in
general not a left unit.

To proof the associativity of the product one proceeds as in the proof of Theorem 2.10. Here
one has to take some notational care when translating (2.94/2.95) into relations of a generating
matrix L. First, it is necessary to distinguish L= L' ® L? :=¢, ® (e* ® 1p) € G® (G ® M)
and L :=e, ® (e 1) € G® (G > M). Eq. (2.98) must then be replaced by

[1g@1pML=1 (3.22)

and (2.58), (2.59) are at first only valid for L but not for L, since 15y = 1 ® 14 is not a left
unit in G ®5 M. This can be cured by rewriting for example (2.58) for L more carefully as

(L' ®@mL?) = S™H(mu)) L' m(_1) ® L m(g), VYm e M
in which form it would still be valid. Taking this into account and using that ¥ (1g ® §(1r¢) ®

1g) = ¥, the proof proceeds as the one of Theorem 2.10 (i). The proof of the remaining parts
of Theorem 2.10 is straightforwardly adjusted in the same spirit. O

From now on we will disregard the “unphysical” non-unital algebras M &g G and G ®; M,
and stay with G ba M and M = G as our objects of interest. With the appropriate notations
(3.20),(3.21) all relations of Section 2.4 remain valid for these algebras. We also remark that the
left multiplication by 1 ® 14 (right multiplication by 10 ® i) precisely gives the projections
Pr g mentioned in part 3”. of Theorem 3.1.



Defining left and right —implementers as in Definition 2.13 all results in Section 2.5.1 also
carry over to the present setting. A Ap—intertwiner is then supposed to have the additional
property that

TAu(1pm) = pP(AM) T =T (3.23)

With this the one—to—one correspondence T < R and T < L of Proposition 2.19 is still valid,
where (3.23) becomes equivalent to

L =[S (1)) ® 14] L [1(_1) ® v(1(g))]
R = [14) @ 7(1()] R[S ' (1(<1)) ® 1.4]

respectively, which follow from (2.64) and (2.65). One may now prove Theorem 3.1 analogously
as Theorem 2.1 where the modifications in part 3’. and 3”. have their origin in (3.23).



