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�Essentially, all models are wrong, but some are useful.�

[Box and Draper, 1987]

�Behind every simple is a huge tail of complicated.�

[Pratchett, 2010]
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CHAPTER 1

Introduction

In this thesis a new probabilistic model for prediction of microbial growth
(NPMPM) is presented. Today, almost all models in predictive microbiology
are deterministic. A deterministic approach, like a combination of best case,
worst case, and average case analysis, gives equal probabilities to all possible
outcomes. Other probabilistic models are derived from deterministic models
by substitution of deterministic variables with probability distributions.

The NPMPM is based on a new approach. It is empirical and not predicated
on scienti�c regularities. It is a generic method. Therefore, the NPMPM can
be adapted to other problems than bacterial growth, e.g. it can be used
for prediction of metabolism from genome sequence data. In this thesis the
NPMPM will predict the contamination of milk products with Listeria spp.

The NPMPM is �tted with experimental data. These data were taken from
the ComBase, a database on microbial responses to the food environment
[Anonymous, a]. The implementation was done in the R programming
language [R Development Core Team, 2010] yielding a downloadable
R package. The decision against a spreadsheet-based program like @Risk,
Crystal Ball or Model Risk was based on the fact that these programs can
not easily cope with large amounts of data and big numbers.

Predictive modelling is used to forecast the development of microorganisms
in food or feed, using mathematical formulas. There is no detection
strategy that ensures the absence of contamination during food processing
[Kennedy, 2008], but it is possible to develop protection strategies. For
this task the prognosis of growth and decay of pathogens or spoilage
microorganisms is essential. In food processing, food safety and food
characteristics have to be balanced. Predictive models can facilitate this
optimisation process.

In case of an intentional or unintentional contamination, the consequence
can be simulated depending on the foodstu� (matrix), microorganism,
quantity of contamination (inoculum) and step in the supply chain. Getting
the desired information solely by means of laboratory experiments is time
and cost intensive. For instance if the goal is to investigate the behaviour
of microorganisms depending on three factors, e.g., temperature, time, and
pH value, for ten di�erent values for each factor, 10 · 10 · 10 = 1000 bacterial
counts have to be measured. The default method is to redo the same 1000
experiments two more times to quantify the variability of the bacterial
counts. Hence, 3000 experiments have to be done to get the essential

1



2 1. INTRODUCTION

information.

In most manufacturing processes, parameters like time and tempera-
ture are not �xed values but vary over certain ranges; deterministic
models are not able to take into account this variability. Probabilis-
tic models estimate the probability distribution of the output values
calculated. They are able to take into account the variability of all
parameters. Several authors con�rm that both variability and uncertainty
are very important in predictive microbiology and that it is essential
to use probabilistic models [Delignette-Muller and Rosso, 2000],
[Membre and Lambert, 2008], [Standaert et al., 2007],
[Standaert et al., 2007], [Van Boekel, 2002], [Koutsoumanis, 2008].
As a probabilistic approach provides far more realistic results, the use of
probabilistic models in predictive microbiology supports a more profound
risk assessment of the food or feed supply chain than deterministic models.

In our approach, variability and uncertainty present in the experimental
data are directly taken into account. For every single experiment (one
series of measured values) a primary model is �tted to the data points. The
idea is to calculate a set of values. These are considered to be a sample
from a probability distribution that re�ects the distribution of bacterial
counts under the given conditions. In this thesis a log-normal distribution
of bacterial counts is assumed.

The model can be employed when little information as input or only
few experimental data points are available, as well as when there is large
amounts of high-quality data. When little information is available the uncer-
tainty is high, and this is re�ected in an expanded distribution of the output.

1.1. Organisation

This thesis is a multidisciplinary one. It provides the biological background
needed to understand the complexity of bacterial growth and decay mecha-
nisms. The mathematical knowledge essential to develop predictive models
is also supplied.

The subject of foodborne diseases is covered in chapter 2. This chapter
emphasises the importance of the e�orts to achieve food safety. An overview
over possible symptoms, causing agents, and associated foodstu� is given.
Risk factors and the infectious dose are discussed. The chapter ends with
examples of foodborne illnesses and veri�ed outbreaks.

In order to model bacterial growth, one must gain a fundamental under-
standing of the underlying mechanisms. In chapter 3, the causing agents,
mechanisms and kinetics of bacterial growth and decay are covered. First,
the di�erences between bacteria that are related to growth and decay
are introduced. Afterwards, the molecular bases of growth and decay are
examined and compared. Then the in�uence of the environment is outlined.
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Finally, the kinetics of growth and decay are discussed.

Chapter 4 provides an overview of the milk supply chain. After describing
the composition of cows milk, the milk �ora is described. Then the main
process steps of dairy processing are outlined. Finally, the properties and
production of certain milk products are highlighted. This knowledge about
the milk supply chain is a prerequisite for simpli�cation of production
processes with the goal of modelling them.

Chapter 5 follows up the kinetics discussed in chapter 3. Di�erent model
types are outlined. Then existing approaches to model bacterial growth
and decay are discussed. Afterwards, the di�culties in communication of
probabilistic information are laid out.

The Monte Carlo method is introduced in chapter 6. After that, the model
assumptions are outlined. Finally, the methods used for validation and
sensitivity analysis are described.

Chapter 7 presents the NPMPM. An overview of the model structure is given.
After discussing the theoretical background and a description of the data
used in the simulations, the algorithm is introduced.

In chapter 8, the results are presented and discussed in form of validation
and sensitivity analysis.

Finally, contribution and future work are introduced in chapter 9.

In the appendix, the terminology used, a brief description of the download-
able R package containing the model, and results of statistical tests can be
found.





CHAPTER 2

Foodborne Diseases

Human illness that results from consumption of contaminated food or water
is called a foodborne disease or foodborne illness. Only an occurrence of at
least two cases of the same disease that are related to each other, is called an
outbreak (�Ausbruch�). If the disease can be allocated to a special foodstu�
or a food producing facility, the term foodborne disease outbreak is used.
Some foodstu�-pathogen combinations are found more frequently than
others, for example Listeria monocytogenes in milk products, or Salmonella
spp. in chicken. Contamination may occur during production, but also
during processing and preparation.

Foodborne disease is caused by bacteria and their toxins, or by viruses,
parasites and chemicals. An infectious disease that can be transmitted from
infected animals to humans is called zoonosis. In this thesis only zoonotic
bacteria are taken into account, with a special focus on Listeria spp..

Today a contaminated food batch may reach a vast number of consumers,
because of big production facilities and long-range distribution. The trend
for ready-to-eat food which is consumed without heating increases the proba-
bility of foodborne illness, too. Therefore, numerous people may be involved
in an outbreak. An example is the large outbreak caused by Escherichia coli
O157:H7 that occurred in Japan in 1996 [Mermin and Gri�n, 1999].
More than 7000 persons were involved. Foodborne illness was caused
by contaminated white radish sprouts served through a centralised lunch
program. The origin of contamination could not be determined.

Foodborne diseases can have an enormous economic impact due to loss of
working hours, and costs of a recall of a�ected foodstu�. The consumer
may avoid one or all products of a special manufacturer, an industry or
even a country. In 1989 Chilean grapes were found to be contaminated
with cyanide. Consequence was a recall of Chilean fruit in Canada and
the United States of America. In succession more than 100 growers and
shippers went bankrupt. The damage added up to several hundred million
dollars [Organization, 2008].

Predictive microbiology can help to prevent foodborne disease outbreaks,
because it helps to detect probable contamination sites, and to de�ne
monitoring points. It is a basic component of microbial risk assessment.
In this chapter an overview of foodborne illnesses caused by bacteria is
given. First, symptoms related to foodborne illness are described. Then the
focus is laid on di�erent causing agents, especially bacteria. In the next
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section, foodstu� often associated with foodborne illness, and contamination
routes are discussed. This is followed by an illumination of individual risk
factors for infection and complications. After an overview of in�uences on
the infectious dose of several agents, some examples for foodborne disease
outbreaks reported in the literature are listed.

2.1. Symptoms and mortality

After an incubation period ranging from hours to days, �rst symptoms
show up. The timespan depends on the agent. For toxins it is usually
shorter than for bacteria. For some toxins it may be less than one hour.
Bacterial infections have longer incubation periods; for example after
ingestion of Brucella spp., �rst symptoms may show after one week up
to several months. The incubation period of Listeria monocytogenes
has a mean of approximately three weeks. The timespan di�ers in wide
ranges, a timespan of three to 70 days was reported during outbreaks
[Gerner-Smidt and Whichard, 2007].

Symptoms and mortality rate di�er in wide ranges; dose-response rela-
tionship is complex and depends on several factors. The type of agent
and foodstu�, and the quantity of bacteria ingested may in�uence the
progression of disease. In unborn children, infants, the elderly and those
with a compromised immune system (�YOPI� - young, old, pregnant,
immunocompromised) often progression is more severe.

Common symptoms of foodborne diseases are nausea, vomiting, abdominal
cramps and diarrhea - the body tries to get rid of the agent. It is vital
to prevent dehydration by oral replacement of water and electrolytes.
Depending on their mechanism of action, ingestion of toxins can lead to
impaired vision, numbness of parts of the body or paralysis. Bacteria may
be transported with the bloodstream, this is referred to as septicaemia. A
colonisation of other parts of the body than the intestine causes a variety of
symptoms. The in�ammatory response of the immune system to microbes
in body tissues is called sepsis.

Mortality rate is measured as number of deaths in a population in a certain
time span, scaled to the size of the population. To refer to the prevalence of
a disease, or to the incidence rate, the term morbidity rate is used. Mortality
rate of foodborne illnesses di�ers in wide ranges, depending on the agent,
the amount ingested and the immune status of the host. A poor immune
status increases the risk of severe illness and complications, and therewith
the mortality rate, too. Medical treatment increases the probability of
survival. Bacteria resistant to antibiotics are of special concern, because
there may be no e�cient therapy left.
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2.2. Causing agents

Generally, there are three mechanisms leading to bacterial foodborne ill-
nesses. Bacterial toxins ingested with foodstu� cause intoxication. Bacteria
may colonise the intestine where they produce toxins leading to toxiinfection
[Weber, 2006]. After conquering defence mechanisms of the intestine,
bacteria may infect other parts of the body.

Microorganisms or toxins may cause foodborne diseases. Some
toxins are organic, e.g. tetrodotoxin found in pu�er�sh. Oth-
ers are inorganic, e.g. arsenic. Pathogenic species are found
among viruses, bacteria, protists and metazoa (trematoda). Until
now no pathogenic archaea were found [Cavicchioli et al., 2003].
[Conway de Macario and Macarioa, 2009] found hints that methane
producing archaea aid pathogenic bacteria in colonisation of the host. In
this thesis we will concentrate on vegetative cells of bacteria as causing
agents.

Symptoms of an intoxication range from mild to severe, depending on
toxin and relative amount swallowed. Botulinum toxin is a powerful
neurotoxin produced by Clostridium botulinum. It is destroyed by heat, e.g.
cooking [Wein and Liu, 2005]. Staphylococcus aureus produces, amongst
others, an enterotoxin that causes gastrointestinal symptoms. This toxin is
relatively resistant to heat. A�atoxins are produced by certain fungi. They
are carcinogenic and cause liver necrosis.

Colonisation of the intestine with toxin-producing bacteria not crossing
the mucosa is called toxiinfection [Weber, 2006]. Clostridium botulinum
is a fastidious anaerobe bacterium leading to spoilage and contamination
with botulinum toxin of not proper sterilised canned food. Its spores are
ubiquitous. Ingestion of spores of Clostridium botulinum by infants can
cause a toxiinfection called visceral botulism. Unlike in adults, the intestine
of infants provides favourable conditions for spore germination; bacteria can
multiply and produce toxins. Food-borne botulism is caused by ingestion of
even small amounts of botulinum toxin. The main symptom of botulism is
paralysis, �rstly a�ecting the eyes. Food-borne botulism without intensive
medical treatment almost sure leads to respiratory failure.

Numerous species of bacteria can cause infections. Some bacteria remain
in the intestine, others are more invasive and try to colonise di�erent parts
of the human body. Intracellular pathogens are shielded from the immune
system, and from antibiotic treatment; they may cause repeated relapses.
Vaccines for humans exist only for few pathogens that cause foodborne
illness, e.g. for Vibrio cholerae.

Listeria monocytogenes is an ubiquitous zoonotic bacterium. It has been
found in several kinds of raw foods, including meat, milk products, fruit
and vegetables. Unlike most other foodborne pathogens, it is able to
grow at refrigeration temperatures [Kemmeren et al., 2006]. Despite
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being relatively rare [Kemmeren et al., 2006], Listeriosis is one of the
most important causes of death from foodborne illness in industrialised
countries [Anonymous, 2008]. Listeria monocytogenes causes severe
illness in YOPI with a high mortality rate of 20-30% [Anonymous, 2004].
Infection of pregnant women may lead to miscarriages. But most individuals
infected with Listeria monocytogenes do not develop obvious symptoms
[Kemmeren et al., 2006]. In 2008 from 653 con�rmed human cases of
listeriosis in the EU where the outcome was known, 134 cases died, from
which 87 cases were aged over 65 [Anonymous, 2008]. Overall noti�cation
rate was highest for elderly aged over 65 followed by children younger
than �ve years old [Anonymous, 2008]. In laboratory experiments
Listeria monocytogenes is often substituted by Listeria innocua which has
similar behaviour but is non-pathogenic for humans.

2.3. Associated foodstu�

Almost all sorts of food can be linked to foodborne illness. A contam-
ination of food with bacteria can occur at almost every point of the
production chain. Unfortunately, pathogenic bacteria often do not cause
spoilage in concentrations already su�cient for an infection. Hence,
contaminated food usually can not be recognised by the consumer. The
Centers for Disease Control and Prevention assigned one-third of foodborne
disease outbreaks in the United States of America between 1998 and
2002 to production and processing or cross-contamination in the kitchen
[Gerner-Smidt and Whichard, 2007]. This means that two-third of the
outbreaks could not be clari�ed or were associated with other routes of
contamination.

Pathogenic bacteria may be already present in raw food. Vegetables
can be contaminated with faecal bacteria by means of organic fer-
tilisers. Dust or water may transmit ubiquitous bacteria and spores
[Beuchat and Ryu, 1997]. Infected animals may show no symptoms of
disease, leading to contamination of meat, eggs and dairy products. For
example Brucella spp. are excreted from the udder of infected cows together
with milk.

A contamination can occur during processing, often due to poor hygiene.
Insects like �ies may transport infectious material on their bodies and
transmit it onto food [Buchanan, 1907]. An infected food worker can
disperse enteric pathogens directly to other persons, or indirectly from
contact surfaces or food to person [Todd et al., 2009]. Healthy workers
may transmit infectious material from other people, e.g. from ill chil-
dren in their family, to surfaces or directly to food or to other people
[Todd et al., 2009]. An overview on transmission of pathogens by food
workers is given by Todd et al. in [Todd et al., 2009].

Fruits can be contaminated by insects, soil, dust or bird droppings.
Persons who pick and handle them are a source of contamination, too.
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Freezing kills some microorganisms on fruits [Marth and Steele, 2001].
Sugar concentrations in candied or glacéed fruits lower the aw value
below the level that permits microbial growth. In March 1997 frozen
strawberries were associated with an outbreak of hepatitis A in Michigan
[Marth and Steele, 2001].

Food that contains contaminated raw eggs can lead to salmonellosis when it
is not proper handled and cooled. Eggs contaminated with Salmonella spp.
normally do not show a signi�cant increase in bacterial number in the �rst
10-20 days [Marth and Steele, 2001]. One reason is that there is only
little iron available in the egg, and most bacteria require iron for growth
[Marth and Steele, 2001]. During preparation raw eggs are mixed with
other ingredients containing additional nutrients. This changes the condi-
tions for bacterial growth. When the foodstu� is not kept at refrigeration
temperatures, Salmonella may start to grow. Most foodborne pathogens
can not grow at refrigeration temperatures [Kemmeren et al., 2006].
Listeria monocytogenes is an exception, it also tolerates relatively low pH
and aw values [Kemmeren et al., 2006].

There is an increasing trend for ready-to-eat food [Havelaar et al., 2008].
This type of food is usually not heated before consumption. So pathogens
already present are not killed of. Improper cooling allows bacteria to grow.
During longer storage the number of Listeria monocytogenes will increase
even at refrigeration temperatures. Additionally, ready-to-eat food often
has a large surface, because of being cut in convenient pieces. The big
surface facilitates growth of bacteria, e.g. in ready-to-eat salad. Proper
cooking and storage reduces the risk for foodborne illness.

2.4. Risk factors

The human gastro-intestinal tract has several defence mechanisms against
virulent bacteria. Secretion of gastric acid and bile causes changes to a very
low and a high pH, respectively. Digestive enzymes kill microorganisms
by digestion, and mucosa and epithelium serve as barriers. Commensal
micro�ora suppresses colonisation by other microorganisms. These defence
mechanisms are weakened by certain medication that in�uences the amount
of digestive secretion, e.g. H2 receptor antagonists that raise the pH value in
the stomach. Ingestion of foodstu� raising the pH together with pathogenic
bacteria may lead to a higher risk of infection, too. Milk and alcohol can
speed up the intake of certain toxins.

Innate and adaptive immune system provide a defence against non-symbiotic
microorganisms. Hence, YOPI often have a higher risk of infection. Rate
of complication and severity of disease is usually higher than in healthy
people.
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2.5. Oral infectious dose

The number of microorganisms that has to be ingested to cause a foodborne
disease mainly depends on the immune status of the host, composition of
the foodstu�, and the microorganism itself. It is called oral infectious dose.
Acute toxicity of a toxin is usually speci�ed by the median lethal dose
(LD50). The LD50 is the amount of toxin that kills 50% of individuals of a
tested population after a certain time.

Dose-response relationships for human pathogens can be investigated by
feeding studies or by analysis of foodborne outbreaks. Most experiments to
determine the oral infectious dose in humans were done with healthy young
males [Kothary and Babu, 2001]. Transfer of the results to high-risk
groups is di�cult. Additionally the pathogens are given in a non-food matrix
like sodium bicarbonate or in milk [Kothary and Babu, 2001]. This may
lead to a better survival of microorganisms in the stomach. The infectious
dose of Listeria monocytogenes can only be estimated from foodborne out-
breaks; febrile gastroenteritis in healthy hosts is apparently caused by a high
dose of several million bacteria [Gerner-Smidt and Whichard, 2007].
For ethical reasons, experimental data from infection of humans are lacking
[Kothary and Babu, 2001].

The infectious dose may vary for di�erent strains of pathogens. Kothary
and Babu reported an infectious dose of 104 cells of two particular strains
of Vibrio cholerae, but no infection after ingestion of 106 cells of another
strain [Kothary and Babu, 2001].

Generally there are other routes of infection than the oral route, with
di�erent infectious doses. Spores, viruses, or aerosols containing bacteria
can be inhaled. Microorganisms may enter the body via lesions of skin or
mucosa. Brucellosis is gained usually by the oral route but may be acquired
from aerosols via the inhalatory route or via the conjunctiva.

2.6. Examples for foodborne outbreaks

In 2008 in the European Union 5332 foodborne outbreaks (both possible
and veri�ed) were reported to the EFSA [Anonymous, 2008]. In 74.2%
of these outbreaks the causative agent is known. 14,001 human cases were
veri�ed, from which 20 died. Germany reported 20% of these outbreaks.
The number of cases and hospitalisations varied considerably, depending on
the pathogen causing the outbreak, as well as on the setting.

In 2009, an outbreak of listeriosis was caused by `Quargel' cheese pro-
duced by an Austrian manufacturer. Nine people died and another 26
people became ill [Fretz et al., 2010b], [Fretz et al., 2010a]. The
outbreak was caused by two di�erent strains of Listeria monocytogenes
due to consumption of the same white cheese from the same manufacturer
[Fretz et al., 2010a]. The product was withdrawn from the market in
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January 2010.

An example for cross-contamination as contributing factor is the national
outbreak of Salmonella Enteritidis infection in the United States in 1994
[Hennessy et al., 1996]. A number of 224,000 persons developed gas-
troenteritis after consumption of ice cream. Salmonella Enteritidis was
identi�ed as causing agent, and was isolated from ice cream samples.
Ice cream was manufactured from a pasteurised ice cream premix. This
premix was transported to the producer in tanker trailers that had pre-
viously transported non-pasteurised liquid egg. Cleaning routines of the
tankers were irregular, so most likely the foodborne outbreak was due to
cross-contamination of ice cream premix with remaining egg containing
Salmonella Enteritidis.

In 1985 a Salmonella Typhimurium outbreak in the United States was
associated with consumption of properly pasteurised milk. About 23,000
people became ill. Despite the detection of S. Typhimurium in milk
samples, the contamination site in the dairy plant could not be determined
[Weber, 2006].





CHAPTER 3

Bacterial Growth and Decay

In order to model bacterial growth and decay it is useful to understand
underlying structures and mechanisms. The border between growth and
decay is not a sharp one. Vermeulen et al. found no straight cut-o�, but a
narrow transition zone both for monocultures and mixed cultures of strains
of Listeria monocytogenes [Vermeulen et al., 2007]. At environmen-
tal conditions near the transition zone, growth was signi�cantly slowed down.

In a medium containing unlimited nutrients, energy sources and room
for growth, and in absence of predators, some bacteria can double in less
than 20min at optimal temperatures. The medium in which bacteria are
grown is also called matrix. Microbes grow until the supply of nutrient
ceases or toxic by-products accumulate. The defensive response to such
inhospitable conditions are cannibalism, synthesising of stress proteins,
expression of starvation genes, and formation of dormant cells or spores
[Price and Sowers, 2004]. The persistence of bacteria under di�erent
environmental conditions is called tenacity.

`All living matter is endowed with the capacity for multiplication and for
coming to terms with its environment, and these fundamental properties are
exhibited even by the simplest type of organism, the single cell, of which the

bacterium is the commonest example.�

[Dean and Sir Hinshelwood, 1966], page 1

Despite the fact that bacteria are genetically and structurally
simple, their division depends on a large number of events
[Slater and Schaechter, 1974]. Hence, a lot of factors may in�u-
ence growth and death kinetics. Due to evolutionary adaption, di�erent
genera and species, and also stems and biovars of the same species, show
variant behaviour. The speed of growth and tenacity also depends on the
history of the cells and current environmental conditions. Temperature, pH
value, water content, availability of nutrients and other factors have dynamic
and interactive e�ects. The presence of competitive �ora, bactericides or
preservatives may inhibit growth or enhance decay.

In chapter 2 the impact of foodborne diseases caused by bacteria is described.
To prevent foodborne illness it is essential to understand the underlying
mechanisms of bacterial growth and decay. In this chapter bacterial growth
and death kinetics and the in�uencing factors are described. This provides
knowledge for predictive modelling introduced in chapter 5. First, the
kinetics are characterised. Then, cellular structures and their connection
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to kinetics are discussed. After that, basic mechanisms of growth and
death of bacterial cells are described. Then, the in�uence of environmental
conditions on growth and death are considered. Finally, experimental data
used in the NPMPM are characterised.

3.1. Counting bacteria

Usually, to obtain bacterial growth or death data, aliquots of a stock culture
are used to inoculate a medium, which then is exposed to some treatment,
e.g. heating. At di�erent times samples are withdrawn from the treated
culture, and the bacteria are counted. Various methods are available
for quanti�cation, some only count viable cells, others also count dead
bacteria, yielding di�erent quantities. Not all counting methods are able to
distinguish di�erent species in a mixed culture. In predictive microbiology
mathematical models are �tted to experimental data. Databases with
experimental data often do not contain information about the counting
method.

The gold standard for counting bacteria is plating of de�ned volumes of a
serial dilution on agar plates, and incubating these plates (plate count).
Incubation temperature and sort of growth medium used for dilution and
cultivation are chosen to provide optimal conditions for the bacteria. A
de�ned volume of the matrix containing the bacteria is sampled and diluted
with certain volumes of growth medium. De�ned volumes of this serial
dilution are evenly spread on agar plates. During incubation the bacteria
able to grow will form colonies that (after some time) can be seen with
the naked eye. At least for some dilutions the number of colonies is small
enough to distinguish and count them. For high initial concentrations of
bacteria, colonies form a bacterial lawn and can not be distinguished. For
higher dilutions, there may be no colonies. The number of colonies is called
the number of colony forming units, or short, cfu. Finally, the concentration
of bacteria in the sample is calculated from cfu, dilution rate and sample
volume.

For slow growing bacteria a primary culture may take a long time. For
example Mycobacterium avium ssp. paratuberculosis has a generation time
of 20h, under optimal conditions. A primary cultivation may take six
months [Rowe and Grant, 2006]. Dormant cells (see section 3.3) or
damaged bacteria that are still alive, but do not grow in the timespan of
incubation, can not be detected. Other bacteria present may overgrow the
species of interest. This can be prevented by addition of certain antibiotics.

A clear medium is clouded by increasing numbers of bacteria. This can be
used for deduction of the number of bacteria from turbidity measurement
in a photometer. A pure culture (a culture that contains only the bacteria
of interest) in a clear liquid medium is required. Dormant, damaged,
and dead cells enhance cloudiness, too. To calculate numbers of bacteria
from turbidity measurements, the measured values must be compared with
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turbidity measurements of de�ned counts of the bacteria, e.g. determined
by plate count.

Bacterial cells can be counted directly. A visual counting of a pure culture
can be done microscopically. If the matrix is not a clear liquid, a de�ned
volume is sampled and diluted in a de�ned volume of growth medium or
isotonic saline solution. Bacteria can be stained to distinguish living and
dead cells. Then a de�ned volume of this suspension is �lled into a counting
chamber, and the bacteria are counted under a transmitted light micro-
scope. This method is very time - and labour-intensive. Flow cytometry and
coulter counter automatise the counting process. The bacteria have to be
suspended in a special �uid. This passes by an electronic detector counting
cells. A pure culture or a speci�c dye for the regarded bacterium is necessary.

A recently developed Raman spectroscope combines �uorescence microscopy
and Raman spectroscopy for counting. First, the sample containing the
bacteria is �xed on a membrane. Living cells are dyed with a �uorescent
dye for distinction from other particles. Then the combined microscope-
spectroscope focuses on �uorescing particles. Now a Raman spectrum is
measured and aligned with a database to identify genus, species and stem
of the bacterium. This method can simultaneously count cfus of di�erent
species.

The DNA content of a bacterial population is roughly proportional to its
number of cells. This fact can be used for indirect counting of bacteria.
From a de�ned sample volume bacterial DNA is extracted. A simple method
is to perform an agarose gel electrophoresis of sample DNA together with a
standard DNA probe. In the gel the DNA is separated into di�erent bands.
A comparison of the width of the bands of both probes is used to roughly
estimate the number of bacteria present in the sample volume. Another
possibility is to make a quantitative polymerase chain reaction (qPCR)
of the sample DNA. A DNA standard from a dilution series of the same
bacterium must be ampli�ed, too. A linear regression of the DNA standard
data yields a straight line from which the number of bacteria in the sample
can be read o�.

In this thesis the number of viable cells is referred to as cfu. The terms
cfu/ml and logcfu/ml denominate the number of bacteria in one ml that
was measured in an experiment, and the decadic logarithm of cfu/ml,
respectively.

3.2. Kinetics

The term kinetics describes dynamics of bacterial growth and death, and
velocity of changes in population size. For visualisation a curve can be
drawn by plotting the decadic logarithm of the cfu against time. A general
growth curve, beginning with inoculation, consists of four phases: lag phase
with no changes in population size, log phase with exponential growth,
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stationary phase with no changes, and death phase. An idealised growth
curve is shown in �gure 3.1.

t

log
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 N(t)

N
0

lag log stationary death
0

Figure 3.1. The four (possible) phases of a growth curve

Cultivation in a closed system with a �xed amount of nutrient culture
medium is called a batch culture. The composition of the growth medium
changes with time due to metabolic activity and increasing population
size. Hence, the growth curve consists of all four phases, including the
death phase when the nutrients are consumed or toxic metabolic substances
reach a certain threshold. Cultivation in an open system with a permanent
substitution of old culture medium with fresh one is called a continuous
culture. The rate with which new medium is added controls the growth rate
of the microorganisms. Hence, in a continuous culture cells permanently
grow exponentially, but the population size is constant, because bacteria
are constantly removed, and the death phase is missing.

During the lag phase bacteria adapt to the new environment. Proteins
appropriate for the substrate and the environmental conditions are syn-
thesised, e.g. enzymes. During the lag phase the RNA content of cells
is six to twelve times higher than in other growth phases [Fuchs, 2007].
Cells in lag phase do not divide, and population size does not change.
Fast changing environmental conditions inhibit the adaptation of cells and
yield a longer lag phase. The age of the cells has also an in�uence, i.e.,
the time from inoculation of the culture on [Stern and Frazier, 1941]
[Dean and Sir Hinshelwood, 1966]. Muñoz-Cuevas et al. report a
dependency of the length of the lag phase on the magnitude of change
between previous and actual conditions, and on current growth condi-
tions [Muñoz Cuevas et al., 2010]. In a minimal medium it will be
longer than in a full medium [Dean and Sir Hinshelwood, 1966]. It
was shown in numerous studies that predictions of the length of the lag
phase as a function of current growth conditions are usually inaccurate
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[Muñoz Cuevas et al., 2010].

After adaption to a new environment, bacteria start to grow exponen-
tially. This phase is called logarithmic phase (log phase), because a
semi-logarithmic cfu vs. time plot often yields a straight line. Most
times there is a more or less slow gradation between lag and log
phase. The log phase is characterised by maximal autosynthetic ac-
tivity [Dean and Sir Hinshelwood, 1966]. The time needed for
doubling the number of cells is called (mean) generation time. During log
phase the generation time is minimal. The frequency of procreation, i.e.,
the number of cleavages per time, is called growth rate. It depends on
generation time, on the proliferative fraction present in the population,
and on death rates [Knolle, 1988]. There are also correlations between
individual generation times of sister cells, and between mother and daughter
cells [Takahashi, 1968]. When the increase of cell mass is only in�uenced
by growth rate and cell density, the population grows exponentially.
Exponential growth may be followed by most living cells, but not by the
total number of cells in a population. Additionally not all daughter cells
have o�spring themselves; some of them die. Growth may become linear
due to in�uences of limiting factors [Fuchs, 2007].

The population size is a function of time, growth rate, and initial number
of bacteria. The simplest assumption is exponential growth of all bacteria
present in the population. With the number of cfu at time t, N(t), initial
bacterial count N(0) = N0 and frequency β of growing by a factor of e, i.e.,

(3.2.1) N(t) = N0 exp(βt).

Often the decadic logarithm of the number of bacteria is of interest, e.g. in
the concept of D-values and z -values described in section 5.4. Formula 3.2.1
can be rewritten to

(3.2.2) N(t) = N010kt,

with a growth constant k that describes the frequency of growing by factor
10. It holds true that k = ln 10

β . Both equations 3.2.1 and 3.2.2 do only
describe the log phase. β and k depend on the method of counting bacteria
[Baranyi et al., 1993a].

There are many reasons for deviations from exponential growth. One single
cell doubles its mass and divides into two identical daughter cells. In a
population cells usually are at random points of the growth cycle. Cells can
be synchronised in their generation periods. In a synchronised population
a plot of logcfu/ml over time yields a series of distinct steps instead of a
smooth curve.

Bacteria growing in a matrix with two di�erent sources of carbohydrates
may show similar kinetics to that shown in �gure 3.2. First the cells
consume the preferred carbon source. Use of the �rst nutrient prevents
use of the second one. After exhaustion of the preferred carbon source, an
adaption for metabolisation of the second carbohydrate is needed, e.g. a
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second lag phase occurs. This phenomenon is called diauxie.

Time 

Figure 3.2. Diauxie (diphasic growth), from
[Dean and Sir Hinshelwood, 1966]

During growth bacteria consume nutrients and produce metabolic sub-
stances that may be toxic. Additionally, the space between bacteria, e.g.
the volume of matrix per bacterium, decreases. Growth slows down and
part of the bacteria die. When the concentration of bacteria reaches a
threshold, rate of growth and rate of death are equal. The population size
then remains constant for some time. This phase of the growth curve is
called stationary phase.

There may be up to 109 cfu per ml in a bacterial culture, depending on
cell size and environmental conditions [Anonymous, 2010b]. Spheroidal
bacteria, also called cocci, have diameters of about 1µm. Rhod shaped
bacteria usually have a width of 0.2-1µm and a length of 1-10 µm. The
volumes calculated from cell measurements are approximately 0.52µm3

for cocci and 0.03 − 7, 85µm3 for rhods. Hence, in one ml there is space
for about 1.9 × 109 cocci, 3.3 × 1010 of small rhods or 1.3 × 108 of big
rhods - and no matrix providing nutrients in between them. There are
bacterial species with smaller volumes, yielding slightly higher maximal
quantities per ml. Nevertheless, the experimental upper bound is reasonable.

An enrichment of bacteria is possible, e.g. by centrifugation. The pel-
let obtained by centrifugation must be resuspended in a small amount
of fresh medium, otherwise the cells are killed of after a short period.
The concentration of the suspension should be at most 1012 cfu/ml (for
small bacteria), higher concentrations lead to rapid death of the cells
[Anonymous, 2010b]. A dilution by factor 1000, e.g. a contamination of
a 1000litre-raw-milk tank with one litre of a concentrated suspension, yields
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109 cfu/ml. Hence, the upper bound of 109 cfu/ml is also reasonable in case
of an intentional contamination.

The stationary phase is followed by the death phase. When conditions
worsen, death rate increases whilst growth rate decreases, and the popula-
tion declines. The death phase is not really investigated [Fuchs, 2007]. To
some extend autolysis may occur [Fuchs, 2007].

The simplest death curve consists of only one phase of exponential death,
e.g. a straight line in a semi-logarithmic cfu vs. time plot. Exponential
decay of a population can be described by equation 3.2.1 with nega-
tive β. Under the assumption that not all cells in the population are
equally susceptible to a harmful factor and that the distribution of this
factor can be uneven in the population, other kinetics are possible. For
Listeria monocytogenes it was shown by Pagán [Págan et al., 1997] and
Rowan [Rowan and Anderson, 1994]) that the shape of the survival
curve could drastically change depending on pretreatment (history) of the
cells.

In �gure 3.3 the number of bacteria is plotted against time. For exponential
decline we get curve I. If the cells may stand a damaging in�uence up to
a certain degree, e.g. heat, and then immediately die o�, we get a curve
similar to curve II. Curves III and IV indicate a distribution of times of
tolerance in the population, e.g. the presence of sub-populations.

Figure 3.3. Death-rate of bacteria according to various hy-
potheses, from [Dean and Sir Hinshelwood, 1966]

A description of the modelling of these kinetics is given in chapter 5.
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3.3. Cellular structures

There is a basic cell con�guration found in all bacteria. Due to evolutionary
adaptation to a speci�c ecological niche, there are alterations or additional
structures. Hence, genera, species and even stems and biovars di�er from
each other. These di�erences are due to mutations, i.e., changes in the DNA
sequence. Temporary alterations are done by up- and downregulation of
genes already present in the cell. Unlike mutations this is fully reversible.
Another type of adaption is the exchange of plasmids containing genes
coding for resistance against antibiotics or for virulence factors. In the
presence of the antibiotics, possession of the associated resistance genes
is vital. In an environment free of antibiotics expression of resistance
mechanisms and needed replication of the additional plasmid DNA is an
evolutionary disadvantage. Therefore, after a certain time period without
antibiotics, a bacterial population usually (and fortunately) is free of the
resistance mechanisms again.

Bacterial cells demarcate themselves from the environment by use of a cell
wall. Its main component is peptidoglycan (murein). It acts as a �lter
mechanism and provides a barrier against external noxes. Additionally,
it gives structural support, and protects the cell from deformation due
to osmotic pressure. There are two main types of murein cell wall that
respond differently to a special type of staining, the so-called Gram stain.
Bacteria with a high amount (up to 90%) of murein are stained by crystal
violet. They are named Gram-positive. Gram-negative bacteria are not
stained by crystal violet. Their cell wall has less murein (about 10%)
and an additional outer membrane. There are some bacteria that yield a
Gram-variable pattern. Tenacity of Gram-positive bacteria may di�er from
that of Gram-negative bacteria.

Pathogenic bacteria often synthesise a capsule that protects them from
phagocytosis in the host. Usually, capsules consist of polysaccharides,
whereas for example the capsule of Bacillus anthracis contains only glu-
tamic acid. Encapsulated bacteria are comparatively resistant to thermal
and physical shock [Marth and Steele, 2001]. Cells that lost the ability
to express capsules are more likely damaged by freezing than encapsulated
cells of the same strain [Marth and Steele, 2001]. The famous experi-
ment of Gri�th [Gri�th, 1928] with strains of Streptococcus pneumoniae
showed the dependency of its pathogenicity on a capsule.
Gri�th took two di�erent strains of S. pneumoniae. One of which was pathogenic,

had a capsule and formed smooth colonies on an agar plate. The other one was

not pathogenic, had no capsule and formed rough colonies. Mice infected with the

smooth (S) strain developed pneumonia and died, mice infected with the rough

(R) strain did not show symptoms at all. Injection of cells of the S strain killed by

heat did not lead to illness, either. But when a mixture of killed S strain and alive

R strain bacteria were injected the mice died, and viable cells of the S strain could

be cultivated. This is the �rst experiment that was noticed to show transformation

of bacteria.
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A speci�c surface adhesion to host cells is guided by �mbria. These
structures are also involved in bio�lm formation. A bio�lm is a community
of bacterial cells embedded in a polymer matrix that sticks to an inert
surface or a living tissue. Bacteria located in bio�lms are protected from
environmental conditions leading to a higher tenacity. In general in a
bio�lm di�erent species of bacteria are present. They supplement each
others abilities of gathering, processing and removing nutrients from their
environment. Bio�lm formation in the facility sometimes is a problem in
food processing. It can cause high bacterial counts and spoilage in the end
product [Burgess et al., 2010], [Mariani et al., 2007].

The genera Clostridium and Bacillus form spores as dormant bodies.
Spores have a high tenacity and are very heat resistant. This is due to the
thick spore wall, a low water content, production of calcium dipicolinate,
and an almost stopped metabolism. Spores germinate under convenient
environmental conditions. Sometimes a trigger is needed for germination,
e.g. a high temperature for a short time. Spores can be stocked for many
years. There are also super-dormant spores that require an increased signal
for triggering spore germination compared to most spores in populations
[Ghosh and Setlow, 2009].

There are non-spore forming bacteria that constitute dormant cells that
are characterised by a drastically decreased metabolic activity, enhanced
resistance to harmful factors and absence of cell division. Unlike formation
of spores the dormant state is reversible, but dormant cells are often non-
culturable. Transition from growth to non-culturability and vice versa are
both poorly understood. An example is the latent form of Mycobacterium
tuberculosis [Shleeca et al., 2010]. Dormant cells have a higher tenacity
than viable cells.

Ubiquitous bacteria are adapted to a variety of changing conditions and
can grow under a wide range of environmental conditions. Colonisation
of certain ecological niches require a specialisation. Parasitic bacteria
are adapted to the conditions inside their hosts, e.g. human pathogenic
bacteria are all able to grow at 37◦C. Facultative parasitic bacteria generally
have a larger tenacity outside their hosts than obligate parasitic bacteria.
In general all organisms specialised to live under certain environmental
conditions have a very low tenacity under di�ering conditions. For example
enzymes of bacteria able to grow at low temperatures have a relatively
high turnover number and catalytic e�ciency. Therefore, they are more
susceptible to heat denaturation. Psychrophilic bacteria show growth
at low temperatures between -5 and 20◦C. Listeria monocytogenes is an
example for a psychrophilic bacterium. The cells contain an unusually
high proportion of branched chain fatty acids. Furthermore, cells grown
at 6◦C contain about one-third more total lipid than those grown at 30◦C
[Mastronicolis et al., 1998]. Thermophilic bacteria may grow at temper-
atures between 45◦C and 80◦C. Whilst the latter are able to form bio�lms
in processing facilities, e.g. grow on the surface of plate heat exchangers,
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psychrophilic bacteria may lead to spoilage at refrigerator temperatures.

Speed of adaptation to new environmental conditions, depends on the
physiological condition of the cells [Vadasz and Vadasz, 2007]. Hence,
the history of the cells is of importance. If shortly after adaption to a new
medium bacteria are retransferred to the old medium, a rapid reversion
occurs and the adaption gets lost. Only after a longer period of growth in the
new medium the adaption becomes stable and a retransfer to the old medium
leads to necessity of new adaption [Dean and Sir Hinshelwood, 1966].
This kind of adaption is due to up- and downregulation of di�erent genes.

An example for changing kinetics depending on the history of the cells
is pictured in �gure 3.4. Aerobacter aerogenes was grown with various
concentrations of pro�avine (2,8-di-amino-acridine). After an adaption
period the cells were transferred to media with di�erent concentrations of
pro�avine. The general shape of the growth curves in the new medium is
similar, but the lag phase gets longer for certain concentrations, depending
on training concentration.

Figure 3.4. Family of lag-concentration curves for trained
strains of Aerobacter aerogenes in pro�avin - the value p indi-
cates the concentration at which the cells were trained, from
[Dean and Sir Hinshelwood, 1966]

The size of the initial number of bacteria may have an e�ect on duration of
the lag phase, e.g. time needed for adaption to a new medium. Augustin et
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al. showed that lag time of Listeria monocytogenes grown under suboptimal
conditions is extended, when a small (and severely stressed) inoculum is
used [Augustin et al., 2000]. Davis et al. observed an e�ect of inoculum
size on culturability and isolation of soil bacteria [Davis et al., 2005].

Bacterial cells compete for available nutrients. In a mixed culture, some
bacteria may produce metabolites that are toxic for other species. Addi-
tionally, the change in environmental conditions induced by one species
can be fatal for other species. For example Lactobacilli metabolise lactose
to lactic acid that lowers the pH value. Most bacteria are adapted to a
neutral pH value of 7.0 and cease to grow or die o� under acidic or alkaline
conditions. Production of lactic acid is the main antimicrobial mechanism
in Lactobacilli [Zdolec et al., 2009].

Some bacteria show an antimicrobial activity by production of bacteriocins.
Bacteriocins have a protein or peptide component essential for their bacteri-
cidal function. They may inhibit DNA synthesis, promote DNA degradation
or cause changes in membrane permeability [Farkas-Himsley, 1980].
Nisin is the only bacteriocin commercially available [Tomé et al., 2005].

3.4. Basic mechanisms of growth

Bacteria have o�spring by binary �ssion. Unlike for eukaryotic cells, growth
does not follow a cell cycle. Division begins with start of replication of
DNA at the origin of replication (ori). Then the two DNA strands attach to
opposite sites of the cell membrane. Now the cell starts to elongate, leading
to separation of the DNA strands. After invagination of the cell membrane
in between the DNA strands, the cell is divided into two almost identical
daughter cells. A new daughter cell is approximately half the size of the
mother cell.

The o�spring of one cell is only almost identical, and growth of the two
daughter cells is in most cases not synchronous. This shift in time will add
up over the next generations. Therefore, a population of bacteria usually
is not synchronised in growth. Hence, a simple up-scaling from kinetics of
one bacterium to a population may not be su�cient. Synchronisation of
generation times in a population of bacterial cells can be induced by shock
treatment. After temporary interruption of growth, the cells may almost all
be in the same phase. Synchronous cultures soon revert to a population with
random phases of individual growth [Dean and Sir Hinshelwood, 1966].

3.5. Basic mechanisms of decay

Bacteria die o� due to external factors, and there is no apoptosis like in
eukaryotes. A direct damage of cellular structures leads to necessity of repair
and therefore to delayed growth, but can also cause instantaneous death.
Some antibiotics inhibit polymerases or build complexes with the DNA, e.g.
actinomycin, or induce strand breaks, e.g. mitomycin C [Fuchs, 2007].
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This leads to adverse e�ects on the synthesis of cellular components.

Every cell dies if it rans out of nutrients. This can be due to interruption of
external supply, e.g. when there are no nutrients left in the matrix, or due
to a breakdown of transport mechanisms into the cell. Blocking of metabolic
pathways also leads to death. An example for competitive inhibition is
the inhibition of cellular respiration by carbon monoxide that competes
with oxygen for cytochrome oxidase [Fuchs, 2007]. Vital enzymes can be
denaturated by heat, ethanol or high salt concentrations, and they may be
damaged by heavy metals.

Bacteria die o� when the border between the cell and its environment is
destroyed. Detergents damage the cell membrane. Intracellular or extra-
cellular ice crystals may cause destruction by punctuating it. Antibiotic
substances may block synthesis of the cell wall, e.g. cephalosporine or
vancomycin [Fuchs, 2007].

3.6. Environmental conditions

Environmental conditions have a big in�uence on the behaviour of mi-
croorganisms. The e�ect depends on the microorganism concerned, e.g.
spores are much more resistant than vital cells. Sensitivity for harsh
environmental conditions is not constant in time, even for one single
bacterium [Weber, 2006]. Guillier et al. found that stress induced a big
variability in lag times of Listeria monocytogenes [Guillier et al., 2005].
Stress in the meaning of unfavourable conditions like heat leads to alter-
ations of gene expression patterns. Stress conditions imply damages of
cell components that have to be repaired. When the DNA is a�ected the
mutation rate may increase. Proteins with increased expression in stress
conditions are called heat shock proteins (HSP). Many HSPs are chaperones.

Combination of di�erent preservation factors (�hurdles�) in production
processes is used to prepare safe, but minimal processed food. For example
a microorganism that is relatively resistant to heat under otherwise optimal
conditions may be killed o� at lower temperatures when the pH value
is changed. The concept of hurdle technology for food preservation was
introduced by Leistner and Gorris in 1995 [Leistner and Gorris, 1995].
It is widely used to improve safety, stability, quality, and economic aspects
of a variety of di�erent foods [Barbosa-Cánovas et al., 2005].

All organotrophic bacteria need an organic carbon source for growth,
which may be a sugar like glucose. Additionally essential elements such as
magnesium, nitrogen, phosphorus, and sulfur must be available to allow the
synthetisation of proteins and nucleic acids. If one nutritional component
is missing, bacteria stop growing and eventually die. Oxygen is needed to
metabolize the carbon source, and without carbon dioxide no gluconeogen-
esis can be done. The amount of CO2 can a�ect both length of lag phase
and growth rate [Dean and Sir Hinshelwood, 1966]. Parasitic bacteria
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living in blood, tissue or intestines are adapted to a higher concentration of
CO2, and an absence of CO2 may inhibit growth.

Several substances may slow down or even stop growth of microorganisms;
the e�ect often depends on concentration. Many substances that stop growth
at high concentrations will prevent �ssion of the cells in lower concentrations,
yielding non-septate �laments in rhods [Slater and Schaechter, 1974].
Bacteriocins kill bacteria. Bacteriostatic agents interrupt growth until
they are removed. Ethanol is a bacteriocidic substance that leads to
coagulation of proteins. All detergents damage the cytoplasmatic mem-
brane. There are some antibiotics that accumulate in the cytoplasmatic
membrane leading to increased permeability. Enzymes are damaged by
some heavy metals. Carbon monoxide competitively inhibits cellular res-
piration. Other substances inhibit the synthetisation of cellular components.

One bottleneck factor for growth is the availability of water. Water molecules
have a three-dimensional tetrahedral structure, they are electric dipoles and
form intermolecular hydrogen bonds with other water molecules. Because
of its extraordinary physical and chemical properties water plays a crucial
role in almost all cellular processes. Water content of a matrix comprises of
water bound to charged molecules and free water. The content of free water
is called aw value or water activity. Only the free water is available for
microbial, chemical, and enzymatic reactions [Lewis and Heppell, 2000].
Water can be bound by di�erent hydrophilic molecules. Molecules with a
high water binding capacity are called humectants. Examples are saccharose
in jam or salt in ham; smoking decreases the water content, too.

A high aw value lowers the heat resistance, probably because water increases
the rate of heat-induced protein coagulation [Marth and Steele, 2001].
A low water activity inhibits bacterial growth. An aw value between 0.6
and 0.9 largely protects food from microbial spoilage [Belitz et al., 2009].
Listeria monocytogenes is able grow from a water activity of at least
0.91 [Anonymous, 2004]. Usually the aw value is calculated as p

ps
with

partial vapor pressure of food moisture p, and saturation vapor pressure of
pure water ps [Lewis and Heppell, 2000]. Calculation of the aw value
in intermediate moisture food can be done with Ross� equation. It is
computed as product of each components water activity, assuming that each
aw lowering component behaves independently [Chirife, 1978].

Growth media used in the laboratory are either liquid or solid. On a
solid medium cells remain more or less in the same location. They use
up the nutrients in the local area. Metabolites accumulate, and are only
slowly distributed by di�usion. In liquid media bacteria get new nutrients
due to facilitated distribution by convection, di�usion or agitation of the
cultivation container. But metabolites that may be toxic for the cells are
easily dispensed, too. Hence, rheological properties of the matrix may have
an in�uence on kinetics.
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Some bacteria are able to grow at a wide temperature range, e.g. Listeria
monocytogenes is able to grow at 37◦C, but can also multiply in food
from a temperature of at least 0◦C [Anonymous, 2004]. Other bacteria
are very sensitive to deviations from their temperature optimum. At the
beginning of the lag phase the cells are the most sensitive to heat; in the
stationary phase they are the most insensitive to heat [Weber, 2006],
[Marth and Steele, 2001]. Killing o� by heat is based on coagulation of
cellular proteins. Heat resistance of bacteria is in�uenced by several factors.
Protein and colloidal particles in the matrix serve as a thermal bu�er, like
high concentrations of bacteria [Marth and Steele, 2001]. If bacteria are
clumped together the resistance to heat also depends on clump size. Other
factors are aw value and pH value. In a solution of reducing sugars, e.g.
lactose, the thermal resistance of at least some types of bacteria is increased
[Baumgartner, 1938]. Marth and Steele [Marth and Steele, 2001]
report a connection between the acidity of fruit and the heat treatment
needed for preservation. Antibiotics and other inhibitory compounds often
reduce the heat resistance [Marth and Steele, 2001]. For Lactobacillus
bulgaricus Stern and Frazier [Stern and Frazier, 1941] found varying
dependencies between inoculum size, growth rate, and maximum population
size with changing temperature. Listeria monocytogenes may show a largely
increased heat resistance after heat shock, depending on temperature, heat
shock duration and heating menstruum [Sergelidis and Abrahim, 2009].

Low temperatures slow down the metabolisms, but there is no evidence of
a minimum temperature [Price and Sowers, 2004] - apart from absolute
zero, of course. Death due to cold is a result of the formation of ice
crystals that destroy cellular structures and of denaturation of proteins and
lipoproteins [Marth and Steele, 2001]. Formation of intracellular ice
crystals can be reduced by increasing the osmolarity or reducing the water
content of the cell plasma [Fuchs, 2007]. The amount of extracellular
ice depends on the aw value of the matrix [Marth and Steele, 2001].
Robertson [Robinson, 1982] states that intracellular ice is more harmful
to microorganisms than extracellular ice. This is contradictory to �ndings
of Ray and Speck [Ray and Speck, 1973] that during freezing, formation
of extracellular ice was the principal cause of bacterial death. Some bacteria
are able to produce HSPs that have a protective e�ect against freezing
[Marth and Steele, 2001]. Stresses of freezing are more damaging to
large than to small cells [Marth and Steele, 2001]. Hence, adaption
of bacteria to low temperatures is done by reduction of cell size and
capsular polysaccharide coat thickness, alterations of their fatty acid and
phospholipid composition, or a decrease of the amount of cellular water.
Therefore, their physiological condition a�ects the survival of microor-
ganisms during freezing and frozen storage [Marth and Steele, 2001].
Other factors are the rate and method of freezing, and temperature, time,
and condition of storage. Ray and Speck [Ray and Speck, 1973] report
that cells in the stationary phase of growth resist freezing better than
those in the logarithmic phase. Marth and Steele report the following
order of survival of bacteria in frozen desserts, ranked from highest to
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lowest survivability: bacterial spores, gram-positive bacteria, gram-negative
bacteria [Marth and Steele, 2001]. Microbial toxins are resistant to
freezing [Marth and Steele, 2001].

The lower bound for bacterial growth (including Clostridium bo-
tulinum) is a pH value of about 4.5 [Lewis and Heppell, 2000].
Listeria monocytogenes is able to grow in food from a pH value of at
least 4.3 [Anonymous, 2004]. The pH value also has an in�uence on
the e�ect of other environmental conditions. There are drugs that are
much more e�ective in acidic solutions than in neutral ones. This is
due to the positive ion of the drug as active species and the in�uence
of the hydrogen ion on partial electric charges of the drug molecule
[Dean and Sir Hinshelwood, 1966]. The pH value of a solution may
depend on temperature [Marth and Steele, 2001]. Delignette-Muller et
al. describe in [Delignette-Muller, 1998] a negative linear correlation
between pH value and natural logarithm of the ratio of lag time and
generation time. They suggests that this e�ect is due to physiological stress
expanding the lag phase.

Other environmental conditions like pressure, radiation or shear forces
a�ect viable cells and spores. Bacteria are killed by high pressures. A
combination of increased pressure of at least 500 MPa and a temperature
of 60◦C kills even spores of the genus Bacillus [Margosch et al., 2004].
Radiation may kill o� bacteria. UV-radiation is rich in wave length of
260nm that is absorbed by nucleic acids. Ionising rays lead to formation of
hydroxyle radicals that damage macromolecules. There are some bacteria
that are relatively resistant to radiation, e.g. Deinococcus radiodurans
[Battista et al., 1999]. The e�ect of moderate shear forces on microor-
ganisms is not investigated yet. Shear forces occur for example in the food
chain when liquid foodstu� is pumped through pipes.





CHAPTER 4

The Milk Supply Chain

Milk products are an important protein source in many parts of the world.
In some countries milk is produced and processed in small-scale farming.
Other countries have dairy farms with up to a couple of thousand cows, and
processing is done in dairy plants. Some countries export a large proportion
of production, but in many countries with a large production the bigger
part is consumed internally. In 2007 India was the major producer of milk
with 114.4 million tons ECM (`energy corrected milk ` with 4% fat and 3.3%
protein content). In the same year Germany produced 29.4 million tons
ECM [et al., 2008].

Dairy farming started almost 6000 years ago [Bylund, 2003]. Today the
major part of dairy milk is produced from cattle (Bos primigenius taurus).
Goats, sheep, bu�aloes and camels play a major role in small-scale dairy
farming. Other dairy animals are horses, donkeys, llamas, yaks, reindeer,
water bu�alos and moose. In this thesis the term milk without speci�cation
of origin refers to cows milk.

Only a cow that recently gave birth to a calf produces milk. In dairy farming
the lactation period is kept about 305 days long. Six to eight weeks after
calving the cow is mated again. Approximately eight weeks before the next
calf is born the cow is caused to cease secreting. A calf needs approximately
1,000 litres of milk to grow up. The average cow milks more than 6,000
litres per lactation, but there are cows that reach more than 14,000 litres
per lactation [Bylund, 2003]. Daily produce of milk depends on the point
of time in lactation cycle, breed, feed and physical comfort. Lactating
dairy cattle at present constitutes about 20% of the worlds domestic cattle
population [Marth and Steele, 2001].

In chapter 2 we have a look at impact and the causes of foodborne diseases.
Chapter 3 discusses the dynamics of bacterial growth and decay, showing
that the modelling of these kinetics would be very complex without intense
simpli�cations. In this chapter the diversity of milk products and their
production processes is shown from di�erent views. First, safety concepts in
dairy manufacture are presented. Then the composition and properties of
raw milk and dairy products are described. Milk �ora, including the natural
�ora and contaminants, is discussed. After a description of the di�erent
production processes, the variety of milk products produced from raw milk
by such processes is characterised.

29
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4.1. Safety concepts

Milk and dairy products may be contaminated with pathogenic bacteria.
Contamination can occur on the farm, at transport, and during processing
or packaging. Infected cows may shed bacteria like Brucella spp. with milk.
Bacteria are transferred from teats and milking equipment to raw milk.
Ubiquitous microorganisms like Listeria spp. easily contaminate the milk.
Poor hygiene may lead to a higher degree of contamination, e.g. with faecal
bacteria like Escherichia coli . Composition of dairy products with other
ingredients, e.g. fruit preparations, bares risk of contamination, too.

Contamination level changes during dairy processing. Centrifugation and
�ltration attenuate or accumulate small particles like spores and bacteria
in resulting products, respectively. Process conditions like temperature, pH
value, aw value, salt and fat content may boost growth or lead to dying o�
of bacteria. Fat content has an in�uence on the tenacity of present bacteria.
A recontamination is possible in most processes, e.g. hairline cracks in heat
exchanger sections may form a bypass for raw milk and its �ora into the
already heat treated milk.

Until August 2007 the regulation 'Verordnung über Hygiene- und Qualitäts-
anforderungen an Milch und Erzeugnisse auf Milchbasis (Milchverordnung)'
was the legal framework of dairy production in Germany. In August 2007 the
food hygiene regulation, 'Lebensmittelhygiene-Verordnung, LMHV' replaced
the milk regulation. The 'LMHV' regulates speci�c topics of food hygiene
on national level as required in the framework in the European Community
and European Union. Some paragraphs regulate dairy production and
processing. In dairy plants in Germany, applied process parameters are still
those previously �xed in the 'Milchverordnung' [Anonymous, 2010a].

In Germany there are several bacteriological quality criteria for di�erent
types of milk and dairy products. All forbid the presence of pathogenic
bacteria.

In food processing safety of the �nal product is ensured by strict application
of �Hazard Analysis and Critical Control Points� (HACCP) concepts. Their
use is mandatory in the European Union according to Regulation (EU)
Nr. 852/2004. The food industry uses HACCP concepts to systematically
identify food safety hazards at all stages of food production and preparation
processes. After critical control points are determined, monitoring and
responses are established. Prediction of microbial growth is an important
part of risk assessment techniques used in development of HACCP concepts.
To model growth and decay of microorganisms during processing, both
characteristics of processing and microorganisms must be known. The latter
is described in chapter 3.
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Table 4.1. Composition of raw milk, adapted from
[Bylund, 2003]

Component Minimum Average Maximum

Water 85,5 87,5 89,5
Total solids 10,5 13,0 14,5

Fat 2,5 3,9 6,0
Protein 2,9 3,4 5,0
Lactose 3,6 4,8 5,5
Minerals 0,6 0,8 0,9

4.2. Composition, physical and chemical properties of raw milk

Main components of raw milk are water, fat, lactose and proteins. Ad-
ditionally, milk contains di�erent enzymes, e.g. alkaline phosphatase,
peroxidase and lactoperoxidase, and small amounts of minerals, pigments,
vitamins, and phospholipids. The general composition of raw milk is
listed in table 4.1. It depends on di�erent factors, e.g. fat content is
in�uenced by the breed of the cow and stage of lactation, feed, and season
[Sienkiewicz and Kirst, 2006]. In the 1950s about 200 milk components
were known. Today more than 2000 substances are identi�ed [Töpel, 2004].
Natural �uctuations in milk composition are of technological and economical
interest.

Milk is an oil-in-water emulsion. The fat droplets have an average diameter
of 3-4µm. They are covered with a thin membrane. One ml milk contains 15
billion fat globules [Bylund, 2003]. Usually, in processing fat droplets are
downsized by homogenisation to prevent the two phases from separating du-
ring storage. At a temperature of 37◦C milk fat is a liquid [Bylund, 2003],
[Fox and McSweeney, 1998]. Sugar, salts and vitamins are dissolved in
the water phase; proteins are dispersed.

Milk contains lactose, a disaccharid of glucose and galactose. Infants are
able to digest lactose by means of the enzyme lactase. Naturally expression
of this enzyme ceases in young children, the resulting lactose intolerance
shows up as indigestion after ingestion of lactose. In societies where
consumption of dairy products is traditional, lactase is still produced by
adults. In northern Europe about 85% of the population shows lactase
persistence [Swagerty et al., 2002].

Coprecipitation of milk proteins due to acidi�cation or addition of rennet
is of importance in processing of some dairy products. Raw milk has a pH
value of 6.5-6.7 [Bylund, 2003]. At a pH of 4.6 and a temperature of 30◦C
about 80% of the proteins fall out. These proteins are called casein, and
consist of colloidal aggregates with a diameter between 50 and 600nm. The
other 20% of milkprotein are very small molecules and are called non-casein
nitrogen, 'Molkenproteine' [Fox and McSweeney, 1998].
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Usually milk has a density of 1.028 - 1.038 [Bylund, 2003]. Milk and
blood are isotonic, with lactose accounting for 46% of osmotic pressure
[Bylund, 2003]. The freezing point ranges between -0.54◦C and -0.59◦C
[Bylund, 2003]. Precipitation of phosphates due to heating and watering
both elevate the freezing point. In the dairy the freezing point of raw milk
is determined to detect a fraudulent addition of water. Concentrations of
protein and fat are measured, too. Payment per volume for the dairy farmer
depends on quality, e.g. a high fat content, of milk [Bylund, 2003].

4.3. Milk �ora

Milk �ora consists of di�erent microorganisms. Acidifying bacteria like
lactobacilli lead to fermentation of milk. Certain acidifying bacteria are
cultivated and used for speci�c processing of fermented milk products.
Spoilage bacteria, yeasts and molds produce unwanted �avours and changes
of texture. Some yeasts are used for fermentation, e.g. in ke�r produc-
tion. Bacteriophages may kill o� bacteria necessary in cheese production.
Pathogenic bacteria and viruses can cause foodborne illness. Spore forming
bacteria are of special interesting in cheese production, because spores are
very heat resistant and can cause late blowing in hard and semi-hard cheese.
In the dairy, concentrations of bacteria and somatic cells in the raw milk is
determined. It is one factor in de�nition of raw milk price.

Bacteria found in raw milk are of two di�erent origins: the cow itself and
the environment. A healthy cow produces nearly sterile milk. A mastitis
will lead to a bigger bacterial load in the milk. Additionally, somatic cells
can be found. Often the texture of milk changes, too. Milk from cows
diagnosed with mastitis has to be discarded. Some pathogenic bacteria
are secreted from the udder, e.g. Brucella spp. and Mycobacterium avium
spp. paratuberculosis. They usually lead to symptoms in cows, but may
not in�uence the texture of milk or lead to spoilage in the processed product.

Most bacteria present in raw milk originate from the environment. Some are
of faecal origin, like Escherichia coli . Others are ubiquitous, e.g. Bacillus
cereus, or may reside in milking equipment, e.g. Listeria spp.. Bacterial
load of raw milk highly depends on hygiene standards on the dairy farm.
One ml of raw milk may contain between a few thousand and several million
bacteria [Bylund, 2003].

Contamination of milk with bacteriophages does not cause spoilage or
foodborne illness, but may lead to serious trouble in production of cheese
and fermented milk products. Natural milk �ora plays an essential role
in production of raw milk cheese (but not in other milk products). In
production of cheese made from heated milk and in production of fermented
milk products, milk is inoculated with starter cultures to compensate for
the killed natural �ora. Presence of bacteriophages or antibiotics leads
to serious problems in fermentation steps, because some of the helpful
bacteria do not grow or are killed o�. Bacteriophages are ubiquitous and
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much smaller than bacteria. They are not removed by micro�ltration or
bactofugation [Bartel et al., 1996], but can be inactivated by harsh heat
treatment. Milk from cows treated with antibiotics is not marketable,
nevertheless, sometimes there are antibiotic residues in dairy milk.

A natural antimicrobial system based on the enzyme lactoperoxidase retards
spoilage by both Gram-negative and Gram-positive bacteria in raw milk.
The lactoperoxidase system is more active in raw milk after storage for
three to four days [Lewis, 1999]. A study by Marks, Grandison and
Lewis ([Marks et al., 2001]) showed that the lactoperoxidase system
retains most of its activity at normal pasteurisation temperature of 72◦C,
but is deactivated at heating temperatures of 80◦C. Other bacteriostatic
compounds present in raw milk are destroyed during pasteurisation
[Sienkiewicz and Kirst, 2006].

Quality of raw milk, processing conditions like temperature and time, and
storage temperature are main control points for refrigerated dairy products
[Lewis, 1999]. Psychotrophic bacteria can even grow at refrigerator
temperature. After an adaption that usually takes 48-72h, bacteria start to
grow exponentially. Some thermophilic bacteria are able to form bio�lms
on stainless steel surfaces in areas related to heat treatment of milk, e.g.
Geobacillus spp. [Burgess et al., 2010]. They can cause high bacterial
counts and spoilage in the end product, even if the raw milk was of high
quality and contained only a few bacteria. Microbiological quality of
water used for washing or in brines is critical in manufacture of a safe
and stable product, too. Pasteurised milk contains a spoilage �ora totally
di�erent to that found in raw milk. It mainly consists of sporeformers
and thermoduric bacteria, possibly accompanied by post-pasteurisation
contaminants [Marks et al., 2001].

Several pathogenic bacteria need an increased partial pressure of CO2

for growth. In milk and milk products CO2 content only increases as a
consequence of metabolic activity. Fermentation leads to a decrease of pH
value and therefore to diminished growth conditions for most pathogens.
The following zoonotic, human pathogenic or toxin producing bacteria are
related to milk and milk products (this list makes no claim to be complete):
Bacillus cereus, Brucella spp., Campylobacter spp., Clostridium perfrin-
gens, Corynebacterium diphteriae, Escherichia coli , Listeria monocytogenes,
Mycobacterium avium spp. paratuberculosis, Mycobacterium bovis, Mycobac-
terium tuberculosis, Salmonella spp., Staphylococcus aureus and Yersinia
enterocolitica.

4.4. Production processes

There is a great variety of processed milk products, see also section 4.5.
Main process steps in manufacture of dairy products are heating and
cooling, separation processes, homogenisation, storage and ripening, fer-
mentation, enzymatic coagulation, composition, and packaging. In Germany
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food processing does not contain the use of irradiation because it is not
acceptable to the public. Additionally, it is expensive and some toxins are
only destroyed by high doses of irradiation [Havelaar et al., 2008]. In the
dairy plant, milk is always centrifuged and heated. For some products the
milk is homogenised. All processes may have an in�uence on chemical and
physical properties of the resulting milk product. A schematic presentation
of relations between milk products in dairy processing is given in �gure 4.1.

During production processes a variety of di�erent factors a�ect milk
components and milk �ora, causing wanted and unwanted, sometimes
reversible e�ects. Protein denaturation is one e�ect of heat. It is unwanted
in milk proteins, but wanted in bacterial cellular proteins, because this kills
o� bacteria. When milk is pumped through narrow pipelines or pressed
through small slits, shear forces occur. This leads amongst other things to
smaller fat droplets, a wanted e�ect in homogenisation. The smaller fat
globules together have a bigger surface than the original ones, and therefore
are no longer totally included in a membrane. Milk fat now is exposed to
lipolytic enzymes naturally present in milk; this changes the taste of milk.
Under in�uence of light, milk acquires an unwanted taste (�light �avour
tainting�) due to transformation of methionine to methional.

raw milk

cream skimmed milk

butter buttermilk

wheycheesesour milk
products

condensed
milk

fresh
milk

Figure 4.1. Schematic presentation of relations between
milk products in dairy processing, from [Belitz et al., 2009]

Most processes in modern dairy plants are continuous-�ow processes, but
also in batch processes process parameters always follow probability distribu-
tion�s, and are not constants. There is only little speci�c information about
probability distributions of process parameters [Anonymous, 2010a].
Additionally, exact control parameters are company secrets. Hence, in this
thesis parameters of process steps belonging to process chains are described
as uniform distributions of time and temperature.

4.4.1. Heat treatments. Processing of the majority of milk products
contains a heating step. As milk is stored at lower temperatures, it often
is preheated for economic reasons. The goal is to heat the product to �nal
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temperature as fast as possible, and after a su�cient holding time, to cool
it down rapidly. Most heat treatments are used to inactivate spoilage-,
or pathogenic microorganisms, bacterial enzymes and toxins. Common
assumption is that after proper pasteurisation no pathogenic bacteria are
left alive [Weber, 2006]. Milk before heat treatment is called upstream
milk, milk after heating is called downstream milk [Spreer, 2005]. A
recontamination downstream in the process chain during further processing
or during �nal packaging must be avoided. An overview over common heat
treatments in Germany can be found in table 4.2.

Table 4.2. Common heat treatments in milk pro-
cessing, [Bylund, 2003], [Sienkiewicz and Kirst, 2006],
[Töpel, 2004] and [Lewis, 1999]

Heat treatment Temperature Time

Heat treatment before fermentation 90-95◦C 2-10min
Heat treatment of cream for butter 105-118◦C -
Pasteurisation (Batch) 60-65◦C 30-32min
Pasteurisation (ESL) 127◦C 1-2s
Pasteurisation (HTH) 85-127◦C >1s
Pasteurisation (HTST) 72-75◦C 15-30s
Sterilisation >110◦C 10-30min
Sterilisation (Batch) 109-120◦C 10-40min
Thermisation 57-68◦C 10-30s
Ultra-high temperature processing (UHT) 135-150◦C 2-4s

Heat treatments lead to physical and chemical changes in the dairy product,
which may hamper the acceptance by the consumer. At higher temperatures
Maillard reactions between lactose and proteins may cause browning and
a caramelish �avour. Heating causes fat to leak out of emulsi�ed droplets.
Milk for fermentation is heated to denaturate milk proteins. Milk for cheese
production should not be heated too high, because a heating higher than
pasteurisation temperatures causes denaturation of proteins leading to a
softer coagulum in further cheese processing [Bylund, 2003].

Heat can be applied by direct or indirect heating. Usually, indirect heating
by heat exchangers is used [Bylund, 2003], [Anonymous, 2010a]. A
thin layer of milk (product) is led over a heated surface. Heat transfer in
the product is done by convection. Transfer kinetics depend on viscosity
of the �uid. Heat exchangers have to be cleaned regularly. Despite high
temperatures, bio�lms may form on the surfaces leading to a high bacterial
load of the dairy product. Due to hairline cracks in the heat exchanger
a recontamination may occur, see �gure 4.2. For more-viscous products
indirect heating can not be used.

Direct heating is done by injection of hot steam into milk or by infusion of
milk into a steam chamber. The steam has a pressure of about 4 bar and
a temperature of 145 ◦C [Foissy, 2005]. A rapid pressure reduction cools
the milk quickly down and removes added water as cooler steam. During
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cheese manufacture cheese curd is directly heated with warm water. During
direct heating the temperature changes in the products are faster, but direct
heating is more energy intensive than indirect heating.

Heat Hold Cool

1

2

3

Figure 4.2. Bypass routes in milk pasteurisation: (1) via
cleaning routes, (2) via reversal of �ow direction, (3) via the
heat exchanger (e.g. hairline cracks in heat exchanger plates),
from [Lewis, 1999]

The most important heating process in any dairy plant is pasteurisation
[Marth and Steele, 2001]. It is a relatively mild heat treatment. Chem-
ical damage of the product is minimal; there are only small changes to
sensory characteristics. Heat-labile microorganisms (vegetative bacterial
cells, yeasts, molds) that may cause spoilage are killed o�. Most pathogenic
bacteria are inactivated, too [Weber, 2006], including Listeria spp.
[Smit, 2003]. In Germany �high temperature, short time� pasteurisation
(HTST) (traditional pasteurisation) and �high temperature heating� pas-
teurisation (HTH) are common [Sienkiewicz and Kirst, 2006]. Both are
continuous processes.

HTST pasteurisation is done at 72-75◦C for 15-30s. It reduces the total
bacterial load whilst the ratio of acidifying bacteria and other bacteria
remains almost the same [Sienkiewicz and Kirst, 2006]. Spores survive
this treatment to a high degree. Dormant cells of Mycobacterium avium
spp. paratuberculosis may survive pasteurisation, too [Grant et al., 2005].

HTH pasteurisation is done at 85-127◦C for more than 1s. General spoilage
�ora is killed o�, but spores may survive [Sienkiewicz and Kirst, 2006].
HTH-pasteurised milk is more photosensitive then traditional pasteurised
milk [Sienkiewicz and Kirst, 2006]. HTH pasteurisation is often used
in production of ESL (�extended shelf life�) milk. ESL is a general name
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for heat treated products with a prolonged storage time due to di�erent
production procedures.

E�ectiveness of HTST pasteurisation is determined by investigation of
inactivation of alkaline phosphatase [Belitz et al., 2009]. In milk prod-
ucts with a fat content of more than 8%, alkaline phosphatase may be
reactivated. HTH pasteurisation destroys both alkaline phosphatase and
peroxidase [Bylund, 2003].

Another pasteurisation process formerly used is batch pasteurisation at
60-65◦C for 30-32min. It is also referred to as �low temperature, long time�
(LTLT) pasteurisation [Bylund, 2003]. Today in Germany it is only found
in small dairies, e.g. in production of fresh organic goats milk. Drawbacks
of batch heating are slow kinetics for heating and cooling, and pressure
building up in the packaging during heating [Smit, 2003].

Aseptic milk can be produced with more rigorous temperature-time combi-
nations. One goal in sterilising foodstu� is to kill o� all bacteria including
Clostridium botulinum which is the most heat resistant pathogenic bacterium
[Lewis and Heppell, 2000]. A heat treatment of 121◦C for 3min yields a
log reduction of C. botulinum of about twelve [Lewis and Heppell, 2000],
i.e., by 99.9999999999%. Due to strict heat treatment chemical alterations
of milk components a�ect the taste of the end product. There are two
di�erent heat treatments that yield aseptic milk: ultra-high temperature
processing and sterilisation.

Ultra-high temperature (UHT) processing is done at 135-150◦C for 2-
4s. It is a continuous process. Heating can be direct or indirect. Due
to comprehensive security switching mechanisms, a mixing of upstream
milk and downstream milk is not possible [Bylund, 2003], [Spreer, 2005].

Sterilisation is done at temperatures of at least 110◦C for a duration
of 10-30min. Thermised, pasteurised, or UHT milk may be used for
production of sterilised milk [Sienkiewicz and Kirst, 2006]. Sterilisation
traditionally is a batch process, but can also be applied as continuous
process. Evaporated milk is tinned, and then sterilised in batches. Batch
processing has the drawback of slow heating and cooling kinetics and a
rising pressure during heating inside cans or bottles.

Both UHT treatment and sterilisation reduce the bacterial load about 10 log
units [Foissy, 2005], i.e., by 99.99999999%. Pseudomonas spp. produces
proteolytic and lipolytic enzymes that are not destroyed by UHT treatment.
These enzymes may lead to spoilage of UHT milk despite bacteria being
killed o� [Bylund, 2003].

Pasteurisation of cream is done at 100-120◦C for 14-120s [Weber, 2006].
Cream may also be UHT heated at 135-150◦C for 2-8s. Sterilisation can be
done at 109-115◦C for 20-40min; all microorganisms, including spores, are
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killed o�, and all enzymes are inactivated [Weber, 2006].

Heat treatments are also used for technological reasons. A thermisation at
49-68◦C for 5-40s weakens the raw milk �ora and allows for longer storage
at low temperatures [Bylund, 2003], [Sienkiewicz and Kirst, 2006],
[Weber, 2006], [Lewis and Heppell, 2000]. It does not destroy the
enzyme peroxidase present in raw milk. Therefore, thermised milk can
easily be distinguished from pasteurised milk. Heat triggers germination
of spores so milk must be rapidly cooled to a maximum of 4◦C to prevent
spoilage [Bylund, 2003]. Thermisation is also used as preparation for
milk for production of cheese. It restores the protein equilibrium of
refrigerated milk [Sienkiewicz and Kirst, 2006]. In production of farmer
cheese ('Frischkäse') thermisation deactivates rennet and reduces further
acidi�cation [Sienkiewicz and Kirst, 2006]. In production of fermented
milk products milk proteins often are partially denaturated before the
actual fermentation process by heating to 90-95◦C for 2-10min.

4.4.2. Separation processes. Separation is a major operation in
food processing. In cheese production sometimes the curd is heated for
faster separation from whey. Filtration and centrifugation are used to
separate milk fat, denaturated proteins, dispersed particles, bacteria, spores
and somatic cells. For both processes milk fat should be liquid so the
milk usually is warmed up. Micro�ltration and bactofugation are used to
lessen the bacterial load and to remove other dispersed particles. Solids
are separated from liquid milk, and accumulate in the sediment. Milk can
contain up to 1kg of non-milk particles per 10,000 litres [Bylund, 2003].
In Germany it is forbidden to use sediment from separation processes for
food or feed [Sienkiewicz and Kirst, 2006].

Bactofugation is a centrifugal separation. Most microorganisms and all
spores are removed from the milk [Spreer, 2005]. It is used in cheese
production to prevent cheese from late blowing during ripening due to
sporeformers. It is also used in production of milk powder and other
preserved milk products.

Skimmed milk can be pressed through micro�lters with a pore size of
about 1.4µm. This mechanical process reduces the bacterial load by more
than 99.9% [Sienkiewicz and Kirst, 2006], [Bylund, 2003]. Spores
are removed, too. Whole milk can not be micro�ltrated because fat
globules would plug the pores of the �lter. Micro�ltration is sometimes
used for production of ESL milk traditionally pasteurised, skimmed milk is
micro�ltrated after separation. Cream is heat treated and mixed with the
skimmed milk [Bylund, 2003], [Spreer, 2005].

When not homogenised milk is allowed to stand without stirring, a layer of
cream settles on the surface due to gravity. Separation by centrifugation uses
gravitational forces to separate particles and fat droplets from the watery
milk phase, too. Centrifugal forces depend on mass of the particles and on
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radius and speed of rotation [Hui, 2006]. Usually raw milk is separated
into skimmed milk and cream by centrifugation. Coarse contaminating
material is removed, too. Then skimmed milk and part of the cream are
remixed, yielding milk with a clearly de�ned fat content. In Germany these
are usually 3.5% (whole milk, 'Vollmilch') and 1.5% (semi skimmed milk,
'Fettarme Milch'). Separation has no in�uence on tenacity of bacteria, but
they accumulate in the cream.

4.4.3. Homogenisation. In several countries creaming of pasteurised
fresh milk is regarded as a quality characteristic, but not in Germany. Bigger
fat droplets part faster from the emulsion than smaller ones. Homogenisa-
tion reduces the diameter of fat globules. When milk or cream is pressed
through a small valve, fat globules are broken down from approximately
3,5µm to 1µm by a mixture of shear forces, cavitation and microturbulence.
Homogenisation of cold milk or cream has almost no e�ect, hence, it is
done at temperatures of 55-80◦C [Bylund, 2003]. Pressure in the �uid
is between 10 MPa and 25 MPa (100-250 bar), yielding velocities up to
250m/s [Lewis and Heppell, 2000].

The e�ect increases with a lower fat content and higher pressure and
temperature [Spreer, 2005]. Usually, milk with a de�ned fat content (after
separation and remixing) is homogenised; this is done in production of
UHT milk and milk for fermentation [Bylund, 2003]. For pasteurised milk
cream is diluted with skimmed milk to a fat content of 13-20% and then
homogenised [Spreer, 2005]. The volume that passes the homogenisation
facility is drastically reduced, saving up to 80% of energy [Bylund, 2003].
It is also possible to homogenise cream before remixing it with skimmed
milk. To prevent re-aggregation, a second valve can be placed a small
distance after the �rst one. In milk products with a high fat content, often
such a two-step homogenisation process is used [Spreer, 2005]. Usually,
the homogenisation facility is located upstream of the heating section
[Bylund, 2003].

Advantages of homogenisation of milk include reduced creaming, a whiter
colour of the product, a lower risk of oxidation, a better �avour and a
higher stability of fermented milk products. Homogenisation is used in
production of fresh milk, condensed milk, cream, yoghurt and milk mix
beverages. In Germany most fresh milk is homogenised. Homogenised
milk can not be processed to cheese, because the curd is too soft. Another
disadvantage is the higher susceptibility for changes in taste due to light.
The smaller fat globules are not totally covered with a membrane. Hence,
lipolytic enzymes may degrade milk fat. Homogenised milk curdles faster
than non-homogenised milk [Sienkiewicz and Kirst, 2006]. When
homogenised cream is heated, it �occulates fast, an unwanted e�ect in co�ee
cream [Sienkiewicz and Kirst, 2006]. A second homogenisation may
partly reverse these e�ects [Sienkiewicz and Kirst, 2006].
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4.4.4. Storage and ripening. Characteristics and sensory quality of
dairy products should be preserved during storage. In general, preservation
is better at lower temperatures [Smit, 2003]. But even low temperatures
do not stop psychrophilic bacteria from growing. Raw milk is always stored
at a low temperature, optimal at 4◦C. After milking raw milk is stored
in tanks. Transport to the dairy plant is done between twice a day up
to all four days. In small-scale manufacture milk may be produced and
processed in the same facility. When raw milk has to be stored for several
days it is thermised to reduce the number of psychrophilic bacteria. A
deep-cooling at maximal 2◦C allows for longer storage of raw milk, too
[Lewis and Heppell, 2000].

For fresh milk products storage temperature has a big impact on keeping
quality. Without cooling in a domestic refrigerator, keeping time of
pasteurised milk is about 24h [Lewis, 1999]. There are milk products
that allow for a storage at room temperature. These products are UHT
processed, sterilised or got their content of water highly reduced. Examples
are UHT milk, evaporated milk and dried whey.

Milk should be stored dark, because the energy of ultraviolet light changes
its taste. First it gets a �burnt feather� taste, after longer light irradiation
taste changes to �board card� [Töpel, 2004]. This is due to degradation
of the amino acid methional [Töpel, 2004], [Bylund, 2003]. If the
membrane of fat droplets is damaged, e.g. by homogenisation, naturally
present lipases degrade the fat. A taste unwanted in most milk products is
the result of such lipolysis [Bylund, 2003]. Other changes due to microbial
metabolic activity may occur, e.g. souring.

Ripening is a storage of dairy products at special environmental conditions,
e.g. time, temperature and humidity that intentionally leads to a desired
alteration of �avour and texture. During ripening of whipping cream milk
fat crystallises yielding cream that can be whipped. Spreadability of butter
can be in�uenced by a controlled fat crystallisation. Temperature-time-
combinations used in cream ripening depend on composition of the milk fat.
In cheese ripening, microorganisms metabolise milk components, therewith
producing special texture and �avours, e.g. lipolysis leads to changes in
taste. Environmental conditions during cheese ripening depend on the type
of cheese. Its low aw value protects cheese from spoilage during ripening.
Lactic acid fermentation is usually �nished after 1-2 weeks [Weber, 2006].
In general it is assumed that undesirable bacteria are killed o� in the long
period of hard cheese ripening.

4.4.5. Fermentation. Fermentation of milk is done by bacteria and/or
yeasts that digest the disaccharid lactose. One product is lactic acid that
lowers the pH value of the milk product, leading to coagulation of casein.
Decomposition of proteins by fermenting microorganism provides other
bacteria with essential nitrogen and sulfur compounds [Weber, 2006].
Bacteria also produce characteristic �avours. The population of living
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starter bacteria inhibits growth of spoilage bacteria. Fermentation is one
process step in production of sour milk products like yoghurt, buttermilk or
quark but also in cheese production.

In former times, the natural �ora of raw milk was used for fermentation.
Now commercial starter cultures provide standardised products. Starter
cultures are certain strains of bacteria or compositions of di�erent microor-
ganisms, e.g. Lactobacilli, Lactococci and Bi�dobacteria, yeasts and moulds
[Cogan et al., 2007], [Weber, 2006]. Starter cultures are specially
designed for production of one single dairy product in a plant. There are
various incubation temperatures and methods of application. In yoghurt
production temperatures between 32◦C and 46◦C are used, depending on
starter culture and characteristics of the end product [Weber, 2006].
Starter cultures used in production of Swiss cheese must survive heating
of the curd and have to grow at temperatures close to their maximum
growth temperature [Stern and Frazier, 1941]. Presence of antibiotics or
bacteriophages may cause problems in fermentation, see section 4.3.

4.4.6. Coagulation. For manufacture of some dairy products a major
part of milk protein has to be separated from whey. Proteins can be
precipitated by acidi�cation, by addition of enzymes (rennet), or by a
combination of both. Acidi�cation usually is done by fermentation. Calves
produce rennet to digest milk. Today rennet is obtained from slaughtered
calves or from recombinant bacteria. In some cheeses extracts from molds,
plants or bacteria are used as substitute for animal rennet. Curdling and
separation after coagulation lead to a redistribution of fat and protein.
Some cheeses are made from whey protein that coagulates due to heating,
e.g. Ricotta cheese. Yoghurt is a gel formed by coagulated milk protein.

4.4.7. Concentration of anhydrous mass. In production of con-
densed milk or certain fermented milk products like Greek yoghurt, dry
matter is increased. This can be done by centrifugation, evaporation,
ultra-�ltration or reverse osmosis. Addition of milk powder, milk- or whey
protein that was obtained by such processes also increases the dry matter.
In production of lactose, casein or other milk components the anhydrous
mass is concentrated, too.

Milk and whey powder are produced by drum drying or spray drying. Milk
destined for yoghurt production is evaporated to increase the dry matter
content from 13% up to 16.25% [Bylund, 2003]. During evaporation
pasteurised milk or whey is heated in a vacuum two times. Heating in a
vacuum lowers the boiling temperatures to 70 ◦C and 40 ◦C, respectively
[Bylund, 2003]. Therewith, chemical changes due to heat are reduced.
The product is a concentrated �uid.

4.4.8. Composition. A variety of dairy products is composed of dairy
and non-dairy ingredients like fruit preparation, sugar or salt. Adding of
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ingredients always contains a risk of contamination. Microorganisms from
the environment may be transferred to the product. If one of the ingredients
is contaminated it pollutes the mixed end product. Ingredients are bought
either as prefabricated mixtures or as components that are composed in the
plant. In some dairy plants, fruit preparations for yoghurt or white cheese
are cooked on a daily basis [Dairy SachsenMilch, 2009].

Addition of ingredients changes the conditions for microbial growth and
survival. Fruit preparations may lower the pH value, but also add the nutri-
ent sugar. Some ingredients are added for taste and food preservation, e.g.
salt. [Smittle, 2000] suggests that addition of nisin or other bacteriocins
would extend the shelf life of pasteurised milk. Addition of milk or whey
powder or milk protein enhances the dry mass of milk for yoghurt or white
cheese production. In cheese production milk protein powder can be added
to increase the yield of curdling.

4.4.9. Packaging. Packaging serves di�erent purposes. It disconnects
the packaged food from an environment full of possible contaminations.
Milk is photosensitive, therefore, packages should be opaque. Bottles used
for fresh milk are often made of brown glass. To prevent a recontamination
by polluted packaging material, bottles, tins, cans, cups, tubular packagings,
and Tetra Paks® or other cartons must be clean or, for preserved milk
products, aseptic. Sterilisation of packaging material can be done with
hydrogen peroxide, superheated steam or irradiation [Smit, 2003].

Most dairy products are packaged after manufacture. For others packaging
is not the last step in production; the product is portioned and then
incubated or heated in the package. A recontamination of the product
by package should be avoided. Pasteurised products are packed in clean
packages. To guarantee the long shelf life of ESL and UHT products,
aseptic packages are used. Aseptic packaging systems are complex, because
a recontamination of the product by packaging must be prevented. Evapo-
rated milk is tinned before heat treatment. This excludes a recontamination
after heating. Sweetened condensed milk is tinned after heat treatment
to prevent browning of the product by means of Maillard reactions. Set
yoghurt is incubated in the packaging.

4.5. Milk products

Raw milk as such, without processing, is sold as raw milk on the farm, or
as attest milk (�Vorzugsmilch�) in groceries. However, only a small amount
of milk is marketed via this route. Some hard cheeses are made directly
from raw milk. All this raw milk products are monitored. Nevertheless,
there are foodborne outbreaks caused by raw milk products. In 1981 �ve
of 10 and in 1982 six of 11 foodborne outbreaks of campylobacteriosis in
the United States of America were associated with consumption of raw
milk [Anonymous, 1983]. In general it is assumed that the low aw
value, the salt content and the cheese �ora kill o� undesirable bacteria in
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Table 4.3. Approximate composition of some
dairy products, in % and partially rounded, from
[Fox and McSweeney, 1998]

Product Moisture Protein Fat Sugarsa Ash

Light whipping cream 63,5 2,2 30,9 3,0 0,5
Butter 15,9 0,9 81,1 0,1 2,1
Anhydrous butter oil 0,2 0,3 99,5 0,0 0,0
Ice-creamb 60,8 3,6 10,8 23,8 1,0
Evaporated whole milk 74,0 6,8 7,6 10,0 1,5
Sweetened condensed milk 27,1 7,9 8,7 54,4 1,8
Whole milk powder 2,5 26,3 26,7 38,4 6,1
Skim milk powder 3,2 36,2 0,8 52,0 7,9
Whey powderc 3,2 12,9 1,1 74,5 8,3
Casein powder 7,0 88,5 0,2 0,0 3,8
Cottage cheese, creamed 79,0 12,5 4,5 2,7 1,4
quark 72,0 18,0 8,0 3,0 -
Camembert cheese 51,8 19,8 24,3 0,5 3,7
Blue cheese 42,4 21,4 28,7 2,3 5,1
Cheddar cheese 36,7 24,9 33,1 1,3 3,9
Emmental cheese 36,0 28,9 30,0 - -
Parmesan cheese 29,2 35,7 24,8 3,2 6,0
Mozzarella cheese 54,1 19,4 31,2 2,2 2,6
Processed cheesed 39,2 22,1 31,2 1,6 5,8
Acid whey 93,9 0,6 0,2 4,2 -
aTotal carbohydrate
bHardened vanilla, 19% fat
cCheddar (sweet) whey
dAmerican pasteurized processed cheese

the long period of cheese ripening. Nevertheless, in the Netherlands in
2006 hard aged raw-milk cheese caused a large-scale Salmonella outbreak
[van Duynhoven et al., 2009].

There is a wide range of di�erent milk products made from raw milk. They
have di�erent compositions, physical and chemical properties. Most of
these di�erences have an in�uence on microbial growth and tenacity. Fresh
milk, cream, co�ee cream and condensed milk di�er from each other only
in fat and dry matter content. The approximate composition of some dairy
products is listed in table 4.3.

Process chains for production of the various milk products distinctly di�er
from each other. For certain milk products the succession of process steps
is outlined in this section. The following milk products are not taken into
account in this thesis: reconstituted milk made from butterfat or plant fat
emulsi�ed in milk powder, casein, lactose, powder co�ee whitener, milk
powder, whey powder and chocolate products. In �gure 4.3 an overview of
the variety of dairy foodstu� common in Europe is given.

4.5.1. Fresh milk. Most fresh milk is produced from raw milk by
separation and fat standardisation, heat treatment and homogenisation.
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Figure 4.3. Diversity of milk products

Process lines di�er even for the same type of fresh milk from dairy to
dairy [Bylund, 2003]. Common fat content standards in Germany are
0.1% (skimmed milk), 1.5% (semi skimmed milk) and 3.5% (whole milk).
Pasteurised milk may be sold with a natural fat content of 3.8%. Fresh
milk is almost always heat treated to kill o� spoilage- and pathogenic
microorganisms. In Germany only a tiny fraction of all fresh milk is
consumed as raw milk without heat treatment, it is sold as raw milk on the
farm or as attest milk in groceries. Some (organic) HTST pasteurised fresh
milk is manufactured without homogenisation.

Pasteurised milk is HTST-pasteurised, usually homogenised, and cooled.
It is packed in clean bottles, tubular packagings, Tetra Paks® or other
cartons. Cool storage is mandatory for a shelf life of up to 16 days
[Bylund, 2003]; without cooling keeping time of pasteurised milk is about
24h [Lewis, 1999]. To discriminate HTST pasteurised milk from ESL milk
in Germany it is named �traditionally manufactured�.

ESL milk is HTH-pasteurised, homogenised and cooled. HTH-pasteurisation
can be substituted by a micro�ltration of skimmed milk, combined with
a traditional HTST-pasteurisation after fat standardisation. Aseptic
packaging is used to prevent contamination by package, and to assure
the extended shelf life. Cool storage at 6-10◦C is necessary to maintain
a keeping time of up to 21 days [Sienkiewicz and Kirst, 2006]. In
Germany the market share of ESL pasteurised milk has exceeded that of
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traditional pasteurised milk.

UHT milk is UHT heated, homogenised and cooled. To guarantee a long
storage time aseptic packaging is used. UHT milk can be stored at room
temperature; it has a keeping time of at least six weeks [Spreer, 2005].
Raw milk quality is crucial for production of UHT milk [Bylund, 2003].
Sterilised milk is homogenised, packaged, heated and cooled. A con-
tinuous processing with aseptic packaging after sterilisation is possible.
Sterilised milk has a keeping time of up to one year at room temperature
[Spreer, 2005].

Milk mix beverages consist of whole milk, partially skimmed milk, or
skimmed milk, and up to 30% of �avouring and colouring ingredients
[Spreer, 2005], [Sienkiewicz and Kirst, 2006]. Other dairy mix
beverages are made from whey, buttermilk, sour milk, ke�r or yoghurt.
Depending on heat treatment, these mix beverages must be stored cool, or
can be stored at room temperature.

4.5.2. Cream. Today cream is obtained by centrifugal separation. In
fresh milk production it accrues when the fat content is standardised. The
various cream products di�er in their fat content, and they may be soured
or not. Additionally, cream is used for production of butter, buttermilk and
farmers cheese. In production of ripened and unripened cheese it may be
added to adjust the fat content.

It is assumed that the high fat content and increased viscosity of cream
lead to a higher tenacity of bacteria during heating. This is the reason
why cream usually is treated to higher temperatures than those in milk
pasteurisation [Weber, 2006]. Most cream products are homogenised.

Whipping cream contains about 30% fat. A fat content of 35% is optimal for
foam quality [Spreer, 2005]. Cream with a fat content as low as 20% can
be whipped when certain additives are added [Spreer, 2005]. As acidity of
cream has an in�uence on whipping, it sometimes is slightly fermented to
reach a pH value of 6.2-6.4 [Spreer, 2005].

Whipping cream may be manufactured as follows. Cream is stored at
3-5◦C. Then it is heated in several steps to denaturate whey proteins and
to kill o� all microorganisms and spores. Now homogenisation follows.
Homogenised whipping cream yields a foam more stable [Spreer, 2005].
During ripening that follows, partial crystallisation of milk fat is obtained,
allowing the cream to be whipped [Bylund, 2003]. Depending on heat
treatment, whipping cream must be stored cool, or can be stored at room
temperature.

The process chain of co�ee cream equals the one for whipping cream.
Additionally, cream is mixed with skimmed milk to reduce the fat content
to 10-18%. It can be aseptically packed after heat treatment or sterilised
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in bottles. Co�ee cream is a preserved milk product that can be stored at
room temperature.

4.5.3. Evaporated milk. Evaporated milk is made from whole milk,
skimmed milk or milk recombined from milk powder. Milk is heat treated
and then concentrated in an evaporator. Common concentrations are
twofold (with 7,5% fat content and 17,5% fat-free dry mass) or threefold
(with 33% fat-free dry mass und 4-10% fat content). Then it is homogenised
and cooled. Sometimes stabilisers are added. The evaporated milk is now
UHT-heated and aseptically packed or canned and sterilised. At a temper-
ature of 0-15◦C it can be stored for an unlimited time [Bylund, 2003].

4.5.4. Sweetened condensed milk. Sweetened condensed milk
is made from whole milk, skimmed milk or milk recombined from milk
powder. Like evaporated milk, sweetened condensed milk is produced
in di�erent concentrations and fat contents. The milk is heat treated.
During concentration in an evaporator treacle is added. Therewith the aw
value of the product is reduced to a point that inhibits growth of most
microorganisms [Marth and Steele, 2001], [Bylund, 2003]. Then the
sweetened condensed milk is homogenised. Finally it is aseptically portioned
and packed. The high sugar content of 62,5-64,5% enhances the possibility
of Maillard reactions during heating. Therefore, sweetened condensed milk
is not batch sterilised like evaporated milk.

4.5.5. Butter. Butter is one of the �rst dairy products that was traded
internationally [Marth and Steele, 2001]. Butter contains 80-90% milk
fat. Water, salt and carotene for colour may be added. Semi-fat butter
contains only 39-41% fat. Sorbic acid, gelatine, carotene, emulsi�ers and
citric acid may be added [Weber, 2006].

Usually, butter is manufactured from sweet or soured cream. Butter made
from sweet cream can be spiked with lactic acid or acidifying cultures,
yielding butter with a mild sour �avour (�Mildgesäuerte Butter�). For
production of 1kg butter, 2.5 litres of cream or 25 litres of raw milk are
needed, respectively.

For butter production �rst cream is heated to at least 85◦C to kill o� mi-
croorganisms and lipolytic enzymes, but not homogenised [Spreer, 2005].
Cream for raw milk butter is not heated. Spreadability of butter is
in�uenced in cream ripening, during which the milk fat partially crystallises.
Composition of the milk fat determines temperature-time-combinations
used. Now the cream is battered. This can be done in either a continuous
or a batch process. Agitation damages the membranes around fat globules.
Fat agglutinates, encasing water droplets; the two phases of the fat-in-water
emulsion cream are reversed. Optionally salt is added, and �nally kneading
yields a soft and homogeneous butter.
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Up to 18 billion droplets of water are dispersed in 1g of the water-in-oil
emulsion. The diameter of water droplets in conventionally made butter
has been reported at <1 to >30µm. The microbiology of butter re�ects the
micro�ora present in pasteurized cream from which it is made, and water
added at time of salting butter, sanitary conditions of process equipment,
manufacturing environment, and conditions under which the product is
stored. All of these activities impact on micro�ora of the �nal product.
The main source of microorganisms in butter made under excellent sanitary
conditions is cream.

4.5.6. Fermented milk products. For manufacture of fermented
milk products mostly pasteurised milk, usually with a standardised fat
content, is used. Milk may be heated to 90-95◦C to denaturate the milk
proteins. This yields a more viscous end product [Bylund, 2003]. Often
dry matter is increased by means of evaporation or addition of milk
protein, whey powder or milk powder. This yields a superior texture of
the fermented product, an improved taste and better growth of fermenting
microorganisms. Then the milk is warmed and a starter culture is added.
The culture-milk mix is incubated; duration and temperature both depend
on microorganisms and end product. When the desired level of acidity is
reached the fermented milk is cooled to stop further growth and metabolism
of acidifying microorganisms. The culture-milk mix can be incubated in
tanks or portioned in the �nal packaging.

Milk is fermented by lactic acid bacteria and yeasts. Growth of bacteria
with capsules renders milk more viscous and slimy, a wanted e�ect only in
some sour milk products. Lactic acid bacteria degrade lactose and produce
lactic acid. Milk sours to a pH value of 4-4.5, causing precipitation of
casein and curdling. Most other bacteria can not cope with the low pH
of fermented milk products and die o� after a short time. Falenski et al.
report a survival of Brucella spp. in yoghurt with 3.5% or 10.0% fat for four
and two days, respectively [Falenski et al., 2010].

Yoghurt is one of the eldest sour milk products [Weber, 2006]. Bacteria
traditionally used for production of yoghurt are Streptococcus thermophilus
and Lactobacillus delbrueckii ssp. bulgaricus. Milk is pasteurised, may
be it is homogenised and its dry mass is increased. Then starter cul-
tures are added and the culture-milk mix is incubated at temperatures
between 32◦C and 46◦C [Weber, 2006]. The mix can be �lled into plastic
cups or glass jars and then incubated, yielding set yoghurt. Creamy
yoghurt is incubated in tanks; it is stirred and portioned after curdling.
In section 8.8 a process chain for production of yoghurt is described in detail.

Buttermilk is a by-product of butter manufacture. It contains 0.3-0.5%
fat. In production of sour cream butter most starter culture bacteria are
retained in buttermilk [Marth and Steele, 2001]. Ke�r is milk fermented
by lactobacilli and yeasts. The result is a simultaneous acidi�cation and al-
coholic fermentation of milk. It has a fat content of 0.5-6% [Bylund, 2003].
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Process steps are similar to yoghurt production, except incubation that is
done in two steps. Other fermented milk products are sour cream, créme
frâiche and sour milk products. They are made from cream, milk, sweet
buttermilk or whey, respectively.

4.5.7. Unripened cheese. Unripened cheese is made from milk
curdled by acidi�cation and enzyme activity. The term includes cottage
cheese (�Hüttenkäse�), farmers cheese (�Frischkäse�), and white cheese
(quark �Quark�). Processing is partly similar to production of ripened
cheese, but lacking ripening (as the name suggests). In Germany unripened
cheese must not be made from raw milk.

For production of cottage cheese curd is thoroughly washed. Usually this is
done in three steps at 30◦C, 16◦C and 4◦C, respectively [Bylund, 2003].
Lactose and lactic acid are eluted, yielding a low acidity of the curd. Now
cooled, salted pasteurised cream is added.

Usually skimmed milk is used for production of white cheese. Curdled milk
is thermised at 56-60◦C and then cooled down to 37-45◦C. Then the curd is
separated from sour whey. To enhance the fat content sweet or sour cream
is added. The content of dry matter in white cheese varies between di�erent
countries between 14% and 24%.

4.5.8. Cheese. Most cheeses are made from pasteurised milk. Some
are made from raw milk; for certain varieties milk must not be heated above
40◦C to leave the natural milk �ora intact. Often microorganisms and
especially spores are removed by bactofugation or micro�ltration to prevent
late blowing in hard and semi-hard cheese. Milk may be standardised in
fat and protein content by addition of cream and concentrated milk protein
[Bylund, 2003]. Cheese cultures and rennet are added to warm milk.
Then the mixture is left unstirred until proteins are coagulated to the
desired degree by fermentation and enzyme activity. Temperature, amount
of rennet, milk composition, starter culture and optimal consistency of the
curd di�er for every cheese variety. Now the curd is sliced in pieces. Form of
slicing and size of the curd chunks depend on the cheese variety produced.
For some cheeses the curd is washed or heated. Then the curd pieces are
bailed into cheese moulds. Cheese loafs are pressed and salted. Ripening is
done at de�ned temperature-humidity combinations, depending on cheese
variety. During ripening cheese components are modi�ed by cheese cultures
and enzymatic activity. One process chain for hard cheese production is
pictured in �gure 4.4.

Sour milk cheese it made from sour milk quark, sometimes quark coagulated
with rennet is added. Production process di�ers from that of rennet
cheeses [Bylund, 2003]. Processed cheese is made from cheese mixed with
emulsifying salts and other ingredients like acidifying substances, cream,
whey powder, salt, colourings, �avourings, spices, mold inhibitors and
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Figure 4.4. One process chain for hard cheese production

anti-sticking agents [Kapoor and Metzger, 2008]. Cheese is grounded
and melted, then the other ingredients are added. The mixture is heated
to 70-95◦C, cooled and packed [Bylund, 2003]. Usually processed cheese
contains 30-45% fat in dry matter.





CHAPTER 5

Predictive Microbiology

A model is a formalised description of a natural phenomenon. The complex
reality is simpli�ed to �t into an idealised hypothetical system. Predictive
microbiology is the development of models to predict growth, survival or
inactivation of microorganisms.

In predictive microbiology the term �model� is used for di�erent structures:
for a mathematical function describing bacterial population kinetics, and for
the algorithm calculating the bacterial counts under various conditions. The
former is a model of one growth or survival curve obtained in one experiment
with certain (not necessarily static) conditions, or of dependencies of growth
or survival parameters on conditions. The latter is a model of responses of
bacterial populations to intrinsic and extrinsic conditions. It contains the
mathematical functions described above, and is in the following referred to
as predictive model.

�Predictive microbiology is based upon the premise that the responses of
populations of microorganisms to environmental factors are reproducible,
and that by considering environments in terms of identi�able dominating
constraints it is possible, from past observations, to predict the responses of

those microorganisms.�
[Ross and McMeekin, 1994]

Predictive models are used to optimise manufacture, or to determine
monitoring points in the food or feed supply chain. Calculation of shelf life
of foods, estimation of microbial stability of newly developed products, and
prediction of risk of persistence of pathogens during storage are applications
of predictive microbiology. It is also utilised in development of HACCP
programs. In case of an intentional or unintentional contamination of
food, the consequence, depending on matrix, microorganism, inoculum and
process step in the supply chain, can be assessed. The dairy industry uses
predictive modelling for forecasting keeping quality, to estimate growth
and toxin production of bacteria, and to determine optimal pasteurisation
conditions [Gri�ths, 1994].

Another use of predictive microbiology is the quantitative description of
conjugation of bacteria leading to resistances against antibiotics. Such
predictive models can be used in optimisation of antimicrobial dosage
regiments to minimise resistance development. The interested reader may
refer to [Gehring et al., 2010].
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In chapters 2-4 the biological knowledge required for modelling kinetics of
bacterial populations is provided. Now the modelling process and some of
the common models in predictive microbiology are highlighted. First, steps
in development of a predictive model are described. Then di�erent types of
models are classi�ed. After that, the terms variability and uncertainty are
discussed. Finally, a selection of models used in predictive microbiology is
presented.

5.1. Modelling process

Development of a predictive model is an iterative process. The question(s)
the model should answer must be �xed �rst, �Modelling itself is not a goal;
it is a means of achieving a goal.� [Annino and Russell, 1979]. Then
microorganism(s) and environmental conditions have to be characterised in
order to determinate relevant experimental settings.

Next step is the selection of a mathematical model appropriate for the
speci�c problem, and the design and performance of experiments to obtain
data for �tting and validation. The in�uence of di�erent models and
the e�ect of process variations on the output must be compared. If the
latter has a more profound e�ect, the simplest model available should be
chosen [van Gerwen and Zwietering, 1998]. Van Asselt and Zwietering
[van Asselt and Zwietering, 2006] reported that variability in a set of
more than 4,000 D-values that was collected from the literature was bigger
than the in�uence of most factors.

The goal is to describe kinetics of growth or inactivation
processes accurately and with as few parameters as possi-
ble (Ockham's razor) [Ratkowsky, 1993], [Van Boekel, 2002],
[Barbosa-Cánovas et al., 2005]. The more parameters are included
in a model, the more data are needed for �tting. Usually, parsi-
monious models make better predictions [Baranyi et al., 1996b],
[Delignette-Muller et al., 1995]; and the amount of non-linearity is
smaller in simpler models [Barbosa-Cánovas et al., 2005].

A simple model needs only few parameters as input and makes general
statements, whilst a complex model needs a large amount of data for �tting
and is applied to certain scenarios with de�ned conditions. If there is
only little information about environmental conditions and the relevant
microorganism, uncertainty is increased, and only a simple model can be
applied. Models that are too simple are not able to �t the data, yielding
consistent deviations between experimental data and predicted values
[Barbosa-Cánovas et al., 2005].

A complex model may yield more precise predictions, but the output of one
simulation suites only the conditions of this particular simulation. Models
that are too complex may yield non-unique solutions, and �t is not improved
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by changes of parameter values [Barbosa-Cánovas et al., 2005].

For obtaining a high �tting precision, it may be necessary to change the
mathematical model after analysis of experimental data. In this case,
additional data may be needed. Model performance may also be approved
by reparameterisation [Ratkowsky, 1993].

High quality data from well-designed experiments is essential in predictive
modelling [Barbosa-Cánovas et al., 2005]. Some measurements may
carry more information than others. For reduction of uncertainty and
improvement of accuracy without increasing costs, distribution of data
points should be considered during experimental design. For example
Ernstberger [Ernstberger, 2008] showed that data points from di�erent
phases of a sigmoid growth curve di�er in their information content as
to di�erent growth parameters, e.g. measurements done during lag phase
contain no information about maximum growth rate. Usually, data from
the literature lack important information, e.g. strain or biovar of the species
or history of the cells.

The selected model is �tted to the data, i.e., model parameter values are
calculated for a best �t of model curve to data points. In general, this
is done by regression techniques [Barbosa-Cánovas et al., 2005]. In
ordinary linear regression a linear function is �tted by method of least
squares. Method of least squares minimises the sum of squared residuals.

Reliability of the model output must be ensured. It is essential that a model
reproduces the data it was built with. Model performance in reproduction
of experimental data other than that used for previous �tting should be
analysed. A model must be maintained to stay useful. New experimental
data is included by further �tting and validation.

Figure 5.1 pictures the optimal process of development of a model in
predictive microbiology. The interested reader may refer to Annino and
Russel in [Annino and Russell, 1979] for an overview over lurking pitfalls
in simulation analysis.

5.2. Variability and Uncertainty

Variations in outcome of an experiment may be due to a variability of the
measured factor itself, to experimental impreciseness (uncertainty), or to
both. The term variability refers to characteristics of the system observed.
It can only be reduced by a change of the system itself. Uncertainty is due
to the observer. Sir David Cox characterised variability and uncertainty as
follows:

`Variability is a phenomenon in the physical world to be measured, analysed
and where appropriate explained. By contrast, uncertainty is an aspect of

knowledge.�

found in [Vose, 2008], page 47
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Specification of the question the model should answer

response variable (e.g. growth, probability)

Experimental design

Selection of an appropriate 

mathematical model for the 

specific problem

•Characterisation of the microorganism(s)
•Description of environmental conditions 
(e.g. process parameters)

Validation of the fitted 

model with data

Fitting model parameters 

with dataData for validation
Data for fitting

Maintenance of the model

e.g. further fitting and validation

Figure 5.1. Development of a predictive model - a best case

Biological processes often are highly variable, e.g. generation times of indi-
vidual cells in a growing population vary over a wide range [Banks, 1994],
[Kelly and Rahn, 1932], [Prescott, 1959]. Pretreatment of the cells
can drastically change the shape of the survival curve, e.g. for Listeria
monocytogenes [Págan et al., 1997], [Rowan and Anderson, 1994].
Even slight di�erences in the matrix can lead to crucial di�erences in the
survival curve, e.g. Mycobacterium tuberculosis dies o� in 15-20min at
60◦C in milk, but survives at the same conditions in the skin on the milk
[Hesse, 1960]. In most manufacturing processes parameters like time and
temperature are not set values, but vary over certain ranges.

Individual bacteria di�er in their kinetics, but the large number of microor-
ganisms in a population leads to averaged population kinetics. Kinetics
of large populations can be modelled by continuous functions. Models for
small populations or single cells have to be discrete.

`Variety, and variability, are the spice of life.�

[Kot, 2001], page viii

Variability is not reduced by further information about the system. When
the proportion of variability is high and there is almost no uncertainty,
the model performance can not be improved by collecting more data.
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There is no such thing than a �true� growth or survival curve for �xed
parameters, but a set of families of curves with variable parameters that
follow probability distributions. Predictive models that do not include
variability of the modelled system only yield point estimates, e.g. of the
mean, and can not reproduce the full range of possible kinetics.

Uncertainty is due to the observer's lack of knowledge. Sometimes it can
be reduced by further studies. Uncertainty may be increased by in�uencing
factors of the system that are not included in the model. Data from the
literature often lack information about stem and biovar, and of pretreatment
of the cells, therewith increasing the uncertainty.

For inclusion into predictive models, variability and uncertainty can be
represented by probability distributions that provide a mathematical struc-
ture for propagation during calculation [Ghanem and Red-Horse, 1999].

It is useful to keep variability and uncertainty separate. Otherwise, it
can not be determined, if more data lead to a better prediction. Vose
[Vose, 2008] suggests to combine uncertainty and variability in the same
model, but in distinct probability distributions. The comparison of one
simulation, in which all distributions are sampled, with another simulation,
in which all uncertainty distributions are set to their mean value, gives an
estimation of the proportion of uncertainty.

5.3. Model classi�cation

Models are classi�ed according to di�erent criteria. An overview of common
model classi�cations is given in �gure 5.2.

According to how much a priori information on the system is available, there
are two di�erent approaches to build a mathematical model. Theory-based
modelling is based on physical, chemical or biological theories. These
models are also called mechanistic or white-box models. Mechanistic
models �(...) provide interpretation of the response observed in terms
of the underlying mechanisms and are more amenable to re�nement as
knowledge of the system increases.�, [McMeekin and Ross, 2002] and
[McMeekin et al., 2002]. Construction of mechanistic models requires a
detailed knowledge of the physiology of bacteria.

If the available data is the basis of model building, the model is called
empirical, data-dependent, or black-box model. The underlying mechanisms
are not considered, e.g. they are not known. In an empirical model a
mathematical formula is derived from data analysis. Empirical models
do not contain any information about the kinetics outside the region in
which measurements are made. They should only be used for interpolation
[Baranyi et al., 1996b].
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characterizes influences of environmental 
factors on parameters of a primary model 

Mechanistic model
based on mechanism of observed 
kinetics and on laws of nature
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Probabilistic model probability distributions  (e.g. distribution of 
the number of bacteria, distribution of toxin 
concentration)

Deterministic model fixed values (e.g. worst, best and average 
case)

Figure 5.2. Basic model types

Generally, mechanistic models are regarded as superior to empirical models
[Barbosa-Cánovas et al., 2005]. Most models in predictive microbiology
are partly empirical and partly mechanistic [Hao, 2007].

Whiting and Buchanan [Whiting and R., 1993] classi�ed models into
three categories. This classi�cation is widely used today. Models describing
changes in bacterial counts over time for certain environmental conditions
are called primary models. They describe the response of a population
of microorganisms to one set of conditions. Primary models are used to
estimate kinetic parameters, e.g. generation time or lag time duration.
Response of this kinetic parameters to changes in environmental conditions
is described by secondary models. Common secondary models are response
surface (polynomial) models [Box and Draper, 1987], [Li et al., 2008]
using statistics. There are approaches that use arti�cial intelligence
[Barbosa-Cánovas et al., 2005]. The term model as de�ned above refers
to primary and secondary models. Applications that provide predictions by
use of primary and secondary models are called tertiary models. They are
an interface between scientist and the end-user. The term predictive model
de�ned above refers to a tertiary model.

A distinction can be made between qualitative and quantitative models.
Qualitative growth/no growth models determine if a microorganism will
grow under certain environmental conditions. This is of special interest for
the food industry, because it helps to identify the processing and storage
conditions that kill o�, or eliminate growth of, spoilage, or pathogenic
bacteria. Examples are the probabilistic growth/no growth interface
of Ratkowsky and Ross [Ratkowsky and Ross, 1995], the Microbial
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Responses Viewer database [Koseki, 2009], and the logistic growth/no
growth model for Listeria monocytogenes developed by Vermeulen et al.
[Vermeulen et al., 2007]. Quantitative models use empirical values for
calculation and yield a quantitative output.

When the output of a model is de�nitely determined by the input pa-
rameters, it is called deterministic. Variability and uncertainty in the
parameters are not taken into account. Deterministic models are sometimes
also referred to as kinetic models [Barbosa-Cánovas et al., 2005].

The inclusion of variability and uncertainty into predictive models is
done in two di�erent ways. First, the parameters of deterministic models
can be replaced by probability distributions. This approach of imposing
probabilistic structures on model parameters, e.g. growth and death rates,
leads to probabilistic models. If the process of growth or death itself is
considered to be random, the model is called stochastic. In both approaches
the output of one calculation is not de�nitely determined by the input
parameters, i.e., repeated simulation with the same input can yield di�erent
outputs. Banks et al. [Banks et al., 2009] compared a probabilistic and a
stochastic approach for modelling increase of individual sizes in populations.
With a proper choice of variability, the outcome of both formulations was
comparable.

5.4. Deterministic models

The �rst models developed for prediction of microbial growth were de-
veloped in the early 20th century [McKellar and Lu, 2004]. These
were deterministic, and were used to describe the inactivation kinetics of
pathogenic bacteria during thermal processing. In predictive microbiology
the majority of models are deterministic [McKellar and Lu, 2004].

5.4.1. Exponential model. The simplest approach is to assume �rst-
order kinetics for population size. Let N(t) be the number of bacteria at
time t, and let N(0) = N0. Under the assumptions that reproduction is
continuous with growth rate β, that all organisms are identical, and that the
environment is constant in space and time, e.g. that resources are unlimited,
change in population size can be described by the di�erential equation

(5.4.1)
dN

dt
= βN.

The solution of equation 5.4.1 is exponential growth, i.e., equation 3.2.1.
Negative β yields exponential inactivation. Equation 3.2.1 is also called the
exponential model. It does not contain an upper limit for growth and never
reaches zero.

Often kinetics are described in terms of logarithm of bacterial counts. Equa-
tion 3.2.1 yields

(5.4.2) log(N) = log(N0) + βt.
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The logarithm can easily be changed according to

(5.4.3) logc a =
logb a

logb c
.

5.4.2. Lag-exponential model. Neglecting the lag phase results in
fail-save predictions [van Gerwen and Zwietering, 1998], i.e., bacterial
counts are overestimated. Adding of a lag phase with length λ yields the
lag-exponential model [van Gerwen and Zwietering, 1998]:

(5.4.4) log(N) = f(x) =

{
log(N0), for t < λ,

log(N0) + β(t− λ), for t ≥ λ .

5.4.3. Exponential model for two sub-populations. Pruitt and
Kamau [Pruitt and Kamau, 1993] modelled survival kinetics for a po-
pulation that consists of two sub-populations of sizes S1(t) and S2(t) =
N(t) − S1(t) with speci�c death rates µ1 and µ2, respectively. Normalised
population size is calculated as

(5.4.5)
N(t)

N0
=
S1(t)

N0
exp (µ1t) +

(
1− S1(t)

N0

)
exp (µ2t) .

Logarithmic calculus of equation 5.4.5 does not yield a linear model like in
simple �rst-order kinetics.

5.4.4. Bigelow model. One of the �rst applications of predictive
microbiology is the description of microbial death due to heating in
production of canned food. Bigelow stated the importance of canned food
for supply of food for the civilian population, Army, and Navy in times of
World War I [Bigelow, 1918]. Spoilage of tinned food due to germination
of spores during storage was named as one problem of the canning industry.
Two years later Bigelow and Esty [Bigelow and Esty, 1920] presented
thermal death points for spores of several microorganisms as a result of
a large amount of experimental work. In 1921 Bigelow [Bigelow, 1921]
reported log-linearity of thermal death time curves. This was the basis
for the development of the concept of D- and z -values for bacterial inac-
tivation described below. This concept is still used and re�ned, e.g. in
[van Asselt and Zwietering, 2006].

Under isothermal conditions the relationship between logarithm of bacterial
counts and heating time is often considered to be linear, i.e., equation 5.4.2
holds true. Decimal reduction time D in min states how long it takes at a
given temperature to reduce the bacterial population by 90%.

(5.4.6) log(N) = log(N0)−
1

D
t

Comparison with equation 5.4.2 yields D = 1
β . The relation between D-

value and temperature is (locally) log-linear. For non-isothermal conditions
the dependencies between D-value and temperature T are described by the
thermal inactivation coe�cient z in min−1. The z -value is the temperature
increase necessary for decreasing the D-value by 90% , i.e., for reduction
of the bacterial load by 90% ten times faster. The D-value at an arbitrary
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temperature can be calculated from the reference D-value at one speci�c
temperature, D0, and the z -value according to the Bigelow model equation
5.4.7.

(5.4.7) log(D) = log(D0)−
1

z
T.

Usually, the D- and z -values of bacteria in food are determined by graphical
methods [Juneja et al., 2006]. Time needed for killing o� certain bacteria
at a certain temperature is called thermal death time or F -value. The
F -value is a multiple of the D-value.

The traditional concept for heating of canned food aims at a reduction of
12 log cycles (a reduction by a factor of 10−12, or by 99.9999999999% ).
This approach is based on extrapolation, because in experiments only six to
seven decimal reductions are determined [Van Boekel, 2002]. Therefore,
calculated conditions for a reduction of 12 log cycles may not be precise
[Van Boekel, 2002], [Brannen, 1968], [Peleg, 1998]. For example, the
minimal temperature at which growth of Bacillus cereus is reported in the
literature overestimates the theoretical minimal temperature systematically
[Zwietering et al., 1996].

The concept of D- and z -values assumes instantaneous heating and a
homogeneous distribution of microorganisms in the matrix. Solid food is
heated from the outside inwards, and adjustments must be made to take
into account cold spots in the matrix.

5.4.5. Deviations from log-linear kinetics. There are four com-
mon types of logarithmised growth and survival curves: linear curves
following �rst order kinetics, curves with an initial lag period (growth) or
a shoulder (survival), biphasic curves with tailing, and sigmoidal curves
[Barbosa-Cánovas et al., 2005]. Deviations from �rst order kinetics can
have many reasons. One mechanistic explanation for bacterial inactivation
following �rst-order kinetics is the existence of a critical enzyme with
�rst-order inactivation kinetics. But it is unlikely that a single event
causes instantaneous death. The inactivation times of individual cells are
not identical; they follow a distribution. There are various examples for
non-linear survival curves [Moats et al., 1971], [Baranyi et al., 1996a],
[Peleg, 1998], [Peleg, 2003]. A collection of experiments with varying
shapes of survivor curves can be found in [Withell and Pharm, 1942].
Geeraerd et al. formulated requirements for modelling of non-linear survival
curves, and they compared the performance of several deterministic primary
models [Geeraerd et al., 2000].

During growth, a single cell doubles its mass and divides into two identical
daughter cells. In a population, cells usually are at random points of
growth. Cells can be synchronised in their generation periods, but this
synchronisation fastly gots lost (see section 3.4). Plotting the logarithm
of size of a synchronised population over time does not result in a smooth
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curve, but in a series of discrete steps.

In a culture that contains more than one type of bacterium (mixed culture),
the kinetics of the sub-populations are not independent. Inactivation
curves often show a tailing e�ect, indicating that a small fraction of
bacteria shows an increased heat resistance. In a pure culture sometimes a
shoulder e�ect is observed. This may be due to torpidness of the heating
process or to an energy threshold for the lethal e�ect [Juneja et al., 2006].

Common assumption is that for constant environmental conditions the lag
time and the generation time are proportional [Delignette-Muller, 1998].
But variation of growth rate, lag phase and stationary population may be
completely independent [Dean and Sir Hinshelwood, 1966]. Robinson
et al. discussed in [Robinson et al., 1998] that the relationship between
growth environment and lag time is more complex than the corresponding
relationship between growth environment and maximum speci�c growth
rate. They concluded that predictions of lag time will be less accurate
than predictions of the maximum growth rate. Delignette-Muller et al.
[Delignette-Muller, 1998] further suggest to assume a constant ratio
anyway, despite the fact that it leads to a neglecting of possible environ-
mental e�ects on the relation between lag time and generation time.

5.4.6. Logistic growth model. In a growing population increase rate
β is composed of a birth rate µ and a death rate η. This yields

(5.4.8)
dN

dt
= µN − ηN.

There is an upper limit of population growth. The maximal number of
bacteria K is called carrying capacity. It can be written as K = µ

η

[Metzler, 1987]. Death rate may depend on population density, in the
simplest case η = µN . This yields the initial value problem

dN

dt
= µ

(
1− N

K

)
N,(5.4.9)

N(0) = N0.(5.4.10)

Separation of variables, and partial fraction decomposition yields the solution
of the initial value problem, the logistic growth model or Verhulst (Verhulst-
Pearl) equation with maximum growth rate µmax:

N(t) =
N0K

N0 + (K −N0) exp (−µmaxt)
,(5.4.11)

=
K

1 + exp
(
−µmaxt+ ln

(
K
N0
− 1
)) .(5.4.12)

The logistic growth model was introduced by Verhulst [Verhulst, 1838]
and rediscovered by Pearl and Reed in 1920 [Pearl and Reed, 1920]. At
low densities, the population growth rate is maximal and equals µmax. It
declines to zero for N → K. The initial growth rate controls not only
population growth rate, but also population decline rate (at N > K), i.e.,
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organisms with a low reproduction rate die at the same slow rate. In reality,
growth rate and decline rate are independent. If population numbers exceed
the carrying capacity, the population growth rate becomes negative and
population numbers decline.

The second derivative

(5.4.13)
d2N

d2t
= (µ− 2ηN) (µ− ηN)N

is positive for N < µ
2η = K

2 (the curve is concave up) and negative for

N > K
2 (the curve is concave down). The in�ection point is at N = K

2 . This
S-shaped curve is also called logistic curve. It is pictured in �gure 5.3 for
parameters K = 9, N0 = 2 and µ = 0.2 (growth) and parameters K = 9,
N0 = 8 and µ = −0.2 (survival).
The logistic growth model is not appropriate if something preys on the
population.
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Figure 5.3. Growth curve (left) and a survival curve (right)
calculated by the logistic growth model

The logistic growth model does not model lag time duration λ. Wolf and
Venus [Wolf and Venus, 1992] suggest the multiplication of equation 5.4.9
with a dampening factor 1 − exp

(
− t

6λ

)
for including a lag phase. With

boundary condition N(0) = N0, the solution yields the extended logistic
growth function

(5.4.14) N(t) =
K

1 +
(
K
N0
− 1
)

exp
(
−µ
(
t+ 6λ exp

(
− t

6λ − 1
))) .

Zwietering et al. [Zwietering et al., 1990] modi�ed the logistic model
for biological relevant parameters. Instead of N(t), relative population size
y(t) = ln N(t)

N0
is calculated. With lag time duration λ, growth rate µ, and

maximum relative population size A = ln K
N0
, y(t) is approximated by

(5.4.15) y(t) =
A

1 + exp
(

2 + (λ− t) 4µmax

A

) .
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5.4.7. Gompertz model. In 1925 Gompertz [Gompertz, 1825] pre-
sented a model for calculation of human mortality rates in actuarial science.
He assumed an exponential dependency of growth rate µ and population
size. With maximum relative population size A = ln K

N0
, time at which the

absolute growth rate reaches its maximum tµ, and relative growth rate ν at
time tµ, population size is approximated by

(5.4.16) logN(t) = N0 +A exp (− exp (−ν (t− tµ))) .

Equation 5.4.16 is one possible parameterisation of the Gompertz model.
Modi�cation of the Gompertz model for biological relevant parameters is
given in [Gibson et al., 1988] and [Zwietering et al., 1990].

There are several modi�cations of the Gompertz model. One modi�cation
allows for an additional increase in cell numbers after a �rst stationary
phase [Kahm et al., 2010], i.e., it models diphasic growth (diauxie, see
�gure 3.2). Gil et al. [Gil et al., 2006] introduced a modi�ed Gompertz
model that models microbial inactivation at changing temperature.

5.4.8. Modelling of lag phase duration. None of the previously
described models include a lag phase. Lag phase and growth rate are nearly
independent of each other. Length of lag phase highly depends on a combi-
nation of history of the cells and environmental conditions (see section 3.2
and assumption 5 in section 6.3). Hence, e�ects of the previous environmen-
tal conditions on bacterial response to current conditions must be taken into
account for prediction of lag phase duration [Muñoz Cuevas et al., 2010].

Baranyi et al. (see [Baranyi and Roberts, 1994],
[Baranyi et al., 1993a], [Baranyi et al., 1993b]) and Hills et al.
(see [Hills and Mackey, 1995], [Hills and Wright, 1994]) developed
mechanistic models that include a lag phase. The model published by
Baranyi et al. covers lag and log phase. Mirroring yields a model of
inactivation [Baranyi et al., 1996a]. It includes Michaelis-Menten ki-
netics of a critical substance responsible for a bottleneck of growth, and
in�uences of environmental conditions before inoculation. With maximum
growth rate µmax, concentration of critical substance in units per cell P (t),
Michaelis-Menten constant Cp and q(t) := P (t)

Cp
, the Baranyi model is given

as set of two di�erential equations 5.4.17 and 5.4.18:

dq

dt
= µmaxq(t),(5.4.17)

dN

dt
= µmax

(
q(t)

q(t) + 1

)(
1− N(t)

K

)
N(t).(5.4.18)

The outcome of the Baranyi model depends explicitly on time. A model
is called autonomous if its di�erential equations do not contain coe�cients
that are explicit functions of time that means they form an autonomous
(time-invariant) system. The Baranyi model is non-autonomous. Vadasz
and Vadasz [Vadasz and Vadasz, 2007] presented an autonomous ver-
sion, with transient growth depending on initial cell concentration and



5.5. PROBABILISTIC AND STOCHASTIC MODELS 63

initial growth rate.

5.4.9. Other approaches. Neural networks have been applied to
model bacteria l growth and death kinetics, too. Basheer and Hajmeer
constructed an arti�cial neural network for modelling growth of Shigella
�exneri (see [Basheer and Hajmeer, 2000]). The growth/no growth
interface of Staphylococcus aureus was modelled with a neural network by
Fernández-Navarro et al. [Fernández-Navarro et al., 2010]. Panagou
[Panagou, 2008] used a neural network approach to model survival of
Listeria monocytogenes in greek soft cheese.

5.4.10. Secondary models. Secondary models describe the relation
between the environmental conditions and the parameters of the primary
models. To describe the dependencies of inactivation rate k and heating
temperature T in ◦K, conventionally the Arrhenius equation

(5.4.19) log(k) = log(A)− Ea
RT

is used [Juneja et al., 2006], where A is the frequency factor, Ea is the
activation energy in kJ, and R = 8.314 × 10−3 kJ

mol is the gas constant.
According to [Juneja et al., 2006], a combination of �rst-order kinetics
and equation 5.4.19 performs well in describing thermal inactivation of
microorganisms in food.

Another secondary model is the Ratkowsky model or square root model
[van Gerwen and Zwietering, 1998]. It assumes a linear dependency of
the square root of speci�c growth rate and conditions, e.g. temperature.
With regression coe�cient b, experimental temperature T , minimum tem-
perature for cell growth Tmin, experimental pH value pH, minimum pH
value for growth pHmin, experimental aw value aw, and minimum aw value
for growth awmin, an extended version of the square root model is given by

(5.4.20)
√
µ = b (T − Tmin)

√
(aw − awmin) (pH − pHmin).

The square root model usually performs better than the Arrhenius model
[Stannard et al., 1985], [Li et al., 2008]. It does not take into account
interactions between the conditions.

5.5. Probabilistic and stochastic models

A common use of deterministic models is calculation of best, average, or
worst case scenarios. In �gure 5.4 outputs of a best case, an average case and
a worst case scenario of exponential bacterial growth are pictured. Figure
5.5 shows the output of a probabilistic calculation of exponential bacterial
growth. Output from probabilistic and stochastic models yields information
about the probability distribution of possible outcomes. Probabilistic
models include variability and uncertainty by means of parameters that
follow probability distributions. Stochastic models assume a random process
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of procreation or dying, see section 5.3.
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Figure 5.5. Example for a probability distribution as out-
put from a probabilistic model

Deviations from log-linear kinetics may be due to variability of individuals
in a population. Growth rate is not a constant, but was shown to follow
a probability distribution (see assumption 2 in section 6.3). Probability of
dying di�ers between individuals [Van Boekel, 2002].
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Several authors con�rm that both variability and un-
certainty are very important in predictive microbiol-
ogy and that it is essential to use probabilistic models
[Delignette-Muller and Rosso, 2000], [Standaert et al., 2007],
[Standaert et al., 2007], [Koutsoumanis, 2008], [Van Boekel, 2002],
[Membre and Lambert, 2008]. The bene�t of a probabilistic or sto-
chastic model is that it combines probability distributions of the model's
parameters for calculation of a probability distribution of possible model
outcomes. Therefore, use of probabilistic or stochastic models in predictive
microbiology supports a more profound risk assessment of food or feed
supply chains than deterministic models. For a su�cient number of
iterations of a probabilistic or stochastic model, the mean of the output
equals the average case of its deterministic counterpart. Minimum and
maximum correspond to deterministic best and worst case, respectively.
Until now, there are only few probabilistic and stochastic models for growth
and survival used in predictive microbiology.

There are several approaches of probabilistic and/or stochastic modelling of
bacterial population kinetics.

5.5.1. Weibull model. The response to a harmful in�uence can
be assumed to di�er between individuals of a population, i.e., survival
times follow a probability distribution. Then the cumulative distribution
function of survival times describes the fraction of the population still
alive. One approach of modelling survival curves is to consider them to be
cumulative distribution functions of resistance or sensitivity [Peleg, 1998],
[Peleg, 2003]. Those models include probability distributions, but their
output is deterministic. One example is the widely used Weibull model.
It assumes that resistance to stress, and therewith death times, follow a
Weibull distribution [Corradini et al., 2010b], [Coroller et al., 2006],
[Van Boekel, 2002], and it models survival curves as cumulative distribu-
tion curves of cell death times.

The Weibull model is an empirical model. It can be written in di�erent ways,
for example as power law model [Peleg, 2003], [Peleg, 2006]

(5.5.1) log
N(t)

N0
= −bta.

with dimensionless shape parameter a, and scale parameter b in time units.
These coe�cients depend on the microorganism, the history of the cells, the
matrix, and the inactivation agent, e.g. temperature, or the concentration
of a substance. For a = 1 it yields �rst order kinetics. For a < 1 the curve
is upper concave, and for a > 1 it is downward concave.

The Weibull model can be �tted to many survival curves
[Peleg et al., 2008], [Van Boekel, 2002], [Hassani et al., 2006],
and it can be adapted for modelling survival under non-isothermal con-
ditions [Chen et al., 2007], [Hassani et al., 2006]. Coroller et al.
[Coroller et al., 2006] modelled kinetics of sub-populations by mixing
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two Weibull distributions.

5.5.2. Probabilistic growth/no growth model. Ratkowsky and
Ross [Ratkowsky and Ross, 1995] developed a probabilistic growth/no
growth model that takes into account temperature, pH value, aw value, and
sodium nitrite concentration. It is given as

ln

(
p

1− p

)
= b0 + b1 ln (T − Tmin) + b2 ln (pH − pHmin)

+ b3 ln (aw − awmin) + b4 ln (NO2max −NO2) ,

(5.5.2)

with regression coe�cients b0, · · · , b4, experimental temperature T , min-
imum temperature for cell growth Tmin, experimental pH value pH,
minimum pH value for growth pHmin, experimental aw value aw, minimum
aw value for growth awmin, experimental nitrite concentration (in ppm)
NO2, and maximum nitrite concentration for growth (in ppm) NO2max.
This model is log-linear.

5.5.3. Stochastic approaches. Pin and Baranyi determined the
distribution of division intervals from experiments done with single cells
(see [Pin and Baranyi, 2005]). Population kinetics were modelled as
result of multiplication of single cells. The stochastic model generated from
measurements of the �rst few individual division times was able to predict
bacterial growth at low concentrations. Kilsby et al. [Kilsby et al., 2000]
modelled inactivation kinetics by assuming a distribution of inactivation
time.

A process that evolves randomly in time can be mathematically described
as a stochastic (or random) process. Let (Ω,F , P ) be a probability space.
A stochastic process is a set {Xt : t ∈ T} of random variables X on
Ω with state space S that is indexed by a set T ('time'). A stochastic
process in which the next state depends solely on the current state is called
a Markov process. One Markov process on non-negative integers is the
Poisson process. It is a counting process, and the number of events until
time t follows a Poisson distribution. The interested reader may refer to
[Klenke, 2008] or [Wengenroth, 2008] for a brief introduction.

The Poisson process is the prototype of a pure birth process
[Taylor and Karlin, 1998]. Takahashi [Takahashi, 1968] used a
Poisson process to describe the transition of phases in the cell cycle of
eucaryotic cells. Assuming that the chances of reproduction and mortality
are independent of the previous history of the individual cell, including
the time since �birth�, kinetics follow a discontinuous Markov process
[Kendall, 1948b].

The stochastic counterparts of the deterministic exponential model are the
Yule model for growth, and the Pure Death model for survival. These
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models were developed by Yule and Kendall at the beginning of the 20th
century [Yule and Kendall, 1950]. Both models assume that all individ-
uals in the bacterial population are identical concerning growth or death,
respectively, and that procreation or death of di�erent cells is independent
and follows a Poisson process. Unlike the exponential model that can be
applied to both growth and death curves, its statistic counterparts assume
di�erent processes for procreation and death.

5.5.4. Yule model. Let γ be the expected number of o�spring per time
step. Then the number of o�spring of one single cell M(t) can be described
by the geometric distribution:

M(t) = geometric (exp(−γt)) .
Now quantity of the population at some time t is calculated as sum of initial
bacterial count and numbers of o�spring of all cells in the initial population.
The sum of a �nite set of independent geometric distributions follows a
negative binomial distribution [Vose, 2008], therefore, the sum of numbers
of o�spring is negative binomially distributed:

N(t) = N0 +

N0∑
i=1

geometric (exp(−γt)) ,(5.5.3)

= N0 + negbin (N0, exp(−γt)) .(5.5.4)

Equation 5.5.4 is called the Yule model.

5.5.5. Pure Death model. With expected death ζ at time t the pro-
bability for surviving of an individual until time t is calculated as

p(t) = 1− exp (−ζt) .
For an initial population of N0 bacteria at time t = 0, the number of bacteria
that are left at time t follows a binomial distribution:

N(t) = bin (N0, exp (−ζt)) .(5.5.5)

Equation 5.5.5 is called the Pure Death model.
Growth and death rate for application of Yule model and Pure Death model
must be calculated from experimental data. In both models these rates are
assumed to be constants. This assumption is false, because growth and
death rate are probabilistic variables.

5.5.6. Other probabilistic and stochastic approaches. Feller mo-
delled bacterial growth and survival with a Markov process [Feller, 1939],
too. In 1948 Kendall presented extensions of Feller�s model with birth and
death rates as functions in time [Kendall, 1948a], or with growth and
death rates following probability distributions [Kendall, 1948b], respec-
tively. In 1966 Takahashi [Takahashi, 1966] published a stochastic model
for eucaryotic cells similar to the birth process of Kendall. The duration of
the phases of the cycle was simulated by probability distributions. Corradini
et al. recently developed a stochastic model for activation and inactivation
of dormant spores of certain Bacillus spp. [Corradini et al., 2010a].
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Modelling of inactivation of individual cells as a stochastic process was also
done in [Corradini et al., 2010b] and [Horowitz et al., 2010].

In 1962 Koch and Schaechter [Koch and Schaechter, 1962] introduced a
probabilistic model for cell division. It is deterministic for single cells, but
includes variability in the distribution of cell sizes at division. Delignette-
Muller and Rosso [Delignette-Muller and Rosso, 2000] included the
variability of growth among strains of Bacillus cereus in pasteurised milk
into another probabilistic model. Only temperature as environmental factor
in�uencing growth was considered. Biological parameters were characterised
by probability distributions. Biological variability had a great impact on
the accuracy of the results.

Cao et al. [Cao et al., 2010] presented a new stochastic primary model.
Using non-parametric and bootstrapping methods, prediction bands were
developed that cover a pre�xed con�dence interval instead of growth curves.
This inspired our use of sets of appropriate series of measured values to
estimate the parameters of a log-normal distribution for the bacterial counts.

Stochastic modelling of the lag phase by a stochastic birth model was done
by Baranyi [Baranyi, 2002].

The NPMPM follows a new approach to take into account for variability and
uncertainty. None of the probabilistic or stochastic models presented in this
section is used. Instead, deterministic models are �tted to the data.

5.6. Example of a risk assessment for toxin inactivation

Miscellaneous predictive models are used for optimisation of food processing,
i.e., in designing production processes that yield food without pathogenic
organisms, with a long shelf life, and with certain organoleptic characte-
ristics. Predictive models are also used in risk assessment for estimating
outcome and impact of an intentional or unintentional contamination of the
food supply chain with bacteria or toxins.

One widely regarded risk assessment was published in 2005 by Wein and Liu:
�Analyzing a bioterror attack on the food supply: The case of botulinum
toxin in milk� [Wein and Liu, 2005]. They computed a probability
distribution for the outcome of an intentional contamination of raw milk
with botulinum toxin. In this section the modelling approach of Wein and
Liu is described as an example of a risk assessment for contamination of the
supply chain for fresh milk from cow to consumer, with estimated number
of a�ected people as endpoint. This example highlights the procedure of
modelling a process chain as succession of process steps with di�erent e�ects
on toxin concentration.

Wein and Liu investigated an imaginary bioterror attack in which the
puri�ed toxin is introduced into the milk supply chain. Presence of
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toxin producing microorganisms is excluded. Therefore, only dilution and
inactivation had to be taken into account. Inactivation is due to heating
during pasteurisation. Wein and Liu roughly estimated the proportion of
inactivation, because there are no su�cient data concerning the e�ect of
heat pasteurisation on botulinum toxin in milk. A dilution may occur at
di�erent points in processing by mixing of milk from di�erent tanks or
trucks. E�ects of manufacture on the concentration of botulinum toxin were
linear, and therefore, use of models introduced previously in this chapter
was not necessary.

Concentration of botulinum toxin during processing depends amongst others
on the amount of toxin introduced into the process chain. The milk from
dairy trucks is pumped into silos that are simultaneously �lled and drained
into the pasteurisation facility. Therefore, the possible toxin concentration
in the silo depends on the point in time during the �lling and replenishment
intervals at which the contaminated milk is pumped into the tank. Because
this point in time is random, the toxin concentration in the silo follows
a probability distribution. After pasteurisation the milk is pumped into
holding tanks. In this tanks the toxin concentration depends on the time
interval during which the milk was drained from the silo. Therefore, it
follows a probability distribution, too.

Average packing size, proportion of children and adults that drink milk,
average portion size and the dose-response curve were taken into account
for calculation of the number of poisoned people. Several assumptions made
in model construction are due to lack of data. The interested reader may
read the supplement to the paper of Wein and Liu [Wein and Liu, 2005]
for further information.





CHAPTER 6

Assumptions, Material and Methods

In the previous chapters 2-5 the knowledge necessary for modelling bacterial
growth and decay is presented. Now the assumptions made in development
of the NPMPM, and the components and methods used in modelling and model
validation are introduced. First, the method of Monte Carlo simulation
is described. After that, the assumptions the NPMPM is based on are
speci�ed and discussed. This is followed by a characterisation of probability
distributions contained in the NPMPM. The statistical tests used for data
analysis and model validation are described, and the experimental data used
for �tting are presented. Then the programming language is noted. Now
the methods used in performance evaluation are established. Finally, the
di�culties in communicating the output of probabilistic model are depicted.

6.1. Monte Carlo method

The NPMPM uses a Monte Carlo method. This method is an approach for
computing results of models containing probability distributions. Random
values are drawn from the probability distributions, and a result is computed
from this values. Such a calculation is called an iteration. Iterations are
repeated, and results are collected, until a stop criterion is ful�lled. Then
the set of calculated values, i.e., a distribution of results, is returned. One
calculation of a distribution of results in a succession of iterations is called
one simulation.

The term Monte Carlo method was introduced by Metropolis and Ulam
in 1949 in [Metropolis and Ulam, 1949]. The method as such was
used before in time of World War II in development of the atomic bomb
[Law, 2007], [Gentle, 2003]. The Monte Carlo method is not a single
method, but a class of numerical approaches. A deterministic algorithm is
stocked with probability distributions for input and parameters. In every
iteration of the Monte Carlo simulation random values are drawn from the
probability distributions. Then a deterministic computation is done with
the obtained input and parameter values. Hence, for every iteration the
calculation is done for one possible scenario. The results form a frequency
distribution that approximates the probability distribution of possible
output values. The Monte Carlo method is fast and easy, but it yields only
approximations. There is no need to use it, if a closed form of the solution
can be calculated. The interested reader may refer to [Gentle, 2003] for
further information on this subject.

71
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Monte Carlo simulation can be done with a lot of di�erent software; e.g.
@Risk, ModelRisk, Berkeley Madonna, and Crystal Ball are special designed
for this task. Algorithms using the Monte Carlo method can be programmed
in many programming languages, e.g. matlab or R.

`To calculate the probability of a successful outcome of a game of solitaire
(we understand here only such games where skill plays no role) is a complete
intractable task. On the other hand the laws of large numbers and the
asymptotic theorems of the theory of probabilities will not throw much light
even on qualitative questions concerning such probabilities. Obviously the
practical procedure is to produce a large number of examples of any given
game and then to examine the relative proportion of success.�

[Metropolis and Ulam, 1949]

In every iteration of a simulation random values are drawn. Random
numbers from a certain probability distribution are calculated using
uniformly distributed random numbers ui that are easily calculated. One
possibility of transformation is classical Monte Carlo sampling, e.g. to use
(an approximation of) the inverse function of the cumulative distribution
function of the probability distribution of interest, F−1(u). A computer
cannot generate true random numbers without the connection to an external
device. For generation of pseudo-random numbers a seed as starting point is
needed. For most purposes the use of pseudo-random number is su�cient.

The method of classical Monte Carlo sampling leads to uniformly dis-
tributed random numbers ui, and to clusters of the F−1(ui). If the number
of iterations n used in the Monte Carlo simulation is previously �xed, the
probability distribution can be split in n intervals with equal probability,
and then every interval is sampled once. This is called Latin hypercube
sampling. It yields a plausible sample of the values F−1(ui). The interested
reader may refer to [McKay et al., 1979] for further information.

In strati�ed sampling proportions of the total sample are taken from
speci�ed regions of the sample space to ensure that all regions are covered.
In importance sampling some sample regions are sampled more heavily. The
sample density may change continuously. If some measurements carry more
information than others, an adjustment of sample density is reasonable.
When several factors are to be investigated simultaneously, a full factorial
design that includes all possible combinations of the factors, leads to a large
number of trials. Hence, a subset is chosen to expose information about the
most important features of the problem studied. This approach is called
fractional factorial design; it allows for studying of several factors, while
keeping the number of experiments small. The interested reader can �nd an
overview of common sampling methods used in Monte Carlo simulation in
[Gentle, 2003].

Sampling methods that base on a �xed number of iterations can not be used
in the NPMPM, because the number of iterations in one simulation is adaptive.
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Additionally, there is no previous information about sample regions. An
approach suiting the special conditions of the NPMPM applied to bacterial
growth and decay was developed.

If the distribution of the output is already known before the simulation,
there are di�erent possible stop criteria, e.g. the length of a 95% con�dence
interval. The interested reader may consult [Law, 2007] for an overview.
The probability distribution of the output of the NPMPM depends on the data
and can not be speci�ed, because the calculated values each derive from
lognormal distributions with slightly di�erent mean and standard deviation.
So another approach is needed.

In the NPMPM an a posteriori error estimator determines if the number of
iterations is su�cient for providing a given accuracy of the output. First,
the minimal number of iterations is set to 100 to prevent too small sample
sizes. From the 100th iteration on the arithmetic mean x̄ of all heretofore
obtained cfus is calculated. In the ith iteration, i ≥ 100, the di�erence of
the current and the previous mean, x̄i− x̄i−1, is calculated. If this di�erence
is not greater than a previously �xed error bound, the simulation stops.
The error bound is relative to the mean x̄i. The factor for calculation of
the error bound is given with the input. The default value is 1% . The
pseudocode is given in algorithm 1.

Algorithm 1 Stop criterion for one simulation with the NPMPM

numberiter(i,error,mean)

Input: number of iterations i, error bound error, vector mean with mean
of �rst j �nal-cfu/mls as jth component

1: if i < 100 then
2: stop = FALSE
3: else
4: if |mean(i)−mean(i− 1)| > error ·mean(i) then
5: stop = FALSE
6: else
7: stop = TRUE
8: end if
9: end if
Output: stop

Values of cfu = 0 and cfu = 109 with p(0) = p(109) = 1
2 yield a worst

case �uctuation of the mean of cfus calculated. In this case the number
of iterations with outcome 109 follows a binomial distribution, e.g. it is
a random variable X ∼ Bin(n, p) with total number of iterations n and
probability p = 1

2 . The expected value of X is E(X) = n
2 and the variance is

V ar(X) = n
4 . The mean of the output-cfus of n iterations can be represented

as the random variable

Y =
109

n
X.
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With the linearity of the expected value it holds true that

E(Y ) =
109

2
.

The expected value does not depend on n, and for the variance of Y it holds
true that

V ar(Y ) =
1018

4n
.

Hence, the variance of the mean of the calculated cfus is in O( 1
n). Therefore,

the a posteriori estimator described in algorithm 1 is reasonable as a
breakpoint, because the variance of the mean decreases with increasing
number of iterations.

The error estimator compares two results with di�erent accuracy to
get an approximation of the true error. A similar approach is used in
adaptive numerical integration methods, where the di�erence between the
results of the applied integration method and a method of lower order is
used as an estimator for the true approximation error (see for example
[Deu�hard and Bornemann, 2002]). The error estimator is also a
form of bootstrap method, because it compares the mean of the whole
sample of cfu to the mean of a sub-sample without replacement (�jackknife�).

6.2. Experimental data

The experimental data used for �tting the NPMPM were extracted from the
ComBase [Anonymous, a]. The ComBase is a large database containing
microbial response data in laboratory growth medium and food environ-
ments. The associated ComBase Predictor provides predictive tools on
microbial responses to food environments.

The data used for running the model is stored in tables in a MySQL
database [Anomymous, 2006]. The data needed for the simulation must
be transferred to data frames in the global environment of the R session.
Figure 6.1 gives an overview of the links between tables in the database,
input of the model, and calculation.

The structure of the two tables in the MySQL database pictured in �gure
6.2 is similar to the structure in the ComBase. Not all information provided
by the ComBase is used in this thesis. The environmental conditions that
have the main in�uence on growth and death kinetics are the temperature,
the pH value and the aw value (see section 3.6). Fortunately these are the
information from the ComBase congruent with the accessible parameters of
the process steps.

In one table the name of the microorganism and speci�cation like stem or
biovar are stored with the temperature and the content of CO2. The pH
and aw value and a free-text �eld can provide information about matrix
characteristics. If no exact values are available, the assumed values of
temperature, pH and aw value can be noted down. Every series of measured
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Links between tables in the database, input and output
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Figure 6.1. Overview of the links between the information
stored in the database, input, algorithm and output

values has a unique id that links the �rst table with the second table that
provides the raw data. The second table contains the time in hours, and
the measured values at the speci�ed points in time as decadic logarithm of
the cfu. A graphical representation of this connection can be found in �gure
6.2.

series of measured 

values
measured values

id, organism, 

temperature, pH, aw

id of series, 

time, log10 cfu

raw_data measured_values

Figure 6.2. Overview of the links between the tables with
the experimental conditions and the measured cfus, respec-
tively

In this thesis a contamination of the milk supply chain with Listeria spp.
is used as an example. Hence, only the series of measured values for
Listeria spp. where downloaded from the ComBase. In table 6.1 and
�gure 6.3, a summary of the temperature range of this data is pictured. A
summary statistics is provided in section E.1.

Some of the series of measured values were discarded, because there were
multiple values at time zero. In the NPMPM the cfu are assumed to be
log-normally distributed, see assumption 2. Hence, the logarithm of the
cfu was tested for normality with the Shapiro-Wilk test. Sets of series



76 6. ASSUMPTIONS, MATERIAL AND METHODS

Table 6.1. Summary of the temperature distribution in the
series of measured values for Listeria spp.

Minimum 1st Quantile Median Mean 3rd Quantile Max

-20.00 5.00 12.00 20.34 28.00 90.00
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Figure 6.3. Histogram of the temperature of the series of
measured values for Listeria spp.

of measured values obtained at the same temperature and with the same
inoculum size were chosen. Only sets of at least 30 series of measured values
were tested. The number of time points at which the tests were performed
are listed in table 6.2. Unfortunately, in 77 of 80 sets the null hypothesis
(normally distributed set) was rejected. This may be partly due to the
broad range of pH and aw values at most temperatures, pictured in �gures
6.4 and 6.5.

Information about the dairy process chains was extracted from the lit-
erature, and some details are based on expert opinion. A process chain
can be described as succession of process steps with de�ned combinations
of time, temperature and pressure. The parameters of the process steps,
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Table 6.2. Temperatures with more than 30 series of mea-
sured values with the same inoculum size, and the number
of time points at which the cfu are tested for log-normality.
(4 and 4a, and 20 and 20a, are both done at 4◦C or 20◦C,
respectively, but with di�erent inocula)

Temperature in ◦C number of time points

0 10
2 7
4 12
4(a) 8
7 7
10 12
15 10
20 5
20(a) 7

the characteristics of the dairy staple, intermediate milk products and the
end product are stored in di�erent tables in a MySQL database. The
tables, and the links between them, were developed to guarantee unique
assignments, and to avoid redundant information. Linking is done by
unique ids. All tables contain one column for references and one for free-text
notes. Not all of the information stored in the tables is used by the NPMPM.

Growth and death of microorganisms are in�uenced by the environmental
conditions. The biggest in�uence have temperature, pH value and aw value
(see section 3.6). The in�uence of pressure on growth and death kinetics is
neglected in the NPMPM, because the data in the ComBase were obtained
under atmospheric pressure. Nevertheless, pressure data can be stored in
the MySQL database. Time and temperature are technical parameters of
one process step, whilst pH value and aw value are characteristics of the
matrix that may be present in other process steps, too. Therefore, the
information is stored in di�erent tables.

One table contains the process chains with a name and the id of the end
product. In another table the process parameters for the process steps are
stored as minimum and maximum of time, temperature, and pressure (if
available). The id of the (intermediate) milk product associated with the
process step links to the table containing matrix characteristics (see �gure
6.6). The id of the corresponding process chain is used for linking, and the
position of the process step in the process chain is stored, too. Additionally,
a factor to take into account for a possible dilution or accumulation of
bacteria in the process step is memorised. In the table containing the matrix
characteristics, the minima and maxima of pH and aw value, water, salt and
fat content are stored. Free-text �elds for information about preservatives
and synonyms are provided.
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Figure 6.4. Histograms of pH values for the sets of series of
measured values with similar temperature and inoculum size,
sorted by temperature(4 and 4a, and 20 and 20a, are done at
4◦C and 20◦C, respectively, but with di�erent inocula)

The references are stored in a table containing an id, entry type, author,
title, year of publication, journal, publisher, editor, chapter, pages, URL,
and how it was published. This structure is similar to the one used by
LATEX in the bib�le.

6.3. Assumptions

A model is always a simpli�cation of the reality, because the entanglements
between the causalities included are less complex than the causalities in
reality. The preconditions made in development of a model must be satis�ed
when using it. Otherwise, the output of the model is useless. The default
methods in the NPMPM are based on the following assumptions.

Assumption 1. Growth and death kinetics are exponential.
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Figure 6.5. Histogram of the aw values for the sets of series
of measured values with similar temperature and inoculum
size, sorted by temperature (4 and 4a, and 20 and 20a, are
done at 4◦C and 20◦C, respectively, but with di�erent inoc-
ula)
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Figure 6.6. Overview of the links between the process
chain, the process steps and the associated matrices
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Exponential growth and death of all bacteria present in the population
is the simplest assumption for kinetics, see section 3.2. For such kinetics
the logarithm of population size depends linearly on time. The resulting
log-linear curve can be approximated by ordinary linear regression, see
section 5.1. Approximation by ordinary linear regression will be referred
to as global linear interpolation. Global linear interpolation is the default
interpolation method currently provided by the NPMPM.

Lag phase, stationary phase, or other deviations from log-linearity can
not be approximated by global linear interpolation. A local (piecewise)
linear interpolation usually yields a better approximation. Local linear
interpolation corresponds to an interpolation of the logcfu/ml with splines
of order one. It is the second interpolation method provided by the NPMPM.
Calculated logcfu/ml at time s is computed from two adjacent measurement
points by a simple linear equation. These two points are the cfu/ml
at maximal measurement time smaller than s, and cfu/ml at mimimal
measurement time bigger than s. Previous population kinetics is taken into
account only indiretly as di�erence between start-cfu/ml and cfu/ml at
maximal measurement time smaller than s. Local linear interpolation and
other splines yield exact values at grid points.

Time t

log (N(t))

0

Figure 6.7. Comparison of approximation with global lin-
ear interpolation (blue line) and local linear interpolation (red
line) for experimental data (black dots) from a population
with a sigmoid growth curve

Assumption 2. For one �xed parameter combination the bacterial counts
follow a log-normal distribution.

Several authors assume log-normal distributions for bacterial counts, e.g.
[Robertson, 1932], [Delignette-Muller and Rosso, 2000]. In a grow-
ing cell population generation times of individual cells vary over a wide range
[Banks, 1994], [Schaechter et al., 1962], there may also be a day-to-day
variation in the mean generation time [Kelly and Rahn, 1932]. Under the
assumption of exponential growth, the cfu of populations grown under the
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very same conditions for a �xed time t follows nearly a log-normal distri-
bution. Dean and Sir Hinshelwood [Dean and Sir Hinshelwood, 1966]
found that the generation times are approximally normally distributed (see
�gure 6.8). Powell and Errington [Powell and Errington, 1963] reported
that the growth medium in�uences the width of dispersion of generation
times. Generation time is the time needed for growing by factor 2, and
hence, a multiple of the time needed for growing by any other factor. Appli-
cation of the decadic logarithm to equation 3.2.1 yields

logN(t) = logN0 + β · t(6.3.1)

= c1 + c2 · β.(6.3.2)

With frequency β of growing by a factor of e following a normal distribution,
logN(t) is normally distributed, and therefore, the cfus follow a log-normal
distribution.
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Figure 6.8. Distribution of generation times - the
crosshatch area marks a normal distribution with the same
mean, from [Dean and Sir Hinshelwood, 1966]

Assumption 3. There are lower and upper bounds for bacterial counts per
volume. The maximal bacterial count is 109 cfu per ml. More than one
bacterium per ml must be present for growth.
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Under optimal growth conditions there are up to 109 cfu/ml. In the
example of the milk supply chain concentrations of more than 109 cfu/ml
will not occur, even in the case of an intentional contamination (see section
3.4). Counts are non-negative. The data from the ComBase provide the
decadic logarithm of the cell count. A number of zero corresponds to a
contamination below detection [Baranyi, 2011], but 1 = log 0. In practice
this may make barely a di�erence, but during calculation it must be taken
into account. Therefore, we assume that more than one bacterium is
necessary for growth.

Assumption 4. Dynamics of growth and decay does not depend on initial
bacterial concentration (inoculum size).

But the start-cfu/ml may have an e�ect on growth and survival kinetics,
see section 3.3. Unfortunately, there are not enough experimental data in
the ComBase to take into account for inoculum size. The default selection
method does not choose appropriate series of measured values according to
initial bacterial counts; the trivial case of an initial value of zero bacteria is
excluded. Therefore, the default interpolation method makes adjustments
for initial bacterial counts.

Assumption 5. The history of the cells, including stresses and potential
injury, is of no in�uence.

Like described in chapter 3, the history of the cells does have an in�uence on
growth and death kinetics. But the data from the ComBase do not contain
information about the previous cultivation conditions. Therefore, the history
of the cells can not be taken into account when choosing the appropriate
series of measured values during a simulation of the NPMPM. When data
containing the pre-experimental cultivation conditions are available, it is
recommended to implement a method for selection of the appropriate series
of measured values in the NPMPM that incorporates this information.
A general framework for inclusion of memory models into survival mod-
els was introduced by Vaidya and Corvalan [Vaidya and Corvalan, 2009].

Assumption 6. The parameters of the process steps are uniformly dis-
tributed.

The distribution of process step parameters in dairy manufacture is not
known [Anonymous, 2010a]. The uniform distribution is used when the
only parameters known are the minimum and the maximum. When the mode
is known, too, the use of a PERT distribution is recommended [Vose, 2008].

6.4. Probability distributions

In the NPMPM certain parameters follow certain probability distributions,
namely the continuous uniform distribution, the normal distribution, the
log-normal distribution and the Pert distribution. The interested reader
may consult [Vose, 2008] or [Bosch, 1998] for detailed information about
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probability distributions.

The process parameters are assumed to be uniformly distributed (assump-
tion 6). Under �xed conditions the number of bacteria after a certain time
duration is assumed to be log-normally distributed. Hence, the decadic
logarithm of the cfu is assumed to follow a normal distribution. For
modelling of expert opinions often the Pert distribution (a version of the
beta distribution) is used. In the validation, the assumption of a normal
distribution is compared with the Pert distribution.

A continuous random variable X is called uniformly distributed in [a, b], if
it has the probability density function

f(x) =

{
1
b−a , for a ≤ x ≤ b,
0, otherwise.

Its mean and variance are given by

E(X) =
a+ b

2

V ar(X) =
(b− a)2

12
The uniform distribution is determined by the interval limits of its domain.
It is used when all possible outcomes have the same probability or when
nothing but the minimum and maximum value is known about the under-
lying probability distribution. Figure 6.9 shows a plot of the probability
density function of a continuous uniform distribution.
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Figure 6.9. Probability density function of a continuous
uniform distribution with [a, b] = [0, 1]

A continuous random variable X with mean µ and variance σ2 is called
normally distributed, X ∼ N(µ, σ2), if it has the probability density function

f(x) =
1√

2π · σ
exp

(
−(x− µ)2

2σ2

)
.
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Its mean and variance are given by

E(X) = µ,

V ar(X) = σ2.

The normal distribution is determined by its mean µ and variance σ2. It is
also called Gaussian distribution. Examples for normally distributed phe-
nomena are milk production in cows, and deviations from target values in
industrial processes [Limpert et al., 2001]. Figure 6.10 shows a plot of the
probability density function of the standard normal distribution N(0, 1).
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Figure 6.10. Probability density function of the standard
normal distribution, N(0, 1)

When independent random variables interact additionally, the resulting
random variable is normally distributed. The domain of the normal distri-
bution is R. But many random variables do not yield negative values, e.g.
lengths and weights. When the distribution is not symmetrical, often the
logarithm of the random variables is normally distributed. This is the case
when independent, non-negative random variables interact multiplicatively.

A continuous random variable X with non-negative realisations is called
log-normally distributed, if its logarithm is normally distributed, lnX ∼
N(µ, σ2). Then X has the probability density function

f(x) =

{
1

x
√
2πσ

exp
(
− (lnx−µ)2

2σ2

)
, for x > 0,

0, otherwise.

Its mean and variance are given by

E(X) = exp

(
µ+

σ2

2

)
,

V ar(X) = exp
(
2µ+ σ2

) (
exp

(
σ2
)
− 1
)
.
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Figure 6.11 shows a plot of the probability density function of the log-normal
distribution. Often latent periods of infectious diseases are log-normally
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Figure 6.11. Probability density function of the standard
log-normal distribution

distributed [Limpert et al., 2001]. An overview of the log-normal distri-
bution in biological sciences is given in [Koch, 1966] and [Koch, 1969].
When the variation is small, both normal and log-normal distributions �t
well [Limpert et al., 2001].

6.5. Statistical Tests

In this thesis, statistical tests are used to analyse the data and in model
validation. The signi�cance level was set to α = 0.05. In the tests, a test
statistic is calculated and compared with a critical value. The tabulated
critical value depends on the chosen level of signi�cance. Sets of series of
measured values from the ComBase with matching parameters were tested
with the Shapiro-Wilk test for normality of the log cfu. The two-sample
Kolmogorov-Smirnov test is used to test if the NPMPM can reproduce the
data it was built with.

The Shapiro-Wilk test tests for normal distribution. Let X be a continu-
ous random variable with distribution function F (x) = P (X ≤ x). The
null hypothesis is that the sample was taken from a normally distributed
population.

H0 : F (x) ∼ N(µ, σ2).
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The alternative hypothesis is that the corresponding population is not nor-
mally distributed,

H1 : F (x) � N(µ, σ2).

If the calculated test statistic is smaller than the critical value the null
hypothesis is discarded. The Shapiro-Wilk test implemented in R calculates
a p-value, too. The null hypothesis is discarded when the p-value equals, or
is smaller than the level of signi�cance.

The two-sample Kolmogorov-Smirnov test tests if two samples follow the
same distribution. Let X and Y be continuous random variables with dis-
tribution functions F (x) = P (X ≤ x) and G(y) = P (Y ≤ y), respectively.
Let the data sample and the output of the corresponding simulation consist
of realisations of X and Y , respectively. The null hypothesis is that the
random variables have the same distribution function,

H0 : F (x) = G(x), for all x.

The alternative hypothesis is inequality of the distribution functions,

H1 : F (x) 6= G(x), for at least one x.

The distance between the empirical distribution functions of the samples
is quanti�ed. If it is bigger than the critical value, the null hypothesis
is discarded. The two-sample Kolmogorov-Smirnov test implemented in
R (ks.test(x,y,· · · )) calculates a p-value, too. The null hypothesis is
discarded when the p-value equals, or is smaller than the level of signi�cance.

In theory, a sample from a population following a continuous probabil-
ity distribution should not contain tied values. But experimental data
may contain ties, because the accuracy of measurement is limited. The
Kolmogorov-Smirnov test returns a warning message when there are ties.
This can be prevented by addition of a small amount of noise, e.g. by the
use of the R function jitter.

In validation of the NPMPM a signi�cance level of 5% is chosen for both tests.
Hence, a p-value bigger than 0.05 means that the null hypothesis is not
rejected. In this thesis, the null hypotheses are the working hypotheses ,
i.e., a p-value bigger than 0.05 is requested. For the Shapiro-Wilk test that
means the tested sample originated from a normally distributed population
(with an error probability of 5%). For the Kolmogorov-Smirnov test that
means the two tested samples originated from the same population (with
an error probability of 5%).

6.6. Programming language

The NPMPM is implemented in the R programming language; an R
package containing the model is downloadable from CRAN (http://cran.r-
project.org/) [R Development Core Team, 2010]. The full documenta-
tion of the R package is included in this thesis in appendix D. R is often
used in statistical software development and data analysis. It is part of the
GNU project; its source code is freely available under the GNU General
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Public License [Anonymous, b].

The decision to use R was based on the fact that spreadsheet-based
program, like @Risk, Crystal Ball or Model Risk can not easily cope with
large amounts of data and big numbers. For example, a test calculation of
bacterial growth done with Excel and @Risk for an initial contamination
of 100 bacteria and reasonable growth rate produced an error message in
simulating 17h of growth.

6.7. The grofit R package

Methods from the grofit package [Kahm et al., 2010] are used for
evaluation of experimental data. grofit was developed by Kahm et
al. to derive dose-response curves. It contains methods for �tting four
parametric and one non-parametric growth model to estimate characteristic
growth parameters. Fitting is done by non-linear least squares. Available
parametric models are the logistic growth model, the Gompertz model, the
modi�ed Gompertz model, and the Richards model. Smoothed cubic splines
are used as model-free method. The length of the lag phase, the growth
rate, and the maximum cell growth are estimated from the �tted curves.

6.8. Performance evaluation

Without an evaluation of its performance a model is useless, because there
is no evidence about the relation of its output and the reality. There are
several approaches for evaluation, depending on the type of model. It must
be ensured that the model does not contain errors or bugs and that the
algorithm has been properly implemented. Validation ensures that the
model represents and correctly reproduces the behaviours of the modelled
processes in the real world, and it examines if the model addresses the
right problem. It must be assured that the data the model was built with
can be recomputed (internal validation). The ability to reconstruct data
not used to build the model should be investigated (external validation).
Examination of the in�uence of �uctuations in model parameters on the
output (sensitivity analysis) is relevant, too.

For evaluation the residuals of predicted and observed growth parameters
are consulted. This can be done either as ratio, as a bias factor or accuracy
factor introduced by Ross [Ross, 1996], or on means square di�erences
[Baranyi et al., 1999]. Often the predicted growth parameters are plotted
against the corresponding observed values, and the deviation from the
identity line is taken as measure of inaccuracy. The interested reader may
refer to chapter 12 of [McCullagh and Nelder, 1999] for a collection of
other model checking approaches.

In sensitivity analysis the dependencies of the output on the choice of model
parameters, and on �uctuations of the input are investigated. A traditional
method is to use arti�cial data without noise and restrict the investigation to
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certain regions of interest. Then for each set of output values the standard
errors are computed. Delignette-Muller and Rosso calculated the Spearman
rank correlation coe�cients of the model response, with each variable input
of the model [Delignette-Muller and Rosso, 2000]. The Spearman rank
coe�cient ρ is a measure for monotone dependence of two ordinal variables.
The variation in one variable with respect to changes in another parameter
or in the initial conditions can be quanti�ed by traditional sensitivity
functions (TSF) or by generalised sensitivity functions (GSF). The TSF
depend on the parameters and the time. They are the �rst derivatives with
respect to each parameter and the components of the initial condition,
respectively. The TSF have local character, e.g. the sensitivity of the output
corresponding to a certain parameter may vary in di�erent time intervals
[Ernstberger, 2008]. The GSF depend on the time. They are discrete
cumulative functions [Ernstberger, 2008].

The output of the NPMPM is a distribution of cfu/mls. Therefore, a direct
comparison of corresponding values is impossible. We will use the statistical
tests described in section 6.5 to compare experimental and simulated
distributions.

6.9. Communication of probability information

The output of the simulations done with a predictive model often has
to be communicated to diverse stakeholder groups, e.g. in context of
risk assessment or risk analysis. These stakeholders can be industry
professionals and their representatives, scientists, policy o�cers, programme
administrators, economists, produce and quarantine inspectors, veterinary
o�cers or trading partners [Caponechia, 2009]. In some cases an e�ective
communication to the public or customers is needed, too. The output of a
deterministic best-, average- or worst case simulation is one single number
that can easily be discussed. But the communication and interpretation of
the probability information obtained from a probabilistic model to people
without mathematical background and not involved in the development of
the model is a di�cult task.

Caponecchia in [Caponechia, 2009] suggests graphical display of the key
probabilities, a proper documentation and stakeholder workshops. He points
out the di�erence in risk interpretation for low probabilities, presented in
traditional probability estimates or as relative risk, respectively. The use
of reference classes to ensure correct interpretation of probabilities, and
a combined numerical and verbal presentation that links the numerical
probabilities with terms like `average` or �likely� is recommended, too.

The R package NPMPM contains a function that produces a .pdf-�le con-
taining information about the current simulation. This function is named
makepdfoutput. It takes a text as input, e.g. the names of the microorgan-
isms and the process chain. The .pdf-�le constructed contains

• a timestamp with its construction time,
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• the text from the input,
• a histogram of the calculated cfus,
• a summary statistics,
• a list of the inoculum size(s) in the process steps,
• the number of iterations,
• the relative error bound for the �uctuation of the mean for stopping
iterating,
• a density plot of the calculated cfus,
• the number of calculations for one process step with less than 30
appropriate series of measured values,
• and the information if there were process steps where the ranges of
temperature, pH and aw value had to be shifted to get appropriate
series of measured values.

This .pdf-�le will provide a helpful tool for systematic �ling, and for
communication of the results to stakeholders. For a brief description of
the function and the R package NPMPM see appendix D. An example for a
simulation of the NPMPM is given in section 8.8.





CHAPTER 7

A New Probabilistic Model in Predictive
Microbiology

The new probabilistic model in predictive microbiology (NPMPM) computes
the distribution of possible contamination sizes in a �nished product at the
end of a process chain. It uses Monte Carlo simulation. It starts at the �rst
process step with a contamination, and calculates the contaminations in
linear succession of the following process steps.

The NPMPM computes concentrations, i.e., numbers of bacteria in a reference
volume of one ml. The terms cfu/ml and logcfu/ml refer to the number of
bacteria in one ml that was measured in an experiment, and to the decadic
logarithm of cfu/ml, respectively. Calculated bacterial concentration, and
decadic logarithm of the calculated bacterial concentrations, are termed
calculated cfu/ml and calculated logcfu/ml , respectively. The concentration
of bacteria at the beginning of a process step is denoted by start-cfu/ml ,
the concentration of bacteria at the end of a process step is denoted by
end-cfu/ml . The calculated concentration of bacteria in the end prod-
uct, i.e., the end-cfu/ml of the last process step, is referred to as �nal-cfu/ml .

In chapters 2-6 knowledge necessary for modelling bacterial growth and
decay is gathered. In chapter 2 causes and impact of foodborne diseases
are described, showing the need for knowing the underlying mechanisms of
bacterial growth and decay to prevent foodborne illness. These mechanisms
are investigated in chapter 3. The kinetics of a population of bacteria
depend on a multitude of interacting factors. Environmental conditions,
e.g. the matrix in which bacteria are located, heavily in�uence population
dynamics. Hence, as an example for food processing, the food supply
chain of milk and dairy products is discussed in chapter 4. Options to
mathematically describe the kinetics of bacterial growth and survival are
discussed in chapter 5. In chapter 6 methods and assumptions used in
development and validation of the NPMPM are characterised.

This chapter presents the NPMPM. First, the main idea is described in section
7.1. Then a top-down approach is used to introduce the algorithm in
sections 7.2 - 7.5. Obligatory and optional input is characterised in section
7.6. In section 7.7 the output of the NPMPM is described. In section 7.8 the
conformity of the algorithm to assumption 2 from section 6.3 is shown. A
comparison to existing approaches in predictive microbiology is given in
section 7.9.

91
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7.1. Main idea

In food processing, predictive microbiology is used for calculation of
bacterial counts in end products or intermediate products during processing.
This is done for certain environmental conditions and certain points in time,
e.g. after a heat treatment with a de�ned temperature-time combination.

The NPMPM is a probabilistic model, it does not include stochastic processes.
Usually, probabilistic models use probability distributions of parameters
for incorporating both variability and uncertainty, yielding a closed-form
expression that describes the whole growth or survival curve, see section
5.5. Secondary models are included to make predictions under non-static
conditions. These secondary models assume a certain dependence of growth
or survival kinetics parameters on environmental conditions, see section 5.5.

The NPMPM is based on a new, di�erent approach for including variability and
uncertainty, and instead of describing the whole growth or survival curve, it
aims at predicting the possible cfu/ml at one certain point in time s, e.g. at
the end of a process step for calculation of end-cfu/ml. A set of calculated
cfu/ml at time s is computed. This set is assumed to be a sample from
a population of cfu/ml following a certain probability distribution, e.g. a
log-normal distribution. The parameters of this probability distribution are
estimated from the calculated sample. Finally, the end-cfu/ml is randomly
drawn from this probability distribution. This procedure is pictured in
�gure 7.1.

probability
distribution

one random value
=

end-cfu/ml

set (sample) of 
calculated cfu/mls

Figure 7.1. The main idea of the NPMPM

For computing a set of calculated cfu/ml, experimental data that match
current process step conditions are gathered. One experiment is represented
in this data set as series of measured values, i.e., one cfu/ml or logcfu/ml per
measured time. From every single series of measured values one calculated
logcfu/ml at time s is computed by �tting one deterministic primary model
to its data points. An adaptive choice of primary models is possible, because
not every series of measured values has to be �tted with the same model.
One set of experimental data yields a set of calculated cfu/mls at time s.
This set is used to calculate the end-cfu/ml like described above. The whole
procedure is pictured in �gure 7.2.

Usually, process step conditions are not �xed values, but intervals (see
assumption 6). In the NPMPM all experimental data available that match into
these intervals is selected. Hence, the change of population kinetics due to
environmental conditions is included without the use of a secondary model.
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database 
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set of experiments
that match 

process step conditions

set of possible concentrations
of bacteria at time s

Figure 7.2

To model continuously changing process conditions, these changes have to
be discretised, i.e., the process step is broken down in distinct process steps
with constant conditions. An example for segmentation of a fermentation
process during manufacture of yoghurt is pictured in �gure 7.3.

pH 6.5

pH 4.5

Figure 7.3. Segmentation of fermentation into sub-steps for
modelling manufacture of yoghurt

7.2. General structure

The NPMPM uses Monte Carlo simulation. It contains three nested loops
(see �gure 7.4). The outer loop cycles through the iterations of the
Monte Carlo simulation (see section 7.3). In every iteration of the
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outer loop one �nal-cfu/ml is calculated. Therewith, during one simu-
lation a set of �nal-cfu/mls is computed. This set is the output of the NPMPM.

Nadine Schöne,  2010-11-15 Page 14

model

Model structure

outer loop:
iterations

inner loop:
process steps

innermost loop:

series of 

measured values

Figure 7.4. The three nested loops in the NPMPM

In every iteration of the outer loop, the inner loop cycles through all process
steps of the process chain (see section 7.4). In every iteration of the inner
loop one end-cfu/ml is calculated. For this purpose, a set of experimental
data that match current process step conditions is selected. From this data
a set of calculated cfu/mls is computed. This set of bacterial concentrations
is used for calculation of the end-cfu/ml. The process steps are handled in
linear order. The end-cfu/ml of one process step is used for calculation of
the start-cfu/ml of the next process step. The end-cfu/ml of the last process
step in the process chain is the �nal-cfu/ml of one iteration of the outer loop.

In every iteration of the inner loop, the innermost loop cycles through all
series of measured values in the set of experimental data selected previously
in the inner loop (see section 7.5). In every iteration of the innermost
loop, one calculated cfu/ml is computed from one series of measured values.
This yields a set of calculated cfu/mls that is used for calculation of the
end-cfu/ml in the inner loop. The series of measured values do not fol-
low a certain order, they are handled in the order provided by the inner loop.

The chosen structure of the model allows for a varying number of pro-
cess steps, and for repeated contamination during processing. The input
is checked for consistency, e.g. if all inoculum sizes are zero, the algorithm
terminates with a warning. Then the �rst process step with a contamination
is determined, and the calculation starts with this process step.

7.3. Outer loop

One iteration of the outer loop is one iteration of the Monte Carlo simulation.
In one iteration the propagation of contamination during the whole process
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chain is computed (in the inner loop, see algorithm 3). This calculation
yields a �nal-cfu/ml that is stored in a vector as output. Additionally,
in every iteration the mean of the hitherto calculated �nal-cfu/mls is
calculated and stored in another vector. The outer loop stops when the
�uctuation of this mean between two consecutive iterations has become
small enough. Termination is ensured by the stop criterion described in
algorithm 1 in section 6.1: Worse case �uctuation is a O

(
1
n

)
. Hence, the

algorithm always terminates.

The outer loop returns the vector with the set of �nal-cfu/mls and the
vector containing the mean of the �rst j �nal-cfu/mls as jth component.
Hence, in one simulation a distribution of �nal-cfu/mls is computed. This
distribution of �nal-cfu/mls is also the output of the NPMPM. The pseudocode
of the outer loop is given in algorithm 2.

Algorithm 2 Iterations of the Monte Carlo simulation (outer loop)

Input: error bound, inoculum size, methods used during the simulation
{stop criterion, calculation for one process step, selection of experimental
data, selection of process step duration, interpolation method}

1: iterations = 0 {initiate counter for number of iterations}
2: while stop criterion is not ful�lled do {algorithm 1 from section 6.1

returns FALSE}
3: increase the counter: iterations = iterations + 1
4: calculate the �nal-cfu/ml {in inner loop,see algorithm 3}
5: save �nal-cfu/ml
6: compute and save mean of hitherto calculated �nal-cfu/mls
7: end while
Output: vector with �nal-cfu/mls and vector with mean of �rst j �nal-

cfu/mls as jth component

7.4. Inner loop

In every iteration of the outer loop, the inner loop cycles through the
process steps of the process chain. It starts with the �rst process step
with a contamination, and iterates over the successional process steps in
linear order. The start-cfu/ml of the current process step is calculated as
sum of the end-cfu/ml of the previous process step (or zero in case of the
�rst step), and the current inoculum size. The parameter intervals of the
current process step, e.g. temperature, are determined as minimum and
maximum values. One random point in time is drawn from the duration
interval. Then the experiments matching the conditions of the process step
(temperature, pH value and aw value) are selected according to algorithm
5. From the set of series of measured values and the start-cfu/ml, one
set of calculated cfu/mls is computed in the innermost loop (see algorithm 6).

This set is assumed to be a sample from a normal distribution, according
to assumption 2 in chapter 6. Parameters of a normal distribution are
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estimated from this sample, and one value is drawn. This value is multiplied
by the process step factor to take into account for accumulation and
attenuation. If the calculated value is bigger than 109, it is rounded down
to 109, and if it is equal or smaller than one, it is rounded down to zero,
according to assumption 3. This calculations yield the end-cfu/ml of the
current process step. The loop terminates when the end-cfu/ml of the
last process step, i.e., the �nal-cfu/ml, is calculated. The �nal-cfu/ml is
returned in a vector by the outer loop. In �gure 7.5 one iteration of the
inner loop (under the assumption that the cfus are log-normally distributed)
is pictured. The pseudocode of this default inner loop is noted in algorithm 3.

approriate 

series of measured 

values

one calculated 

logcfu/ml per series

end-cfu/ml

start-cfu/ml 

Distribution of 
calculated logcfu/mls 

Figure 7.5. Calculation of one end-cfu/ml under the as-
sumption that the cfus are log-normally distributed (inner
loop)

If experimental data show no normal distribution of logcfu/mls, and
information about the actual probability distribution is lacking, using the
frequency distribution of calculated logcfu/ml instead of �tting another
probability distribution will usually yield a better approximation. In this
case, it su�ces to draw one random series of measured values, and to
compute one calculated logcfu/ml from this series of measured values,
instead of calculating a set of values from which one random value is drawn.
This procedure reduces running time. The one calculated logcfu/ml is then
used to calculate the end-cfu/ml, see algorithm 4.

One crucial step in the NPMPM is the selection of appropriate series of
measured values. The default method is described in algorithm 5. It returns
the selected series of measured values as list of ids.

The default method �rst selects all experiments with conditions matching
the parameter intervals of the current process step. If the chosen set of
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Algorithm 3 Inner loop cycling in linear order over the process steps in the
process chain(default setting assuming a log-normal distribution of bacterial
counts at one point in time)

Input: inoculum size, end-cfu/ml of previous process step, current process
step, methods {selection of experimental data, selection of process step
duration, interpolation method}

1: min = number of the �rst process step in the process chain with a con-
tamination

2: max = number of the last process step in the process chain
3: i = min
4: while i < max+1 do
5: if i = 1 then
6: set start-cfu/ml = inoculum size
7: else
8: set start-cfu/ml = inoculum size + end-cfu/ml of previous process

step
9: end if
10: if start-cfu/ml = 0 and there is no further contamination in following

process steps then
11: set end-cfu/ml = 0
12: else
13: get parameter intervals for current process step
14: draw one random point in time from process step duration interval
15: select appropriate series of measured values{see algorithm 5}
16: compute a set of calculated logcfu/mls from this set of series {in

innermost loop, see algorithm 6}
17: estimate parameters of the probability distribution of the population

of this sample
18: draw one random value x from this probability distribution
19: set end-cfu/ml = factor·10x

20: if end-cfu/ml > 109 then
21: set end-cfu/ml = 109

22: end if
23: if end-cfu/ml ≤ 1 then
24: set end-cfu/ml = 0
25: end if
26: end if
27: end while
Output: end-cfu/ml (in last process step = �nal-cfu/ml)

appropriate series of measured values is too small, i.e., if there are less
than 30 series of measured values, the parameter range is successively
widened until a certain threshold. First, the interval of permitted aw values
is extended by ±0.05. Then, the range of the pH values is extended by
±1. After that, experiments with missing values in aw values, pH values
and �nally in both are included. If the number of appropriate series of
measured values still do not su�ce, all series of measured values that �t in
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Algorithm 4 Inner loop cycling in linear order over the process steps in the
process chain(using the frequency distribution of calculated logcfu/ml), the
part that di�ers from algorithm 3 is boldly printed in italics

Input: inoculum size, end-cfu/ml of previous process step, current process
step, methods {selection of experimental data, selection of process step
duration, interpolation method}

1: min = number of the �rst process step in the process chain with a con-
tamination

2: max = number of the last process step in the process chain
3: i = min
4: while i < max+1 do
5: if i = 1 then
6: set start-cfu/ml = inoculum size
7: else
8: set start-cfu/ml = inoculum size + end-cfu/ml of previous process

step
9: end if
10: if start-cfu/ml = 0 and there is no further contamination in following

process steps then
11: set end-cfu/ml = 0
12: else
13: get parameter intervals for current process step
14: draw one random point in time from process step duration interval
15: select appropriate series of measured values{see algorithm 5}
16: draw one random series of measured values
17: compute one calculated logcfu/ml = x from this series of

measured values {in innermost loop, see algorithm 6}
18: set end-cfu/ml = factor·10x

19: if end-cfu/ml > 109 then
20: set end-cfu/ml = 109

21: end if
22: if end-cfu/ml ≤ 1 then
23: set end-cfu/ml = 0
24: end if
25: end if
26: end while
Output: end-cfu/ml (in last process step = �nal-cfu/ml)

the temperature range of the process step are included, regardless of the
other parameters. If yet not one single series of measured values is selected,
the temperature range will be extended until at least one series of measured
values is found; the other parameters are not considered. In this case for
every extension of ±1◦C a warning is printed on the screen; and the output
of such a simulation must be interpreted very carefully.
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Algorithm 5 Selection of appropriate series of measured values

apsomv(process step)

Input: experimental data and process step {data frame raw_data and one
row of data frame psteps, see table 7.2}

1: get all series of measured values with conditions that �t into the para-
meter intervals of the current process step

2: while less than 30 series of measured values are selected do
3: gradually widen the range of the permitted aw values and pH values

until at least 30 series of measured values are selected, or until all series
of measured values in the speci�ed temperature range are selected

4: end while
5: while there is yet not a single series of measured values selected do,
6: print a warning
7: widen the temperature range by ±1◦C (ignoring aw and pH values)
8: end while
Output: ids of the selected series of measured values

7.5. Innermost loop

In every iteration of the inner loop, the innermost loop cycles through
the selected experiments. It computes the decadic logarithm of bacterial
concentration. From every appropriate series of measured values one cal-
culated logcfu/ml is computed. Hence, it yields a distribution of calculated
logcfu/mls. If the start-cfu/ml is zero, the end-cfu/ml must be zero, too.
Therefore, the calculated logcfu/ml is set to -1035, yielding a calculated
cfu/ml of approximately zero. The pseudocode of the innermost loop is
noted in algorithm 6.

First, extrapolation is excluded. If the timespan of the experiment is
smaller than the process step duration, a warning �No Extrapolation�
is printed in the shell, and the calculated logcfu/ml is set to NA. For a
positive start-cfu/ml, one calculated logcfu/ml is computed by interpolation.
If the number of data points in the series is not su�cient for the selected
interpolation method, no calculated logcfu/ml can be computed from this
series of measured values. It may occur that there are no appropriate series
of measured values with a su�cient timespan and a su�cient number of
data points. In this case the simulation terminates with an error message
due to missing data.

The default interpolation method is an ordinary linear regression of the
logcfu/ml over time. It returns the calculated logcfu/ml at one point in time.
This point in time was drawn from the uniform distribution of the process
step duration, see algorithm 3. Another interpolation method provided by
the R package is a local linear interpolation. An overview of the innermost
loop with interpolation by linear regression is pictured in �gure 7.6.
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Algorithm 6 Calculation of calculated logcfu/ml for one series of measured
values (innermost loop)

Input: start-cfu/ml, process step duration, id of one series of measured val-
ues, measured values {data frame measured_values, see table 7.2}

1: for all appropriate series of measured values do
2: if timespan of measurements is smaller than duration of process step
then

3: set calculated logcfu/ml to NA
4: print warning �No Extrapolation�
5: else
6: if start-cfu/ml = 0 then
7: set calculated logcfu/ml = -1035

8: else
9: compute one calculated logcfu/ml from the series and the start-

cfu/ml
10: end if
11: end if
12: end for
Output: calculated logcfu/mls

approriate series

of

measured values

logcfu/ml

time

one

calculated

logcfu/ml

Figure 7.6. Calculation of one calculated logcfu/ml from
one experiment with linear regression as interpolation method
(innermost loop), with process step duration t

7.6. Input

Part of the information essential for a simulation must be passed as input to
the main method npmpm, other information must be provided as data frames
in the global environment of the R session. A data frame (data.frame)
is a matrix able to contain di�erent data types. Especially data frames
containing experimental data might be big, and passing this information as
entry to npmpm could signi�cantly slow down simulation. An overview of the
input essential for a simulation is given in table 7.1. Figure 6.1 pictures the
links between the input and the calculation.

Process steps, corresponding (intermediate) matrices, and experimental
data must be provided as data frames. Composition of the essential data
frames and links in between them do match the structure given by tables in
the MySQL database described in section 6.2. The intersection of processing
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Table 7.1. Obligate and optional input of the NPMPM

information provided as obligate or optional

methods called during a simulation entry optional
error bound entry optional
inoculum sizes entry obligate
matrices data frame obligate
process steps data frame obligate
series of measured values data frames obligate

parameters and experimental parameters are the environmental conditions
temperature, pH and aw value. Therefore, these parameters are selected as
essential parameters.

Experimental data is provided in two data frames. The data frame raw_data
contains experiments done with the microorganism of interest, with exper-
imental conditions temperature, pH and aw value. The measured values
data frame measured_values corresponds to the experiments. Storing the
experimental data in one data frame only, would lead to redundant storage
of experimental conditions. Additionally, the process of selecting series of
measured values matching certain experimental conditions would be slowed
down.

Restricting raw_data to the microorganism of interest is mandatory, because
the default methods do not query raw_data during simulation to select for
experiments done with a certain bacterium. It is recommended to restrict
measured_values, too, but it is not compulsory. Selection of experiments
matching the microorganism of interest before the simulation has some
advantages. It speeds up simulation, because multiple searches during
calculation are faster in a smaller data frame. In experiments pathogens
are often substituted by non-pathogenic bacteria. For using the surrogate
data for calculation, they only have to be provided in the data frames. An
alteration of the microorganism of interest in raw_data can restrict the
simulation to any number of certain strains or biovars, or to experiments
done with a special matrix. If another method of selection of experiments
than the default method is favoured, the name of the corresponding R
function (written by the user) can be passed to npmpm. The link between
raw_data and measured_values is pictured in �gure 6.2.

The process chain of interest is not passed to npmpm, but is represented in
data frames with the process step conditions and the characteristics of the
corresponding (intermediate) matrices. The data frame psteps lists the
process steps with the parameters temperature and duration, the position of
the process step in the process chain, and a factor that describes attenuation
or accumulation of bacteria in the process step, e.g. in dairy processing an
accumulation in cream during separation. The data frame matrix describes
the (intermediate) milk products by means of their pH and aw value. The
link between psteps and matrix is pictured in �gure 6.6. It is mandatory to
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Table 7.2. Mandatory data frames and their obligatory structure

data frame column names content

psteps id unique id
temp_min minimal temperature in ◦C
temp_max maximal temperature in ◦C
time_min minimal duration in s
time_max maximal duration in s
matrix_id id of the corresponding (intermediate) milk

product for the process step
factor takes account for attenuation or accumulation

of bacteria
stepnumber position in the sequence of process steps in

the process chain

matrix id unique id
pH_min minimal pH value
pH_max maximal pH value
aw_min minimal aw value
aw_max maximal aw value

raw_data id unique id
temperature_C temperature in ◦C

pH pH value
aw aw value

measured_values raw_data_key id of the corresponding series of measured values
time time in s
logc logcfu/ml at the speci�ed point in time

restrict psteps to the process chain of interest, because the default methods
do not query psteps during the simulation to select for the process chain.
It is recommended to restrict matrix, too, but it is not compulsory.

The data used in this thesis is stored in a MySQL database. For one
particular combination of process chain and microorganism the database
must be queried for the matching records. These records have to be exported
to data frames with the obligatory structures described in table 7.2. The
name of the microorganism is not needed for the actual simulation; it must
be ensured by the user that the data frames only contain series of measured
values for the microorganism of interest.

The only mandatory input that must be passed to npmpm is the size of
the inocula in list of numeric values. For every process step exactly one
inoculum size must be provided; otherwise the simulation stops with a
warning. Therewith, multiple contaminations in di�erent process steps of
the same process chain can be taken into account. A process step without a
new contamination corresponds to an inoculum size of zero.

The speci�cation of the methods called by the NPMPM is optional. For using
other than the default methods, their names must be passed to npmpm. For
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help in implementation of methods not included in the R package NPMPM see
the package documentation in appendix D.

A simulation of the NPMPM stops when the calculated distribution of �nal-
cfu/mls is stable, like described in algorithm 1. Stability is measured as
�uctuation of the mean of the hitherto calculated �nal-cfu/mls. Calculation
of the worst case in section 6.1 yields that the �uctuation is a O

(
1
n

)
,

therefore, the algorithm always terminates. The upper limit of �uctuation
tolerated is determined by a relative error bound. Its default value is 1%,
but other values can be passed to npmpm as optional input.

7.7. Output

The NPMPM computes the distribution of possible contamination sizes in the
end product. A vector with the �nal-cfu/mls is returned.
The number of iterations is printed in the shell to show the progression
of the simulation. Warnings are printed in the shell, too, e.g. when the
number of matching experimental data is too small.

The R package provides the method makepdfoutput that generates a .pdf-�le
describing the simulation results. makepdfoutput needs a text as obligatory
input, e.g. containing the names of the microorganism and the process chain.
Additionally, it uses information that is assigned to the global environment
during the simulation. The .pdf document constructed by makepdfoutput

contains

• a timestamp with the construction time,
• the text from the input,
• a histogram of the �nal-cfu/mls,
• summary statistics,
• a list of the inoculum sizes,
• the number of iterations,
• the relative error bound for the �uctuation of the mean for stopping
the simulation,
• a density plot of the �nal-cfu/mls,
• the number of process steps with less than 30 appropriate series of
measured values (sum over all iterations),
• and the information if there where process steps where the ranges of
temperature, pH and aw value had to be shifted to get appropriate
series of measured values (see algorithm 5).

An example of the .pdf is shown in �gures 8.13 and 8.14.

7.8. Log-normally distributed cfus

The NPMPM was developed to make predictions of bacterial counts during
milk processing. Calculation is done in linear order of process steps. The
end-cfu/ml of one process step serves as start-cfu/ml of the next process
step, from which the next end-cfu/ml is calculated. It is assumed that
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calculated cfu/ml are log-normally distributed.

It still has to be shown that under certain basic conditions a log-normally
distributed start-cfu/ml yields a log-normally distributed end-cfu/ml. Theo-
rem 7.8.1 states that this is true, if all series of measured values have the
same start-cfu/ml and the same measuring points in time ti = i = 1, · · · , n,
and if the set of cfu/mls from all series of measured values for one �xed
point in time follows a log-normal distribution.

Theorem 7.8.1. Let the decadic logarithm of the start-cfu/ml be a reali-
sation of a normally distributed random variable, Y ∼ N

(
µ∗, σ

2
∗
)
. Let all

m series of measured values have the same start-cfu/ml and the same n
measuring points in time ti = i = 1, · · · , n. Let the logcfu/mls for one
point in time be normally distributed random variables Xi, i = 1, · · · , n,
Xi ∼ N

(
µi, σ

2
i

)
.

If interpolation is done by means of linear regression, the decadic logarithm
of the end-cfu/ml is a normally distributed random variable Z. Furthermore
with process time s it holds true that

(7.8.1) Z ∼ N (A,B) .

with

A = µ∗ +
12s

n(n2 − 1)

n∑
i=1

((
i− n+ 1

2

)
µi

)
and

B = σ2∗ +
144s2

n2(n2 − 1)2

n∑
i=1

((
i− n+ 1

2

)2

σ2i

)
.

The following theorem takes part in the proof of theorem 7.8.1.

Theorem 7.8.2. Let the random variables Xi, i = 1, · · · , n be independent
and normally distributed, Xi ∼ N

(
µi, σ

2
i

)
. Then the linear combination

X =

n∑
i=1

ciXi , ci ∈ R

is normally distributed, too. It has the expected value µ =
∑n

i=1 ciµi and the
variance σ2 =

∑n
i=1 c

2
iσ

2
i .

The proof of theorem 7.8.2 can be found in basic stochastics books, e.g.
[Bosch, 1998].

Proof. To proof theorem 7.8.1 it has to be shown that the linear re-
gression curve that is �tted to the random variables Y and Xi, i = 1, · · · , n,
for �xed time s returns a normally distributed random variable Z. The
slope b of the linear regression curve is de�ned as quotient of covariance
of time and logcfu/ml, and variance of time. After computing covariance
and variance, b is shown to be normally distributed. As Z is a linear
combination of normally distributed intercept Y and normally distributed
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slope b, it is also normally distributed.

Let t̄ = 1
n

∑n
i=1 ti denote the mean of the points in time ti. Then the variance

of time, vart, can be calculated as

vart :=
1

n− 1

n∑
i=1

(ti − t̄)2 ,

=
1

n− 1

n∑
i=1

(i− t̄)2 ,

=
1

n− 1

n∑
i=1

(
i− 1

n

n∑
i=1

ti

)2

,

=
1

n− 1

n∑
i=1

(
i− 1

n

n∑
i=1

i

)2

,

=
1

n− 1

n∑
i=1

(
i− n+ 1

2

)2

,

=
1

n− 1

n∑
i=1

(
i2 − (n+ 1)i+

(n+ 1)2

4

)
,

=
1

n− 1

(
n∑
i=1

i2 − (n+ 1)
n∑
i=1

i+
n (n+ 1)2

4

)
,

=
1

n− 1

(
n (n+ 1) (2n+ 1)

6
− n (n+ 1)2

2
+
n (n+ 1)2

4

)
,

=
n (n+ 1)

12
.

The variance depends on the number of measured values in one series, n.
For a given n the variance vart is a constant. With theorem 7.8.2 the mean
of the logcfu/ml, X̄ = 1

n

∑n
i=1Xi, is a normally distributed random variable,

X̄ ∼ N

(
1

n

n∑
i=1

µi,
1

n2

n∑
i=1

σ2i

)
.

Hence, it holds true that
(
Xi − X̄

)
is normally distributed,

(
Xi − X̄

)
∼ N

µi − 1

n

n∑
j=1

µj , σ
2
i −

1

n2

n∑
j=1

σ2j

 .

Therefore, the covariance of time and logcfu/ml can be calculated as
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covtX :=
1

n− 1

n∑
i=1

(
(ti − t̄)

(
Xi − X̄

))
,

=
1

n− 1

n∑
i=1

(i− n+ 1

2

)Xi −
1

n

n∑
j=1

Xj

 ,

=
1

n− 1

n∑
i=1

iXi −
n+ 1

2
Xi −

i

n

n∑
j=1

Xj +
n+ 1

2n

n∑
j=1

Xj

 ,

=
1

n− 1

 n∑
i=1

iXi −
n+ 1

2

n∑
i=1

Xi −
n∑
i=1

 i

n

n∑
j=1

Xj

+
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i=1

n+ 1

2n

n∑
j=1

Xj

 ,

=
1
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(
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i=1

iXi −
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2

n∑
i=1

Xi −
n+ 1

2

n∑
i=1

Xi +
n+ 1

2

n∑
i=1

Xi

)
,

=
1

n− 1

(
n∑
i=1

iXi −
n+ 1

2

n∑
i=1

Xi

)
,

=
1

n− 1

(
n∑
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((
i− n+ 1

2

)
Xi

))
.

The covariance depends on the number of measured values in one series, n,
and on the random variables representing the log cfu/ml at the measured
time points. For a given n the covariance covartX is normally distributed.

The slope b of the linear regression curve now can be calculated as

b :=
covtX
vart

,

=
12

(n− 1)n (n+ 1)

n∑
i=1

((
i− n+ 1

2

)
Xi

)
,

=
12

n(n2 − 1)

n∑
i=1

((
i− n+ 1

2

)
Xi

)
.

Like the covariance covartX , the slope of the regression curve depends on n,
and on the Xi. Therefore, b is normally distributed for a given n.

Theorem 7.8.2 yields
(7.8.2)

b ∼ N

(
12

n(n2 − 1)

n∑
i=1

((
i− n+ 1

2

)
µi

)
,

144

n2(n2 − 1)2

n∑
i=1

((
i− n+ 1

2

)2

σ2i

))
.

The decadic logarithm of the end-cfu/ml Z depends on the duration s of the
process step. For a given s it holds true that

Z := Y + b · s .
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Therefore, with theorem 7.8.2 Z is normally distributed, Z ∼ N (A,B), with

A = µ∗ +
12s

n(n2 − 1)

n∑
i=1

((
i− n+ 1

2

)
µi

)
and

B = σ2∗ +
144s2

n2(n2 − 1)2

n∑
i=1

((
i− n+ 1

2

)2

σ2i

)
.

�

Theorem 7.8.1 proofs that under certain basic conditions a log-normally
distributed start-cfu/ml yields a log-normally distributed end-cfu/ml.
When conditions are di�erent, e.g. when experimental data do not yield
log-normally distributed cfu/mls, then the end-cfu/ml might not be log-
normally distributed, despite of log-normally distributed start-cfu/mls.

7.9. Comparison to existing approaches

The NPMPM uses a new approach for including variability and uncertainty
into a predictive model. Existing probabilistic models gather experiments
done under similar conditions, and then �t one family of curves to the
set of series of measured values. Variability and uncertainty are usually
included into such primary (and secondary) models by means of parameters
that follow probability distributions. Such models consist of a deterministic
and a stochastic or probabilistic part [McMeekin et al., 1993], i.e., a
certain shape of kinetics is assumed. These approaches are used to model
population kinetics over one time interval, i.e., the global approximation
error is minimised.

In risk assessment, the local approximation error is more important than the
global approximation error, e.g. for modelling survival of Listeria monocyto-
genes in the milk chain during a certain heat treatment, the concentration of
bacteria must be exactly predicted at the end of the process step. The goal of
probabilistic models used in risk assessment is to capture the whole range of
possible outcomes, connected with their probabilities. Models that restrict
this distribution without biological reasons, e.g. because it is necessary for
reducing the global error in �tting, reduce the reliability of prognostications.
McKellar and Lu analysed model comparisons from the literature; they state
that there is no single growth model as most appropriate representation of
bacterial growth [McKellar and Lu, 2004]. In section 8.3 experimental
data from the ComBase [Anonymous, a] are presented. The experiments
were done in one laboratory, under identical environmental conditions, and
with the same microorganism. Nevertheless, kinetics of these series of mea-
sured values show a variety of shapes (see �gures 8.6 and 8.7), including
death and growth in one single curve. Therefore, models that assume a cer-
tain shape of kinetics, may fail in describing variations in population kinetics
that is shown even in experiments with matching experimental conditions.
The NPMPM includes variability and uncertainty on another level than existing
approaches. It does not reconstruct one general growth or survival curve,
but aims at predicting the number of bacteria at one certain point in time.
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Every curve is used to �t one deterministic primary model, allowing for an
adaptive choice of primary models. Therewith, di�erences in population
kinetics due to biological variability and uncertainty about experimental
conditions can be taken into account. This adaptivity is not yet imple-
mented, but planned for future work (see section 9.2). Currently, the R
package NPMPM provides two interpolation methods. In every simulation the
method selected by the user is used for calculation.



CHAPTER 8

Results and Discussion

In the last chapter the NPMPM was presented. Now the model is validated
with arti�cial and experimental data. Simulation results and an example
simulation for a particular dairy process chain are given.

Accuracy of the output from a model that was not yet validated can not
be assessed. A model must reproduce the data it was built with. This
is ensured by internal validation. Both arti�cial data and experimental
data from the ComBase (see section 6.2) are used for internal validation of
the NPMPM. Model performance must be evaluated under di�erent settings.
For example for �tting of the logistic growth model (equation 5.4.12), it
is important that data for �tting do sample all parts of a sigmoid growth
curve, because information content of data points from di�erent parts of
the growth curve varies [Ernstberger, 2008].

A sensitivity analysis is essential for detection of parameters with wide
in�uence on the output. Fitting of these parameters has to be as accurate
as possible. Identi�cation of requirements that must be ful�lled for applying
the model is crucial. Partly, these preconditions are given by the assump-
tions made during development of the model, e.g. the NPMPM can only be
applied with its default settings when bacterial counts are log-normally
distributed for �xed parameter combinations, according to assumption 2.
Other requirements, like level of accuracy of input parameters for a certain
accuracy of the output, are identi�ed in sensitivity analysis, and in internal
and external validation.

Evaluation of the NPMPM uses statistical tests. The Kolmogorov-Smirnov test
is used for comparison of data and output. Normality of decadic logarithms
of bacterial counts is tested with the Shapiro-Wilk test. A signi�cance level
of 5% is chosen for both tests. These statistical methods are described in
chapter 6.

Like in chapter 7, the terms cfu/ml and logcfu/ml refer to the number of
bacteria in one ml that was measured in an experiment, and to the decadic
logarithm of cfu/ml, respectively. Calculated bacterial concentrations, and
decadic logarithm of the calculated bacterial concentrations, are termed
calculated cfu/ml and calculated logcfu/ml , respectively. The concentration
of bacteria at the beginning of a process step is denoted by start-cfu/ml ,
the concentration of bacteria at the end of a process step is denoted by

109
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end-cfu/ml . The calculated concentration of bacteria in the end prod-
uct, i.e., the end-cfu/ml of the last process step, is referred to as �nal-cfu/ml .

In chapters 2-6 the background for development of the NPMPM is provided.
The NPMPM is presented in chapter 7. Now model performance is investigated
and discussed. The methods from the R package used during validation
are presented. First evaluation uses arti�cial data. Then certain sets
of series of measured values were selected from the ComBase-data for
investigation of model performance with experimental data. Demands
on experimental data are highlighted, and sensitivity of the NPMPM is
analysed. Running time of the NPMPM is discussed, and constraints are re-
viewed. Finally, an example simulation for fresh milk processing is presented.

8.1. Methods

Validation uses default methods, and other methods provided with the R
package (see appendix D). An overview of key procedures considered in
validation is pictured in �gure 8.1.

NPMPM

selection of appropriate

series of measured values

temperature, time, pH, aw, 

CO2, mixed culture, etc.

probability distribution

normal distribution, discrete

(frequency) distribution, etc.

interpolation method

primary model

growth or survival

Figure 8.1. Key procedures in the NPMPM

Default method for selection of series of measured values in the inner loop
is apsomv (see algorithm 5). It was not used in validation, because data sets
used in validation have to be selected before simulation, in order to allow
for a comparison of input data and output. Hence, a method that selects all
series of measured values in the data frames was used. It is also provided in
the R package as method allsomv, see appendix D.

Default assumption is a normal distribution of the set of calculated
logcfu/mls computed in the innermost loop (see assumption 2). Model
performance is compared for use of a normal distribution (method onestep,
see algorithm 3), and use of the (discrete) frequency distribution of the
calculated logcfu/mls (method disconestep). In the latter one series of
measured values is randomly drawn and used to compute one calculated
logcfu/ml. From this value the end-cfu/ml is calculated. If the experi-
mental data used in the simulation are not log-normally distributed, the
frequency distribution should yield a better approximation. Both methods
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do not allow for extrapolation. Calculation of the end-cfu/ml by the
method onestep includes rounding to a value between zero and 109, see
algorithm 3. This is essential, because the normal distribution is not
bounded, and therefore can yield values that are biological impossible,
e.g. negative bacterial counts. This adjustment is not made by disconestep.

Default method for interpolation in the innermost loop is global linear
interpolation (method cfuinterpolation, see section 7.5). Intercept and
slope of a linear function are �tted to the data by ordinary least squares, see
section 5.1. This linear function is used to compute the calculated logcfu/ml.
The method cfuinterpolation is compared with local linear interpolation
(method simpleinterpolation). If one measured value corresponds to the
point in time at which the concentration of bacteria should be calculated,
this value is used as result, i.e., simpleinterpolation yields an exact ap-
proximation at measuring times. Otherwise, intercept and slope of a linear
function are calculated from the two measured values adjacent to the desired
point in time. The calculated logcfu/ml is computed from this linear function.

8.2. Arti�cial data

First, internal validation was done with arti�cial data. Both log linear
(exponential) data and series of measured values following a sigmoid
curve were generated. The latter was calculated with the Verhulst equation
(equation 5.4.12). Every data set was used as input in data frames raw_data
and measured_values (see section 7.6. All data sets contained 30 arti�cial
series of measured values.

The following sets of log linear arti�cial data were used:

• sets containing the same log linear series repeatedly,
• sets containing two log linear series with di�erent start-cfu/mls re-
peatedly (15 times each),
• sets with normally distributed start-cfu/ml and �xed slope, yielding
normally distributed logcfu/mls at every point in time, and
• sets of series with a �xed start-cfu/ml and normally distributed
slopes, also yielding normally distributed logcfu/mls at every point
in time.

Tests with these arti�cial data satisfy all assumptions listed in section
6.3: log-normality of cfu/ml at one certain point in time under �xed
conditions (assumption 1), log-linear series of measured values (assumption
2), bounded bacterial counts (assumption 3) due to constant parameters,
no in�uence of inoculum size on kinetics (because of �xed inoculum size,
assumption 4), no di�erences between series of measured values caused by
the history of the cells (assumption 5), and uniformly distributed process
step parameters (assumption 6), due to constant parameters). As expected,
for all log linear series the NPMPM reproduced the data with both (linear)
interpolation methods.
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Then a set of 30 identical logistic curves was generated to investigate the
in�uence of the shape of the curve on goodness of approximation. These
curves covered lag phase, log phase and stationary phase. Such sigmoid
curves are non-linear. Therefore, assumption 1 is violated. Every series of
measured values consisted of 21 equidistantly distributed measured values.
Because the method for local linear interpolation simpleinterpolation

yields an exact approximation at the measuring time, interpolation was
done between these measured values, e.g. for adjacent measuring points in
time ti and ti+1, interpolation was done at ti+ti+1

2 .

In �gure 8.2 the output of the NPMPM and the logistic curve of the arti�cial
input are plotted for di�erent interpolation methods and probability
distributions. Global linear interpolation (sub�gures a, b) yielded a good
�t in the area around the intersection of the regression curve and the
logistic curve; outside this area approximation was poor. This is due to
non-linearity of the sigmoid curve. Local linear interpolation (sub�gures
c, d) yielded a better approximation; goodness of �t of local linear inter-
polation depends on the distribution of grid points. The method that uses
the frequency distribution of calculated logcfu/ml (method disconestep)
makes no adjustments for allocating the calculated cfu/ml to values
between 0 and 109 (sub�gures b, d). Therefore, assumption of a normal
distribution of logcfu/mls (method onestep) yielded a better approximation.

Simulations with the two linear interpolation methods are able to reproduce
the data if all assumptions listed in section 6.3 are satis�ed. If the measured
values do not depend log-linearly on time, i.e., assumption 1 is violated,
global linear interpolation usually �ts poorly and the data can not be
reproduced. There are various reasons for deviations from log-linear kinetics
(see subsection 6.3). Therefore, global linear interpolation will often lead to
poor approximations. Approximation quality of local linear interpolation
is usually better, but depends on grid points. If experiments and process
step duration are on di�erent time scales, e.g. hours versus seconds, the
distance between grid points may be too big, and local linear interpolation
�ts poorly. In summary the two linear interpolation methods will not su�ce
for experimental data that are not log-linear, and for data and process steps
on di�erent time scales.

8.3. Experimental data

Further internal validation was done with di�erent samples of experimental
data extracted from the ComBase. These samples were used in input data
frames (see section 7.6). The NPMPM was run with one single process step
with conditions matching the experimental conditions of the data. This
approach simulates the experiments in which the data were generated. To
allow for calculation of the approximation error, calculation was done for
measuring times of the experimental data. The method for local linear
interpolation simpleinterpolation yields an exact approximation at
measuring times (see section 8.1). For evaluation of the performance of local
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Figure 8.2. Output (circles) of interpolation for series of
measured values generated with the logistic growth model
(red line), a with global linear interpolation and assumption
of log-normally distributed cfu/mls (bacterial concentrations
bigger than 109 are rounded to 109), b with global linear
interpolation and discrete distribution of cfu/mls (frequency
distribution), c with local linear interpolation and assump-
tion of log-normally distributed cfu/mls, d with local linear
interpolation and discrete distribution of cfu/mls (frequency
distribution)

linear interpolation at one measuring time ti, the corresponding measured
value was removed from all series of measured values in the input data
frame. This manipulation yields a bigger interpolation interval and increases
the approximation error, but it allows for assessing the interpolation error of
the method simpleinterpolation. For ensuring comparability, removal of
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Table 8.1. ComBase data: temperatures with a total num-
ber of more than 100 series of measured values, and associated
start-cfu/mls with at least 30 series of measured values

temperature total number log10start-cfu/ml number of series

in ◦C of series

0 146 6.49 34

2 151 6.55 35

4 821 6.29 35
6.5 54

7 126 6.55 35

10 492 6.29 35

15 210 6.29 35

20 447 6.5 54
6.55 33

measured values described above was done before corresponding simulations
with global linear interpolation, too.

Sets of series of measured values with identical experimental conditions and
similar start-cfu/ml were sampled. Figure 8.3 summarises the selection
process. First, the database was queried for series with the same temper-
ature. More than 100 series of measured values each were found for 0◦C,
2◦C, 4◦C, 7◦C, 10◦C, 15◦C, and 20◦C. From this sets subsets with the same
start-cfu/ml were sampled, see table 8.1. More than 30 series of measured
values each were found for 4◦C and a start-cfu/ml of 106.29, 4◦C and a
start-cfu/ml of 106.5, 20◦C and a start-cfu/ml of 106.5, and 20◦C and a
start-cfu/ml of 106.55. From this sets subsets with the same pH value and
aw value were sampled, see �gures 6.5 and 6.4. More than 30 series of
measured values were found for 4◦C and a start-cfu/ml of 106.5 and a pH
value of 6.5 and an aw value of 0.98, and for 20◦C and a start-cfu/ml of
106.5 and a pH value of 6.5 and an an aw value of 0.98, see table 8.2. These
two samples will be referred to as 4◦C-sample and 20◦C-sample, respectively.

All experiments of both 4◦C-sample and 20◦C-sample were done in the same
laboratory (Luchansky_95) with the same matrix (cheese). Nevertheless,
these data show no log-normal distribution of cfu/mls, according to the
Shapiro-Wilk test. Hence, simulations with this data violate assumption 2.
In �gures 8.4 and 8.5 densities of logcfu/mls at di�erent measuring times
are plotted.

Shape of the curves of both 4◦C-sample and 20◦C-sample is strongly divers
(see �gures 8.6 and 8.7). Simulations with this samples violate assumption
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ComBase

Listeria spp.

0°C

20°C

4°C

15°C

7°C

10°C

2°C
log10 N0=6.29

log10 N0=6.55

log10 N0=6.5

aw value = 0.98

pH value = 5.2

log10 N0=6.5

aw value = 0.98

pH value = 5.2

Figure 8.3. Selection of data subsets according to tempera-
ture, start-cfu/ml, aw value, and pH value

Table 8.2. ComBase data: sets with the same temperature,
start-cfu/ml, pH value and aw value

4◦C 20◦C

log10 start-cfu/ml 6.5 6.5
aw value 0.98 0.98
pH value 5.2 5.2
number of series 53 54
time points per series 8 5

1. Most of the series of measured values could not be approximated with the
parametric models provided by the grofit R package [Kahm et al., 2010]
(see 6.7), i.e., the logistic growth model, the Gompertz model, the modi�ed
Gompertz model, and the Richards model. This diversity in population
kinetics in comparable experiments, demonstrates the big variability in
biological processes, e.g. growth and survival. It highlights the need for
probabilistic models, i.e., for including variability and uncertainty.

Simulations were done with both 4◦C-sample and 20◦C-sample, and methods
cfuinterpolation, simpleinterpolation, onestep, and disconestep
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Figure 8.4. Experimental data from the ComBase for
Listeria spp. at 4◦C with start-cfu/ml 106.5, pH 5.2, aw 0.98:
densities of logcfu/mls at di�erent measuring times (in s)

described in section 8.1. Output and input were tested for matching dis-
tributions of calculated cfu/mls and cfu/mls with the Kolmogorov-Smirnov
test. Results of this statistical testing are listed in appendix E.

First, simulations were done without removal of the measured val-
ues corresponding to the interpolation point in time. Results of the
Kolmogorov-Smirnov test are listed in section E.2. A summary of the test
results is given in table 8.3. Like for sigmoidal arti�cial data, global linear
interpolation (method onestep) was not able to reproduce the kinetics.
Hence, performance of global linear interpolation did not depend on the
probability distribution. For the 4◦C-sample approximation quality was
better when the frequency distribution (disconestep) was used, and for the
20◦C-sample approximation quality was better when the normal distribution
(onestep) was used.
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Figure 8.5. Experimental data from the ComBase for
Listeria spp. at 20◦C with start-cfu/ml 106.5, pH 5.2, aw 0.98:
densities of logcfu/mls at di�erent times

Like expected, local linear interpolation (method simpleinterpolation)
reproduced the kinetics. Although this method is exact at grid point, in
two out of eight simulations for the 4◦C-sample with method onestep

the Kolmogorov-Smirnov test yielded di�erent distributions of input and
output. This di�erence is due to the assumption of normally distributed
logcfu/ml. If a simulation contains only one process step with identical
start-cfu/ml in every iteration, the set of �nal-cfu/mls calculated by method
onestep is log-normally distributed. If the experimental data do not yield
a log-normal distribution of cfu/mls, i.e., if assumption 2 is violated, dis-
tributions of input and output are di�erent. The Kolmogorov-Smirnov test
is a conservative test that favours the null hypothesis, i.e., the hypothesis
of identical distributions. Hence, for small samples like 4◦C-sample and
20◦C-sample, the null hypothesis is rarely discarded.

Then, measured values corresponding to the interpolation point in time
were removed before simulations. This manipulation yields a bigger interval
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Figure 8.6. 4◦C-sample: variety in kinetics for similar conditions

between the adjacent measurement times. Hence, approximation quality
of global linear interpolation worsens. Additionally, simpleinterpolation
does not yield exact values like in �rst simulations described above. There-
fore, approximation is inferior. Results of the Kolmogorov-Smirnov test are
listed in section E.3. A summary of the test results is given in table 8.4.

Figures 8.6 and 8.7 picture the variability of kinetics in the data sets.
Kinetics in the 4◦C-sample are more homogeneous than kinetics in the
20◦C-sample. Hence, performance of both interpolation methods was better
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Figure 8.7. 20◦C-sample: variety in kinetics for similar con-
ditions

for the 4◦C-sample. Additionally, kinetics of some experiments consist of
an initial die back, followed by growth. Global linear interpolation is not
able to approximate this non-linearity. Approximation of the minimal grid
point in the bend of the curves by local linear interpolation (i.e., linear
interpolation between the adjacent grid points) can not be exact. Therefore,
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Table 8.3. Number of simulations that reproduced the data
distribution (p-value >5%), simulations were done with 4◦C-
sample and 20◦C-sample, with di�erent interpolation meth-
ods and di�erent assumed probability distributions, and with-
out removal of measured values

cfuinterpolation simpleinterpolation

onestep
4◦C 2 out of 8 (25%) 6 out of 8 (75%)
20◦C 4 out of 5 (80%) 5 out of 5 (100%)

disconestep
4◦C 8 out of 8 (100%) 8 out of 8 (100%)
20◦C 2 out of 5 (40%) 5 out of 5 (100%)

Table 8.4. Number of simulations that reproduced the data
distribution (p-value >5%), simulations were done with 4◦C-
sample and 20◦C-sample, with di�erent interpolation meth-
ods and di�erent assumed probability distributions, and with
removal of measured values corresponding to the current in-
terpolation point

cfuinterpolation simpleinterpolation

onestep
4◦C 2 out of 7 (29%) 6 out of 7 (86%)
20◦C 0 out of 4 (0%) 1 out of 4 (25%)

disconestep
4◦C 4 out of 7 (57%) 4 out of 7 (57%)
20◦C 0 out of 4 (0%) 1 out of 4 (25%)

approximation of single experiments was poor.

Figures 8.4 and 8.5 show that the experimental data used for validation
are not log-normally distributed. Therefore, assumption 2 is violated.
Nevertheless, like in �rst simulations without removal of measured values,
approximation quality seems to be independent from the assumed probabil-
ity distribution, because the Kolmogorov-Smirnov test is a conservative test
that rarely discards the null hypothesis for small samples like 4◦C-sample
and 20◦C-sample.

The NPMPM was not able to reproduce the experimental data it was built
with. Results from section 8.2 indicate that the default methods could
not be �tted to the experimental data with reasonable accuracy. This
result demonstrates the need for an adaptive choice from a selection of
interpolation methods. This adaptivity will be provided in a future version
of the NPMPM (see section 9.2).

During validation with experimental data the NPMPM was not run for a
succession of process steps, because the model was not able to reproduce
the data for single process steps. An example for a simulation with the
NPMPM for a process chain with more than one process step is presented in
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section 8.8.

8.4. Requirements on experimental data

Generally, model performance always depends on data quality. Performance
of the NPMPM strongly depends on interaction of its parameter settings and
experimental data provided as input. Experimental data must be consistent.
Series of measured values with more than one measured value at time t = 0
have to be discarded.

The NPMPM excludes extrapolation. Therefore, series of measured values
must completely cover modelled time intervals. Every series should contain
a reasonable number of measured values for allowing a �tting of primary
models. The number of measured values essential for proper �tting depends
on the interpolation method. If the selected interpolation method does not
match the shape of the growth or survival curve, approximation is poor.
Therefore, the interpolation method should be chosen according to the data.
Hence, it is important to analyse the experimental data before simulation.

In the ComBase [Anonymous, a] time is measured in hours with two
decimal places. In dairy manufacture heating processes with short time
spans in scale of seconds are of interest, see section 4.4. This di�erence
in scales largely increases uncertainty. An approximation of kinetics on a
small scale, e.g. seconds, with data on a bigger scale can not model possible
oscillations in the smaller scale. Additionally, interpolation may largely
underestimate or overestimate bacterial counts. This false estimation is
pictured in �gure 8.8 for linear interpolation. If data and process steps use
the same time scale, the approximation error is smaller than in case of data
on a big scale and calculation on a smaller scale.

If the appropriate series of measured values for one process step are
not evenly spread over the process-parameter interval, but form clusters
at one border, variance of the output may be small. This must not
be interpreted as a reliable estimation of a small variability. A large
number of data from experiments with conditions matching the process
conditions yield a more reliable estimation, but may also yield a wider
distribution of �nal-cfu/mls. The NPMPM counts the process steps with
less than 30 series of measured values that exactly match its process
parameters, see section 7.6. Distributions of experimental conditions in
the selected sets of series of measured values are not memorised. Mostly,
if experimental conditions of input data do not re�ect the exact process
conditions, the output distribution will be spaced out. Hence, it is impor-
tant to analyse the experimental data for interpretation of simulation results.

Quality and quantity of experimental data not only in�uence reliability of
the output of the NPMPM, but also running time.
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Figure 8.8. Scaling problems in linear interpolation, clock-
wise from upper left: underestimation due to downwards
concavity, underestimation due to upwards concavity, over-
estimation due to upwards convexity, overestimation due to
downwards concavity

Huge amounts of data are necessary for modelling bacterial growth and
inactivation kinetics. Today, predictive microbiology basically relays on data
obtained from non-standardised experiments. Laboratory equipment used
may vary between laboratories, leading to slight di�erences in environmental
conditions. There are several methods for counting bacteria that often yield
di�erent bacterial counts (see section 3.1). Complex media are not exactly
reproducible, because they contain unde�ned ingredients like yeast extract.
The use of a synthetic medium reduces the uncertainty added by a complex
medium [Schaechter, 2006]. Di�erent bacteria show di�erent kinetics,
and the same bacterial culture may show variation in kinetics depending
on the history of the cells (see section 3.3). Hence, experimental data
generated in di�erent laboratories, with di�erent growth media, and with
various strains and biovars of the same species or genus, is a�icted with a
lot of uncertainty. Even repeated experiments done in the same laboratory,
by the same person, with the same batch of growth medium, and the same
bacterial culture, yield varying bacterial counts. Figures 8.6 and 8.7 picture
variability of kinetics in data sets obtained under similar conditions.

We recommend the de�nition of a standard in regard to data production for
use in predictive microbiology. This would be a step towards homogeneous
and comparable data for the development of reliable predictive models.
We agree with Barbosa-Cánovas et al. [Barbosa-Cánovas et al., 2005]
and Schaechter [Schaechter, 2006] that a publication of growth and
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inactivation kinetics of bacteria should always contain a supplemental
section with detailed growth conditions. Fortunately, it is not necessary to
develop a new database for collecting standardised experimental data. The
Combase [Anonymous, a] is a good approach of a centralised and open
source platform for data collection that could be extended to �t this purpose.

8.5. Sensitivity analysis

Because output of the NPMPM is a distribution of cfu/mls, a direct comparison
of corresponding values is impossible. Interaction of experimental data
with selected interpolation method, probability distribution selected for
calculation of the end-cfu/ml, and process parameters is complex.

Quality and quantity of experimental data in�uence approximation be-
haviour (see section 8.4. If series of measured values can not be �tted with
the selected interpolation method, performance is poor. Kinetics may be
highly variable, as in experimental data used in section 8.3. Hence, selection
of the best-�tting interpolation method for every series of measured values,
i.e., an adaptive selection of interpolation methods, would yield a better
approximation of the distribution of �nal-cfu/mls.

Quantity and distance of measuring times, i.e., grid points, has an impact
on interpolation quality. Di�erent primary models need di�erent quantities
of measurement points for �tting. Distance of the measurement points
in�uences the interpolation error. Large distances may be an e�ect of
di�erent scales in experimental data and process conditions, like shown in
�gure 8.8. In a typical sigmoid growth curve data points from di�erent
parts of the curve contain di�erent information, e.g. start-cfu/ml N0 does
not yield information about carrying capacity K. If a series of measured
values does not cover all parts of the growth or death curve, approximation
by primary models like the logistic growth model is bad or even impossible.
Hence, the method for selection of appropriate series of measured values
must take into account requirements of the interpolation method, if selection
of this method is not adaptive.

If there are only few series of measured values that match process conditions,
or if distribution of series of measured values in the range of conditions is not
homogeneous, uncertainty is big. Quantity of appropriate series of measured
values distribution of experimental conditions in the database must be
analysed before simulation, for allowing assessment of simulation output.
Approximation error of the NPMPM highly depends on the experimental data.

The probability distribution selected for calculation of the end-cfu/ml in one
iteration of the inner loop (algorithm 3) largely a�ects the distribution of
the output. Default setting is a normal distribution of calculated logcfu/mls,
see assumption 2. Bacterial counts measured during di�erent experiments
with identical conditions at the same point in time may not follow a
log-normal distribution, as was shown in section 8.3. If the data do not yield
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a normal distribution of logcfu/mls, the NPMPM may better perform with the
frequency distribution of the calculated logcfu/mls instead of a normal dis-
tribution. When the probability distribution of bacterial counts is known, it
should be used, because this adds prior information and reduces uncertainty.

Errors may sum up along a succession of process steps. Therefore, number
of process steps in the process chain in�uences approximation behaviour, too.

Uncertainties in process parameters, e.g. expert opinion, must be taken into
account in interpretation of simulation results. Especially in quantitative
microbial risk assessment it is essential to make uncertainties transparent
[Boone et al., 2005]. Therefore, at times it may be useful to run the
NPMPM twice with di�erent parameters, e.g. with di�erent temperature
ranges in one process step, and to compare both outputs. When variability
and uncertainty are high, usually the distribution of the output of the NPMPM
expands.

8.6. Running time

A classical running time analysis of the NPMPM is not possible, because
running time strongly depends on the relation of process conditions and
experimental data. Running time of the NPMPM depends on the error bound
given as input, number of process steps in the process chain, interpolation
method, criteria for and method of search in the data frame containing series
of measured values, and on quantity and quality of experimental data. In
every process step the data frame with experimental data is queried. If there
are enough applicable experiments for every process step of the process chain
the data frame with the data must only be queried once. It is queried until a
certain minimal number of series of measured values is found, see algorithm
5 for a description of the default settings. Hence, number of queries depends
on search parameters (process step conditions), number of entries in the data
frame, and number of series of measured values matching the process step
parameters. If there are at least 30 series of measured values matching pa-
rameters of the process step, the data are queried once for every process step.

Running time of one simulation is a multiple of running time of one iteration
(outer loop). The error bound in�uences the number of iterations. Running
time of one iteration is a product of the number of process steps and the
running times for calculation of end-cfu/mls of process steps.

For every selected series of measured values an interpolation is done. Its
running time depends on the method of interpolation. The NPMPM provides
both global and local linear interpolation; with number of measured values in
the series n, running time is in O(n3) and O(n), respectively. If parameters
of the interpolation curves are stored in the data frame raw_data, running
time is linear and does not depend on the interpolation method (see also
chapter 9).
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8.7. Limitations

There are restrictions to applicability of the NPMPM. The model does not
allow for parallel processes, e.g. di�erent treatments of skimmed milk
and cream after separation of raw milk. Those process steps have to be
combined to one single process step with the process step factor (see section
7.4) taking into account for the combined e�ect of the parallel process
steps. This combination of process steps with di�erent conditions increases
uncertainty.

The NPMPM can not map continuous changes in parameters. Process steps
with changing conditions, e.g. heating or cooling steps, can be modelled
in two di�erent ways. One approach is segmentation of process steps
into arti�cial sub-steps. For every sub-step a set of appropriate series
of measured values is selected, therewith ensuring the coverage of the
whole parameter range by experimental data. For example in yoghurt
production the pH value of the milk inoculated with a starter culture drops
from 6.5 to 4.5 during hours of incubation. This may be modelled as a
succession of process steps with smaller pH ranges, like pictured in �gure 7.3.

Change in conditions can also be taken into account as parameter range,
e.g. heating from 50◦C to 60 ◦C may be modelled as process step with a
temperature range of 50◦C to 60◦C. This increases uncertainty, especially
when experimental data �t only a small area of the parameter range as
pictured in �gure 8.9. A data analysis is necessary for detection of such an
unfavourable distribution of series of measured values. The small number
of series of measured values between 55◦C and 60◦C is detected during
simulation if the process step is segmented into two successional process
steps with temperature ranges from 50◦C to 55◦C and 55◦C to 60◦C,
respectively.

Assumption 4 states that the inoculum size has no in�uence on population
kinetics. This assumption is false, but it is necessary if there are not enough
experimental data available to take into account for varying start-cfu/mls.
When series of measured values with di�erent inoculum sizes are used to
calculate the end-cfu/ml of one process step, the interpolation method must
make adjustments for inoculum sizes.

A global linear interpolation yields a straight line that can easily be shifted
by adjusting the intercept. For other interpolation methods this shift
may yield serious underestimation or overestimation of bacterial counts.
Simple shift of a logistic growth curve is pictured in �gure 8.10. Maximal
bacterial counts of down-shifted curves are underestimated. A local linear
interpolation underestimates bacterial counts both in log phase and in
stationary phase. Fitting of a sigmoid curve and adjusting the carrying
capacity would lead to a better approximation. This adjustment does not
include possible shape changes of the growth and survival curves due to
di�erent inoculum sizes. For survival experiments a simple up-shift of the
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Figure 8.9. Unfavourable distribution of series of measured
values between 50◦C and 60◦C, the red line marks the tem-
perature mean

survival curve yields an ineradicable population, see �gure 8.11.

The NPMPM models growth and death of viable cells from single species.
Mixed cultures are only taken into account indirectly by incorporating
parameter changes, e.g. due to fermentation of milk by lactobacilli. For
modelling competition, experimental data for mixed cultures are needed.
Spore and dormant cells are not taken into account, because kinetics of
combination of decay of viable cells and spores, sporulation and germination
of spores is usually very complex.

8.8. Example

In this section, an example for simulation with the NPMPM for a single
process chain is presented. Output of the NPMPM for manufacture of proper
pasteurised fresh milk is compared with the output for a process chain
with malfunctioning pasteurisation. In the dairy plant, improper pasteuri-
sation should be detected. Preparation of input data frames is demonstrated.



8.8. EXAMPLE 127

time

logcfu/ml

9

false 

max

Figure 8.10. Simple down-shifting of the start-cfu/ml in a
sigmoid growth curve
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Figure 8.11. Simple up-shifting of the start-cfu/ml in a sig-
moid survival curve

The general processing of fresh milk is described in section 4.5. In �gure
8.12 a process chain for the manufacture of fresh milk content is pictured; its
layout was taken from [Bylund, 2003]. We use it to generate data frames
with the process steps and the associated (intermediate) milk products,
respectively.
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Literature Model
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Raw milk storage

4-6°C, 4-24h, pH 6.5-6.7

Separation, fat standardisation

55-65°C

Separation, fat standardisation

55-65°C, 5-10s, pH 6.5-6.7,

factor 0.9 (dilution)
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55-80°C, 10-15µs
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Pasteurisation

72-75°C, 15-30s, pH 6.5-6.7

Figure 8.12. Schematic presentation of one possible process
chain for pasteurised fresh milk from [Bylund, 2003], and
the corresponding (intermediate arti�cial) process steps

Production parameters di�er between dairy plants, and exact process
parameters are company secrets. Additionally, there are �uctuations in
processing conditions due to technical reasons. Hence, for some process
steps parameters are not given explicitly in the literature. aw values of
dairy products are rarely found in the literature. Conversion from water
content to the aw value is not possible for such a complex matrix like
milk. Therefore, the aw values were set to NA. Changes in pH and aw
value during processing often are not quanti�ed. For running the example
simulations all missing parameters were estimated from literature sources
or expert opinions. Process steps with highly, and continuously changing
parameters have to be fragmented into distinct process steps, yielding
moderately changing parameters in every intermediate arti�cial process
step. All parameters in the process steps are assumed to follow uniform
distributions, because there is no information about their probability
distribution [Anonymous, 2010a].

A single contamination with 105 Listeria spp. per ml is assumed in the
�rst process step, i.e., contamination of raw milk. Default obligatory input
parameters were used, e.g. global linear interpolation and a log-normal
distribution of cfu/mls. Experimental data for calculation of the bacterial
load at the end of each process step was extracted from the database (see
section 7.6 for details), and the unit of time was converted from hours to
seconds.

In �gure 8.12 process steps and parameters are listed. Raw milk is stored
at 4◦C and may be stored between 4h and one day before processing.
Manufacture continues with separation at 55-65◦C and recombination of
skimmed milk and cream to the desired fat content. For fat standardisation,
a duration of 5-10s was taken from the literature. A dilution factor of 0.9
is estimated. In all other process steps there is no dilution or enrichment
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(factor one). During following homogenisation the temperature is increased
to 55-80◦C, with an assumed duration of 1-2s. After that the milk is
pasteurised at 72-75◦C for 15-30s. In case of improper pasteurisation a
temperature of 55◦C (lowest possible temperature during homogenisation)
is assumed.

For improper pasteurisation there were iterations with viable bacteria in
the end product. For proper pasteurisation there were some iterations with
viable bacteria in the end product, too. With information from chapter 4,
after proper pasteurisation all Listeria are expected to be killed o�. The
reason for this discrepancy is that the default methods are not able to
reproduce the experimental data (see section 8.3).

The .pdf-�le built from the output of the simulation for improper pasteuri-
sation is pictured in �gures 8.13 and 8.14. It contains a short description of
simulation settings. This description was passed as input text. The single
contamination with 1000 bacteria per ml in the �rst process step is given as
inoculum sizes.

A summary statistics of the distribution of �nal-cfu/mls with minimum,
maximum, quartiles and mean is provided. The minimum is zero, showing
that in some iterations all bacteria were assumed to be killed o�. In 25%
of the iterations a contamination with less than 635 bacteria per ml was
calculated. Another 25% of the iterations computed values between 635 and
3.2·103 bacteria per ml. In 25% of the iterations values between 3.2·103 and
4.4·104 bacteria per ml were computed. In the remaining 25% of iterations,
values between 4.4·104 and 5.1·106 bacteria per ml were computed. Due to
the high maximum value and third quartile, the mean of �nal-cfu/mls is
1.2·105. The output distribution is pictured in a histogram and a density
plot. The bandwidth given in the density plot is a smoothing parameter that
is used in estimation of the density function.
The relative error bound of 1% that is used as stop criterion (see algorithm
1) is noted down. In this particular simulation, the stop criterion was
ful�lled after the minimum amount of 101 iterations. There was no process
step with conditions that could not be matched by experimental data
(NAwarning). For every process step at least 30 appropriate series of
measured values were selected, hence, there were no countwarnings. Finally,
default settings and input settings of the simulation are listed.

It is essential to supplement simulation results with a data analysis. Without
an analysis of the experimental data used for �tting, uncertainty due to
data availability, and therewith model performance, can not be assessed (see
section 8.4). The distribution of the simulation output can be smaller than
the real probability distribution of bacterial concentrations, if there are only
few series of measured values matching the process step conditions, or if
the data are clustered and not homogeneously distributed in the parameter
interval.
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The information provided by the .pdf-�le allows for a discussion of the
results and a rerun of the simulation. If simulation results are coupled with
consumption data, the impact of a contamination of a food supply chain
with a certain microorganism can be assessed, e.g. as number of people
a�ected, or as expected costs.
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pdfoutput NPMPM
2011-03-07 12:18

> textt

[1] "Listeria monocytogenes in the process chain of fresh milk - improper pasteurisation"

Summary statistics of the calculated cfus

> summary(cfu)

Min. 1st Qu.

0.0 634.3

Median Mean

3185.0 124800.0

3rd Qu. Max.

44480.0 5092000.0
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Inoculumsizes

> inoculum

[1] 10000 0

[3] 0 0

Number of iterations in the simulation:

1

Figure 8.13. The �rst page of the .pdf-�le generated from
the output of one simulation with the NPMPM for Listeria spp.
in the process chain for fresh milk with improper pasteurisa-
tion
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> length(cfu)

[1] 101

Chosen relative upper error bound for the fluctuation of the mean of calculated
cfus

> errorb

[1] 0.01

Density plot of the cfus calculated
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Were there process steps with no appropriate series of measured values:

> NAwarning

[1] "No"

Number of other process steps with less than 30 appropriate series of measured
values:

> countwarnings

[1] 0

Input settings default settings: errorb=0.01, intexmethod=cfuinterpolation,

apsomvmethod=apsomv, pdistpsteps=psteppar, lastiteration=numberiterations,

calconestep=onestep

> inputsettings

npmpm(inoculum = inoculum, intexmethod = cfuinterpolation)

2

Figure 8.14. The second page of the .pdf-�le generated
from the output of one simulation with the NPMPM for
Listeria spp. in the process chain for fresh milk with improper
pasteurisation



CHAPTER 9

Conclusion

In this thesis, a new probabilistic model in predictive microbiology, the
NPMPM, was presented. It makes two major contributions to the �eld of pre-
dictive microbiology. It was designed for use in microbial risk assessment of
food processing, i.e., for quanti�cation of the probability of a contaminated
end product in case of contamination during processing. An introduction into
the biological and technical background was given, and existing approaches
in predictive microbiology were introduced. The NPMPM was presented in
chapter 7. Its performance was discussed in chapter 8. In this section, we
summarise its contribution to predictive microbiology and indicate some fu-
ture work.

9.1. Contribution

This thesis comprises two major contributions to the �eld of predictive
microbiology.

• The NPMPM is a new approach for including variability and un-
certainty into predictive models. Unlike in existing approaches,
variability and uncertainty are not included in random processes
or as model parameters that follow probability distributions. The
NPMPM �ts deterministic primary models to the experimental data,
instead of �tting one probabilistic primary model to pooled series of
measured values. This approach takes into account for di�erences
in shape of growth and survival curves, and allows for an adaptive
choice of the best-�tting primary model for every series of measured
values. Therewith the amount of uncertainty introduced during
model �tting is reduced in comparison to existing approaches.

• The NPMPM focuses on local approximation quality, i.e., it minimises
the local approximation error. It is designed for prediction of the
distribution of bacterial counts at one certain point in time. Usu-
ally, models in predictive microbiology aim at approximating and
explaining kinetics of the whole growth or survival curve, i.e., the
global approximation error is minimised. For modelling the propa-
gation of a contamination during food processing, point estimation
of the distribution of bacterial counts at the end of the process step
must be as accurately as possible. It is not essential to exactly pre-
dict population kinetics during the entire process step and beyond
process step duration. The new approach realised in the NPMPM will
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be a particular bene�t for risk assessment of contaminations in the
food supply chain.

These two contributions both improve upon the current methods of the re-
search community.

9.2. Future work

Next step in modelling will be to include an adaptive selection of interpo-
lation methods. This adaptive choice will allow for using the best-�tting
interpolation method for every single series of measured values. For this
purpose, di�erent primary models and a �tting routine, e.g. method of
least squares, will be implemented. For a certain series of measured values,
selection and parameter-calculation of the best-�tting interpolation method
do not have to be repeated in every simulation, if results are saved.

Secondary models could be included into the NPMPM. If a secondary model is
validated for certain conditions, e.g. dependency of maximal growth rate on
temperature for a certain microorganism, or in�uence of inoculum size on
kinetics, it may be used for calculation. In combination with corresponding
primary models, a secondary model yields arti�cial series of measured
values. In case of process step parameter ranges, arti�cial series of measured
values can be generated for supplementing experimental data that do not
homogeneously cover the whole parameter range. Use of the arti�cial series
of measured values must be compared with use of original experimental
series of measured values from which the secondary model was derived.
For using secondary models, these methods have to be implemented and
incorporated into the R package NPMPM.

Original experimental data are preferable to deterministic primary models,
because a set of series of measured values contains uncertainty and variabil-
ity, whilst deterministic models do not. Probabilistic and stochastic primary
and secondary models yield distributions of series of measured values. It
has to be investigated if use of probabilistic models is preferable to original
experimental series of measured values. E�ects on simulation output of
combination of arti�cial series of measured values and experimental data
have to be assessed.

Weights may be used to take into account for combination of arti�cial
and experimental data, or for experimental data of di�erent quality. Some
experimental data may contain less uncertainty, e.g. because informa-
tion about the history of the cells is available. This di�erences may be
compensated by assigning higher weights to reliable data. When series
of measured values are not homogeneously distributed over the range of
process conditions, weights may be used to modulate the in�uence of certain
series on end-cfu/ml. Investigation is necessary for decision how those
weights may be calculated.

For some microorganism only few data are available. Particularly tenacity
data for microorganisms of biosafety level 3 and 4 are rare. For modelling
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of growth and survival of such microorganisms, sometimes surrogate
germs are used, e.g. Bacillus cereus is used as substitute for Bacillus
anthracis. If experimental data from surrogate bacteria are provided in
the data frames with the series of measured values, these data are used
by the NPMPM for simulation. For adding weights to assess global di�er-
ences in behaviour, quanti�cation of similarities between bacteria is essential.

Structure of the database will be extended. For shortening of running time,
�tting information can be stored alongside environmental conditions, e.g.
name of the best-�tting method and calculated parameters. If secondary
models are included into the NPMPM, information about the microorganisms
and conditions these models are validated for has to be saved in the
database. Weights assessing similarities between microorganisms have to be
stored in the database, too. Data from experiments with mixed cultures
must be stored in a way that allows for identi�cation of all microorganisms.

Use of probability distributions of inoculum sizes instead of deterministic
values will be included into the NPMPM.

Methods in predictive microbiology rely on a large amount of high-quality
data. For taking into account factors that in�uence population kinetics,
data used for �tting a predictive model must provide information about
these factors. These information are, in particular:

• Species, stem and biovar of the microorganism: Population
kinetics largely di�er between di�erent species, but also between
stems and biovars of the same species. Knowledge of the particu-
lar biovar used in experiments reduces uncertainty. Additionally, it
allows for assessment of biological variability.
• Previous cultivation conditions: The history of the cells used
in experiments largely in�uences kinetics. In survival experiments,
tenacity can be enhanced or reduced by previous cultivation con-
ditions. In growth experiments, previous cultivation under similar
conditions shortens the lag phase, whilst a change in conditions
yields a longer lag phase. Without information about the history
of the cells used in experiments, these e�ects can not be modelled.
• Environmental conditions: Kinetics of growth and death depend
on the environmental conditions. Temperature, water content and
pH value of the matrix are usually provided with experimental data.
The aw value has a bigger in�uence on growth and death kinetics
than the water content, but it is seldom provided with experimental
data; for complex matrices like food it can not be calculated from
water content. Information about these environmental conditions
is essential for prediction of population kinetics. Additionally, salt
and fat content, and presence of preservatives or concurrence �ora
should be provided to reduce uncertainty in predictive models.
• Cultivation conditions: Population kinetics may be di�erent in
cultivation on solid media or in liquid media. On solid media, gas,
e.g. oxygen, is freely available for the bacteria, whilst nutrients



136 9. CONCLUSION

and metabolite are distributed very slowly by di�usion. In liquid
media, nutrients and metabolites are distributed more quickly, but
oxygen and other gas are distributed slower by di�usion. Bacterial
cultures in liquid media can be incubated on a shaker that provides
good mixture and ventilation, and prevents sedimentation of the
cells. These di�erent cultivation conditions can lead to di�erences
in growth and death kinetics, even under similar environmental con-
ditions.
• Volume of bacterial cultures: The volume of bacterial cultures
is of special interest in experiments that investigate temperature de-
pendencies. Small volumes respond quickly to temperature changes,
e.g. heating of small tubes in a thermocycler. Bigger volumes, e.g.
raw milk in tanks of a dairy, only allow for slower temperature
changes. For avoiding scaling problems in predictive modelling, it
is useful to take into account the volume of bacterial cultures.

Today, data collection is not standardised. When collecting data in the
future, providing all these information will lead to an improvement of
prediction quality: Existing probabilistic models may fail in describing
variations in population kinetics, that may be even found in experiments
with matching experimental conditions (see section 7.9). If more exper-
imental parameters are taken into account, experiments could be better
described. Experimental data could be partitioned into groups according to
experimental parameters. This would lead to more homogeneous kinetics in
this groups, and to a better �t of primary models.
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Abstract (German)

In dieser Arbeit wird ein neues probabilistisches Modell in der prädiktiven
Mikrobiologie, das NPMPM, präsentiert. Die Einbeziehung von Variabilität
und Unsicherheit in die Modellierung folgt einem neu eintwickelten Ansatz.
Das NPMPM wurde zur Verwendung in der Risikobewertung von bakteriellen
Kontaminationen der Lebensmittelkette entwickelt. Es wird am Beispiel
einer Kontamination der Milchkette mit Listeria monocytogenes vorgestellt.

Lebensmittel, die pathogene Keime oder bakterielle Toxine enthalten, kön-
nen zu lebensmittelbedingten Erkrankungen führen. Eine Abschätzung von
Wachstum und Tenazität von Bakterien während der Lebensmittelproduk-
tion und während der Lagerung des fertigen Lebensmittels in Abhängigkeit
von verschiedenen Faktoren ist deshalb von besonderem Interesse für eine
Garantie der Lebensmittelsicherheit. Der Einsatz prädiktiver Modelle
ist hierfür von groÿem Nutzen, da eine experimentelle Untersuchung der
Populationskinetiken im Labor einen sehr hohen zeitlichen und personellen
Aufwand erfordert und damit konstenintensiv ist.

Biologische Prozesse wie Wachstum und Absterben sind oft hochgradig
variabel. Existierende Modellansätze berücksichtigen Variabilität und
Unsicherheit, indem sie die biologischen Prozesse selbst als stochastische
Prozesse modellieren, oder indem Parameter nicht als konstant, sondern
als wahrscheinlichkeitsverteilt de�niert werden. Das NPMPM nutzt einen
anderen, neu entwickelten Ansatz. Es berechnet Stichproben möglicher
Bakterienkonzentrationen mit Hilfe deterministischer Modelle. Aus
einer solchen Stichprobe werden die Parameter der zugrundeliegenden
Wahrscheinlichkeitsverteilung geschätzt.

Diese Arbeit ist interdisziplinär. Ihr erstes Kapitel erläutert die Moti-
vation des Forschungsansatzes und gibt einen Überblick über ihren Auf-
bau. Das zweite Kapitel beschreibt Ursachen und Auswirkungen lebens-
mittelbedingter Erkrankungen. Im dritten Kapitel werden Ein�ussfaktoren
auf die Wachstums- und Absterbekinetik von Bakterienpopulationen disku-
tiert. Das vierte Kapitel liefert eine Zusammenfassung der Grundlagen der
Milchverarbeitung in der Bundesrepublik Deutschland. Im fünften Kapi-
tel werden existierende Modelle in der prädiktiven Mikrobiologie dargestellt.
Das sechste Kapitel gibt einen Überblick über die verwendeten Daten und
Methoden und diskutiert die Modellannahmen. Im siebten Kapitel wird das
NPMPM vorgestellt. Validierung des Modells, Vorstellung und Diskussion der
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Ergebnisse erfolgen im achten Kapitel. Abschlieÿend wird im neunten Kapi-
tel der Beitrag zum Forschungsfeld zusammengefasst und ein Ausblick auf
weitere Forschung gegeben.
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Abstract (English)

In this thesis a new probabilistic model in predictive microbiology, the
NPMPM, is presented. It is based on a new approach for including variability
and uncertainty. The NPMPM was developed for risk assessment of bacterial
contaminations in the food supply chain. It is introduced by the exam-
ple of a contamination of the milk supply chain with Listeria monocytogenes.

Human illness that results from the consumption of contaminated food may
be caused by bacteria and their toxins. Hence, assessment of growth and
tenacity of bacteria during food production processes and storage is vital
for food security. Predictive modelling is used to forecast the development
of microorganisms in food, depending on di�erent in�uence factors. Getting
the desired information solely by means of laboratory experiments is time
and cost intensive.

Biological processes like growth and death are highly variable. Existing
approaches that take into account variability and uncertainty either assume
parameters to follow probability distributions, or model a biological process
as stochastic process. The NPMPM follows a newly developed approach. It
calculates samples of possible bacterial concentrations by means of deter-
ministic models. Such a sample is used for estimation of the probability
distribution of the corresponding population.

This thesis is an interdisciplinary one. In the �rst chapter the research ap-
proach is motivated, and an overview of the organisation of this thesis is
given. The second chapter describes causes and impact of foodborne di-
seases. Chapter three discusses in�uencing factors on growth and survival
kinetics of bacterial populations. In chapter four dairy manufacturing in
Germany is summarised. The �fth chapter presents existing models in pre-
dictive microbiology. Chapter six gives an overview of data and methods
used, and a discussion of model assumptions. In chapter seven the NPMPM

is introduced. The model is validated in chapter eight, and results are dis-
cussed. Finally, in chapter nine the contributions to the �eld of predictive
microbiology are summarised, and some future work is suggested.
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APPENDIX C

Terminology

β growth rate

η decline rate

λ lag time duration

γ expected number of o�spring per time step

µ rate of population change, includes both growth and decline

µm maximum speci�c growth rate

σ standard deviation

σ2 variance

A asymptote of a growth curve, A = ln K
N0

autonomous equation a di�erential equation that does not depend on the indepen-
dent variable, e.g. time

calculated cfu/ml calculated bacterial concentration

calculated logcfu/ml decadic logarithm of the calculated bacterial concentration

CDC Centers of Disease Control (USA)

cfu colony forming unit

cfu/ml cfu in one ml (measured in an experiment)

closed-form expression an expression that is a combination of a �nite number of
�well-known� functions
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data frame a matrix that may contain di�erent data types

end-cfu/ml concentration of bacteria at the end of a process step

ESL Extended Shelf Life

FDA U.S. Food and Drug Administration

�nal cfu/ml calculated concentration of bacteria in the end product

generation time time needed for doubling the number of cells

growth rate number of cleavages per time

HACCP Hazard Analysis and Critical Control Points, a system used to iden-
tify and prevent food-safety problems in production, processing, and
distribution of foods

hazard an agent or action that can cause adverse e�ects

HSP heat shock protein

HTH high temperature heating pasteurisation

HTST high temperature/short time pasteurisation

inoculation placement of something that will grow or reproduce

inoculum microorganism used in inoculation

K carrying capacity

kinetics a term describing the dynamics of bacterial growth and decay, e.g.
the velocity of changes in population size

logcfu/ml decadic logarithm of cfu/ml

LTLT low temperature/long time pasteurisation

matrix medium in which bacteria are grown

M(t) expected number of o�spring of one single cell

mixed culture a culture that contains more than one species (stem, biovar) of bac-
teria
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N0 start population size (at time t0 = 0), N0 = N(0)

non-autonomous equation a di�erential equation that depends on the independent
variable, e.g. time

NPMPM new probabilistic model in predictive microbiology

N(t) population size at time t

predictive model model of the responses of bacterial populations to intrin-
sic and extrinsic conditions

pure culture a culture that contains only one species (stem, biovar)
of bacteria

start-cfu/ml concentration of bacteria at the beginning of a process
step

t time

T temperature in ◦C

t0 start time, t0 = t = 0

tenacity persistence of bacteria

UHT ultra-high temperature processing

y0 relative population size at start, y0 = y(0)

y(t) relative population size, y(t) = ln N(t)
N0

YOPI young, old, pregnant, immunocompromised people





APPENDIX D

The R package

The model NPMPM presented in this thesis is implemented in the R program-
ming language [R Development Core Team, 2010]. It is downloadable
from CRAN (http://cran.r-project.org/), and it is licensed under the
GNU General Public License [Anonymous, b]. In this appendix, the
documentation of the R package and its methods is given. The structure
of dependencies (calls) of methods provided by the package is pictured in
�gure D.1. This methods are described in table D.1.

Part of the information essential for a simulation must be passed as input
to the methods, other information must be provided as data frames in the
global environment of the R session. The structure of this data frames is
given in table 7.2 in section 7.6.

Documentation. Package: NPMPM

Type: Package

Title: tertiary probabilistic model in predictive microbiology for

use in food manufacture

Version: 1.0

Date: 2011-03-18

Author: Nadine Schoene

Maintainer: Nadine Schoene <nadine.schoene@fu-berlin.de>

Description: The main method npmpm calculates bacterial

concentrations during food manufacture after contamination.

Variability and uncertainty are included by use of probability

distributions and Monte Carlo Simulation. The model aims at

predicting possible bacterial concentrations at one certain

point in time s, e.g. at the end of a process chain. The process

steps of this process chain are run through in linear order.

Experimental data that match current process step conditions are

gathered, and one deterministic primary model is fitted to every

series of measured values. From every fitted curve one concentration

of bacteria at time s is computed, yielding a set of concentrations.

This sample of possible contamination sizes is assumed to follow a

certain probability distribution. After calculation of distribution

parameters, one value is randomly drawn from this probability

distribution. This value may be modified, and then serves as

contamination for the next process step.

License: GPL version 2 or newer

Depends: R(>=2.11), SweaveListingUtils, graphics
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LazyLoad: yes

allneeded

npmpm

makeoutputpdf

numberiterations

onestep
disconestep

psteppar

apsomv
allsomv

cfuinterpolation
simpleinterpolation

NPMPM

Figure D.1. R package NPMPM: methods and calls

Call of allneeded loads the libraries the package depends on, namely
graphics and SweaveListingUtils. Package SweaveListingUtils

[Leisch, 2002] allows for including and executing R code in LATEX docu-
ments, and for generating a .pdf-�le from the R session. Package graphics
is used for picturing output. allneeded takes no input. This method
should be called once in an R session before running the main method. The
documentation is given in documentation D.

Documentation. \name{allneded}
\alias{allneded}

\title{

loads all packages this package depends on

}

\description{loads all packages needed for running the package

NPMPM, i.e., packages SweaveListingUtils and graphics}

\usage{

allneded()

}

\value{

no return value

}

\author{

Nadine Schoene

}

\examples{

function(){
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# LOAD PACKAGE FOR GENERATING OF .PDF OUTPUT

library(SweaveListingUtils)

# LOAD PACKAGE FOR PLOTTING

library(graphics)

} # END FUNCTION

}

npmpm is the main method of the package NPMPM. It computes the concen-
tration of bacteria in the end product of a process chain. Obligatory input is
a vector with exactly one non-negative inoculum size for every process step
of the process chain. npmpm takes the following facultative input: the relative
error bound used for the stop criterion (default value 0.01), interpolation
method (default method cfuinterpolation, see documentation D), method
for selection of experiments (default method apsomv, see documentation D),
method that returns one process step duration (default method psteppar,
see documentation D), stop criterion for the simulation (default method
numberiterations, see documentation D), method that calculates the
bacterial concentration at the end of one process step (default method
onestep, see documentation D). npmpm returns a vector with calculated
bacterial concentrations (in cfu/ml). Additionally, npmpm initialises and
sets some vectors in the global environment. These are used by method
makepdfoutput (see documentation D.

Documentation. \name{npmpm}
\alias{npmpm}

\title{

main method of the package NPMPM

}

\description{

computes the concentration of bacteria in the end product of a

process chain

}

\usage{

npmpm(inoculum, errorb = 0.01, intexmethod = cfuinterpolation,

apsomvmethod = apsomv, pdistpsteps = psteppar,

lastiteration = numberiterations,

calconestep = onestep)

}

\arguments{

\item{inoculum}{

mandatory input, exactly one non-negative inoculum size per

process step

}

\item{errorb}{

error bound for stop criterion (default value 0.01)}

\item{intexmethod}{

interpolation method (default method cfuinterpolation)

}

\item{apsomvmethod}{
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method for selection of experiments (default method apsomv)

}

\item{pdistpsteps}{

method that returns one process step duration (default

method psteppar)

}

\item{lastiteration}{

stop criterion for the simulation (default method

numberiterations),

}

\item{calconestep}{

method that calculates the bacterial concentration at

the end of one

process step (default method onestep)

}

}

\value{

vector with calculated bacterial concentrations (in cfu/ml)

}

\author{

Nadine Schoene

}

R package provides two methods for calculation of the bacterial count
at the end of a process step. These methods only di�er in the assumed
probability distribution of cfus. Default method onestep assumes the
set of cfus to be log-normally distributed. Method disconestep uses its
frequency distribution. Both need the following input: initial bacterial
concentration, the current process step (one row of data frame psteps),
method for determining the process step duration, method for selection of
series of measured values, and the interpolation method. The output is one
bacterial concentration at the end of the process step.

Documentation. \name{onestep}
\alias{onestep}

\alias{disconestep}

\title{

calculates the bacterial count at the end of a process step

}

\description{calculates the bacterial count at the end of

a process step,

default method {\tt onestep} assumes the set of cfus to be

normally distributed,

method {\tt disconestep} uses its frequency distribution

}

\usage{

onestep(cfu_in, pstep, pdistpsteps, apsomvmethod, intexmethod)

disconestep(cfu_in, pstep, pdistpsteps, apsomvmethod, intexmethod)
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}

\arguments{

\item{cfu_in}{

initial bacterial concentration

}

\item{pstep}{pstep is one row of

psteps <- data.frame(name, id, process_id, temp_min, temp_max,

time_min, time_max, matrix_id, factor, stepnumber)

}

\item{pdistpsteps}{

method for determining the process step duration

}

\item{apsomvmethod}{

method for selection of series of measured values

}

\item{intexmethod}{

interpolation method

}

}

\value{

one bacterial concentration (in cfu/ml)

}

}

\author{Nadine Schoene

}

The package provides two methods for selection of experimental data.
Both need the current process step as input, i.e., one row of data frame
psteps (see table 7.2 in section 7.6). The output is a list of ids of selected
series of measured values. Method allsomv selects the whole data.frame
raw_data. Default selection-method apsomv selects experiments matching
the parameters (temperature, pH value, and aw value) of the current process
step. Documentation of both methods is given in documentation D.

Documentation. \name{apsomv}
\alias{apsomv}

\alias{allsomv}

\title{function that selects the series of measured values

}

\description{Selects series of measured values from the

data.frame raw_data.

Default selection-method apsomv selects experiments

matching the parameters (temperature, pH value, aw value)

of the current process step.

Method allsomv selects the whole data.frame.

}

\usage{
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apsomv(pstep)

allsomv(pstep)

}

\arguments{

\item{pstep}{pstep is one row of

psteps <- data.frame(name, id, process_id, temp_min, temp_max,

time_min, time_max, matrix_id, factor, stepnumber)

}

}

\value{

returns a list with the ids of selected series of

measured values

}

\author{Nadine Schoene

}

The package contains one method for extraction of process step duration.
This method psteppar needs the current process step as input, i.e., one
row of data frame psteps (see table 7.2 in section 7.6). From the uniform
distribution of process step duration given as minimum and maximum,
one random value is drawn. This process step duration is returned as output.

Documentation. \name{psteppar}
\alias{psteppar}

\title{

function that returns one process step duration

}

\description{

draws one random value from the uniform distribution

of process

step duration (given by minimum and maximum duration)

}

\usage{

psteppar(pstep)

}

\arguments{

\item{pstep}{pstep is one row of

psteps <- data.frame(name, id, process_id, temp_min, temp_max,

time_min, time_max, matrix_id, factor, stepnumber)

}

}

\value{

process step duration

}

\author{Nadine Schoene

}
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The package provides two interpolation methods. Method
simpleinterpolation is piecewise linear interpolation between mea-
surement points. Default-method cfuinterpolation approximates
population kinetics of one single experiment by ordinary least squares.
Both methods need the id of the series of measured values, process step
duration, and the initial bacterial concentration (cfu/ml). The methods
return one decadic logarithm of the concentration of bacteria (log10 cfu/ml).

Documentation. \name{cfuinterpolation}
\alias{cfuinterpolation}

\alias{simpleinterpolation}

\title{

interpolation method

}

\description{

interpolation method - fits a function to the measured values

of one experiment and calculates one value (decadic logarithm

of cfu/ml) from this functiondefault method cfuinterpolation

uses ordinary linear regression

method simpleinterpolation interpolates linearly between

measurement points (interpolation by splines of order 2)

}

\usage{

cfuinterpolation(psteptime, series, cfu_in)

simpleinterpolation(psteptime, series, cfu_in)

}

\arguments{

\item{psteptime}{

duration of the process step

}

\item{series}{

id of the series of measured values

}

\item{cfu_in}{

initial bacterial concentration

}

}

\value{

decadic logarithm of bacterial concentration (log10 cfu/ml)

}

\author{

Nadine Schoene

}

Method makepdfoutput generates a .pdf �le with information about
simulation settings and results. It needs a text as input, e.g. with names of
process chain and microorganism. The method uses the �le pdfoutput.SNW
that is also provided with this package. An example for the result is shown
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in �gures 8.13 and 8.14 in section 8.8.

Documentation. \name{makepdfoutput}
\alias{makepdfoutput}

\title{

generates a .pdf file with information about simulation

settings and results

}

\description{

generates a .pdf file that is hopefully useful for filing

and explaining simulation results

this file contains the input text, summary statistics and

graphics with the bacterial concentrations calculated in

the simulation, methods (from the package) used during

simulation,and information if quantity of data was sufficient

}

\usage{

makepdfoutput(text)

}

\arguments{

\item{text}{

text that gives further description of the simulation,

e.g. the name of the microorganism and process chain

}

}

\value{

returns no value to the global environment, but generates

a .pdf file with information about simulation settings

and results

}

\author{

Nadine Schoene

}

\note{

this method depends on the packages SweaveListingUtils

and graphics it generates the .pdf file from the file

pdfoutput.SNW provided with this package

}

This method calculates if the stop criterion is ful�lled. It needs the number of
iterations, the relative error bound, and a vector with mean of cfus calculated
in the �rst j iterations, as jth component It calculates the di�erence of
the mean of the results of all iterations hitherto done (current mean), and
the mean of the results of the iterations done before the last one. If the
absolute value of this di�erence is smaller as the ratio of the current mean
determined by the error bound, the stop criterion is ful�lled. The method
returns FALSE and the simulation stops. As long as the stop criterion is not
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ful�lled yet, the method returns TRUE. stop criterion numberiterations

<- function(iterations,errorb,cfu_average), return boolean

Documentation. \name{numberiterations}
\alias{numberiterations}

\title{

stop criterion

}

\description{

computes if the fluctuation of the mean of cfus

calculated in the previous iterations is bigger

than a ratio of the mean determined by the relative

error bound

}

\usage{

numberiterations(iterations, errorb, cfu_average)

}

%- maybe also 'usage' for other objects documented here.

\arguments{

\item{iterations}{

number of iterations

}

\item{errorb}{

error bound for stop criterion

}

\item{cfu_average}{

vector with mean of cfus calculated in the first j

iterations, as jth component

}

}

\value{

TRUE (continue)

FALSE (stop)

}

\author{

Nadine Schoene

}
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Table D.1. Methods provided by the R package NPMPM

method description input

allneeded loads libraries the package depends on -

allsomv selects appropriate series of measured values for the current process step
process step

apsomv selects appropriate series of measured values for the current process step
process step (default method)

cfuinterpolation computes one calculated logcfu/ml by global linear process step duration, series-id, start-cfu/ml
interpolation (default method)

disconestep calculates one endcfu/ml start-cfu/ml, process step, method that extracts the
process step parameters, method that selects the
appropriate series of measured values for the current
process step, intexmethod

makepdfoutput generates an output .pdf �le text

npmpm implementation of the new probabilistic model in predictive inoculum size
microbiology (NPMPM)

numberiterations terminates the simulation number of iterations, error bound, vector of means
of �nal-cfu/mls

onestep calculates one endcfu/ml (default method) start-cfu/ml, process step , method that extracts the
process step parameters, method that selects the
appropriate series of measured values for the current
process step, intexmethod

psteppar extracts the process step parameters (default method) process step

simpleinterpolation computes one calculated logcfu/ml by local linear process step duration, series-id, start-cfu/ml
interpolation
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Statistics

In this appendix summary statistics of experimental data from the ComBase
[Anonymous, a], and results of statistical test in validation are listed.

E.1. Summary statistics of Listeria data from the ComBase

We get the following summary statistics for the available data.
data_source ComBase:9420

STAT-UP: 3

organism Listeria monocytogenes/innocua:9423

environment

Culture medium (In: broth) :1946

Culture medium (In: TPB) :1311

Culture medium (In: BHIB) :1113

Pork (In: ham) : 449

Culture medium (In: TSYB (0.6% Yeast Extract)): 296

Culture medium (In: TSB) : 256

(Other) :4052

b_f temperature_C

Culture medium:5474 Min. :-20.00

Pork : 615 1st Qu.: 6.00

Beef : 511 Median : 13.00

Milk : 483 Mean : 19.92

Seafood : 419 3rd Qu.: 28.00

(Other) :1918 Max. : 90.00

NA's : 3

pH aw

Min. :0.000 Min. :0.0000

1st Qu.:5.000 1st Qu.:0.0000

Median :6.000 Median :0.9710

Mean :5.421 Mean :0.6742

3rd Qu.:6.700 3rd Qu.:0.9950

Max. :9.200 Max. :0.9990 : 3

Only milk as medium:
listeria_milk <- subset(listeria_raw, b_f=="Milk" | b_f=="milk")

Summary statistics for Listeria spp.
data_source ComBase:483
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Histogram of listeria_raw$temperature_C
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Figure E.1. Histogram for the absolute counts of series of
measurements for di�erent temperatures for Listeria spp.

STAT-UP: 0

organism Listeria monocytogenes/innocua:483

id source_id

B304_LM: 1 Chhabra_99 :122

B305_LM: 1 Chhabra_02 :109

BJ00_01: 1 Rajkowski_94a: 36

BJ00_02: 1 AFSCE : 24

BJ00_03: 1 Donnelly_86 : 19

BJ00_04: 1 FSA-CCFRA : 18

(Other):477 (Other) :155

environment

Milk (In: formulated milk) :231

Milk (In: milk) : 49

Milk (In: uht milk) : 47
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Milk (In: whole milk) : 41

Milk (In: skimmed milk) : 32

Milk (In: UHT milk with added amino acids): 20

(Other) : 63

b_f b_f_details

Milk :483 formulated milk :231

milk : 49

uht milk : 47

whole milk : 41

skimmed milk : 32

UHT milk with added amino acids: 20

(Other) : 63

temperature_C temperature_assumed pH pH_assumed

Min. : 0.00 0:483 Min. :0.000 0:483

1st Qu.:13.00 1st Qu.:6.000

Median :45.10 Median :6.600

Mean :38.53 Mean :6.166

3rd Qu.:60.00 Max. :7.200

3rd Qu.:6.700

Max. :65.00

aw aw_assumed co_2 in_on

Min. :0.0000 0:448 Min. :0 in:483

1st Qu.:0.0000 1: 35 1st Qu.:0 on: 0

Median :0.0000 Median :0

Mean :0.1042 Mean :0

3rd Qu.:0.0000 3rd Qu.:0

Max. :0.9970 Max. :0

conditions

:130

Sterilised before inoculation, Shaken (agitated, stirred) : 76

Sterilised before inoculation, Shaken (agitated, stirred),

Fat in the environment(%):5 : 65

Sterilised before inoculation, Shaken (agitated, stirred),

Fat in the environment(%):2.5 : 64

Inoculation in/on previously heated (cooked, baked,

pasteurized, etc) but not sterilised food/medium : 41

Sterilised before inoculation : 22

(Other) : 85
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Histogram of listeria_milk$temperature_C
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Figure E.2. Histogram for the absolute counts of se-
ries of measurements in milk for di�erent temperatures for
Listeria spp.
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E.2. Results of the Kolmogorov-Smirnov test I

In this section the results of the Kolmogorov-Smirnov tests done in section
8.3 during validation in with experimental data without removal of measur-
ing times are listed.

Table E.1. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method cfuinterpolation and
method for calculation of one step onestep, 4◦C-sample

time in s D p-value

900 0.2157143 0.15245525
3600 0.2985714 0.01516392
25200 0.2728571 0.03371737
75600 0.1914286 0.26016017
86400 0.3500000 0.03540442
100800 0.2671429 0.03985237
126000 0.1731259 0.36643331
151200 0.2900000 0.02652370

Table E.2. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method cfuinterpolation and
method for calculation of one step onestep, 20◦C-sample

time in s D p-value

21600 0.2059259 0.08594705
86400 0.2196226 0.05799889
259200 0.1941509 0.12392381
432000 0.2000000 0.10231926
604800 0.2549020 0.02236404

Table E.3. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method simpleinterpolation

and method for calculation of one step onestep, 4◦C-sample

time in s D p-value

900 0.1787836 0.32893101
3600 0.1335219 0.68198725
25200 0.3014286 0.01382143
75600 0.2014286 0.21063589
86400 0.1733333 0.68131959
100800 0.2611033 0.04642245
126000 0.2127298 0.16078025
151200 0.2503094 0.07772675
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Table E.4. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method simpleinterpolation

and method for calculation of one step onestep, 20◦C-sample

time in s D p-value

21600 0.2022222 0.09586457
86400 0.1203774 0.64142120
259200 0.1742948 0.20915437
432000 0.1500000 0.36396620
604800 0.2189866 0.06746808

Table E.5. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method cfuinterpolation and
method for calculation of one step disconestep, 4◦C-sample

time in s D p-value

900 0.1800000 0.326131050
3600 0.2900000 0.019949741
25200 0.3628571 0.001480385
75600 0.2657143 0.041540228
86400 0.3333333 0.051335712
100800 0.2242857 0.124482661
126000 0.1614286 0.456459097
151200 0.3587500 0.002700828

Table E.6. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method cfuinterpolation and
method for calculation of one step disconestep, 20◦C-sample

time in s D p-value

21600 0.2614379 0.012729096
86400 0.2718868 0.009082834
259200 0.2830189 0.005814734
432000 0.1886689 0.139190140
604800 0.1900602 0.152625337
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Table E.7. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method simpleinterpolation

and method for calculation of one step disconestep, 4◦C-
sample

time in s D p-value

900 0.07949081 0.9906594
3600 0.08428571 0.9834955
25200 0.06874116 0.9985373
75600 0.15285714 0.5246406
86400 0.20297030 0.4863083
100800 0.10571429 0.8994932
126000 0.05714286 0.9999493
151200 0.09125000 0.9732949

Table E.8. Kolmogorov-Smirnov test for input and output
of npmpm with interpolation method simpleinterpolation

and method for calculation of one step disconestep, 20◦C-
sample

time in s D p-value

21600 0.14148148 0.4346953
86400 0.12254810 0.6169338
259200 0.07264151 0.9841216
432000 0.08814815 0.9187702
604800 0.09235294 0.9026703
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E.3. Results of Kolmogorov-Smirnov tests done during validation
II

In this section the results of the Kolmogorov-Smirnov tests done in section
8.3 during validation with experimental data from which certain measuring
times were removed before simulation are listed.

Table E.9. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
cfuinterpolation and method for calculation of one step
onestep, 4◦C-sample

time in s D p-value

900 0.2900000 0.0199497414
3600 0.3500000 0.0024500227
25200 0.4142857 0.0001611965
75600 0.3142857 0.0089916308
86400 0.4405941 0.0032616266
100800 0.2242857 0.1244826607
126000 0.2178788 0.1554206671

Table E.10. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
cfuinterpolation and method for calculation of one step
onestep, 20◦C-sample

time in s D p-value

21600 0.3044444 0.002175458
86400 0.3207547 0.001097450
259200 0.3107547 0.001758317
432000 0.2840225 0.005906383
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Table E.11. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
simpleinterpolation and method for calculation of one step
onestep, 4◦C-sample

time in s D p-value

900 0.4857143 4.236233e-06
3600 0.3914286 4.489807e-04
25200 0.2093352 1.742710e-01
75600 0.2314286 1.044940e-01
86400 0.3960396 1.117395e-02
100800 0.1114286 8.648935e-01
126000 0.1296970 7.322901e-01

Table E.12. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
simpleinterpolation and method for calculation of one step
onestep, 20◦C-sample

time in s D p-value

21600 0.4270370 2.708892e-06
86400 0.3207547 1.110724e-03
259200 0.2015094 1.014341e-01
432000 0.2545137 1.834236e-02

Table E.13. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
cfuinterpolation and method for calculation of one step
disconestep, 4◦C-sample

time in s D p-value

900 0.2500000 0.0643957496
3600 0.2857143 0.0228492324
25200 0.3942857 0.0003967854
75600 0.3142857 0.0089916308
86400 0.4207921 0.0057798371
100800 0.1742857 0.3636312117
126000 0.2078788 0.1942329424
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Table E.14. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
cfuinterpolation and method for calculation of one step
disconestep, 20◦C-sample

time in s D p-value

21600 0.3044444 0.002175458
86400 0.3207547 0.001110724
259200 0.3207547 0.001110724
432000 0.2341176 0.040038581

Table E.15. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
simpleinterpolation and method for calculation of one step
disconestep, with 4◦C-sample

time in s D p-value

900 0.4857143 0.0000042
3600 0.4114286 0.0001835
25200 0.2000000 0.2169786
75600 0.2327323 0.0978446
86400 0.3900000 0.0133309
100800 0.1521924 0.5236976
126000 0.1791179 0.3492437

Table E.16. Kolmogorov-Smirnov test for input and out-
put of interpolation (measured value that was removed
from the data) with npmpm with interpolation method
simpleinterpolation and method for calculation of one step
disconestep, 20◦C-sample

time in s D p-value

21600 0.4170370 0.0000051
86400 0.3207547 0.0011107
259200 0.2392453 0.0307318
432000 0.1945098 0.1306565
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