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ABSTRACT

Ab initio methods provide useful tools for the prediction and characterization of material
properties, as they allow to obtain information complementary to purely experimental
investigations. The GW approach to many-body perturbation theory (MBPT) has re-
cently emerged as the method of choice for the evaluation of single-particle excitations in
molecules and extended systems. Its application to the characterization of the electronic
properties of technologically relevant materials – such as, e.g., dyes for photovoltaic
applications or transparent conducting oxides – is steadily increasing over the last years.
The GW approximation is typically introduced as a first-order perturbative correction
(G0W0) to density-functional theory (DFT) or Hartree-Fock (HF). However, this also
introduces a severe initial-state dependence that affects the G0W0 solution. Due to its
non-perturbative nature, self-consistent GW (sc-GW ) ameliorates several shortcomings
of the G0W0 scheme, such as the violation of the particle-number conservation and
the dependence on the initial reference ground state. Nevertheless, the suitability and
overall accuracy of sc-GW has often been questioned, mostly because of numerical
problems with previous implementations and the lack of systematic studies for a wide
range of systems.

In this doctoral work, the sc-GW approach for total energies and spectroscopic prop-
erties has been implemented in the Fritz Haber Institute ab initio molecular simulations
code (FHI-aims) in an all-electron numeric atom-centered orbital framework. With this
implementation I then performed a systematic assessment of ground- and excited-state
properties of atoms and molecules.

In this work, sc-GW has been employed to study the excitation spectra of organic
molecules, molecules of interest for photovoltaic applications, and prototypical donor-
acceptor systems. At self-consistency, the quasi-particle energies are in good agreement
with experiment and, on average, more accurate than G0W0 based on HF or semi-local
DFT. For covalently bonded dimers, the capability of DFT- and MBPT-based approaches
to describe the correlated electronic ground state at dissociation was investigated. Static
and local approximations of exchange-correlation potentials – as opposed to non-local,
frequency dependent self-energy approximations – are shown to be more effective in
describing the dissociation regime. sc-GW calculations for ground-state properties
(as, e.g., binding energies, bond lengths, vibrational frequencies, and dipole moments)
are presented. For ground-state properties, I show that sc-GW achieves a comparable
performance to exact-exchange plus correlation in the random-phase approximation
(EX+cRPA) which is, however, not as good as that of renormalized second-order per-
turbation theory (rPT2). Finally, the correct distribution of the electron density in
prototypical donor-acceptor compounds suggests that sc-GW is a promising method
for the description of electronic excitations in charge-transfer systems.





ZUSAMMENFASSUNG

Im Vergleich zu einer rein experimentellen Vorgehensweise bieten ab initio Methoden
die Möglichkeit Ergebnisse auf fundamental anderem Weg zu erlangen. Eine vielver-
sprechende Wahl für die Bestimmung von Ein-Teilchen Anregungen in Molekülen
und in ausgedehnten Systemen ist der GW -Ansatz in der Vielteilchenstörungstheorie.
Seine Verwendung bei der Analyse technologisch interessanter Materialien nimmt
stetig zu, z.B. bei halbleitenden Farbstoffen für die Anwendung in der Photovoltaik
oder bei transparenten leitenden Oxiden. Üblicherweise wird die GW -Näherung als
eine Korrektur in erster Ordnung (G0W0) auf die Ergebnisse der Dichtefunktionaltheo-
rie (DFT) oder Hartree-Fock-Theorie (HF) angewandt. Dies wiederum führt zu einer
starken Abhängig vom Startzustand der G0W0-Lösung. Dank seines nicht-störungs-
theoretischen Charakters vermag es der selbstkonsistente GW -Ansatz (sc-GW ) einige
der Nachteile von G0W0, z.B. die Nichterhaltung der Teilchenzahl oder die Abhängig
vom Referenzzustand, aufzuheben. Auf Grund von numerischen Problemen in ex-
istierenden Implementationen und der fehlenden systematischen Analyse einer Vielzahl
von Systemen wurde die Eignung und Genauigkeit von sc-GW allerdings oft in Frage
gestellt.

In der vorliegenden Doktorarbeit wurde die sc-GW Methode für Gesamtenergien
und spektroskopische Eigenschaften im Rahmen eines alle Elektronen umfassenden
numerischen, atom-zentrierten Basis Ansatzes in das Fritz Haber Institute ab initio
molecular simulations package (FHI-aims) implementiert. Mittels dieser Implementa-
tion wurde eine systematische Untersuchung der Grund- und Anregungszustände von
Atomen und Molekülen durchgeführt.

Anschliessend wurde die sc-GW -Methode für die Untersuchung von Anregungsspek-
tren organischer Moleküle, Moleküle für die Verwendung in der Photovoltaik und proto-
typische Donor/Akzeptor System angewandt. Bei erreichter Selbstkonsistenz stimmen
die Quasiteilchen Energien gut mit experimentellen Ergebnissen überein und sind im
Durchschnitt deutlich genauer als bei G0W0-Rechnungen, die auf HF oder semi-lokaler
DFT basieren. Weiterhin wurde der korrelierten elektronischen Grundzustandes bei
der Dissoziation von kovalent gebundenen Dimeren auf seine Beschreibung durch
DFT und Störungstheoretischen Methoden untersucht. Im Vergleich zu nicht-lokalen,
frequenzabhängigen Selbstenergienäherungen wie z.B. GW beschreibt die statische und
lokale Näherung des Austausch-Korrelationspotentials in DFT die Dissoziation besser,



vorausgesetzt man verwendet moderne Funktionale wie z.B. exakter Austausch plus
Korrelation in der Random Phase Approximation (Ex+cRPA). Abschliessend werden
die Grundzustandseigenschaften (Bindungsenergien, Bindungslängen, Schwingungs-
frequenzen und Dipolmomente) untersucht. sc-GW ist ähnlich leistungsfähig wie
Ex+cRPA, aber weniger leistungsfähig als renormalized second-order pertubation the-
ory (rPT2). Aus der korrekten Verteilung der Elektronendichte in prototypischen Donor-
Akzeptor Systemen lässt sich schließen, dass sc-GW eine viel versprechende Methode
zur Beschreibung dieser Systeme ist.
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1 INTRODUCTION

In the XV century, the driving force of the first chemical and physical discoveries was
the belief that base metals, such as plumb and iron, could be transformed into gold
by bringing them in touch with the lapis philosophicus, the philosopher’s stone. This
belief led to many efforts towards the synthesis of the lapis philosophicus perpetrated
by severals scholars over the centuries, including Isaac Newton. Nowadays, material
science has moved towards less-esoteric goals but, in a certain sense, is still addressing
the problem of turning “iron” into “gold”, i.e., through the transformation of sun light
into more controllable forms of energy.

Solar cells based on the photovoltaic effect, whereby electricity can be generated
through exposure of the cell to sunlight, constitute one out of many examples of solar-
energy conversion techniques. In all solar-energy conversion devices, the light har-
vesting is triggered by the absorption of a photon in a light absorbing material. The
photon energy is thus transferred to the material and transformed, e.g., in electronic
excitations and/or nuclear vibrations. Providing the theoretical tools for predicting (not
just reproducing) these processes in complex materials is one of the roles of atomistic
modeling in the quest for new materials for energy conversion. The achievement of
this goal is the key to go beyond conventional “trial and error” approaches to material
research – as recently recognized and endorsed by large scale projects, such as the
Material Genome Initiative.1 However, despite the omnipresence of electronic excita-
tions in energy-conversion and energy-storage devices, the methods at hand for their
theoretical description are at an earlier stage of development as compared to approaches
that address ground-state properties.

Density-functional theory (DFT) is the method of choice for the ab initio description
(i.e., based on the fundamental equations of quantum mechanics) of the ground-state
properties of atoms, molecules, and periodic solids. DFT is in principle exact for the
ground-state energy, and the electron density – although in practice approximations
become necessary. On the whole, DFT contributed enormously to the development
of condensed-matter physics and quantum chemistry, and is by far the most diffuse
electronic structure approach. However, when it comes to excited states, DFT – and our
present techniques to deal with it – falls short. For instance, it is well known that even
exact Kohn-Sham DFT would not correctly reproduce the fundamental band gap of a

1http://www.whitehouse.gov/mgi

1

http://www.whitehouse.gov/mgi


2 Introduction

semiconductor. To describe direct and inverse photoemission processes (i.e., processes
involving the loss or gain of an electron), DFT is generally coupled to many-body
perturbation theory (MBPT). One advantage of this synergy is the possibility to treat
ground- and excited-states at different levels of theory: The ground-state properties
can be determined at the DFT level, whereas MBPT-based methods – which are often
computationally more demanding than conventional density-functional approximations
– can be employed just for the evaluation of excited-state properties. Two common
frameworks for the evaluation of spectral properties are dynamical mean-field theory
(DMFT) and the GW approximation. DMFT has gained popularity due to its capability
to reproduce spectral features of materials generally classified as strongly correlated. The
applicability of DMFT is restricted to systems with strongly localized frontier orbitals as,
for instance, 3d- and 4f -electron systems. The GW approximation, on the other hand, is
more versatile and it can be in principle applied to any compound.

The popularity of the GW approach has steadily increased over the last years. In
principle, the GW approximation (as DFT and Hartree-Fock) requires the satisfaction
of a self-consistency condition based on the solution of the Dyson equation. However
in most cases, GW calculations rely on first-order perturbation theory and additional
technical approximations aimed to reduce the computational cost. These approximations
make GW calculations applicable to molecules up to hundred(s) atoms, and periodic
solids with large unit cells that would not be treatable otherwise. On the other hand,
perturbation theory limits the predictive power of the GW approximation, e.g., by
making the results dependent on the arbitrary reference ground state. These aspects
motivate this doctoral work, in which the non-perturbative (i.e. self-consistent) GW
approximation is considered for finite systems.

In the past, self-consistent GW (sc-GW ) has been recognized as a good candidate for
ameliorating the pathologies of the perturbative GW approximation. However, sc-GW
calculations are scarce due to their numerical complexity and an overall assessment
of their accuracy is still missing. Based on previous works on model systems, several
authors argued that self-consistency in the GW approach deteriorates the agreement
with experiment and it was therefore considered counter productive and non-necessary.
However, the present work started from the assessment that the scarce numerical
evidence is not sufficient to corroborate this belief. In this doctoral work, sc-GW has
been implemented in the Fritz-Haber-Institut ab initio molecular simulation (FHI-aims)
code, and applied to the description of the ground-state and excited-state properties of
atoms and molecules. It is shown that sc-GW has several properties that make it a good
candidate for a versatile, general purpose electronic-structure approach – within the
limitations imposed by its numerical cost. The first advancement is the independence
of the results of the initial reference state; the second, the description of ground and
excited states at the same level of theory.

Part I of this thesis is devoted to an overview of basic aspects of electronic structure
and many-body perturbation theory: (i) the many-body problem of interacting electrons
and nuclei, and density-functional theory; (ii) Green-function theory and its connection
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to physical quantities; (iii) Hedin’s equations and the GW approximation. In Part II,
I present the implementation of sc-GW in the FHI-aims package and discuss: (i) the
reformulation of the Hedin’s equation in a form suitable for practical calculations; (ii) an
alternative representation of the time- and frequency-dependent quantities in sc-GW ,
that facilitates the evaluation of Fourier integrals; (iii) the reformulation of spectral
properties and of the total-energy expression in a basis representation, and numerical
convergence tests. Finally, in Part III – which is concerned with the application of the
sc-GW approach to real systems – I will report: (i) an overall assessment of sc-GW
for ground-state properties of atoms and molecules; (ii) a comparison of the density-
functional and many-body description of the dissociation limit for covalently-bonded
diatomic molecules; (iii) the definition of a hierarchy of theoretical consistency for GW
methods at different level of self-consistency, and the investigation of the accuracy of
sc-GW for excited states.





Part I

Theoretical Background
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2 THE MANY-BODY PROBLEM

2.1 THE MANY-BODY HAMILTONIAN

A system of non-relativistic interacting quantum particles in a static time-independent
potential is described by the time-independent Schrödinger equation [1]:

Ĥ |Φn〉 = En |Φn〉 . (2.1)

Here, |Φn〉 is the wave function of the quantum system in its n-th excited state, and En
the corresponding energy. The eigenvalues and eigenvectors of Eq. 2.1 grant access to all
time-independent properties of the system. In the absence of external electro-magnetic
fields, the Hamilton operator Ĥ is:

Ĥ = T̂e + T̂n + V̂e−e + V̂e−n + V̂n−n , (2.2)

where T̂e and T̂n are the electronic and nuclear kinetic-energy operators, V̂e−e and V̂n−n
account for electron-electron and nuclear-nuclear Coulomb repulsions, and V̂e−n is the
electron-nuclear Coulomb interaction. The kinetic operators are given by:

T̂e =

Ne∑

i=1

−∇̂
2
i

2
, T̂n =

Nn∑

I=1

− ∇̂
2
I

2MI
, (2.3)

whereas the interaction terms can be expressed as:

V̂e−e =

Ne∑

ij

1

|r̂i − r̂j |
, V̂e−n =

Ne∑

i

Nn∑

I

−ZI
|r̂i − R̂I |

, V̂n−n =

Nn∑

IJ

ZIZJ

|R̂I − R̂J |
.

(2.4)

Here, Ne and Nn are the number of electrons and nuclei, respectively. ZI is the electric
charge of the I-th atom and MI its mass. Here and through the rest of this thesis Hartree
atomic units (~ = me = e2 = 1) are used.

7



8 The Many-Body Problem

2.2 THE BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer (BO) approximation reduces the complexity of the Schrödinger
Eq. 2.1 by separating nuclear and electronic degrees of freedom in the many-body wave
function. The assumption at the basis of this approximation is that electrons follow
“adiabatically” the movement of the nuclei, and it is based on the different time scale
characteristic of the electronic and nuclear motion. This leads to a factorization of the
wave function into a nuclear part χ and an electronic part Ψ:

|Φ〉 = |Ψ〉 ⊗ |χ〉 . (2.5)

The BO approximation is exact in the limit of infinite nuclear masses, and it is often
a well justified approximation for systems composed by elements with large atomic
numbers. On the other hand, compounds containing light elements, such as hydrogen
and lithium, may be characterized by non-adiabatic coupling of electronic and nuclear
degrees of freedom, and therefore the BO approximation may no longer be adequate.
In the field of spectroscopy, a known effect arising from non-adiabatic couplings is,
for instance, the zero-temperature electron-phonon renormalization of band-gaps in
semiconductors [2, 3] and, more generally, all effects arising from electron-vibration
interactions as, e.g., vibrational replicas in the photo-emission spectra of molecules [4].
For semiconductors, the impact of electron-phonon coupling on band gaps is of the
order of 20-50 meV [5]. For molecules, nuclear vibrations might lead to shifts of the
order of 5 to 20 meV in the ionization energies of aromatic molecules [6]. However, for
simplicity non-adiabatic electron-vibration couplings will not be considered here, and
these effects will be neglected in the theory-experiment comparisons reported in later
Chapters unless otherwise stated. All of the work presented in the following will focus
on electronic degrees of freedom in the BO approximation, with the nuclei fixed at their
equilibrium configuration.

THE ELECTRONIC HAMILTONIAN

If electrons and nuclei are treated independently, the Schrödinger equation reduces to
an eigenvalue problem, similar to Eq. 2.1, for the electronic degrees of freedom only. The
solution of the electronic problem requires the solution of the electronic Schrödinger
equation:

Ĥe |Ψn〉 = Ee
n |Ψn〉 , (2.6)

where the electronic Hamiltonian Ĥe is defined by:

Ĥe = T̂e + V̂e−e + V̂e−n , (2.7)
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or in second-quantized form:

Ĥe =
∑

ij

h0,ij ĉ
†
i ĉj +

∑

ijlm

vijlmĉ
†
i ĉ
†
j ĉmĉl , (2.8)

where vijlm = 〈φiφj | V̂e−n |φlφm〉 and h0,ij = 〈φi| T̂e + V̂e−n |φj〉. ĉ†i and ĉi are the
creation and annihilation operators of the single-particle state φi.

Here the electron-nuclei interaction V̂e−n depends parametrically on the nuclear
coordinates, i.e., the R̂ operators become real numbers. Then, V̂e−n can be expressed as
a single-particle operator, since

V̂e−n =

Ne∑

i

v̂ext(r̂i) ≡
Ne∑

i

(
Nn∑

I

−ZI
|r̂i −RI |

)
, (2.9)

where I defined the external potential as v̂ext(r̂i) ≡
∑
I
−ZI
|r̂i−RI | . Similarly, Vn−n and Tn

in Eq. 2.2 become real additive constants that do not alter the electronic eigenstates, but
just introduce a rigid shift of the entire eigenvalue spectrum.

2.3 AB-INITIO ELECTRONIC-STRUCTURE APPROACHES

Even within the Born-Oppenheimer approximation, the electronic Schrödinger equation
(Eq. 2.6) is tractable analytically only for a few cases. Three simple examples are the free
particle, the hydrogen atom, and the harmonic oscillator – all cases for which there is
no electron-electron interaction in the electronic Hamiltonian, i.e., Ve−e = 0 in Eq. 2.7.
For real systems involving two electrons or more, however, the eigenvalue problem
in Eq. 2.6 cannot be solved analytically due to the presence of the electron-electron
Coulomb-interaction term, which introduces correlation of the electronic motion.

For a considerably small number of electrons (Ne < 10−15), Eq. 2.7 may be tackled by
means of numerical techniques as full configuration interaction (full-CI) [7] or quantum
Monte Carlo methods [8, 9]. However, the computational load required by the exact
solution of Eq. 2.7 increases exponentially with the number of degrees of freedom of the
many-body wave function. Therefore, for a broad class of physically interesting systems
the Schrödinger equation must be approximated.

Within the class of ab initio (or first-principles) electronic-structure approaches, ap-
proximations are developed starting from the fundamental laws of quantum mechanics.
Different approximate ab-initio approaches have been developed over the years. The
most prominent are density-functional theory (DFT) [10–12], many-body perturba-
tion theory (MBPT) [7, 13, 14], coupled-cluster theory [15] and quantum Monte-Carlo
methods [8, 9]. Each approach has its strengths and weaknesses in terms of accuracy,
applicability, and computational efficiency. The framework of choice here is MBPT, for
which a concise account will be given in Chap. 3.

Wave-function-based methods, such as coupled cluster and full configuration in-
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teraction, are the most accurate methods at hand for small molecules, and therefore
will be used as references in the following Chapters. An introduction to Hartree-Fock,
coupled-cluster methods, and full configuration interaction is given in Sec. 2.4. DFT
methods will also be employed in this work – mostly as starting point for MBPT-based
first-order perturbation theory – and a short review of the theory will be presented in
Sec. 2.5.

2.4 WAVE-FUNCTION-BASED METHODS

The family of wave-function-based methods addresses the electronic problem by intro-
ducing an ansatz for the form of the many-body wave function, and solving the electronic
Schrödinger equation within the sub-space defined by the chosen wave-function form.
Methods belonging to this family are, for instance, Hartree-Fock, coupled cluster, and
full configuration interaction, that will shortly be introduced below.

In later Chapters, Hartree-Fock will mostly be used as initial reference state for
many-body perturbation-theory calculations, whereas coupled cluster and full configu-
ration interaction will be employed as reference methods for quantities not available
experimentally, such as total energies and electron densities.

HARTREE-FOCK

In the Hartree-Fock approximation (HF), the ground-state electronic wave function
Ψ takes the form of a Slater determinant [16], that for an N -electron system can be
expressed as:

Ψ0(r1, . . . , rN ) =
1

N !

∣∣∣∣∣∣∣∣

ψ1(r1) . . . ψ1(rN )
...

. . .
...

ψN (r1) . . . ψN (rN )

∣∣∣∣∣∣∣∣
. (2.10)

Here, ψn(rj) denotes the n-th single-particle orbital occupied by the j-th electron. The
wave function expressed by Eq. 2.10 is the simplest wave-function form that properly
accounts for the indistinguishable nature of electrons and for their fermionic character.

In HF, the structure of the wave function in Eq. 2.10 implies that electrons interact
with each other only through the Hartree mean field and through the exact-exchange
potential. The many-body correlations arising from Coulomb interactions are completely
neglected: this makes HF the reference method for the definition of Coulomb correlation
in quantum chemistry. In practice, the Coulomb correlation is quantitatively defined as
the difference between the non-relativistic energy of a system and its total energy in the
HF approximation.

By restricting the Hilbert space to wave functions of the form given in Eq. 2.10, the
Schrödinger equation can be solved by seeking – through a Lagrange multiplier method
[7] – the set of single-particle orbitals that minimizes the total energy. This procedure
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leads to the HF equations:

[h0(r) + vH(r)]ψσn(r) +

∫
dr′Σσx (r, r′)ψσn(r′) = εσnψ

σ
n(r) , (2.11)

where h0 is the sum of the kinetic-energy operator and the external potential. Σσx is the
exact-exchange operator, defined by:

Σσx (r, r′) = −
occ∑

n

∫
dr′

ψσ∗n (r)ψσn(r′)
|r− r′| , (2.12)

and vH is the Hartree potential:

vH(r) =
∑

σ

occ∑

n

∫
dr′

ψσ∗n (r′)ψσn(r′)
|r− r′| =

∫
dr′

n(r′)
|r− r′| . (2.13)

Here, the electron density n is defined as n(r) =
∑
σ

∑occ
n ψσ∗n (r)ψσn(r). Equations 2.11-

2.13 define a closed set of integro-differential equations that must be solved self-
consistently, to obtain the single-particle orbitals ψσn and eigenvalues εσn.

In HF, the single-particle eigenvalues may be approximately related to ionization
energies and electron affinities. For a N -electron system, the s-th ionization energy I is
defined as:

Is = E(N)− Es(N − 1) , (2.14)

whereE(N) is the ground-state total energy andEs(N−1) the total energy of the (N−1)-
particle system in its s-th excited state. The electron affinity A is defined analogously
as:

As = Es(N + 1)− E(N) . (2.15)

Koopmans’ theorem provides an approximate recipe to relate ionization energies and
the single-particle eigenvalues in the HF approximation:

−εs ' E(N)− Es(N − 1) = Is . (2.16)

A similar relation holds for the electron affinities. In the context of Hartree-Fock, Eq. 2.16
is valid in the frozen-orbital approximations, i.e., under the assumption that – after the
removal of the s-th electron from an N -electron system – the remaining N − 1 single-
particle orbitals do not relax. The agreement of Koopmans’ ionization energies in HF
with the experimental ones is in most cases only qualitative: For atoms and molecules,
ionization energies are generally found within 2− 5 eV from the experimental reference
[7]. This and other shortcomings arise from the lack of Coulomb correlation in HF and
from the frozen-orbital approximation.
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FULL CONFIGURATION INTERACTION

To properly account for Coulomb correlation in wave-function-based methods, it is
necessary to go beyond the Hartree-Fock approximation for the wave function. In full
configuration interaction, the wave function is expanded in a basis of Slater determi-
nants, as:

|Ψ〉 = c0|Ψ0〉+
∑

ar

cra|Ψr
a〉+

(
1

2!

)2∑

ab
rs

crsab|Ψrs
ab〉+

(
1

3!

)2∑

abc
rst

crstabc|Ψrst
abc〉+ . . . (2.17)

Here, |Ψ0〉 denotes the Slater determinant of the HF ground state. |Ψr
a〉 is a singly-

excited Slater determinant, which is defined as in Eq. 2.10, but where the a-th occupied
single-particle orbital is replaced by the r-th unoccupied orbital. Similarly, |Ψrs

ab〉 denotes
doubly-excited Slater determinants, and so on. In Eq. 2.17, the sums over a, b, c, . . .
run over the occupied states of a preliminary HF calculation, whereas the sums over
r, s, t, . . . run over unoccupied HF orbitals. The coefficients c0, cra, crsab, . . . are determined
by diagonalization of the Hamiltonian matrix [7].

The wave function in Eq. 2.17 is referred to as full configuration-interaction (full-CI)
wave function, and is exact within a given basis set. In the complete-basis-set limit,
full-CI is an exact solution of the Schrödinger equation in the Born-Oppenheimer ap-
proximation. It is evident however, that the rank of the full-CI Hamiltonian matrix
grows exponentially with the system size, due to all possible combinations of excited
determinants that must be accounted for. Therefore, full-CI calculations are prohibitive
for systems with more that 10-15 electrons, although the combination of full-CI with
quantum Monte-Carlo allows to treat systems up to 30-50 electrons with comparable
accuracy [17, 18]. Approximated CI expansions may be obtained by truncating the sum
in Eq. 2.17 to a certain order, e.g. including only singly and doubly excited Slater deter-
minants. Approximated wave functions based on the truncation of Eq. 2.17, however,
are affected by the size-consistency problem: the total energy of a polyatomic system does
not scale correctly (i.e., linearly) with the number of electrons.

COUPLED CLUSTER

Coupled-cluster methods [15, 19, 20] approximate the wave function in the form:

|Ψcc〉 = eT̂ |Ψ0〉 = (1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + . . . )|Ψ0〉 . (2.18)
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The operator T̂ is defined as T̂ = T̂1 + T̂2 + . . . T̂N , where N is the total number of
electrons and:

T̂1|Ψ0〉 =
∑

ar

cra|Ψr
a〉 (2.19)

T̂2|Ψ0〉 =
∑

ab
rs

crsab|Ψrs
ab〉 (2.20)

...

Based on the above definitions the exponential operator can be rewritten by grouping
the terms corresponding to the same excitation order:

eT̂ = 1 + T̂1 + (T̂2 +
T̂ 2

1

2!
) + (T̂3 + T̂1T̂2 +

T̂ 3
1

3!
) + . . . (2.21)

If the full operator eT̂ is considered, then Eq. 2.18 coincides with the full-CI wave
function. As in full-CI, once the structure of the coupled-cluster wave function is
defined, the electronic problem is solved by diagonalization of the Hamiltonian matrix
[7].

As compared to the full-CI ansatz of Eq. 2.17, the advantage of the coupled-cluster
wave-function form is that one may obtain accurate approximations to Ψ through the
truncation of the T̂ operator expansion to the second (coupled-cluster singles doubles, or
CCSD) or third order (CCSDT). Coupled cluster singles, doubles, with the perturbative
inclusion of triples – in short, CCSD(T) – is considered the “gold standard” of quantum
chemistry because it yields an accuracy of approximately 40 meV (1 Kcal/mol) for the
ground-state properties of molecules, at a much lower computational cost than full-CI
[21]. Approximations based on the truncation of coupled-cluster expansion for the wave
function are not affected by the size-consistency problem and are therefore preferable to
methods based on the truncation of the CI expansion.

2.5 DENSITY-FUNCTIONAL THEORY

Since the early years of quantum mechanics, approaches that recast the Schrödinger
equation into a simplified form involving only the electron density have been popular.
In contrast to the many-body wave function – which depends on 3N coordinates, N
being the number of electrons – the electron density has only 3 degrees of freedom and
is a simpler and more manageable object. The first progress in this context was due to
Thomas [22] and Fermi [23], which in 1927 proposed independently an approximate
model – known as the Thomas-Fermi model – for electrons in an external potential,
which used the electron density as central variable. An additional approach is due to
Slater: The Xα method [24].

The question whether the density (and functionals of the density) uniquely deter-
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mines the wave function – and, therefore, the physical properties – of a quantum-
mechanical system was eventually answered by Hohenberg and Kohn (HK) in 1964 [10].
Hohenberg and Kohn proved two theorems, which may be summarized as follows.

1. Given an inhomogeneous electron system moving in a time-independent exter-
nal potential V̂e−n 1 there is a one-to-one correspondence between the external
potential V̂e−n and the ground-state electron density. As the potential V̂e−n deter-
mines the many-body Hamiltonian, the ground-state wave function of the system
follows uniquely from the ground-state density. Thus, there exists a one-to-one
correspondence between the many-body ground state of a system and its density.

2. Because of point 1. one can express the total energy as a (in principle unknown)
universal (i.e., system independent) functional of the density. A variational princi-
ple demonstrates that this universal functional has an absolute minimum that is
reached for the exact density of the system.

These two theorems indicate that the total energy of a system in its ground state can
be expressed as a functional of the density, i.e., Etot = Etot[n], although the functional
dependence of Etot on n is (and probably will remain) unknown. Several extensions
of the HK theorem have been proposed over the years to account for systems with a
degenerate ground state [25], spin-dependent interactions and interactions with mag-
netic fields [26], finite temperature [27], and time-dependent potentials [28]. A detailed
overview is given, for instance, in Refs. [12, 25, 29, 30]. The HK theorems can be gen-
eralized to encompass excitations [31, 32]. However, the applicability of the theorem
for excited states is considerably more limited, since no one-to-one correspondence
between the density and excited eigenstates of the Hamiltonian exists [32]. Nevertheless,
there exists a one-to-one correspondence between the Green function and the electron
density and, therefore, the Green function G may also be expressed as a unique func-
tional of the density [31]. In other words, the electron density uniquely determines also
single-particle excitations, but since the functional dependence of G on the density is
not known this relation is not directly applicable to the computation of single-particle
excitations.

KOHN-SHAM FORMULATION OF DFT

To translate the Hohenberg-Kohn theorems into a concrete recipe for electronic-structure
calculations, Kohn and Sham (KS) introduced a fictitious non-interacting-particle system
(also referred to as KS system), with the same spatial density as the real interacting
system [11]. The density of the non-interacting reference system would then yield the
exact total energy of the interacting system, if the functional dependence of the total
energy on the electron density were known, and if the effective single-particle potential
veff that defines the KS system exists. The mapping of the many-body problem into a

1As an example, the external potential can be of the form given in Eq. 2.9, although the HK theorem is more
general.
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system of non-interacting particles does not constitute an approximation. Therefore,
as discussed below, the KS method allows one to tackle the many-body problem – in
principle exactly, although approximations become necessary in practice – by solving
the following set of single-particle-like Schrödinger equations:

[
−∇

2

2
+ veff [n](r)

]
ψn(r) = εnψn(r) , (2.22)

where the density is constructed by means of the single-particle orbitals as

n(r) =

occ∑

i=1

ψ∗n(r)ψn(r) , (2.23)

and veff [n] is an effective single-particle potential defined as:

veff [n](r) ≡ vH[n](r) + vext(r) + vxc[n](r) . (2.24)

The Hartree potential vH and the external potential vext are defined as in Eqs. 2.13 and
2.9, respectively. Here, vxc is the exchange-correlation potential, which accounts for all
electron-electron interactions beyond the classical Hartree potential and for the kinetic
correlation energy, i.e., the difference between the full kinetic energy and the kinetic
energy of the KS non-interacting system. vxc is related to the exchange-correlation
energy Exc by the equality:

vxc[n](r) =
δExc[n]

δn(r)
. (2.25)

The self-consistent solution of Eqs. 2.22-2.24 would yield the exact ground-state density
and total energy, if vxc[n] were known. Unfortunately, the dependence of vxc on the
electron density is unknown and must be approximated.

DENSITY-FUNCTIONAL APPROXIMATIONS

Since the performance of density-functional calculations is contingent to the approx-
imation for the exchange-correlation functional, several hundreds of approximations
to vxc were proposed over the years. A comprehensive list of the most widely used
approximations has been reported by Marques et al. [33]. The most relevant are generally
classified in the following sorting categories:

• Local-density approximations (LDA) [11, 34].

• Generalized gradient approximations (GGA) [35].

• Meta-generalized gradient approximations (meta-GGA) [36].

• Hybrid functionals [37]. 2

2These class of functionals involve a generalization of the KS approach to spatially non-local exchange-
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• Self-interaction corrected functionals [38].

• Optimized effective potentials (OEP) [30].

In the LDA, the exchange-correlation functional is expressed in terms of the electron
density (and not, for instance, its derivatives). More flexibility is given in GGA-type
approximations, where Exc[n] is expressed in terms of the density and grandients of the
density. Meta-GGA approximations, on the other hand, also introduce a dependence of
the exchange-correlation functional on the second derivatives (i.e., the Laplacians) of the
density. Hybrid functionals, as discussed below in more detail, can be obtained from any
of the above through the replacement of a fraction α of (local) exchange with HF exact
exchange. In self-interaction corrected functionals, the exchange-correlation functional
is obtained by introducing non-local corrections that eliminate the self-interaction error
characteristic of local functionals. Finally, OEP-based exchange correlation potentials
denote a class of local potentials derived from non-local, orbital-dependent expressions
for the exchange-correlation energy.

DFT calculations based on the LDA often give good agreement with experimental
ground-state properties for systems in which the electron density varies slowly in space,
such as metals and sp-bonded semiconductors [39]. On the other hand, for atoms and
small molecules, where the density is rapidly varying, the LDA systematically overesti-
mates binding energies and bond lengths. As compared to the LDA, GGA functionals
are in better agreement with experimental atomization energies and structural parame-
ters, in particular for atoms and small molecules [40]. One of the most popular GGA
functionals, is the one proposed by Perdew, Burke, and Ernzerhof [41], denoted PBE in
the following. The PBE functional describes well the structural properties of molecules
and the cohesive properties of solids, although it exhibits a tendency to underestimate
binding and cohesive energies. Moreover, PBE largely underestimates dispersive (e.g.,
van der Waals) interactions, which are generally accounted for in a post-processing
fashion, as discussed for instance in Ref. [42].

One of the main shortcomings of semi-local density functionals of the GGA or LDA
type is the presence of a spurious interaction of an electron with itself – denoted as
self-interaction error. This problem arises from the approximate treatment of the exchange
interaction and is at the origin of several pathologies of semi-local DFT, such as the
delocalization error [43–45]. Hybrid density functionals ameliorate this problem by
replacing a fraction of the local exchange functional with the non-local Hartree-Fock
exact-exchange operator. For a given semi-local exchange-correlation potential vxc, a
hybrid functional vH

xc can be generated as follows:

vH
xc(r, r′) = vc(r) + (1− α)vx(r) + αΣx(r, r′) , (2.26)

correlation potentials. This extension of the basic KS formalism is often referred to as generalized Kohn-Sham
(GKS) DFT.
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where vc(x) is the correlation (exchange) part of vxc, and Σx is the exact-exchange opera-
tor of Hartree-Fock theory (defined in Eq. 2.12). Here, α is a parameter that regulates
the admixture of Hartree-Fock and GGA exchange. Through Eq. 2.26 the self-interaction
error may be removed completely by setting α = 1. However, the self-interaction
error is in part responsible for fortunate error cancellations that ultimately improve
the performance of semi-local density functionals [46, 47]. Hence, the full elimination
of the self-interaction error is counter-productive and deteriorates the agreement with
experiment. In practice, most hybrid functionals employ values of α that range between
0 and 0.5. In the present work, most DFT calculations are based on the PBE exchange-
correlation potential, its hybrid variant PBE0 obtained from Eq. 2.26 with α = 0.25

(where the fraction of exact exchange is derived ab initio based on perturbation theory
[48]), and PBE-based hybrids with different values of α [49].

To construct the exchange-correlation potential from Eq. 2.25, the dependence of the
exchange-correlation energy Exc on the electron density must be known. In several
instances, however, approximations to Exc depend explicitly on single-particle orbitals
(i.e., Exc = Exc[{ψn}]) as, for instance, the just mentioned hybrid functionals and the
random-phase approximation introduced below. Since the explicit dependence of the
single-particle orbitals on the electron density is not known, the functional derivative
δExc[{ψn}]/δn(r) – required for the determination of the corresponding KS potential –
cannot be evaluated straightforwardly. The optimized effective potential (OEP) method
denotes a class of approaches that allow one to derive a closed expression for vxc from an
orbital-dependent exchange-correlation energy functional Exc[{ψn}] [30, 50, 51]. Most
approaches to the OEP problem are based on the Sham-Schlüter equation [30, 50, 52],
on the chain rule [30, 50], or on the direct-minimization scheme proposed by Yang and
Wu [53]. The Sham-Schlüter equation will be introduced in Chap. 3, whereas the direct
minimization approach will be discussed in Chap. 9.

As an example, I will summarize here the application of the chain-rule method to the
evaluation of the local exact-exchange KS potential vx(r) – one of the OEP potentials that
found the broadest application in electronic-structure theory [30]. The exact-exchange
KS potential is the local potential corresponding to the Hartree-Fock exchange energy:

Ex[{ψn}] =
1

2

occ∑

n,m

∫
drdr′

ψn(r)ψ∗n(r′)ψm(r)ψ∗m(r′)
|r− r′| , (2.27)

that depends explicitly on the occupied single-particle orbitals {ψn}. Making use of the
chain rule (Eq. A.6 in Appendix A), the exact-exchange KS potential can be rewritten as
(see, e.g., Ref. [54]):

vx(r) ≡ δEx[{ψn}]
δn(r)

=
∑

n

∫
dr′dr′′

[
δEx[{ψn}]
δψn(r′)

δψn(r′)
δveff(r′′)

+ c.c.

]
δveff(r′′)
δn(r)

, (2.28)

where veff is the total effective KS potential. As discussed in detail in Ref. [54], the first
functional derivative in the right-hand side of Eq. 2.28 can be evaluated explicitly from
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Eq. 2.27, the last one yields the inverse (non-interacting) KS response function (Eq. 2.30),
whereas δψn(r′)/δveff(r′′) may be evaluated by resorting to perturbation theory. In
practice, with some manipulation it is possible to derive a closed expression for the local
exact-exchange KS potential. This strategy may be applied also to orbital-dependent
functionals for the correlation energy, such as the RPA correlation energy introduced
below [55]. However, the complexity and the applicability of the resulting local potential
depend crucially on the initial form for the energy functional.

PHYSICAL INTERPRETATION OF THE DFT ORBITALS AND EIGENVALUES

The orbitals and orbital energies derived from a Kohn-Sham (KS) DFT calculation are
single-particle quantities that characterize the non-interacting KS reference system. The
electron density derived from the occupied KS orbitals coincides with that of the real
system, but the energy hierarchy of the KS orbitals does not necessarily reflect the
band structure of a solid, or the energy levels of a molecule. Generally, some care is
needed when interpreting the KS eigenvalues as excitation energies. In practice, the
agreement of experimental IEs and KS orbital energies is often poor. For instance for
semi-local functionals, the average percentage error between the KS HOMO and the
first IE is of the order of 40-50% (see e.g. Refs. [56–58]), although some improvement
may be obtained – at the cost of introducing empirical parameters in the exchange-
correlation potentials – for hybrid and range-separated functionals [59]. On the whole,
the physical interpretation of the (generalized) KS orbitals and orbital energies has been
a controversial matter of debate.

Janak [60] demonstrated that the highest occupied molecular orbital (HOMO) of
exact KS-DFT equals the chemical potential of the system [60–64], and therefore it might
be related to the first ionization energy defined in Eq. 2.14. Analogous to Koopmans’
theorem of HF theory, the Janak’s theorem shows that first KS eigenvalue can be approx-
imately interpreted as the ionization energy. If combined with Slater’s transition-state
concept (STS) [65, 66] – where the ionization energies are approximated by (minus) the
KS eigenvalue at half occupations, i.e., −ISTS

s = εKS
s (N − 1/2) – this is even an excellent

approximation. On the other hand, no such theorem exists to relate the electron affinity –
defined in Eq. 2.15 – and the lowest unoccupied molecular orbital (LUMO) of KS theory,
or for any other single-particle excitation of the system. However, even for the first
ionization energy the agreement with experiment is often only qualitative, mostly due
to the impact of the self-interaction error on the single-particle eigenvalues. Non-local
functionals – such as hybrids and range-separated hybrids – permit one to alleviate the
self-interaction error of semi-local functionals, and generally yield a better agreement
between the HOMO and the ionization energy. In fact, as demonstrated by Atalla et al.
in Ref. [67] it is generally possible to determine a fraction of exact exchange α that yields
a first ionization energy in agreement with quasi-particle calculations based on the GW
approximation. This is not surprising since one may argue that non-local exchange-
correlation potentials can be interpreted as approximate many-body self-energies with



2.5 Density-functional theory 19

static screening and, consequently, the single-particle eigenvalues can be approximately
related to quasi-particle excitations.

A more rigorous approach for determining single-particle excitation energies from
DFT calculations is the ∆ self-consistent field method (∆-SCF). Based on definition of
the ionization energy and the electron affinity in Eqs. 2.14-2.15, in the ∆-SCF approach
the excitation energies are evaluated as total energy differences from distinct DFT
calculations. A first calculation for an N -electron system yields the total energy E(N); a
second DFT calculation for the system with N − 1 (or N + 1) electrons provide E(N − 1)

(or E(N + 1)). Then, the ionization energy and electron affinity can be straightforwardly
derived from the definitions in Eqs. 2.14-2.15. Since DFT is in principle exact for the total
energy, the ∆-SCF approach would yield the correct ionization energies and electron
affinities if evaluated with the exact exchange-correlation functional. For the first
ionization energy of closed-shell molecules, ∆-SCF yields good quantitative agreement
with experiment (see e.g. [56]), and, therefore, it provides an inexpensive alternative to
Green-function-based calculations.

RANDOM-PHASE APPROXIMATION (RPA)

The random-phase approximation (RPA) was originally proposed by Bohm and Pines
[68–70] for the electron gas, but recently it has also been applied to periodic [71–73] and
finite systems [74–76]. The RPA is an orbital-dependent functional for the correlation
energy, and is given by:

ERPA
c =

∫ ∞

0

dω

2π
Tr [ln(1− χs(iω)v) + χs(iω)v] , (2.29)

where χs(iω) is the non-interacting KS density-density response function, which can be
expressed through the Adler-Wiser formula:

χs(r, r
′, ω) =

∑

σ

occ∑

n

empty∑

m

ψσ∗n (r)ψσm(r)ψσn(r′)ψσ∗m (r′)
ω − (εσn − εσm) + iη

+ c.c. . (2.30)

The Goldstone diagrams for the RPA correlation energy are depicted in Fig. 2.1.
The RPA correlation energy is often evaluated perturbatively on top of a DFT calcu-

lation – i.e., Eqs. 2.29 and 2.30 are evaluated using DFT orbitals and orbital energies
– and combined with exact-exchange (denoted in the following EX+cRPA). EX+cRPA
ameliorates several deficiencies of conventional approximations to DFT, such as the
self-interaction error and the poor description of van der Waals interactions [77]. The
performance of the EX+cRPA method for molecules and sp-bonded solids has been well
benchmarked in the literature (see e.g. Refs. [77–79] for a review). As compared to
semi-local and hybrid DFT, EX+cRPA noticeably improves the binding and cohesive
energies of weakly-bonded molecules and solids, respectively, due to the seamless
inclusion of van der Waals forces. For covalently-bonded systems on the other hand, the
performance of EX+cRPA is disappointing since it does not improve over PBE, and is
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Enlc
c ¼

Z
drnðrÞ !GGAðrÞ $ !GGA$RPAðrÞ

! "
1$ aFðf ðrÞ%½ %;

ð46Þ

where !GGAðrÞ and !GGA$RPAðrÞ are the GGA energy

density per electron and its approximate value within RPA,
respectively. a is an empirical parameter yet to be

determined, and F is a certain functional of f(r)—the

dimensionless ratio measuring the difference between the
GGA exchange energy density and the exact-exchange

energy density at a given point r,

f ðrÞ ¼ !GGAx ðrÞ $ !exactx ðrÞ
!GGAx ðrÞ

: ð47Þ

One may note that by setting a = 0 in Eq. (46) the usual

RPA? correction term is recovered. A simple choice of the
functional form F(f) = f turns out to be good enough for

fitting atomization energies, but the correct dissociation

limit of H2 given by standard RPA is destroyed. To
overcome this problem, Ruzsinszky et al. chose a more

complex form of F,

Fðf Þ ¼ f ½1$ 7:2f 2%½1þ 14:4f 2%expð$7:2f 2Þ; ð48Þ

which insures the correct dissociation limit, while yielding

significantly improved atomization energies for a = 9. Up

to now the correction scheme of Eq. (46) has not been
widely benchmarked except for a small test set of ten

molecules where the atomization energy has been

improved by a factor of two [37].

Screened second-order exchange (SOSEX)

The SOSEX correction [18, 97, 125] is an important route to

going beyond the standard RPA. This concept can be most

conveniently understood within the context of the ring-CCD
formulation of RPA as discussed in section ‘‘Link to coupled-

cluster theory’’. If in Eq. (43), the anti-symmetrized Coulomb

integrals ~Bia;jb ¼ hijjabi$ hijjbai are inserted instead of the

unsymmetrized Coulomb integrals, the RPA?SOSEX cor-

relation energy expression is obtained

ERPAþSOSEX
c ¼ 1

2

X

ij;ab

T rCCD
ia;jb

~Bia;jb: ð49Þ

This approach, which was first used by [97], and recently

examinedbyGrüneis et al. [125] for solids andPaier et al. [18]
for molecular properties, has received increasing attention

in the RPA community. In contrast to RPA?, this scheme has

the attractive feature that it improves both total energies
and energy differences simultaneously. Although originally

conceived in the CC context, SOSEX has a clear

representation in terms of Goldstone diagrams, as shown in
Fig. 3 (see also Ref. [125]), which can be compared to the

Goldstone diagrams for RPA in Fig. 2(c). From Fig. 3, it is
clear that the leading term in SOSEX corresponds to the

second-order exchange term of MP2. In analogy, the leading

term in RPA corresponds to the second-order direct term of
MP2. Physically the second-order exchange diagram

describes a (virtual) process in which two particle-hole pairs

are created spontaneously at a given time. The two particles
(or equivalently the two holes) then exchange their positions,

and these two (already exchanged) particle-hole pairs

annihilate themselves simultaneously at a later time. In
SOSEX, similar to RPA, a sequence of higher-order diagrams

are summed up to infinity. In these higher-order diagrams,

after the initial creation and exchange process, one particle-
hole pair is scattered into new positions repeatedly following

the sameprocess as inRPA, until it annihilates simultaneously

with the other pair at the end of the process.
SOSEX is one-electron self-correlation free and ame-

liorates the short-range over-correlation problem of RPA to

a large extent, leading to significantly better total energies
[97, 125]. More importantly, the RPA underestimation of

atomization energies is substantially reduced. However, the

dissociation of covalent diatomic molecules, which is well-
described in RPA, worsens considerably as demonstrated

in Ref. [18] and to be shown in Fig. 6. It was argued that

the self-correlation error present in RPA mimics static
correlation, which becomes dominant in the dissociation

limit of covalent molecules [116].

Single-excitation correction and its combination

with SOSEX

In most practical calculations, RPA and SOSEX correlation

energies are evaluated using input orbitals from a preced-

ing KS or generalized KS (gKS) [161] calculation. In this
way both RPA and SOSEX can be interpreted as ‘‘infinite-

order summations of selected types of diagrams’’ within

the MBPT framework introduced in section ‘‘RPA derived
from MBPT’’, as is evident from Figs. 2(c) and (3). This

viewpoint is helpful for identifying contributions missed in

RPA through the aid of diagrammatic techniques. An an
example, the second-order energy in RSPT in Eq. (28) have

contributions from single- (SE) and double-excitations.

The latter gives rise to the familiar MP2 correlation energy,

Fig. 3 Goldstone diagrams for SOSEX contribution. The rules to
evaluate Goldstone diagrams can be found in Ref. [145]
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interaction strength k. [Proper self-energy diagrams are

those which cannot be split into two by cutting a single-

Green-function line.] Note that in Eqs. (29) and (30), the
trace convention of Eq. (24) is implied.

The above quantities satisfy the following relationship

Gðix; kÞ ¼ G0ðixÞ þ G0ðixÞRðix; kÞG0ðixÞ
¼ G0ðixÞ þ G0ðixÞR%ðix; kÞGðix; kÞ:

ð31Þ

From Eq. (31) the equivalence of Eqs. (29) and (30)
is obvious. In Eq. (29), a perturbation expansion of the

k-dependent self-energy RkðixÞ naturally translates into a
perturbation theory of the ground-state energy. In

particular, the linear term of RkðixÞ yields the first-order

correction to the ground-state energy, i.e., E(1) in Eq. (27).

All higher-order (n C 2) contributions of RkðixÞ; here

denoted Rc; define the so-called correlation energy. In
general, the correlation energy cannot be treated exactly. A

popular approximation to Rc is the GW approach, which

corresponds to a selective summation of self-energy
diagrams with ring structure to infinite order, as

illustrated in Fig. 2(a). Multiplying G0 to the GW self-

energy RGW
c ðixÞ as done in Eq. (29) and performing the k

integration, one obtains the RPA correlation energy

ERPA
c ¼ 1

2

Z1

0

dk
k

1

2p

Z1

&1

dxTr G0ðixÞRGW
c ðix; kÞ

! "
0

@

1

A:

ð32Þ

This illustrates the close connection between RPA and

the GW approach. A diagrammatic representation of
Ec
RPA is shown in Fig. 2(b). We emphasize that the dia-

grams in Fig. 2(a, b) are Feynman diagrams, i.e., the

arrowed lines should really be interpreted as propagators,
or Green functions. A similar representation of Ec

RPA can

be drawn in terms of Goldstone diagrams [145], as shown

in Fig. 2(c). However, caution should be applied, because
the rules for evaluating these diagrams are different (see

e.g., Ref. 9, 145), and the prefactors in Fig. 2(b) are not
present in the corresponding Goldstone diagrams. The

leading term in RPA corresponds to the second-order

direct term in MP2.
We note that starting from Eq. (29) this procedure nat-

urally gives the perturbative RPA correlation energy based

on any convenient non-interacting reference Hamiltonian
H0, such as Hartree–Fock or local/semi-local KS-DFT

theory. If one instead starts with Eq. (30) and applies the

GW approximation therein, G(k, ix) and R%ðk; ixÞ become
the self-consistent GW Green function and self-energy. As

a result the improper self-energy diagrams in Eq. (29),

which are neglected in the perturbative GW approach
(known as G0W0 in the literature), are introduced and the

total energy differs from that of the RPA. An in-depth

discussion of self-consistent GW and its implications can
be found in [153–156].

Link to coupled-cluster theory

In recent years, RPA has also attracted considerable

attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled-

cluster (CC) theory, which has been very successful for

accurately describing both covalent and non-covalent
interactions in molecular systems. To understand this

relationship, we will give a very brief account of the CC

theory here. More details can for instance be found in a
review paper by Bartlett and Musiał [157]. The essential

concept of CC builds on the exponential ansatz for the

many-body wave function W for correlated electronic
systems

jWi ¼ eT̂ jUi: ð33Þ

jUi is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of different order,

T̂ ¼ T̂1 þ T̂2 þ T̂3 þ ' ' ' þ T̂n þ ' ' ' ; ð34Þ

with T̂1; T̂2; T̂3; ' ' ' being the single-, double-, and triple-
excitation operators, etc. These operators can be most

(a)

(b)

(c)

Fig. 2 Feynman diagrams for the GW self-energy (a), Feynman
diagrams for the RPA correlation energy (b), and Goldstone diagrams
for the RPA correlation energy (c). Solid lines in a, b (with thick
arrows) represent fermion propagators G, and those in (c) (with thin
arrows) denote particle (upgoing line) or hole states (downgoing line)
without frequency dependence. Dashed lines correspond to the bare
Coulomb interaction v in all graphs
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which is included in the RPA?SOSEX scheme as the
leading term. The remaining SE term is given by

ESE
c ¼

Xocc

i

Xunocc

a

jhU0jĤ1jUa
i ij

2

E0 " Eð0Þ
i;a

¼
X

ia

jhwijv̂HF " v̂MFjwaij
2

!i " !a

ð50Þ

¼
X

ia

jhwijf̂ jwaij
2

!i " !a
ð51Þ

where v̂HF is the self-consistent HF single-particle potential,

v̂MF is the mean-field potential associated with the reference

Hamiltonian, and f̂ ¼ "r2=2þ v̂ext þ v̂HF is the single-par-
ticle HF Hamiltonian (also known as the Fock operator in the

quantum chemistry literature). A detailed derivation of Eq.
(50) using second-quantization can be found in the supple-

mentalmaterial of Ref. [34]. The equivalence of Eqs. (51) and

(50) can be readily confirmed by observing the relation

between f̂ and the single-particle referenceHamiltonian ĥMF :

f̂ ¼ ĥMF þ v̂HF " v̂MF; and the fact that hwijĥMFjwai ¼ 0:

Obviously for a HF reference where v̂MF ¼ v̂HF; Eq. (51)
becomes zero, a fact known as Brillouin theorem [145].
Therefore, as mentioned in section ‘‘RPA derived from

MBPT’’, this term is not present inMP2 theorywhich is based

on the HF reference. We note that a similar SE term also
appears in second-order Görling–Levy perturbation theory

(GL2) [162, 163], ab initio DFT [164], as well as in CC theory
[157]. However, the SE terms in different theoretical frame-

works differ quantitatively. For instance, in GL2 vMF should

be the exact-exchange OEP potential instead of the reference
mean-field potential.

In Ref. [34] we have shown that adding the SE term of Eq.

(51) to RPA significantly improves the accuracy of vdW-
bondedmolecules, which the standard RPA scheme generally

underbinds. This improvement carries over to atomization

energies of covalent molecules and insulating solids as shown
in Ref. [126]. It was also observed in Ref. [34] that a similar

improvement can be achieved by replacing the non-self-

consistent HF part of the RPA total energy by its self-con-
sistent counterpart. It appears that, by iterating the exchange-

only part toward self-consistency, the SE effect can be

accounted for effectively. This procedure is termed ‘‘hybrid-
RPA’’, and has been shown to be promising even for surface

adsorption problems [32].

The SE energy in Eq. (51) is a second-order term in
RSPT, which suffers from the same divergence problem as

MP2 for systems with zero (direct) gap. To overcome this
problem, in Ref. [34] we have proposed to sum over a

sequence of higher-order diagrams involving only single

excitations. This procedure can be illustrated in terms of
Goldstone diagrams as shown in Fig. 4. This summation

follows the spirit of RPA and we denote it ‘‘renormalized

single excitations’’ (rSE) [34]. The SE contribution to the
second-order correlation energy in Eq. (51), represented by

the first diagram in Fig. 4, constitutes the leading term in

the rSE series. A preliminary version of rSE, which
neglects the ‘‘off-diagonal’’ terms of the higher-order SE

diagrams (by setting i ¼ j ¼ . . . and a ¼ b ¼ . . .), was

benchmarked for atomization energies and reaction barrier
heights in Ref. [126]. Recently we were able to also include

the ‘‘off-diagonal’’ terms, leading to a refined version of

rSE. This rSE ‘‘upgrade’’ does not affect the energetics of
strongly bound molecules, as those benchmarked in Ref.

[126]. However, the interaction energies of weakly bound

molecules improve considerably. A more detailed
description of the computational procedure and extended

benchmarks for rSE will be reported in a forthcoming

paper [165]. However, we note that all the rSE results
reported in section ‘‘Applications’’ correspond to the

upgraded rSE.

Diagrammatically, RPA, SOSEX, and rSE are three
distinct infinite series of many-body terms, in which the

three leading terms correspond to the three terms in sec-

ond-order RSPT. Thus it is quite natural to include all three
of them, and the resultant RPA?SOSEX?rSE scheme can

be viewed a renormalization of the normal second-order

RSPT. Therefore, we will refer to RPA?SOSEX?rSE as
‘‘renormalized second-order perturbation theory’’ or r2PT

in the following.

Other ‘‘beyond-RPA’’ activities

There have been several other attempts to go beyond RPA.
Here, we will only briefly discuss the essential concepts

behind these approaches without going into details. The

interested reader is referred to the corresponding refer-
ences. Following the ACFD formalism, as reviewed in

section ‘‘RPA derived from ACFD’’, one possible route is

to improve the interacting density-response function. This

Fig. 4 Goldstone diagrams for
renormalized single-excitation
contributions. Dashed lines
ending with a cross denote the
matrix element
Dvpq ¼ hwpjv̂HF " v̂MFjwqi
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where v̂HF is the self-consistent HF single-particle potential,

v̂MF is the mean-field potential associated with the reference

Hamiltonian, and f̂ ¼ "r2=2þ v̂ext þ v̂HF is the single-par-
ticle HF Hamiltonian (also known as the Fock operator in the

quantum chemistry literature). A detailed derivation of Eq.
(50) using second-quantization can be found in the supple-

mentalmaterial of Ref. [34]. The equivalence of Eqs. (51) and

(50) can be readily confirmed by observing the relation

between f̂ and the single-particle referenceHamiltonian ĥMF :

f̂ ¼ ĥMF þ v̂HF " v̂MF; and the fact that hwijĥMFjwai ¼ 0:

Obviously for a HF reference where v̂MF ¼ v̂HF; Eq. (51)
becomes zero, a fact known as Brillouin theorem [145].
Therefore, as mentioned in section ‘‘RPA derived from

MBPT’’, this term is not present inMP2 theorywhich is based

on the HF reference. We note that a similar SE term also
appears in second-order Görling–Levy perturbation theory

(GL2) [162, 163], ab initio DFT [164], as well as in CC theory
[157]. However, the SE terms in different theoretical frame-

works differ quantitatively. For instance, in GL2 vMF should

be the exact-exchange OEP potential instead of the reference
mean-field potential.

In Ref. [34] we have shown that adding the SE term of Eq.

(51) to RPA significantly improves the accuracy of vdW-
bondedmolecules, which the standard RPA scheme generally

underbinds. This improvement carries over to atomization

energies of covalent molecules and insulating solids as shown
in Ref. [126]. It was also observed in Ref. [34] that a similar

improvement can be achieved by replacing the non-self-

consistent HF part of the RPA total energy by its self-con-
sistent counterpart. It appears that, by iterating the exchange-

only part toward self-consistency, the SE effect can be

accounted for effectively. This procedure is termed ‘‘hybrid-
RPA’’, and has been shown to be promising even for surface

adsorption problems [32].

The SE energy in Eq. (51) is a second-order term in
RSPT, which suffers from the same divergence problem as

MP2 for systems with zero (direct) gap. To overcome this
problem, in Ref. [34] we have proposed to sum over a

sequence of higher-order diagrams involving only single

excitations. This procedure can be illustrated in terms of
Goldstone diagrams as shown in Fig. 4. This summation

follows the spirit of RPA and we denote it ‘‘renormalized

single excitations’’ (rSE) [34]. The SE contribution to the
second-order correlation energy in Eq. (51), represented by

the first diagram in Fig. 4, constitutes the leading term in

the rSE series. A preliminary version of rSE, which
neglects the ‘‘off-diagonal’’ terms of the higher-order SE

diagrams (by setting i ¼ j ¼ . . . and a ¼ b ¼ . . .), was

benchmarked for atomization energies and reaction barrier
heights in Ref. [126]. Recently we were able to also include

the ‘‘off-diagonal’’ terms, leading to a refined version of

rSE. This rSE ‘‘upgrade’’ does not affect the energetics of
strongly bound molecules, as those benchmarked in Ref.

[126]. However, the interaction energies of weakly bound

molecules improve considerably. A more detailed
description of the computational procedure and extended

benchmarks for rSE will be reported in a forthcoming

paper [165]. However, we note that all the rSE results
reported in section ‘‘Applications’’ correspond to the

upgraded rSE.

Diagrammatically, RPA, SOSEX, and rSE are three
distinct infinite series of many-body terms, in which the

three leading terms correspond to the three terms in sec-

ond-order RSPT. Thus it is quite natural to include all three
of them, and the resultant RPA?SOSEX?rSE scheme can

be viewed a renormalization of the normal second-order

RSPT. Therefore, we will refer to RPA?SOSEX?rSE as
‘‘renormalized second-order perturbation theory’’ or r2PT

in the following.

Other ‘‘beyond-RPA’’ activities

There have been several other attempts to go beyond RPA.
Here, we will only briefly discuss the essential concepts

behind these approaches without going into details. The

interested reader is referred to the corresponding refer-
ences. Following the ACFD formalism, as reviewed in

section ‘‘RPA derived from ACFD’’, one possible route is

to improve the interacting density-response function. This

Fig. 4 Goldstone diagrams for
renormalized single-excitation
contributions. Dashed lines
ending with a cross denote the
matrix element
Dvpq ¼ hwpjv̂HF " v̂MFjwqi
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Figure 2.1: Representation of the RPA, SOSEX, and rSE contribution to the correlation energy
in terms of Goldstone diagrams [7]. Adapted from Ref. [77]. Upgoing (downgoing) solid lines
represent particles (holes) associated with unoccupied (occupied) orbital energies, whereas dashed
lines denote the bare Coulomb interaction. Dashed lines ending with a cross denote matrix
elements of the form 〈ψn| − ∇̂2/2 + v̂ext + v̂HF |ψm〉, v̂HF being the self-consistent Hartree-Fock
single-particle potential (see Ref. [77] for more details).

not as good as hybrid DFT [77]. The reader is referred to Ref. [77] and references therein
for a comprehensive overview of the performance of perturbative EX+cRPA.

The relevance of the RPA for the present work stems mostly from its analogy with
the GW approximation, that will be addressed in detail in Chap. 9.

BEYOND RPA: RENORMALIZED SECOND-ORDER PERTURBATION THEORY

A prominent shortcoming of EX+cRPA is the spurious self-correlation error that affects
the RPA correlation energy functional. The self-correlation – defined in analogy to
the well known self-interaction error – emerges in Eq. 2.29 due to the self-screening
of an electron. The effects of this error are exemplified by the non-zero correlation
energy of one-electron systems. The self-correlation error (and the missing higher-order
diagrams) are responsible for the systematic overestimation of total energies, for the
underestimation of binding energies, and for the failure to describe stretched radicals.

The inclusion of second-order screened exchange (SOSEX) to EX+cRPA mitigates the
self-correlation error [80, 81] by adding higher-order (screened-) exchange diagrams
– represented in Fig. 2.1 – to the RPA series of ring diagrams. EX+cRPA+SOSEX is
self-correlation free in the one electron case, however some self-correlation error is
still present for more electron systems. The performance of the SOSEX correction for
finite systems has been investigated by Paier and coworkers [82, 83]. In certain cases,
EX+cRPA+SOSEX performs better than the simpler EX+cRPA, however the improve-
ments are not systematic. The reason for this is that the self-correlation error often
mimics the effects of higher-order energy diagrams neglected in EX+cRPA. Therefore, it
may occur that EX+cRPA+SOSEX deteriorates the results of EX+cRPA, as it happens for
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the dissociation of covalently-bonded systems [77].
To further improve total and binding energies of finite systems, an additional beyond-

RPA scheme has recently been proposed by Ren and coworkers [80], based on the
inclusion of single-excitation (SE) terms in the total energy. For perturbative calculations
based on Hartree-Fock, the SE contribution to the total energy is zero due to the Brillouin
theorem [7]. However, for other (e.g., DFT-based) starting points the SE contribution to
the total energy cannot be neglected. As compared to conventional EX+cRPA calcula-
tions, the combination of EX+cRPA and SE considerably improves the binding energy
of weakly bounded systems, as exemplified [80] by the lower average error for the
binding energies of the S22 set of weakly bounded compounds [84]. In the same spirit of
RPA, the SE correction can also be “renormalized” by summing up a series of (infinitely
many) higher-order SE corrections. This leads to the renormalized SE correction (rSE),
for which the diagrammatic series is depicted in Fig. 2.1.

Renormalized second-order perturbation theory (rPT2), recently proposed in Refs. [77,
82], combines the elements introduced above: EX+cRPA, SOSEX, and rSE. All the
exchange- and correlation-energy diagrams depicted in Fig. 2.1 are included in the
rPT2 total energy. The rPT2 nomenclature follows from the consideration that the “un-
screened” rPT2 diagrammatic series accounts for all second-order Rayleigh-Schrödinger
perturbation-theory (RSPT) diagrams. Second-order Møller-Plesset perturbation theory
(MP2), for instance, is straightforwardly recovered by keeping only the leading terms
(i.e., the first diagram in Fig. 2.1) in the diagrammatic expansion of the RPA and SOSEX
series. In rPT2, the renormalization of the second-order diagrams allows to avoid the
divergence of the total energy for small values of the HOMO-LUMO gap, that affects
conventional RSPT. rPT2 is a powerful perturbative approach for the evaluation of
correlation energies in finite systems and, according to recent benchmark data, it yields
atomization energies with an average accuracy of 0.1 eV [77, 85].





3 GREEN-FUNCTION METHODS

Green functions are central in the development of MBPT [13, 86]. The single-particle
Green function is a mathematical object which may be associated with the probability
amplitude of the propagation processes of a particle (or a hole) in an N -particles system.
Owing to its connections to ground- and excited-state properties, the electronic single-
particle Green function is particularly useful in electronic-structure theory, and its
calculation is the primary goal of the theoretical and numerical methods presented in
Parts I and II of this thesis, respectively.

In this Chapter, I will briefly review the zero-temperature Green function formalism
that is relevant for the development of the subsequent parts of this work.

3.1 DEFINITION OF THE GREEN FUNCTION

The single-particle Green function is defined as:

G(1, 2) = −i〈Ψ|T̂ [ψ̂(1)ψ̂†(2)]|Ψ〉 , (3.1)

where the collective index for space-time-spin variables 1 ≡ {r1, t1, σ1} was introduced.
The ket |Ψ〉 labels the normalized many-body wave function of the N -electron ground
state, and is related to the electronic Hamiltonian (Eq. 2.7) through the Schrödinger
equation. ψ̂(1) and ψ̂†(2) are annihilation and creation operators in the Heisenberg
picture, which obey fermionic anti-commutation relations:

[ψ̂σ(r), ψ̂†σ′(r
′)]+ = δ(r, r′)δσσ′ (3.2a)

[ψ̂σ(r), ψ̂σ′(r′)]+ = [ψ̂†σ(r), ψ̂†σ′(r
′)]+ = 0 . (3.2b)

Finally, T̂ is Wick’s time-ordering operator:

T̂
[
ψ̂(1)ψ̂†(2)

]
=

{
ψ̂(1)ψ̂†(2) if t1 > t2

−ψ̂†(2)ψ̂(1) if t2 < t1 .
(3.3)

More generally, the N -particle Green function is defined analogous to Eq. 3.1:

GN (1, . . . , N ;1′, . . . , N ′) = (−i)N 〈Ψ|T̂ [ψ̂(1) . . . ψ̂(N)ψ̂†(N ′) . . . ψ̂†(1′)]|Ψ〉 . (3.4)

23
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GN is linked to G(N+1) and G(N−1) through the so-called Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of integro-differential equations, that completely
determine the N -particle Green function, if GN+1 is known. The first of element (N =

1) of the BBGKY chain follows straightforwardly from the commutation relations in
Eqs. 3.2a and 3.2b and from the definitions of the one- and two-particle Green functions
given in Eqs. 3.1 and 3.4 (see, e.g., Ref. [87] for a derivation):

[
i
∂

∂t1
− h0(1)

]
G(1, 2) + i

∫
d3v(1, 3)G2(1, 3+; 2, 3++) = δ(1, 2) . (3.5)

Here, h(1) ≡ h0(r1)δ(t1) is the single-particle term of the electronic Hamiltonian,
v(1, 2) ≡ v(r1, r2)δ(t1 − t2) = δ(t1 − t2)/|r1 − r2| is the repulsive Coulomb interac-
tion between electrons, and I used the notation 1+ ≡ {r1, t1 + η, σ1}, η being a positive
infinitesimal. Equation 3.5 is not directly helpful for the development of approximations,
since it expresses the Green function in terms of a more complex object, G2. However,
Eq. 3.5 may be simplified and rewritten without the two-particle Green function by
introducing an auxiliary quantity, the self-energy, which closes the BBGKY hierarchy.

The self-energy Σ is formally defined by the following identity:

∫
d3[vH(3)δ(3, 1) + Σ(1, 3)]G(3, 2) = −i

∫
d3v(1, 3)G2(1, 3+; 1, 3++) , (3.6)

where vH(1) ≡ vH(r1)δ(t1) is the Hartree potential defined in Eq. 2.13. The replacement
of Eq. 3.6 into the left-hand side of Eq. 3.5 yields the Dyson equation in differential
form:1

[
i
∂

∂t1
− h0(1)− vH(1)

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2) . (3.7)

The self-energy is in general a complex, non-local, and non-Hermitian operator. Its
real part can be related to the exchange and correlation contributions to the quasi-particle
energies, whereas its imaginary part contains information about the excitation lifetime
[88]. In principle, Σ accounts for all possible events that a particle (be it an electron
or a hole) may experience in its propagation in a many-electron system in the Born-
Oppenheimer approximation. These processes include for instance the formation of one,
or more (potentially infinite) electron-hole pairs which interact with the propagating
particle. All these events give rise to an infinite series of virtual processes that may
affect the propagation of a particle, and therefore determine its Green function. Some
lowest-order processes are reported in Fig. 3.1 in terms of Feynman diagrams [89], where
arrows represent the free propagation of the particle, and wiggly lines the bare Coulomb
interaction.

1Equation 3.7 is also often referred to as equation of motion of the interacting Green function.
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Figure 3.1: Some first-, second- and third-order diagrams of the self-energy expanded in series
of the (bare) Coulomb interaction v. Arrows are non-interacting Green functions, wiggly lines
represent the Coulomb interaction. Adapted from Ref. [88].

LEHMANN REPRESENTATION

A useful representation of the Green function may be obtained by introducing the
explicit time-dependence of the field operators in the Heisenberg picture (ψ̂σ(r, t) =

eiĤtψ̂σ(r)e−iĤt) into Eq. 3.1.2:

Gσ(rt, r′t′) = −i〈Ψ|eiĤtψ̂σ(r)e−iĤ(t−t′)ψ̂†σ(r′)e−iĤt
′ |Ψ〉θ(t− t′)

= −i
∑

s

ei(E0−EN+1
s )(t−t′)〈Ψ|ψ̂σ(r)|ΨN+1

s 〉〈ΨN+1
s |ψ̂†σ(r′)|Ψ〉θ(t− t′)

= −i
∑

s

e−iεs(t−t
′)fσs (r)fσ∗s (r′)θ(t− t′) , (3.8)

where I introduced the completeness relation
∑
s |ΨN+1

s 〉〈ΨN+1
s | = 1, ΨN+1

s being the
s-th excited state of the N + 1-particle system, and EN+1

s the corresponding energy. The
following definitions have been introduced:

εs ≡ EN+1
s − E0 , (3.9a)

fσs (r) ≡ 〈Ψ|ψ̂σ(r)|ΨN+1
s 〉 , (3.9b)

fσ∗s (r′) ≡ 〈ΨN+1
s |ψ̂†σ(r′)|Ψ〉 . (3.9c)

fσs and fσ∗s are often referred to as Lehmann amplitudes and describe the overlap be-
tween the ground state and an excited state of the system with an extra electron. In other
words, the fs may be interpreted as the probability amplitudes for electron-addition

2I will consider here and until the end of this Section only the case t > t′, i.e., the upper case of Eqs. 3.3 Then,
the time ordering operator can be dropped and the Green function describes the propagation of an additional
electron in the system. The t′ > t case follows by analogy.



26 Green-Function Methods

(or -ionization, if t′ > t) processes. Equation 3.8 shows that for a time-independent
Hamiltonian the Green function depends only on the differences t− t′, therefore I will
set τ ≡ t− t′.

Using the integral representation of the step-function:

θ(τ) = −
∫ +∞

−∞

dω

2πi

e−iωτ

ω + iη
, (3.10)

and Fourier transforming Eq. 3.8 to frequency one obtains the Lehmann representation
[90] of the Green function:

Gσ(r, r′, ω) =
∑

s

fσs (r)f∗σs (r′)
ω − εs + iη

. (3.11)

This representation is general, as no restrictions have been imposed so far beside the time-
independence of the Hamiltonian Ĥ . It indicates that G has poles at εs = EN+1

s − E0,
i.e., the single-particle excitation energies. Similarly, it follows for t < t′ that the Green
function is peaked at the energies εs = E0 − EN−1

s . This makes the Green function
the ideal quantity for the theoretical description of direct- and inverse-photoemission
processes, i.e., events in which the system is driven out of its ground state upon removal
(addition) of an electron.

From the Lehmann representation (replacing Eq. 3.8 into Eq. 3.7), one may derive an
alternative expression of the Dyson equation, known as the quasi-particle equation:

[h0(r) + vH(r)]fs(r) +

∫
dr′Σ(r, r′, εs)fs(r

′) = εsfs(r) . (3.12)

The expression above recasts the Dyson equation into a single-particle eigenvalue
problem. The solution of Eq. 3.12 with the exact self-energy would – in principle – give
access to all single-particle excitation energies of the system (εs) and the probability
amplitudes of the ionization processes (fs). The solution of Eq. 3.12 is however more
complicated than a conventional eigenvalue problem because the self-energy is non-
Hermitian and frequency-dependent.

NON-INTERACTING LIMIT

To sketch a connection with Hartree-Fock and density-functional theory, I introduce
below the Green function for a non-interacting electron system.

The ideal case of the non-interacting inhomogeneous electron gas not only provides
valuable insight into the properties of the Green function, but is also of interest for
practical calculations. In most cases, ab initio electronic-structure approaches rely on
a (effective) non-interacting-particle picture for the simplification of the many-body
problem.

In a non-interacting system of N particles, the many-body Hamiltonian reduces
to a sum over single-particle Hamilton operators. The corresponding Schrödinger
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equation can be mapped toN single-particle Schrödinger equations, which can be solved
numerically exactly to yield a set of single-particle eigenvalues {εσn} and eigenfunctions
{ψσn}. The ground-state wave function Ψ0 is then obtained by constructing a Slater
determinant (Eq. 2.10) with the single-particle eigenfunctions.

The Green function of a non-interacting system then assumes a particularly simple
expression, as the Lehmann amplitudes can be identified with the single-particle orbitals
(see e.g. [88]):

fσs (r) = 〈Ψ0|ψ̂σ(r)|ΨN+1
s 〉 =

∑

n

ψσn(r)〈Ψ0|ĉσn|ΨN+1
s 〉 =

∑

n

ψσn(r)δn,s = ψσs (r) .

(3.13)
To derive this expression, I used the expansion of the field operators in the basis of
the eigenstates of the single-particle Hamiltonian: ψ̂σ(r) =

∑
n ψ

σ
n(r)ĉσn. Similarly, the

single-particle excitation energies correspond to the single-particle eigenvalues, i.e.,
εs = EN+1

s − E0 = εσs .

Thus, one can rewrite the Lehmann representation (Eq. 3.11) of the Green function
(allowing now also for t′ > t) in terms of single-particle orbitals and eigenvalues as:

Gσ0 (r, r′, ω) =
∑

n

ψσn(r)ψσ∗n (r′)
ω − (εσn − µ)− iηsgn(εσn − µ)

, (3.14)

where µ is the Fermi energy. The same applies to its Fourier transform:

Gσ0 (r, r′, τ) = −i
∑

n

e−i(ε
σ
n−µ)τψσ∗n (r)ψσn(r′)×

× [θ(τ)θ(εσn − µ)− θ(−τ)θ(µ− εσn)] . (3.15)

By differentiating Eq. 3.15 with respect to t and remembering that hσ0ψσi = εσi ψ
σ
i , it is

straightforward to derive the equation of motion for the non-interacting Green function:

[
i
∂

∂t1
− h0(1)

]
G0(1, 2) = δ(1, 2) , (3.16)

which relates the non-interacting Green function to the single-particle term of the many-
body Hamiltonian h0.

The Dyson equation in its conventional form can be derived by replacing the δ-
function in Eq. 3.7 by means of the left-hand side of Eq. 3.16:

[
i
∂

∂t1
− h0(1)

]
[G(1, 2)−G0(1, 2)] =

∫
d3[vH(1)δ(1, 3) + Σ(1, 3)]G(3, 2) . (3.17)
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Making use of Eq. 3.16, the right-hand side can be rewritten as follows:

∫
d3[vH(1)δ(1, 3) + Σ(1, 3)]G(3, 2) =

[
i
∂

∂t1
− h0(1)

] ∫
d34G0(1, 3)[vH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) . (3.18)

Combining Eqs. 3.17 and 3.18 yields the Dyson equation:

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)[vH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) , (3.19)

or, using the definition of the inverse of an operator (Eq. A.1 in Appendix A):

G−1(1, 2) = G−1
0 (1, 2)− vH(1)δ(1, 2)− Σ(1, 2) . (3.20)

3.2 CONNECTION TO DFT: THE SHAM-SCHLÜTER

EQUATION

The formal connection of many-body perturbation and density-functional theory is
provided through the Sham-Schlüter equation (SSE) [52]:

∫
dr1vxc(r1)

∫
dω

2π
Gs(r, r1, ω)G(r1, r, ω) =

∫
dr1dr2

∫
dω

2π
Gs(r, r1, ω)Σ(r1, r2, ω)G(r2, r, ω) , (3.21)

where Gs is the Green function of the Kohn-Sham system and reproduces the same
density as the fully interacting system.

The SSE is an exact condition that links the exchange-correlation potential vxc and the
self-energy Σ. In practice, Eq. 3.21 may be employed in its linearized form, i.e., replacing
G by Gs:

∫
dr1vxc(r1)

∫
dω

2π
Gs(r, r1, ω)Gs(r1, r, ω) =

∫
dr1dr2

∫
dω

2π
Gs(r, r1, ω)Σ(r1, r2, ω)Gs(r2, r, ω) . (3.22)

The expression above allows one to derive approximations to vxc from a given expression
for Σ, avoiding the solution of the Dyson equation to determine G. This is of interest for
the development of systematic approximations to the exchange-correlation potential
in DFT. In fact, the SSE formally links many-body perturbation theory and density-
functional theory, and provides, in principle, a way to derive a local KS potential starting
from a given approximation to the many-body self-energy.

As an example, if Σ is in the Hartree-Fock approximation, the solution of the lin-
earized SSE provides the local exact-exchange potential [91]. In the GW approximation
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for Σ, vxc would give the so-called the self-consistent RPA potential vRPA
c (r) =

δERPA
c

δn(r)

[55, 92, 93], where ERPA
c is given by Eq. 2.30. The SSE has been solved numerically

only in a few isolated cases, such as spherical atoms [94] and simple solids [95, 96]. In
most cases however, the problem presented by Eq. 3.22 is too complex to be tackled
numerically.

3.3 RELATION TO PHYSICAL PROPERTIES

The single-particle Green function gives access to less information on a given quantum
system than the full many-body wave function Ψ. This evidently arises because most
of the degrees of freedom of Ψ are integrated out by the expectation values of Eq. 3.1.
Nonetheless, the Green function still provides a relatively simple access to the expec-
tation values of single-particle operators, ground-state total energies and excitation
spectra. In the following, I will shortly recall how does the Green function relates to
these quantities.

ONE- AND TWO-PARTICLE OPERATORS

Consider a non-local single-particle operator Ô1 in its second-quantized form:

Ô1 =

∫
drdr′ψ̂†(r)O1(r, r′)ψ̂(r′) , (3.23)

where the spin degrees of freedom are omitted for simplicity. The expectation value
of this operator can be expressed in terms of the single-particle Green function, just by
making use of the definition in Eq. 3.1:

〈Ψ|Ô1|Ψ〉 =

∫
drdr′O1(r, r′)〈Ψ|ψ̂†(r)ψ̂(r′)|Ψ〉

= −i
∫
drdr′O1(r, r′)G(rt, r′t+) . (3.24)

Similarly, the second-quantized form of a two-particle operator Ô2 is:

Ô2 =

∫
drdr′ψ̂†(r)ψ̂†(r′)O2(r, r′)ψ̂(r′)ψ̂(r) . (3.25)

Correspondigly, the ground-state expectation value of Eq. 3.25 yields:

〈Ψ|Ô2|Ψ〉 =

∫
drdr′O2(r, r′)〈Ψ|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|Ψ〉

= −
∫
drdr′O2(r, r′)G2(rt−, r′t; rt++, r′t+) , (3.26)

where I introduced the definition of the two-particle Green function (Eq. 3.4 withN = 2).
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TOTAL-ENERGY FUNCTIONALS

The total energy is obtained from the ground-state expectation value of the electronic
Hamiltonian, defined in Eq. 2.8. The Hamiltonian is a sum of a single-particle operator
(h0, that includes the kinetic energy and the external potential) and a two-particle
operator (the Coulomb interaction). The expectation value of the single-particle term h0

can be evaluated straightforwardly from Eq. 3.24. The expectation value of the Coulomb
operator, on the other hand, would require the two-particle Green function, according
to Eq. 3.26. However, with some manipulation it is possible to express the total energy
in terms of the single-particle Green function only:

EGM
tot [G] = −i

∫
d1 lim

2→1+

[
i
∂

∂t1
+ h0(1)

]
G(1, 2) + Eion , (3.27)

where Eion is a positive shift due to the internuclear interactions. The reader is referred
to Ref. [13, 97] for a detailed derivation. Equation 3.27 is the Galitskii-Migdal (GM)
formula for the total energy. The GM formula will be used in later Chapters of this thesis
for total-energy calculations for atoms and molecules.

In Eq. 3.27, the total energy has an explicit functional dependence on the Green
function. This functional dependence however is not unique. In fact, MBPT provides a
way to define total-energy functionals in various (potentially infinite) forms [98]. Other
examples are the Luttinger-Ward [99] and the Klein functionals [100]:

ELW
tot [G] = −EH[G] + Φ[G]− Tr[Σ[G]G]− Tr[ln(G−1

0 − vH − Σ[G])] , (3.28)

EK
tot[G] = −EH[G] + Φ[G]− Tr[(G−1

0 − vH)G− 1]− Tr[lnG−1] , (3.29)

where EH[G] ≡ −i
∫
drvH(r)G(rt, rt+) is the Hartree energy. A derivation of these two

functionals is reported in Appendix F. Here I used the short-hand notation:

Tr [AB] =

∫ ∞

−∞

dω

2π
eiωη

∫
drdr′A(r, r′, iω)B(r′, r, iω) , (3.30)

and I introduced the so-called Φ-functional, defined as:

Φ[G] =

∞∑

n=1

1

2n
Tr
[
Σ(n)[G]G

]
, (3.31)

where Σ(n) is the sum of the n-th order terms of the self-energy expanded in terms of
the Coulomb interaction. In terms of Feynman diagrams, Σ(n) only includes graphs that
contain n explicit Coulomb lines.

A useful property of the total-energy functionals introduced above can be easily de-
rived differentiating both functionals with respect toG. Considering the Klein functional
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for definiteness, one obtains:

δEK
tot[G]

δG
=

δ

δG

[
−EH[G] + Φ[G]− Tr[(G−1

0 − vH)G− 1]− Tr[lnG−1]
]

= −vH + Σ[G]−G−1
0 +G−1 , (3.32)

where I used the identity Σ = δΦ[G]
δG . From Eq. 3.32 follows that the Klein functional is

stationary (i.e., δE
K
tot[G]
δG = 0) at the Green function that solves the Dyson equation. The

same property is derived in a similar way also for the Luttinger-Ward functional. Due
to this condition, these functionals are often referred to as variational. Equation 3.32
suggests that for a variational functional, the total energy E[G] (evaluated with a trial
Green function G) will be close to the real total energy E[G] (where G is solution of the
Dyson equation) if G is a good approximation to G. Therefore, variational total-energy
functionals should be more appropriate for the perturbative evaluation of total energies.
It is worth emphasizing that this condition does not guarantee that the Green function
obtained from the Dyson equation minimizes the total energy ( δE

2
tot

δ2G > 0) – as one would
expect by analogy with the variational principle in ordinary quantum mechanics. On
the contrary, the total energy assumes a maximum at its stationary point [99].

The existence of different total-energy functionals raises the problem of the unique-
ness of the total energy. However, if the Green function and the self-energy are related
by the Dyson equation, the Luttinger-Ward and Klein functionals yield the same total
energy. This can be easily verified by substituting the relation G−1 + Σ = G−1

0 − vH

in Eq. 3.28. Similarly, it has been shown that the Klein functional is equivalent to the
GM formula if the Green function satisfies the Dyson equation [101–103]. Moreover,
by replacing the inverted Dyson equation (Eq. 3.20) in the Luttinger-Ward and Klein
functionals, one obtains:

EK
tot[G] = −EH + Φ[G]− Tr[ΣG]− Tr[lnG−1] , (3.33)

which demonstrates that the total energy does not depend on the non-interacting Green
function G0. Summarizing, if the Green function satisfies the Dyson equation the total
energy is independent of the non-interacting Green function G0, and most importantly
it is independent of the form of the total-energy functional. On the other hand, if the
Green function does not satisfy the Dyson equation, the total energy is expected to
depend on the total-energy functional [101, 103, 104].

CONNECTION TO SPECTROSCOPY

The Lehmann representation of the Green function introduced in Sec. 3.1 illustrates
the relevance of the single-particle Green function for the theoretical description of
photo-emission processes: Equation 3.11 shows that the Green function has poles at the
ionization energies and electron affinities. A quantity that facilitates the extraction of the
single-particle excitation energies from the Green function is the (integrated) spectral
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Figure 3.2: Left: pictorial representation of quasi-particle peaks and plasmon satellites in the
spectral function. Right: Experimental photoemission spectrum of Silicon. Reproduced from
Ref. [105].

function A(ω), defined as

A(ω) =
1

π

∣∣∣∣
∫
dr lim

r′→r
ImG(r, r′, ω)

∣∣∣∣ =
1

π
|Tr[ImG(ω)]| . (3.34)

From A(ω) one can derive information related to electron addition and removal pro-
cesses, the lifetime of quasi-particle excitations and the energy of (non-neutral) collective
excitations.

In the sudden approximation, the spectral function can be interpreted as a photo-
emission current. In this approximation, the emitted electron is assumed to travel
directly to the detector without interacting with the systems, after it has been excited.
Mathematically, it means that the outgoing-electron wave function is a plane wave. This
is a simplified picture that does not account for the following processes: First, electrons
in different orbitals (or bands) often have different probabilities (or cross sections) to
interact with an incoming photon, which leads to a renormalization of the peak intensity
and selection rules. Second, the electron emitted in a photo-emission process may
interact with the sample before reaching the detector, exchanging energy with ionic
vibrations or with other electrons. As an example, final-state effects in core-electron
photo emission – which arise from the interaction of the emitted electron with the
screened hole left behind in the photo-emission process – might contribute up to 0.1 eV
to the kinetic energy of the emitted electron and are not accounted for by the sudden
approximation [106, 107].

Within the sudden approximation, the spectral function provides a connection to
measurements in photo-emission spectroscopy (PES) and, correspondingly, structures in
A(ω) may be associated to excitations of the system. In an over-simplified picture, one
can distinguish between two different types of structures in a photo-emission spectrum:
sharp peaks which arise from single-particle-like excitations, and satellite structures
which generally involve the excitation of several (quasi-)particles. The structures of the
first type are named “quasi-particle” peaks, and are exemplified by the right peak in the
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Figure 3.3: Experimental photo-emission spectrum of furan (C4H4O). Adapted from Ref. [108].

left panel of Fig. 3.2. The second type of structures, the satellites, are more broadened and
show up within a given energy (corresponding to the energy of a collective excitation)
from a quasi-particle peak, as sketched in the left panel of Fig. 3.2. In sp-semiconductors,
the origin of satellites is to be ascribed mostly to electron-hole excitations (i.e., plasmons)
induced by the photo-electron. The corresponding structures for a real material are
illustrated in Fig. 3.2 on the right, where the experimental photoemission spectrum
of silicon is reported. More exotic processes, such as multiple plasmon generation,
are also commonly observed in photo-emission experiments, and generally show up
as lower energy replica of the plasmon peak (Fig. 3.2, right). These events can also
be characterized by means of the single-particle Green function [109–111]. In many
materials however – such as transition metal oxides [112] – the origin of satellites is still
a matter of debate.

Satellites are common features in the PES spectra of metals and semiconductors [113].
In finite systems, they are observed experimentally in metal clusters of several thousands
of atoms (see, e.g., Ref. [114]). For isolated atoms and molecules up to several tens of
atoms, however, satellites generally do not appear in photo-emission spectra due to the
very short lifetime of this kind of excitation. As illustrated in Fig. 3.3 for furan (C4H4O),
the photo-emission spectrum of molecules is characterized mostly by quasi-particle
peaks, and by vibrational replica generated by the interaction of electrons and nuclear
vibrations. In this work, I am primarily interested in the electronic degree of freedom
of finite systems. Therefore, in the following I will focus mostly on quasi-particle
excitations and disregard satellites.

LIFETIME OF EXCITATIONS

The lifetime of excited states manifests itself as broadening of quasi-particle peaks in
the spectral function, and hence can also be inferred in Green function theory. In finite
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systems, finite lifetimes of electronic excitations are a well known aspect that has been
extensively discussed in the literature. For single atoms, for which vibrational decay
channels are not available, electronic lifetimes of holes have been measured with photo-
emission[115] and pump-probe techniques[116]. The most likely process that leads to
the decay of holes is Auger recombination.

Green’s function theory is in principle exact, and is therefore expected to correctly
account for the lifetime (i.e., the broadening) of quasi-particle excitations, if the exact
self-energy were used. The origin of peak broadening can easily be understood from
the structure of the Lehmann representation:

Gσ(r, r′, ω) =
∑

s

fσs (r)f∗σs (r′)
ω − εs − iη

,

where I considered only holes for simplicity and, therefore, εs ≡ EN−1
s −EN0 , where EN0

denotes the ground-state energy of the N -particle system. EN−1
s are the excited-state

energies of the N -1 particle system (i.e., they solve ĤΨN−1
s = EN−1

s ΨN−1
s , where Ĥ is

the many-body Hamiltonian). Typically, such a neutral excitation spectrum exhibits a
few discrete peaks, if the N -1 particle system has bound states, followed by a continuum
as electrons are excited above the vacuum level. Therefore, if the hole left behind
by the photo-emission process is close to the Fermi energy, the energies EN−1

s (and
subsequently also εs) are discrete. The spectral function therefore exhibits a series of
δ-functions. However, if the holes are low enough in energy, EN−1

s lies in the continuum
of the N -1 particle systems. This is typically when EN−1

s − EN−1
0 is larger than the

next ionization energy EN−2
0 − EN−1

0 , where EN−2
0 and EN−1

0 are the ground-state
energies of the N -2 and N -1 particle systems, respectively. Correspondingly, εs varies
continuously and gives rise to a series of delta peaks that are infinitely closely spaced
and merge into a single quasiparticle peak with a finite broadening.

As a simple example, 3 consider a non-stationary quasi-particle state (for instance,
a hole in the core). Since the quasi-particle state may decay, one may assume that the
probability amplitude for its propagation (i.e., its Green function) decreases exponen-
tially as e−

t
τ , Γ ≡ τ−1 being the inverse lifetime. The Green function of such particle

can be expressed as [13]:

Gi(t) = −ie−iεite− t
τ , (3.35)

and its Fourier transform:

Gi(ω) =
1

ω − εi + iΓ
. (3.36)

3The reader is referred to Refs. [13, 88] for a more rigorous account.
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Figure 3.4: Spectral function (on a logarithmic scale) corresponding the Green function in Eq. 3.36
at different values of the inverse lifetime Γ.

According to Eq. 3.34, the spectral function is given by a Lorentzian of the form:

A(ω) =
1

π

Γ

(ω − εi)2 + Γ2
. (3.37)

This simple spectral function is depicted in Fig. 3.4 for several values of Γ. The inverse
proportionality between τ and Γ demonstrates that short lifetimes induce large broad-
enings of the quasi-particle peaks. Conversely, long lifetimes are associated with a small
broadening and, in the limit τ →∞ (or Γ→ 0), Eq. 3.37 reduces to a δ-function.

DENSITY, DENSITY MATRIX, AND NATURAL OCCUPATIONS

For a system of N particles, the single-particle density matrix is defined as:

γ(r, r′) =

∫
dr2 . . . drNΨ∗(r, r2, . . . , rN )Ψ(r′, r2, . . . , rN ) , (3.38)

where Ψ denotes the ground-state many-body wave function. The diagonal of the
density matrix γ coincides with the electron density, i.e., γ(r, r) = n(r). The density
matrix can be obtained directly from the single-particle Green function:

γ(r, r′) = −2iG(r, r′, τ = 0−) . (3.39)

Similarly, the density can be derived from G by setting r = r′ in Eq. 3.39. The density
matrix can also be expressed as:

γ(r, r′) =
∑

i

niφi(r)φi(r
′) , (3.40)

where φi and ni denote the natural orbitals and the natural occupation numbers, respec-
tively, that can be obtained from the diagonalization of γ. The density matrix is a useful
instrument to characterize the nature of interactions in a quantum system. For instance,
the density matrix is idempotent (i.e., γ2 = γ) in a non-interacting system, whereas
in the presence of two-body interactions Tr[γ2] ≥ Tr[γ]. A direct consequence of this
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property is that the natural occupation numbers ni are either 1 or 0, in a non-interacting
system, whereas in an interacting system they are fractional. Deviations from unity of
ni can therefore be ascribed to a deviation from a single Slater determinant picture. The
more ni deviate from integer occupation, the stronger is the multi-reference character of
the wave function.



4 HEDIN’S EQUATIONS: THE GW
APPROXIMATION

In 1965 Lars Hedin proposed a self-consistent set of equations – today known as Hedin’s
equations – that provides a formally exact recipe for the evaluation of the Green function
and the self-energy [14]. Hedin’s equations rephrase the many-body problem in terms
of a set of auxiliary quantities of direct physical meaning – such as, e.g., the screened
Coulomb interaction W , first introduced by Hubbard [117]. This work had profound
consequences in modern electronic-structure theory as it provided a first practical
approach for calculations of electronic excitations in solids. Hedin’s equations are
central in the work presented in the following parts of this thesis, therefore the basic
equations and their derivation will be reviewed in this Chapter.

4.1 HEDIN’S EQUATIONS

The goal of the following derivation is to recast the problem of determining the Green
function (Eqs. 3.19) into a closed set of integro-differential equations. Without loss
of generality, one can assume the electronic system to be perturbed by a small time-
independent potential ϕ, which can be set to zero at the end of the derivation. Following
Ref. [14] a set of auxiliary quantities may be introduced to simplify the notation. For
simplicity, all definitions are listed in Table 4.1. Since our ultimate goal is the calculation
of G and Σ, the quantities defined in Table 4.1 might be regarded as bare mathematical
tools. However, most quantities (the screened Coulomb interaction W , the inverse
dielectric matrix ε−1, the reducible and irreducible polarizability χ and χ0), are defined in
analogy with their classical counterparts in the classical electrostatic theory of dielectrics.

The starting point of this derivation is the definition of the self-energy Σ given in
Eq. 3.6:

∫
d3[vH(3)δ(3, 1) + Σ(1, 3)]G(3, 2) = −i

∫
d3v(1, 3)G2(1, 3+; 2, 3++) , (4.1)

which depends explicitly on the two-particle Green function. The following operatorial

37
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Table 4.1: Definition of the quantities involved in the derivation of Hedin’s equations.

total classical potential V (1) ≡ ϕ(1)− i
∫
d2v(1, 2)G(2, 2+)

3-point vertex Γ(1, 2; 3) ≡ −δG
−1(1, 2)

δV (3)

dielectric matrix ε−1(1, 2) ≡ δV (1)

δϕ(2)

screened Coulomb interaction W (1, 2) ≡
∫
d3v(1, 3)ε−1(3, 2)

irreducible polarizability χ0(1, 2) ≡ −i δG(1, 1+)

δV (2)
=
δn(1)

δV (2)

reducible polarizability χ(1, 2) ≡ −i δG(1, 1+)

δϕ(2)
=
δn(1)

δϕ(2)

identity, due to Schwinger [118]:

G2(1, 3; 2, 3+) = G(1, 2)G(3, 3+)− δG(1, 2)

δϕ(3)
(4.2)

holds for the Green function defined in the presence of a small perturbing local potential
ϕ, and permits one to recast Eq. 4.1 without the two-particle Green function:

∫
d3Σ(1, 3)G(3, 2) = iG(1, 2)

∫
d3v(1, 3)G(3, 3+)− i

∫
d3v(1, 3)

δG(1, 2)

δϕ(3)

∣∣∣∣
ϕ=0

.

(4.3)

Here I introduced the short-hand notation Σ(1, 2) = Σ(1, 2) + vH(1)δ(1, 2). A close
expression for Σ is finally obtained by multiplying Eq. 4.3 on the right by G−1 and
integrating:

Σ(1, 2) = δ(1, 2)

∫
d3v(1, 3)G(3, 3+) + i

∫
d34v(1, 3)

δG(1, 4)

δϕ(3)
G−1(4, 2) (4.4a)

= δ(1, 2)

∫
d3v(1, 3)G(3, 3+)− i

∫
d34v(1, 3)G(1, 4)

δG−1(4, 2)

δϕ(3)
, (4.4b)

where in the last step I made use of the operator identity reported in Eq. A.2 in Appendix
A. Noting that the Green function is related the electron density n by the identity
n(1) = −iG(1, 1+), one may promptly recognize in the first term of Eq. 4.4b the Hartree
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potential:

vH(1) =

∫
d2v(1, 2)n(2) . (4.5)

Making use of the chain rule (Eq. A.6 in Appendix A), one can immediately simplify
the expression for the self-energy in Eq. 4.4b, by introducing some of the definitions of
Table 4.1:

Σ(1, 2) = −i
∫
d345v(1, 3)G(1, 4)

δG−1(4, 2)

δV (5)

δV (5)

δϕ(3)
G−1(4, 2)

= +i

∫
d45G(1, 4)W (5, 1)Γ(4, 2; 5) . (4.6)

Starting from the definition of Γ in Table 4.1, and introducing the Dyson Eq. 3.20 in the
presence of the perturbing field ϕ, one obtains:

Γ(1, 2; 3) = − δ

δV (3)

[
G−1

0 (1, 2)− vH(1, 2)δ(1, 2)− Σ(1, 2)− ϕ(1)δ(1, 2)
]

= δ(1, 2)δ(1, 3) +

∫
d45

δΣ(1, 2)

δG(4, 5)

δG(4, 5)

δV (3)

= δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3) , (4.7)

where in the last step I introduced the identity Eq. A.3 of Appendix A and used the
definition of Γ.

Using the definitions of W , ε−1, χ0, and χ, one obtains the following expression for
W :

W (1, 2) =

∫
d3v(1, 3)

δ

δϕ(2)

[
ϕ(3)− iG(4, 4+)v(4, 3)

]

= v(1, 2) +

∫
d34v(1, 3)χ(4, 2)v(4, 3)

= v(1, 2) +

∫
d34v(1, 3)χ0(3, 4)W (4, 2) , (4.8)

where the last line was obtained making use of the relation χ(1, 2) =
∫
d3χ0(1, 3)ε−1(3, 2).

The irreducible polarizability χ0 can be expressed in terms of known quantities as:

χ0(1, 2) = i

∫
d34G(1, 3)

δG−1(3, 4)

δV (2)
G(4, 2)

= −i
∫
d34G(1, 3)G(4, 2)Γ(3, 4; 2) (4.9)

Equations 4.6-4.8 constitute a closed set of integro-differential equations, known as
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definition of Γ.

Using the definitions of W , �−1, χ0 and χ yields:

W (1, 2) =

�
d3v(1, 3)

δ

δϕ(2)

�
ϕ(3) − iG(4, 4+)v(4, 3)

�

= v(1, 2) +

�
d34v(1, 3)χ(4, 2)v(4, 3)

= v(1, 2) +

�
d34v(1, 3)χ0(3, 4)W (4, 2) . (28)

where the last obtained making use of the relation χ(1, 2) =
�

d3χ0(1, 3)�−1(3, 2). The irreducible

polarizability χ0 can be expressed in terms of known quantities as:

χ0(1, 2) = i

�
d34G(1, 3)

δG−1(3, 4)

δV (2)
G(4, 2)

= −
�

d34G(1, 3)G(4, 2)Γ(3, 4; 2) (29)

Finally, Eqs. 26-28 are the Hedin’s equations:

G(1, 2) = G0(1, 2) +

�
d34G0(1, 3)[vH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) (30a)

χ0(1, 2) = −i

�
d34G(2, 3)G(4, 2)Γ(3, 4; 1) (30b)

W (1, 2) = v(1, 2) +

�
d34v(1, 3)χ0(3, 4)W (4, 2) (30c)

Σ(1, 2) = i

�
d34G(1, 4)W (3, 1+)Γ(4, 2; 3) (30d)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

�
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3) . (30e)

This self-contained set of integro-differential equations reformulates the problem of the calculation of the

one-particle Green function as self-consistent problem. The self-consistent nature of Eqs. 30a-30e arises

from the interdependence of the each one of Hedin’s equations on the other four. The solution of the

problem formulated above should be approached by the following iterative scheme: i) Initialization of a

first self-consistent field (SCF) calculation with a non-interacting Green function G0. ii) Evaluation of

Eqs. 30b-30d, taking Γ(1, 2; 3) = δ(1, 2)δ(1, 3). iv) Construction the vertex from Eq. 30e. iii) Update of

the Green function from Eqs. 30a. v) Iteration of Eqs. 30a-30e until the satisfaction of a convergence

criterium, such as, for instance, the stability of the ground-state energy.
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A first approximation to the Hedin’s equation is obtained by setting Σ = 0. This approximations

corresponds to the Hartree theory, in which a set of distinguishable electrons interacts This approximation

corresponds to the Hartree approximation[11]. The Hartree equations, for the one-particle orbitals and
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Figure 4.1: Hedin’s pentagon. Schematic representation of iterative approach to the solution of
Eqs. 4.10a-4.10e.

Hedin’s equations:

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)[vH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) (4.10a)

χ0(1, 2) = −i
∫
d34G(2, 3)G(4, 2)Γ(3, 4; 1) (4.10b)

W (1, 2) = v(1, 2) +

∫
d34v(1, 3)χ0(3, 4)W (4, 2) (4.10c)

Σ(1, 2) = i

∫
d34G(1, 4)W (3, 1+)Γ(4, 2; 3) (4.10d)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3) . (4.10e)

Thus, the problem of the calculation of the single-particle Green function is reformulated
as a self-consistent problem. The self-consistent nature of Eqs. 4.10a-4.10e arises from the
interdependence of the each one of Hedin’s equations on the other four. The solution of
the problem formulated above should be approached by the following iterative scheme:
i) Initialization of a first self-consistent field (SCF) calculation with a non-interacting
Green functionG0. ii) Evaluation of Eqs. 4.10b-4.10d, taking Γ(1, 2; 3) = δ(1, 2)δ(1, 3). iii)
Construction the vertex from Eq. 4.10e. iv) Update of the Green function from Eqs. 4.10a.
v) Iteration of Eqs. 4.10a-4.10e until the satisfaction of a convergence criterion, such as,
for instance, the stability of the ground-state energy. The structure of this SCF loop is
sketched in Fig. 4.1.

HARTREE APPROXIMATION

A first approximation to Hedin’s equations is obtained by setting Σ = 0. This approx-
imation corresponds to the Hartree approximation [119]. The Hartree equations for
the single-particle orbitals and eigenvalues are trivially recovered by substitution of
Σ(1, 2) = vH(1)δ(1, 2) in Eq. 3.12 and by identifying the Lehmann amplitudes with
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single-particle wave-functions:

[h0(r) + vH(r)]ψσn(r) = εσnψ
σ
n(r) (4.11a)

vH(r) =
∑

σ

occ∑

n

∫
dr′

ψσ∗n (r′)ψσn(r′)
|r− r′| . (4.11b)

In the Hartree approximation, the Hartree particles move independently and interact
only with the mean electrostatic field generated by the remainingN−1 electrons. This is
a rather poor approximation, because Eqs. 4.11a do not account for the indistiguishable
nature of electrons and for the Pauli exclusion principle, that is, for exchange interactions.
Due to these shortcomings, the Hartree approximation fails in reproducing even simple
experimental facts, such as the formation of chemical bonds.

HARTREE-FOCK APPROXIMATION

For a higher level of theory one has to include in the evaluation of the Green function, in
some approximate way, the self-energy Σ. The Hartree-Fock approximation to the self-
energy, is retrieved from Hedin’s equations by neglecting polarization effects (χ0 = 0)
and restricting the vertex to its zero-th order component (Γ(1, 2; 3) = δ(1, 2)δ(1, 3)). The
screened Coulomb interaction reduces to the bare interaction, i.e., W (1, 2) = v(1, 2),
reflecting the observation that in absence of polarization there is no screening to renor-
malize the Coulomb interaction. Thus, Hedin’s equations reduce to:

Gσ(1, 2) = Gσ0 (1, 2) +

∫
d34Gσ0 (1, 3)[vH(3)δ(3, 4) + Σσ(3, 4)]Gσ(4, 2) (4.12a)

Σσ(1, 2) = iGσ(1, 2)v(1, 2) . (4.12b)

By means of Eq. 3.8 and after a Fourier transform from time to frequency, one can
easily show that the self-energy in Eq. 4.12b coincides with the non-local exact-exchange
operator defined in Eq. 2.12. Once again, the Hartee-Fock eigenvalue problem in its
conventional form is retrieved combining Eq. 2.12 with the reformulation of Dyson
equation provided in Eq. 3.12, yielding:

[h0(r) + vH(r)]ψσn(r) +

∫
dr′Σσx (r, r′)ψσn(r′) = εσnψ

σ
n(r) . (4.13)

4.2 THE GW APPROXIMATION

Screening between electrons can be accounted for by replacing the bare interaction v in
Hartree-Fock theory with the screened Coulomb interactionW . As shown by Hedin [14],
one may define a perturbative expansion of the self-energy Σ in terms of W (instead of
the usual perturbative expansion around the bare Coulomb interaction v). The zero-th
order of this expansion coincides with the Hartree-Fock approximation. At first order,
the self-energy is obtained as a product of G and W , and it is therefore referred to as the
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GW approximation.

The GW approximation, originally proposed by Hedin in Ref. [14], may equivalently
be obtained by setting Γ(1, 2; 3) = δ(1, 2)δ(1, 3) in Eqs. 4.10b, 4.10d, and 4.10e, and
yields:

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)[vH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) (4.14a)

χ0(1, 2) = −iG(1, 2)G(2, 1) (4.14b)

W (1, 2) = v(1, 2) +

∫
d34v(1, 3)χ0(3, 4)W (4, 2) (4.14c)

Σ(1, 2) = iG(1, 2)W (1, 2) . (4.14d)

As compared to Hartree-Fock, the structure of the self-energy becomes considerably
more complex. In the GW approximation the self-energy is a non-local, non-Hermitian,
and frequency dependent potential. A direct consequence of these properties, is that the
eigenvalue problem formulated in Eq. 3.12 admits left and right eigenvalues, and has in
principle to be solved for every frequency. It is therefore unpractical to approach GW
calculations as an eigenvalue problem.

4.3 PERTURBATIVE G0W0

Due to the complexity of Eqs. 4.14a-4.14d, most numerical implementations of the
GW approximation rely on first-order perturbation theory and treat the self-energy
and the Green function in a non-self-consistent way. This constitutes a considerable
simplification of the problem, that is necessary to extend the applicability of the GW
method to solids and molecules up to hundreds of atoms. The G0W0 method was
first applied to the electron gas by Hedin and coworkers in the late 1960s (see, e.g.,
Ref. [88] and references therein for a review). The extension of G0W0 to quasi-particle
calculations in real semiconductors is due to Hybertsen and Louie [57, 120]. Over the
years, G0W0 became the reference method for the computation of band gaps and band
structures for solids [121–123] and more recently also for molecules [58, 124].

The basic idea of the G0W0 method is to avoid the self-consistent procedure implied
by Eqs. 4.14a-4.14d by resorting to perturbation theory. In this scheme, one can evaluate
Eqs. 4.14b-4.14d by replacing G with a Green function obtained from a preliminary
density-functional or Hartree-Fock calculation. In such case, the Green function can be
expressed in its non-interacting form (Eq. 3.14) and correspondingly, the polarizability
in Eq. 4.14b can be evaluated in terms of the single-particle orbitals ψn and eigenvalues
εn of the preliminary calculation. By substitution of Eq. 3.14 into Eq. 4.14b, one obtains
the Adler-Wiser form [125, 126] for the polarizability reported in Eq. 2.30. No further
simplification are involved in the calculation of W . The self-energy, is then expressed as:

Σσ(1, 2) = iGσ0 (1, 2)W0(1, 2) , (4.15)
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where W0 denotes the screened interaction evaluated from the non-interacting response
function χ0 given in Eq. 2.30. In G0W0, it is common practice to evaluate quasi-particle
energies from first-order perturbation theory as corrections to a set of single-particle
eigenvalues according to the following scheme. Consider, for instance, a Kohn-Sham
system (the generalization to non-local Hartree-Fock-like potentials is straightforward)
with exchange-correlation potential vσxc and satisfying the single-particle Schrödinger
equation:

h0(r)ψσn(r) + vσxcψ
σ
n(r) = εσ0,nψ

σ
n(r) . (4.16)

If the perturbing potential V̂ (ω) ≡ Σ̂(ω)− v̂xc is small, the Lehmann amplitudes fs(r)

can be approximated by the single-particle orbitals ψσn(r) of the Kohn-Sham calculation
[57]. Therefore, replacing fs(r) by ψσn(r) in Eq. 3.12 and subtracting Eqs. 3.12 and 4.16
leads to:

vσxcψ
σ
n(r)−

∫
dr′Σσ(r, r′, εQP

n,σ)ψσn(r′) = (εσ0,n − εQP
n,σ)ψσn(r) . (4.17)

Multiplying from the left Eq. 4.17 by ψσn(r) and integrating over r, yields the quasi-
particle equation:

εQP
n,σ = εσ0,n + Σσn(εQP

n,σ)− vσxc,n , (4.18)

where Σσn(ω) ≡
∫
drdr′ψσn(r)Σσ(r, r′, ω)ψσn(r′) and similarly for vσxc,n. Equation 4.18

provides the first-order perturbative correction to the unperturbed eigenvalues εσ0 due
to the perturbing potential Σ̂ − v̂xc. The term Σσn(εQP

n,σ) − vσxc,n is the quasi-particle
correction.

The G0W0 method has had an enormous success for the computations of electronic
excitations in solids [121–123]. It has been applied extensively to wide classes of com-
pounds across the entire periodic table including alkaline metals [129, 130], sp-bonded
semiconductors [57, 120, 131–133], transition metals [134–138], and f -electron systems
[139, 140]. Moreover, G0W0 has been successfully employed in the description and
characterization of core-level shifts [141], image-states [142, 143], surfaces [144–146], in-
terfaces [147, 148], and defect formation energies [149–152]. The application to molecules
has steadily increased in the last years, and an assessment of G0W0 for finite systems is
emerging [124, 153–157]. The G0W0 method has been implemented in several numerical
codes, using different kind of basis functions, such as: numeric atom centered orbitals
[158, 159], plane-waves [57, 160–162], linearized augmented-plane-waves [163, 164],
and Gaussian orbitals [155, 165]. Throughout this thesis, G0W0 calculations have been
performed with the Fritz-Haber-Institut ab initio molecular simulation package (FHI-
aims), with numerically tabulated atom-centered basis functions. The reader is referred
to Ref. [158] for a detailed account of the G0W0 implementation in the FHI-aims code.

In practice, the evaluation of the quasi-particle energies from Eq. 4.18 often leads
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Figure 4.2: Left: Comparison between experimental and theoretical band gaps for a set of semicon-
ductors, based on LDA and the exact-exchange optimized effective potential method with LDA
correlation OEPx(cLDA). Adapted from Ref. [127]. Right: Experimental [128] versus theoretical
first ionization energy for a set of 30 closed-shell molecules.The PBE eigenvalue corresponding to
the highest occupied state is here compared to theG0W0 values obtained from Eq. 4.18. Ionization
energies from the ∆-SCF and Slater’s transition-state theory [65, 66] are included for comparison.

to a good correlation with experimental values for the valence excitation energies and
gaps in molecules and semiconductors. This is exemplified in Fig. 4.2, where I report in
the left panel a comparison of experimental band gaps and theoretical ones evaluated
from LDA, exact-exchange optimized effective potential with LDA correlation (OEPx),
and G0W0. Experimental gaps are not rescaled by the electron-phonon coupling. This
effect might affect the comparison experiment-theory by approximately 20-50 meV
(see e.g. Ref. [5]). The right panel of Fig. 4.2 compares the experimental first (vertical)
ionization energy of 30 closed-shell molecules with theoretical predictions based on
the PBE HOMO, the ∆-SCF method presented in Sec. 2.5, Slater’s transition state, and
G0W0. For small molecules, vibrational effects contributions to the vertical ionization
energies are not expected to exceed 5-10 meV.

SHORTCOMINGS OF G0W0

In summary, the approximations implied by Eq. 4.18 (beside the GW form for the
self-energy) are (i) the identification of the Lehmann amplitudes fs(r) with the single-
particle eigenstates ψσn(r); (ii) the non-self-consistent calculation of Σ and perturbative
evaluation of the quasi-particle energies. Concerning (i), it was reported by Hybertsen
and Louie in Ref. [57] that the error introduced by this approximation in the band gap
of diamond and silicon should be less than 0.1 eV. However, in several instances it has
been argued that quasi-particle orbitals and LDA/PBE orbitals may differ pronouncedly
[133, 166, 167]. The approximation (ii) has more profound consequences as it leads to
several shortcomings that affect G0W0 calculations:
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Figure 4.3: First ionization energy of
the water molecule, evaluated with
G0W0 based on HF, PBE, and hybrid
PBE using different percentage of exact
exchange.

1. Starting-point dependence: The most problematic feature of G0W0 calculations –
as of any approach based on first-order perturbation theory – is the dependence
of the results on the preliminary reference calculation, i.e., on the single-particle
eigenvalues and eigenvectors employed in Eq. 4.18 (see, e.g., Ref. [168]). To
illustrate the strong starting-point dependence inG0W0, I report in Fig. 4.3 the first
ionization energy of the water molecule evaluated from G0W0 based on several
starting points. Quasi-particle energies and band gaps may differ up to several
eV, depending on the preliminary calculation (see also the right panel of Fig. 4.2).
This deficiency considerably limits the predictive power of the G0W0 method, and
obstructs a systematic assessment of theGW approximation in electronic-structure
calculations.

2. Violation of conservation laws: The satisfaction of conservation laws might be
irrelevant for the computation of spectral properties, but it is of fundamental im-
portance for systems out of equilibrium and transport phenomena. Conservation
laws for number of particles, momentum, and total energy can be reformulated in
terms of Green functions, as shown in the work of Baym and Kadanoff [102, 169].
For instance, the particle-number conservation requires the satisfaction of the
continuity equation:

−∂t〈n̂(r, t)〉 = ∇ · 〈ĵ(r, t)〉 (4.19)

that relates the density n(r, t) = i limr′→rG(rt, r′t+) to the particle current density
〈ĵ(r, t)〉 = − 1

2 lim2→1+(∇1 −∇2)G(1, 2). The satisfaction of Eq. 4.19 requires the
self-energy to obey certain symmetry conditions. Baym showed that the energy,
momentum and particle-number-conservation laws are satisfied if and only if the
self-energy is Φ-derivable [102, 170], i.e., there exists a functional Φ[G] such that:

Σ(1, 2) =
δΦ[G]

δG(1, 2)
. (4.20)
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The G0W0 self-energy does not satisfy the condition above, which leads to the
violation of the conservation laws.

3. Ground-state properties: Due to its perturbative nature, the single-particle or-
bitals remain unchanged from the preliminary calculation in G0W0, as only the
eigenvalues are corrected in Eq. 4.18. This drawback might affect the reliability
of the quasi-particle energies of systems for which common DFT approximations
or HF provide qualitatively wrong ground-state densities, such as for instance
for certain molecular interfaces and hetero-junctions [171, 172]. In these cases, it
is desirable to describe excited- and ground-state properties at the same level of
theory, and therefore go beyond perturbation theory. As discussed in Chap. 8, this
may be particularly relevant when questions pertaining to charge transfer or level
alignment become important.

4. Over- and under-screening: In perturbative G0W0, the screening properties are
determined by the inverse dielectric function ε−1 = 1− vχ0, where χ0 is given by
Eq. 2.30. Due to the inverse proportionality of χ0 on the occupied-unoccupied tran-
sition energies ∆nm = εn − εm (where n refers to occupied and m to empty states)
the screening properties are strongly influenced by the quality of the eigenvalue
spectrum of the preliminary calculation. As a consequence, G0W0 calculations
based on KS-DFT tend to overestimate screening, since the lack of the deriva-
tive discontinuity in the exchange-correlation functional and the self-interaction
error systematically reduce the gap between empty and occupied states. Cor-
respondingly, the quasi-particle corrections from Eq. 4.18 are too large and the
resulting excitation spectrum underestimates experimental data (see e.g. Fig. 4.2).
Similarly, the Hartree-Fock spectrum overestimates ∆nm due to the lack of the
correlation energy. This leads to an underestimation of the screening among
electrons and induces systematic errors in the quasi-particle energies, which are
generally too large compared to experiment (right panel of Fig. 4.2). The over-
and under-screening problems are not exclusively due to the non-self-consistent
treatment of the self-energy. It has been suggested that even at self-consistency the
GW approximation should under-screen the Coulomb interaction due to missing
electron-hole interactions, typically accounted for by vertex corrections [173].

4.4 PARTIALLY SELF-CONSISTENT GW

Due to the high computational requirements of self-consistent GW , several approximate
self-consistent GW methods have been proposed to ameliorate some of the pathologies
of perturbative G0W0. The most prominent are eigenvalue self-consistent GW (ev-
scGW ) and quasi-particle self-consistent GW (QP-scGW ), which are introduced below.
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SELF-CONSISTENCY IN THE EIGENVALUE

The ev-scGW scheme is the simplest possible way to go beyond perturbative G0W0.
This method was originally proposed by Hybertsen and Louie in Ref. [57] and later
explored by several authors [124, 174, 175]. In ev-scGW , Eqs. 4.15 and 4.18 are part of a
self-consistent loop, whereby at each iteration the input eigenvalues are replaced with
the real part of the quasi-particle energies. This procedure reduces the starting-point
dependence of G0W0, and for certain systems it improves the description of the first
ionization energies [124, 175]. However, as discussed in Chapter 10 an inspection of the
entire excitation spectrum reveals that lower lying quasi-particle states often worsen.
On average, ev-scGW does not lead to a quantitative improvement in the description of
the excitation energies of molecules [176]. Moreover, none of the shortcomings listed
above is fixed. An assessment of the ev-scGW method for the azabenzenes is presented
in Chapter 10.

QUASI-PARTICLE SELF-CONSISTENT GW

The underlying idea of QP-scGW is to find the ground state that minimizes the G0W0

quasi-particle correction [177, 178]. In other words, one seeks that non-local exchange-
correlation potential that best represents the G0W0 self-energy. Unfortunately, no exact
correspondence between a non-local static potential and the frequency-dependent self-
energy exists, and one has to resort to approximations.

QP-scGW has been applied to a wide class of materials including d- and f -electron
systems [177–191]. As compared to G0W0, the QP-scGW greatly reduces (and often
eliminates) the dependence on the preliminary calculation. Nevertheless, in certain
cases some dependence on the starting point was still observed [192]. The QP-scGW
scheme also allows to include exact-exchange and dynamical correlation effects in the
ground state. In summary, QP-scGW ameliorates some of the shortcomings listed above,
such as the dependence on the starting point, and in many cases it was reported to be
more accurate than G0W0[177, 178]. However, the computational cost of QP-scGW is
expected to be comparable to full self-consistency since all non-diagonal matrix elements
of the self-energy must be calculated.

4.5 FULLY SELF-CONSISTENT GW

Part of the work of this thesis, has been related to the development and implementation
of a numerical approach to the self-consistent problem presented by Eqs. 4.14a-4.14d
(sc-GW ), and its application to atoms and molecules. A detailed account of numerical
techniques developed in this work is given in Part II, whereas Part III is devoted to
applications. In this Section, a brief review of previous sc-GW calculations is presented.

Previous sc-GW studies have reported conflicting conclusions on the quality of the
spectral properties [58, 104, 193–196]. Consequently, no consensus has so far been
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G0W0@LDA
sc-GW

Sunday, March 10, 2013

Figure 4.4: Spectral function of the ho-
mogeneous electron gas evaluated in
the self-consistent GW approximation
(solid) and from the perturbative GW
method (dashed). Reproduced from
Ref. [193].

reached in this respect. The first sc-GW calculation was performed for a quasi-one-
dimensional model semiconductor [197]. Although this model is of scarce relevance
for real systems, it established the importance of self-consistency for eliminating the
starting-point dependence of band gaps.

Subsequently, sc-GW calculations for the homogeneous electron gas (HEG) were
performed. However, they indicated a deterioration of the spectra as compared to
perturbative G0W0 based on the local-density approximation (LDA) [193]. For the HEG,
Holm and von Barth observed a transfer of spectral weight from the plasmon satellite
to the quasi-particle peak in self-consistent calculations. This behavior is illustrated in
Fig. 4.4, where the sc-GW and G0W0@LDA spectral functions for the HEG are depicted.
This spectral weight transfer results in a weaker plasmon peak and a broader valence
band, that worsens the agreement with photo-emission experiments for metallic sodium.
It is worthwhile to emphasize that in Ref. [193] no quantitative comparison between
experimental and theoretical quasi-particle energies was reported, and the deterioration
of spectral properties at self-consistency arises exclusively from the comparison of
sc-GW band widths and plasmon satellites with experiment on alkali metals.

The first self-consistent calculation for real systems – performed for potassium and
silicon in the pseudo-potential approximation – confirmed the picture outlined by Holm
and von Barth [194], showing a deterioration of the band width and band gap at self-
consistency. In a later work, the authors attributed the origin of this failure to the
pseudo-potential approximation, emphasizing the importance of accounting for core-
valence interaction [195]. However, these results later turned out to be underconverged
with respect to the number of empty states [198]. Recently, sc-GW calculations for simple
solids and actinides were performed by Kutepov and coworkers [199, 200], who also
reported the deterioration of spectral properties at self-consistency. For finite systems,
sc-GW calculations have been presented for atoms [104, 196], and for molecules [58]. In
these works, sc-GW ionization energies are found in good agreement with experiment,
with a mean absolute error comparable with G0W0 based on PBE or HF. Based on these
results, several authors had the impression that self-consistency deteriorates the spectral
properties compared to perturbative G0W0, and that it is not a good idea to perform
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sc-GW calculations. However, the scarce numerical evidence for realistic systems is not
enough to corroborate this belief.

It was argued that the deterioration of spectra in sc-GW might arise due to the
iterative construction of the polarizability χ as the product of two Green functions [177].
This would systematically weaken the incoherent part of the Green function, and reduce
the intensity of the plasmon satellites. For the small molecules investigate here, however,
this mechanism does not apply since quasi-particle peaks carry integer spectral weight,
and no plasmon satellites are observed. For extended systems, this mechanism might
effectively deteriorate the sc-GW spectral function, as for the homogeneous electron
gas. Nonetheless, more investigations are needed to judge the performance of sc-GW
for real solids.

While no agreement has been reached so far about the accuracy of sc-GW for the
excited-state properties, the discussion of total energies has been less controversial.
Self-consistent GW total energies have been computed only for a few isolated cases
including the HEG [193, 201, 202], closed-shell atoms and small diatomic molecules (H2

and LiH) [101, 104] and for a few real solids [199, 200]. The total energy is generally
found in good agreement with reference values at self-consistency, and in most cases
it leads to considerable improvements over non-self-consistent G0W0 total energies.
Nonetheless, GW total-energy calculations are scarce and previous works do not allow
a clear evaluation of the real accuracy of the GW method for ground-state properties.

In conclusion, the performance of the sc-GW method has only been investigated for
a limited amount of cases, and no consensus has been reached so far concerning the
accuracy and applicability of sc-GW in electronic-structure theory. One of the goals
of this thesis is therefore to answer these open questions and to provide a systematic
assessment of the sc-GW method for the description of ground- and excited-state
properties.

4.6 CONNECTION OF GW AND RPA

In the following Section, I address the relation of the GW approximation and RPA,
and provide the theoretical background for the study of the dissociation of diatomic
molecules presented in Chap. 9. GW and RPA approximate correlation and exchange
through the same set of Feynman diagrams, illustrated in Fig. 4.5. In other words, they
are diagrammatically equivalent. Nonetheless, the terms GW and RPA are generally
used to denote different types of electronic-structure calculations. The differences and
analogies of self-consistent RPA and GW , and some of their implications, are reviewed
below.

Let us start with the ground-state total-energy expression for an interacting electron
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Figure 4.5: Φ functional for RPA and GW correlation energies (Eq. 3.31). The arrowed lines
correspond to the interacting Green function G in GW , and the KS Green function Gs in RPA.
Dashed lines denote the bare Coulomb interaction, and the minus sign of the prefactor comes
from the rules for evaluating Feynman diagrams [99, 169].

system obtained with the adiabatic-connection (AC) technique (see e.g. Ref. [77]):

E =E0 −
1

2

∫ 1

0

dλ

∫
drdr′v(r, r′)

[∫ ∞

0

dω

π
χλ(r, r′; iω) + n(r)δ(r− r′)

]
(4.21)

=E0 +

∫ 1

0

dλ

λ

∫ ∞

0

dω

2π
Tr [Σλ(iω)Gλ(iω)] . (4.22)

Here, v(r, r′) is the Coulomb interaction, Tr [AB] denotes
∫
drdr′A(r, r′)B(r′, r) and

E0 = Ts + EH + Eext. Ts is the kinetic energy of the KS independent-particle system,
EH the Hartree and Eext the external energy. The parameter λ assumes values between
0 and 1. λ = 0 (λ = 1) denotes the non-interacting (interacting) system. Along the
AC path (i.e., at each value of λ), the electron density n(r) is assumed to be fixed at its
physical value.

The RPA for the total energy can be most conveniently introduced in Eq. 4.21 through
the approximation χλ = χs(1 − λvχs)−1, where χs = χλ=0 = −iGsGs is given by the
Adler-Wiser formula (Eq. 2.30). Within this approximation, the integrand in Eq. 4.21 is
assumed to depend on λ only through the scaled Coulomb interaction λv. Alternatively
the RPA total energy can also be obtained through Eq. 4.22 by introducing the (λ-
dependent) GW approximation for the proper self-energy Σλ [77, 92], where ΣGWλ =

ΣGW [Gλ,Wλ]. The RPA total energy is retrieved by omitting the λ-dependence of Gλ,
i.e., replacing Gλ by the KS non-interacting Green function Gs = Gλ=0 and Wλ by
Ws ≡Wλ[Gs]. Either way, the λ integration in Eqs. 4.21 or 4.22 can now be carried out,
yielding the sum of the exact-exchange energy Ex and the RPA correlation energy ERPA

c

(Eq. 2.29). The RPA total energy can therefore be expressed as:

ERPA[Gs] =Ts + Eext + EH + Ex + ERPA
c . (4.23)

I now come to the differences in the evaluation of the total energy in the context of
KS-DFT and MBPT. In MBPT, the Green function Gλ represents an interacting electron
system for λ 6= 0, and has to satisfy the (λ-dependent) Dyson equation:

G−1
λ = G−1

s − Σλ[Gλ]− vλext + vext + (1− λ)vH + vxc , (4.24)

with vλext being the external potential of the λ-dependent system (chosen to keep the
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density fixed), and vxc the exchange-correlation potential of the KS non-interacting-
particle reference system. Making use of 4.24, the λ-integration in Eq. 4.22 can be carried
out and one arrives at the following expression for the total energy

E =− EH[G] + Φ[G]− 1

2π

∫ ∞

−∞
dω×

Tr
[
(G−1

s (iω) + vxc)G(iω)− 1 + ln(G−1(iω))
]

. (4.25)

Details for the derivation of Eq. 4.25 can be found in Appendix F. In Eq. 4.25, G =

Gλ=1, and the functional Φ[G] is defined in Eq. 3.31 [99, 169]. Since Σ = δΦ/δG , an
approximation for Φ directly translates into a corresponding approximation for Σ. The
diagrammatic representation of Φ in the GW approximation is illustrated in Fig. 4.5. In
the KS framework on the other hand, the sc-RPA total energy is obtained by requiring
Gs to satisfy the Dyson equation Gs(iω) = (iω + ∇2/2 − vext − vH − vRPA

xc )−1, where
vRPA

xc is determined by the linearized Sham-Schlüter equation (Eq. 3.22). Alternatively,
the sc-RPA energy can be obtained by minimizing ERPA in Eq. 4.23 with respect to the
non-interacting input KS Green functions Gs.

Regarding the energy expression of Eq. 4.25 as a functional of G yields the Klein
functional (Eq. 3.29) [100]. It has further been shown [101, 203] that evaluating the Klein
functional (using the GW approximation for Φ) with the KS reference Green function
Gs one obtains the RPA total energy in Eq. 4.23 (see also Appendix F). This offers a
second way to look at the difference between sc-RPA and sc-GW : the sc-RPA energy
corresponds to a mininum of the Klein functional within a variational subspace of
non-interacing KS Green functions, whereas the sc-GW total energy corresponds to
a stationary point of the Klein functional in a larger variational space including both
noninteracting and interacting Green functions. However, this stationary point is not
necessarily a minimum [99, 100]. In practical calculations, the sc-GW total energy is
actually above the sc-RPA energy as it will be shown in Chap. 9.

Finally, another major difference between sc-GW and sc-RPA can be identified in the
way the kinetic energy is accounted for in the two approaches. This difference stems from
two aspects. First, the sc-GW expression is evaluated with an interacting Green function
as opposed to a Kohn-Sham one in sc-RPA. Second, the kinetic correlation energy – i.e.,
the difference between the full kinetic energy and that of the non-interacting KS system
– are included in the RPA correlation energy (Eq. 2.29) through the coupling constant
integration. On the other hand, in sc-GW the correlation term is purely Coulombic, and
kinetic correlations are already included in the kinetic energy term due to the interacting
nature of the sc-GW Green function.
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5 SELF-CONSISTENT GW EQUATIONS IN

A NUMERIC ORBITAL BASIS

The second part of this thesis is devoted to the numerical implementation of the self-
consistentGW method in the Fritz-Haber-Institut ab initio molecular simulation package
(FHI-aims). In this Chapter, I will briefly introduce the numeric atom-centered orbital
(NAO) basis sets and the resolution of the identity technique (RI) for the computation of
Coulomb-type integrals (see Refs. [158, 204] for a more detailed review of the FHI-aims
code). Based on these ingredients, I will derive a reformulation of Hedin’s self-consistent
GW equations in a matrix representation, suitable for numerical calculations. This paves
the way for the application of the sc-GW method to the calculation of excited- and
ground-state properties of real systems. Technical aspects related to the treatment of the
frequency and time dependence of dynamic quantities, and the evaluation of physical
properties from the Green function will be addressed in Chapters 6 and 7, respectively.

5.1 NUMERIC ATOM-CENTERED ORBITALS

Basis functions are the central ingredient of most electronic-structure codes. The intro-
duction of a basis allows to rewrite operators as matrices of considerably smaller size
as compared to the real-space representation. Most importantly, basis sets enables the
reformulation of differential equations as generalized eigenvalue problems. In DFT for
example, the basis representation of the Kohn-Sham Eq. 2.22 – a second-order differential
equation in Cartesian coordinates – yields the following eigenvalue problem:

Nb∑

j

hσijc
σ
jn = εσn

Nb∑

j

sijc
σ
jn , (5.1)

where Nb is the total number of NAO basis functions. In the following, summations
over Latin indexes (i, j, l, . . . ) are implicitly assumed to run from 1 to Nb. The index n is
reserved for the main quantum number. The following quantities were introduced in

55
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Eq. 5.1:

hσij ≡
∫
drϕ∗i (r)hσ(r)ϕj(r) , (5.2)

sij ≡
∫
drϕ∗i (r)ϕj(r) , (5.3)

Where hσ(r) is the Kohn-Sham Hamiltonian and sij the overlap matrix, which for an
orthonormal basis set simplifies to sij = δij . The coefficients cσjn in turn provide access
to the single-particle eigenstates ψσn(r) of the Hamiltonian, through the relation:

ψσn(r) =
∑

j

cσjnϕj(r) . (5.4)

There is in principle no restriction to the shape of the basis functions and different
possibilities have been proposed over the years, each one with its own advantages and
limitations. Gaussian and plane-wave basis sets, for instance, have been extensively
employed in the quantum-chemistry and solid-state physics community, respectively.
The main advantage of these type of basis sets is their explicit analytical representation,
which facilitates a straightforward evaluation of integrations over the Cartesian coor-
dinates. The drawback is that often a large number of basis functions are required in
order to provide sufficient degrees of freedom for describing – for instance – a given
set of single-particle orbitals. In other word, the convergence with the number of basis
functions is slow. Moreover, due to the rapid oscillations of the one-particle wave func-
tions close to the nucleus, Gaussian and plane-wave basis sets needs the introduction
of pseudo-potentials and effective core potentials, respectively, for the description of
inner-shell electrons of elements with mass number larger than 20.

From this perspective, numerically tabulated functions are more advantageous. The
radial dependence can be chosen freely and permits a systematic optimization of the
basis set. In addition, there is no need to treat core and valence separately, since the
oscillations of the wave function close to the nucleus may be captured by just a few
numerical orbitals with the proper radial dependence. In this case, integrals have to
be discretized over real-space meshes, as illustrated in the left panel of Fig. 5.1, and
evaluated numerically as sums over a finite number of points.

The numerical approaches presented in this thesis make use of NAO basis sets {ϕ(r)},
with basis functions of the form:

ϕi(r) =
ui(r)

r
Ylm(Ω), (5.5)

where ui(r) are numerically tabulated radial functions and Ylm(Ω) spherical harmonics.
This form guarantees full flexibility for the radial and angular dependence of the basis
function. In fact, ϕi(r) may also be taken to be numerically tabulated Gaussian functions
– which will be used later on for benchmark purpose.

For numerical convenience, one may choose to work with real-valued basis functions
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Figure 5.1: Left: Example of atom centered mesh for the computation of real-space integrations
for benzene. Intersections between circles and straight lines correspond to integration points.
Right:PBE (above), HF (center), and RPA@HF total energy of benzene evaluated with FHI-aims’
Tier 1, 2, 3, and 4 and with Dunning’s Gaussian augmented correlation-consistent polarized
valence N zeta (NZ), with N =D, T, Q, and 5 [205].

by requiring – without loss of generality – that Ylm(Ω) denotes the real part (for m =

0, . . . , l) and the imaginary part (for m = −l, . . . ,−1) of complex spherical harmonics.

The NAOs are suitable to construct basis set hierarchies of increasing accuracy, which
in FHI-aims are labeled Tiers. In practice, FHI-aims basis sets are constructed by means of
the procedure summarized below – a more extended discussion is reported in Ref. [204].
A large pool of NAOs of the form given in Eq. 5.5 is defined. For each element of the
periodic table, a corresponding closed-shell optimization target is chosen (typically the
simplest closed-shell compound of such element), e.g., a dimer. The basis functions of
the pool are added one by one to the optimization target, and only the basis function
that induce the largest lowering of total energy is kept. The procedure is iterated until
the total energy does not change upon addition of further basis functions.

This strategy is substantially different from the one adopted for the construction
of the aug-cc-pVNZ sets: in that case, only the parameters of each Gaussian basis
function are optimized, whereas the number of basis functions and the maximum
angular momentum are fixed.

Basis sets constructed according to this recipe, have been shown to be transferable (i.e.,
system independent) and can be employed – with similar benefits – with a wide range on
local and non-local DFT exchange-correlation functionals which do not have an explicit
dependence on unoccupied states [204]. Most importantly, NAO basis sets permit to
systematically converge the calculations by resorting to higher-order Tiers. This is
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exemplified in the right panel of Fig. 5.1, where the PBE, HF, and RPA@HF total energy
of benzene (C6H6) is reported for increasingly larger basis sets. The comparison with
Dunning’s augmented correlation-consistent polarized valence N zeta (NZ) Gaussian
basis functions [205] – withN =D, T, Q, and 5 – indicates that fewer NAO basis functions
are required to converge the total energy of benzene, and therefore provide an optimal
framework for electronic-structure calculation of finite systems. It has been further
demonstrated that NAO basis sets may also provide an ideal framework for MBPT-
based approaches to electronic correlation that depend explicitly on the empty states
such as RPA (see, e.g., the right panel of Fig. 5.1) GW calculations [158]. Nonetheless,
in this case the convergence with the basis set is slower than in PBE or HF, due to the
explicit dependence of the correlation energy (or, the self-energy) on the unoccupied
manifold. The origin of this behavior is the explicit dependence of the correlation part
of the self-energy on the unoccupied Kohn-Sham or Hartree-Fock eigenstates (see e.g.,
the sum over empty states in the Adler-Wiser form for the polarizability, Eq. 2.30).
In Chapter 7, I will show that in the GW approximation, ground- and excited-state
properties can be converged systematically by means of FHI-aims Tiers.

In general, for any non-local single-particle operator Ô, the NAO representation Oij
and the real-space representation O(r, r′) are related by:

Oij =

∫
drdr′ϕi(r)O(r, r′)ϕj(r

′) (5.6a)

O(r, r′) =
∑

ijlm

ϕi(r)s−1
ij Ojls

−1
lmϕm(r′) . (5.6b)

Correspondingly, for the single-particle Green function one gets:

Gσij(iω) =

∫
drdr′ϕi(r)Gσ(r, r′, iω)ϕj(r

′) , (5.7a)

Gσ(r, r′, iω) =
∑

ijlm

ϕi(r)s−1
ij G

σ
jm(iω)s−1

lmϕm(r′) . (5.7b)

The time representation of G(r, r′, τ) follows by replacing ω with τ . Here, the Green
function was expressed on the imaginary frequency axis. A discussion about advantages
and drawbacks of the imaginary frequency and time formalism is deferred to the next
Chapter.

The NAO representation of the non-interacting Green function can be expressed as:

Gσ0,ij(iω) =
∑

n

∫
drdr′ϕi(r)

ψσn(r)ψσn(r′)
iω − (εσn − µ)

ϕj(r
′)

=
∑

n

∑

lm

silc
σ
lnc

σ
mnsmj

iω − (εσn − µ)
, (5.8)

where ψσn was replaced by its expansion (Eq. 5.4) and the definition of sij in Eq. 5.3 was
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used. Similarly, one obtains:

Gσ0,ij(iτ) = i
∑

n

∑

lm

silc
σ
lnc

σ
mnsmje

(εσn−µ)τ×

× [θ(τ)θ(µ− εσn)− θ(−τ)θ(εσn − µ)] . (5.9)

For numerical convenience, it is useful to define the generalized Green function G that
incorporates the inverse overlap matrices:

G
σ

ij ≡
∑

jl

s−1
ij G

σ
jls
−1
jm . (5.10)

5.2 THE RESOLUTION OF THE IDENTITY

The expansion of two-particle operators – such as the Coulomb operator v̂ – in a single-
particle basis requires the evaluation of the following expectation values:

(ij|lm) ≡ 〈ϕiϕj |v̂|ϕlϕm〉 =

∫
drdr′

ϕi(r)ϕj(r)ϕl(r
′)ϕm(r′)

|r− r′| . (5.11)

The 4-center integrals (ij|lm) are impractical to handle in an NAO formalism. Numeri-
cally, the difficulty arises from the large number of NAO pairs and from the memory
requirement for storing the 4-index matrix (ij|lm), which scales with the fourth power
of the number of basis functions. The same difficulties are encountered in the evaluation
of the polarizability χ and the screened Coulomb interaction W . The computation of the
Coulomb integrals in Eq. 5.11 is a problem extensively discussed in the literature [206–
208] and efficient techniques have been developed to make this calculation affordable.
Here, the method of choice for the calculation of the 4-center integrals is the resolution
of the identity technique (RI) [158].

In the RI framework, the integrals in Eq. 5.11 are evaluated efficiently by resorting
to an auxiliary basis set {Pµ(r)}. The auxiliary basis functions Pµ(r) have a similar
structure as the NAO orbitals defined in Eq. 5.5, and are defined to span the Hilbert
space of the product of NAO pairs, so that one can write:

ϕi(r)ϕj(r) '
Naux∑

µ=1

CµijPµ(r) , (5.12)

where Cµij are the coefficients of the expansion, and Naux is the number of auxiliary
basis functions Pµ. In the following, summations over the Greek indexes (µ, ν, . . . ) are
implicitly assumed to run from 1 to Naux. According to the structure of Eq. 5.12, the set
of basis functions Pµ is often referred to as product basis.

Due to the high linear dependence of the NAO pairs, the number of product basis
functions Naux can be kept considerably smaller than the number of NAO pairs ∼ N2

b ,
making the numerical evaluation of Eq. 5.11 affordable. I refer to Ref. [158] for a detailed
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account of the variational approach employed in the determination of the RI expansion
coefficients Cµij and for a review of the overall accuracy of the RI approach for correlated
calculations.

In short, I used the “RI-V” variant of the RI scheme, in which the expansion coeffi-
cients are given by:

Cµij =
∑

ν

(ij|ν)V −1
νµ , (5.13)

where (ij|ν) ≡
∫
drϕi(r)ϕj(r)Pν(r′)/|r − r′| and Vνµ labels matrix elements of the

Coulomb matrix in the auxiliary basis, i.e.:

Vµν =

∫
drdr′

Pµ(r)Pν(r′)
|r− r′| . (5.14)

For numerical efficiency, it is convenient to introduce the modified coefficients:

Mµ
ij =

∑

ν

CνijV
1/2
νµ . (5.15)

For a generic two-particle operator Ô, the product basis and coordinate representa-
tions are connected by the following relations:

O(r, r′) =
∑

µµ′νν′

Pµ(r)S−1
µµ′Oµ′ν′S−1

ν′νPν(r′) , (5.16a)

Oµν =

∫
drdr′Pµ(r)O(r, r′)Pν(r′) , (5.16b)

where Sµν ≡
∫
drPµ(r)Pν(r) is the overlap matrix of the product basis.

5.3 WORKING EQUATIONS FOR SELF-CONSISTENT GW

Based on the previous discussion it appears convenient to rewrite the self-consistent
GW Eqs. 4.14a-4.14d in a mixed NAO-RI framework, where single-particle operators (G,
G0, Σ, vH and vxc) are expanded in the NAO basis {ϕi} and two-particle operators (v,
W , and χ) are represented in the auxiliary basis {Pµ}. How this can be done in practice,
will be addressed in the following.

To avoid the numerical evaluation of convolutions on the frequency axis – which
would require the redefinition of new frequency grid after each convolution –, χ and
Σ are computed in imaginary time. Nonetheless, W and G are expessed in imaginary
frequency due to the simpler structure of the Dyson equation, that does not involve
integrations. Therefore, all quantities are expressed alternatively in imaginary frequency
and time and Fourier transforms are used to switch representation. The alternation
of frequency and time across the sc-GW loop is illustrated in the flow diagram in
Fig. 5.2. Details on the numerical evaluation of Fourier transforms, the advantages and
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drawbacks of the representations of dynamical quantities on the imaginary axis are
presented in Chap. 6.

Recalling Hedin’s equation for W (Eq. 4.14b):

W (1, 2) = v(1, 2) +

∫
d3d4v(1, 3)χ(3, 4)W (4, 2) ,

one can insert the product basis representation (Eq. 5.16a) for W , v and χ. Simple
algebraic manipulations lead to the RI equation for the screened Coulomb interaction:

Wµν(iω) ≡
[
v−1W (iω)

]
µν

= [1−Π(iω)]
−1
µν , (5.17)

where I introduced the definition Πµν(iω) ≡ [χ(iω)v]µν . The operator Π has to be
expressed as an explicit functional of G, and all non-diagonal matrix elements in the
Green function have to be included. By virtue of the definition in Eq. 5.15 for the
coefficients Mµ

il , Π can be expressed as:

Πµν(iτ) = −i
∑

σ

∑

ijlm

Mµ
ilM

ν
jmG

σ

ij(iτ)G
σ

lm(−iτ) . (5.18)

The quadruple sum in Eq. 5.18 may be reduced to a sum over just two indexes – with a
considerable reduction of computational cost. By introducing the quantity:

Aµ,σlj (iτ) ≡
∑

i

Mµ
ilG

σ

ij(iτ) , (5.19)

Eq. 5.18 can be rewritten as:

Πµν(iτ) = −i
∑

σ

∑

lj

Aµ,σlj (iτ)Aν,σjl (−iτ) . (5.20)

Equations 5.17 and 5.20 constitute the NAO-RI representation of Hedin’s equations
4.14b and 4.14c.

An RI-version of Hedin’s equation for the GW self-energy:

Σσ(1, 2) = i

∫
d3Gσ(1, 3)W (3, 2) , (5.21)

can be derived in analogous way:

Σσij(iτ) = i
∑

lm

∑

µν

Mµ
ilM

ν
jmG

σ

lm(iτ)Wµν(iτ) . (5.22)

By introducing the auxiliary quantity:

Bµjm(iτ) =
∑

ν

Mν
jmWµν(iτ) , (5.23)
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the self-energy can be recast in a form in which only double sums appear:

Σσij(iτ) = i
∑

m

∑

µ

Aµ,σim (iτ)Bµjm(iτ) . (5.24)

The correlation (exchange) contribution to the self-energy can then be derived straight-
forwardly from Eq. 5.22 by substituting W with W

c

µν ≡ Wµν − δµν (W
x

µν ≡ δµν). The
Hartree potential vH is also evaluated as an explicit functional of G according to the
equation:

vH,ij =
∑

σ

∑

lm

∑

µ

Mµ
ijM

µ
lmG

σ

ij(iτ = 0−) . (5.25)

Finally, the matrix representation of the Dyson equation for the Green function completes
the set of Hedin’s equations:

G
σ

ij(iω) =
[
G
σ

0 (iω)−1 − Σσ(iω) + vσxc −∆vH

]−1

ij
. (5.26)

Here, ∆vH is the difference between the Hartree potential evaluated with the interacting
and non-interacting Green function.

Equations 5.17-5.26 provide a matrix representation of Hedin’s equations in the self-
consistent GW approximation (Eqs. 4.14a-4.14d) suitable for numerical calculations. In
this formulation i) all electrons are treated on an equal footing, i.e., fully self-consistently;
ii) no model screening was used in the calculation of W ; iii) all non-diagonal matrix
elements of G and Σ are correctly accounted for. Equations 5.17-5.26 have been imple-
mented in the FHI-aims package and are solved according to the following scheme, also
illustrated in Fig. 5.2:

• The Green function G
σ

0,ij(iτ) corresponding to a given set of eigenvalues εσn and
eigenstates cσin is obtained through Eqs. 5.9-5.10.

• The coefficients Aµ,σlj (iτ) are evaluated from Eq. 5.19. The polarizability Πµν(iτ) is
obtained from Eq. 5.20.

• Π is Fourier transformed to imaginary frequency.

• The modified screened Coulomb interaction Wµν(iω) is evaluated from Eq. 5.17
in imaginary frequency.

• W is Fourier transformed to imaginary time.

• The coefficients Bµij(iτ) are evaluated from Eq. 5.23. The self-energy Σσij(iτ) is
obtained according to Eq. 5.24.

• Σ is Fourier transformed to imaginary frequency.
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Construct G
σ

0,ij(iτ)
from Eqs. 5.9-5.10

ψσn and εσn
from DFT
or HF

Evaluate Πµν(iτ)
from Eqs. 5.19-5.20

Obtain Wµν(iω)
from Eq. 5.17

Evaluate Σσij(iτ)
from Eqs. 5.23-5.24

Evaluate vH,ij

from Eq. 5.25

Update G
σ

ij(iω) from
Eq. 5.26 and linear
mixing (Eq. 5.27)

If ∆ < ∆th, evaluate
spectral function
and total energy

sc-GW0

sc-GW

Figure 5.2: Flow diagram of the sc-GW algorithm as implemented in FHI-aims. A Fourier
transform is implied whenever frequency and time are alternated.
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Figure 5.3: Time (in seconds) for a single iteration of the sc-GW loop for linear H-chains of
different lengths in a minimal basis. Diamonds indicate the total time require for the evaluation of
the polarizability and the self-energy from Eqs. 5.20 and 5.24, respectively. The total time required
for the evaluation of the self-energy in G0W0 is included for comparison.

• The difference in Hartree potential ∆vH,ij is obtained evaluating Eq. 5.25 with the
non-interacting and the interacting Green function, and taking the difference of
the two matrices.

• The modified Green function G
σ

ij(iω) is updated by solving the Dyson equation
(Eq. 5.26).

• G is Fourier transformed to imaginary time and combined with the Green function
from the previous iteration through a linear mixing procedure (Eq. 5.27).

• The whole procedure is iterated until the average (absolute) changes of the Green
function matrix elements are smaller than 10−5. This convergence criterion is
sufficient to guarantee the convergence of excited- and ground-state properties.
As discussed below, the convergence is facilitated by a linear mixing of G

σ

ij at each
iteration from Eq. 5.28.

With minor modifications the procedure can be extended to perform partially self-
consistent calculation with fixed screened Coulomb interaction (sc-GW0). In sc-GW0,
the screened interaction W is evaluated only once from HF or DFT orbitals and only the
equations for the self-energy and the Green function are iterated to self-consistency (see
Fig. 5.2).

The evaluation of Eqs. 5.18 and 5.22 is the most time-consuming step of this imple-
mentation. The scaling of the computational time as a function of the basis set and
therefore system size are equal to that of G0W0. To illustrate this, I report in Fig. 5.3 the
total computational time spent for a single iteration of Eqs. 5.17-5.26 as a function of the
length of a linear hydrogen chain in a minimal basis set. As compared to conventional
G0W0 implementations, the additional computational cost arises from the non-diagonal
matrix elements in the calculation of G and Σ. For systems with a higher degree of
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Figure 5.4: sc-GW total energy of H2O as a function of the convergence parameters εorth (left
panel) and εSVD (right panel), evaluated with a Tier 2 basis set. The number of product basis
functions corresponding to each value of εorth is also reported.

coordination, the computational-time scaling of G0W0 and sc-GW is expected to worsen
(in a similar fashion for both approaches) due to the potentially larger auxiliary basis
set.

Beside the finite basis set and the discretization of integration grids, the only approxi-
mation introduced until this point is the resolution of the identity for the expansion of
the product of NAO pairs (Eq. 5.12). As discussed in Ref. [158], the accuracy of the RI can
be monitored systematically by means of two control parameters: εorth and εSVD. εorth

sets the accuracy threshold for the Gram-Schmidt orthonormalization employed for the
reduction of the linear dependence of on-site (i.e., lying on the same atom) product basis
functions Pµ. In practice, by chosing smaller values of εorth one may increase the number
of product basis functions used in the expansion in Eq. 5.12. Similarly, the parameter
εSVD controls the singular value decomposition (SVD) for the orthonormalization of
product basis functions on different atoms. A more detail description of the effects of
these parameters can be found in Ref. [158]. To show the effect of the RI scheme on the
self-consistent Green function, I report in Fig. 5.4 the sc-GW total energy – evaluated
from Eq. 7.6 – of the water molecule as a function of εorth (left panel), and εSVD (right
panel). For a wide range of values of the control parameters εorth and εSVD, the changes
of the total energy are of the order of 10−4 eV or less. In all following calculations I used
εorth = 10−5 and εSVD = 10−5.

At the first iteration of the sc-GW loop, the polarizability Π, screened interaction
W , and self-energy Σ – evaluated from Eqs. 5.20, 5.17, and 5.24, respectively1 – have
been compared with the corresponding quantities obtained from the G0W0 implementa-
tion in FHI-aims [158]. This comparison, illustrated in Fig. 5.5, serves as a consistency
check. The overlap between the curves obtained from the two different codes demon-
strates numerically the correctness of the derivation presented here and of its numerical
implementation in FHI-aims.

1For a comparison of Σ in the G0W0 and sc-GW implementations, it is necessary to transform it in the
basis of the eigenstates of the initial reference Hamiltonian (in contrast to the NAO basis). Moreover, both
calculations must be performed using the same chemical potential µ, which for molecules can be chosen
arbitrarily within the HOMO-LUMO gap. Although different values of µ may alter the structure of Σ on the
imaginary axis, it does not alter the real-frequency representation of the self-energy.
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Figure 5.5: Polarizability Π, screened interaction W , and self-energy Σ (transformed to the
eigenstate basis) evaluated from Eqs. 5.20, 5.17, and 5.24, respectively (solid line) at the first
iteration of the sc-GW loop. For comparison, the same quantities from the G0W0 implementation
in FHI-aims are also reported (see Ref. [158]). For Π and W the µ = ν = 1 matrix element was
considered, whereas for ΣKS the curve refer to the highest occupied molecular orbitals. All data
refer to H2O with a Tier 2 basis set.

To facilitate the convergence of the sc-GW loop, the input Green function G
input

of
the (N + 1)-th iteration is obtained from a linear mixing scheme:

G
input

ij (iτ) = (1− α)G
N

ij (iτ) + αG
N−1

ij (iτ) , (5.27)

where G
N

denotes the Green function obtained from the N -th solution of the Dyson
equation, and α is the linear mixing parameter. As illustrated in the right panel of
Fig. 5.6, it is found that typically α = 0.2 is a good choice, although the optimal value
of the mixing parameter is strongly system dependent. The convergence of the self-
consistent loop is monitored looking at the average deviation of the Green function at
each iteration ∆, defined as:

∆ =
1

N2
b

∑

i,j

|GNij (iτ = 0−)−GN−1

ij (iτ = 0−)| . (5.28)

The sc-GW loop is considered converged when ∆ drops below a chosen threshold ∆th.
Default settings used in most calculations are ∆th = 10−5, which suffices to converge
both total and quasi-particle energies. For H2, H2O and C6H6, values of ∆ as a function
of the number of iterations are illustrated in Fig. 5.6 and demonstrate that 5-10 iterations
are sufficient to converge the sc-GW Green function within ∆th = 10−5. For the systems
considered in this work, it was not necessary to resort to more elaborate mixing schemes.
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Figure 5.6: Left: Values of ∆ – defined in Eq. 5.28 – as a function of the number of iteration of
the sc-GW loop for H2, H2O and C6H6 in their equilibrium geometry in a Tier 2 basis set. A
linear mixing parameter α = 0.2 was used in all calculations. ∆th indicates the default value of
the convergence threshold. Right: Convergence of ∆ for different values of the linear mixing
parameter α for the H2O molecule.





6 FREQUENCY AND TIME DEPENDENCE

IN SELF-CONSISTENT GW

In Green function based approaches, most quantities are dynamic – i.e., they have a
non-trivial dependence on frequency or time. In a numerical implementation, this
may become a major bottleneck, since the number of operations and the computational
time are proportional to the number of grid points used to represent the frequency
dependence of G and Σ. The grid size necessary for converged GW calculations may
depend crucially on the scheme adopted for the treatment of dynamical quantities. A
variety of methods has been used in previous GW implementations for dealing with
the frequency dependent quantities, including (i) imaginary time/frequency schemes
based on Fourier transform [209] or frequency convolution [158]; (ii) real frequency
approaches [58]; (iii) spectral functions based schemes [159]; (iv) contour deformation
[210]; (v) solution of the Casida equation [165]. As discussed in the following, the
approach (i) is particularly suitable for sc-GW calculations and therefore it is the method
of choice for the treatment of all dynamical quantities in this implementation.

With the goal of extending the applicability of sc-GW to molecules up to 30-50 atoms,
a new method for the numerical evaluation of Fourier transforms in the GW approx-
imation was developed. In the first part of this Chapter, the basics of the imaginary
frequency-time framework will be shortly reviewed. The second part is devoted to
numerical algorithms developed during this thesis for the evaluation of Fourier type
integrals.

6.1 IMAGINARY TIME AND FREQUENCY FORMALISM

The inspection of the analytic expression for the non-interacting Green function:

Gσ0 (r, r′, ω) =
∑

n

ψσn(r)ψσ∗n (r′)
ω − (εσn − µ)− iηsgn(εσn − µ)

,

indicates that G0 has sharp δ-function like structures, or poles, on the real frequency
axis (i.e., for real values of ω). For the non-interacting Green function the poles occur
at the frequencies ω = εσn − µ, but for a Green function G that is obtained from the
solution of the Dyson equation, the position of the poles is not known. For this reason,

69
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the description of the Green function on the real frequency axis requires in principle the
definition of dense frequency meshes with several thousands of grid points, in order to
resolve the poles of G. The same holds for other frequency dependent quantities such
as W and Σ.

To circumvent this problem, one can extend the definition of G0 to the complex
frequency plane by allowing for imaginary values of ω in the expression above 1. This
procedure is referred to as analytic continuation. On the imaginary axis, G0 becomes
a smooth function of iω. Numerically, this leads to a considerable reduction of the
frequency mesh size, with a corresponding gain in computational efficiency. A more
extended discussion of the mathematical foundation of the analytic continuation in
Green function theory has been reported by Farid and coworkers in Refs. [211–213].

In the sc-GW implementation discussed here, all dynamic quantities are defined on
the imaginary frequency axis. Formally, this can be done by replacing ω by iω in the
definition of G0:

Gσ0 (r, r′, iω) =
∑

n

ψσn(r)ψσ∗n (r′)
iω − (εσn − µ)

.

which in matrix representation reduces to Eq. 5.8. Similarly, one can define the imaginary
time Green function G(iτ), which should not be confused with the Matsubara Green
function. The Matsubara G is also defined in imaginary time, but the ground-state
expectation values is replaced by canonical averages at finite temperatures – which lead
to the characteristic imaginary-time periodicity [214]. In the zero temperature limit,
however, the Matsubara and imaginary-frequency Green functions coincide.

The imaginary time and frequency axes are discretized on exponentially spaced grids
composed of Nω points in the range {0, ωmax}, and by 2Nτ + 1 points in the range
{−τmax, τmax}. The grid points ωk and the integration weights w(ωk) are defined as:

ωk = ω0

[
e(k−1)h − 1

]
w(ωk) = hω0e

(k−1)h

τk = τ0
(
ekh − 1

)
w(τk) = hτ0e

kh .

(6.1)

The constant h is obtained from the constraint ωmax = ω0

[
eNωh − 1

]
and the pa-

rameter ω0 sets the initial spacing of the grid. The frequency mesh generated by the
grid defined above – illustrated in Fig. 6.1 – is dense close to the origin where G(iω)

and G(iτ) show non-trivial analytic features. Moreover, it can be easily extended to
high frequencies and therefore it is particularly suitable to capture the slow decaying
behaviour (∼ 1/iω) of G(iω). Typical values adopted in numerical calculations are
ωmax = 5000 Ha, τmax = 1000 Ha−1 and ω0 = τ0 = 0.001.

1Cauchy’s theorem of complex analysis guarantees that there is a one to one correspondence between the real
and imaginary frequency Green function, if G is holomorphic – i.e., infinitely differentiable – which is always
the case for finite η.
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Figure 6.1: Distribution of
the frequency points in the
logarithmic mesh used in the
sc-GW implementation.

6.2 EVALUATION OF FOURIER INTEGRALS

For an efficient and scalable sc-GW implementation, it is convenient to work in a mixed
imaginary time-frequency framework. The computation of frequency convolutions
can be replaced by products in imaginary time by virtue of the convolution theorem
– which are numerically more efficient –, whereas the Dyson equations for G and W

may be solved on the imaginary frequency domain, avoiding the evaluation of time
integrals. Therefore, Fourier transforms (FT) are necessary to switch between the time
and frequency representations of G, Π, W , and Σ.

In the course of this thesis, several numerical approaches to the calculation of Fourier
transforms in the GW approximation have been developed and implemented in FHI-
aims. A brief review of these methods will be given in the following. For sake of
conciseness, the methods will be presented only for the Green function, although they
have been applied to other dynamic quantities, too.

The imaginary time and frequency representations of G are related by FTs:

G(iτ) =

∫ +∞

−∞

dω

2π
G(iω)e−iωτ , (6.2)

G(iω) =

∫ +∞

−∞
dτG(iτ)eiωτ . (6.3)

On a discrete frequency grid the FT can be rewritten as:

G(iτk′) =

Nω∑

k=1

w(ωk)

2π
G(iωk)e−iωkτk′ . (6.4)

The evaluation of FTs of this type is numerically cumbersome, despite the simplic-
ity of the expression. The difficulty arises from the fast oscillations of the integrand
G(iωk)e−iωkτk′ for large values of ωk which ultimately leads to a slow convergence with
the number of frequency points. As an example, Fig. 6.2 reports the FT – evaluated
from Eq. 6.4 – of the first diagonal matrix element of the Green function of water, using
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Figure 6.2: FT – evaluated from Eq. 6.4 – of the first diagonal matrix element of the Green
function for the water molecule in a Tier 2 basis set. The different lines refer to different numbers
of frequency points (Nω = 10n with n = 2, 3, 4, 5).

different values of Nω. The number of frequency points Nω must be increased up to
approximately 105, in order to converge the FT ofG in the interval shown. Moreover, the
larger the time interval, the larger the value of Nω needed to converge the calculation.
The application of Eq. 6.4 is clearly impractical for numerical calculations and motivates
the development of more elaborate schemes for the computation of FTs in sc-GW .

TAIL-FITTING SCHEME

To reduce the number of frequency points in the evaluation of Fourier integrals, Stein-
beck et al. proposed to fit the high frequency part of dynamic quantities using analytic
functions with a known FT [209]. This principle is illustrated in Fig. 6.3. If the slow-
decaying part of G can be accounted for analytically, only a small part of G needs to be
transformed numerically.

At large frequencies the Green function decays as 1/iω. Therefore, Lorentzian func-
tions of the form f(iω) = a/(b + iω) are an appropriate choice to represent the an-
alytic behaviour of G at large values of iω. In practice, a frequency window is de-
fined – typically including the last ten points of the frequency mesh – and the coeffi-
cients a and b are determined by means of non-linear least square fits solved with a
Levenberg-Marquardt algorithm. The FT of f(iω) can be evaluated analytically and
yields f(iτ) = aebτ [θ(−τ)θ(b)− θ(τ)θ(−b)]. Therefore, the FT of the Green function can
be rewritten as:

G(iτk′) = f(iτk′) +

Nω∑

k=1

w(ωk)

2π
[G(iωk)− f(iωk)]e−iωkτk′ . (6.5)



6.2 Evaluation of Fourier integrals 73

Figure 6.3: Left: Schematic representation of the tail-fitting scheme. The inset shows the function
that eventually needs to be integrated numerically. Right: FT of the polarizability of water in a
Tier 2 basis set evaluated with Eq. 6.5. Only the first diagonal matrix element was considered here.

Since the term [G(iωk)− f(iωk)] is expected to vanish faster than G(iωk) for increasing
iω, Fourier integrals evaluated from Eq. 6.5 converge faster with the frequency grid size.

This scheme is very accurate for the FT of the Green function, since the f(iω) capture
most of the analytic behaviour of G(iω). For instance for the H2O molecule, a few tens
of grid points are sufficient to evaluate the FT of G(iω) with an average accuracy of 10−9

(not shown).

More points are required for the FT of Π(iτ) to the frequency domain, as illustrated
in Fig. 6.3, for H2O. Nonetheless, due to the exponential decay of Π(iτ), the FT can
be converged systematically simply by increasing the grid size. On the other hand, as
discussed in Ref. [209] in detail, problems may arise in the computation of the FT of
W since, for certain matrix elements, negative values of the fitted parameter b may be
obtained. This in turn introduces singularities in the function W (iω)− f(iω), leading to
numerical noise in the FT.

Due to these instabilities, the method turned out to be inapplicable to large systems –
where many b < 0 coefficients arise – and was eventually rejected.

POLE-EXPANSION METHOD

To obviate the problems discussed above, one can introduce a fully analytical repre-
sentation for the frequency dependence of the Green function. This would enable a
completely analytic representation of the FT, thus reducing the grid size considerably. In
practice, one has to expand each matrix element ofG in a set of basis functions, for which
the FT is known analytically. In this way, the problem of evaluating the sum in Eq. 6.2
numerically is reduced to the construction of an optimal basis for the representation of
the time and frequency dependence of G.

In short, the Green function is expanded in a set of poles of the form fk(iω) =
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Figure 6.4: Left: Comparison of the analytic structure of the real (in blue, above) and of the
imaginary part (in orange, below) of fk(iω) for different values of bk, and a matrix element of
the Green function of the Neon atom (black). Right: Mean absolute error (MAE) introduced
by Fourier transforming the Green function of N2 for different numbers of poles and frequency
points.

1/(bk + iω), with corresponding FT fk(iτ) = ebkτ [θ(−τ)θ(bk)− θ(τ)θ(−bk)]. The index k
runs over the total number of poles Npoles. The parameters bk are fixed at the beginning
of the calculation and are distributed logarithmically in the energy range covered by the
eigenvalues εσn. Although in principle other functions could be used, the functions fk(iω)

constitute a natural choice for the expansion of the Green function, as the frequency
dependence of fk(iω) closely resembles the analytic structure ofG and captures the large
frequency 1/iω behaviour. This is illustrated in Fig. 6.4, where the real and imaginary
parts of fk(iω) – with different values of bk – are compared to the first diagonal matrix
element of the Green function of Ne.

The Green function can be expanded in the pole basis as:

Gσij(iω) =

Npoles∑

k=1

[
αkijf

Re
k (iω) + βkijf

Im
k (iω)

]
, (6.6)

where fRe (Im)
k (iω) denotes the real (imaginary) part of fk(iω). The real and imaginary

part of the Green function have been treated separately to maintain a real-valued linear-
least square problem, leading in turn to real-valued coefficients αk and βk. Since the
FT of the basis functions fk(iω) is known, the coefficients αk and βk also determine
the expansion of the transformed Green function. Expansions similar to Eq. 6.6 were
employed also for the FT of χ, W and Σ.

The error introduced by the FT can be quantified for functions known analytically on
both the (imaginary) frequency and time axes as, for instance, the non-interacting Green
function (for which the time and frequency representation are given in Eqs. 5.8 and 5.9).
In Fig. 6.4, I report the mean absolute error (MAE) in the FT of the non-interacting Green
function Gσ0 (iω) of the nitrogen dimer N2, averaged over all matrix elements. The MAE
drops exponentially when increasing the number of functions fk, showing that a few
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Figure 6.5: Polarizability Π, screened interaction W , and self-energy Σ for different number of
poles in the evaluation of the Fourier transform. For Π and W the µ = ν = 1 matrix element was
considered, whereas for ΣKS the curves refer to the highest occupied molecular orbital. All plots
are for the H2O molecule evaluated with a Tier 2 basis set and Nτ = Nω = 200.

tens of frequency points suffice to converge the Fourier integrals with an accuracy of the
order of 10−8.

Figure 6.5 illustrates the effect of the number of poles on the Fourier transformed
quantities. The FT of Π, W and Σ was evaluated using Npoles ranging from 20 to 200 in
Eq. 6.6. As illustrated in Fig. 6.5, the number of poles only slightly affects the quantities.
ForNpoles = 20−40, small oscillations are observed in the polarizability and the screened
Coulomb interaction at small values of ω and τ , respectively. Nevertheless, these errors
do not affect visibly the structure of Σ at low frequency. For Npoles = 60 all quantities
are converged. In the following, the default values adopted in all calculations, unless
otherwise stated, are Nω = Nτ = 60.





7 NUMERICAL EVALUATION OF

PHYSICAL QUANTITIES

In previous Chapters I proposed a scheme to solve Hedin’s GW approximation numeri-
cally without resorting to first-order perturbation theory (G0W0). Differently fromG0W0

– and other partially self-consistent schemes based on perturbation theory – in sc-GW
all physical quantities have to be extracted from the self-consistent Green function. The
basic connection between the Green function, observables and the physical properties
of a systems, has been outlined in Sec. 3.3. In this Chapter, it is addressed how these
relations may be translated into a concrete recipe. In particular, I will focus on the
evaluation of (charged) excitation energies and total energies.

7.1 SPECTRAL FUNCTION

In sc-GW , excitation energies are encoded in the spectral function, which is related to
the Green function through Eq. 3.34:

Aσ(ω) =
1

π
|Tr[ImGσ(ω)]| ,

where the Green function is expressed on the real frequency axis. To bring the Green
function from the imaginary to the real axis one has to perform the analytic continuation,
a well established procedure not only for the GW approximation [163, 209, 211, 212,
215, 216], but also in Dynamical Mean Field Theory [217], and Quantum Monte Carlo
[218–220].

This procedure is in principle exact, due to the one-to-one correspondence between
the real and imaginary axis representation of holomorphic functions. In practice, the
analytic continuation is performed by fitting the Green function or the self-energy with
polynomials on the imaginary axis and the form of the chosen polynomial may affect
the accuracy of the analytic continuation.

To evaluate the spectral function, minimizing the impact of the analytic continua-
tion on the reliability of the quasi-particle energies, the following approach has been
developed. The self-energy is first obtained in real frequency by means of the analytic
continuation based on a two-pole fitting scheme [215]. In this approach, the matrix
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elements of the self-energy in the imaginary frequecy are fitted by polynomials of the
form:

Σσij(iω) '
2∑

α=1

aσα,ij
iω + bσα,ij

. (7.1)

Here, the coefficients aσα,ij and bσα,ij are determined by means of a non-linear least-
square fit, solved with a Levenberg-Marquardt algorithm. The expression above fully
defines Σσ also on the real axis – which is obtained from Eq. 7.1 by replacing iω by ω.
Once the real-frequency self-energy is obtained, the Dyson equation is solved directly
in real frequency on a fine, equally spaced grid. The resulting Green function is used
to determine the sc-GW spectral function A(ω). In this scheme, only the self-energy
is subjected to the analytic continuation, whereas the remaining terms in the Dyson
equation are unaffected. Alternatively, one can apply the analytic continuation directly
to the Green function. However, this approach introduces a considerable numerical
noise as compared to the scheme presented above and, consequently, the quasi-particle
peaks appear unphysically broadened.

For the spectral properties, the analytic continuation constitutes the only approxi-
mation of the present implementation. Previous works [215] have indicated that the
two-pole model for the analytic continuation (Eq. 7.1) reliably reproduce quasi-particle
energies with an average relative error of the 0.2% for solids. More recently, it was
shown for molecules that the two-poles fit provides results within a few meV compared
to real-frequency GW calculations [221]. The parameter η in the denominator of the
real-frequency G0 (see Eq. 3.14), necessary to avoid the numerical divergence of G0, is
set to η = 10−4. This parameter contributes negligibly to the broadening of the spectral
function and has no effect on the position of the quasi-particle peaks.

As an example, I report the sc-GW spectral functions of H2O, NH3, and N2 in Fig. 7.1
calculated using basis sets of increasing size. The sc-GW spectral function shows sharp
δ-function like peaks at the quasi-particle energies. In panels a), b), and c) in Fig. 7.1, I
report the spectral function corresponding to the highest occupied quasi-particle states
evaluated with a Tier 1, Tier 2, and Tier 3 basis; panels d), e), and f) show the peaks
corresponding to the lowest unoccupied quasi-particle states. The G0W0@HF and sc-
GW ionization energies are reported in panels g), h), and i) of Fig. 7.1 as a function
of the basis set size. The G0W0 ionization energy is calculated from the linearized
quasi-particle equation (Eq. 4.18), whereas in sc-GW it is extracted from the highest
(valence) peak of the spectra shown in panels a), b), and c).

For the quasi-particle energies corresponding to occupied states, the largest change
is observed going from Tier 1 to Tier 2. For N2 for example, the HOMO changes by
approximately 0.2 eV going from Tier 1 (which consists of 14 NAO basis functions
per atom) to Tier 2 (39 NAO per atom). A further increase of the basis set from Tier
2 to Tier 3 (55 NAO per atom) leads to changes of the order of 5 meV in the HOMO
– as illustrated in the right panels of Fig. 7.1. Lower lying quasi-particle peaks show
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Figure 7.1: Self-consistent GW spectral function for H2O, NH3, and N2 with Tier 1, Tier 2 and
Tier 3 NAO basis sets. Panels a), b), and c) show the peaks corresponding to the first valence
states, peaks relative to unoccupied states are reported in panels d), e), and f). Finally, panels g),
h), and i) report the convergence of the HOMO level as a function of the number of numerical
orbitals used in the basis set.
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Figure 7.2: Left panel: The spectral function of benzene calculated with a Tier 2 basis set. Vertical
dashed lines are located at experimental vertical ionization energies (VIEs) from Ref. [222]. Right
panel: comparison of experimental [222] and theoretical VIEs extracted from the spectral function
of benzene for sc-GW , G0W0@HF, and G0W0@PBE.

a similar convergence behavior as the HOMO. H2O and NH3 exhibit a qualitatively
similar behavior. Surprisingly, for all systems considered here, sc-GW converges faster
with the basis set size than perturbative G0W0 calculations. Compared to the occupied
states, the convergence of the empty states is considerably slower and larger basis sets
are required for the calculation of quasi-particle states above the Fermi energy.

To test the quality of the sc-GW spectra the benzene molecule was chosen as a bench-
mark, for which the sc-GW spectral function in Fig. 7.2 is compared to the G0W0@HF
and G0W0@PBE ones calculated using Eq. 3.34. The VIEs shown in the right panel of
Fig. 7.2 correspond to the peak positions in the spectral function. All peaks reported in
the left panel of Fig. 7.2 correspond to occupied quasi-particle states and the associated
energy can be directly related to ionization energies as measured in photoemission
spectroscopy. The G0W0 quasi-particle energies – reported in the right panel of Fig. 7.2 –
depend strongly on the starting point: HF-(PBE-)based G0W0 has a tendency to over-
estimate (underestimate) VIEs. The deviation between G0W0@HF and G0W0@PBE is
' 0.5 eV for the first ionization energy and can be as large as ' 3 eV for lower lying
quasi-particle states. Furthermore, due to overscreening G0W0@PBE yields a large
broadening (i.e., short lifetimes) for quasi-particle peaks below −12 eV. Those peaks are
not plasmon satellites, but quasi-particle states with a short lifetime. The short lifetime
arises from the small HOMO-LUMO gap in PBE that allows quasi-particle states to
decay through the creation of electron-hole pairs [223], as it will be discussed in detail
in the following. At self-consistency, the quasi-particle energies are uniquely defined,
the systematic (over)underestimation of G0W0 calculations is considerably reduced and
the resulting quasi-particle energies are in better agreement with photoemission data
[222]. A more extended assessment of the overall accuracy of sc-GW for the description
of photoemission processes is deferred to Chap. 10.
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7.2 GALITSKII-MIGDAL TOTAL ENERGY

The method of choice here for total-energy calculations is based on the Galitskii-Migdali
(GM) formula:1

EGM = −i
∑

σ

∫
d1 lim

2→1+

[
i
∂

∂t1
− ∇

2
1

2
+ vext(1)

]
Gσ(1, 2) .

In the following, I derive an expression for the numerical evaluation of the GM total
energy in a basis, with a discrete frequency grid. As a first step, one has to rewrite the
GM total energy without the partial derivative with respect to time. This term may lead
to numerical instabilities or – if Fourier transformed to frequency – to slow convergence
with the grid size, due to the slow decaying behavior with frequency. This can be done
inserting the equation of motion for the single-particle Green function (Eq. 3.7) in the
GM formula, leading to:

EGM = −i
∑

σ

∫
d1d2 lim

3→1+

[(
−∇2

1 + 2vext(1) + vH(1)
)
δ(1− 2) + Σσ(1, 2)

]
Gσ(2, 3) .

(7.2)

Now Eq. 7.2 has to be recast into a matrix form. Making use of the matrix representation
of the Green function in a basis:

Gσ(r, r′, τ) =
∑

ijlm

ϕi(r)s−1
ij G

σ
jl(τ)s−1

lmϕm(r′)

=
∑

ij

ϕi(r)G
σ

ij(τ)ϕj(r
′)

– with Gij(τ) defined according to Eq. 5.10 – the first three terms in Eq. 7.2 can be
rewritten as:

− i
∑

σ

∫
d1 lim

2→1+

[
−∇2

1 + 2vext(1) + vH(1)
]
Gσ(1, 2) =

− i
∑

σ

∫
d3r lim

r′→r

[
−∇2

r + 2vext(r) + vH(r)
]∑

ij

ϕi(r)G
σ

ij(τ = 0−)ϕj(r
′) =

− i
∑

σ

∑

ij

G
σ

ij(τ = 0−) [2tji + 2vext,ji + vH,ji] (7.3)

where the Green function depends only on the difference of time variables τ ≡ t− t′, and
the Hamiltonian is assumed to be time-independent. In the last step of Eq. 7.3, I defined
the matrix representation of the kinetic energy operator as tij =

∫
d3rϕi(r)

[
−∇

2
r

2

]
ϕj(r),

and used similar expressions for vext,ji and vH,ji. Finally, the last term in Eq. 7.2
can be rearranged by using the Fourier transform of the Green function and the self-

1As discussed in Sec. 3.3, the total energy is independent of the total-energy functional if the Dyson equation
is solved self-consistently, therefore this choice has no impact on the sc-GW total energies.
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Figure 7.3: Countour C
for the integration of Eq. 7.4
(blue solid line) and position
of the poles of the integrand
(red crosses).

energyG(t, t′) =
∫ +∞
−∞

dω
2π e
−iω(t−t′)G(ω). ReplacingGwith its matrix representation and

carrying out the integrals over the real-space variables, yields:

−i
∑

σ

∫
d1d2 lim

3→1+
Σσ(1, 2)Gσ(2, 3) = −i

∑

σ

∑

ij

∫
dω

2π
Σσji(ω)G

σ

ij(ω)eiωη . (7.4)

It remains to demonstrate that the integral in Eq. 7.4 can be evaluated on the imaginary
axis. By the residual theorem of complex analysis, the integral over a closed contour
C that does not include poles is zero. The integrand of Eq. 7.4 has poles only on the
upper-left and lower-right quadrant in the complex plane, as illustrated in Fig. 7.3.
Therefore, one can always define the contour C that does not include poles, as depicted
in Fig. 7.3, so that the integral on C is zero. Since the integrand vanishes on the closure
(i.e., the curve part) of the contour for |ω| → ∞, the imaginary axis integral is equal
and opposite in sign to the integral on the real axis. Therefore, the frequency integral in
Eq. 7.4 can be evaluated directly on the imaginary axis without resorting to any analytic
continuation. The integral in Eq. 7.4 can be rewritten on an imaginary frequency grid as:

−i
∑

σ

∫
d1d2 lim

3→1+
Σσ(1, 2)Gσ(2, 3) =

i

2π

∑

σ

∑

ij

∑

k

w(ωk)Σσji(ωk)G
σ

ij(ωk) . (7.5)

Finally, the sum of Eqs. 7.3 and 7.5 yields the desired expression for the total energy:

EGM = −i
∑

σ

∑

ij

[
2tji + 2vext,ji + vH,ji + Σσx,ji

]
G
σ

ij(τ = 0−)+

+
i

2π

∑

σ

∑

ij

∑

k

w(ωk)Σσc,ji(ωk)G
σ

ij(ωk) , (7.6)

where the self-energy was separated into its exchange and correlation components
Σσ(ω) = Σσx + Σσc (ω). In summary, I derived an exact reformulation of the Galitskii-
Migdal formula in a basis, within a discrete frequency mesh. Although implemented for
the evaluation of sc-GW total energies, Eq. 7.6 is not restricted to GW and is generally
applicable to other self-energy approximations, or in the framework of perturbation
theory. As an example choosing Σc = 0, Eq. 7.6 coincides with the Hartree-Fock total
energy if G is the Hartree-Fock Green function.2

If evaluated with a non-interacting Green function G0 obtained, e.g., from a PBE
2This identity served as a consistency check for the numerical implementation of Eq. 7.6.
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Figure 7.4: Total energy of He and Ne evaluated with sc-GW , G0W0@PBE and RPA@PBE with
the Gaussian basis sets aug-cc-pVNZ with N = D, T, Q, 5. All total energies are referenced to the
aug-cc-pV5Z value (see Table 7.1).

calculation, Eq. 7.6 provides the first-order perturbative correction to the PBE ground-
state total energy due to the perturbing potential Σ− vxc. Due to the analogy with the
perturbative calculation of excitation energies in G0W0, the total energy evaluated in
this way is referred to asG0W0 total energy. As for spectral properties, perturbative total
energies depend on the starting point. Therefore, I adopt the notation G0W0@starting
point to denote the corresponding starting point.

To validate the implementation of Eq. 7.6, the sc-GW total energies are compared
with literature values from Ref. [104] in Table 7.1. The values obtained from the two
implementations are in excellent agreement. The residual numerical differences are
attributed to the different basis sets used in the two calculations.

CONVERGENCE WITH THE BASIS SET

To illustrate the convergence with the basis set, I report in Fig. 7.4 the total energy of He,
Ne and H2O as function of the basis set size using Dunning’s augmented correlation
consistent polarized valence N zeta (aug-cc-pVNZ) basis sets [205], with N = D, T,
Q, 5. Figure 7.4 indicates that sc-GW total energies converge faster with the basis
set size, compared to perturbative G0W0 and RPA. Tentatively, one can attribute the
origin of this behavior to the optimization of the empty state due to the self-consistency.
Unfortunately, an unquestionable explanation still remains elusive.

In Fig. 7.5, I compare the total-energy convergence of He, Ne and H2O evaluated with
the aug-cc-pVNZ basis sets and FHI-aims Tiers. As discussed in Section 5.1, the Tiers

Table 7.1: sc-GW total energy calculated from Eq. 7.6 and literature values from [104]. For He,
H2, and Ne the calculation were done with the aug-cc-pV5Z basis set. For LiH and Be with the
aug-cc-pVQZ basis – which is the largest available for those elements. All values are in Hartree.

He Be Ne H2 LiH
sc-GW [104] -2.9278 -14.7024 -129.0499 -1.1887 -8.0995
sc-GW -2.9252 -14.6534 -128.9796 -1.1898 -8.0678
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Figure 7.5: Self-consistent GW total energy of He and Ne evaluated with FHI-aims Tiers and
with the Gaussian basis sets aug-cc-pVNZ with N = D, T, Q, 5.

basis sets are constructed and optimized for the minimization of the DFT total energy (of
a given optimization target) within a local approximation for the exchange-correlation
functional. However, this procedure does not guarantee full transferability of the Tier
basis sets for total energy approaches which explicitly depend on the unoccupied states,
as GW and RPA. For sc-GW , the right panel of Fig. 7.5 illustrates that for water the Tier
basis outperforms Gaussians, although the latter are optimized for explicitly correlated
methods. This indicates that the NAO basis functions potentially provide an optimal
framework for the evaluation of absolute total energies. On the other hand, the Tier basis
sets are insufficient for the sc-GW total energy of He and Ne. These arguments motivate
the choice of using Gaussian basis sets for the evaluation of absolute total energies.

Total-energy differences are by far more important than absolute total energies, as
they provide information on structural properties and on the strength of chemical
bonds. From a technical perspective, energy differences are easier to compute as a faster
convergence with the basis set size arises due to cancellation effects. This is illustrated
in Fig. 7.6 where the binding energy of the carbon monoxide dimer is evaluated with
sc-GW , RPA@PBE and G0W0@PBE with increasingly larger basis sets (Tier 1-4). Also in
this case, the convergence of the sc-GW total energy is faster as compared to perturbative
total energy methods (G0W0 and RPA).

For completeness, I report the convergence of the sc-GW total energy as a function of
several integration grid parameters in Appendix B.

Figure 7.6: Self-consistent GW bind-
ing energy of the carbon monoxide
dimer evaluated with different FHI-
aims Tiers. For sc-GW , convergence
is clearly achieved with Tier 3.
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Applications to atoms and
molecules
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8 UNIFIED DESCRIPTION OF GROUND

AND EXCITED STATES

In this Chapter, I demonstrate certain key aspects of the sc-GW approach for closed-
shell molecules, that make sc-GW attractive as a general purpose electronic-structure
method. First, the iteration of the Dyson equation produces a self-consistent Green
function that is independent of the starting point, and determines both the ground- and
excited-state properties (quasi-particle spectra) of a given system on the same quantum-
mechanical level. These aspects distinguish sc-GW from other (partially) self-consistent
GW schemes [174, 177, 178], which do not lend themselves to total-energy or ionic-force
calculations, and depends on the starting point (i.e., the initial reference calculation).
Moreover the uniqueness of the sc-GW Green function facilitates an unprecedented
and unbiased assessment of the GW approach, which previously was masked by the
starting-point dependence of G0W0. Second, self-consistency improves total energies
compared to G0W0 based on HF or DFT in (semi)local approximations and yields better
agreement with high level quantum-chemical calculations. Third, unlike G0W0, sc-GW
yields an associated ground-state electron density, whose quality is e.g. reflected in the
improved description of dipole moments. This is an essential feature for the reliable
prediction of the electronic structure of charge-transfer compounds, as exemplified for
the TTF-TCNQ molecular interface. All these points taken together are essential for
future developments in electronic-structure theory such as vertex functions, beyond
GW approaches, and new Green-function-based non-perturbative methods for the
evaluation of ground and excited states.

8.1 INDEPENDENCE OF THE STARTING POINT AND

CONSERVATION LAWS

The dependence on the starting point is a major shortcoming of perturbative (and
partially self-consistent) GW methods, which makes G0W0 quasi-particle energies de-
pendent on the choice of the input orbitals. This effect may lead to uncertainties of
several eV in the quasi-particle spectra and it considerably limits the predictive power
of GW calculations. In the following, a numerical proof of the independence of the
starting point of sc-GW is reported for finite systems. This is crucial for establishing
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Figure 8.1: Total energy (a) and ionization energy (b) of N2 at each iteration of the sc-GW loop for
a HF and PBE input Green function, for the aug-cc-pVQZ basis set [205]. The absolute values of
the differences arising from HF and PBE initializations vanish exponentially for both total energy
(c) and ionization energy (d).

sc-GW as a reference method for perturbative G0W0 calculations.

In Fig. 8.1, I demonstrate for N2 that the sc-GW Green function provides total energies
(a) and vertical ionization energies (VIEs) (b) that are independent of the starting point.
The self-consistency cycle is initialized with either HF or DFT in the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation [41], but other initializations like
the local-density approximation (LDA) or the simple Hartree approximation produce the
same final sc-GW Green function. The deviation in the Green function, exemplified by
the absolute value of the total-energy difference (Fig. 8.1(c)) and the ionization-energy
difference (Fig. 8.1(d)), converges exponentially fast with the number of iterations,
canceling the starting-point dependence. Further tests performed on a set of 30 closed-
shell molecules (see Fig. 10.8 and Appendix C) confirm this fact and demonstrate that
sc-GW provides a recipe for linking different reference systems of independent electrons
(or non-interacting Kohn-Sham particles) to a unified interacting many-body state.

The spectral function of N2 is reported in Fig. 8.2 for the first six iterations of the
Dyson equation, using HF and PBE as starting points. Figure 8.2 demonstrates that
already a few iterations of the Dyson equation suffice to obtain both quasi-particle
energies and peak broadenings (i.e., lifetimes of the quasi-particle states) which do
not depend on the initial reference state. The reader is referred to Chap. 10 for a more
detailed discussion of the broadening of low-energy quasi-particle peaks.

As mentioned in Sec. 4.3, the satisfaction of the particle-number-conservation law is
reformulated in Green function theory in terms of the continuity equation. As demon-
strated by Baym and Kadanoff, the continuity equation in turn requires the self-energy
to obey certain symmetry properties which – in the GW approximation – are only
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Figure 8.2: Spectral function of the N2 dimer evaluated for the first six iterations of the Dyson
equation using a HF and PBE initialization of the sc-GW loop.

satisfied at self-consistency [102, 169]. Similar arguments also hold for the momentum-
and energy-conservation laws.

The satisfaction of the particle-number-conservation law was first demonstrated nu-
merically in Ref. [196] for H2, for self-consistent and partially self-consistent approaches
based on the solution of the Dyson equation. As a consistency check, the satisfaction of
the particle-number-conservation law has been verified also for the sc-GW implemen-
tation developed in this work. In Fig. 8.3, the electron number of the hydrogen dimer
(extracted from the Green function by taking the trace of the density matrix defined
in Eq. 3.39) is shown for different interatomic distances. For G0W0, I considered the
Green function obtained solving the Dyson equation once. The violation of conservation
laws is manifested in G0W0 by the deviation from the correct particle number, which
increases for larger bond lengths. On the other hand, the sc-GW Green function satisfies
the Baym-Kadanoff conservation laws and the corrected particle number is retrieved at
all bond lengths.

Having established the important point that the sc-GW solution is independent
of the starting point and having verified the satisfaction of conservation laws at self-
consistency, I now turn to an assessment of the performance of the GW approach for
the ground-state properties of atoms and molecules.
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Figure 8.3: Number of electrons in the H2 dimer extracted from the Green function at different
internuclear separations. The G0W0 values are obtained solving the Dyson equation once.

8.2 TOTAL ENERGIES

Total-energy calculations in the GW approximation have previously been reported
in the literature [104, 193, 196, 199–202, 224–226], however only a few studies have
been devoted to finite systems at self-consistency [104, 196]. In this Section, I provide
an assessment of self-consistent and G0W0 total energies evaluated with the Galitskii-
Migdal (GM) formula. As alluded to in Sec. 3.3, the total energy is independent of the
choice of the total energy functional if the Dyson equation is solved self-consistently,
therefore the sc-GW results are not affected by this choice. On the other hand, in
perturbative and partially self-consistent calculations the total energy may differ if one
uses a different total energy functional [104].

For the atoms in the first two rows of the periodic table (i.e., Z = 1 − 10) accurate
reference data from full configuration-interaction (full-CI) calculations are available [227–
229]. Figure 8.4 (upper panel) reports the difference to full-CI for basis set converged
sc-GW , G0W0, and sc-GW0 total energies based on HF and PBE. A subset of these
systems has previously been calculated using sc-GW [104] and the results of the present
work are in good agreement with the published results, as the comparison reported
in Table 7.1 illustrates. The error of the EX+cRPA and rPT2 total energies based on
HF and PBE are reported in the lower panel of Fig. 8.4 for comparison. In line with
previous calculations for the electron gas [201, 226], solids [199, 200], atoms and small
molecules [104], G0W0 total energies (in various flavors) tend to be too negative. The
self-consistent treatment largely (but not fully) corrects this overestimation and provides
total energies in more satisfying agreement with full-CI. The remaining overestimation
provides a clear and unbiased quantification of the required vertex corrections in a
beyond GW treatment. The numerical values of the total energies of atoms evaluated
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Figure 8.4: Difference between GW total energies at different level of self-consistency and full
configuration interaction values (ECI) from Refs. [227–229] (upper panel) for atoms from H to Ne.
The EX+cRPA and rPT2 total energy differences to full-CI are reported in the lower panel. The
differences between the self-consistent and G0W0@HF total energies (shaded in light blue) are
attributed to the kinetic correlation energy, as discussed below. The calculations were performed
using the aug-cc-pV5Z basis set [205].

with G0W0, EX+cRPA (equivalent to the perturbative evaluation of the Klein functional
in the GW approximation), partially self-consistent sc-GW0, and sc-GW , are reported
in Appendix D, whereby PBE, Hartree-Fock, and rPT2 are included for comparison.
Interestingly, sc-GW0 and sc-GW total energies show very small numerical differences,
indicating that the quality of the screened Coulomb interaction contributes negligibly to
the total energy, as shown in Table D.1. On the other hand, as demonstrated in Chap. 10,
the dependence of the spectral properties on the choice of W is substantially more
pronounced. For the total energy, rPT2 gives the best agreement with full-CI, although
its performance is contingent on the choice of a good starting point. EX+cRPA@PBE
considerably overestimates the reference data, whereas EX+cRPA@HF provides similar
total energies to sc-GW . This similarity is expected for two reasons: First, in atoms
screening is small, thus the sc-GW Green function resembles the Hartree-Fock one (since
in the absence of polarization W reduces to the bare Coulomb interaction). Second, the
EX+cRPA total energy is a variational functional of the Green function, and it therefore
provides total energies close to sc-GW , if the input Green function is close enough to the
sc-GW Green function [101]. Larger discrepancies between EX+cRPA and sc-GW are to
be expected for systems for which sc-GW provides a substantially different density as
compared to HF or semi-local DFT. Example of these material are molecular interfaces
and charge-transfer compounds – as demonstrated below for the TTF-TCNQ dimer –
where the ground-state density (and the charge transfer) depends strongly on the level
alignment between the individual components of the system. This will be addressed
below for the representative case of the TTF-TCNQ dimer.

The differences between self-consistent and perturbative total energies – highlighted
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Figure 8.5: Difference between the sc-GW and G0W0@HF total (∆Etot), kinetic (∆Ekin), Hartree
(∆EH), and correlation energy (∆Ec) of the hydrogen dimer at several bond lengths.

in Fig. 8.4 – show that sc-GW total energies are systematically smaller (i.e., less negative)
than the G0W0 ones. To understand the origin of this qualitative difference, it is useful
to look at the changes between the individual contributions to the total energy. In
Fig. 8.5, I report the differences between the sc-GW and G0W0@HF total (∆Etot), kinetic
(∆Ekin), Hartree (∆EH), and correlation energies (∆Ec) of the hydrogen dimer at several
values of the bond length. Figure 8.5 demonstrates that, for H2 close to its equilibrium
bond length (0.7414 Å), the Hartree, exchange and correlation energies do not change
substantially at self-consistency. The differences of the total energy at self-consistency
can therefore be attributed to an increase of the kinetic energy term. This is a consequence
of the structure of the Galitskii-Migdal total energy functional EGM: When evaluated
with a non-interacting Green function, the EGM functional does not account for kinetic
correlation energy contributions (defined as the difference between the kinetic energy of
the interacting system and the non-interacting total energy). In contrast, the Klein and
Luttinger-Ward functionals include kinetic correlation through the coupling constant
integration as discussed in more details in the following Chapter. Differently to G0W0,
the Green function obtained from sc-GW corresponds to an interacting many-body state,
and therefore the kinetic correlation energy is correctly accounted for. In other words,
the improvement of the sc-GW total energy at self-consistency arises from the inclusion
of kinetic correlation energy contributions. These are absent in a perturbative total
energy calculation based on the Galitskii-Migdal functional, but they are fully taken into
account when the self-consistent Green function is used. Obviously, at self-consistency,
the GM and Klein total energies are identical.

For larger interatomic distances the total energy differences between self-consistent
and perturbative GW calculations cannot be attributed to the kinetic term alone. The
dissociation regime is characterized by a strong multi-reference character (i.e., its wave
function is not representable in terms of a single Slater determinant). This is a challeng-
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Figure 8.6: Mean absolute error (MAE) of bond lengths (a), binding energies (b), and vibrational
frequencies (c) of LiH, LiF, HF, CO, H2, and N2 evaluated at different levels of theory. The
estimated zero-point motion correction has been subtracted from the experimental binding
energies (from Ref. [230]). Numerical values are reported in Tables 8.1, 8.2, and 8.3.

ing test case for which many electronic-structure approaches fail. The dissociation of
diatomic molecules will be addressed in detail in the following Chapter.

STRUCTURAL PROPERTIES OF DIATOMIC MOLECULES

In this Section, the accuracy of the sc-GW method is benchmarked for bond lengths,
binding energies, and vibrational frequencies based on the calculations of the potential-
energy curve of LiH, LiF, HF, CO, H2, and N2. I emphasize that the focus of this Section
is on ground-state properties of diatomic molecules at their equilibrium geometry.
The dissociation of diatomic molecules, due to the predominance of static correlation,
also presents a challenging and interesting case, that will be discussed in Chap. 9.
Calculations were done with a Tier 3 basis set (the largest basis set available) for H2, LiH,
LiF, and HF, whereas a Tier 4 basis was used for N2 and CO. The results of this study
are summarized in Fig. 8.6, whereas the corresponding numerical values are reported in
Tables 8.1, 8.2, and 8.3.

Panel (a) of Fig. 8.6 reports the mean absolute error (MAE) of the sc-GW bond
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Table 8.1: sc-GW and G0W0 binding energies for diatomic molecules compared to (zero point
motion corrected) experimental reference data taken from Ref. [230]. Perturbative EX+cRPA, HF,
PBE, and renormalized second-order perturbation theory (rPT2) are included for comparison.
Calculations were done with a Tier 3 basis set for H2, LiH, LiF, and HF, whereas a Tier 4 basis was
used for N2 and CO. All values are in eV.

H2 LiH HF LiF N2 CO ME MAE
Exp (no ZPM) -4.48 -2.41 -5.87 -5.97 -9.76 -11.11
Exp -4.75 -2.52 -6.12 -6.02 -9.91 -11.24
sc-GW -4.41 -2.16 -5.55 -5.50 -8.42 -10.19 -0.72 0.72
G0W0@HF -5.05 -2.72 -6.45 -6.60 -10.61 -11.88 0.46 0.46
G0W0@PBE -5.44 -2.94 -6.46 -6.37 -11.82 -12.16 0.77 0.77
G0W0@PBE0 -5.32 -2.90 -6.49 -6.67 -11.50 -12.34 0.78 0.78
(EX+cRPA)@HF -4.41 -2.17 -5.54 -5.52 -8.51 -10.19 -0.70 0.70
(EX+cRPA)@PBE -4.68 -2.32 -5.60 -5.43 -9.54 -10.48 -0.42 0.42
rPT2@PBE -4.71 -2.49 -5.93 -5.90 -9.42 -11.06 -0.17 0.17
HF -3.64 -1.49 -4.22 -3.95 -5.10 -7.62 -2.42 2.42
PBE -4.54 -2.32 -6.17 -6.03 -10.58 -11.67 0.13 0.26

Table 8.2: sc-GW and G0W0 bond lengths for diatomic molecules compared to experimental ref-
erence data taken from Ref. [128]. Perturbative EX+cRPA, HF, PBE, and PBE-based renormalized
second-order perturbation theory (rPT2@PBE) are included for comparison. All values are in Å.

H2 LiH HF LiF N2 CO ME MAE
Exp. 0.741 1.595 0.917 1.564 1.098 1.128
sc-GW 0.735 1.579 0.919 1.586 1.085 1.118 0.003 0.011
G0W0@HF 0.733 1.560 0.919 1.579 1.093 1.119 0.007 0.012
G0W0@PBE 0.746 1.582 0.938 1.593 1.116 1.143 -0.013 0.017
G0W0@PBE0 0.741 1.564 0.932 1.590 1.100 1.136 0.003 0.014
(EX+cRPA)@HF 0.734 1.587 0.914 1.576 1.087 1.117 0.005 0.009
(EX+cRPA)@PBE 0.745 1.597 0.927 1.589 1.107 1.137 -0.010 0.010
rPT2@PBE 0.739 1.597 0.914 1.578 1.091 1.125 0.000 0.005
HF 0.734 1.606 0.898 1.560 1.066 1.102 0.013 0.017
PBE 0.751 1.605 0.930 1.575 1.104 1.136 -0.010 0.010

lengths as compared to experiment [128]. Binding energies are reported in the panel
(b), whereas vibrational frequencies in panel (c). Several perturbative approaches
based on MBPT, namely G0W0, EX+cRPA, and PBE-based renormalized second-order
perturbation theory [77, 231] (rPT2@PBE), are included for comparison.

Self-consistency provides better bond lengths than G0W0, that gives too large dis-
tances. However, the accuracy achieved by sc-GW for the bond lengths is still com-
parable to EX+cRPA@HF and not as good as rPT2@PBE, which includes higher-order
exchange and correlation diagrams.

The binding energies obtained from G0W0 based on HF and PBE are systematically
overestimated. Self-consistentGW overcorrects this trend and provides binding energies
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Table 8.3: sc-GW , and perturbative G0W0 vibrational frequencies of diatomic molecules com-
pared to experimental reference data taken from Ref. [128]. EX+cRPA, HF, PBE, and renormalized
second-order perturbation theory (rPT2) are included for comparison. All values are in cm−1.

H2 LiH HF LiF N2 CO ME MAE
Exp. 4401 1405 4138 911 2359 2170
sc-GW 4533 1743 4266 971 2543 2322 -166 166
G0W0@HF 4585 1827 4341 1010 2490 2647 -252 252
G0W0@PBE 4341 1743 4130 971 2346 2322 -78 105
G0W0@PBE0 4425 1813 4273 922 2386 2222 -109 109
EX+cRPA@HF 4533 1685 5512 952 2544 2321 -360 360
EX+cRPA@PBE 4357 1691 4757 933 2354 2115 -137 172
HF 4567 1473 4569 949 2736 2448 -226 226
PBE 4320 1364 3991 899 2328 2128 59 59
rPT2@PBE 4460 1605 4620 922 2507 2251 -163 163

that slightly underestimate experiment. As for the total energy, EX+cRPA@HF and sc-
GW give a very similar description of the binding energy, the deviation between the
two methods being approximately 10− 20 meV.

Also for the binding energies, sc-GW is outperformed by rPT2@PBE, which illus-
trates the importance of including exchange and correlation diagrams beyond the GW
approximation for a systematic improvement of the ground-state properties of finite
systems.

For vibrational frequencies, the dependence on the starting point is larger than for
binding energies or bond lengths. In this case, the best agreement with experiment is
achieved with the PBE functional, whereas for HF the errors are substantially larger.
Similarly, PBE-based G0W0 and EX+cRPA deviate less from experiment than HF-based
schemes. For instance, the mean absolute error of EX+cRPA@HF is approximately a fac-
tor of two larger that EX+cRPA@PBE, and the same is observed for G0W0. Consequently,
sc-GW gives smaller MAEs compared to HF-based schemes, but does not improve over
PBE-based perturbative schemes.

8.3 ELECTRON DENSITY AND DIPOLE MOMENT

In perturbative approaches, such as G0W0, EX+cRPA, and rPT2, the electron density
of a system is defined by the eigenstates of the unperturbed reference Hamiltonian
– although in principle perturbative corrections to the eigenstates of the unpertubed
Hamiltonian could be calculated. This constitutes a major drawback, which is in part
responsible for the well-known starting-point dependence of perturbative schemes. On
the other hand, a self-consistent theory provides a natural framework for incorporating
exact-exchange and dynamical-correlation effects in the electron density. To illustrate
this aspect within sc-GW , I discuss in the following the effects of self-consistency on the
density and the dipole moment of diatomic molecules.
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CFM CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 Donostia, Spain

In this supplemental material we list the vertical ion-
ization energies (VIEs) of the 30 closed shell molecules
shown in Fig. 4, show the sc-GW electron density of the
CO dimer and give more details on the implementation of
the self-consistent screened Coulomb interaction. Finally,
we provides a derivation of the matrix representation of
the Galitskii-Migdal formula for the total energy (Eq. 6).

VERTICAL IONIZATION ENERGIES OF
CLOSED-SHELL MOLECULES

Table I reports the quasiparticle HOMO level obtained
from G0W0@HF, G0W0@PBE and sc-GW (present
work) and frozen-core sc-GW reproduced from [2]. DFT-
LDA eigenvalues are also reported. All ionization ener-
gies – with the exception of the sc-GW results repro-
duced from [2] – were obtained with the FHI-aims code
using a Tier 2 numeric atom-centered orbital basis set [3].
The experimental values are taken from the photoemis-
sion data compiled in Ref. [1]. A graphical comparison of
LDA, G0W0@HF, G0W0@PBE and sc-GW with experi-
ment is reported in Fig. 4 of the Rapid Communication.
The discrepancy between our sc-GW VIEs and those re-
ported in Ref. [2] can probably be traced back to the
frozen-core approximation employed in Ref. [2] as we ob-
serve larger deviations for molecules composed by heavier
atoms (e.g. F2, P2 and SH2). However, this trend is not
observed for the whole set, and a more rigorous study
of the effects of the core-valence interaction in sc-GW is
therefore needed.

DENSITY OF CO FROM SC-GW

Additional information on the quality of the sc-GW
ground state can be obtained from the ground-state den-
sity n(r). Figure 1 illustrates the effect of many-body
correlations in the CO dimer by comparing coupled clus-
ter singles doubles (CCSD) calculations and sc-GW with
HF which we obtained using the aug-cc-pVTZ basis
set. CCSD and sc-GW both exhibit left-right correla-
tion (density is shifted from the bonding region to the
individual atoms) and angular correlation (the angular
distribution of charge becomes more pronounced). The
similarity between the CCSD and sc-GW density reflects

FIG. 1. Difference ∆n(sc-GW−HF)= nscGW − nHF between
the sc-GW and Hartree-Fock densities (right) for the CO
dimer, the density differences ∆n(CCSD−HF) (center) and
∆n(PBE−HF) (left) are defined similarly in terms the CCSD
and PBE densities. Dark regions correspond to negative val-
ues whereas positive regions are light. Units are Å−3 and the
calculation were performed using an aug-cc-pVTZ basis set.

the good agreement of the sc-GW dipole moment with
the experimental one (see text). In PBE, on the other
hand, electron density drifts out of the bond region as a
result of the delocalization error, which ultimately leads
to an overestimation of the dipole moment (Fig. 1, left).

COMPUTATION OF THE SCREENED
COULOMB INTERACTION

The computation of the polarizability constitutes the
main bottleneck of a numerical implementation of the
GW approximation. To avoid the computation of convo-
lutions, the polarizability can be expressed in imaginary
time as:

χ0(r, r
′, τ) = −iG(r, r′, τ)G(r, r′, −τ). (1)

Here iτ labels imaginary time and the Green func-
tion is updated at each iteration of the self-consistent
loop. Equation 1 is then expanded in an auxiliary basis
{Pµ(r)} by means of the resolution of the identity (RI)

Figure 8.7: Difference ∆n(sc-GW−HF)= nscGW−nHF between the sc-GW and Hartree-Fock den-
sities (right) for the CO dimer, the density differences ∆n(CCSD−HF) (center) and ∆n(PBE−HF)
(left) are defined similarly in terms the CCSD and PBE densities. Dark regions correspond to neg-
ative values whereas positive regions are light. Units are Å−3 and the calculation were performed
using an aug-cc-pVTZ basis set.

Figure 8.7 illustrates the effect of many-body correlations in the CO dimer by com-
paring coupled cluster singles doubles (CCSD) calculations, PBE and sc-GW with HF
which was obtained using the aug-cc-pVTZ basis set. CCSD and sc-GW both exhibit
left-right correlation (density is shifted from the bonding region to the individual atoms)
and angular correlation (the angular distribution of charge becomes more pronounced).
The similarity between the CCSD and sc-GW density reflects the good agreement of
the sc-GW dipole moment with the experimental one (Table 8.4). In PBE, on the other
hand, electron density drifts out of the bond region as a result of the delocalization error,
which ultimately leads to an overestimation of the dipole moment (Fig. 8.7, left).

The dipole moment provides a systematic way to quantify the quality of the electron
density of a system, as it is directly comparable with experimental data. I report in
Table 8.4 the dipole moments of LiH, LiF, HF, and CO evaluated with sc-GW , PBE, PBE0

Table 8.4: Comparison between experimental [128] and theoretical dipole moments evaluated
with sc-GW , PBE, PBE0, and HF at their corresponding equilibrium bond lengths. All values are
in Debye.

LiH HF LiF CO MAE
Exp. 5.88 1.82 6.28 0.11 -
sc-GW 5.90 1.85 6.48 0.07 0.07
PBE 5.63 1.77 6.12 0.20 0.14
PBE0 5.77 1.81 6.20 0.13 0.06
HF 6.04 1.89 6.46 -0.13 0.17
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Figure 8.8: Equilibrium geometries of the isolated TTF and TCNQ molecules.

and HF. sc-GW and PBE0 dipole moments are in good agreement with experiments
and, with an average error of 0.06-0.07 Debye, reduce the deviation from experiment
by approximately a factor of two as compared to HF and PBE, that tend to under and
overestimate, respectively. The good agreement with experimental data, indicates that
sc-GW is a promising method for the description of charge-transfer compounds, such
as molecular interfaces and hetero-structures.

CHARGE TRANSFER IN MOLECULAR INTERFACES: THE TTF-TCNQ DIMER

To illustrate the advantage of describing both ground and excited states at the same
level of theory, I present in the following the example of the tetracyanoquinodimethane
(TCNQ) and tetrathiafulvalene (TTF) molecular dimer, a prototypical charge transfer
system of interest for applications in organic electronics. This system is particularly
interesting for its peculiar conducting properties[232]. Molecular crystals composed of
either TTF or TCNQ behave as large-gap undoped semiconductors, and are therefore
insulating. However, it has recently been shown that interfaces of the TTF- and TCNQ-
based molecular crystals give rise to highly-conducting behavior [233]. This phenomena
– which is fundamentally different from the conductivity induced by the Peierls transition
in 1D stacked TTF-TCNQ chains – is due to the formation of a two-dimensional electron
gas at the interface, arising from the charge transfer between two well-separated TTF
and TCNQ crystals. However, it is not clear whether charge transfer would occur at
the interface between the molecules. In the following, I address the problem of the
charge transfer occurring between the TTF and TCNQ molecules in the gas phase. The
ground-state geometries of TTF and TCNQ are illustrated in Fig. 8.8. The geometry of
the TTF-TCNQ compound has been obtained by cutting out a dimer of an interface of
TTF and TCNQ crystals along the [001] surface of TCNQ, as described in more details in
Ref. [67]. This simplified model allows to investigate the charge transfer which arises
exclusively from the relative alignment of the frontier orbitals of TTF and TCNQ.

TCNQ has a large electronic affinity (3.22 eV, according to coupled cluster singles
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Figure 8.9: Representation of the relative alignment of the HOMO and LUMO of (isolated)
TTF and TCNQ, as given in PBE (left), G0W0@PBE (center), and sc-GW (right) for the isolated
molecules with the Tier 2 basis set.

doubles with perturbative triples calculations from Ref. [234]) and is an acceptor com-
monly employed in charge transfer molecular crystals. TTF on the other hand, due to its
small ionization energy (6.70 eV, based on photoemission experiment from Ref. [235]), is
a donor-type molecule. The ab initio description of the ground-state electronic structure
of the TTF-TCNQ interface is particularly challenging, due to the importance of properly
accounting for the relative alignment of the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) of the two components of the
dimer. The PBE approximation to DFT places the LUMO of TCNQ below the HOMO of
TTF. The PBE level alignment at the interface is schematically depicted in the left panel
of Fig. 8.9. Since the Fermi energy should be equal in the entire system, this alignment of
the frontier orbitals leads to a charge transfer of approximately 0.24 electrons from TTF
to TCNQ. This spurious charge transfer is present also at infinite separation between
the two molecules, as demonstrated by the non-vanishing dipole moment at large inter-
molecular separation [67]. The charge transfer in the TTF-TCNQ dimer in illustrated in
the left side of Fig. 8.10. This picture is clearly in contrast with what one would expect
based on the existing reference data reported above for the ionization energy and the
electron affinity of TCNQ and TTF, respectively. In fact, based on CCSD(T) calculations
and experiment for the isolated molecules, no electron transfer between TTF and TCNQ
should occur, since the TCNQ LUMO should lye at higher energy that the TTF HOMO.
On the other hand, this order is reversed in PBE. This suggests that the spurious charge
transfer reported above is an artifact of the wrong level alignment provided by the PBE
exchange-correlation functional.

Perturbative G0W0 calculations based on PBE improve the energy of the frontier
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Figure 8.10: Charge transfer at the TTF-TCNQ interface. Red surfaces indicate additional
electronic charge, whereas blue indicates charge depletion.

orbitals of TTF and TCNQ, and consequently restores the proper energy hierarchy, i.e.,
no charge transfer would be expected based on G0W0@PBE. However, since the density
is not updated in the G0W0 approach, the underlying electronic structure is still wrong.
Self-consistent GW yields orbital energies in qualitative agreement with perturbative
G0W0@PBE and locates the HOMO of TCNQ at a lower energy compared to the LUMO
of TTF, as illustrated in the right panel of Fig. 8.9. Moreover, since the Green function is
updated iteratively, the correct ordering of the orbital energies does not lead to charge
transfer (see Fig. 8.10), but rather to a a small rearrangement of the electron density at
the interface.

Due to the numerical cost of sc-GW for systems of this size, the calculations for
the TTF-TCNQ dimer were performed with a Tier 1 basis set. This is not enough to
obtain converged quasi-particle energies. However, according to the convergence tests
reported in Fig. 7.1, one may expect deviations smaller than 0.3-0.5 eV between Tier 1
values for the sc-GW ionization energy and the corresponding converged value. These
differences would not affect the amount of charge transfer for this system.

8.4 SUMMARY

In summary, for the systems considered here the total energy and the spectral func-
tion are independent of the starting point, and conservation laws are satisfied at self-
consistency. Therefore, sc-GW total energies based on the Galitskii-Migdal formula
facilitate an unbiased assessment of ground-state and structural properties of molecules.

For the first ten atoms in the periodic table and for a couple of light dimers, the total
energy agrees better with full-CI calculations at self-consistency, as compared to G0W0

calculations. This is attributed to the inclusion of kinetic correlation energy, absent
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in G0W0. For a small set of diatomic molecules, binding energies, bond lengths, and
vibrational frequencies have been investigated to benchmark the accuracy of the sc-GW
ground state. The bond lengths improve at self-consistency, but still have an accuracy
comparable to other perturbative methods such as EX+cRPA. sc-GW binding energies
typically underestimate the experimental reference data and do not substantially im-
prove over G0W0. Vibrational frequencies evaluated from perturbative methods are
very sensitive to the choice of the starting point. Self-consistent GW improves over
G0W0@HF, but is not as accurate as G0W0@PBE and G0W0@PBE0. These results are
somehow in contrast with the common belief – based on previous studies for the homo-
geneous electron gas [193, 201, 202] – that sc-GW total energies should have an accuracy
comparable to quantum Monte Carlo calculations. The deviation from the experimental
reference data permits us to quantify the importance of including higher-order cor-
relation and exchange diagrams to achieve an accurate description of the structural
properties of molecules.

The dipole moment for a set of hetero-atomic dimers was investigated to quantify the
accuracy of the sc-GW density. Compared to HF and PBE, the sc-GW dipole moments
are found in better agreement with experiment, similarly to PBE0. As prototypical
charge-transfer compound, I considered the TTF-TCNQ dimer, relevant for organic
electronics applications. For the TTF-TCNQ dimer, sc-GW provides no charge transfer
between the two molecules, in agreement with expectations based on CCSD(T), whereas
in PBE a spurious charge transfer occurs due to the misalignment of the frontier orbitals
of TTF and TCNQ. This suggests that sc-GW might be an accurate method to describe
charge-transfer compounds and hetero-junctions, where the relative ordering of the
frontier orbitals influences the charge transfer at the interface.



9 THE BOND-BREAKING PUZZLE:
MANY-BODY VERSUS

DENSITY-FUNCTIONAL THEORY

In this Chapter, I extend the study of the ground-state properties of molecules in the
GW approach by considering dimers in the dissociation limit. Due to the strong multi-
reference character of the many-body wave function at large interatomic separation, a
quantitative description of the dissociation of covalently-bonded molecules remains
a challenge for most electronic-structure approaches. The correlation energy arising
from the multi-Slater-determinant character of the wave function – generally referred to
as “static correlation” in quantum chemistry – dominates the dissociation regime. The
capability of a method to capture static correlation is, therefore, crucial for achieving a
proper description of the dissociation of covalently bonded systems. In the following, I
address the difference between density-functional theory (DFT) and many-body per-
turbation theory (MBPT) for the dissociation energy of diatomic molecules and ask the
questions: Given a fixed set of diagrams for the electron-electron interaction, will the
DFT and the MBPT framework give the same result? And if not, which one is better? To
answer these questions the paradigmatic case of H2 dissociation is considered.

In the past, DFT and MBPT have been compared directly in the exchange-only
case [91]. In MBPT this corresponds to the Hartree-Fock approach, whereas in DFT
a multiplicative Kohn-Sham (KS) potential is constructed by means of the optimized
effective potential approach (OEP) [30]. However, this comparison is mostly of academic
interest, because electron correlation is not included. As it will be demonstrated in the
following, the comparison between DFT and MBPT can be extended to encompass
correlation using exact-exchange plus correlation in the random-phase approximation
to DFT [70, 77, 236, 237], and the GW approach to MBPT [14, 121]. The exchange-
correlation diagrams in both approaches are topologically identical (see Fig. 4.5), but in
RPA they are evaluated with a non-interacting KS and in GW with an interacting Green
function. The implications of this similarity between RPA and the GW approximation
have been presented in Sec. 4.6. To illustrate the impact of these differences, the bond-
breaking/formation regimes in the binding curves of H2 will be discussed. To avoid
starting-point effects both approaches are iterated to self-consistency.
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9.1 EVALUATION OF THE SC-RPA TOTAL ENERGY

The RPA correlation potential was determined following the direct minimization scheme
of Yang et al. [53]. The basic idea of this approach consists in introducing a basis for
the representation of the KS potential, to simplify the numerical treatment of the OEP
problem. The introduction of a set of Gaussian basis functions {gi(r)} permits one to
expand the KS exchange-correlation potential as [53]:

vxc(r) = v0(r) +
∑

i

bigi(r) , (9.1)

where v0 is a fixed reference potential, and bi are real coefficients. By virtue of the
Hohenberg-Kohn theorem, the coefficients bi can in turn be obtained by a direct uncon-
strained minimization of the total energy functional, i.e.:

∂Exc[{φi}]
∂bi

= 0 . (9.2)

The resulting coefficients determine the exchange-correlation potential corresponding
to the energy functional Exc. The orbitals and eigenvalues obtained from this procedure
were used to evaluate the sc-RPA total energy from Eq. 4.23. The reader is referred to a
previous publication for details of the sc-RPA implementation [238].

To facilitate a term-by-term comparison between sc-GW and sc-RPA total energies,
one may separate ERPA

c into the Coulomb correlation energy URPA
c and the kinetic

correlation energy TRPA
c . URPA

c is given by the λ = 1 part of the RPA correlation energy,
i.e.:

URPA
c = −

∫ ∞

0

dω

2π
Tr

[ ∞∑

n=2

(χs(iω)v)
n

]
= EGWc [Gs] , (9.3)

where EGWc is the last term of Eq. 7.6. The kinetic correlation energy can thus be
expressed as TRPA

c = ERPA
c − URPA

c . The total kinetic energy in sc-RPA is then given by:

TRPA = Ts + TRPA
c . (9.4)

With this reorganization of terms, the kinetic energy in sc-GW can be directly compared
to TRPA, and similarly EGWc to URPA

c . Now the only factor responsible for the difference
in these different pairs of terms arises from the difference in the input Green functions
used to evaluate them.
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9.2 POTENTIAL-ENERGY CURVE OF H2: SC-RPA AND

SC-GW

I now turn to an assessment of sc-RPA and sc-GW for the potential-energy curve of
H2. Figure 9.1 reports the total energy of H2 for different flavors of GW and RPA. For
comparison, the full configuration interaction (full-CI) potential-energy curve of H2

[229] – that provides an exact reference for this system – is reported. I also report the
total energy of H2 evaluated from renormalized second-order perturbation theory (rPT2)
[77, 85]. As reported previously [47, 77, 93, 239], non-self-consistent RPA overestimates
the total energy of H2 at the equilibrium bond length. Around the equilibrium distance,
the RPA total energy based on exact exchange (OEPx) and sc-RPA are almost identical
and overestimate by approximately 0.8 eV, compared to full-CI. At intermediate bond
distances and in the dissociation region a lowering of the sc-RPA energy compared
to RPA@OEPx is observed. The spurious “bump” [77, 93], present in all RPA calcula-
tions for H2 and other covalently bonded molecules, is reduced in sc-RPA but is still
present. The total energy stays below the full-CI energy throughout, indicating a general
overestimation of the bonding and dissociation regions.

In agreement with Stan et al. [104], sc-GW provides an accurate total energy for H2

close to equilibrium. For the Galitskii-Migdal framework, self-consistency is crucial
as G0W0@HF and G0W0@PBE largely overestimate the total energy. In contrast, the
Klein functional evaluated with the HF Green function (RPA@HF) provides similar
results to sc-GW . sc-RPA and sc-GW thus provide a qualitatively similar description
of the energetics of the covalent bond of H2, which results in a slight overestimation of
the total energy. However, sc-GW is in better agreement with full-CI. The inclusion of
higher-order exchange-correlation diagrams in the PBE-based rPT2 potential-energy
curve, improves the description of the total energy at the equilibrium bond lengths
which are found in excellent agreement with full-CI. Most interestingly, the sc-GW
energy is higher than the sc-RPA one. This is in contrast to the exchange only case, in
which the HF total energy is always lower than (or equal for a two electron system) the
OEPx energy [30]. This is expected, as HF is variational and the local potential in OEPx
provides an additional constraint that increases the energy. Conversely, the total energy
in sc-GW has to be higher than in sc-RPA, because the variational procedure yields a
maximum at the self-consistent Green function [99, 100].

In the dissociation region, sc-RPA and sc-GW deviate markedly. For sc-RPA the
dissociation energy is lightly too negative, but in rather good agreement with the full-CI
energy. sc-GW , on the other hand, fails dramatically in the dissociation limit and with
24.5 eV underestimates the total energy considerably. The inclusion of more diagrams
does not help in this case, and rPT2@PBE and rPT2@PBE0 also underestimate the
dissociation energy. On the plus side, sc-GW dissociates monotonically and therefore
does not show the unphysical “bump” present in all RPA-based approaches. Again,
both non-self-consistent G0W0@HF and G0W0@PBE energies give better agreement



104 The bond-breaking puzzle: many-body versus density-functional theory

Figure 9.1: Total energy (eV) of the H2 molecule as a function of bond length (Å). Different flavors
of GW and RPA are shown compared to PBE, rPT2 and accurate full configuration interaction
(full-CI) calculations taken from Ref. [229]. Hartree-Fock (HF) and exact-exchange OEP (OEPx)
are identical for H2 and are included for comparison. All calculations were performed using a
Gaussian cc-pVQZ basis set [205].
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Figure 9.2: Left panel: difference between the sc-GW and sc-RPA total energy (∆Etot), the
correlation energy (∆Ec = EGWc − URPA

c ) and the remaining terms (∆(Etot − Ec)). Right panel:
breakdown of the remaining term into the difference of the Hartree (∆EH), the external (∆Eext),
the exchange (∆Ex), and the kinetic energy (∆T ).

with the reference curve than sc-GW .

One could surmise that this qualitatively different behavior originates from the
different treatment of the kinetic energies discussed earlier. Figure 9.2, however, shows
that this is not the case. At equilibrium the kinetic energy in sc-GW differs only slightly
from the sc-RPA kinetic energy defined in Eq. 9.4. This indicates that in the bonding
regime the AC framework correctly reproduces the kinetic energy of an interacting
system. At larger bond distances, the kinetic energy differs increasingly in the two
approaches. However, this effect is compensated by an opposing change in the external
energy that arises from an increasing deviation in the electron densities. The same is
observed for the Hartree and the exchange energy, although the absolute magnitude
of the effect is smaller. The total-energy difference between sc-GW and sc-RPA can be
finally ascribed to the Coulomb correlation energy ∆Ec = EGWc − URPA

c = EGWc [G]−
EGWc [Gs], as the left panel of Fig. 9.2 demonstrates. Close to equilibrium ∆Ec is of the
order of 1 eV, but increases to approximately 4 eV at larger bond lengths. This illustrates
that it matters decisively whether the correlation energy is evaluated with the interacting
sc-GW or the non-interacting sc-RPA Green function.

Why the difference is so pronounced at dissociation is still an open question. A
potential explanation can be found in the inverse dependence of the RPA Coulomb
correlation energy on the gap between the highest occupied and the lowest unoccupied
molecular orbital (HOMO and LUMO, respectively). This is exemplified by the right
panel of Fig. 9.3, which shows the inverse of Uc as a function of the gap for a simplified
two level system. The large value of Uc obtained from sc-RPA for H2 at dissociation can
therefore be traced back to the small HOMO-LUMO gap (left panel of Fig. 9.3) of the
RPA Green function. In contrast, due to the spatial non-locality of the self-energy, the
HOMO-LUMO gap of the HF and GW Green functions is much larger at every given
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Figure 9.3: Left panel: HOMO-LUMO gap extracted from the sc-GW spectral function and
from HF, PBE , and sc-RPA eigenvalues. The HOMO-LUMO gap evaluated from PBE and HF
total-energy differences (∆SCF) is included for comparison. Full configuration interaction (CI)
calculation were done with a aug-cc-pVDZ basis set. Right panel: Inverse of the RPA Coulomb
correlation energy URPA

c for a two-level model as a function of the HOMO-LUMO gap.

bond distance. This leads in turn to a smaller Coulomb correlation energy for sc-GW
and HF-based perturbative methods.

9.3 NATURAL OCCUPATIONS AND THE ROLE OF

SPIN-SYMMETRY

As discussed in Sec. 3.3, the density matrix may provide insightful information on the
nature of electronic correlation and on the dissociation of diatomic molecules. For H2,
the natural orbitals and the corresponding occupation numbers – i.e., the eigenvectors
and eigenvalues derived from the diagonalization of the reduced single-particle density
matrix – can be derived from full-CI, which provides an exact reference for this system
in the complete basis set limit.

In the left panel of Fig. 9.4, the first two natural occupations obtained from sc-GW
(nsc−GW

1 and nsc−GW
2 ) and full-CI (nCI

1 and nCI
2 ) are reported for several values of the H2

bond length. The full-CI occupations deviate from unity at all bond lengths, reflecting
the multi-Slater-determinant nature of the many-body wave function. For bond lengths
far from the equilibrium geometry, the deviation from integer occupation increases and,
at dissociation, the first two natural occupation numbers become degenerate. As in
full-CI, the sc-GW natural occupations are always fractional and deviate increasingly
from integer values for larger bond lengths. However, the degeneracy of the natural
occupations is never achieved. This suggests that sc-GW describes the static correlation
characteristic of the dissociation limit of covalent bonds poorly.
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Figure 9.4: Natural occupation numbers of the first two natural orbitals (n1 and n2) of H2

evaluated from full configuration interaction (full-CI), spin-restricted sc-GW (left) and spin-
unrestricted sc-GW (right).

To achieve an improved description of the dissociation limit, one can proceed analo-
gously to the unrestricted-Hartree-Fock case (UHF) [7]. In UHF, different spin-orbitals
(corresponding to spin-up and spin-down electrons) do not necessarily have the same
spatial distribution. A drawback of UHF method is that the resulting wave function
localizes the spin-up and spin-down electrons on different atoms (e.g., spin-up on the
right atom, and spin-down on the left atom). In other words, the wave function is not
anti-symmetric upon exchange of two electrons, i.e., it is not fermionic. The unrestricted
solution most often coincides with the restricted-Hartree-Fock (RHF, or simply HF) one –
in which spin-up and spin-down orbitals have the same spatial distribution. For H2, the
restricted- and unrestricted-HF solutions coincide for bond lengths shorter than 1.2 Å,
often denoted as Coulson-Fisher (CF) point [240]. At distances larger than the CF point,
UHF starts to differ from RHF and provides a larger (i.e., more negative) total energy,
and a correct description of the dissociation energy. In other words, at bond lengths
larger than the Coulson-Fisher point, it is energetically more favorable to break the spin
symmetry and localize the spin-up and spin-down electrons on different atoms.

The UHF dissociation energy equals twice the energy of the free atom (0.5 Ha, or
∼ 13.60 eV), as illustrated in panels (b) and (d) of Fig. 9.5. Therefore for H2, and
similarly for all σ-bonded systems, UHF gives the correct dissociation energy, whereas
RHF underestimates the dissociation limit.

In analogy to UHF, a spin-dependent formulation of sc-GW allows the Green function
to assume different spatial distributions for the spin-up and spin-down components.
This procedure will be denoted in the following as unrestricted sc-GW (Usc-GW ).
The behavior of the Usc-GW total energy is qualitatively similar to the UHF case, as
illustrated in panels (a) and (b) of Fig. 9.5: for bond lengths close to equilibrium, the sc-
GW and Usc-GW total energies are identical. At larger distances, on the other hand, the
unrestricted calculation provides a qualitatively different behavior at dissociation. As in
UHF, the dissociation energy of Usc-GW is twice the sc-GW energy of a free H atom (∼
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Figure 9.5: Binding energy (eV) of the H2 molecule as a function of bond length (Å) evaluated
from spin-restricted and unrestricted sc-GW (a), Hartree-Fock (b), and PBE-based rPT2 (c). The
corresponding sc-GW and Hartree-Fock total energies curves are reported in panels (c) and (d),
respectively. The full configuration interaction (full-CI) potential-energy curve (reproduced from
Ref. [229]) is included for comparison.

0.514 Ha, or ∼ 13.987 eV), as illustrated in Fig. 9.5. Therefore, also Usc-GW dissociates
correctly, as demonstrated by the degeneracy of the first two natural occupation numbers
(see Fig. 9.4). The total energy of the individual H (panel (c) of Fig. 9.5) atoms however
is slightly overestimated as compared to the exact reference due to the well known
self-screening (or self-correlation) error of sc-GW [81, 241, 242], and is responsible
for the overestimation of the total energy in Usc-GW at large interatomic separations.
The right panel of Fig. 9.4 shows that in the unrestricted case, the sc-GW natural
occupation numbers correctly reach degeneracy at dissociation. A discontinuity in the
first derivative of the natural occupations is observed at the Coulson-Fisher point and
marks the transition to the spin-symmetry broken ground state. Similar improvement
are also observed for rPT2 based on unrestricted PBE (panel (c) in Fig. 9.5). In this
case, however, the (partial) removal of the self-screening error throught the inclusion of
SOSEX diagrams improves the free-atom total energy. The resulting unrestricted rPT2
potential-energy curve is in good agreement with full-CI over the whole range of bond
lengths considered.

9.4 SUMMARY

In summary, I have compared MBPT in the GW approximation to DFT in the RPA.
The density-functional description was found superior at dissociation, yielding a total
energy in qualitative agreement with the exact energy along the entire dissociation curve.
These results illustrate how MBPT and DFT based approaches deal with multi-reference
ground-states. In a DFT-based framework the closure of the (KS) HOMO-LUMO gap is
in part responsible for the improved description at dissociation, i.e., static correlation is
better accounted for in sc-RPA, than in sc-GW . The same effect in Green function theory
has to be achieved by the right (potentially infinite) set of diagrams. The inclusion
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of higher-order exchange-correlation diagrams through the rPT2 approach led to an
excellent total energy at equilibrium geometries, but it did not improve the description
at dissociation for restricted calculations. A priori, it is not known which set of Feynman
diagrams may improve the description of static correlation. In conclusion, static and
local approximations of exchange-correlation potentials – as opposed to non-local,
frequency dependent self-energy approximations – are more effective in describing the
dissociation regime of covalently bonded molecules.

How to properly describe the dissociation regime – or alternatively, electronic config-
urations characterized by a multi-Slater-determinant wave function – in Green function
based approaches remains an open question. The dissociation energy H2 is strongly
improved for spin-symmetry-broken calculations based on HF, sc-GW , and rPT2. On the
other hand, the resulting ground-state wave function is not of fermionic character. There-
fore, future efforts should be focused on the development of the beyond-GW schemes
(e.g., vertex corrections) capable of capturing the static correlations that dominates the
dissociation regime, without resorting to spin-symmetry-broken calculations.





10 ASSESSMENT OF GW METHODS FOR

PHOTOEMISSION PROCESSES IN

MOLECULES

In this Chapter, the performance of GW methods for the description of excitation
energies is investigated for a set of molecules, at different levels of self-consistency.
The non-self-consistent GW method (G0W0), simple self-consistency in the eigenvalues
(ev-scGW ), partial self-consistency with fixed screened Coulomb interaction (sc-GW0),
full self-consistency in both G and W (sc-GW ) and – as an attempt to go beyond GW –
G0W0 plus second-order exchange (G0W0+2OX) are considered for benzene, pyridine,
and the diazines: pyridazine, pyrimidine, and pyrazine. The ground-state geometries
of all molecules are illustrated in Fig. 10.1.1 Benchmark studies of GW methods have
typically focused only on the values of the ionization potentials (IP) and/or fundamental
gaps of the systems of interest. In contrast, here it will be examined the whole spectrum
as well as the predicted character of the frontier orbitals.

To extend this benchmark to a larger set of molecules, I will report calculations
of the first ionization energy for a set of 30 closed-shell molecules, and of the full
excitation spectrum of five molecules relevant for photo-voltaic applications: thiophene,
naphthalene, benzothiazole, 1,2,5-thiadiazole, and tetrathiafulvalene.

10.1 A HIERARCHY OF THEORETICAL CONSISTENCY

Owing to the computational cost of sc-GW calculations, a range of GW schemes, from
non-self-consistent to partially self-consistent, have emerged. These constitute a hier-
archy of theoretical consistency, in terms of properties that are considered desirable
for a generally applicable electronic-structure approach, including: (i) independence
of the starting point; (ii) satisfaction of conservation laws for the number of particles,
momentum and total energy [102, 169]; (iii) inclusion of exact-exchange and dynamical-
correlation effects consistently in the ground state.

Perturbative, self-consistent, and partially self-consistent GW methods have been

1Here and in the rest of this Chapter all geometries are relaxed with the PBE exchange-correlation functional
with a Tier 2 basis set.
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Figure 10.1: Geometries of benzene, pirydine, pyridazine, pyrimidine and pyrazine, optimized
at the DFT level with a PBE exchange-correlation functional in a Tier 2 basis set.

introduced in Chap. 4. In the following, their classification in terms of points (i)-(iii) will
be recalled for the reader’s convenience. The lowest rung in this hierarchy is the widely
used G0W0 approach, which does not satisfy points (i)-(iii). In this approach, the quasi-
particle (QP) excitation energies are obtained from first-order perturbation theory as
corrections to the eigenvalues from density-functional theory (DFT). Despite the limited
validity of the first-order perturbative treatment, G0W0 often yields excellent agreement
with experiment. However, the non-self-consistency gives rise to a dependence of the
G0W0 results on the DFT starting point and to other undesirable shortcomings that have
been discussed in detail in Sec. 4.2.

The second rung in the hierarchy are partially self-consistent GW schemes, in which
the quasi-particle energies are updated in the construction of the self-energy operator
[57]. The ev-scGW scheme has been shown to yield better results thanG0W0 calculations
based on a semi-local starting point for the first ionization energy of molecules [124,
175, 243, 244]. In the quasi-particle self-consistent GW (QP-scGW ) method – that will
not be considered here – proposed by Faleev, van Schilfgaarde, and Kotani, the single-
particle wave functions are updated by optimizing the starting point with respect to
the GW perturbation [177, 178]. In this scheme the orbitals are updated by solving
the quasi-particle equation with a Hermitian approximation to the GW self-energy.
This procedure has been applied successfully to a variety of systems, including d- and
f -electron systems [177–179, 186]. However, both ev-scGW and QP-scGW may still
have a considerable starting-point dependence [192]. They also do not satisfy points (ii)
and (iii).

The third rung in the hierarchy is a partially self-consistent scheme, obtained by
combining a self-consistent G with a non-self-consistent W , sc-GW0 [245]. This scheme
incorporatesGW exchange and dynamical-correlation effects in the ground state because
the Green function is updated (point iii) and satisfies the particle-number-conservation
law (point ii). However, some starting-point dependence is still expected, owing to the
non-self-consistent W0.

The fourth and highest rung in the hierarchy is sc-GW , in which the Dyson equation
is iterated. This is the only GW method that satisfies properties (i)-(iii). Full self-
consistency is the only way to eliminate the starting-point dependence completely, and
to describe excited- and ground-state properties at the same level of theory. In the
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HOMO HOMO-1 HOMO-2 HOMO-3
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Table 1.1: Frontier orbital character of the azabenzenes evaluate from HF, DFT and different levels
of GW calculations. Results in agreement with experiment are shaded.

Pyridine Pyridazine Pyrimidine Pyrazine
Reference n-π-π [??] n-π-π-n [??] n-π-n-π [??] n-π-n-π [??]
PBE n-π-π n-n-π-π n-n-π-π n-π-n-π
PBEh n-π-π n-π-π-n n-π-n-π n-π-n-π
HF π-π-n π-π-n-n π-n-π-n π-n-π-n
G0W0@PBE n-π-π n-π-π-n n-π-n-π n-π-n-π
G0W0@PBEh π-n-π n-π-π-n n-π-n-π n-π-n-π
G0W0@HF π-π-n n-π-π-n n-π-π-n π-n-π-n
ev-scGW@PBE π-n-π n-π-π-n n-π-π-n n-π-n-π
ev-scGW@HF π-n-π n-π-π-n n-π-π-n π-n-π-n
scGW0@PBE π-n-π n-π-π-n n-π-n-π n-π-n-π
scGW0@HF π-n-π n-π-π-n n-π-π-n π-n-π-n
sc-GW π-n-π n-π-π-n n-π-π-n π-n-π-n
G0W0@PBE+2OX π-n-π n-π-π-n n-π-π-n π-n-π-n
G0W0@PBEh+2OX π-n-π n-π-π-n n-π-π-n π-n-π-n
G0W0@HF+2OX π-n-π n-π-π-n π-n-π-n π-n-π-n

spectral function (eq. 8). A complete account of the implementation of sc-GW in FHI-
aims is given in Ref. 60. The sc-GW spectra of benzene and the azabenzenes are shown
in Figures 9-13. The sc-GW results are insensitive to the starting point and we obtain the
same final spectrum regardless of whether the calculation is started from PBE or from
HF. Overall, sc-GW provides a better description of the QP energies than G0W0@PBE,
G0W0@HF, ev-scGW , and sc-GW0@HF for the systems considered here. However, its
performance is not as good as one might expect, as it fails to reproduce some important
qualitative features of the spectra, such the spectral shape and the ordering of the
frontier orbitals of pyridine, pyrimidine, and pyrazine (see Table 1.1). An appropriate
choice of the starting point for G0W0 or sc-GW0, may correctly reproduce these features,
outperforming sc-GW . This is reflected by the lower MAE (Table 2) of G0W0@PBEh
and sc-GW0@PBE. Interestingly, the sc-GW spectra resemble those of the HF-based
schemes with respect to the orbital ordering in the frontier region. In this respect, the
non-self-consistent G0W0@PBEh and the partially self-consistent sc-GW0@PBE seem to
capture or otherwise compensate for the missing correlation in sc-GW . This is possibly
due to a fortunate error cancellation, whereby the overscreening in the DFT based W0
compensates for neglecting the vertex function. Now, one may ask whether including
additional Feynman diagrams would lead to an improved description of the correlation
energy, resulting in better agreement with the PES. We therefore examin in the following
such a way of going beyond the GW approximation.
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Figure 10.2: Orbital character of the four highest occupied molecular orbitals of pyridine.

following, each rung of the hierarchy will be investigated and benchmarked for benzene
and the azabenzenes.

10.2 THE AZABENZENES

Benzene and the azabenzenes are the basic building blocks of polycyclic aromatic
hydrocarbons (PAHs), π-conjugated oligomers, and many organic semiconductors and
dyes. They embody the basic physics of such systems including the strong correlation
effects in aromatic π-systems [246–248] and the self-interaction effects introduced by
localized nitrogen lone pairs [175, 249]. The four highest occupied molecular orbitals
of pyridine, illustrated in Fig. 10.2, exemplify the alternation of π-orbitals and n-lone
pairs characteristic of the azabenzenes set. The symmetry and spatial distribution of
the frontier orbitals affect the formation of chemical bonds, photoexcitation, and charge
transfer processes. Therefore, in the context of photovoltaics, it is important not only
to predict the IP correctly but also to reproduce the character of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).

Additionally, another advantage of these systems is that they are well-characterized
experimentally [250–265] and well-studied theoretically by multi-reference configura-
tion interaction [266–270], outer-valence Green function methods [271–273], and coupled
cluster [274]. For an unbiased assessment, it would be desirable to benchmark GW

against higher level theories for the entire excitation spectrum, since in experiment the
distinction between vertical and adiabatic ionization energies is difficult and vibrational
effects are always present. However, the scarcity of theoretical benchmarks for the
the ionization energies of molecules makes comparison to experiment unavoidable.
For benzene and the azabenzenes, however, the effects of zero-point motion on the
ionization energies is small. As an example, for Benzene the zero-point motion should
not affect the first ionization energy by more than 70 meV based on recent CCSD(T)
calculations at basis set extrapolation [6].

In the following the electronic structure of benzene, pyridine, and the diazines are
evaluated with: (i) semi-local and hybrid DFT (ii) G0W0, (iii) ev-scGW , (iv) sc-GW0,
(v) sc-GW . The results are compared to gas phase photoemission spectroscopy (PES)
experiments and to reference calculations. Surprisingly, the accuracy of the spectral
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Table 10.1: Character of the highest occupied states of the azabenzenes evaluated from HF, PBE,
PBE0, and different levels ofGW . Results in agreement with experiment are shaded. Experimental
references are taken from: (a) Ref. [253, 254, 257–259, 270, 271, 275], (b) Ref. [254, 257, 271, 272], (c)
Ref. [255, 257, 258, 260, 261, 265, 268, 271, 272], (d) Ref. [250, 257, 258, 260, 269, 271].

Pyridine Pyridazine Pyrimidine Pyrazine
Reference n-π-πa n-π-π-nb n-π-n-πc n-π-n-πd

PBE n-π-π n-n-π-π n-n-π-π n-π-n-π
PBE0 n-π-π n-π-π-n n-π-n-π n-π-n-π
HF π-π-n π-π-n-n π-n-π-n π-n-π-n
G0W0@PBE n-π-π n-π-π-n n-π-n-π n-π-n-π
G0W0@PBE0 π-n-π n-π-π-n n-π-n-π n-π-n-π
G0W0@HF π-π-n n-π-π-n n-π-π-n π-n-π-n
ev-scGW@PBE π-n-π n-π-π-n n-π-π-n n-π-n-π
ev-scGW@HF π-n-π n-π-π-n n-π-π-n π-n-π-n
scGW0@PBE π-n-π n-π-π-n n-π-n-π n-π-n-π
scGW0@HF π-n-π n-π-π-n n-π-π-n π-n-π-n
sc-GW π-n-π n-π-π-n n-π-π-n π-n-π-n
G0W0@PBE+2OX π-n-π n-π-π-n n-π-π-n π-n-π-n
G0W0@PBE0+2OX π-n-π n-π-π-n n-π-π-n π-n-π-n
G0W0@HF+2OX π-n-π n-π-π-n π-n-π-n π-n-π-n

properties of benzene and the azabenzenes does not match the expectations based on the
hierarchy established above. In particular, for certain starting points G0W0 and sc-GW0

outperform sc-GW , providing spectra in better agreement with PES.

NON-SELF-CONSISTENT G0W0

Within G0W0, the self-energy and the quasi-particle energies are evaluated non-self-
consistently, as described in Sec. 4.3, based on KS or HF eigenvalues and orbitals. To
estimate the accuracy of the QP energies, the mean absolute error (MAE) is defined as:

MAE =
1

N

N∑

n=1

∣∣εexp
n − εQP

n

∣∣ (10.1)

with N being the number of distinct peaks in the experimental spectra, i.e., the HOMO
to HOMO-9 peaks for benzene and the azabenzenes.

The starting-point dependence for all approaches is quantified estimating the mean
difference in the n-th QP energy obtained from the two extreme starting points in terms
of the amount of exact-exchange, i.e., PBE and HF:

∆SPD =
1

N

N∑

n=1

∣∣∣εQP
n,HF − εQP

n,PBE

∣∣∣ (10.2)

The results are given in Tables 10.2 and 10.3. Figure 10.3 shows the results of G0W0

calculations based on PBE, PBE0, and HF starting points for pyridine. The spectra of
benzene, pyridazine, pyrimidine, and pyrazine, are reported in Figs. E.1-E.4 in Appendix
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Table 10.2: Mean absolute errore (MAE, obtained from Eq. 10.1) in eV for the QP energies of
benzene and the azabenzenes obtained with different DFT and GW methods, as compared to
experiment (Ref. [253, 257]). All values are in eV.

Benzene Pyridine Pyridazine Pyrim. Pyraz. Average
PBE 3.75 3.80 3.82 3.76 3.73 3.77
PBE (shifted) 0.80 0.40 0.38 0.51 0.56 0.53
PBE0 2.17 2.21 2.20 2.18 2.32 2.22
PBE0 (shifted) 0.21 0.18 0.08 0.06 0.17 0.14
HF 1.85 1.93 1.68 1.63 1.70 1.76
G0W0@PBE 0.39 0.34 0.36 0.40 0.40 0.38
G0W0@PBE0 0.18 0.19 0.16 0.12 0.22 0.17
G0W0@HF 1.07 1.11 1.06 0.99 1.01 1.05
sc-GW 0.45 0.31 0.25 0.25 0.28 0.31
sc-GW0@HF 0.92 0.95 0.93 0.88 0.88 0.91
sc-GW0@PBE 0.35 0.27 0.27 0.22 0.24 0.27
ev-scGW@HF 0.99 1.00 1.12 0.91 0.91 0.99
ev-scGW@PBE 0.53 0.57 0.58 0.66 0.52 0.57

E. The orbital ordering predicted by G0W0 is fairly robust to the mean-field starting
point, although considerable differences in the QP energies are observed for different
starting points. One discrepancy with experiment that particularly stands out in all
G0W0 spectra is that the HOMO-2/HOMO-3 (degenerate for benzene) are too close to
the HOMO-4 (see Fig. E.1 in Appendix E), possibly due to the missing higher-order
exchange diagrams. It should also be noted that the amount of EX required for obtaining
the best agreement with PES for the IP is about 40% (not shown for brevity). However,
with this amount of EX the QP energies of most orbitals, other than the HOMO, are too
low compared to the PES.

For the azabenzenes the QP corrections to the GKS eigenvalues, εQP
n − εGKS

n , are
generally more negative for n-orbitals than for π-orbitals when starting from PBE or
PBE0, due to the effect of the self-interaction error for the localized n-type orbitals. On
the other hand, the trend is inverted for the HF starting point, that is not affected by
the self-interaction. This leads to a reshuffling of the energy positions of these orbitals
in the G0W0 calculation, as compared to their ordering in the underlying mean-field
calculation. For all azabenzenes, changes in orbital ordering are observed as a function

Table 10.3: Dependence on the starting point for different GW methods. All values are in eV.

G0W0 ev-scGW sc-GW0 sc-GW G0W0+2OX
Benzene 1.32 0.41 0.87 0.0 0.72
Pyridine 1.37 0.41 0.64 0.0 0.75
Pyridazine 1.42 0.42 0.66 0.0 0.77
Pyrimidine 1.40 0.40 0.66 0.0 0.94
Pyrazine 1.38 0.40 0.70 0.0 0.80
Average 1.38 0.40 0.70 0.0 0.80
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Figure 10.3: Spectra of pyridine calculated with DFT, Hartree-Fock, and G0W0 based on dif-
ferent starting points, (Gaussian broadened by 0.4 eV), compared to gas phase PES (Ref. [253]).
Illustration of the frontier orbital character is also shown.

of the fraction of EX included in the calculation, as reported in Table 10.1.

For pyridine, both the G0W0@PBE and the G0W0@PBE0 spectra are in agreement
with experiment in terms of the spectral shape. In both, the n-orbital is shifted down in
energy with respect to the π-orbitals, as compared to the underlying DFT calculation.
Although the spectral shape of the G0W0@HF spectrum is improved compared HF itself,
a visible distortion is caused by the HOMO-1 and HOMO-2 being nearly degenerate
instead of the HOMO and HOMO-1. Only G0W0@PBE reproduces the reference orbital
ordering of n-π-n.

For pyridazine and pyrazine, the G0W0@PBE spectra are qualitatively more similar
to the PES in terms of the spectral shape (i.e., the positions of the peaks relative to each
other) than theG0W0@PBE0 spectra. However, theG0W0@PBE0 spectra are still in better
quantitative agreement with the PES with respect to the peak positions. For pyrimidine,
only the G0W0@PBE0 spectrum is qualitatively similar to the PES. In terms of orbital
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ordering (see Table 10.1), for pyridazine, G0W0 based on all starting points reproduces
the reference orbital ordering of n-π-π-n. For pyrimidine and pyrazine, G0W0@PBE and
G0W0@PBE0 reproduce the reference orbital ordering of n-π-n-π, whereas G0W0@HF
does not.

Generally, as shown in Table 10.2, the best agreement with experimental ionization
energies is obtained with G0W0@PBE0, which also yields the experimental energy
hierarchy for all molecules, as shown in Table 10.1. Table 10.3 shows that G0W0 suffers
from a severe starting-point sensitivity for all azabenzenes, with an average difference
of approximately 1.38 eV, between HF- and PBE- based G0W0 ionization energies. The
origin of the starting-point dependence in G0W0 can be traced back to differences in the
orbitals and orbital energies, used as input for the self-energy calculation. The screening
of W , being roughly inversely proportional to the occupied-unoccupied transition
energies, is severely affected by the (over-) under-estimation of the HOMO-LUMO gap,
which generally results in the (under-) over-estimation of screening. For instance, in
G0W0 based on a PBE starting point (smaller gaps) the interaction W is typically “over-
screened” whereas, for similar reasons, W is “under-screened” in G0W0@HF (too large
gaps). The (over-) under-screening in turn leads to a systematic error in the description
of the excitation spectrum, as exemplified by the overestimation of the QP energies in
the G0W0@HF spectra reported in Figs. 10.3 and E.1-E.4. As a result, a G0W0 calculation
based on a DFT starting point with the “right amount” of screening may yield valence
spectra in excellent agreement with experiment, as is the case for G0W0@PBE0. I now
proceed to examine to what extent partial self-consistency can alleviate the starting-point
dependence.

PARTIAL SELF-CONSISTENCY IN THE EIGENVALUES

It has been suggested that the starting-point dependence of the G0W0 QP energies may
be reduced by partial self-consistency in the eigenvalues [57, 174]. In the ev-scGW
scheme, the QP equation (Eq. 4.18) is solved iteratively, recalculating the self-energy
with QP energies obtained from the previous iteration of the self-consistency loop. The
ev-scGW scheme is expected to reduce the overestimation of the screening typically
observed in G0W0 based on semi-local DFT (or the underestimation in the case of HF),
as the screened interaction W is now evaluated with occupied-unoccupied transition
energies obtained from a GW calculation. However, since the orbitals are not updated
self-consistently, the starting-point dependence cannot be eliminated entirely. As shown
in Table 10.3, self-consistency in the eigenvalues succeeds in significantly reducing the
starting-point dependence as compared to G0W0, resulting in an average difference of
0.4 eV between the QP energies based on HF vs. PBE. The ev-scGW spectra of pyridine
is reported in Fig. 10.4, whereas the spectra of benzene, pyridazine, pyrimidine, and
pyrazine are shown in Figs. E.5-E.8, respectively, in Appendix E.

Generally, ev-scGW@PBE yields improved IPs, as compared to G0W0@PBE, whereas
ev-scGW@HF yields IPs with similar accuracy to G0W0@HF. It should be noted, how-
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Figure 10.4: Spectra of pyridine calculated from sc-GW , sc-GW0 and ev-scGW based on different
starting points, (Gaussian broadened by 0.4 eV) compared to gas phase PES (from Ref. [253]).
Illustration of the frontier orbital character is also shown.

ever, that evaluating the performance of ev-scGW based only on the IP and/or HOMO-
LUMO gap may give a false impression of an improvement over G0W0. Examining the
entire spectrum reveals that the partial self-consistency in the eigenvalues does not, in
fact, lead to a consistent improvement over G0W0 for benzene and the azabenzenes.
As shown in Table 10.2, the MAE of ev-scGW@HF is similar to that of G0W0@HF and
the MAE of ev-scGW@PBE is worse than that of G0W0@PBE. For all molecules, the
ev-scGW spectra appear overly stretched with respect to the PES, such that large devia-
tions (on the order of 1 eV) from experiment occur for deeper QP states. Moreover, for
most systems the orbital ordering deviates from experimental observations (Table 10.1).

The systematic overestimation of the ev-scGW QP energies can be understood as
a manifestation of the under-screening of the Coulomb interaction W , which now
resembles that of G0W0@HF. Interestingly, the so called, G1W1 scheme, in which only
one eigenvalue update is performed, has been shown to reduce the PBE overscreening
and give comparable results to G0W0 based on a hybrid functional [276]. However,



10.2 The azabenzenes 119

self-consistency ultimately leads to a systematic under-screening in W , as manifested
by the overall overestimation of the QP energies. Therefore, based on this analysis,
partial self-consistency in the eigenvalues cannot be considered as a way to improve
the molecular excitation spectrum over G0W0. The disappointing performance of ev-
scGW emphasizes the importance of updating both eigenvalues and eigenfunctions
self-consistently. I therefore proceed to evaluate the performance of the sc-GW0 scheme,
in which G is computed self-consistently while W remains non-self-consistent.

PARTIALLY SELF-CONSISTENT SC-GW0

Within the sc-GW0 scheme, G is calculated by iteratively solving the Dyson equation
(Eq. 5.26), whereas W0 is kept fixed at the first iteration and used to evaluate the self-
energy throughout the iterative procedure. The QP energies are then extracted directly
from the poles of the self-consistent Green function through the (integrated) spectral
function in Eq. 3.34.

The spectra of benzene and the azabenzenes, obtained with this sc-GW0 scheme,
based on PBE and HF starting points, are shown in Figs. 10.4 and E.5-E.8. It is clear
from a visual inspection of the spectra, as well as from the MAEs in Table 10.2, that
sc-GW0@PBE generally yields QP spectra in better agreement with experiment than
G0W0@PBE. In addition, as shown in Table 10.1, sc-GW0@PBE correctly predicts the
character of the frontier orbitals of the diazines (though not of pyridine). In contrast
to sc-GW0@PBE, sc-GW0@HF yields overly stretched spectra, similar to ev-scGW@HF.
The QP energies are mostly overestimated and considerable deviations from experiment
are observed in the whole spectral region for all molecules. The MAE of sc-GW0@HF,
though somewhat smaller than that of G0W0@HF and ev-scGW@HF, is considerably
larger than that of sc-GW0@PBE.

The significant differences between sc-GW0@PBE and sc-GW0@HF spectra are re-
flected in the average starting-point dependence of 0.70 eV, which is greater than the
starting-point dependence of ev-scGW . This indicates that the eigenvalues used in
the calculation of the screened Coulomb interaction, W , are largely responsible for
the starting-point dependence of G0W0. The update of the wave functions (through
the iterative calculation of G) reduces the starting-point dependence to a lesser extent
if the screening is not updated. This means that although the self-consistency in G

incorporates many-body (dynamic) correlation effects and exact-exchange in the ground
state, leading to a consistent description of excitations and ground state, a judicious
choice of the DFT starting point is still necessary for W0. Starting from HF leads to
underscreening of the Coulomb interaction and to a deterioration of the QP spectra, sim-
ilarly to G0W0@HF and ev-scGW@HF. In contrast, sc-GW0@PBE can be said to “enjoy
the best of both worlds” in the sense that it benefits from an improved treatment of the
ground-state electronic structure through the self-consistency in G, while preserving the
PBE screening in the non-self-consistent W0. Due to the underestimation of the HOMO-
LUMO gap in PBE-based calculations, the resulting screened Coulomb interaction is
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slightly overscreened. It has been argued that this effect might mimic the missing vertex
corrections (i.e., the electron-hole contribution to the dielectric function), which explains
the success of sc-GW0@PBE [173, 277]. One may expect other partially self-consistent
approaches in which the single-particle wave functions are updated through the approx-
imate solution of the QP equation (e.g. the quasi-particle self-consistent GW approach
[178, 278], or G0W0 based on the Coulomb-hole plus screened exchange (COHSEX)
approximation [279]) to yield QP spectra of similar quality to sc-GW0@PBE. I now turn
to self-consistent GW to evaluate the effects of the self-consistent computation of the
screening on the spectral properties of benzene and the azabenzenes.

FULLY SELF-CONSISTENT GW

As demonstrated above, the performance of non-self-consistent and partially self-
consistent GW schemes is contingent on choosing a good starting point. Therefore, the
only way to eliminate the starting-point dependence completely and to truly evaluate
the quality and validity of the GW approximation itself is self-consistency [56].

The sc-GW spectra of benzene and the azabenzenes are shown in Figs. 10.3 and E.1-
E.4. The sc-GW results are insensitive to the starting point and the same final spectrum
is obtained regardless of whether the calculation is started from PBE or from HF. Overall,
sc-GW provides a better description of the QP energies than G0W0@PBE, G0W0@HF,
ev-scGW , and sc-GW0@HF for the systems considered here. However, its performance
is not as good as one might expect, as it fails to reproduce some important qualitative
features of the spectra, such the spectral shape and the ordering of the frontier orbitals of
pyridine, pyrimidine, and pyrazine (see Table 10.1). An appropriate choice of the starting
point for G0W0 or sc-GW0, may correctly reproduce these features, outperforming sc-
GW . This is reflected by the lower MAE (Table 10.2) of G0W0@PBE0 and sc-GW0@PBE.
Interestingly, the sc-GW spectra resemble those of the HF-based schemes with respect
to the orbital ordering in the frontier region. In this respect, the non-self-consistent
G0W0@PBE0 and partially self-consistent sc-GW0@PBE seem to capture or otherwise
compensate for vertex corrections beyond sc-GW . This is possibly due to a fortunate
error cancellation, whereby the overscreening in the PBE based W0 compensates for
neglecting the vertex function.

Now, one may ask whether including additional Feynman diagrams would lead to
an improved description of the correlation energy, resulting in better agreement with the
PES. In the following such a way of going beyond the GW approximation is examined
by introducing second-order exchange diagrams.

G0W0 WITH SECOND-ORDER EXCHANGE

In physical terms, the correlation part of theGW self-energy corresponds to higher-order
direct scattering processes. Higher-order exchange processes, however, are neglected.
The simplest correlation method that treats direct and exchange interactions on an
equal footing is second-order Møller-Plesset perturbation theory (MP2), where both
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Figure 10.5: Second-order exchange diagrams. Dashed lines denote the Coulomb interaction v,
whereas arrows indicates the non-interacting Green function G0.

direct and exchange processes are taken into account up to second-order. It has been
suggested that adding the second-order exchange (2OX) diagram to the self-energy
may correct the self-screening errors in GW , whose effect, like that of SIE, is more
significant for localized states [241]. For the direct term, it is essential to sum over the
so-called ring diagrams to infinite order to avoid divergence for systems with zero
gaps. In contrast, for exchange-type interactions, the second-order exchange diagram,
illustrated in Fig. 10.5 is the dominant contribution to the self-energy and neglecting
the higher-order diagrams does not lead to a divergence. Thus, the G0W0+2OX scheme,
suggested here, is a simple practical correction to the GW approximation. Within this
scheme, the self-energy is written as:

ΣGW+2OX = ΣGW + Σ2OX , (10.3)

where Σ2OX is given in terms of the Green function and the bare Coulomb interaction, v,
as [7]:

Σ2OX = i

∫
d3d4G(1, 3)G(3, 4)v(1, 4)v(3, 2) . (10.4)

The single-particle Green function, G0, is used to evaluate the 2OX self-energy, which
reduces Eq. 10.4 to an expression involving only single-particle orbitals and eigenvalues:

Σ2OX
n,σ (ω) = (np, σ|la, σ)(pl, σ|an, σ)×

×
[

θ(µ− εσp )

ω + εσa − εσi − εσp − iη
+

θ(εσp − µ)

ω + εσl − εσa − εσp + iη

]
, (10.5)

where (np, σ|la, σ) is the two-electron Coulomb repulsion integral over single-particle
orbitals:

(np, σ|la, σ′) ≡
∫
drdr′

ψσ∗n (r)ψσ∗p (r′)ψσ
′

l (r)ψσ
′

a (r′)

|r− r′| . (10.6)

While the G0W0+2OX scheme is physically motivated and conceptually appealing,
its usefulness can only be judged a posteriori, based on its performance, which is here
assessed at the G0W0 level. Figure 10.6 show the G0W0+2OX spectra of pyridine based
on different starting points, compared to the PES experiments. The G0W0+2OX spectra
for the remaining molecules is reported in Figs. E.9-E.12 in Appendix E. Because the



122 Assessment of GW methods for photoemission processes in molecules

Figure 10.6: Spectra of pyridine calculated with G0W0 plus second-order exchange based on HF,
and different DFT starting points, Gaussian broadened by 0.3 eV. The experimental PES spectrum
is reproduced from Ref. [253]. Illustration of the frontier orbital character is also shown.

G0W0+2OX scheme is non-self-consistent, a significant starting-point dependence of 0.8
eV on average is observed (Table 10.3). This starting-point dependence is smaller than
that ofG0W0 but larger than that of the partially self-consistent schemes. Overall, adding
the second-order exchange at the G0W0 level is not worthwhile. It does not alleviate the
starting-point dependence and yields worse agreement with experiment in terms of the
spectral shape (for all molecules) and the ordering of the frontier orbitals of pyridine,
pyrimidine, and pyrazine. To illustrate the effect of the 2OX correction, I compare in
Fig. 10.7 the G0W0@PBE and G0W0@PBE+2OX spectra of benzene. For benzene, the
2OX correction splits the quasi-particle energies of the HOMO-1 and HOMO-2 levels,
which are separated by approximately 0.5 eV in experiment and almost degenerate in
G0W0@PBE. G0W0@PBE+2OX however overestimates the splitting by a factor of 4. This
is possibly a result of using the bare, rather than the screened, Coulomb interaction in
the 2OX self-energy. Second-order screened exchange (SOSEX), in which one of the bare
Coulomb line is replaced by a dressed line (i.e., v is replace by W ), was proposed as
a possible correction of the self-screening error that affects the GW self-energy, and is
therefore expected to improve the spectral properties of molecules and solids – at the
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Figure 10.7: Comparison between the G0W0@PBE and G0W0@PBE+2OX spectra of benzene
Gaussian broadened by 0.3 eV. The experimental vertical ionization energies from Ref. [253] are
shown as vertical dashed lines.

price of a considerably higher computational cost. This calls for further investigation of
vertex correction, which will be pursued in the future.

10.3 IONIZATION ENERGIES OF CLOSED-SHELL

MOLECULES

The accuracy of the sc-GW quasi-particle HOMO was further assessed for a set of
30 closed-shell molecules first put forward by Rostgaard et al. [58]. For brevity the
results are summarized in Fig. 10.8 and in Table 10.4. The reader is referred to the
Appendix C for the actual numerical values. In Ref. [58], sc-GW was based on the

Table 10.4: Mean error (ME), mean absolute error (MAE), and percentage error (PE) of the
ionization energies for the 30 closed-shell molecules shown in Fig. 10.8.

ME MAE PE
sc-GW -0.03 0.31 2.6 %
sc-GW0@HF 0.30 0.37 3.0 %
sc-GW0@PBE -0.14 0.28 2.4 %
G0W0@HF 0.53 0.54 4.4 %
G0W0@PBE -0.57 0.63 5.6 %
G0W0@PBE0 -0.18 0.34 2.9 %
HF 0.75 0.87 6.9 %
PBE -4.46 4.46 60.1 %
PBE0 -2.96 2.96 33.2 %
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Figure 10.8: First vertical ionization energy (VIE) for 30 closed-shell molecules composed of 2
to 6 atoms evaluated from different perturbative and self-consistent approaches. Experimental
values are taken from Ref. [128]. All calculations are performed with a Tier 4 basis set.

frozen-core approximation, whereas in this work core electrons are also treated fully self-
consistently. As for benzene, G0W0@HF tends to overestimate VIEs, while G0W0@PBE
underestimates. sc-GW also slightly underestimates the VIEs, but gives an average
deviation of only 2.6% compared to 5.6% in G0W0@PBE and 4.4% in G0W0@HF. PBE
and HF present two extreme starting points. In PBE the gap between the HOMO and
the LUMO is severely underestimated, while in HF it is considerably overestimated.
This in part explains the behavior of G0W0@PBE and G0W0@HF. Since the screening
strength is inversely proportional to the HOMO-LUMO gap, G0W0@PBE overscreens
and G0W0@HF underscreens, as mentioned before. G0W0@PBE0 reduces the over-
and under-screening error, and produces ionization energies in better agreement with
experiment, with an percentage error of 2.9% which is comparable to sc-GW . These
results lead me to conclude that sc-GW systematically improves the first ionization
energy of the systems considered here as compared to G0W0 based on PBE and HF. On
the other hand, through an appropriate choice of the G0W0 starting point, it is possible
to obtain ionization energies with an accuracy comparable to sc-GW , as reported in the
previous Section for benzene and the azabenzenes. In addition, when G0W0@PBE and
G0W0@HF bracket experimental values, there exists at least one hybrid starting point
that matches the first experimental ionization energy. As compared to perturbative
G0W0 calculations, partially self-consistent sc-GW0 also improves the agreement with
the experimental first VIE, and yields percentage errors of 3% and 2.4% for sc-GW0@HF
and sc-GW0@PBE, respectively.

To demonstrate the general validity of the findings reported in the previous Section for
benzene and the azabenzenes, I now move on to discuss the performance of sc-GW for
the description of the full excitation spectrum for a set of molecules relevant for organic
photo-voltaic applications: thiophene, benzothiazole, naphthalene, tetrathiafulvalene,
and 1, 2, 5-thiadiazole. The molecular geometries – illustrated in Fig. 10.9 – are obtained
from a DFT structural optimization performed with the PBE functional in a Tier 2 basis
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Figure 10.9: Comparison between
theoretical and experimental ver-
tical ionization energies (VIEs)
of thiophene, benzothiazole,
1, 2, 5−thiadiazole, naphthalene, and
tetrathiafulvalene. Experimental
photo-emission data are reproduced
from Refs. [108, 280–283], respec-
tively. The molecular geometries –
optimized with PBE in a Tier 2 basis
set – are reported on the right. G0W0

ionization energies are obtained with
a Tier 4 basis set, the sc-GW ones
with a Tier 2 basis.

set.

For naphthalene the coupled cluster singles doubles with perturbative triples (CCSD(T))
method gives a vertical ionization potential of 8.241 eV [6], which sc-GW underestimates
significantly (7.48 eV). For this molecule, the difference between the vertical and the
adiabatic ionization potential is only 0.1 eV in CCSD(T). For thiophene, CCSD(T) calcu-
lations of the adiabatic ionization energy obtain 8.888 eV [284], in good agreement with
experiment, whereas sc-GW yields 8.45 eV. As for the azabenzenes, zero-point vibration
effects are small and compensate with relativistic corrections. However, in Ref. [284] the
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Figure 10.10: Comparison between sc-GW and G0W0@PBE0 spectral functions for thiophene,
and 1, 2, 5−thiadiazole. Vertical dashed lines denote experimental photo-emission data from
Refs. [108] and [280], respectively.

authors reported that the geometry of the cation differs considerably from that of the
molecule, but did not give values for the vertical ionization energy. It therefore remains
an open question, by how much vertical and adiabatic ionization potentials differ for
thiophene. For benzothiazole, 1, 2, 5-thiadiazole, and tetrathiafulvalene we were not
able to find CCSD(T) calculations for the vertical ionization potential.

Figure 10.9 depicts the comparison between experimental [108, 280–283] and theo-
retical ionization energies evaluated with sc-GW and G0W0 based on the HF, PBE, and
PBE0 starting points. For all molecules, self-consistency provides ionization energies in
agreement with experiment, and a good overall description of the excitation spectrum:
sc-GW leads to an average error of 0.4 eV between the experimental and theoretical
ionization energies, whereas HF- and PBE-based G0W0 differ on average by 0.7 eV.
Interestingly, G0W0@PBE0 provides ionization energies close to sc-GW . Moreover, the
G0W0@PBE0 spectrum is in slightly better agreement with experiment with an average
deviation of 0.3 eV – as recently reported for benzene and the azabenzenes in Ref. [176].

LIFETIMES OF QUASI-PARTICLE STATES

To facilitate the comparison of G0W0@PBE0 and sc-GW , I report in Fig. 10.10 the sc-GW
and G0W0@PBE0 spectral functions of thiophene, and 1,2,5-thiadiazole. As discussed
above, sc-GW and G0W0@PBE0 provide a similar description of the VIEs, which in both
cases agrees well with the experimental references. Nevertheless, the corresponding
spectral functions differ substantially for what concerns the broadening of the quasi-
particle excitations. The quasi-particle peaks in the sc-GW spectral function have a
δ-function-like character in this energy range, which reflects the infinite lifetime of the
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quasi-particle states. On the other hand, in G0W0@PBE0 the lower lying peaks are more
broadened than the corresponding sc-GW peaks, which can be attributed to a finite
quasi-particle lifetime. Similar features are also observed in the G0W0@PBE spectrum of
the benzene molecule reported in Fig. 7.2.

A careful quantitative evaluation of lifetimes would require to properly account for
effects beyond the GW approximation (such as the coupling between electrons and
vibrational modes and the satisfaction of selection rules in the decay process) and goes
beyond the purpose of the present work. Therefore, the following discussion will not
address a quantitative comparison with experimental lifetimes, but will be limited to
explain why even the quasi-particle excitations of small molecules have finite lifetimes
and I will briefly characterize their starting-point dependence.

The physical origin of the lifetime is simple. The hole created in a lower valence
(or core) state by the photoemission process can in principle decay to the HOMO, or
to states energetically close to the Fermi energy. The energy released in this process
has to be converted into an internal excitation of the system, since isolated molecules
cannot dissipate energy. If the released energy is larger than the HOMO-LUMO gap,
a particle-hole pair can be created. This opens up a scattering or decay channel for
the hole, which therefore acquires a lifetime. The energy threshold for electron-hole
formation is then given by ∆ ≡ EGS

HOMO −EGS
gap, with EGS

HOMO and EGS
gap the HOMO level

and the HOMO-LUMO gap of the starting point, respectively. In other words, only
quasi-particle states with an energy below ∆ may decay, and acquire a finite broadening.
On the other hand, if the hole is close to the Fermi energy – as, e.g., in case the HOMO
level is depleted – no decay channel is allowed. Correspondingly, the quasiparticle
lifetime is infinite. This argument is general and does not only apply to GW . What is
particular to G0W0 is that the relevant gap for this process is determined by the starting
point; in this case the DFT functional for the ground state.

To illustrate this effect on the broadening of the quasi-particle peaks, I report in
Fig. 10.11 the spectrum of benzene evaluated with G0W0 based on HF, PBE, PBE-hybrid
(PBEh) with different fraction of exact exchange, and at self-consistency. Values of ∆

for the different exchange-correlation functionals are reported as vertical dashed lines
(in green). PBE has the smallest HOMO-LUMO gap (∼ 5.2 eV) and a noticeable peak
broadening (i.e., short lifetime) is observed at ∼14 eV in the G0W0@PBE spectrum. For
peaks above ∆, the residual broadening stems from the parameter η = 10−4 discussed
in Sec. 7.1. A systematic increase of the broadening is then observed the further a state
lies below ∆. This is consistent with Landau’s Fermi-liquid theory, which predicts an
inverse proportionality between the quasi-particle lifetime τ and the squared of the
quasi-particle energy relative to the Fermi energy µ, i.e., τ−1 ∝ (εQP − µ)2 [86, 285].
Adding exact exchange to the DFT functional and increasing its admixture opens the
HOMO-LUMO gap. The onset of the finite lifetime subsequently moves to lower
energies.

In sc-GW , the broadening of the quasi-particle peaks is consistent with the HOMO-
LUMO gap at theGW level, and the ambiguity of the starting-point dependence is lifted.
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Figure 10.11: Spectral function of benzene on a logarithmic scale evaluated with sc-GW and
G0W0 based on PBE, PBEh with different mixture of exact exchange (EX), and HF. Vertical dashed
lines (in green) denote the energy threshold ∆ for the formation of an electron-hole pair, which
depends explicitly on the HOMO and LUMO levels of the underlying DFT/HF calculation. The
quasi-particle peaks acquire a finite broadening only for states below ∆.

Consequently, for benzene only peaks below −19 eV acquire a small finite broadening.
Based on the sc-GW results, the large broadening observed in theG0W0@PBEh spectrum
can be attributed to the small HOMO-LUMO gap of the underlying PBEh calculation.
The inclusion of a fraction of exact exchange partially ameliorates this problem, but not
fully. This shows that the calculation of lifetimes presents an additional situation in
which – due to the severe dependence on the starting point – resorting to self-consistency
is essential.

10.4 SUMMARY

A benchmark study of the performance of GW methods at different levels of self-
consistency has been conducted for benzene and azabenzenes, as a set of representative
organic molecules. The quality of the calculated spectra was evaluated based on a
comparison to PES experiments, in terms of all valence peak positions, as well as the
frontier orbital character. The accuracy of sc-GW for excited-state properties has further
been assessed for a set of 30 small closed-shell molecules, and 5 molecules relevant for
photo-voltaic applications: thiophene, 1,2,5-thiadiazole, benzothiazole, naphthalene,
and tetrathiafulvalene. For the azabenzenes, which are characterized by localized
nitrogen lone-pair orbitals, the effects of the self-interaction error and of the addition of
EX are considerably more dramatic than for benzene with respect to the ordering of the
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frontier orbitals.
A significant starting-point dependence was found for all non-self-consistent and

partially self-consistent GW schemes. The best agreement with the PES was obtained
with G0W0@PBE0 and sc-GW0@PBE. Unlike partial self-consistency in G, partial self-
consistency in the eigenvalues was found to cause underscreening and deterioration of
the spectra, regardless of the starting point. Although in some cases ev-scGW improved
the IP with respect to G0W0, the ev-scGW spectra generally appeared overstretched as
compared to experiment.

Due to underscreening, the spectra obtained from Hartree-Fock based calculations
are distorted, and systematically overestimate the QP energies for all perturbative
and partially self-consistent schemes analyzed in the present work. One can therefore
conclude that HF is generally inadequate as starting point for the computation of spectral
properties of molecules. Interestingly, no type of partial self-consistency improves on
G0W0@HF for lower lying excitation energies.

Full-self consistency succeeded in eliminating the starting-point dependence, pro-
viding an unbiased reference for the performance of the GW approximation for the
molecules considered in this study. The sc-GW spectra improve the quasi-particle
energies as compared to PBE and HF based G0W0, all ev-scGW calculations, and sc-
GW0@HF. However, G0W0@PBE0 and sc-GW0@PBE provided excitation energies with
an accuracy comparable to sc-GW . In this respect, the success of G0W0@PBE0 may
be explained by a fortunate error cancellation, whereby the “right amount” of DFT
overscreening compensates for neglecting the vertex function. Applying similar con-
siderations, sc-GW0@PBE may be said to “enjoy the best of both worlds”, as it benefits
from an improved treatment of the correlation through the self-consistency in G, while
preserving the PBE overscreening in the non-self-consistent W0.

As an initial foray into the land beyond GW , the effect of adding the second-order
exchange contribution to the self-energy at the G0W0 level has been investigated. The
resulting G0W0+2OX spectra were in worse agreement with experiment than the cor-
responding G0W0 spectra and seemed overstretched to an even greater extent than
the ev-scGW spectra. This may be a result of using the bare, rather than the screened,
Coulomb interaction in the 2OX self-energy. This and the effect of adding the 2OX
self-energy to sc-GW will be investigated in future work.





11 CONCLUSIONS AND OUTLOOK

In this doctoral work, I developed a numerical implementation of the self-consistent
GW (sc-GW ) approach to many-body perturbation theory (MBPT) and employed it for
the description of excited- and ground-state properties of atoms and molecules.

The self-consistent procedure introduces a noticeably higher computational cost, as
compared to conventional non-self-consistent perturbative GW (G0W0) calculations.
Therefore, part of my work has been devoted to the development of numerical tech-
niques adequate to the computational complexity of the problem. The sc-GW method
has been implemented in the FHI-aims code in an all-electron numeric atom-centered
orbital basis-set framework. The central ingredients of this implementation have been:
(i) the resolution-of-identity formalism for the representation of two-particle operators
in an atom-centered basis set; (ii) an imaginary time/frequency framework for the repre-
sentation of the dynamical (i.e., frequency/time dependent) quantities; (iii) an optimized
scheme for the evaluation of Fourier integrals. Through points (i-iii), the applicability
of the sc-GW method could be extended to molecules up to 20-30 atoms, facilitating a
systematic assessment of the accuracy of the GW approach for finite systems.

To further improve the efficiency of this implementation two ways can be undertaken:
the first one involves the separation of core and valence electronic degrees of freedom,
and the restriction of the self-consistent procedure to the valence states. However, the
core-valence separation neglects the contribution of the core to the screening of the
valence electrons, and it therefore introduces an additional error that, for finite systems,
still has to be quantified. The second way, currently under investigation in the theory
department of the Fritz Haber Institute, involves the development of approaches to
the resolution-of-identity technique which would reduce the size of the auxiliary basis
set, needed for the matrix representation of all two-particle operators. This can be
achieved, for instance, by defining auxiliary basis functions that span the Hilbert space
of a subset of numeric orbitals pairs (as, e.g., only neighbouring pairs), rather than for all
possible pairs. The reduction of the auxiliary-basis size is the key for the optimization
of the linear algebra operations that presently constitute the main bottleneck of the
implementation presented in this thesis.

At self-consistency, GW has several properties that make it desirable as a general
purpose electronic-structure approach: i) Excited- and ground-state properties are
described at the same level of theory. ii) Ground and excited states are independent
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of the initial reference state. iii) Conservation laws for total energy, momentum, and
particle number are satisfied. Points i)-iii) define a hierarchy of theoretical consistency
for different levels of self-consistency of the GW approximation. sc-GW occupies the
highest place in this hierarchy (all points are satisfied), whereas G0W0 lies at the bottom
since all points are violated. Partial self-consistent approaches, such as eigenvalue
self-consistent GW and sc-GW0 (with fixed screened Coulomb interaction), occupy
intermediate levels. Whether this hierarchy of GW methods also reflects an actual
accuracy hierarchy – defined more empirically based on the agreement with experiment
– has been investigated for benzene and the azabenzenes. Self-consistent GW was
found to not necessarily provide the best agreement with the reference data. In fact, the
comparison with photoemission spectroscopy reveals that, for certain starting points,
G0W0 and partial self-consistent schemes (sc-GW0) may outperform sc-GW . Hybrid
functionals, in particular, have been shown to provide an optimal reference state for the
perturbative calculations of spectral properties, yielding comparable to (or better than)
sc-GW .

I have further benchmarked the accuracy of the GW approximation for bond lengths,
vibrational frequencies, binding energies, and dipole moments for a set of diatomic
molecules. The results illustrate that, on the whole, sc-GW is not worthwhile for
the ground-state properties of systems of this size, as its accuracy is comparable to
computationally cheaper perturbative approaches, such as EX+cRPA. For larger systems,
however, the combined description of ground and excited states at the same level
of theory, might be desirable. For describing the electron density in charge-transfer
compounds, for example, it is necessary to reproduce correctly the relative alignment
of the HOMO and LUMO levels for the different components of the system, and the
electron density must be updated accordingly. Therefore – as exemplified by the TTF-
TCNQ dimer – self-consistency is essential to describe the charge transfer, since methods
based on perturbation theory do not introduce changes in the electron density.

For comparing how electronic correlation is captured in DFT and MBPT, I consid-
ered the dissociation of covalently bonded dimers as a test case. The GW series of
Feynman diagrams was used to define the total energy in the many-body framework
(corresponding to sc-GW , in practice) and in a DFT context, through the solution of the
optimized effective potential equations (leading to the self-consistent random-phase
approximation, or sc-RPA). For the hydrogen molecule, the potential-energy curve
evaluated in sc-GW and sc-RPA show large differences. The analysis of the sources of
such differences demonstrates that a DFT-based framework (sc-RPA) is more effective in
describing dissociation as it mimics the static correlation that dominates the dissociation
regime. In sc-GW , on the other hand, the dissociation limit is severely underestimated
due to the wrong spatial distribution of the bonding orbitals. Nevertheless, considerable
improvements in the dissociation energy may be achieved by resorting to spin-symmetry
broken calculations, which enforce the localization of each spin-orbital on a different
atom of the dimer.

Finally, this doctoral work allowed to identify some characteristics that an ideal
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electronic-structure scheme for the computation of electronic excitation should encom-
pass. The most prominent is the combination of MBPT-based description of electronic
excitations with some form of self-consistency – which ultimately permits to incorporate
dynamical many-body correlation effects in the ground state. This consideration, how-
ever, is not specific to GW , but embraces also other methods and is important for the
future development of approximate numerical approaches. As an example, the inclusion
of dynamical correlation in the ground state is expected to be relevant for materials in
which the ground-state electronic structure depends on the alignment of energy levels
between different components of the system. The class of systems that corresponds to
this description is broad and includes molecular interfaces, hetero-junctions, molecules
absorbed on surfaces, transport devices et cetera.

Among the available methods for the computation of electronic excitations, the GW
approximation offers probably the best compromise between computational cost and
accuracy. However, GW calculations are still too demanding (with current computa-
tional resources) to compute the photoemission spectra of many systems of interest
for technological applications, such as large molecules absorbed on a substrate, or
molecules in solution. Future studies should therefore aspire to extend the applicability
of GW methods to systems composed by thousands of atoms (and beyond) through the
development of new algorithms, the optimization of existing ones, and the introduction
of well-controlled approximations. Moreover, it is desirable to go beyond the state-of-
the-art accuracy achievable within the GW approach, that currently allows to determine
excitation energies with an average percentage error of 3− 5%. A better agreement with
experimental references is, in fact, achievable by resorting to a beyond-GW description
of exchange and correlation, e.g., through the inclusion of self-screening corrections or
higher-order exchange-correlation diagrams. Unfortunately, beyond-GW approaches
often involve a higher numerical cost. One of the great challenges that was not consid-
ered in this thesis is how the interplay of electronic excitations and other environmental
and/or nuclear effects (e.g., vibrations and phonons) may affect experimental measure-
ments. The interplay of these effects has been quantified only for the simplest cases. This
is an area where quantitative understanding must be acquired for realistic systems, and
the development of new ab-initio techniques that properly account for these processes is
a necessary requirement for future advances in this field.

In summary, three complementary aspects should be addressed by future devel-
opments in the field: (i) the extension of the applicability of GW approaches to large
systems (e.g., solid-molecules interfaces); (ii) the realization of beyond-GW schemes,
for a more accurate prediction of excitation energies in an ab-initio framework; (iii) a
quantitative characterization of the influence of nuclear vibrations on excitation spectra.
The results presented in this doctoral work have shown that sc-GW constitutes an indis-
pensable tool for the achievement of points (i)-(iii), as it provides an unbiased assessment
of the accuracy of the GW approximation, and therefore quantifies the importance of a
beyond-GW description of electronic excitations.
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A FUNCTIONAL IDENTITIES

Being A[ϕ] a functional of the function ϕ, the inverse of A is implicitly defined through
the relation:

∫
d3A(1, 3)A−1(3, 2) =

∫
d3A−1(1, 3)A(3, 2) = δ(1, 2) . (A.1)

Due to basic rules of functional derivatives, differentiation of Eq. A.1 by ϕ(4) yields:

∫
d3
δA(1, 3)

δϕ(4)
A−1(3, 2) = −

∫
d3A(1, 3)

δA−1(3, 2)

δϕ(4)
. (A.2)

Multiplying A.2 on the right by A(2, 5) and integrating of 2 leads to:

δA(1, 3)

δϕ(4)
= −

∫
d23A(1, 3)

δA−1(3, 2)

δϕ(4)
A(2, 5) , (A.3)

and similarly

δA−1(1, 3)

δϕ(4)
= −

∫
d23A−1(1, 3)

δA(3, 2)

δϕ(4)
A−1(2, 5) . (A.4)

If A depends on ϕ, through a local functional B, i.e. A[B[ϕ]], then the chain rule for
functional differentiation applies:

δA(1, 2)

δϕ(3)
=

∫
d4
δA(1, 2)

δB(4)

δB(4)

δϕ(3)
. (A.5)

If the operator B is non-local, then:

δA(1, 2)

δϕ(3)
=

∫
d45

δA(1, 2)

δB(4, 5)

δB(4, 5)

δϕ(3)
. (A.6)

139





B CONVERGENCE WITH THE GRID

PARAMETERS

Figure B.1 illustrates the effect of integration grid parameter values on the total energy of
H2O, with a Tier 2 basis settings. For a detailed discussion about each of the convergence
parameters reported in Fig. B.1 the reader is referred to the main paper describing the
FHI-aims implementation [204]. Briefly:

• The “cutoff potential” indicates the radius (in Å) of the confinement potential used
to set the tails of all numerical orbital basis functions to zero;

• “Hartree multipole expansion” specifies the angular momentum expansion of the
atom-centered charge density multipole for the electrostatic potential;

• “Radial multiplier” systematically increases the density of the integration grid
points;

• “Angular division” denotes the maximum number of angular integration grid
points;

• “Radial base 1” is the total number of radial integration grids;

• “Radial base 2” is the position (in Å) of the outermost radial integration grid.
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Figure B.1: Total energy of H2O in a Tier 2 basis set as a function of the integration grid parameters.
All values are in Hartree.



C IONIZATION ENERGIES OF

CLOSED-SHELL MOLECULES

In this Appendix, I report the theoretical ionization energies obtained from G0W0, sc-
GW0, and sc-GW based on different starting points for a set of 30 closed-shell molecules.
All ionization energies were obtained with the FHI-aims code using a Tier 4 numeric
atom-centered orbital basis set [204]. The experimental values are taken from the
photoemission data compiled in Ref. [128].
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Table C.1: Ionization energy for 30 closed-shell molecules evaluated with G0W0, sc-GW0, and
sc-GW based on different starting points (in parenthesis) with a Tier 4 basis set. The mean error
(ME), mean absolute error (MAE), and mean absolute percentage error (MAPE) are relative to the
experimental values from [128] (reported in Table C.2).

scGW scGW0(HF) scGW0(PBE) G0W0(HF) G0W0(PBE) G0W0(PBE0)
Cl2 -11.24 -11.66 -11.32 -11.84 -10.92 -11.24
ClF -12.51 -12.91 -12.49 -13.06 -11.98 -12.34
CS -11.36 -11.87 -11.34 -13.09 -10.62 -11.30
F2 -15.97 -16.38 -15.68 -16.21 -14.64 -15.20
HCl -12.43 -12.73 -12.41 -12.88 -12.09 -12.35
Li2 -4.67 -5.08 -4.91 -5.34 -5.11 -5.24
LiF -11.69 -11.87 -10.99 -11.43 -10.17 -10.69
LiH -7.97 -8.06 -7.55 -8.19 -6.90 -7.60
N2 -15.61 -16.02 -15.47 -17.20 -14.79 -15.40
NaCl -9.03 -9.30 -8.83 -9.38 -8.51 -8.84
SiO -11.30 -11.67 -11.31 -11.92 -10.79 -11.11
CO2 -13.75 -14.17 -13.68 -14.38 -12.99 -13.63
H2O -12.76 -12.96 -12.41 -13.04 -11.89 -12.32
HCN -13.26 -13.64 -13.32 -13.94 -13.15 -13.43
SH2 -10.14 -10.43 -10.17 -10.66 -9.98 -10.20
SO2 -12.32 -12.83 -12.34 -13.12 -11.76 -12.20
C2H4 -10.19 -10.49 -10.26 -10.81 -10.18 -10.39
H2CO -10.97 -11.31 -10.83 -11.52 -10.35 -10.76
H2O2 -11.74 -12.11 -11.53 -12.26 -10.94 -11.41
NH3 -10.89 -11.11 -10.66 -11.34 -10.26 -10.65
CO -13.96 -14.36 -13.82 -14.84 -13.26 -13.75
HF -16.28 -16.47 -15.80 -16.19 -14.99 -15.45
H2 -16.24 -16.34 -16.02 -16.53 -15.77 -16.11
P2 -9.88 -10.35 -10.16 -10.68 -10.04 -10.28
C2H2 -11.00 -11.34 -11.08 -11.70 -10.95 -11.25
CH3Cl -11.17 -11.54 -11.18 -11.67 -10.82 -11.13
CH4 -14.34 -14.58 -14.20 -14.86 -13.90 -14.23
PH3 -10.32 -10.62 -10.35 -10.81 -10.14 -10.38
SiH4 -12.81 -13.08 -12.62 -13.32 -12.27 -12.57
N2H4 -9.77 -10.09 -9.63 -10.32 -9.25 -9.62
ME -0.03 0.30 -0.14 0.53 -0.57 -0.18
MAE 0.31 0.37 0.28 0.54 0.63 0.34
MAPE 2.58 3.00 2.41 4.37 5.57 2.88
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Table C.2: HF, PBE, and PBE0 HOMO eigenvalue for 30 closed-shell molecules evaluated with
the Tier 4 basis set. PBE-based Slater-transition-state (PBE-STS) ionization energies are included
for comparison. The mean error (ME), mean absolute error (MAE), and mean absolute percentage
error (MAPE) are relative to the experimental values. Experimental ionization energies are
reported from [128].

Exp. HF PBE PBE0 PBE-STS
Cl2 -11.49 -12.08 -7.30 -8.72 -11.34
ClF -12.77 -13.43 -7.85 -9.49 -12.65
CS -11.33 -12.60 -7.38 -8.91 -11.96
F2 -15.70 -18.19 -9.45 -11.84 -15.68
HCl -12.74 -12.99 -8.04 -9.51 -13.09
Li2 -5.11 -4.94 -3.22 -3.78 -5.61
LiF -11.30 -13.00 -6.12 -7.95 -12.43
LiH -7.90 -8.21 -4.36 -5.44 -9.00
N2 -15.58 -16.71 -10.27 -12.20 -15.87
NaCl -9.20 -9.67 -5.28 -6.55 -9.64
SiO -11.49 -11.91 -7.47 -8.83 -11.66
CO2 -13.78 -14.83 -9.09 -10.72 -14.02
H2O -12.62 -13.89 -7.25 -9.09 -13.65
HCN -13.61 -13.50 -9.02 -10.40 -14.12
SH2 -10.50 -10.49 -6.30 -7.57 -10.91
SO2 -12.50 -13.55 -8.07 -9.64 -12.41
C2H4 -10.68 -10.23 -6.74 -7.86 -11.07
H2CO -10.88 -12.06 -6.26 -7.88 -11.24
H2O2 -11.70 -13.32 -6.45 -8.35 -11.69
NH3 -10.82 -11.70 -6.18 -7.74 -11.75
CO -14.01 -15.10 -9.04 -10.75 -14.65
HF -16.12 -17.72 -9.65 -11.85 -17.03
H2 -15.43 -16.18 -10.38 -12.00 -17.60
P2 -10.62 -10.10 -7.13 -8.11 -10.71
C2H2 -11.49 -11.19 -7.20 -8.44 -11.79
CH3Cl -11.29 -11.88 -7.11 -8.52 -11.32
CH4 -13.60 -14.84 -9.46 -11.00 -14.29
PH3 -10.95 -10.58 -6.72 -7.88 -10.97
SiH4 -12.30 -13.24 -8.52 -9.87 -12.36
N2H4 -8.98 -10.73 -5.29 -6.83 -9.75
ME 0.75 -4.46 -2.96 0.46
MAE 0.87 4.46 2.96 0.48
MAPE 6.92 60.15 33.16 3.92





D TOTAL ENERGY OF ATOMS

In Tables D.1 and D.2 are reported the total energies of atoms evaluated with perturba-
tive G0W0 and different total energy functionals (GM, referred to as G0W0 and Klein,
denoted as EX+cRPA), partially self-consistent sc-GW0 and sc-GW . PBE, Hartree-Fock
and renormalized second-order perturbation theory (rPT2) are included for comparison.

Table D.1: Total energies of the free atoms in the first two rows in the periodic table evaluated with
sc-GW , partially self-consistent sc-GW0 and G0W0 based on HF and PBE and full configuration
interaction (full-CI). The aug-cc-pVQZ basis set was used for Li and Be (i.e. the largest aug-cc-
PVNZ basis available for those elements) whereas the remaining elements were computed with
the aug-cc-pV6Z basis set. All values are in Ha.

full-CI sc-GW sc-GW0@PBE sc-GW0@HF G0W0@PBE G0W0@HF
H -0.500 -0.514 -0.513 -0.514 -0.538 -0.528
He -2.902 -2.924 -2.923 -2.924 -3.013 -2.984
Li -7.478 -7.469 -7.467 -7.469 -7.533 -7.501
Be -14.667 -14.653 -14.646 -14.653 -14.790 -14.724
B -24.654 -24.669 -24.661 -24.669 -24.881 -24.791
C -37.845 -37.875 -37.867 -37.875 -38.141 -38.037
N -54.589 -54.632 -54.626 -54.632 -54.938 -54.839
O -75.067 -75.124 -75.119 -75.124 -75.507 -75.383
F -99.734 -99.799 -99.790 -99.799 -100.259 -100.121
Ne -128.938 -129.010 -128.998 -129.010 -129.528 -129.396
ME 0.034 0.030 0.034 0.275 0.193
MAE -0.029 -0.023 -0.029 -0.275 -0.193
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Table D.2: Total energies of the free atoms in the first two rows in the periodic table evaluated
with perturbative RPA (equivalent to the Klein functional), rPT2, HF and PBE. The aug-cc-pVQZ
basis set was used for Li and Be (i.e. the largest aug-cc-PVNZ basis available for those elements)
whereas the remaining elements were computed with the aug-cc-pV6Z basis set. All values are in
Ha.

full-CI RPA@PBE RPA@HF rPT2@PBE rPT2@HF PBE HF
H -0.500 -0.520 -0.515 -0.500 -0.500 -0.500 -0.500
He -2.902 -2.943 -2.928 -2.903 -2.895 -2.893 -2.862
Li -7.478 -7.487 -7.469 -7.449 -7.446 -7.461 -7.433
Be -14.667 -14.697 -14.654 -14.637 -14.614 -14.629 -14.573
B -24.654 -24.728 -24.671 -24.628 -24.602 -24.612 -24.533
C -37.845 -37.942 -37.878 -37.817 -37.788 -37.799 -37.694
N -54.589 -54.696 -54.638 -54.560 -54.531 -54.536 -54.405
O -75.067 -75.197 -75.124 -75.033 -74.994 -75.015 -74.819
F -99.734 -99.881 -99.799 -99.697 -99.649 -99.676 -99.416
Ne -128.938 -129.087 -129.010 -128.899 -128.844 -128.866 -128.547
ME -0.081 -0.031 0.025 0.051 0.039 0.159
MAE 0.081 0.036 0.025 0.051 0.039 0.159
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Figure E.1: Spectra of benzene calculated with DFT, Hartree-Fock, and G0W0 based on different
starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [253]. Illustration of the frontier orbital character is also shown.
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Figure E.2: Spectra of pyrazine calculated with DFT, Hartree-Fock, and G0W0 based on different
starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [257]. Illustration of the frontier orbital character is also shown.
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Figure E.3: Spectra of pyrimidine calculated with DFT, Hartree-Fock, and G0W0 based on differ-
ent starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [257]. Illustration of the frontier orbital character is also shown.
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Figure E.4: Spectra of pyridazine calculated with DFT, Hartree-Fock, andG0W0 based on different
starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [257]. Illustration of the frontier orbital character is also shown.
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Figure E.5: Spectra of benzene calculated from sc-GW , sc-GW0 and ev-scGW based on different
starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [253]. Illustration of the frontier orbital character is also shown.
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Figure E.6: Spectra of pyrazine calculated from sc-GW , sc-GW0 and ev-scGW based on different
starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [257]. Illustration of the frontier orbital character is also shown.
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Figure E.7: Spectra of pyrimidine calculated from sc-GW , sc-GW0 and ev-scGW based on differ-
ent starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [257]. Illustration of the frontier orbital character is also shown.
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Figure E.8: Spectra of pyridazine calculated from sc-GW , sc-GW0 and ev-scGW based on differ-
ent starting points, Gaussian broadened by 0.4 eV. The experimental photo-emission spectrum is
reproduced from Ref. [257]. Illustration of the frontier orbital character is also shown.
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Figure E.9: Spectra of benzene calculated with G0W0 plus second-order exchange based on
HF, and different DFT starting points, Gaussian broadened by 0.3 eV. The experimental photo-
emission spectrum is reproduced from Ref. [253]. Illustration of the frontier orbital character is
also shown.
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Figure E.10: Spectra of pyrazine calculated with G0W0 plus second-order exchange based on
HF, and different DFT starting points. Gaussian broadened by 0.3 eV. The experimental photo-
emission spectrum is reproduced from Ref. [257]. Illustration of the frontier orbital character is
also shown.
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Figure E.11: Spectra of pyrimidine calculated with G0W0 plus second-order exchange based on
HF, and different DFT starting points, Gaussian broadened by 0.3 eV. The experimental photo-
emission spectrum is reproduced from Ref. [257]. Illustration of the frontier orbital character is
also shown.
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Figure E.12: Spectra of pyridazine calculated with G0W0 plus second-order exchange based on
HF, and different DFT starting points, Gaussian broadened by 0.3 eV. The experimental photo-
emission spectrum is reproduced from Ref. [257]. Illustration of the frontier orbital character is
also shown.





F DERIVATION OF THE KLEIN AND

LUTTINGER-WARD FUNCTIONALS

The ground-state total-energy expression for an interacting electron system can be
obtained using the adiabatic-connection (AC) technique

E = Ts +

∫
drn(r)(vext(r) +

1

2
vH(r)) +

∫ 1

0

dλ

2λ
Tr [ΣλGλ] , (F.1)

where
Tr [AB] =

1

2π

∫ ∞

−∞
dωeiωη

∫
drdr′A(r, r′, iω)B(r′, r, iω) , (F.2)

and n(r) is the electron density which is fixed at its physical value along the AC path.
Here Gλ and Σλ are respectively the interacting single-particle Green function and
the self-energy for the “intermediate” system where the electrons interact with scaled
Coulomb interaction vλ(r− r′) = λv(r− r′) = λ/|r− r′|.

The key question now is how to integrate the coupling constant λ out. To this end, it
is customary to introduce the so-called Φ functional, defined in Eq. 3.31. It should be
kept in mind that Σ

(n)
λ (see Eq. 3.31) depends on λ in two ways: explicitly via the scaled

Coulomb lines (there are n of them) and implicitly via Gλ (there are 2n− 1 of them). The
multiplication of Gλ with Σ

(n)
λ in Tr

[
Σ

(n)
λ Gλ

]
closes the self-energy diagrams, yielding

the n-th order Φ-digrams which contain 2n Green-function lines. A key property of Φλ

is therefore

δΦλ/δGλ =

∞∑

n=1

Σ
(n)
λ = Σλ . (F.3)

The derivative of Φλ with respect to λ is given by

dΦλ
dλ

=

∞∑

n=1

1

2n
Tr
[n
λ

Σ
(n)
λ Gλ

]
+ Tr

[
δΦλ
δGλ

dGλ
dλ

]

=
1

2λ
Tr [ΣλGλ] + Tr

[
Σλ

dGλ
dλ

]
. (F.4)
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Making use of Eq. F.4, Eq. F.1 becomes

E =Ts +

∫
drn(r)vext(r) + EH[G]+

∫ 1

0

dλ

{
dΦλ
dλ
− Tr

[
Σλ

dGλ
dλ

]}

=Ts +

∫
drn(r)vext(r) + EH + Φλ=1[Gλ=1]

− Tr [Σλ=1Gλ=1] +

∫ 1

0

dλTr
[
Gλ

dΣλ
dλ

]
, (F.5)

where Σλ=0 = 0 and Φλ=0 = 0 have been used, and EH[G] = 1/2
∫
drvH(r)n(r) is the

Hartree energy.

To proceed, the Dyson equation linking Gλ and Σλ has to be invoked, which in the
current context reads

G−1
λ = G−1

s − Σλ[Gλ]− vλext − λvH + vs (F.6)

where vλext is the external potential of the λ-dependent system (with vλ=1
ext = vext) to keep

the density unchanged, and vs = vext + vH + vxc is the effective single-particle potential
of the KS reference system. From Eq. F.6, one gets

− d

dλ
lnG−1

λ = − d

dλ
ln
[
G−1
s − Σλ − vλext − λvH + vs

]

= Gλ

[
d

dλ
Σλ +

d

dλ
vλext + VH

]
. (F.7)

Using Eq. F.7, and denoting Gλ=1 = G, Σλ=1 = Σ, and Φλ=1 = Φ, one obtains

E =Ts +

∫
drn(r)vext(r) + EH[G] + Φ[G]− Tr [ΣG]

−
∫ 1

0

dλTr
[
d

dλ
lnG−1

λ +Gλ
d

dλ
vλext +GλVH

]

=Ts +

∫
drn(r)vext(r)− EH[G] + Φ[G]− Tr [ΣG]

− Tr[lnG−1] + Tr[lnG−1
s ]−

∫
drn(r)

d

dλ
vλext(r)

=Ts +

∫
drn(r)vs(r)− EH[G] + Φ[G]− Tr [ΣG]

− Tr[lnG−1] + Tr[lnG−1
s ]

=− EH[G] + Φ[G]− Tr [ΣG]− Tr[lnG−1] , (F.8)

where Gs = Gλ=0 is the reference KS Green function, and

Tr[lnG−1
s ] = −

occ∑

i

εi = −Ts −
∫
drn(r)vs(r), (F.9)
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with εi being the KS eigenvalues. To derive Eq. F.8, I have also used

∫ 1

0

dλTr [GλvH]

=

∫ 1

0

dλ

∫ ∞

−∞

dω

2π

∫
drdr′Gλ(r, r′, iω)VH(r)δ(r− r′)

=

∫
drn(r)vH(r) = 2EH (F.10)

and similarly

∫ 1

0

dλTr
[
Gλ

dvλext

dλ

]
=

∫ 1

0

dλ

∫
drn(r)

dvλext(r)

dλ

=

∫
dr (vext(r)− vs(r))n(r)dr , (F.11)

noting that vext(r) = vλ=1
ext and vs(r) = vλ=0

ext .

Equation F.8 clearly indicates the resultant interacting ground-state energy does not
depend on the reference state. Making use of the Dyson Eq. F.6 at λ = 1, Equivalent
expressions to Eq. F.8 can be obtained,

E = −EH[G] + Φ[G]− Tr [ΣG]− Tr[ln
(
G−1
s + vxc − Σ

)
] (F.12)

= −EH[G] + Φ[G]− Tr
[
(G−1

s + vxc)G− 1
]
− Tr[lnG−1] . (F.13)

Equations F.8, F.12, and F.13 are all equivalent when G is a self-consistent solution of the
Dyson Eq. 4.24. Regarding the energy E as a functional of G, Eq. F.12 is known as the
Luttinger-Ward functional [99] and Eq. F.13 the Klein functional [100]. the form of the
Klein functional is thus derived.

As discussed in Refs. [101, 203], evaluating the Klein functional under the GW

approximation with the noninteracting Green function Gs one obtains the RPA total
energy

ERPA = −EH[Gs] + ΦGW [Gs]− Tr [vxcGs]− Tr[lnG−1
s ]

= Ts +

∫
drn(r)vext(r) + EH[Gs] + Ex[Gs] + ERPA

c [Gs] , (F.14)

where I have used:

− Tr [vxcGs]− Tr[lnG−1
s ] = Ts +

∫
drn(r)vext(r) + 2EH (F.15)
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and

ΦGW [Gs] =

∞∑

n=1

1

2n
Tr
[
Σ(n)[Gs]Gs

]

=
1

2
Tr [ΣxGs]−
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n=2

1

2n
Tr [(vχs)

n]

= Ex + ERPA
c (F.16)

with the Σx being the exact-exchange self-energy.
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[4] S. HÜFNER, Photoelectron Spectroscopy: Principles and Applications, Advanced Texts in
Physics, Springer, 2003.

[5] M. CARDONA and M. L. W. THEWALT, Isotope effects on the optical spectra of semicon-
ductors, Rev. Mod. Phys. 77, 1173 (2005), DOI.

[6] M. S. DELEUZE, L. CLAES, E. S. KRYACHKO, and J.-P. FRANCOIS, Benchmark theoretical
study of the ionization threshold of benzene and oligoacenes, J. Chem. Phys. 119, 3106 (2003),
DOI.

[7] A. SZABO and N. S. OSTLUND, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, Dover Publications, 1996.

[8] G. SENATORE and N. H. MARCH, Recent progress in the field of electron correlation, Rev.
Mod. Phys. 66, 445 (1994), DOI.

[9] W. M. C. FOULKES, L. MITAS, R. J. NEEDS, and G. RAJAGOPAL, Quantum Monte Carlo
simulations of solids, Rev. Mod. Phys. 73, 33 (2001), DOI.

[10] P. HOHENBERG and W. KOHN, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964),
DOI.

[11] W. KOHN and L. J. SHAM, Self-Consistent Equations Including Exchange and Correlation
Effects, Phys. Rev. 140, A1133 (1965), DOI.

[12] R. M. DREIZLER and E. K. U. GROSS, Density Functional Theory, Springer, Berlin, 1990.

[13] A. L. FETTER and J. D. WALECKA, Quantum Theory of Many-Particle Systems, Dover
Publications, 2003.

[14] L. HEDIN, New Method for Calculating the One-Particle Green’s Function with Application
to the Electron-Gas Problem, Phys. Rev. 139, A796 (1965), DOI.

[15] R. J. BARTLETT and M. MUSIAL, Coupled-cluster theory in quantum chemistry, Rev. Mod.
Phys. 79, 291 (2007), DOI.

[16] J. C. SLATER, The Theory of Complex Spectra, Phys. Rev. 34, 1293 (1929), DOI.

[17] G. H. BOOTH, A. J. W. THOM, and A. ALAVI, Fermion Monte Carlo without fixed nodes: A
game of life, death, and annihilation in Slater determinant space, J. Chem. Phys. 131, 054106
(2009), DOI.

http://dx.doi.org/10.1103/PhysRev.28.1049
http://dx.doi.org/10.1103/PhysRevB.46.4483
http://dx.doi.org/10.1103/PhysRevLett.105.265501
http://dx.doi.org/10.1103/RevModPhys.77.1173
http://dx.doi.org/10.1063/1.1589731
http://dx.doi.org/10.1103/RevModPhys.66.445
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1063/1.3193710


174 BIBLIOGRAPHY
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[131] R. W. GODBY, M. SCHLÜTER, and L. J. SHAM, Quasiparticle energies in GaAs and AlAs,
Phys. Rev. B 35, 4170 (1987), DOI.
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Chem. Phys. Lett. 391, 148 (2004), DOI.

[235] D. L. LICHTENBERGER, R. L. JOHNSTON, K. HINKELMANN, T. SUZUKI, and F. WUDL,
Relative electron donor strengths of tetrathiafulvene derivatives: effects of chemical substi-
tutions and the molecular environment from a combined photoelectron and electrochemical
study, J. Am. Chem. Soc. 112, 3302 (1990), DOI.

[236] M. GELL-MANN and K. A. BRUECKNER, Correlation Energy of an Electron Gas at High
Density, Phys. Rev. 106, 364 (1957), DOI.

[237] D. C. LANGRETH and J. P. PERDEW, Exchange-correlation energy of a metal surface: Wave-
vector analysis, Phys. Rev. B 15, 2884 (1977), DOI.

http://dx.doi.org/10.1016/0009-2614(72)80169-6
http://dx.doi.org/10.1103/PhysRevB.70.081103
http://dx.doi.org/10.1103/PhysRevB.62.4858
http://dx.doi.org/10.1103/PhysRevB.64.233109
http://dx.doi.org/10.1103/PhysRevLett.88.056406
http://dx.doi.org/10.1103/PhysRevA.47.3649
http://dx.doi.org/10.1063/1.1535438
http://dx.doi.org/10.1063/1.465303
http://dx.doi.org/10.1063/1.478747
http://dx.doi.org/10.1021/cr030652g
http://dx.doi.org/10.1038/nmat2205
http://dx.doi.org/10.1016/j.cplett.2004.04.102
http://dx.doi.org/10.1021/ja00165a007
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1103/PhysRevB.15.2884


188 BIBLIOGRAPHY

[238] M. HELLGREN, D. R. ROHR, and E. K. U. GROSS, Correlation potentials for molecular
bond dissociation within the self-consistent random phase approximation, J. Chem. Phys.
136, 034106 (2012), DOI.
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