Aus der Arbeitsgruppe Perinatale Anpassung des Institutes für Biologie der Humboldt-Universität zu Berlin

Eingereicht über das Institut für Veterinärphysiologie des Fachbereichs Veterinärmedizin der Freien Universität Berlin

Die pränatale Entwicklung der Endothermie bei praecocialen Vögeln, dargestellt am Beispiel der Moschusente (Cairina moschata f. domestica) und des Haushuhnes (Gallus gallus f. domestica)

Inaugural-Dissertation
zur Erlangung des Grades eines
Doktors der Veterinärmedizin
an der
Freien Universität Berlin

vorgelegt von

Oliver Janke

Tierarzt aus Leipzig

Berlin 2002

Journal-Nr.: 2591

Gedruckt mit Genehmigung des Fachbereiches Veterinärmedizin der Freien Universität Berlin

Prof. Dr. H. Tönhardt

Dekan:	Univ Prof. Dr. M. F. G. Schmidt

Zweiter Gutachter: Prof. Dr. M. Nichelmann

Erster Gutachter:

Tag der Promotion: 19. April 2002

Inhaltsverzeichnis

Inhaltsverzeichnis

	Seite
Verzeichnis der verwendeten Abkürzungen	6
1 Einleitung und Zielstellung	7
2 Literatur	10
2.1 Thermoregulation bei adulten Vögeln	10
2.1.1 Nervale Mechanismen	10
2.1.2 Effektorsystem	14
2.2 Entwicklung thermoregulatorisch wichtiger Funktionssysteme im perinatalen	
Zeitraum	17
2.2.1 Nervale Grundlagen des Thermoregulationssystems beim Vogelembryo	18
2.2.2 Herz-Kreislaufsystem	18
2.2.3 Atmungssystem	19
2.2.4 Wärmeproduktion	21
2.2.5 Thermoregulatorisches Verhalten	23
2.2.6 Effizienz der Stellglieder des Thermoregulationssystems im pränatalen	
Zeitraum	23
3 Material und Methoden	26
3.1 Versuchsembryonen	26
3.2 Versuchsumfang	26
3.3 Versuchsaufbau	27
3.4 Versuchsvorbereitung	29
3.5 Versuchsablauf	30
3.6 Meßwerterfassung und Berechnung der Wärmeproduktion der Embryonen	31
3.7 Datenaufbereitung und Statistik	31

Inhaltsverzeichnis

3.7.1 Datenaufbereitung	31
3.7.2 Beschreibung der Wärmeproduktion von Vogelembryonen mittels des	
Q ₁₀ -Wertes	31
3.7.3 Statistische Analyse	33
4 Ergebnisse	35
4.1 Entwicklung der Körpertemperatur und der Wärmeproduktion bei Enten- und	
Hühnerembryonen in Abhängigkeit vom Alter bei normaler Bruttemperatur	35
4.2 Einfluß der Änderung der Umgebungstemperatur auf die Körpertemperatur und	
die Wärmeproduktion von Vogelembryonen	40
4.2.1 Einfluß tiefer Umgebungstemperaturen	40
4.2.2 Einfluß erhöhter Umgebungstemperaturen	54
4.3 Zusammenfassung der Ergebnisse	59
4.3.1 Ergebnisse der Untersuchungen bei normaler Umgebungstemperatur	59
4.3.2 Ergebnisse der Untersuchungen bei niedrigen Umgebungstemperaturen	59
4.3.3 Ergebnisse der Untersuchungen bei hohen Umgebungstemperaturen	60
5 Diskussion	61
5.1 Entwicklung von Körpertemperatur und Wärmeproduktion im letzten Drittel der	
Bebrütungszeit	61
5.2 Entwicklung thermoregulatorischer Mechanismen zum Schutz vor tiefen	
Umgebungstemperaturen im embryonalen Zeitraum	63
5.3 Entwicklung thermoregulatorischer Mechanismen zum Schutz vor hohen	
Umgebungstemperaturen im embryonalen Zeitraum	69
5.4 Bedeutung thermoregulatorischer Mechanismen im embryonalen Zeitraum	73
6 Zusammenfassung	75
7 Summary	76
7 Summary	70

${\it Inhalts verzeichnis}$

8 Literaturverzeichnis	77
9 Danksagung	95
10 Selbständigkeitserklärung	96
11 Lebenslauf	97

Verzeichnis der verwendeten Abkürzungen

Bt Bebrütungstag

CAM Chorioallantoismembran

KT Körpertemperatur

PMR maximaler Energieumsatz (peak metabolic rate)

TNT thermisch neutrale Temperatur

TRS Thermoregulationssystem

UT Umgebungstemperatur

WP Wärmeproduktion

9 Danksagung

Ich möchte bei dieser Gelegenheit Herrn Prof. Dr. h. c. Martin Nichelmann für die Überlassung des Themas sowie die jederzeit gewährte fachliche Unterstützung und Motivation danken. Frau Dr. Barbara Tzschentke und der gesamten Arbeitsgruppe "Perinatale Anpassung" im Institut für Biologie der Humboldt-Universität zu Berlin danke ich für die stete Hilfsbereitschaft und die angenehme Arbeitsatmosphäre. Mein besonderer Dank gilt hier Frau Dr. Astrid Burmeister, die mir mit Rat und Kritik zur Seite stand.

Für ihre freundliche Unterstützung danke ich Frau Prof. Dr. Heike Tönhardt.

Herrn Prof. Dr. Andreas Baudisch vom Rechenzentrum der Humboldt-Universität zu Berlin und Frau Dr. Gisela Arndt vom Institut für Biometrie des Fachbereiches Veterinärmedizin der Freien Universität Berlin möchte ich für die wertvolle Unterstützung in mathematischen und statistischen Fragen danken, Herrn Frank Engel vom Softwarehaus Engel und Walter, Kornwestheim, für die kurzfristige Erstellung des Programmes zur Q₁₀-Berechnung.

Ganz besonders möchte ich mich bei meinen Eltern für ihre Unterstützung und Geduld bedanken.

9 Selbständigkeitserklärung

Hiermit bestätige ich, daß ich die vorliegende Arbeit selbständig und nur unter Zuhilfenahme der angegebenen Literatur erstellt habe.

Berlin, den 07.01.2002

Oliver Janke

11 Lebenslauf

Persönliche Daten:

Name: Janke, Oliver

Geburtsdatum: 08.10.1968

Geburtsort: Leipzig

Schulbildung:

1975-1982 Zehnklassige allgemeinbildende Oberschule in Bennewitz

1982-1985 Zehnklassige allgemeinbildende Oberschule in Eberswalde

1985-1987 Erweiterte Oberschule "Alexander von Humboldt" in

Eberswalde mit Abschluß Abitur

Praktische Tätigkeit, Wehrdienst, Studium:

Sept., Okt. 1987 Landwirtschaftliches Praktikum im Volkseigenen Gut

Finowfurt

Nov. 1987–Jan. 1990 Wehrdienst

März 1990–Juli 1990 Arbeit im Schlacht- und Verarbeitungskombinat

Eberswalde/ Britz

Universität

Sept. 1990-April 1996 Studium der Veterinärmedizin an der Humboldt -

zu Berlin/Freien Universität Berlin (Standort Mitte)

April 1996-Dez. 1999 Mitarbeit im Projekt: "Entwicklung der Endothermie beim

Vogelembryo" (Drittmittel) am Institut für Biologie der

Humboldt - Universität zu Berlin über ein

Promotionsstudium am Fachbereich Veterinärmedizin der

Freien Universität Berlin

Berufstätigkeit

Jan. 2000-Juli 2001 Tätigkeit als praktischer Tierarzt in der Praxis von

Dr. Jacobs in Hohenhameln (Nieders.)

seit Okt. 2001 Wissenschaftlicher Mitarbeiter am Institut für Biologie der

Humboldt - Universität zu Berlin im Rahmen des Projektes

"Thermosensitivität" (Drittmittel)