Abbildungsverzeichnis

1.1	Themengebiete der vorliegenden Arbeit.	3
1.2	Extraterrestrische und terrestrische solare Bestrahlungsstärke	4
1.3	Schematische Darstellung des repulsiven ${}^{1}\pi\sigma^{*}$ -Zustands	5
2.1	Überblick über das Femtosekunden-Pump-Probe-Experiment.	9
2.2	Konische Durchschneidung zweier Potentialflächen.	15
2.3	Beispiele zur Detektion photoinduzierter Prozesse	19
2.4	Überblick über das Clark-System	25
2.5	Überblick über das Multicolor-System.	26
2.6	Schema einer Molekularstrahlapparatur.	28
2.7	Geschwindigkeitsverteilung vor und nach der adiabatischen Expansion.	29
2.8	Molekularstrahlapparatur mit linearem Flugzeitmassenspektrometer.	31
2.9	Blockdiagramm zur Aufnahme zeitabhängiger Ionensignale	33
2.10	Messkammer mit Photoelektronenspektrometer.	36
2.11	Blockdiagramm zur Aufnahme der FEICO-Spektren.	37
2.12	Koinzidenz diagramm zu Indol-Ammoniak-Clustern $\rm IndNH(\rm NH_3)_n.$	39
2.13	Gesamte, echte und falsche Koinzidenzrate.	39
2.14	Zwei-Niveau-Systems und Viel-Niveau-System	42
2.15	Simuliertes Pump-Probe-Signal im kohärenten und inkohärenten Grenzfall.	45
3.1	Strukturformeln der für diese Arbeit relevanten Biochromophore	49
3.2	UV-Absoptionsspektrum von Pyrrol-Dampf (25°C)	50
3.3	UV-Absoptionsspektrum von Indol-Dampf (70°C)	52
3.4	Fluoreszenzlebensdauern und Fluoreszenzquantenausbeuten von Indol.	53
3.5	Photophysikalisches Modell für Indol nach Ilich.	54
3.6	Potentialkurven und Dipolmomente des Indols	56
3.7	Schematische Darstellung der konischen Durschneidungen.	57
3.8	$\sigma^*\text{-}\mathrm{Molek\"ulorbitale}$ von Indol und Pyrrol	58
3.9	UV-Spektrum des isolierten Adenins nach Kim <i>et al.</i>	60

3.10	Zeitabhängige Ionensignale für Krypton und Wasser sowie Xenon und	
	Wasser.	63
3.11	Einfarben-Flugzeitmassenspektren des Pyrrols	65
3.12	Ionensignal für H ⁺ und Pyrrol ⁺ als Funktion der Verzögerungszeit	67
3.13	Mögliche Bildungswege für H ⁺ -Ionen.	68
3.14	Potentialkurven bzwflächen des Pyrrols nach Domcke <i>et al.</i>	70
3.15	Translationsenergieverteilung der H-Atom-Fragmente nach Temps et al	71
3.16	U-Rohr zur Überführung des Indols in die Gasphase.	73
3.17	Zeitabhängige Indol ⁺ -Signale auf der Kurzzeitskala.	74
3.18	Zeitabhängiges Indol ⁺ -Signal auf der Langzeitskala.	75
3.19	Energieniveauschema des Indols.	76
3.20	Elektronenspektren des Indols ($\lambda_{pu} = 250 \text{ nm}, \lambda_{pr} = 400 \text{ nm}$)	79
3.21	Elektronenspektren des Indols ($\lambda_{pu} = 263 \text{ nm}, \lambda_{pr} = 395 \text{ nm}$)	80
3.22	Zeitabhängiges Indol ⁺ -Signal bei $\lambda_{pu} = 200$ nm	86
3.23	Ofen zum Überführen des Adenins in die Gasphase.	89
3.24	Zeitabhängige Ionensignale des Adenins bei $\lambda_{pu} = 250$ nm sowie bei	
	$\lambda_{pu} = 263 \text{ nm.} \dots \dots$	90
3.25	Pump-Probe-Photoelektronenspektren des Adenins aus der Gruppe um	
	Stolow	91
3.26	Photophysikalisches Modell des Adenins nach Broo.	92
4.1	Strukturformel des Phenols.	97
4.2	Schematische Darstellung der Potentialkurven von Phenol- (H_2O) und	
	Phenol-(NH_3).	98
4.3	S_1 -Protonentransfermodell für Phenol-(NH_3) _n nach Syage	99
4.4	Optimierte Strukuren für $Indol(H_2O)_n$ -Cluster	102
4.5	Strukturen für das Adenin-Dimer sowie Adenin- $(H_2O)_2$	105
4.6	Pump-Probe-Massenspektren der Indol-Ammoniak-Cluster	108
4.7	Kurzzeit-Ionentransienten für $IndNH(NH_3)_1^+$ und $IndND(ND_3)_1^+$	110
4.8	Langzeit-Ionentransienten für $IndNH(NH_3)_1^+$ und $IndND(ND_3)_1^+$	111
4.9	Kurzzeit-Ionentransienten für $IndNH(NH_3)_2^+$ und $IndND(ND_3)_2^+$	113
4.10	Langzeit-Ionentransienten für $IndNH(NH_3)_2^+$ und $IndND(ND_3)_2^+$	114
4.11	Kurzzeit-Ionentransienten für $IndNH(NH_3)_3^+$ und $IndND(ND_3)_3^+$	115
4.12	Langzeit-Ionentransienten für $IndNH(NH_3)_3^+$ und $IndND(ND_3)_3^+$	116
4.13	Energieniveauschema des Indol-Ammoniak-Heterodimers.	118
4.14	Intermolekulare Torsionsmode im Indol-Ammoniak-Heterodimer	122
4.15	Langzeit-Ionentransiente des Indol-Ammoniak-Heterodimers für eine brei-	
	te sowie eine enge Clusterverteilung	124

4.16	Untergrund-Photoelektronenspektren der Cluster $\mathrm{IndNH}(\mathrm{NH}_3)_n~(n\leq 3).$	126
4.17	Elektronenspektren des Clusters $IndNH(NH_3)_1$	127
4.18	Elektronenspektren des Clusters $IndNH(NH_3)_2$	128
4.19	Elektronenspektren des Clusters $IndNH(NH_3)_3$	129
4.20	Über verschiedene Energiebereiche integriertes Elektronensignal des He-	
	terodimers $IndNH(NH_3)_1$ als Funktion der Verzögerungszeit	131
4.21	Residuen der für das Heterodimer erhaltenen Kurzzeit-Ionentransienten	
	und hieraus durch Fouriertransformation bestimmte Amplitudenspektren.	132
4.22	Intermolekulare Biegeschwingungen im Indol-Ammoniak-Heterodimer	133
4.23	Definition der für die Rechnungen relevanten Koordinaten des Indol-	
	Ammoniak-Heterodimers.	135
4.24	Potential energie des S ₀ -, des $\pi\sigma^*$ - und des D ₀ ⁺ -Zustands als Funktion der	
	Koordinate r	136
4.25	Akkumulierter Franck-Condon-Überlapp zur Abschätzung der $\pi\sigma^*\text{-An-}$	
	regungseffizienz im Heterodimer	139
4.26	Kontur-Diagramm der $\pi\sigma^*$ -Zustandsfläche und der Wahrscheinlichkeits-	
	verteilung $ \eta_{00}(R,r) ^2$.	140
4.27	Zu verschiedenen Zeiten τ berechnete Wahrscheinlichkeitsverteilungen	
	$\left \chi^{\pi\sigma^*}(R,r)\right ^2$	141
4.28	Potentialschnitte des $\pi\sigma^*$ -Zustands entlang des Winkels θ	142
4.29	Potentialenergie des S ₀ -, des $\pi\sigma^*$ - und des D ₀ ⁺ -Zustands als Funktion der	
	Koordinate R	144
4.30	Potentielle Energie des $\pi\sigma^*$ -H-Transfer-Zustands und des S ₀ -Protonen-	
	transfer-Zustands als Funktion von r	146
4.31	Abgeschätze $\pi\sigma^*$ -Lebensdauer für IndNH(NH ₃) ₁ und IndND(ND ₃) ₁ ba-	
	sierend auf nichtadiabatischen Tunneln	146
4.32	Ionentransienten für $IndNH(NH_3)_4^+$ und $IndND(ND_3)_4^+$ auf der Kurz-	
	zeitskala	148
4.33	Ionentransienten für $IndNH(NH_3)_4^+$ und $IndND(ND_3)_4^+$ auf der Lang-	
	zeitskala	149
4.34	Ionentransienten für $IndNH(NH_3)_5^+$ und $IndND(ND_3)_5^+$ auf der Kurz-	
	zeitskala	150
4.35	Ionentransienten für $IndNH(NH_3)_5^+$ und $IndND(ND_3)_5^+$ auf der Lang-	
	zeitskala	151
4.36	Ionentransienten für $IndNH(NH_3)_6^+$ und $IndND(ND_3)_6^+$ auf der Kurz-	
	zeitskala	152
4.37	Ionentransienten für $IndNH(NH_3)_6^+$ und $IndND(ND_3)_6^+$ auf der Lang-	
	zeitskala	153

4.38	Kurzzeit-Ionentransiente für $IndNH(NH_3)_7^+$.	156
4.39	Elektronenspektren des Clusters $IndNH(NH_3)_4$.	157
4.40	Elektronenspektren des Clusters IndNH(NH ₃) ₅ .	158
4.41	Elektronenspektren des Clusters $IndNH(NH_3)_6$.	159
4.42	Schema zur Erklärung des für größere Verzögerungszeiten zunehmenden	
	Franck-Condon-Überlapps.	161
4.43	Vergleichende Darstellung der Photoelektronen-Spektren von $\mathrm{IndND}(\mathrm{ND}_3$) _n
	und $\mathrm{IndNH}(\mathrm{NH}_3)_n.$	162
4.44	$\mathrm{NH}_4^+(\mathrm{NH}_3)_{n-1}$ -Ionensignale in Abhängigkeit von der Verzögerungszeit	
	zwischen Pumpimpulsen bei 263 nm und Probe-Impulsen bei 395 nm	163
4.45	Ionentransienten für $\mathrm{NH}_4^+(\mathrm{NH}_3)_{n-1}$ und $\mathrm{ND}_4^+(\mathrm{ND}_3)_{n-1}$ bei $\lambda_{pu} = 263$	
	nm und $\lambda_{pr} = 800$ nm.	165
4.46	Mögliche H-Transfer-Strukturen des Clusters $IndNH(NH_3)_3$	167
4.47	Von Ishiuchi et al. berechneter Reaktionspfad für die Isomerisierungsre-	
	aktion $NH_3 - NH_3 - NH_4 \rightarrow NH_3 - NH_4 - NH_3$.	169
4.48	Ionentransienten für $\mathrm{NH}_4^+(\mathrm{NH}_3)_{n-1}$ und $\mathrm{ND}_4^+(\mathrm{ND}_3)_{n-1}$ bei $\lambda_{pu} = 282$	
	nm und $\lambda_{pr} = 400$ nm	170
4.49	Ionentransienten für $\mathrm{NH}_4^+(\mathrm{NH}_3)_{n-1}$ und $\mathrm{ND}_4^+(\mathrm{ND}_3)_{n-1}$ bei $\lambda_{pu} = 250$	
	nm und $\lambda_{pr} = 400$ nm	171
4.50	Elektronenspektren des Fragmentradikals $NH_4(NH_3)_4$	173
4.51	Abdampf-Modell nach Dedonder-Lardeux <i>et al.</i>	175
4.52	Pump-Probe-Flugzeitmassen spektrum für IndNH(NH ₃) ⁺ _n ($0 \le n \le 3$).	176
4.53	Elektronenspektren des Clusterions $IndNH(NH_3)_3^+$ bei breiter Cluster-	
	verteilung	178
4.54	Uber verschiedene Energiebereiche integriertes Elektronensignal des Clus-	
	terions $IndNH(NH_3)_3^+$ als Funktion der Verzögerungszeit	179
4.55	Mögliche Potentialverläufe entlang der NH ₃ -Fragmentationskoordinate	100
1.50	Im Ionenzustand der Indol-Ammoniak-Cluster.	180
4.56	Ergebnisse der Pump-Probe-KETOF-Analyse für IndNH $(NH_3)_n$ -Kom-	100
4 5 57	plexe bei den Clusterverteilungen $n \le I(2)$ und $n \le 3$	182
4.57	Ergebnisse der Pump-Probe-KETOF-Analyse für IndNH $(NH_3)_n$ -Kom-	109
1 50	pieze bei den Clustervertenungen $n \le 4$ und $n \le 0$	105
4.00	Realtionsmodell für große $\operatorname{IndNH}(\operatorname{NH}_3)_n$ -Cluster litt $\Pi \leq \mathfrak{I}(4)$.	100
4.09	Reaktionsmodell für große IndNH(NU) – Cluster mit $n \ge (4), 5, 0, \ldots$	100
4.00	The action smooth full group in dia C as phase.	109
4.01	Obertumren von Indol und wasser in die Gasphase.	191
4.02	Massenspektren der Indol-Wasser-Cluster IndNH $(H_2O)_n^{\dagger}$	192

4.63	Kurzzeit-Ionentransienten für $IndNH(H_2O)_n^+$ und $IndND(D_2O)_n^+$ bei en-	109
4.64	ger Clustervertenung und $\lambda_{pu} = 240$ ml	195
	nm	194
4.65	Kurzzeit-Ionentransienten für IndNH(H ₂ O) ⁺ _n bei breiter Clustervertei- lung und $\lambda_{m} = 250$ nm.	195
4.66	Definition der für die Rechnungen relevanten Koordinaten des Indol-	
1.00	Wasser-Heterodimers.	197
4.67	Potentialenergie des S ₀ - und des $\pi\sigma^*$ -Zustands als Funktion der Koordi-	
	nate r	197
4.68	Langzeit-Ionentransienten für IndNH(H ₂ O) ⁺ _n und IndND(D ₂ O) ⁺ _n bei en-	
	ger Clusterverteilung	198
4.69	Langzeit-Ionentransienten für IndNH $(H_2O)_n^+$ bei breiter Clusterverteilung	.199
4.70	Schnitte durch die IndNH(H ₂ O) ₁ - $\pi\sigma^*$ -Hyperfläche entlang der Koordi-	
	nate r und entlang der Koordinate r' .	201
4.71	Elektronenspektren des Clusters $IndNH(H_2O)_1$	203
4.72	Relativer Anteil des Ein- und Zwei-Probephotonen-Signals aus Abbil-	
	dung 4.71 am Gesamtelektronensignal.	204
4.73	Reaktionsmodell für IndNH(H_2O) _n -Cluster.	205
4.74	Massenspektrum der Ionen Adenin ⁺ , Adenin $(H_2O)_1^+$, Adenin $(H_2O)_2^+$ und	
	$(Adenin)_2^+$, "Ad": Adenin.	207
4.75	Ionensignale des Adenin-Dimers als Funktion der Verzögerungszeit.	208
4.76	σ^* -Molekülarbitale im Adenin	209
4.77	Schema zur Erklärung der Aktivierung des $\pi\sigma^*$ -Zerfallkanals im Adenin-	
	Dimer	210
4.78	Ionensignale der Mischcluster Adenin $(H_2O)_1$ und Adenin $(H_2O)_2$ als Funk-	
	tion der Verzögerungszeit.	212
4.79	Energetische Absenkung des Amino- und des Azin- $\pi\sigma^*$ -Zustands des	
	Clusters Adenin $(H_2O)_1$ relativ zum Adenin-Monomer	213
4.80	Mögliche Modelle zur Erklärung der Blauverschiebung des $(n \rightarrow \pi^*)$ -	
	Übergangs in Adenin-Wasser-Clustern.	214
A.1	Xe ⁺ -Elektronensignal.	221
A.2	¹ H-NMR-Spektrum d_1 -Indols.	223
B.1	Beschleunigungregion und Driftstrecke des Wiley-McLaren Flugzeitmas-	
2.1	senspektrometers.	225
B.2	Pump-Probe-Flugzeitmassenspektren der Indol-Ammoniak-Cluster bei	0
	einer Abzugsspannung von 1000 V und 100 V	227

B.3	Flugzeit verschiedener Ionen als Funktion der inversen Beschleunigungs-	
	feldstärke E_s^{-1}	228
B.4	Breite der Flugzeitmassenpeaks verschiedener Ionen in Abhängigkeit von	
	der inversen Beschleunigungsfeldstärke E_s^{-1}	229
C.1	Schematische Darstellung des ortsauflösenden Photoionendetektors	232
C.2	Anordnung der Anodensegmente und Zusammenfassung zu Spalten und	
	Zeilen	233
C.3	Blockdiagramm zur Aufnahme ortsaufgelöster Ionensignale	234
C.4	Anodenbild der Referenzmessung mit einer Halogenlampe	237
C.5	Toluol ⁺ -Massenpeaks bei verschiedenen Abzugsspannungen	240
C.6	Anodenbilder für Toluol ⁺ bei verschiedenen Flugzeiten.	240
C.7	Schwerpunktskoordinaten x_0 und y_0 der Toluol ⁺ -Auftreffzone als Funk-	
	tion der Flugzeit.	241
C.8	Photoreaktionsmodell des OClO nach Stert <i>et al.</i>	242
C.9	OClO ⁺ - und ClO ⁺ -Ionensignale als Funktion der Verzögerungszeit	243
C.10	Massenspektrum des OClO-Pump-Probe-Experiments.	244
C.11	Anodenbild und kinetische Energieverteilung für OClO ⁺	244
C.12	Anodenbilder und kinetische Energieverteilungen für ClO ⁺	246