9

9. Abbildungs-, Tabellen- und Abküzungsverzeichnis

Abbildungsverzeichnis

Abb. 1	HRSC-A, Filter der HRSC-A	17
<i>Abb.</i> 2	Rückansicht der teilmontierten HRSC-AX01, Filter der AX	
<i>Abb. 3</i>	Blockschaltbild HRSC-AX	19
Abb. 4	Für den Flugbetrieb mit HRSC verwendete Flugzeuge: Cessna Grand Caravan 208, Beechcra	ıft
	King Air 200, Dassault Falcon, Dornier DO228, Piper Seneca II	21
Abb.5	Speicherplatzbedarf der HRSC in MB	
Abb. 6	Übersicht über verschiedene Betriebsmodi der HRSC-AX	25
<i>Abb.</i> 7	Skizze zum Inflight Alignment	26
Abb. 8	Zusammenhang zwischen TN (True North), MN(Magnetic North) und CN(Compass North	
	sowie den Abweichungen VAR (MN-TN=Variation), DEV (CN-MN=Deviation)und der	
	Drift (DA, Drift Angle)	27
<i>Abb.</i> 9	Links: Auswirkungen des Plattformnickens auf die Rohdaten (level2) Rechts: gleicher	
	Ausschnitt, nach photogrammetrischer Prozessierung verbleibender Fehler im Orthobild	30
<i>Abb.</i> 10	Orthobild überlagert mit Vektoren und verbleibender Fehler (rot) nach Anwendung aller	
	Korrekturen	
<i>Abb.</i> 11	Nickstrecke auf Streifen 09 mit An- und Abflugkurve, Detail aus Streifen 09 beim Übergang	
	zum Plattformnicken	31
<i>Abb.</i> 12	Pergamonmuseum, Überlagerung der Kanäle S1, P1, ND, level2, Geometrie der optisch-	
	mechanischen Abtastung ²⁷	
	Photogrammetrischen Prozessierung der Daten, CCD-Profil	
	Graustufendarstellung des DOM HRSC-AX und LIDAR, resultierende Orthobilder	
	HRSC-AXW, Innenansicht	38
<i>Abb.</i> 16	19. Januar 2004, Krater des Vulkans Albor Tholus in der Elysium Region, Topographische	
411 47	Orthobildkarte	
	Funktionsprinzip LIDAR am Beispiel Riegl LMS-Q560	
	RGB, pseudo color und waveform digitization	
	Graustufenbild des ersten Echos, Ausschnittsvergrößerung (beleuchtet)	
	Intensitätsbild des Echos, Ausschnittsvergrößerung	
	CIR, Ausschnittsvergrößerung.	
	RGB, Ausschnittsvergrößerung	
	Übersicht Blattschnitt Berlin, Untersuchungsgebiet blau markiert	
	Ausschnitt Verteilung der Punkte, Detail DOM überlagert mit ALK und Festpunkt	
	Unterschiede im Oberflächenmodell an den Referenzpunkten	
	Oberflächenmodell LIDAR, HRSC mit Profillinie, Gendarmenmarkt	
	Profillinie LIDAR rot, HRSC blau markiert)1
A00. 20	Direkter Vergleich zwischen RGB, DOM-LIDAR (rot), DOM-HRSC (blau), generierter Kontur und ALK	52
Ahh 29	Streuungsdiagramm, Analyse des Streuungsdiagramms farblich markiert	
	Streuungsdiagramm, Analyse des Streuungsdiagramms farblich kodiert	
	Scanmuster Falcon, Verteilung der Messpunkten und Erfassung von Gebäudekanten	
	Zusammenhang Footprint, Lage- und Höhenfehler	
	Segmentierung der HRSC-AX Daten mit dem scale parameter 50: unter ausschließlicher	,,,
1100,00	Verwendung des Farbhomogenitätskriteriums (links) und unter Verwendung von beiden	
	Homogenitätskriterien für Farbe und Form (rechts).	70
Abb. 34	Verhältnis zwischen den Segmentierungsparametern bei "Multiresolution Segmentation" in	
	Definiens Professional 5.0	
Abb. 35	Hierarchisches Netzwerk der Bildobjekte in abstrakter Darstellung (links) und in Pixel View	-
	(rechts)	
Abb. 36	Die Segmentierung in Definiens Professional 5.0. Einstellung der Segmentierungsparameter	
	für Multiresolution Segmentation	
Abb. 37	Untersegmentiertes Gebäude, scale parameter 120 (links), dasselbe korrekt segmentierte	
		79

Abb. 38	Übersegmentiertes Gebäude, scale parameter 90 (links), dasselbe korrekt segmentierte Gebä	ude,
	scale parameter 120 (rechts)	
Abb. 39	Falsche Segmentierung: Innenhof mit Schattenseite des Satteldaches zusammengefasst (link	ks),
	Gebäude mit nebenan stehender Laterne zusammengefasst (rechts)	
Abb. 40	Fuzzy-Zugehörigkeitsfunktion: "größer als"	88
	Merkmalsbeschreibung für eine Klasse	
	Fuzzy-Klassifizierung eines Objektes für vorhandene Klasse (verändert nach eCognition Us	
	Guide, 2004)	
Abb. 43	Workflow der objekt-basierten Klassifizierung	
	Flugplanung für Berlin 2005, Stadtgrenze durch rosa Polygon markiert	
	Ausschnitt aus dem Testgebiet, CIR und RGB	
	Histogramme für den roten Kanal in 8- und 16bit	
	Oberflächenmodell HRSC und LIDARLIDAR	
	Segmentierung ohne DOM(1), mit DOM (2), DOM	
Abb. 49	Klassenhierarchie für level 1und 2. Groups (links) und Inheritance (rechts)	.108
	.Klassifizierungsergebnis für die Klasse waterbodies	
	Klassenhierarchie für level 3: Groups-(links) und Inheritance-Registerkarten (rechts)	
	Klassifizierungsergebnis für erhabene Objekte: Kinderklassen in Inheritance-Darstellung,	
	Elternklasse Semantic Elevated in Groups-Darstellung	.111
Abb. 53	Falsch klassifizierte Bäume aufgrund der Ausdehnungsunterschiede zwischen Spektraldate	
	und DOM. Bäume in grün, erhabene Objekte in rosa	
Abb. 54	Process Tree: Trennung der Brücken von anderen erhabenen Objekten	
	Klassenhierarchie für level 4, beide Registerkarten sind gleich	
	Klassifizierungsergebnis der Höhen der erhabenen Objekte	
	Klassenhierarchie für level 5. Beide Registerkarten sind gleich	
	Klassifizierungsergebnis der Dachmaterialien	
	Klassenhierarchie für level 7 und 8: Groups (links) und Inheritance (rechts)	
	Klassifizierungsergebnis des levels 8: Hochbahn wurde von Gebäuden getrennt klassifiziert	
	Klassifizierung der begrünten Dächer: unklassifiziert, klassifiziert und als Kinderklasse der	
	Gebäude mit verbleibendem Restfehler	
Abb. 62	Klassifizierungsergebnis der Gebäude	
	Klassenhierarchie für level 6.	
	Klassifizierung bewegter Objekte (Schiffe, Autos)	
	Klassifizierungsergebnis des Analysemodells A	
	Klassifizierung mit LIDAR	
	Klassifizierungsendergebnis in optimaler Kombination	
	Klassifizierungsergebnis des Analysemodells C	
Abb. 69	Klassifizierung der Innenhöfe, RGB, Analysemodelle A (blau), B (rot) und C (gelb)	.127
Abb. 70	Gebäudeklassifizierung, ALK, Differenzbild Gebäude-ALK	.128
	Gebäudeklassifizierung, ALK, Differenzbild Gebäude-ALK	
Abb. 72	Gebäudeklassifizierung, ALK, Differenzbild Gebäude-ALK	.129
Abb. 73	RGB, Klassifizierung basierend auf LIDAR-DOM (rot) und auf HRSC-DOM (blau)	.130
Abb. 74	Versiegelungsgrad im Umweltatlas und als Verschneidung aus Klassifizierung und ALK	.132
	Beispiel für die Erstellung einer action library	
	MFC Testflug Berlin Adlershof, DLR e.V., 3D Ansicht Oberflächenmodell	

Tabellenverzeichnis

Tab. 1	Technische Daten HRSC-A	18
Tab. 2	Erläuterungen zum Blockschaltbild	
Tab. 3	Übersicht über die Betriebskosten und technischen Daten einiger Flugzeuge	
Tab. 4	Prozessierungslevel	
Tab. 5	Technische Daten der HRSC-Kameras	
Tab. 6	Instrumente an Bord von Mars Express	41
Tab. 7	Technische Details LIDAR	
Tab. 8	Zusammenfassung der Ergebnisse	51
Tab. 9	Übersicht: Unterschiede im HRSC und LIDAR-DOM	54
	Mathematische Darstellung einer Konfusionsmatrix (nach Congalton u. Green)	
	Beispiel einer Konfusionsmatrix (nach Congalton u. Green)	
	Übersicht der minimal notwendigen Segmentierungen	
	Kombinationen der für drei unterschiedliche Analysemodelle verwendeten Daten	
	Kappa-Statistik	

Abkürzungsverzeichnis

ADC Airborne Digital Camera
ADS Airborne Digital Sensor

AGAFE Arbeitsgemeinschaft für angewandte

Forschung und Entwicklung von

Mitgliedern der Fachhochschule Wiesbaden

ALTM Airborne LASER Terrain Mapper
ALK Automatisierte Liegenschafts Karte

ASPRS American Society for Photogrammetry and

Remote Sensing

ATKIS AmtlichesTopographisch-Kartographisches

Informationssystem

CAIP International Conference on Computer

Analysis of Images and Patterns

CCD Charged Coupled Device
CCU Camera Comand Unit

CIR Color Infra Red

DLR Deutsches Zentrum für Luft- und

Raumfahrt e.V.

DGPF Deutsche Gesellschaft für Photogrammetrie

und Fernerkundung

DGM Digital Ground Model

DGPS Differential Global Positioning System

DOM Digitales Oberflächenmodell

DSM Digital Surface Model DTM Digital Terrain Model

ERDAS Earth Resource Data Analysis System ENVI Environment for Visualising Images

ESA European Space Agency

FIG Fédération Internationale des Géomètres

FMC Forward Motion Compansation

FU Freie Universität FOV Field of View

GPS Global Positioning System
GIS Geoinformationsystem

HRSC-A High Resolution Stereo Camera - Airborne

HRSC-AX ~-Airborne eXtended

HRSC-AXW ~ -Airborne eXtended Wideangle

IDL Interactive Data Language
IFOV Instantaneous field of view

IGI Ingenieur Gesellschaft für Interfaces mbH

IMU Inertial Measurement Unit INS Inertial Navigation System

ISPRS International Society for

Photogrammetry and Remote Sensing

JPL Jet Propulsion Labortory

LASER Light Amplification by Stimulated Emission

of Radiation

LIDAR Light Detecting and Ranging

MEX Mars Express

MFC Multifunctional Camera Head

MGS Mars Global Surveyer

MS-DOS Microsoft Disk Operating System

MSVC++ Microsoft Visual C++

NASA National Aviation and Space Agency

NIR Near Infrared

NM Nautical Mile, 1 Meridianminute

PAMI Pattern Analysis and Machine Intelligence

PFG Zeitschrift für Photogrammetrie -

Fernerkundung - Geoinformation

PI Principal Investigator

RADAR Radio Detection And Ranging

RAID Redundant Array of Independent Disks

RGB Red Green Blue
RLG Ring Laser Gyro
RMS Root Mean Square

SIG Système d'information géographique

sm Seemeile

SRC Super Resolution Camera

SPOT Systeme Probatoire d'Observation de la

Terre

SUSAN Smallest Univalue Segment Assimilating

Nucleus

TDI Time Delayed Integration

TIN Triangulated Irregular Network

VICAR Video Image Communication and Retrival

VHSR Very High Spatial Resolution