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Abstract

This thesis is based on research articles (either published in or submitted to peer-reviewed
journals), contributing to the assessment of global vegetation photosynthesis through
the monitoring of sun-induced chlorophyll fluorescence (SIF) from space which is the
aim of the GlobFluo project funded by the Emmy Noether Programme of the Deutsche
Forschungsgemeinschaft (GU 1276/1-1). SIF is a weak electromagnetic signal emitted
by the photosynthetic machinery of active vegetation in the visible and near-infrared
spectral regions (650–800 nm). In this thesis, two fundamentally different algorithms
were developed (physically- and statistically-based) to decouple the SIF signal from the
about 100-times-more-intense reflected solar radiation in the measured top-of-atmosphere
(TOA) radiance spectrum. The physically-based approach has been applied to data
acquired from JAXA’s Greenhouse Gases Observing Satellite (GOSAT) between June
2009–August 2011. The statistically-based retrieval has been employed to derive SIF
from data of two different satellite instruments: (i) ESA’s SCanning Imaging Absorption
SpectroMeter for Atmospheric CHartographY (SCIAMACHY) between August 2002–
March 2012, and (ii) EUMETSAT’s Global Ozone Monitoring Experiment-2 (GOME-2)
between January 2007–April 2015. Comparisons of these three new global SIF data sets
with each other as well as with existing data sets reveal highly consistent spatiotemporal
patterns. However, differences arise when comparing absolute values which is presently
less critical since the absolute value is not applied in current research. Furthermore, the
influence of potentially confounding factors on the retrieval has been analyzed. It could
be proven that results from both retrieval approaches are relatively robust against cloud
contamination. In contrast, the South Atlantic Anomaly (SAA), a region with an anoma-
lously reduced strength in the Earth‘s magnetic field, leads to an increased retrieval noise
in large parts of the South American continent. Therefore, a particularly stringent filter-
ing ensured that the impact of the SAA on GOME-2 SIF measurements in a case study
in the Amazon rainforests is as low as possible. Regarding the seasonality of SIF in the
Amazon, two often disregarded aspects have been identified to be particularly important
for the interpretation of SIF: (i) an essential influence of the satellite overpass time due to
the response of SIF to instantaneous photosynthetically active radiation (PAR), and (ii)
a significant impact of the sun-surface-sensor geometry due to anisotropic SIF emission
characteristics. Given the intrinsic influence of canopy structure on SIF measurements,
combining SIF with appropriate vegetation parameters (ideally retrievable from the same
sensor) may be one key aspect to relate SIF to canopy photosynthesis. In particular, the
canopy scattering coefficient (CSC), resulting from the concept of canopy spectral in-
variants, has been identified as a promising candidate for this purpose when observing
densely vegetated areas. Therefore, the first global CSC data set has been derived from
atmospherically corrected GOME-2 data and was examined within the case study. It has
been found that both SIF and CSC may serve as complementary and valuable vegetation
parameters under the conditions in the Amazon rainforest.
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Kurzzusammenfassung

Diese Dissertation basiert auf Forschungsartikeln (veröffentlicht oder eingereicht in Peer-
Review Journalen), die zur Analyse der terrestrischen Photosynthese durch die satel-
litengestützte Fernerkundung der von solarer Strahlung induzierten Chlorophyllfluoreszenz
(SIF) beitragen. Damit wurde das Hauptziel des GlobFluo Projekts verfolgt, welches
durch das Emmy Noether Programm der Deutschen Forschungsgemeinschaft (GU 1276/-
1) gefördert wird. SIF ist ein schwaches elektromagnetisches Signal, welches vom Pho-
tosyntheseapparat aktiver Pflanzen im sichtbaren und nahen infraroten Spektralbereich
(650–800 nm) emittiert wird. Es wurden zwei grundlegend verschiedene Algorithmen ent-
wickelt (physikalisch und statistisch), die es ermöglichen das SIF-Signal von der in etwa
100 mal intensiveren reflektierten solaren Strahlung am Oberrand der Atmosphäre (TOA)
zu separieren. Das physikalische Verfahren wurde auf Messungen von JAXAs Greenhouse
Gases Observing Satellite (GOSAT) zwischen Juni 2009–August 2011 angewendet. Daten
zweier verschiedener Satelliteninstrumente wurden für das statistische Verfahren verwen-
det: (i) ESAs SCanning Imaging Absorption SpectroMeter for Atmospheric CHartog-
raphY (SCIAMACHY) zwischen August 2002–März 2012 und (ii) EUMETSATs Global
Ozone Monitoring Experiment-2 (GOME-2) zwischen Januar 2007–April 2015. Vergle-
iche dieser drei neuen globalen SIF-Datensätze untereinander sowie mit bereits bestehen-
den SIF-Datensätzen zeigen eine hohe räumliche und zeitliche Konsistenz. Unterschiede
ergeben sich jedoch in Absolutwerten, die allerdings als weniger kritisch einzustufen sind,
da Absolutwerte in der gegenwärtigen Forschung keine Anwendung finden. Desweiteren
wurde der Einfluss möglicher Störfaktoren auf die SIF-Ableitungsverfahren analysiert.
Es konnte gezeigt werden, dass die Ergebnisse beider Verfahren relativ robust gegen
Wolkenkontamination sind. Eine bedeutsame Fehlerquelle stellt hingegen die Südat-
lantische Anomalie (SAA, eine regionale Anomalie im Magnetfeld der Erde) dar, welche
für ein verstärktes Messrauschen in weiten Teilen Südamerikas verantwortlich ist. Des-
halb wurde ein besonders restriktiver Filter angwendet um sicherzustellen, dass der Ein-
fluss der SAA auf GOME-2 SIF für eine Fallstudie im Amazonischen Regenwald so
gering wie möglich ist. Hinsichtlich der Saisonalität von SIF in der Amazonasregion
wurden zwei relevante Aspekte identifiziert, die bisher kaum berücksichtigt wurden: (i)
ein essentieller Einfluss der Überflugzeit des Satelliten aufgrund der Sensitivität von
SIF auf photosynthetisch aktive Strahlung (PAR) und (ii) ein signifikanter Einfluss der
Beobachtungsgeometrie aufgrund der Anisotropie der SIF-Emission. In Anbetracht des
inhärenten Einflusses der Vegetationsstruktur auf SIF-Messungen ist eine Verknüpfung
von SIF mit weiteren Vegetationsparametern (idealerweise vom selben Sensor ableitbar)
erstrebenswert, um einen Zusammenhang zwischen SIF und der Photosyntheseaktivität
herzustellen. Insbesondere der „Canopy Scattering Coefficient” (CSC), welcher aus der
Theorie über spektrale Invariante folgt, wurde in diesem Sinne als vielversprechend be-
funden. Deshalb wurde der erste CSC Datensatz aus atmosphärenkorrigierten GOME-2
Daten abgeleitet und im Rahmen der Fallstudie analysiert. Dabei wurde festgestellt,
dass unter den Bedingungen des Amazonischen Regenwaldes sowohl SIF als auch CSC
als komplementäre und nützliche Vegetationsparameter dienen können.
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Chapter1
Introduction

1.1 Rationale & Structure

This thesis is based on research conducted within the framework of the GlobFluo project
funded by the Emmy Noether Programme of the Deutsche Forschungsgemeinschaft (GU
1276/1-1) and is a compilation of scientific articles. The overall objective of the GlobFluo
project is to assess global vegetation photosynthesis through the monitoring of sun-
induced chlorophyll fluorescence (SIF) from space. Photosynthesis is the most essential
process on Earth, considering that oxygen and the very foundation of the food chain
(plant material) are formed through the conversion of sun-light to chemical energy. Grad-
ually changing environmental conditions, e.g., increasing concentrations of atmospheric
trace gases, raising temperatures or reduced water availability will most likely affect
photosynthetic productivity. Therefore, consistent long-term time series of vegetation
parameters, ideally describing the global photosynthetic performance, are required to
detect trends and potential threats to biodiversity. A promising and innovative approach
for the monitoring of terrestrial photosynthesis on the global scale is the estimation of
SIF from spaceborne spectrometers. SIF is a unique spectral signal emitted by the pho-
tosynthetic machinery of green vegetation and is closely related to photosynthesis (e.g.,
Zarco-Tejada et al., 2003).
The advent of first global SIF retrieval approaches from Joiner et al. (2011) and

Frankenberg et al. (2011a,b) marked the dawn of a new research field, aiming at the
assessment of dynamics in global photosynthetic productivity by relating SIF to pho-
tosynthesis. Several recently published studies (e.g., Lee et al., 2013; Guanter et al.,
2014; Joiner et al., 2014; Parazoo et al., 2014; Zhang et al., 2014; Yang et al., 2015;
Walther et al., 2015) reveal that SIF data have the potential for providing complemen-
tary and in many cases enhanced information with respect to traditional reflectance-based
vegetation indices (VIs), which evaluate the "greenness" (mixture of canopy structure,
biomass, and pigment concentration) of vegetation. In this context, two aspects appear
to be particularly relevant for current and future research. First, all studies relating SIF
to photosynthesis rely on the quality of the underlying data sets which justifies a further
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Chapter 1. Introduction

development and advancement of retrieval techniques. Second, the interpretation of SIF
data is challenging due to several factors that influence the SIF signal such as vegetation
status, environmental conditions, canopy structure, viewing and illumination geometry,
and atmospheric conditions. This thesis seeks to address both points by (i) revisiting
technical aspects related to the retrieval of SIF from spaceborne spectrometers, and (ii)
examining SIF data with respect to relevant influencing factors.
In the following introductory Sect. 1.2, I will give a brief overview on the chlorophyll

fluorescence signal and its link to photosynthesis, including current limitations for the
full exploitation of the signal. Furthermore, I will address the estimation of SIF from
spectroscopic measurements with emphasis on spaceborne instruments, and outline the
frame conditions for a case study in the Amazon region. A detailed description of research
objectives is given in Sect. 1.3. The core of this thesis is comprised of three chapters (2-4)
reproducing research articles, either published in or submitted to peer-reviewed journals.
Each chapter is therefore divided into distinct sections such as abstract, introduction,
methods, results, summary/conclusions, and acknowledgments. In consequence, these
chapters can be read individually, implying that recurring material occurs to a limited
extent. Furthermore, it should be noted that the nomenclature was kept as originally
published/submitted, leading to slight inconsistencies (e.g., SIF and Fs are used in-
terchangeably) which is due to differing guidelines among journals and suggestions by
reviewers. Contributions of author and co-authors are indicated at the end of each chap-
ter. Chapter 2 and 3 primarily deal with technical aspects related to different retrieval
techniques (physically-based, statistically-based), while chapter 4 assesses the potential
of SIF and another promising vegetation parameter, namely the canopy scattering coeffi-
cient (CSC), for the monitoring of dense vegetation in the Amazon rainforest. Chapter 5
summarizes main findings, provides an overview on follow-up studies (which took advan-
tage of the SIF data produced within the framework of this thesis), and discusses future
prospects.

1.2 Research Background

This section provides an introductory overview on the chlorophyll fluorescence signal and
its link to photosynthesis on different spatial scales (Sect. 1.2.1). Subsequently, Sect. 1.2.2
addresses the measurement of SIF and Sect. 1.2.3 outlines prerequisites for assessing the
photosynthetic activity in the Amazon region, which has been selected as a study case
because of the relevance of this area to the global carbon cycle.

1.2.1 Chlorophyll fluorescence and its link to photosynthesis

Fluorescence generally refers to the spontaneous emission of light by a substance that
has absorbed light of another wavelength, while the emission occurs usually at longer
wavelengths associated with lower energy (known as Stokes shift). The released photon
(fluorescence) has typically a lower energy (longer wavelength) due to internal energy
conversion. This process takes place on the scale of atoms/molecules, while a measure-
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1.2. Research Background

ment of plant chlorophyll fluorescence from space has a pixel size in the order of a few
square kilometers. In the following, I will therefore describe the chlorophyll fluorescence
signal and its link to photosynthesis according to the bottom-up principle.

Molecular & leaf level

During the initial stage of photosynthesis, light is absorbed to cover the energy de-
mand for synthesizing carbon dioxide (CO2) and water to glucose and oxygen. In case
of higher plants, the light-harvesting takes place in the chloroplasts, a sub-unit of the
leaf’s cells. More specifically, two distinct types of photosystems, termed PSI and PSII,
are embedded in the membrane of thylakoids within the chloroplasts (e.g., Lichtenthaler
and Rinderle, 1988). Both photosystems consist of (i) an antennae with light-harvesting
complexes (LHCs) and (ii) a reaction center (Heldt, 2004). The LHCs involve several
pigment molecules (chlorophyll a, chlorophyll b, carotenoids, and anthocyanins) bounded
by proteins (Liu et al., 2004), where photons of certain wavelengths are absorbed by
the pigments. The resulting excitation energy is rapidly passed to the reaction center
(resonance energy transfer), where a pigment-protein complex (containing chlorophyll a
and β-carotene) performs the photosynthetic light reaction (Lichtenthaler and Rinderle,
1988). Due to differing pigment compositions of PSI and PSII, light of slightly differ-
ent wavelengths is absorbed by each photosystem, while chlorophyll represents the main
photosynthetic pigment in both PSI and PSII (Heldt, 2004). Both photosystems operate
in series, in which electrons are being transferred from PSII to PSI (e.g., Porcar-Castell
et al., 2014). Flexible mechanisms balance disturbances in the electron transport chain
and adjust the energy partitioning between the photosystems. The light absorption in-
volves the excitation of chlorophyll a from the ground state to a higher energetic level
(Lichtenthaler and Rinderle, 1988), which essentially represents the origin of the flu-
orescence emission. So far, it has been described how the absorbed light reaches the
chlorophyll a molecules. In addition, a wavelength specific review of this process is nec-
essary for an understanding of the fluorescence emission. The paragraph below refers to
Fig. 1.1, illustrating the emergence of chlorophyll a fluorescence.
Leaves absorb light mainly restricted to a small portion of the sunlight’s spectrum

between 400-700 nm, termed photosynthetically active radiation (PAR), where chloro-
phyll pigments absorb electromagnetic radiation preferentially in blue (∼450 nm) and red
(∼650 nm) wavelengths. In the visible spectrum (400–700 nm), enhanced reflection takes
place in the green (∼550 nm) which leads to the characteristic appearance of plants as
seen with the human eye. The Planck-Einstein relation (Eq. 1.1) states that a photon’s
energy occurs only in discrete levels (quanta), separated by a fundamental constant:

E = hν =
hc

λ
, (1.1)

where h is the Planck’s constant (6.626 x 10−34 Js) and ν is the frequency of the electro-
magnetic wave. The frequency is in turn related to the wavelength λ through ν = cλ−1,
where c is the speed of light (3 x 108 ms−1). Light energy therefore can only be ab-
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Chapter 1. Introduction

Figure 1.1: Origin of the chlorophyll a fluorescence emission. The left plot depicts the
absorption spectrum of a healthy green leaf and of chlorophyll a (dissolved in
diethyl ether, Dixon et al., 2005). The idealized Jablonski diagram (similar to
Porcar-Castell et al., 2014) in the middle depicts the ground (S0) and excited
states (S1 and S2) of chlorophyll a molecules, including the excitation in case
of blue and red photons (hν) with the corresponding thermal (orange) and
fluorescent (green) pathways of de-excitation. Note, however, that most of
the absorbed energy will typically be used for photosynthesis. The plot on the
right depicts the spectral leaf reflectance and the chlorophyll a fluorescence
emission spectrum, where the ratio of fluorescence peak values (F685, F740)
depends on leaf structure and chlorophyll content. Absorption, reflectance,
and emission spectra have been scaled for visualization purposes.

sorbed in discrete quanta, resulting also in discrete excitation states. Consequently, two
main excitation states of chlorophyll a molecules occur due to the two distinct absorption
maxima. Once a photon has been absorbed by a chlorophyll a molecule (or energy has
been passed from other pigments in the antennae), one of its electrons is being excited
to a singlet state (S1 or S2) with rotational and vibrational sublevels as indicated by the
fine lines in Fig. 1.1 (Heldt, 2004). In case of blue light (containing more energy than
red light), the second singlet state (S2) is excited and decays rapidly (within ∼ 10−12 s)
under heat emission (by rotations and vibrations) to the first singlet state (Heldt, 2004).
The de-excitation from of the first singlet state can in turn proceed by thermal energy
dissipation or through fluorescence, while this S1 state can also be excited by red light
directly (Heldt, 2004). However, the most important pathway of de-excitation from the
S1 state for photosynthesis consists of using the energy for chemical work (Heldt, 2004).

4



1.2. Research Background

In addition, rare transitions from exited singlet states to potentially harmful triplet states
can occur (Heldt, 2004). The probability for other de-excitation pathways than thermal
energy dissipation increases at S1 due to its much longer half-life of about 10−9 s. The re-
sulting chlorophyll a fluorescence emission occurs roughly between 650–800 nm, building
a double peak feature with maximum values at ∼685 nm (F685) and ∼740 nm (F740),
respectively (Lichtenthaler and Rinderle, 1988; Buschmann, 2007). Note, however, that
the major part of the absorbed light energy (under favorable conditions > 80%) is used
to generate reductants (ATP and NADPH) for the CO2 assimilation in the dark reaction
of photosynthesis (Calvin-Benson cycle), while oxygen is released as a by-product of the
initial light reaction (Buschmann, 2007).
In summary, absorbed light can mainly undergo three competing pathways: (i) drive

photosynthesis, (ii) dissipate as heat (also known as non-photochemical quenching) or
(iii) be re-emitted as chlorophyll fluorescence. The probability of each pathway is subject
to biochemical and environmental conditions (van der Tol et al., 2009a), and involves
several regulatory mechanisms to dissipate excess energy (Porcar-Castell et al., 2014).
That means the relationship between photosynthesis and fluorescence is in general non-
linear, requiring large efforts in order to correctly interpret the fluorescence signal.
As a consequence of the interlinked pathways and regulatory mechanisms, fluorescence

can be highly dynamic. This was first demonstrated by the observation from Kautsky
and Hirsch (1931), revealing a rapid increase of fluorescence when dark-adapted leaves are
exposed to light. The initially elevated intensity of fluorescence continuously decreases to
a steady-state level within a few minutes ("Kautsky effect"). Simultaneously, the rate of
CO2 assimilation increases, suggesting an inverse relationship between fluorescence and
photosynthesis during the period of light-acclimation (also known as induction kinetics).
Their observation initiated a vast body of research based on such or similar kinetically
processes, e.g., measurements of the temporal course of fluorescence induced by saturating
light pulses under various conditions (see review articles by Lichtenthaler and Rinderle,
1988; Krause and Weis, 1991; Maxwell and Johnson, 2000; Govindjee, 2004; Schreiber,
2004; Baker, 2008). These active measurement techniques with external light sources,
however, limit measurements to small spots in combination with a short distance to
the sensor. Contrastingly, passive remote sensing enables the continuous monitoring of
large areas, even from space, but it is generally not trivial to transfer findings obtained
with active measurements to those of passive measurements. Since this thesis deals with
passive remote sensing of SIF, I will hereinafter focus on the light-adapted steady-state
fluorescence (or SIF).
Though SIF is emanating from both PSII and PSI, it is widely established to assume

that the PSII contribution dominates, presumably due to a more efficient photosynthetic
pathway in PSI (Porcar-Castell et al., 2014). In contrast to the more dynamic PSII
fluorescence, the relatively low PSI contribution appears to be rather constant, even
under stress conditions. Therefore, PSI fluorescence is often neglected or treated as
an offset value (Porcar-Castell et al., 2014), while PSII fluorescence is more sensitive to
the light use efficiency of photosynthesis and thus of primary interest. However, Porcar-
Castell et al. (2014) emphasize that seasonal variations of the PSI fluorescence have not
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yet been explored. Moreover, Franck et al. (2002) suggest that the relative contribution
of PSI is indeed relevant, depending on wavelength and state (>40% at wavelength >
770 nm, dark-adapted state). There is, by contrast, a general agreement that the first
peak, F685, can be attributed mostly to the PSII fluorescence emission, while the second
peak, F740, is emanating from both PSI and PSII (Lichtenthaler and Rinderle, 1988;
Gitelson et al., 1998; Buschmann, 2007; Porcar-Castell et al., 2014). Overall, the amount
of fluorescence emitted by PSI and PSII is rather low and typically represents less than
5% of the total light absorbed (Zarco-Tejada et al., 2003).
The leaf spectral reflectance increases rapidly in the 680–730 nm wavelength region (see

Fig. 1.1), termed red edge, mostly due to the spectral variation in chlorophyll absorption.
In vivo (outside of a ’living’ leaf) measurements of SIF are therefore inherently subject
to re-absorption effects within the leaf, basically depending on leaf structure, thickness,
and chlorophyll content (Gitelson et al., 1998). Since the red edge causes a selective
absorption in red wavelengths, F685 is much more affected than F740. Consequently,
the spectral shape of the SIF emission is considerably modified with respect to its origin
inside the leaf. Nevertheless, the SIF spectrum in the leaf interior is important to fully
exploit the information regarding photosynthesis. Thus, scaling approaches from the leaf
to the molecular level are necessary to accurately model the fluorescence emission and
its link to photosynthesis under various conditions. This includes the separation of the
relative contributions of PSI and PSII fluorescence within a leaf, requiring a combination
of measurements and modeling (e.g., Gitelson et al., 1998; Pedrós et al., 2008). Fur-
thermore, the FlourMODleaf model (Pedrós et al., 2010) is capable of simulating the
re-absorption of SIF within leaves. Hence, inversion schemes can be applied to relate
leaf scale SIF measurements to photosynthetic functioning on the molecular scale. How-
ever, the link between SIF and photosynthesis (on the leaf level) can also be explored by
using deterministic approaches, which incorporate the available knowledge of involved
processes, but do not explicitly account for the radiative transfer within the leaf. More
specifically, conventional photosynthesis models have been extended to simulate the re-
sponse of SIF to changing biochemical and environmental conditions (van der Tol et al.,
2009a,b, 2014).

Canopy & ecosystem level

When departing from a single leaf towards the canopy scale, it is highly important to
additionally consider structural effects (e.g., Fournier et al., 2012); for instance, a complex
canopy will:

1. lead to a further modification of the spectral shape of SIF due to the selective
absorption of red wavelengths,

2. decrease the detectable amount of SIF with respect to the integrated SIF emission
over all canopy layers due to an enhanced probability for photons to be absorbed
or scattered in different directions,
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3. have a directional component in the SIF emission (which also applies for less com-
plex canopies) due to leaf angle distributions and the amount of sunlit/shaded
leaves,

4. have an enriched contribution of SIF from the uppermost layer.

Considering these effects, it is crucial that recently developed/extended models allow to
combine the SIF emission with canopy structure effects to simulate the impact on SIF at
the top-of-canopy (TOC) level (e.g., Kobayashi and Iwabuchi, 2008; Zarco-Tejada et al.,
2013). This eventually provides the opportunity to relate TOC SIF measurements to
photosynthesis.
Besides structural effects of closed canopies, it should be considered that the canopy

layer can be discontinuous (e.g., crowns and gaps). The first attempt to explore the
influence of a heterogeneous canopy layer on SIF measurements (with a coarser resolu-
tion than the closed canopy components) has been realized by the FluorFLIM model.
Zarco-Tejada et al. (2013) coupled the FluorMODleaf (Pedrós et al., 2010) and Fluor-
SAIL (Scattering by Arbitrarily Inclined Leaves, Miller et al., 2005) with the geometric
forest light interaction model (FLIM, Rosema et al., 1992), accounting for shadowing
and crown transparency. FluorFLIM simulations proved that spatial resolution effects
significantly influence the SIF signal from heterogeneous canopies, i.e., a weak relation-
ship between SIF from pure, sunlit tree crowns and from aggregated pixel (including soil
and shadows) was observed. Recently, the leaf scale photosynthesis-fluorescence model
approach from van der Tol et al. (2014) has been combined with the Forest Light En-
vironmental Simulator (FLiES Kobayashi and Iwabuchi, 2008), capable of simulating
multiple scattering within the canopy. This integrated atmosphere-three dimensional
canopy radiative transfer model can be used to evaluate the link between TOC SIF
and canopy photosynthesis under various atmospheric conditions, also for heterogeneous
landscapes. In summary, the complex response of SIF to canopy structure demonstrates
that the domain of canopy–atmosphere radiative transfer is essential to interpret TOC
SIF measurements, while progress in this field has been achieved recently.
The continuous development of methods for the (passive) remote sensing of SIF (see

Meroni et al., 2009, and references therein for airborne measurements) enabled the acqui-
sition of SIF data for larger scales. In particular, satellite-based SIF retrievals (Sect.1.2.2)
opened a new opportunity to estimate photosynthetic rates for whole ecosystems. How-
ever, considering the lack of up-scaling approaches from the canopy level towards larger
scales, the question arises whether a unique link between SIF and photosynthesis can be
established. Faced with this question, recently conducted research has focused on com-
parisons between SIF data (predominantly retrieved from spaceborne spectrometers) and
other data streams related to photosynthesis (Frankenberg et al., 2011b; Guanter et al.,
2012; Lee et al., 2013; Parazoo et al., 2013; Guanter et al., 2014; Joiner et al., 2014;
Zhang et al., 2014; Guan et al., 2015; Perez-Priego et al., 2015; Walther et al., 2015).
A common parameter, particularly suited for a comparison with SIF at the ecosystem

level, is the estimated carbon uptake through photosynthesis, termed gross primary pro-
duction (GPP) (e.g., Beer et al., 2010). Traditionally, GPP has been modeled based on
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the concept of photosynthetic light use efficiency (Monteith, 1972)

GPP = PAR · fPAR · ε, (1.2)

expressing GPP as product of photosynthetically active radiation (PAR, 400-700 nm),
fraction of PAR (fPAR) that is absorbed, and the light use efficiency ε, at which the
absorbed PAR (APAR) is used for photosynthesis. Remarkably, SIF similarly contains
information on the light absorbed by vegetation and the efficiency at which the light is
used for fluorescence emission, which in turn appears to be related to the photosynthetic
light use efficiency under certain conditions (Guanter et al., 2014). In order to model
GPP, remotely sensed data is typically used to infer APAR, while look-up tables provide
values for the light use efficiency (see review article from Hilker et al., 2008). In the
more elaborated approach from Jung et al. (2011), GPP is estimated in two steps: (i)
General relationships between several explanatory environmental variables and GPP are
inferred from measurements at specific sites, and (ii) these relationships are then globally
up-scaled by using remote sensing, meteorological and land cover data. The first step
comprises a training of model tree ensembles (a machine learning technique) by means
of data sets obtained from a global network of eddy covariance flux towers (FLUXNET,
Baldocchi et al., 2001). In the second step, the resulting statistical models are used to
infer global GPP data.
Strong linear relationships between GPP and SIF were observed by Frankenberg et al.

(2011b) and Guanter et al. (2012), though, depending on the biome (similar ecosystems
on the global level) under consideration. This biome dependency can partly be attributed
to canopy structure effects in different ecosystems such as forests and croplands. Their
encouraging findings initiated more detailed studies at the ecosystem level, reflecting the
beneficial value of SIF with respect to traditional reflectance-based products for several
ecosystems:

1. Amazon rainforests (Lee et al., 2013; Parazoo et al., 2013) and global tropical
forests (Guan et al., 2015),

2. Crop- and grasslands (Guanter et al., 2014; Zhang et al., 2014),

3. Boreal forests (Walther et al., 2015),

4. Temperate deciduous forest (Yang et al., 2015),

5. Mediterranean savanna (Perez-Priego et al., 2015).

In view of these findings, it seems reasonable to assume that SIF provides a new and
potentially improved source of data to constrain GPP models or to infer GPP directly
from SIF measurements. Thus, uncertainties in global GPP predictions could be reduced
(Parazoo et al., 2014).
So far, biome dependent empirical relationships are necessary to relate SIF to photo-

synthesis, but a bottom-up approach is required to find an appropriate parameterization
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for different canopy structures at the ecosystem level. Furthermore, polar orbiting satel-
lites (there are currently no geostationary satellites capable of retrieving SIF) acquire
measurements from the same area only every few days at a certain daytime. Therefore,
information on important short term variations in photosynthetic activity is potentially
missing. Last but not least, it must be emphasized that all of the aforementioned results
rely on the quality of the underlying SIF data sets, which leads to the main subject of
chapters 2 and 3, introduced in the following section.

1.2.2 Measurements of chlorophyll fluorecence

As outlined in Sect. 1.2.1, it is well known that the SIF signal is spectrally smooth and
comprises two broad peaks (F685 and F740), while the amount of SIF represents only a
few percent of the total light absorbed. The weak SIF emission is added to the reflected
solar radiation, which poses the challenge of decoupling the SIF signal. In the following,
I will first outline the basic concept enabling the measurement of SIF at the TOA level.
Afterwards, the different contributions of the spectral radiance received by a spaceborne
spectrometer will be discussed. Third, an overview on satellite-based observations of SIF
will be given.

In-filling of absorption lines by chlorophyll fluorescence

A unique opportunity to decouple the SIF emission from reflected radiation arises from
the existence of absorption lines in the spectral irradiance. These dark lines in the
irradiance spectrum correspond to elements absorbing photons of certain wavelength
(equivalent to the selective absorbtion by chlorophyll molecules in Fig 1.1), which can
either originate from absorption in the sun’s chromosphere, known as solar Fraunhofer
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Figure 1.2: Principle of the in-filling of absorption lines by SIF. The left plot depicts
an absorption line profile as it could be observed in a narrow wavelength
range of the solar irradiance, where a is the intensity in the continuum and
b is the intensity in the central wavelength of the absorption feature. The
plot on the right illustrates the absorption line profile after being reflected by
a fluorescent surface. For the sake of simplcity, surface reflectance (ρs) and
fluorescence emission (green, Fs) are assumed to be wavelength independent
(constant).
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lines, or from atmospheric absorption. By performing measurements in spectral regions
where reasonably strong solar Fraunhofer lines or atmospheric absorption features occur,
the amount of SIF can be computed by exploiting the change in their fractional depth
with respect to a non-fluorescent target. Specifically, a decrease in the fractional depth
of absorption lines will occur in the presence of any SIF emission (assuming that there
is no other source of radiation in the considered wavelength range), which is illustrated
in Fig. 1.2. In the trivial case of no SIF emission (Fs = 0), the ratio between intensity
in the continuum (a) and intensity in the central wavelength of the absorption feature
(b) will be identical before and after being reflected (a/b = (ρsa)/(ρsb)). However, as
soon as a fluorescence emission occurs, the central wavelength of the absorption feature
will, in relative terms, be more affected than the continuum, i.e., the fractional depth
decreases after being reflected (a/b > (ρsa + Fs)/(ρsb + Fs), for a > b and Fs > 0).
The required comparative measurements (with/without fluorescence emission) can, for
example, be realized by a reference panel in the field of view.
A method to exploit the in-filling of solar Fraunhofer lines by luminescent (fluores-

cent by unknown reasons) substances was firstly proposed by Plascyk (1975), termed
Fraunhofer line discriminator (FLD). Based on this principle, the estimation of SIF from
ground-based and airborne spectrometers has been addressed in several studies (see re-
view article by Meroni et al., 2009), dating back to the 1980s. However, in contrast
to near-surface retrievals, the estimation of SIF from spaceborne instruments involves
additionally several atmospheric contributions which are addressed in the following.

Top-of-atmosphere radiance contributions

The complexity a satellite-based retrieval of SIF has to deal with is illustrated in Fig. 1.3,
depicting the main contributions of the spectral radiance received by an instrument at the
top-of-atmosphere (TOA). Starting with the TOA solar irradiance (Isol), the prominent
hydrogen alpha line at 656.3 nm can be identified, which is the deepest Fraunhofer line
in the solar irradiance spectrum (due to the fact that hydrogen is the most abundant
element of the sun). The solar irradiance is partly attenuated when the light travels
through the atmosphere, while the strength of the attenuation largely depends on the
atmospheric state and wavelength. For the sake of simplicity, Fig. 1.3 only shows the
total atmospheric transmittance in down- and upward direction (T↓↑ = T↓ ·T↑), where
the atmospheric absorption in the considered wavelength range (600-800 nm) can mostly
be attributed to oxygen (O2 B-band:∼687 nm, O2 A-band:∼760 nm) and water vapor.
Reaching the surface, the spectral surface reflectance (ρs), which includes the clearly
observable red edge, determines the portion of reflected light in the direction of the
sensor. At this stage, SIF (Fs) is added to the signal, but consequently influenced by the
atmospheric transmission in the upward direction (T↑). Moreover, a small portion of the
solar irradiance does not reach the surface, but is instead reflected by the atmosphere
itself (F0) and then reaches the sensor. This contribution is known as atmospheric path
radiance and, as can be seen, its magnitude can be larger than the fluorescence emission,
even in the absence of clouds (due to aerosols). Nevertheless, it might be noted that this
contribution does not affect the fractional depth of solar Fraunhofer lines. In total, the
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spectral TOA radiance (FTOA) can be formulated as

FTOA = F0 +
Isol · µ0π · ρs ·T↓↑ + Fs ·T↑

1− Satm · ρs
, (1.3)

where µ0 is the cosine of the solar zenith angle and Satm is the atmospheric spherical
albedo (i.e., the reflectance of the atmosphere for isotropic light entering it from the
surface). The product of atmospheric spherical albedo and surface reflectance, accounting
for multiple scattering between atmosphere and surface, is usually very small (Satm·ρs <<
1) and is therefore neglected in Fig. 1.3.

Figure 1.3: Main contributions of a spectroscopic measurement with a spectral resolution
of 0.5 nm when photosynthetically active vegetation is observed (under cloud
free conditions). Depicted are solar irradiance (Isol), atmospheric path radi-
ance (F0), total atmospheric transmission (T↓↑), surface reflectance (ρs), SIF
(Fs), and radiance received by a satellite sensor (FTOA). Please, see main
text for a detailed description.
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Satellite-based observations of terrestrial chlorophyll fluorecence

Near-surface SIF retrievals almost exclusively evaluate the in-filling of O2 absorption
bands by SIF (Meroni et al., 2009). These atmospheric absorption features are rela-
tively strong, while absorption and scattering processes between target and sensor can
be neglected (Frankenberg et al., 2011a). In contrast to near-surface measurements,
spaceborne SIF retrievals using O2 absorption bands are particularly challenging due
to the extinction of the SIF emission through O2, which is becoming important as the
distance to the sensor increases. In addition, atmospheric scattering (e.g., by clouds and
aerosols) in the O2 A-band can affect the TOA radiance similar to the SIF emission
itself (Frankenberg et al., 2011a). Nevertheless, the first SIF measurement from space
was achieved by deriving the in-filling of the O2 A-band by SIF (Guanter et al., 2007).
Specifically, Guanter et al. (2007) used data acquired from MERIS (MEdium-spectral
Resolution Imaging Spectrometer) on board ENVISAT (ENVIronmental SATellite) to
retrieve SIF for a vegetated area surrounded by bare soil. In this case study, the condi-
tions (flat area, clear-sky, large green fields surrounded by bare soils) allowed to correct
for an offset in the retrieval due to uncertainties in the atmospheric state and the in-
strument performance. Nonetheless, a comparison of retrieval results from Guanter et al.
(2007) to airborne and ground-based SIF estimates revealed reasonably good correlations,
thus demonstrating the feasibility to retrieve SIF from space for the very first time. Only
a few years later, studies from Joiner et al. (2011), Frankenberg et al. (2011b), and
Guanter et al. (2012) presented the first global maps of SIF, using data acquired from
the Japanese Greenhouse Gases Observing Satellite (GOSAT). In contrast to the first
spaceborne (Guanter et al., 2007) and the most near-surface retrieval approaches, the new
retrieval methods (Joiner et al., 2011; Frankenberg et al., 2011a; Guanter et al., 2012)
focused on evaluating the in-filling of solar Fraunhofer lines by SIF in narrow spectral
regions (fitting windows) mostly devoid of atmospheric absorption. This considerably
simplifies the retrieval problem since the SIF emission can pass the atmosphere without
being significantly attenuated under cloud free conditions (Frankenberg et al., 2011a).
Consequently, explicit radiative transfer calculations are not required. Since then, the
availability of global SIF data sets has progressively increased. Meanwhile, SIF retrieval
approaches, relying on the in-filling of solar Fraunhofer lines, have been applied to data
from several sensors, recently or currently operational in space:

1. Greenhouse Gases Observing Satellite-Fourier Transform Spectrometer (GOSAT-
FTS) (Frankenberg et al., 2011a; Joiner et al., 2011, 2012; Guanter et al., 2012;
Köhler et al., 2015a)

2. SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIA-
MACHY) on board ENVISAT (Joiner et al., 2012; Köhler et al., 2015b; Wolanin
et al., 2015)

3. Global Ozone Monitoring Experiment-2 (GOME-2) on board the Meteorological
Operational Satellites (MetOp-A, MetOp-B) (Joiner et al., 2013; Köhler et al.,
2015b; Wolanin et al., 2015)
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4. Orbiting Carbon Observatory-2 (OCO-2; Frankenberg et al., 2014)

In general, two fundamentally different retrieval approaches are currently pursued:
(i) physically-based approaches (Guanter et al., 2007; Frankenberg et al., 2011a; Joiner
et al., 2011, 2012; Frankenberg et al., 2014; Köhler et al., 2015a; Wolanin et al., 2015) and
(ii) statistically-based/data-driven approaches (Guanter et al., 2012, 2013, 2015; Joiner
et al., 2012; Köhler et al., 2015b). This classification refers to the underlying method to
model the TOA radiance. In the first case, the modeling is based on a physical formula-
tion of the radiative transfer between target and sensor. Such approaches are typically
restricted to micro-fitting windows of a few nanometers since the description of surface
reflectance, SIF, and atmospheric absorption becomes more complicated when extending
the fitting window (Guanter et al., 2013). On the other hand, statistically-based retrieval
methods rely on the assumption that any TOA radiance spectrum can be modeled by
a linear combination of spectral functions, consisting of low and high frequency compo-
nents. These spectral functions are usually derived from training data sets composed
of vegetation-free spectra. An important advantage of statistically-based methods com-
pared to physically-based approaches arises from avoiding the very challenging explicit
formulation of atmospheric radiative transfer effects. Therefore, statistically-based meth-
ods can be relatively easily extended to broadband fitting windows (>10 nm), including
atmospheric absorption features.
Table 1.1 summarizes relevant instrument specifications for satellite sensors which are

currently used to retrieve SIF. In particular, the spectral resolution is essential to re-
solve less pronounced Fraunhofer lines and to accurately estimate the SIF emission in

Table 1.1: Relevant characteristics of satellite instruments currently used to retrieve
SIF. Specifically, specifications for SCIAMACHY (Bovensmann et al., 1999),
GOME-2 (Munro et al., 2006), GOSAT (Kuze et al., 2009), and OCO-2
(Frankenberg et al., 2014) have been compiled.

SCIAMACHY GOME-2/MetOp-A GOSAT-FTS OCO-2

Data availability Aug 2002–Mar 2012 Aug 2007–present Oct 2009–present Sep 2014–present

Overpass time 10:00 LST 09:30 LST 13:00 LST 13:30 LST

Nadir pixel size 30 km x 60 km/
30 km x 240 km

40 km x 80 km/
40 km x 40 km 10.5 km diameter 1.3 km x 2.25 km

Swath width 960 km 1920 km
960 km 750 km (5 measurements) 10.3 km

Revisit time 6 days 1.5 days/3 days 3 days 16 days

Spectral coverage
(with respect to SIF) 604–805 nm 590–790 nm 755–773 nm 757–775 nm

Spectral resolution 0.48 nm 0.5 nm 0.025 nm 0.042 nm

Signal-to-noise ratio (SNR) < 3000 < 2000 > 300 < 1000
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Figure 1.4: Individual spatial footprints (transparent reddish color) during one overpass
for GOSAT (05.07.2009, computed from center latitude/longitude), OCO-2
(computed for orbit ground track 208, 16.07.2014), GOME-2 (03.07.2009 and
10.07.2014) on board MetOp-A, and SCIAMACHY (06.07.2009) based on the
Brandenburg region with Berlin in the centered position. The corresponding
nadir pixel size can be found in Table 1.1. The swath width of GOME-2
on board MetOp-A is reduced since 15th July 2013, resulting in a reduced
ground pixel size. In case of SCIAMACHY, pixel were partly co-added due
to data rate limitations.
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narrow fitting windows. GOSAT-FTS and OCO-2 provide a very high spectral reso-
lution (<0.05 nm), allowing to apply both physically-based and statistically-based ap-
proaches, but it should be mentioned that their spectral coverage is limited to the right
shoulder of the second SIF emission peak (F740). In contrast, the spectral band set-
ting of SCIAMACHY and GOME-2 essentially covers the full SIF emission spectrum,
but their spectral resolution is much coarser (∼0.5 nm) compared to that from GOSAT
and OCO-2. Therefore, the use of either deep Fraunhofer lines or broader fitting win-
dows (statistically-based methods) is required when retrieving SIF from SCIAMACHY
or GOME-2 data. Overall, the differences among the instrument specifications reflect
the trade-off between spectral and spatial resolution, and signal-to-noise ratio (SNR).
Fig 1.4 illustrates the spatial sampling of the satellite instruments based on the Bran-

denburg region with Berlin in the centered position. The ascending orbit from OCO-2
results in a different orientation of the swath compared to GOSAT-FTS, SCIAMACHY,
and GOME-2 which are flown on satellite platforms with descending orbits. In view of
the sparse spatial sampling of GOSAT-FTS (two measurements in the considered area
during one overpass), it might be questioned whether the SIF observations concerned are
spatially representative. This applies also for OCO-2 measurements, where gaps in the
order of 1.5◦ longitude arise between satellite footprints after a full repeat cycle (16 days),
even though the single pixel size of 2 km x 1.3 km at nadir (along-track x across-track)
outperforms those of the other instruments. Contrastingly, GOME-2 and SCIAMACHY
in principle provide a spatially continuous sampling, but their nadir pixel size is much
larger compared to that of GOSAT and OCO-2. The spatial resolution of GOME-2 (on
board MetOp-A) has been slightly improved since 15th July 2013 by changing the swath
width from 1920 km to 960 km, resulting in a reduced ground pixel size of about 40km
x 40km (previously 80km x 40km). Unfortunately, SCIAMACHY’s original ground pixel
size of 30 x 60 km is only available in about 30% of cases. Due to data rate limita-
tions, radiances in the spectral range of interest were partly downlinked at 240 km (four
co-added pixel, ∼50%) or even at 480 km (eight co-added pixel, ∼20%) across track.
In addition, SCIAMACHY alternately measures in nadir and limb mode, doubling the
revisit time with respect to GOME-2 (at the same swath width, see Table 1.1). In sum-
mary, Fig 1.4 illustrates the intrinsic limitation of current satellite-based SIF data sets,
arising from coarse spatial resolutions when the data are mapped. On the contrary, it
must be considered that a high spectral and spatial resolution in combination with a spa-
tially continuous sampling (neglecting technical limitations) would lead to an excessive
amount of information to store, transmit, and process.

1.2.3 Prerequisites for a case study in Amazon forests

The Amazon region has been selected as a target area to assess the potential of space-
borne SIF observations regarding the monitoring of dense vegetation. In particular, the
relevance of Amazon forests for the global carbon cycle and the challenging conditions
for remote sensing in that area require continuing research and the development of in-
novative strategies. The following paragraphs provide a brief overview of the research
background and aspects which need to be considered for tracking vegetation dynamics
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in Amazon forests.
Global tropical rainforests account for more than one third of the terrestrial carbon

uptake through photosynthesis (GPP), and build by far the most productive biome (Beer
et al., 2010). The Amazon Basin spans an area as large as Western Europe, including
the world’s largest remaining rainforest. Thus, it is one of the most important areas to
monitor vegetation status and photosynthetic activity to estimate the global carbon bud-
get. Furthermore, understanding the metabolism of Amazon forests and identifying main
drivers is essential to estimate the response to gradually changing climate conditions.
Even though Amazon forests generally retain green foliage all year round, evidence

suggests that vegetation dynamics are subject to substantial seasonal swings (e.g., My-
neni et al., 2007; Wu et al., 2016). For instance, many studies report a ’green-up’, i.e.,
an enhanced leaf area along with an increase in photosynthetic activity during months
with less intense precipitation, typically ranging from June-October (e.g., Huete et al.,
2006; Samanta et al., 2012; Bi et al., 2015). However, there is a controversial debate on
causes, characteristics, and magnitude of the seasonal swings in the Amazon region (e.g.,
Restrepo-Coupe et al., 2013; Morton et al., 2014; Guan et al., 2015). Besides the idea of
water and/or light as key factors determining the photosynthetic activity, it has emerged
that leaf phenology (leaf flushing, aging, and litterfall) could drive the seasonality of
photosynthesis to a great extent (Samanta et al., 2012; Restrepo-Coupe et al., 2013; Wu
et al., 2016). It appears that there is a large degree of interaction between leaf phenology
and environmental conditions, while it remains challenging to identify main drivers valid
for the entire Amazon region. Additionally, it is well known that reflectance-based VIs
become weakly sensitive to vegetation changes under the conditions of the Amazon rain-
forest due to the saturation of reflected solar radiation in dense vegetation. Moreover,
it has increasingly been recognized that view-illumination geometry and residual atmo-
spheric effects must be carefully considered when evaluating satellite data with respect
to seasonal vegetation dynamics (e.g., Bi et al., 2015; Maeda and Galvão, 2015; Hilker
et al., 2015).
An alternative way for examining the photosynthetic seasonality in the Amazon Basin

recently arose with the advent of SIF data sets, but only a few research articles using
this new data stream for analyses addressing the Amazon region can be found in the lit-
erature so far (Lee et al., 2013; Parazoo et al., 2013; Guan et al., 2015). Lee et al. (2013)
and Parazoo et al. (2013) examined GOSAT SIF data and reported that substantial
seasonal variations in photosynthetic activity (proxied by SIF) occur predominantly in
southern Amazon forests, associated with pronounced variations in precipitation. Guan
et al. (2015) investigated the link between photosynthetic productivity and hydroclimate
in global tropical evergreen forest regions by means of GOME-2 SIF and MODIS (Mod-
erate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index). They
concluded that canopy photosynthesis can be maintained throughout the seasons if the
annual water availability is sufficient. Nonetheless, the research with global SIF data is
still in its infancy, compared with the numerous studies using reflectance-based VIs. In
this context, it might be recalled that SIF is inevitably influenced by canopy structure
effects as outlined in Sect. 1.2.1. Furthermore, directional effects could impact SIF mea-
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surements similar to the hot spot effect in reflected solar radiation. Another point to be
considered is the satellite overpass time because instantaneous illumination conditions
may drive the observed seasonality in SIF, while daily averages of solar illumination/SIF
would result in a different seasonal trajectory (e.g., different times for annual maximum
and minimum values).
In view of this background, combining SIF data with other vegetation parameters,

especially accounting for structural effects, might be necessary. One promising and in-
novative vegetation parameter for this purpose may be found in the canopy scattering
coefficient (CSC). The underlying theory to compute CSC is based on decades of re-
search on the concept of canopy spectral invariants (summarized by Huang et al., 2007),
according to which the spectral reflectance can be expressed in terms of directional area
scattering factor (DASF) and CSC (Knyazikhin et al., 2013). A detailed review of the
methodology and related works can be found in Sect. 4.2.5. In essence, the spectral
invariant DASF needs to be computed to relate spectroscopic measurements to CSC. For
this purpose, the approach from Knyazikhin et al. (2013) has been adopted to derive
DASF and CSC from atmospherically corrected GOME-2 data within the framework of
this thesis. Thus, SIF and CSC are consistently derived from one sensor, providing the
first data set of vegetation parameters based on spectroscopic measurements in red/NIR
wavelengths which covers the entire Amazon Basin. Assumed to be particularly sen-
sitive to leaf optical properties and less affected by view-illumination geometry as well
as macro-structural properties (Samanta et al., 2012; Knyazikhin et al., 2013), the CSC
might be related to leaf age effects when considering that matured tropical leaf spectra
reveal an increased absorption in NIR wavelengths (Roberts et al., 1998). Hence, a basin-
wide measure of leaf phenology (represented by CSC) could be established and related
to photosynthetic activity (proxied by SIF). However, the experience with real-life CSC
data is yet very limited and based on only two studies (Schull et al., 2011; Knyazikhin
et al., 2013), thus more research is needed to evaluate the prospects and drawbacks of
CSC. Chapter 4 therefore deals with both SIF and CSC, assessing the potential of these
new vegetation parameters to track vegetation dynamics in Amazon forests with respect
to the complex issues outlined above.

1.3 Objectives and research questions

The core objectives of this thesis are: (i) developing new methods for the global retrieval
of SIF and (ii) exemplarily analyzing SIF data with respect to relevant influencing factors.
Accordingly, the thesis aims to contribute to the development of state-of-the-art SIF re-
trieval techniques as well as to establish a basis for interpreting satellite-based SIF data.
Both elements are crucial to assess global terrestrial photosynthesis through the moni-
toring of SIF from space, which is the overarching goal of the GlobFluo project. Based
on the main objectives, chapters 2-4 seek to address the following research questions:

• How can SIF retrieval methods be streamlined in order to improve their efficiency
and robustness?
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• How do results from different retrieval approaches compare with each other and
how consistent are different data sets?

• Which are the main confounding factors and pitfalls when analyzing SIF data?

Beyond SIF, chapter 4 additionally considers another promising vegetation parameter,
namely the CSC derived along with the DASF, which is in simplified terms a measure
of the canopy’s complexity. The research question associated with the expanded core
research topic is:

• Can the concept of canopy spectral invariants (underlying theory to compute DASF
and consequently CSC) be utilized to add information regarding structural effects
on SIF data?

In the following, I will briefly introduce the individual research articles (chapters 2-4)
accompanied by their specific objectives, addressing the aforementioned overall research
questions.

Specific Objectives

Chapter 2 describes a physically-based retrieval method comparable to that proposed
by Frankenberg et al. (2011a,b), published as:

Philipp Köhler, Luis Guanter and Christian Frankenberg: "Simplified Physically Based
Retrieval of Sun-Induced Chlorophyll Fluorescence From GOSAT Data." Geoscience

and Remote Sensing Letters, IEEE 12.7 (2015): 1446-1450.

Though the basis for this research article was established in my Master’s Thesis (Köhler,
2012), I continued working on this subject to refine the method, increase the computa-
tional speed, and produce a global data set of SIF using GOSAT data. Specific objectives
are:

• Simplifying some of the assumptions in the state-of-the-art retrieval approach from
Frankenberg et al. (2011a) without a loss in retrieval accuracy.

• Comparing results from existing retrieval approaches (Frankenberg et al., 2011b;
Guanter et al., 2012) with results from the presented retrieval approach.

• Evaluating the impact of cloud contamination on SIF time series qualitatively by
empirical radiance thresholds.

Chapter 3 proposes a new statistically-based approach to derive SIF from medium
resolution spaceborne spectrometers, published as:

Philipp Köhler, Luis Guanter and Joanna Joiner: "A linear method for the retrieval of
sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data"

Atmospheric Measurement Techniques, 8, 2589-2608, 2015.
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The method described takes advantage of previous studies (Guanter et al., 2013; Joiner
et al., 2013) and has been applied to data acquired from GOME-2 on board MetOp-A and
SCIAMACHY on board ENVISAT to generate two new SIF data sets. These data sets
span the August 2002–March 2012 (SCIAMACHY) and the January 2007–December
2011 (GOME-2) time period, respectively. It might be noted that the SCIAMACHY
fluorescence retrievals in the 740 nm spectral region are the first ones in the literature.
Specific objectives are:

• Providing a solution for the arbitrary selection of free model parameters in the
retrieval approaches from Guanter et al. (2013) and Joiner et al. (2013).

• Evaluating the retrieval performance through a simulation-based retrieval test.

• Applying the same retrieval to data acquired from different sensors (GOME-2 and
SCIAMACHY).

• Comparing SIF data from different sensors and retrieval approaches with respect
to their consistency (GOSAT, GOME-2, and SCIAMACHY).

• Identifying possible limitations and shortcomings of the retrieval results.

• Evaluating the impact of cloud cover on SIF time series by using an additional data
set of relative cloud fractions.

Chapter 4 comprises a case study in Amazon forests, submitted as:

Philipp Köhler, Luis Guanter, Hideki Kobayashi, Sophia Walther and Wei Yang:
"Assessing the potential of Sun-Induced Fluorescence and the Canopy Scattering

Coefficient to track large-scale vegetation dynamics in Amazon forests", Remote Sensing
of Environment, submitted on April 23, 2016.

In essence, this article examines prospects and drawbacks of SIF for the monitoring
of dense vegetation in the Amazon region, additionally involving the theory of canopy
spectral invariants by examining CSC data, which have been derived along with the
DASF. For this purpose, the GOME-2 SIF data set has been extended until April 2015
(previously January 2007–December 2011), while this study examines GOME-2 SIF data
only from August 2013 onwards to take advantage of the reduced ground pixel size (see
Sect. 1.2.2). Moreover, the first global DASF/CSC data set has been produced from
atmospherically corrected GOME-2 data for the same time period (August 2013–April
2015). This part of the thesis also includes a series of supplementary data streams
(simulated, satellite-based, and re-analysis data) necessary for the atmospheric correction
and beyond that, for providing a basis to interpret the results. Specific objectives are:

• Analyzing the sensitivity of SIF and CSC to atmospheric, structural, and view-
illumination (directional) effects under the conditions of Amazon forests with re-
spect to the well established NDVI (Normalized Difference Vegetation Index).
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• Comparing SIF data from different sensors (GOME-2, OCO-2) with particular em-
phasis on differences due to their overpass times (morning and noon, respectively).

• Examining prospects of CSC for the monitoring of dense vegetation in general and
of leaf optical properties in particular.

• Investigating large-scale vegetation dynamics represented by SIF and CSC in Ama-
zon forests with respect to environmental conditions.
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Chapter 2. Simplified physically-based retrieval of SIF from GOSAT data

Abstract

First global retrievals of sun-induced chlorophyll fluorescence (Fs) have been achieved in
the last years by using data from the Fourier Transform Spectrometer (FTS) on-board the
Japanese Greenhouse Gases Observing Satellite (GOSAT). The high spectral resolution
(approximately 0.025 nm) of the FTS enables measurements of Fs by the evaluation of the
in-filling of solar Fraunhofer lines around 755 nm. This study presents a new Fs retrieval
algorithm (GARLiC, forGOSAT Retrieval of cholorophyll fluorescence) and compares its
results to Fs from two previously implemented approaches. GARLiC is intended to sim-
plify some of the assumptions of existing retrieval approaches without a loss in retrieval
accuracy. We show that GARLiC Fs retrievals are comparable to the previously used
methods. We also assess the effect of clouds on Fs retrieval from GOSAT data through
the analysis of the effect of different cloud filter thresholds on Fs time series. Our re-
sults show a low sensitivity of Fraunhofer line-based Fs retrievals to cloud contamination.

2.1 Introduction

Sun-induced chlorophyll fluorescence (Fs) is an electromagnetic signal emitted in the
650–800 nm spectral region by the chlorophyll-a of photosynthetically active vegetation
(e.g. Zarco-Tejada et al., 2003). Fs represents a part of the excess energy during the
process of photosynthesis and provides a measure of photosynthetic activity.
Although several studies have dealt with the estimation of Fs from airborne spec-

trometers in the last decade (see Meroni et al., 2009, and references therein), Fs maps
remained only available for selected study areas and times. An extension to the global
scale has been achieved in the last several years by the use of satellite sensors (Joiner
et al., 2011; Frankenberg et al., 2011b; Guanter et al., 2012; Joiner et al., 2012, 2013).
It can be stated that all methods make use of the in-filling of solar Fraunhofer lines
and/or atmospheric absorption features by Fs. While all initial global Fs retrievals
(Joiner et al., 2011; Frankenberg et al., 2011b; Guanter et al., 2012; Joiner et al., 2012)
have used data from the Fourier Transform Spectrometer (FTS) on-board the Japanese
Greenhouse Gases Observing Satellite (GOSAT, Kuze et al., 2009), recent studies (Joiner
et al., 2013) explored also the use of medium spectral resolution spectrometers such as
the Global Ozone Monitoring Experiment (GOME-2) on-board of the Meteorological
Operational Satellites (MetOp-A and MetOp-B). The high spectral resolution of the
GOSAT-FTS (approx. 0.025 nm) enables an accurate Fs retrieval, but only a limited
spatial coverage is provided by the sensor. On the contrary, GOME-2 provides a contin-
uous spatial sampling, but the pixel size (40 x 80 km2) is much coarser than that from
the GOSAT-FTS (10.5 km diameter). The first global Fs retrieval from GOSAT-FTS
data (Joiner et al., 2011) was based on the potassium (K) I line at 770.1 nm (using
a retrieval window between 769.9–770.25 nm). It turned out that the narrow spectral
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range between 758.45–758.85 nm (covering another Fraunhofer line) used by Joiner et al.
(2012) is more suitable to retrieve Fs due to a closer proximity to the second of two
characteristic peaks of the fluorescence emission spectrum at 740 nm. Alongside this
development, Frankenberg et al. (2011b) and Guanter et al. (2012) used two broader
fitting windows covering the 756–759 nm and 770.5–774.5 nm spectral regions, which
has led to an improved signal-to-noise ratio and thus to less noisier retrievals. Guanter
et al. (2012) based their method on a singular value decomposition (SVD) technique with
the basic assumption that any radiance spectrum in a narrow spectral window can be
expressed as a linear combination of singular vectors plus fluorescence. This technique
has the advantage of providing simpler and faster retrievals based on a linear forward
model. A caveat of this method is that fine-tuning is needed in order to select the optimal
number of singular vectors, which has an effect on the retrieval accuracy and precision.
The most accurate results can therefore presumably be obtained using the physically-
based method proposed by Frankenberg et al. (2011b). The spectral window between
756–759 nm is particularly suitable to retrieve Fs, because this wavelength range is de-
void of atmospheric absorption features and highly insensitive to atmospheric scattering
effects. However, applying the retrieval also to the 770 nm region (containing weak O2

absorption lines) enables a supplementary retrieval of surface pressure, which is useful
to filter cloudy scenes if ancillary surface pressure data show considerably higher values.
Cloud contamination would potentially lead to an underestimation of Fs as indicated by
simulation studies (e.g. Frankenberg et al., 2012).
This investigation proposes a simplified physically-based fluorescence retrieval method

(similar to Frankenberg et al., 2011b) in the spectral range between 755–759 nm, which
allows faster retrievals without a loss of performance with respect to currently available
algorithms. We use only one fitting window in the region around 757 nm and linearize the
estimation problem in order to solve the forward model without iterations. A secondary
objective is the exploration of the impact of clouds on our Fs retrieval from GOSAT.
We compare results of the presented retrieval with those obtained from existing methods
and examine uncertainties caused by noise and cloud contamination.

2.2 Materials and Methods

2.2.1 GOSAT-FTS

GOSAT (Kuze et al., 2009) has a sun-synchronous orbit at an altitude of approximately
666 km with an overpass time around 13:00 local solar time (dayside) and a revisit time
of three days. One cross track of the FTS has a swath of 750 km and contains from three
to five measurements, each covering a circular area with a diameter of about 10.5 km at
ground level. The distance between measurements along the satellite track ranges be-
tween 90 and 280 km. The GOSAT-FTS unit is composed of two identically constructed
detectors measuring perpendicular (S) and parallel (P) polarized light. The FTS level
1B product (Kuze et al., 2009) consists of uncalibrated spectra in voltage per wavenum-
ber [V cm] with two independent measurements per spectrum, which are converted to
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spectral radiances through the application of radiometric calibration coefficients.
The primary purpose of the GOSAT mission is the estimation of CO2 and CH4 con-

centrations. Fs retrievals from GOSAT-FTS data are also possible because of the high
spectral resolution of the FTS. The first band of the FTS samples the 755–773 nm
spectral window (Fig. 2.1 depicts an example), which is nearby the second peak of the
fluorescence emission spectrum (∼740 nm), with a spectral resolution of about 0.025 nm.
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Figure 2.1: Sample GOSAT-FTS spectrum in band 1P (P-parallel polarized light). The
spectral window to retrieve Fs (755–759 nm) is marked in gray.

2.2.2 GOSAT Retrieval of chlorphyll fluorescence (GARLiC)

The retrieval of Fs from high resolution radiance measurements at the top-of-atmosphere
(TOA) relies on the idea that any additive signal fills in absorption features, i.e., makes
their fractional depth smaller which was firstly mentioned by Plascyk (1975). Fs is such
an additive signal, but it must be remarked that Fs is about 100 times smaller than the
reflected solar radiation in the near-infrared (NIR) spectral region (e.g. Amorós-López
et al., 2008).
The TOA radiance measured by the instrument (LTOA) over a Lambertian reflecting

surface can be formulated as

LTOA = L0 +
1
π · ρs · T↓ · µs · IscT↑ + Fs · T↑

1− S · ρs
, (2.1)

where L0 is the backscattered atmospheric radiation, ρs is the surface reflectance, Isc
is the solar irradiance at the TOA, µs is the cosine of the sun zenith angle, T↑ is the
upward atmospheric transmittance, T↓ is the downward atmospheric transmittance, S is
the atmospheric spherical albedo and Fs is the steady state sun-induced fluorescence. All
variables in Eq. (2.1) have a spectral component. In the 755–759 nm NIR window where
we perform the retrievals, the atmosphere is roughly transparent (T↑ ≈ 1) for near-nadir
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observations under clear-sky conditions (Guanter et al., 2012), and S ·ρs << 1. Splitting
the atmospheric path radiance L0 into the product of solar irradiance and atmospheric
reflectance (µs · Isc · ρ0) allows us to express Eq. (2.1) in the form:

LTOA =
µs · Isc
π

· (ρ0 + ρs · T↓) + Fs. (2.2)

A spectrally-linear variation of atmospheric scattering and surface reflectance in the
755–759 nm range can be assumed, because spectral properties as well as atmospheric
scattering indicate no discontinuity in this narrow spectral region. With this assumption,
the forward model results in:

LTOA(Fs, ai) =< Isc > ·(a0 + a1 · λ) + Fs. (2.3)

We take the widely used high-resolution solar irradiance spectrum (Isc) from Kurucz
(2005) and convolve it to the lower resolution spectrometer grid (from 0.001 nm to
0.025 nm), which is represented by the <> operation. There are three unknowns to
generate a synthetic measurement at 350 spectral points with the forward model, a0 and
a1 for the modeling of atmospheric scattering and surface reflectance, and the amount of
Fs between 755–759 nm. We processed spectra acquired in each of the two polarizations
independently.
Frankenberg et al. (2011b) observed an offset in the O2-A band of GOSAT-FTS spectra,

which was endorsed by GOSAT Project members. Since Fs and the radiance offset are
both additive signals, which result in apparently weaker absorption lines, a correction is
a necessary but critical implementation step. As found by previous studies (Frankenberg
et al., 2011b; Guanter et al., 2012; Joiner et al., 2012) the magnitude of the offset is
changing with the input radiance level, which introduces high biases especially for higher
radiance levels (associated with bright surfaces and/or small solar zenith angles). Thus,
retrieval results from regions where no vegetation fluorescence is expected (e.g. ice shield
in Greenland, Antarctica) are recorded in dependency of the average TOA radiance in the
FTS band 1. The resulting function is then smoothed by a boxcar average using a width of
100 points in order to obtain the final transfer function between input radiance level and
Fs. Because this zero-level offset also has a slight temporal dependency and is different
for the two detectors, the correction is applied on a monthly basis and independently of
each polarization.
The GARLiC (GOSAT Retrieval of cholorophyll fluorescence) algorithm for the pro-

duction of global composites of Fs from GOSAT-FTS spectra are based on the forward
model in Eq. (2.3), which was implemented by following the steps below:

1. Perform a prefiltering to reduce the number of unnecessary retrievals by using only
spectra acquired in the high radiometric gain mode of the FTS instrument and
with 100% land surface in the field-of-view (determined with a land-sea mask).

2. Determine the exact spectral position of the measurement since the instrument is
not perfectly calibrated and Doppler shifts (caused by relative velocity between
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earth and sun) as well as a relative movement between satellite and earth (at off-
nadir angles) may occur. The 1-D Brent’s minimization method is used to calculate
the wavelength shift leading to a minimal residual between the FTS measurement
and the solar irradiance after convolution.

3. Calculate < Isc > through the spectral convolution of the high-resolution solar
irradiance from Kurucz for the updated wavelength array.

4. Fit the TOA radiance measurements with the forward operator in Eq. (2.3), using
an ordinary least squares fit in order to obtain Fs and ai.

5. Correct the obtained Fs values from a zero-level offset caused by a nonlinearity of
the detector response (Frankenberg et al., 2011b; Guanter et al., 2012; Joiner et al.,
2012).

6. Perform a quality filtering to exclude cloudy cases and nonphysical results (e.g.
extreme Fs values / outliers) by the following criteria:

- average radiance in the FTS band 1 (755–773 nm) amounts
1.5− 8 · 10−7 W/cm2/sr/cm (native unit of the FTS;
according to Frankenberg et al., 2011b; Guanter et al., 2012)

- 0.8 < χ2
r < 1.5, χ2

r is the reduced χ2 (goodness of fit).

- |Fs| < 5mW/m2/sr/nm (according to Guanter et al., 2012)

7. Produce global composites by averaging quality-filtered retrievals from each polar-
ization in 2◦ x 2◦ gridboxes. The coarse resolution is due to the relatively high
retrieval noise and the poor spatial sampling of the measurements.

The 1-σ error of each retrieval is calculated by propagating the measurement noise, which
is estimated from the first and last 500 channels in the band 1 spectrum (Frankenberg
et al., 2011b; Guanter et al., 2012).
Fig. 2.2 shows a sample fit of the forward model Eq. (2.3) to a real GOSAT-FTS

measurement in the 755–759 nm window. The residual consists only of white noise as
expected for an FTS (Ljung-Box test indicates independently distributed data). Since
the residual is free from spectral features, it can be assumed that a spectral stretch is
negligible in the considered spectral range.
As mentioned in Sect. 2.1, the retrieval approach from Frankenberg et al. (2011b)

is similar to the presented one. The main difference is the decoupling of the spectral
shift estimation from the forward model and the neglection of spectral stretch effects
in the GARLiC algorithm. As opposed to the non-linear forward operator proposed by
Frankenberg et al. (2011b), the GARLiC forward model shown in Eq. (2.3) is linear and
thus faster, since there is no iterative calculation needed. Furthermore, GARLiC uses
only one fitting window under the presumption that the presented filtering criteria are
sufficient and a supplementary retrieval of surface pressure is not required.
We evaluate the performance of the 8·10−7 W/cm2/sr/cm threshold for cloud screening

(also used by Frankenberg et al., 2011b; Guanter et al., 2012) by using a more relaxed
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threshold (10 · 10−7 W/cm2/sr/cm) and a more restrictive one (6 · 10−7 W/cm2/sr/cm)
as it is shown in Sect. 2.3.3.
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Figure 2.2: Fit of a GOSAT-FTS measurement in the 755–759 nm fitting window with
the forward model in Eq. (2.3). The spectral residual of the fit is displayed
in the bottom panel.

2.3 Results

2.3.1 Monthly composites

Although GOSAT has a revisit time of three days, global Fs composites are only meaning-
ful when averaging retrieval results on larger time scales such as monthly means (because
of the presence of clouds and the high retrieval noise). The error weighted monthly mean
(according to Frankenberg et al., 2011b; Guanter et al., 2012) of Fs derived with GARLiC
for July 2010 and its standard error of the weighted average is depicted in Fig. 2.3 as an
example. The highest July Fs values were observed in the northern mid-latitudes asso-
ciated with crops in the US Corn Belt, eastern Europe, and China. These pronounced
Fs averages have also been observed in other studies (Frankenberg et al., 2011b; Guan-
ter et al., 2012; Joiner et al., 2012). As expected, high Fs values occur also in tropical
regions, whereas regions with none or sparse vegetation show values close to zero. There
is no measurement available over the Sahara because the low radiometric gain mode of
the FTS instrument is used to avoid a saturation in the detector over bright surfaces. As
mentioned in Sect. 2.2.2, these measurements are not processed by GARLiC.
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Figure 2.3: Error weighted monthly mean of Fs derived with GARLiC from GOSAT-FTS
data for July 2010 (top) and standard error of the weighted average (bottom).
No Fs retrievals were performed in white regions.

The standard error of the weighted mean is an estimate of the overall uncertainty of
monthly composites. It represents the instrumental noise weighted by the number of
observations per cell. In our July 2010 composites, the error usually amounts to one
third of the derived Fs value and decreases with a higher number of measurements per
cell. Therefore, more observations in northern latitudes resulting from the satellite orbit
reduce the error, while more sparse overpasses produce a higher error in tropical regions.

2.3.2 Comparison with existing retrieval results

Fs annual averages for the 06/2009–05/2010 time period have been used to compare our
retrieval results with those obtained by Frankenberg et al. (2011b) and Guanter et al.
(2012). Fig. 2.4 shows that values from Frankenberg et al. (2011b) are very similar but
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slightly higher than results from GARLiC. The main reason for the small bias is a slight
polarization dependence in retrievals from Frankenberg et al. (2011b). Although we do
not expect any sensitivity to polarization in the Fs retrievals, the data from Frankenberg
et al. (2011b) show slightly higher values in the P- than in the S-polarization (on average
0.1 mW/m2/sr/nm for retrievals included in Fig. 2.4). This polarization dependence is
not observed in the GARLiC retrievals (mean difference is 9 · 10−4 mW/m2/sr/nm for
retrievals included in Fig. 2.4), which provide more consistent values for either measure-
ment polarization. The reason can be attributed to the post processing since there is no
difference in the formulation of the two methods that could lead to more or less sensitiv-
ity to the polarization. Comparing the annual GARLiC results with those from Guanter
et al. (2012) reveals that there is a clear linear relationship with an increasing difference
at higher Fs values (with higher Fs values from GARLiC).
In order to investigate the temporal consistency between GARLiC and the other two

data sets, we collocated the retrieval output (without averaging results in gridboxes) with
the land cover classification of the International Geosphere and Biosphere Programme
(IGBP, Friedl et al., 2002, derived from MODIS data) and produced biome specific
time series. The three approaches compare very well for almost all areas, whereas one
representative example is shown in Fig. 2.5. The 15-day average of Fs for evergreen
needleleaf forest, located in the northern temperate zone (latitudes above 40◦ N), for
the 06/2009–04/2011 period shows that an annual cycle with high Fs values during
summertime is present in the three time series. Similarly to the annual comparison, Fs
values from Frankenberg et al. (2011b) are slightly higher than the GARLiC values, also
in winter when we expect very low Fs because of low illumination angles. Both the results
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Figure 2.4: Fs retrieval results from GARLiC vs. results provided by Frankenberg et al.
(2011b) (CFrank) and Guanter et al. (2012) (LGuanter) respectively. The Fs
annual averages from 06/2009–05/2010 (rastered on 2◦ x 2◦ grid) have been
used, whereas each evaluated gridbox contains at least 24 retrievals and is
available in all data sets. The linear fits are depicted as dotted lines.
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Figure 2.5: Comparison between GARLiC, Frankenberg et al. (2011b) (CFrank) and
Guanter et al. (2012) (LGuanter) 15-day Fs means between 06/2009–04/2011
for evergreen needleleaf forest regions in latitudes above 40◦ N. The number of
retrievals per time step and their standard deviation are depicted as barplots.

from the statistical approach by Guanter et al. (2012) and GARLiC show values falling
slightly below zero during the wintertime. In theory the Fs value should be zero when
the signal is totally absorbed or none is emitted. However, it should be emphasized that
slight negative as well as slight positive results (up to ±0.1 mW/m2/sr/nm) can occur
also in the absence of any Fs emission because of a relative high measurement noise.
There are significant differences in 15-day Fs averages (especially between Frankenberg
et al., 2011b; Guanter et al., 2012), but due to the lack of a ground truth it remains
uncertain which values are the most realistic. Nevertheless, almost all GARLiC values
lie in between those from the other two algorithms with Fs values close to zero during
inactive periods.
Overall the GARLiC method provides the highest number of measurements for the

evergreen needleleaf forest biome, which is due to a more relaxed quality filtering and
leads to the highest standard deviation. Frankenberg‘s method shows the lowest number
of retrievals for the 15-day mean and a standard deviation slightly lower than the GAR-
LiC method. The standard deviation derived with the data from Guanter et al. (2012) is
smaller than the other ones with a slightly lower number of retrievals than the GARLiC
algorithm. It is important to note that the differences in the temporal series in Fig. 2.5
are not only due to the actual fundamental differences between the retrieval methods,
but also to the subsequent quality filtering criteria applied by each algorithm. Thus, the
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2.3. Results

reduced number of retrievals from Frankenberg et al. (2011b) might be a result of the
auxiliary surface pressure filter criterion. However, since spatial patterns and temporal
course of Fs values retrieved with GARLiC and Frankenberg et al. (2011b) are similar, it
might be assumed that the supplementary retrieved pressure is not essential for retrieving
comparable Fs values.

2.3.3 Impact of clouds on the retrieval

We have used the temporal series of Fs between 06/2009–04/2011 to examine the im-
pact of clouds on the retrieval. Although simulations indicate a low sensitivity to cloud
coverage (Frankenberg et al., 2012), we still expect that clouds may affect the retrievals
of Fs over tropical rainforest areas which present an almost persistent cloudy condition
at the GOSAT overpass time (13:00 LT). Therefore, we have used GARLiC to produce
three different time series of Fs over evergreen broadleaf forest regions (mostly tropical
rainforest; identified by the IGBP land classification Friedl et al., 2002) using average
radiance thresholds of 6/8/10·10−7 W/cm2/sr/cm (shown in Fig. 2.6) which corresponds
to a strict/normal/relaxed cloud filtering.
Overall, the Fs values decrease slightly by relaxing the cloud filter while the standard

deviation increases. Applying a more restrictive cloud filter implies a significant loss of
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Figure 2.6: Temporal series of Fs retrievals from GARLiC over evergreen broadleaf
forest regions using a strict/normal/relaxed cloud filter (6/8/10 ·
10−7 W/cm2/sr/cm). The time series corresponds to 15-day means between
06/2009–04/2011.
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Chapter 2. Simplified physically-based retrieval of SIF from GOSAT data

measurements without an appreciable change of the 15-day mean values. This confirms
the low sensitivity of the retrieval to cloud coverage: strongly different levels of cloud
contamination do not translate into similar changes in the retrieved Fs values. In con-
trast, a strict cloud filter leads to smaller fluctuations and is not affecting the reported
values apparently, but it is associated with a loss of measurements. For this reason, a
filter value of 8 · 10−7 W/cm2/sr/cm is a reasonable compromise between the loss of
measurements and an acceptable influence on reported values.
In view of these results and of others based on simulations Frankenberg et al. (2012),

it can be concluded that Fs retrievals are robust against cloud contamination.

2.4 Summary

A new approach to retrieve NIR Fs from GOSAT-FTS data was introduced in this con-
tribution. It demonstrates that simplifying some assumptions of the existing algorithm
by Frankenberg et al. (2011b) is still leading to comparable results. The simplifications
consist of using only one fitting window, neglecting the spectral stretch and decoupling
the spectral shift estimation from the forward operator so that the GARLiC forward
model is linear and easy to invert with the ordinary least squares method. Thus, pre-
vious findings achieved by more stringent retrieval approaches could be confirmed. In
addition, we have shown that Fs variations are increasing in presence of clouds using
15-day means but changes in reported values are only marginal. For this reason, it can
be assumed that GARLiC and other Fs retrieval algorithms (based on Fraunhofer lines
in spectral regions devoid of significant atmospheric absorption) are barely affected by
cloud contamination. These findings impact future developments on Fs retrieval for the
recently launched OCO-2 system (Frankenberg et al., 2014), which has a higher signal to
noise ratio at a similar spectral resolution as compared to the GOSAT-FTS and provides
about 100 times more measurements than GOSAT.
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Chapter 3. Retrieval of SIF from GOME-2 and SCIAMACHY data

Abstract

Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been
achieved in the last few years by means of a number of space-borne atmospheric spec-
trometers. Here, we present a new retrieval method for medium spectral resolution
instruments such as the Global Ozone Monitoring Experiment-2 (GOME-2) and the
SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIA-
MACHY). Building upon the previous work by Guanter et al. (2013) and Joiner et al.
(2013), our approach provides a solution for the selection of the number of free pa-
rameters. In particular, a backward elimination algorithm is applied to optimize the
number of coefficients to fit, which reduces also the retrieval noise and selects the num-
ber of state vector elements automatically. A sensitivity analysis with simulated spectra
has been utilized to evaluate the performance of our retrieval approach. The method
has also been applied to estimate SIF at 740 nm from real spectra from GOME-2 and
for the first time, from SCIAMACHY. We find a good correspondence of the absolute
SIF values and the spatial patterns from the two sensors, which suggests the robust-
ness of the proposed retrieval method. In addition, we compare our results to ex-
isting SIF data sets, examine uncertainties and use our GOME-2 retrievals to show
empirically the relatively low sensitivity of the SIF retrieval to cloud contamination.

3.1 Introduction

During the process of photosynthesis, the chlorophyll-a of photosynthetically active veg-
etation emits a small fraction of its absorbed energy as an electromagnetic signal (e.g.,
Zarco-Tejada et al., 2003). This signal, called sun-induced fluorescence (SIF), takes place
in the 650–800 nm spectral region. Several studies have addressed the estimation of SIF
from ground-based, airborne and spaceborne spectrometers in the last decade (see Meroni
et al., 2009, and references therein). Here, we focus on SIF retrieval methods from space
and their achievements.
The first global SIF observations have been achieved in the last 4 years by studies

from Joiner et al. (2011), Frankenberg et al. (2011a) and Guanter et al. (2012) using
data from the Fourier transform spectrometer (FTS) on board the Japanese Greenhouse
Gases Observing Satellite (GOSAT). The first band of the GOSAT-FTS samples the
755–775 nm spectral window with a high spectral resolution of approximately 0.025 nm,
which enabled an evaluation of the in-filling of solar Fraunhofer lines around the O2

A absorption band by SIF. Joiner et al. (2011) based their retrieval on the strong K
line around 770.1 nm on condition that a measured irradiance spectrum is available. In
contrast, Frankenberg et al. (2011b) and Guanter et al. (2012) used two micro fitting
windows around 757 and 770 nm by means of a reference solar irradiance data set.
The 757 nm spectral region contains several solar Fraunhofer lines and is devoid of
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3.1. Introduction

significant atmospheric absorption, which minimizes the impact of atmospheric effects
on the retrieval. Two micro fitting windows have also been used by Joiner et al. (2012) to
reduce noise, whereas SIF-free Earth radiance spectra served as a reference. The method
proposed by Frankenberg et al. (2011a) relies on the physical modeling of the in-filling
of several solar Fraunhofer lines by SIF using the instrumental line shape function and
a reference solar irradiance data set. The surface reflectance, atmospheric scattering as
well as wavelength shifts have to be estimated for each measurement. Instead of explicitly
modeling these parameters for each measurement, Guanter et al. (2012) proposed a data-
driven approach, which is based on a singular value decomposition (SVD) technique. The
basic assumption for this retrieval method is that any radiance spectrum can be expressed
as a linear combination of singular vectors plus fluorescence. A caveat of this technique
is an arbitrary selection of the optimum number of singular vectors, which has an effect
on the retrieval accuracy and precision.
One intrinsic limitation of the GOSAT-FTS data arises from the coarse resolution of

global maps (2◦ × 2◦), which is caused by a poor spatial sampling and a relatively high
retrieval noise (Frankenberg et al., 2011b). Therefore, it was crucial that results from
Joiner et al. (2012, 2013) indicated that instruments with lower spectral resolutions but
better spatial coverage are also capable of estimating SIF from space. Joiner et al. (2012)
examined the in-filling of the deep calcium (Ca) II solar Fraunhofer line at 866 nm by SIF
using the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
(SCIAMACHY) satellite instruments, which has a spectral resolution of approximately
0.5 nm. Spatial and temporal variations of retrieved SIF were found to be consistent,
although there is only a weak intensity of SIF in the examined spectral range. In this
context, it should be considered that the representativeness of spatially mapped SIF is
enhanced by using data from instruments which provide a continuous spatial sampling.
A further achievement was the data-driven study of Joiner et al. (2013). They proposed

another SIF retrieval method for the Global Ozone Monitoring Experiment-2 (GOME-
2), which enabled a significant increase of the spatiotemporal resolution with respect to
previous works. In principle, this proposed approach extends the SVD (or principal com-
ponent analysis, PCA) technique applied exclusively on solar Fraunhofer lines (Guanter
et al., 2012) to a broader wavelength range making also use of atmospheric absorption
bands (water vapor, O2 A).
Here, we present a new SIF retrieval method using a comparable methodology to that

developed for ground-based instrumentations by Guanter et al. (2013) and for space-based
measurements by Joiner et al. (2013). A feature of the method is the automated deter-
mination of the principal components (PCs) needed. The proposed retrieval method is
applied to simulated data (Sect. 3.4) as well as to data from GOME-2 and SCIAMACHY
(Sect. 3.5). Besides a time series of GOME-2 SIF covering the 2007–2011 time period,
we are able to present a SIF data set from SCIAMACHY data for the August 2002–
March 2012 time span. We compare those data sets with each other (Sect. 3.5.3) and
with existing SIF data sets from GOME-2 (Joiner et al., 2013) and GOSAT data (Köhler
et al., 2015a) (Sect. 3.5.4). In addition, we examine uncertainties (Sect. 3.5.5, 3.5.6) and
assess the effect of clouds on the retrieval through the analysis of different cloud filter
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Figure 3.1: Sample GOME-2 spectrum in band 4. The spectral window that we use for
SIF retrievals (720–758 nm) is marked in green. The reference fluorescence
emission spectrum is depicted in green.

thresholds (Sect. 3.5.7).

3.2 Instruments

3.2.1 GOME-2

The Global Ozone Monitoring Experiment-2 (Munro et al., 2006) is a nadir-scanning
medium-resolution UV/VIS spectrometer on board EUMETSAT’s polar orbiting Me-
teorological Operational Satellites (MetOp-A and MetOp-B). MetOp-A (launched in
October 2006) and MetOp-B (launched in September 2012) each carry 13 instruments
performing operational measurements of atmosphere, land and sea surface. The polar
orbit satellites reside in orbit at an altitude of approximately 820 km and have an equator
crossing time near 09:30 local solar time. One revolution takes around 100 min. GOME-2
was designed to measure distributions of various chemical trace gases in the atmosphere.
For this purpose, the spectral range between 240 and 790 nm is covered by four detec-
tor channels. The fourth channel (590–790 nm) encompasses the SIF wavelength region
(Fig. 3.1). This channel has a spectral resolution of 0.5 nm and a signal-to-noise ratio
(SNR) up to 2000. Here, we use a subchannel from GOME-2 on board MetOp-A, namely
the spectral region between 720 and 758 nm covering 191 spectral points, to evaluate the
SIF at 740 nm. The large default swath width of 1920 km with a footprint size of 80 km x
40 km enables a global coverage within 1.5 days. The GOME-2 level 1B product consists
of radiance spectra and a daily solar irradiance measurement. Satellite data covering the
2007–2011 time period were used for this study.
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3.3. Retrieval methodology

3.2.2 SCIAMACHY

SCIAMACHY (Bovensmann et al., 1999) was 1 of 10 instruments on board European
Space Agency’s Environmental Satellite (ENVISAT). ENVISAT was launched in March
2002 and became non-operational in April 2012, when communications were lost. Similar
to MetOp-A, the satellite has a sun-synchronous orbit at an altitude of approximately
800 km with an equator overpass time at 10:00 local solar time. Like GOME-2, the
SCIAMACHY instrument was designed to measure distributions of various chemical
trace gases in the atmosphere. Overall, a spectral range of 240–2400 nm is covered by
eight detector channels, whereas a subset of the fourth channel (604–805 nm, spectral
resolution of 0.48 nm, SNR up to 3000) is used to evaluate the amount of SIF at 740 nm.
SCIAMACHY measured alternately in nadir and limb mode, which leads to blockwise

rather than continuous nadir measurements. Due to this default scan option, a global
coverage is achieved within 6 days. The swath width of 960 km is only half as large
as the swath width of GOME-2 in the nominal mode while the spatial resolution along
track is 30 km and the nominal across track pixel size is 60 km. Due to data rate
limitations, radiances in the spectral range of interest were downlinked at 240 km (four
pixels binned) across track. Using the spectral interval between 720–758 nm to retrieve
SIF leads therefore to a reduced spatial resolution by a factor of 2–3 compared to GOME-
2.
As stated in Lichtenberg et al. (2006), two relevant corrections have to be applied

in the processing chain of the level 1 data for the considered wavelength range: the
memory effect correction and the dark signal correction. The first correction is probably
more critical and a potential error source in the SIF retrieval because the memory effect
modifies the absolute value of the signal and it involves the risk of artificial spectral
features in the measurements. Both changes produce artifacts that are expected to
influence SIF retrieval results since the level of SIF in comparison to the total signal at
the sensor is low. Satellite data of SCIAMACHY for the August 2002–March 2012 time
span have been used for this study.

3.3 Retrieval methodology

The main challenge when retrieving SIF from space-borne instruments is to isolate the
SIF signal from the about 100 times more intense reflected solar radiation in the measured
top-of-atmosphere (TOA) radiance spectrum. This section describes a strategy which is
similar to the data-driven method proposed by Joiner et al. (2013).

3.3.1 Fundamental basis

Assuming a Lambertian reflecting surface in a plane-parallel atmosphere, the TOA radi-
ance measured by a satellite sensor (FTOA) can be described by

FTOA =
ρp
π
· Isol · µ0, (3.1)
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where ρp is the planetary reflectance, Isol is the solar irradiance at the TOA and µ0 is
the cosine of the solar zenith angle (bold characters indicate variables with a spectral
component). Verhoef and Bach (2003) split ρp into contributions due to atmospheric
path radiance, adjacency effect (path radiance from objects outside the field of view),
reflected skylight by the target and reflected sunlight by the target. Assuming that
a fluorescent target is observed, Eq. (3.1) can be modified as follows

FTOA =
ρp
π
· Isol · µ0 + Fs · hf · T ↑, (3.2)

where Fs is the amount of sun-induced fluorescence at 740 nm (second peak of the
emission spectrum), hf is a normalized reference fluorescence emission spectrum and T ↑
is the atmospheric transmittance in the upward direction.

As stated above, we use a statistical modeling approach similar to Joiner et al. (2013)
in order to separate spectral features from planetary reflectance (including atmospheric
absorption, atmospheric path radiance, surface reflectance) and SIF. The basic idea con-
sists of modeling low and high frequency components of the planetary reflected radiance
with a sufficient accuracy to be able to evaluate the changes in the fractional depth of
solar Fraunhofer lines by SIF. It has to be emphasized that the main information for the
retrieval is expected to originate from solar Fraunhofer lines, as simulations with a flat
solar spectrum (Joiner et al., 2013) have shown that essentially no information about
SIF can be retrieved. More specifically, it was not possible to disentangle atmospheric
absorption from the SIF signal in the O2 A-band with the statistical approach.

Here, Isol is known through satellite measurements (from GOME-2 and SCIAMACHY)
or the external spectral library from Chance and Kurucz (2010), which has been used for
the sensitivity analysis. Since hf is a prescribed spectral function, it is necessary to find
appropriate estimates for ρp and T ↑ to retrieve the amount of SIF at 740 nm (Fs). In
order to model ρp with a high accuracy, we use a combination of a third-order polynomial
in wavelength to account for the spectrally smooth part and a set of atmospheric principal
components (PCs) for the high frequency pattern of the spectrum. Thus, the preliminary
forward model can be written as

FTOA = Isol ·
µ0
π
·

3∑
i=0

(αi · λi) ·
nPC∑
j=1

(βj · PCj) + Fs · hf · T ↑, (3.3)

where αi, βj , Fs and T ↑ are the unknowns which are necessary to generate a synthetic
measurement. Note that Eq. (3.3) is equivalent to the forward model from Joiner et al.
(2013) and Guanter et al. (2015). The difference lies in the derivation and interpretation,
since so far no assumptions concerning effects of atmospheric scattering were made. The
spectrally smooth contribution can mostly be attributed to surface reflectance and at-
mospheric scattering effects, which is henceforth referred to as apparent reflectance. The
spectrally oscillating part is due to distinct atmospheric absorption features. Although
the continuum absorption of the atmosphere is part of the apparent reflectance (low fre-
quency component), we formally refer to the oscillating component of the spectrum as
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3.3. Retrieval methodology

effective atmospheric transmittance.
The statistically based approach assumes that spectra without SIF emission can re-

produce the variance of the planetary reflectance also for spectra which contain SIF. For
this purpose, the data are divided into a training set (measurements over non-fluorescent
targets) and a test set (basically all measurements over land). According to Eq. (3.3),
spectra of the training set need to be disaggregated into low and high frequency compo-
nents in order to generate atmospheric PCs as described below.

3.3.2 Preparation of training set and generation of atmospheric principal
components

The training set is exclusively composed of measurements over non-fluorescent targets
and we assume that Eq. (3.2) is valid. As in Joiner et al. (2013), we use a principal
component analysis (PCA) to convert these SIF-free spectra into a set of linearly un-
correlated components (PCs). Only a subset of all PCs (the same number as spectral
points in the fitting window) will be needed to reconstruct each SIF-free spectrum with
an appropriate precision.
First of all, ρp is obtained through the normalization of the spectrum by the solar

irradiance (Isol) (which is also measured by GOME-2/SCIAMACHY), the cosine of the
solar zenith angle (µ0) and π. Figure 3.2 depicts such a normalized sample GOME-2 mea-
surement in the 720–758 nm fitting window. The next step requires an estimate of the
apparent reflectance (or the spectrally smooth component). Therefore, we assume two
windows mostly devoid of atmospheric absorption within the retrieval window, namely
the spectral regions between 721.5–722.5 and 743–758 nm, in order to estimate the ap-
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Figure 3.2: Estimation of apparent reflectance (green) from a sample GOME-2 measure-
ment in the 720–758 nm fitting window by a third-order polynomial using
atmospheric windows (red).
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parent reflectance by a third-order polynomial. This is also shown in Fig. 3.2. In the
next step, the apparent reflectance estimate is used to normalize ρp in order to separate
the effective atmospheric transmittance (high frequency component). If all spectra from
the training set are processed in this way, a PCA is applied in order to obtain the atmo-
spheric PCs. It is necessary to capture a sufficient number of atmospheric states within
the training set so that the effective atmospheric transmittance can also be adequately
constructed for the test data. Effects of correlation between the PCs and SIF will be
investigated in detail below (Sect. 3.4.3).
An important advantage in using this method is that there is no need to perform

explicit radiative transfer calculations to characterize atmospheric parameters, which
affect the measurement (e.g., temperature and water vapor profiles).

3.3.3 Estimation of the ground to sensor transmittance

According to the preliminary forward model in Eq. (3.3), an estimate of T ↑ is the last
necessary step to be able to retrieve SIF.
As it was shown by Joiner et al. (2013), T ↑ can be approximated in terms of the total

atmospheric transmittance in downward and upward direction (T ↓↑). Hence, T ↓↑ and T ↑
are simultaneously computed from the state vector elements in the forward model from
Joiner et al. (2013). Here, we estimate an effective ground to sensor transmittance (T e

↑)
prior to solving the forward model in order to obtain an additional model parameter.
The equation relating T e

↑ to T
e
↓↑ is given by

T e
↑ = exp

[
ln(T e

↓↑) ·
sec(θv)

sec(θv) + sec(θ0)

]
, (3.4)

where θv is the viewing zenith angle and θ0 is the solar zenith angle. Each measurement
is normalized in the same way as for the training set to separate T e

↓↑, that is in turn used
to estimate T e

↑ through Eq. (3.4). Figure 3.3 depicts such an estimation for a sample
GOME-2 measurement. However, a few implications arise through this approach, which
are evaluated in the following.
Firstly, it is necessary to assume zero SIF, although these measurements potentially

contain a SIF emission. Hence, an in-filling of atmospheric absorption lines might occur,
which potentially affects the estimation of T e

↑ and in turn the retrieved SIF. By means of
simulated TOA radiances (a detailed description can be found in Sect. 3.4), it becomes
apparent that this effect is negligible. We have tested two scenarios without instrumental
noise, a medium and a large difference in SIF emission (2.1 and 4.3 mW/m2/sr/nm), and
calculated T e

↑. Figure 3.4 depicts the resulting changes in T e
↑ due to the in-filling of

atmospheric absorption lines, and as can be seen, differences are only marginal. Another
consequence of the T e

↑ estimation procedure arises through the normalization of T e
↑ to

one, although continuum absorption exists. This can lead to a bias in retrieved SIF
values for inclined illumination/viewing angles and a high optical thickness (Guanter
et al., 2015). It should also be noted, that the first assumed atmospheric micro-window
(721.5–722.5 nm) might be influenced by water vapor absorption to a small extent, which
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Figure 3.3: Estimation of the effective atmospheric transmittance in down- and upward
direction (black) and in upward direction (red) using Eq. (3.4) from a sample
GOME-2 measurement in the 720–758 nm fitting window.
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Chapter 3. Retrieval of SIF from GOME-2 and SCIAMACHY data

is due to the instrumental resolution of about 0.5 nm. In consequence, too high retrieval
results may occur. However, the contribution of SIF in the lower wavelengths of the
fitting window is decreased for two reasons: an increasing distance to the maximum of
the prescribed spectral function at 740 nm and atmospheric absorption (except for the
atmospheric micro-window). These theoretical considerations as well as our simulation
results suggest that this effect is also negligible.
Our forward model is linearized as a result of the implementation from T e

↑ as a model
parameter. That means the estimation problem could in principle be solved without
iterations. However, it should be noted that the SIF estimation is inherently non-linear,
and a linearisation is necessary, either at each step of an iterative algorithm (Joiner et al.,
2013) or in advance.

3.3.4 Final Forward model

By using Isol,λ,PC and T e
↑ as model parameters and merging the high and low fre-

quency components to model the planetary reflectance, the final forward model results
in

FTOA = Isol ·
µ0
π
·

3∑
i=0

nPC∑
j=1

(γi,j · λi · PCj) + Fs · hf · T e
↑, (3.5)

where γi,j and Fs are the state vector elements. Thus, there are 4 ·nPC + 1 coefficients to
be derived by an ordinary least squares fit. It might be noted that Eq. (3.5) is a simple
algebraic transformation of Eq. (3.3).
A consequence of our approach is an increased number of state vector elements com-

pared to Joiner et al. (2013), where the forward model is solved for ni+nPC+1 elements.
Note that a comparable forward model to our approach was proposed by Guanter et al.
(2013), where the forward model is further simplified by convolving only the most sig-
nificant PC with the low order polynomial in wavelength to avoid an overfitting of the
measurement. Here, we omit an overfitting by applying a backward elimination algo-
rithm to reduce the number of coefficients to fit. An important and unique consequence,
which arises through this additional step, is an automated determination of the optimum
number of PCs. The selection of the number of PCs has an effect on retrieval accuracy
and precision as it is known from studies by Guanter et al. (2013) and Joiner et al. (2013).
Hence, it is crucial to provide a solution for this issue, which is described in the following.

3.3.5 Backward elimination algorithm

The forward model in Eq. (3.5) contains 4 · nPC + 1 coefficients to fit, whereas not all
of these coefficients are required. From a theoretical point of view, there is no reason to
prefer an unnecessarily complex model rather than a simple one. To account for this fact,
we use a backward elimination algorithm. Joiner et al. (2013) reported that only a few
PCs (about 5, exact number depends on the fitting window) can explain already a very
large amount of variance (> 99.999%) of the normalized radiance. Using too many PCs
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3.3. Retrieval methodology

and thus coefficients to fit might therefore result in an overfitting of the measurement.
That means an unnecessarily complex model loses its predictive performance by fitting
noise. For this reason, we start with all candidate variables and remove each variable
in order to test if any removal improves the model fit to the data. It should be noted
that the coefficients of the first PC (carrying the most variance) and the targeted SIF
are excepted from being removed. If any removal improves the fit, the removed variable,
which improves the model fit the most, is abandoned in the state vector from the forward
model in Eq. (3.5). This process is repeated until no further improvement occurs (for
each single retrieval). The improvement is determined through the Bayesian information
criterion (BIC, Wit et al., 2012), formally defined as

BIC = −2l(Θ̂) + p · log(n), (3.6)

where l(Θ̂) is the log-likelihood estimate of the model, p is the number of model parame-
ters and n the number of spectral points. In simplified terms, it represents the goodness
of fit weighted by the number of coefficients. The BIC is used as a statistical tool for
model selection and balances the goodness of fit with the model complexity, where com-
plexity refers to the number of parameters in the model. The BIC value itself is not
interpretable but the model with the lowest BIC should be preferred because a lower
BIC is associated with fewer model parameters and/or a better fit.

It should be mentioned that there are also other methods to compare and select models
in order to avoid problems of overfitted measurements. Here, we decided to use the BIC
because it penalizes the number of model parameters the most. It should further be noted
that it would be necessary to test all possible combinations of model parameters to find
the ’best’ model, which is computationally too expensive. For this reason, a stepwise
model selection (backward elimination) is performed.

Using the backward elimination algorithm has the consequence that the number of
provided PCs is unimportant, as long as there are more PCs provided than actually
necessary for an appropriate fit. In reverse it means that the optimum number of PCs is
determined automatically. The detailed behavior of this supplementary step in compar-
ison to a simple linear regression using all potential coefficients (all candidate variables)
will be shown below in Sect. 3.4.3.

3.3.6 Uncertainty estimation

In order to assess the uncertainty of the SIF measurements, the 1σ retrieval error is
calculated by propagating the measurement noise. We assume that measurement noise
can be characterized by spectrally uncorrelated Gaussian noise. In this case, following
Sanders and De Haan (2013), the signal-to-noise ratio (SNR) can be calculated for any
radiance level if the SNR is known for a reference radiance level Fref at a reference
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wavelength λref
i following

SNR(λi) = SNRref ·

√
F (λi)

Fref
. (3.7)

The measurement noise scales with the square root of the signal level, which is an appro-
priate assumption for grating spectrometers such as GOME-2 and SCIAMACHY. Here,
we determine SNRref for each measurement (simulated and real) from the averaged ra-
diance (Fref) from 757.7–758 nm using calculations of the SNR vs. level 1B calibrated
radiances (also averaged from 757.7–758 nm) under defined conditions (2% albedo, solar
zenith angle of 0◦, integration time of 1.5 s) performed by EUMETSAT. The error is
then calculated through the evaluation of the retrieval error covariance matrix given by

Se =
(
KTS0

−1K
)−1

, (3.8)

where K is the Jacobian matrix formed by linear model parameters from Eq. (3.3) and
S0 is the measurement error covariance matrix, which is a diagonal matrix (because of
the assumption of spectrally uncorrelated noise) with the elements

σ2i =

(
F (λi)

SNR(λi)

)2

. (3.9)

In order to assess the restriction for the precision of spatiotemporal SIF composites due
to instrumental noise only, the standard error of the weighted average can be calculated
for each grid cell by

σnoise(Fs) =
1√∑n

i=1(1/σi)
2
, (3.10)

where Fs is the mean SIF value, and σi is the 1σ retrieval error given by Eq. (3.8).
Furthermore, the standard error of the mean from monthly mapped SIF has been

computed for SCIAMACHY and GOME-2 as follows

SEMFs
=
σret√
n
, (3.11)

where σret is the standard deviation and n is the number of observations per grid cell.
In contrast to Eq. (3.10), this value is a measure of instrumental noise plus natural
variability of SIF in the considered time range.

3.4 Sensitivity analysis

The retrieval approach has been tested for a wide range of conditions using simulated
radiances in order to assess retrieval precision and accuracy, the effect of the backward
elimination algorithm as well as the optimal retrieval window. This section describes
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the underlying simulations briefly and examines retrieval properties and advantages with
respect to a simple linear model without a backward elimination.

3.4.1 Simulated TOA radiances

As in Joiner et al. (2013), we use simulated sun-normalized TOA radiances from the
Matrix Operator MOdel (MOMO) radiative transfer code (Fell and Fischer, 2001) with
a spectral sampling of 0.005 nm. We take the widely used spectral library from Chance
and Kurucz (2010) to simulate the solar irradiance. The simulations include two viewing
zenith angles (0◦ and 16◦), four solar zenith angles (15◦ , 30◦ , 45◦ and 70◦), two atmo-
spheric temperature profiles (middle latitude summer and winter), four surface pressures
(955, 980, 1005 and 1030 hPa), four water vapor columns (0.5, 1.5, 2.5 and 4.0 g/cm2),
three aerosol layer heights (500–700, 600–800 and 700–900 hPa) using a continental
aerosol model and five aerosol optical thicknesses at 550 nm (0.05, 0.12, 0.2, 0.3 and
0.4). Apart from the observation and illumination geometry, simulations for 480 differ-
ent atmospheric states have been carried out in order to test the retrieval. In this case,
the training set uses a spectral library of 10 different soil and snow surface reflectance
spectra, which means that the training data contain 38 400 samples. A set of top-of-
canopy (TOC) reflectances and SIF spectra derived with the FluorSAIL radiative transfer
model has been utilized to produce the test data set. The surface reflectance is thereby
a function of chlorophyll content and leaf area index (LAI), while SIF is a function of
chlorophyll content (5, 10, 20 and 40 µg/cm2), LAI (0.5, 1, 2, 3 and 4 m2/m2) and
quantum efficiency (which affects the intensity of the SIF flux; 0.02, 0.05 and 0.08). It
follows from these 60 diverse TOC fluorescence spectra and various simulations that the
test data are composed out of 230 400 samples. We convolve the high spectral resolution
TOA spectra (0.005 nm) to a lower resolution spectrometer grid with a 0.5 nm full-width
at half-maximum and a spectral sampling interval of 0.2 nm which is similar to GOME-2
and SCIAMACHY. A realistic instrumental noise with respect to the calculated SNR
from GOME-2 (in relation to the radiance level at a reference wavelength) provided by
EUMETSAT is then added to the spectra using Eq. (3.7).

3.4.2 End-to-end simulation

Figure 3.5 depicts the result of the end-to-end simulation using the described retrieval ap-
proach with a fitting window ranging from 720–758 nm and providing eight PCs (derived
from the synthetic training set). The mean and standard deviation of the 480 simulated
atmospheric states as well as the illumination and observation angles were calculated for
each of the 60 TOC SIF spectra. The good correlation between simulated and retrieved
SIF in Fig. 3.5 suggests that the retrieval approach is basically appropriate for the sepa-
ration of the SIF signal from the TOA radiance. However, to enhance confidence and to
prove that several potential systematic effects can be excluded, we depict the retrieved
minus simulated SIF in dependence on the simulated solar zenith angle, the water vapor
column and aerosol optical thickness at 550 nm in Fig. 3.6. The only visible bias is with
respect to the solar zenith angle. Low illumination angles cause a slightly higher variance,

45



Chapter 3. Retrieval of SIF from GOME-2 and SCIAMACHY data

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Input SIF@740 nm [mW/ m2/sr/nm]

R
et

rie
ve

d 
S

IF
@

74
0 

nm
 [m

W
/ m

2 /s
r/

nm
]

retrieved SIF = 0.04 + 0.99 x input SIF

Figure 3.5: Input vs. retrieved SIF at 740 nm of the end-to-end simulation using the
retrieval window from 720–758 nm and providing eight PCs. The average
of the retrieved SIF for each top-of-canopy (TOC) measurement is shown
together with its standard deviation (error bar). A linear fit of all TOC
means is shown in red.

which can be expected since the noise level increases with a higher TOA radiance.

Fig. 3.7 illustrates the extent to which the theoretical random error, calculated through
Eq. (3.8), matches the actual precision error. It can be seen that the root-mean-square
error (denoted by crosses) is higher than the majority of our theoretical error estimates,
but well within the statistical spread. This is due to the fact that the forward model is an
approximation; therefore small systematic errors (as can be seen in Fig. 3.5) occur, which
are not represented in the retrieval error covariance matrix Se. Furthermore, Fig. 3.7
reveals that the error (theoretical and actual) increases slightly with the signal level.

In view of the good correspondence between input and retrieved SIF in the end-to-end
simulation, it can be stated that the retrieval method is appropriate. One limitation
of this sensitivity study consists of the absence of clouds, which inevitably impact the
retrieval of SIF. The result of other simulation studies by Frankenberg et al. (2012) and
Guanter et al. (2015) suggests that an underestimation of SIF can be expected in the
presence of clouds. The reason is a shielding effect, which is not captured by the forward
model. Nevertheless, this should be of secondary importance when evaluating the pure
retrieval methodology. Furthermore, we will assess the impact of clouds on the retrieval
based on real satellite measurements in Sect. 3.5.7.

46



3.4. Sensitivity analysis

∆ SIF@740 nm [mW/ m2/sr/nm]

S
Z

A
 [°

]

15

30

45

55

70

−1.0 −0.5 0.0 0.5 1.0

∆ SIF@740 nm [mW/ m2/sr/nm]

T
C

W
V

 [ 
g

cm
2  ]

0.5

1.5

2.5

4

−1.0 −0.5 0.0 0.5 1.0

∆ SIF@740 nm [mW/ m2/sr/nm]

A
O

T
 [−

]

0.05

0.12

0.2

0.3

0.4

−1.0 −0.5 0.0 0.5 1.0

Figure 3.6: Retrieved minus simulated SIF in dependence on the simulated solar zenith
angle (SZA), the water vapor column (TCWV) and aerosol optical thickness
at 550 nm (AOT) for the same retrieval properties as in Fig. 3.5 (eight pro-
vided PCs, 720–758 nm retrieval window). The vertical bar represents the
median, the box/error bar covers 50%/90% of differences.
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Figure 3.7: Estimated SIF error in dependence on the simulated solar zenith angle (SZA)
for the same retrieval properties as in Fig. 3.5 (eight provided PCs, 720–
758 nm retrieval window). The vertical bar represents the median, the
box/error bar covers 50%/90% of the theoretical random errors as calculated
from Eq. (3.8). The crosses denote the estimated root-mean-square errors of
the simulation-based retrieval test.

3.4.3 Influence of number of PCs used and backward elimination

We performed the retrieval several times using 5–25 PCs in order to assess the sensitivity
to the number of provided PCs. In addition, the backward elimination algorithm was
disabled (all 4 · nPC + 1 coefficients from Eq. (3.5) are used) to evaluate whether the
algorithm is capable of reducing the noise and avoid an overfitting. Results are presented
in Fig. 3.8 in form of various statistical comparisons which are evaluated and described
below.
The first plot in Fig. 3.8 shows the average number of selected atmospheric PCs and

coefficients as a function of provided PCs. This plot is insufficient to decide how many
atmospheric PCs should be provided to the algorithm, but it reveals that a saturation
occurs at about seven selected PCs and 15 coefficients (combination of a third-order
polynomial in wavelength with individual PCs), respectively. In the following, it should
be taken into account that the linear model fit contains all 4·nPC+1 coefficients, while the
backward elimination algorithm selects a maximum number of nine PCs/21 coefficients
with a probability of not being exceeded in 90% of cases.
The bias which was calculated through the mean difference of retrieved minus input

SIF represents the accuracy of the retrieval. It can be seen that the bias drops down
to a value close to zero when providing more than seven PCs for both the linear model
fit and the backward elimination fit. Using all coefficients leads to a slightly increasing
positive bias associated with a larger number of PCs, which is not the case when the
backward elimination is applied. Consequently, an unnecessary complex model would
potentially result in overestimated SIF values.
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Figure 3.8: The plot on the upper left shows the average number of selected PCs (blue)
and coefficients (green) as a function of PCs provided to the backward elim-
ination algorithm. In the following, the retrieval results for the linear model
fit using all potentials coefficients (red) are compared to the backward elim-
ination fit (blue). Depicted are the bias (mean difference of retrieved minus
input SIF), the average standard deviation of retrieved SIF for the 60 TOC
SIF spectra (SD) and the mean Bayesian information criterion (BIC).

A difference between the disabled and enabled backward elimination algorithm can
also be seen in the comparison of the mean standard deviation. Here, the resulting
standard deviations of the retrieved SIF under differing atmospheric conditions for the
60 TOC SIF spectra were averaged to assess the retrieval precision. It can be noted that
the precision of the backward elimination fit remains constant, while the linear model fit
loses precision with a larger number of PCs. Also this comparison suggests providing at
least seven PCs to the retrieval.
More pronounced differences arise in the comparison between the mean Bayesian in-

formation criterion (BIC) values. This fact is expected since the number of coefficients
serves as weight for this criterion (as described in Sect. 3.3.5). For an interpretation of
the BIC it has to be noted that the model with the lowest value is to be preferred. As
a consequence, the BIC can be used to determine the appropriate number of PCs for the
retrieval. It turns out that six to eight PCs should be used for the linear model fit using
all coefficients, while at least eight PCs should be provided for the backward elimination
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Figure 3.9: Correlation error matrix of a sample retrieval. A total of 10 PCs were sup-
plied, atmospheric conditions were set to a middle latitude summer tempera-
ture profile, 955 hPa surface pressure, 700–500 hPa aerosol layer height, 0.05
aerosol optical thickness, 0.5 g/cm2 water vapor column. The retrieved/input
SIF at 740 nm amounts to 1.72/1.79 mW/m2/sr/nm.

fit. This finding concurs with the results from the previous comparisons and supports
the applicability of this criterion. It should be mentioned that the order of magnitude
of BIC values clearly shows that the backward elimination fit should be preferred in any
case. A potential overfitting of the measurement can be successfully prevented in this
way.
Theoretically, there should be no more variability in data points for large numbers

of initial PCs if the model parameter selection is enabled. Although Fig. 3.8 basically
reflects this expectation, there is still a low variability. The reason can be found in
the stepwise model selection, which is performed because a test of all possible model
parameter combinations would be computationally too expensive (Sect. 3.3.5).
Even if differences are small, it can be concluded that the accuracy (no significant

bias) and precision (decreased average standard deviation) are enhanced when the back-
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ward elimination is enabled. Hence the noise is reduced by selecting only appropriate
coefficients which is expected to be of particular importance for real satellite measure-
ments. Unfortunately, there is no ground truth against which the retrieval could be
adjusted or validated for real satellite measurements. As a consequence, it is not possible
to determine the most appropriate number of PCs for real satellite data. Thus, it is
advantageous that the backward elimination algorithm ensures stable results, regardless
how many PCs are provided (with the restriction that there is a minimum number of
required PCs). Furthermore, an overfitting of the measurement is avoided by using the
discussed algorithm.
As a conclusion of these findings, we decided to provide initially 10 PCs for the retrieval

applied to real GOME-2 and SCIAMACHY data. The backward elimination algorithm
selects the required model parameters (a subset of candidate parameters from Eq. (3.5))
based on the BIC for each pixel automatically. In order to prove this assumption and
to show that there are no significant correlations of the SIF spectrum to any of the
selected model parameters, we supplied 10 PCs (as for the retrieval with satellite data)
and calculated the correlation error matrix following Govaerts et al. (2010) for a sample
fit (Figure 3.9). As can be seen, correlations of selected model parameters with T e

↑ · hf

are not perfectly zero but absolute values do not exceed 0.3. Higher correlations between
other model parameters occur, especially for those containing the same PC. However,
this is unimportant since it is not intended to interpret the concerned coefficients. These
model parameters are solely necessary to obtain an appropriate fit to the measurement.
Nevertheless, it should be noted that higher correlations between T e

↑ · hf and other
model parameters cannot per se be excluded because the algorithm selects the model
parameters for each single measurement independently of correlations. A further test
of the correlation of the PCs obtained by SCIAMACHY and the assumed SIF spectral
shape (hf) suggests that there are only low correlations (mean correlation coefficient is
0.2).

3.4.4 Selection of the retrieval window

In order to justify the 720–758 nm retrieval window, we performed retrievals in additional
fitting windows (710–758, 715–758, 725–758, 730–758, 735–758 nm). Table 3.1 provides
the linear fit results for supplying the most appropriate number of PCs to the retrieval
algorithm in each tested fitting window. This number has been determined with the
help of a statistical comparison as it is shown in Fig. 3.8. We found that both confined
and extended retrieval windows lead to a slight bias. Furthermore, the extended retrieval
windows require a larger number of PCs. The selected retrieval window from 720–758 nm
is therefore reasonable in terms of retrieval accuracy and computation time. It might be
worth noting that the described retrieval approach suggests using significantly less PCs
as opposed to Joiner et al. (2014), where the latest algorithm (V25) uses 12 PCs in a
retrieval window ranging from 734–758 nm. In the following, further theoretical aspects
to select the retrieval window are discussed.
It is known that vegetation has a unique, spectrally smooth reflectance signature in the

considered wavelength ranges, which means that there are no distinct absorption lines.
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Table 3.1: Comparison of different retrieval windows. Shown is the linear fit (retrieved
SIF = intercept + slope · input SIF) for supplying the most appropriate num-
ber of PCs (determined as in Fig. 3.8).

Exp. Fitting window # of PCs linear fit
1 735–758 5 y = 0.09 + 0.91 · x
2 730–758 6 y = 0.10 + 0.89 · x
3 725–758 7 y = 0.05 + 0.92 · x
4 720–758 8 y = 0.04 + 0.99 · x
5 715–758 10 y = 0.04 + 0.97 · x
6 710–758 11 y = 0.26 + 0.86 · x

Nevertheless, the spectral reflectance of vegetated areas changes rapidly in the red edge
region (680–730 nm), which is due to the spectral variation in chlorophyll absorption.
Using the narrow atmospheric window at 722 nm assures that the apparent reflectance
(which is in turn used to estimate T e

↑) can be modeled with sufficient precision for the
part of the retrieval window which is affected by the red edge. Extending the retrieval
window to lower wavelengths would lead to errors in the reflectance estimation caused by
a lack of further atmospheric windows (the next spectral region with a high atmospheric
transmittance is located at wavelengths below 710 nm). This error translates into the
transmittance estimation, which propagates to errors in SIF. Extending the retrieval
window to the O2 A-band at 760 nm would be possible and has also been shown by Joiner
et al. (2013), but a benefit cannot be expected. As already stated by Frankenberg et al.
(2011a), the separation from SIF and atmospheric scattering properties is ambiguous
when using only O2 absorption lines. Also Joiner et al. (2013) reported that the removal
of the O2 A-band is not accompanied with a significant loss of information content.
On the other hand, it is possible to confine the retrieval window, whereby a loss of
information content regarding SIF is expected, which leads to a loss of retrieval precision
and accuracy as can be seen in Table 3.1.
Advantages of the 720–758 nm retrieval window can be summarized as follows:

1. It covers the second peak of SIF emission at 740 nm.

2. It contains spectral regions with a high atmospheric transmittance (between 721.5–
722.5 and 743–758 nm), which is necessary to characterize the apparent reflectance
and in turn T e

↑.

3.5 Results

The presented SIF retrieval method has been used to produce a global SIF data set
from GOME-2 data covering the 2007–2011 time period. In addition, the SIF retrieval
has been implemented for SCIAMACHY data for the August 2002–March 2012 time
span. This section describes the application of the algorithm to the satellite data, results
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from spatiotemporal composites as well as a comparison to the results from Joiner et al.
(2014). In addition, we compare the GOME-2/SCIAMACHY SIF results to a SIF data
set derived from GOSAT data by Köhler et al. (2015a). We also discuss an important
limitation, which arises due to the South Atlantic Anomaly (SAA). Furthermore, the
impact of clouds on the retrieval will be assessed.

3.5.1 Application to GOME-2 and SCIAMACHY data

In contrast to the synthetic data set, where training and test sets are clearly separated,
the real satellite data are first partitioned as described below.
The selection of the training set is relevant to obtain meaningful results because these

data are used to model the planetary reflectance of the desired measurements over land
(test set). It is therefore essential to capture as many atmospheric states and non-
fluorescent surfaces as possible within the training set to ensure its representativeness.
Random samples of measurements over areas where no SIF signal is expected (e.g.,
deserts, ice and sea regardless of the degree of cloudiness) are used for this purpose. The
selection of such measurements is based on the determination of the land cover using the
International Geosphere and Biosphere Programme (IGBP) classification (Friedl et al.,
2002) derived from MODIS data. Care is taken to ensure that only homogeneous, non-
vegetated land cover classes or measurements over sea and ice serve as a basis for the
training set. Furthermore, it has to be noted that the training set is sampled on a daily
basis for GOME-2 and a 3-day basis for SCIAMACHY data. The different period of
time to sample the training data is due to the reduced number of soundings from SCIA-
MACHY. Based on the sampled training data, the atmospheric PCs are calculated as
explained earlier. Instrumental artifacts and degradation are expected to be captured by
this method and do not need to be considered.
In general, the test set is composed of all available land pixels, but cloud-contaminated

measurements might make it problematic to retrieve SIF since it can be expected that
the SIF signal is partly shielded in the presence of clouds, which potentially biases the
retrieval. For this reason, the range of cloud fractions is limited to 0.5, which saves also
computation time, whereas the restriction is explicitly not applied to the training set.
We use the effective cloud fraction from the Fast Retrieval Scheme for Clouds from the
O2 A-band (FRESCO, Wang et al., 2008). In the case of GOME-2, the provided cloud
fraction is already attached to the level 1B satellite data. The FRESCO cloud fraction
data for SCIAMACHY were available separately and had to be collocated.
The FRESCO cloud fraction is not available for the presence of snow and ice, which is of

particular relevance in the winter time at higher latitudes. In order to obtain a complete
time series of SIF in affected regions, we evaluate also measurements with an unknown
cloud fraction in the presence of snow. Hence, measurements over snow are determined
using the ERA-Interim re-analysis data (Dee et al., 2011) on a 0.75◦ grid. The general
cloud fraction threshold of 0.5 will be further discussed in Sect. 3.5.7.
Following the results of our sensitivity analysis, at least eight PCs should be provided

for the SIF retrieval in the 720–758 nm spectral window. Furthermore, it has been
evaluated that the number of provided PCs is not affecting retrieval results as long as
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we provide more PCs than actually necessary. In contrast to the simulations, some PCs
may also account for instrumental effects when applying the algorithm to real data. For
this reason, we provided initially 10 PCs for the retrieval using real satellite data. It has
emerged that the algorithm selects on average 6 PCs and decides in about 3% of cases that
10 PCs are actually needed when GOME-2 data are used. This finding corresponds to
our sensitivity analysis, where on average seven PCs are selected. However, this changes
when the retrieval is applied to SCIAMACHY data. In this case, the algorithm decides
in about 40% of cases that 10 PCs are needed. Therefore, we increased the number of
provided PCs to 20, whereas on average 14 PCs are selected. The probability that all 20
PCs are selected is below 1%. It is unclear why SCIAMACHY requires twice the number
of PCs as GOME-2.
As a consequence of these findings, we provided 10 PCs to the retrieval for GOME-2

and 20 PCs when SCIAMACHY data are used. The processed data can be retrieved
from ftp://ftp.gfz-potsdam.de/home/mefe/GlobFluo/.

3.5.2 Quality control

Since it cannot be excluded that the retrieval fails for single measurements, the retrieval
results have to be checked. This is done by using the residual sum of squares (RSS) from
each retrieval. The resulting coefficients are used to generate a synthetic measurement
which is compared with the original measurement. The RSS value is then the discrepancy
between the data and the model. One major issue, which causes high residuals, is the
South Atlantic Anomaly (SAA), discussed below in Sect. 3.5.5. In general, it appears
that the RSS value is around 0.5 (mW/m2/sr/nm)2. Single retrievals are removed if
the RSS is above 2 (mW/m2/sr/nm)2 for both GOME-2 and SCIAMACHY. It turned
out, that monthly composites from GOME-2 SIF retrieval results contain striping effects
from single swaths in individual cases. This issue might be caused by special orbits (e.g.,
narrow swath) and is solved by removing distinct swaths with a high average of RSS
values (above 1 (mW/m2/sr/nm)2). This striping effect was not observed for SIF results
obtained from SCIAMACHY. Further filtering besides the residual check is not applied
to our data set.

3.5.3 Spatiotemporal composites

In principle, it is possible to achieve a global coverage of SIF measurements within
1.5 days for GOME-2 and 6 days for SCIAMACHY, but the presence of clouds prevents
such a high temporal resolution. Although it is important to consider different time
scales, it is common to produce monthly means. Two monthly composites of SIF in
January and July 2011 derived from SCIAMACHY and GOME-2 data are shown together
with V25 GOME-2 SIF results provided by Joiner et al. (2014) in Fig. 3.10.
Overall all three results compare very well concerning spatial patterns, although the

SIF composite derived with SCIAMACHY is provided in a spatial resolution of 1.5◦×1.5◦,
whereas SIF retrievals from GOME-2 are rastered in 0.5◦ × 0.5◦ grid boxes. The lower
spatial resolution for SCIAMACHY is due to the fact that the original pixels are co-
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Figure 3.10: Monthly composites of SIF at 740 nm for January (left column) and July
(right column) 2011. The upper row depicts SIF results using SCIAMACHY
data and the rows below show SIF composites derived from GOME-2 data
using our algorithm (middle row) and SIF results provided by Joiner et al.
(2014) (bottom row). The SCIAMACHY composites and results from Joiner
et al. (2014) are scaled by the relationships in Table 3.2 to ensure a good
visual comparison.
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Figure 3.11: GOME-2 versus SCIAMACHY data of TOA reflectance at 720 nm,
FRESCO (Wang et al., 2008) cloud fractions (CF) and SIF. Averages from
February 2007 to December 2011 (rastered on 1.5◦× 1.5◦ grid) with a cloud
fraction lower than 0.5 have been used. The linear fits are depicted as dotted
lines.

added in certain wavelength regions in order to meet downlink limitations. However, it
must be stated that absolute SIF values obtained from SCIAMACHY are slightly lower
than from GOME-2, although such a difference is not expected since the overpass time
differs only half an hour.
One reason might be a higher cloud contamination of the bigger footprints from SCIA-

MACHY. As already stated in Sect. 3.4.2, simulation studies by Frankenberg et al. (2012)
and Guanter et al. (2015) have shown that an underestimation of SIF caused by a ex-
tinction through clouds can be expected. Another possible reason could be a relative
radiometric offset between the two satellite sensors. Therefore, we assess the TOA re-
flectance at 720 nm (lower limit of the fitting window), the FRESCO cloud fraction and
the retrieved SIF for the overlapping data sets in time from GOME-2 and SCIAMACHY
in Fig. 3.11. As can be seen from the TOA reflectance comparison, there is most likely
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Figure 3.12: Comparison of monthly SIF averages derived from SCIAMACHY (blue) and
GOME-2 (red) for croplands between 100◦ W–80◦ W, 35◦ N–50◦ N (shown
in Fig. 3.16). The standard deviation per time step is depicted as a bar plot.

no offset. When considering the cloud fractions, the overall linear fit is comparable to
that of the TOA reflectance but points scatter more widely (R2 = 0.73) with a visible
tendency to higher cloud fractions of the SCIAMACHY data. In contrast, the scattering
of retrieved SIF values is not widespread (R2 = 0.89) but GOME-2 SIF values are higher
by a factor of 1.25. In view of these results, it is likely that lower SCIAMACHY SIF
values are at least partly associated with a higher cloud contamination. Nevertheless, it
needs to be mentioned that the relationship between SIF values from GOME-2 and SCIA-
MACHY is seasonally dependent. In order to ensure a good visual comparison, derived
SIF values from SCIAMACHY data are therefore scaled in Fig. 3.10 by the relationship,
which is obtained from monthly means (see Table 3.2).
The January 2011 SIF composites in Fig. 3.10 comprise a high SIF average in South

America which must be treated with caution, because this region is particularly affected
by the South Atlantic Anomaly. This limitation will be discussed in Sect. 3.5.5 but it
should already be considered at this point to avoid a misinterpretation. Concurrently,
SIF values in the Northern Hemisphere are close to 0, which is owing to the inactivity
of vegetation during this month. The appearance of the map changes fundamentally for
July. It is interesting to note the high SIF average in the US Corn Belt region with respect
to other regions at the same latitude, which is produced by large crop- and grassland
areas. This region with pronounced SIF averages was examined in detail by Guanter
et al. (2014) with the finding that SIF retrievals provide a basis for a reliable estimation
of gross primary production (GPP) in cropland and grassland ecosystems. Furthermore,
it has been stated that current carbon cycle models on average underestimate the GPP
in such regions.
Figure 3.12 depicts a time series of monthly averages over a sample cropland area

between 100◦ W–80◦ W, 35◦ N–50◦ N (shown in Fig. 3.16) in order to investigate the
temporal consistency of our SIF retrieval algorithm. Therefore, the retrieval output
(without averaging the results in grid boxes) in that area has been collocated with the
IGBP classification (Friedl et al., 2002). Those retrievals which were classified as cropland
with cloud fractions lower than 0.5 or unknown cloud fractions in the presence of snow,
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Figure 3.13: Standard error of the weighted average (using Eq. (3.10), measure of instru-
mental noise only) of GOME-2 SIF for July 2011.

serve as the basis for the monthly SIF averages in Fig. 3.12. Both time series show
an aligned annual cycle with high SIF values during summertime. Beside the difference
in absolute values (no scaling has been employed) it is noticeable that the interannual
variability for the two time series may be slightly inconsistent, but the difference may also
be due to noise or the different sampling. Considering that SIF values are close to zero
during inactive periods, the standard deviation in wintertime may be used to estimate
the precision for the SIF retrieval (specific for the considered area and monthly averages
in Fig. 3.12), which is of the order of 0.2–0.4 mW/m2/sr/nm. It seems reasonable that
the GOME-2 SIF data exhibit a generally higher variability because of the fact that each
SCIAMACHY pixel is similar to four averaged GOME-2 pixels.
In order to provide an typical estimate of the uncertainty of monthly SIF composites

due to instrumental noise, Fig. 3.13 shows the standard error of the weighted average
(Eq. (3.10)) derived with GOME-2 for July 2011. Highest uncertainties occur over bright
areas associated with a higher photon noise, e.g., deserts and regions with snow/ice. The
resulting pattern can therefore be interpreted as an error increasing with TOA radiance.

3.5.4 Comparison with existing retrieval results

Since we present a similar SIF retrieval method to that proposed by Joiner et al. (2013),
it is reasonable to compare both results. It should be noted that there are two released
versions of GOME-2 SIF (V14 & V25), whereas this comparison focusses on the latest
version (V25) described in Joiner et al. (2014). Main changes from V14 to V25 lie in
a confined retrieval window (V14: 715–758 nm, V25: 734–758 nm) and subsequently in
a reduced number of PCs used (V14: 25 PCs, V25: 12 PCs). Furthermore, the spectra are
normalized with respect to earth spectra instead of the GOME-2 solar spectra in V25.
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Figure 3.14: SIF retrieval results from the presented algorithm versus V25 results pro-
vided by Joiner et al. (2014). SIF averages from February 2007 to December
2011 (rastered on a 0.5◦×0.5◦ grid) with cloud fractions lower than 0.5 have
been used. The one-to-one line (solid line) is depicted as well as a linear fit
(dotted line).

It should be considered that the change in retrieval window has lead to a significant
decrease in absolute SIF values.
Similar to Fig. 3.11, a scatter plot between the V25 data set and SIF values derived

with the presented algorithm is depicted in Fig. 3.14 for the overlapping period in time
(February 2007 to December 2011). It is immediately noticeable that the absolute SIF
values obtained from the presented retrieval are about 2 times higher. This is inconsistent
with our simulation-based retrieval test with a similar fitting window to that of the V25
algorithm from Joiner et al. (2014), which only leads to a decrease of about 10% in
absolute values (see Table 3.1, Exp. 1). In view of this discrepancy, it must be stated that
there are still large uncertainties in absolute SIF values, while spatiotemporal patterns
compare well. At the same time, it should be noted that a temporal consistency might
be more relevant for potential users of SIF data sets at the moment, since the absolute
value is not applied in current research. Although such a large difference is basically not
expected, the data sets are highly correlated and there is a clear linear relationship. This
relationship also exhibits seasonal variations as shown in Table 3.2, which has been used
to scale the monthly composites in Fig. 3.10 in order to ensure a good visual comparison.
At this point, we are not able to judge which absolute values are closer to reality, since

there is a lack of ground truth and validation. The only possibility to assess the validity
of results from the data-driven approaches, besides the sensitivity analyses, is at present
a comparison to physically based SIF retrieval results from GOSAT data. GOSAT and
GOME-2/SCIAMACHY SIF values are expected to be different, which is due to different
overpass times, evaluated wavelengths (GOSAT SIF is evaluated between 755–759 nm),
illumination and especially observation geometries. Nevertheless, it can be presumed
that there is a good correlation between those data sets.
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Table 3.2: Relationship between SIF values derived from GOME-2 and SCIAMACHY
on a monthly basis to scale SCIAMACHY and V25 GOME-2 SIF values in
Fig. 3.10. Shown is the linear fit (GOME-2 SIF = intercept + slope · SCIA-
MACHY/V25 SIF) similar to those in Fig. 3.11 and Fig. 3.14.
... vs. GOME-2 January 2011 July 2011
SCIAMACHY y = 0.03 + 1.42 · x y = 0.35 + 0.95 · x
V25 GOME-2 y = −0.09 + 2.18 · x y = 0.29 + 1.64 · x

In Fig. 3.15 we compare long-term SIF averages for the June 2009–August 2011 time
period from GOME-2/SCIAMACHY SIF data to GOSAT SIF retrieval results obtained
by Köhler et al. (2015a). The averaging interval has been selected according to the
available overlapping periods for all four data sets. The underlying retrieval results are
rastered on a 2◦ × 2◦ grid, which is due to the poor spatial sampling of the GOSAT
measurements. Furthermore, GOME-2/SCIAMACHY measurements with a cloud frac-
tion lower than 0.5 serve as a basis for the long-term average while the cloud filter for
GOSAT soundings consists of an empirical radiance threshold as reported in Köhler et al.
(2015a). As can be seen in Fig. 3.15, there is an enhanced correlation to the GOSAT
SIF data set for the presented retrieval algorithm. However, a small offset with respect
to the GOSAT SIF data set can be observed in all comparisons. Our GOME-2 SIF data
has the largest offset, which is probably introduced by a north–south bias in the training
set (discussed in Sect. 3.5.6).
In view of these results, it can be assumed that the presented retrieval approach is not

less valid than that of Joiner et al. (2013). In general, spatiotemporal patterns compare
very well as can be seen in Fig. 3.10; nevertheless, it remains unclear which absolute
values are more accurate.

3.5.5 South Atlantic Anomaly

Another point to be considered is that the error estimation might be too optimistic for
large parts of the South American continent. The reason is the South Atlantic Anomaly
(SAA), which is a region of reduced strength in the Earth’s magnetic field. Hence,
orbiting satellites are exposed to an increased flux of energetic particles, which leads to
increased noise in the measurements. An impact of the SAA on the SIF retrieval using
GOME-2 data has also been described in the study of Joiner et al. (2013). Here, we
depict the standard error of the mean (SEM, Eq. (3.11)) of monthly SIF composites for
January and July 2011 from our SIF retrieval using GOME-2 and SCIAMACHY data in
Fig. 3.16 to illustrate the impact of the SAA. This comparison provides also an estimate
of the uncertainty, whereas instrumental noise and natural variability are covered. The
underlying SCIAMACHY SIF values to produce Fig. 3.16 are also scaled by the linear
relationship in Table 3.2 and both composites are computed in a spatial resolution of
1.5◦ × 1.5◦ in order ensure a comparison.
The center of the SAA is in close proximity to the coast of Brazil at about 40◦W and
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Figure 3.15: SIF retrieval results from GOSAT (evaluated at 755 nm, Köhler et al., 2015a)
versus SIF retrieval results from the presented algorithm and V25 results
provided by Joiner et al. (2014). SIF averages from June 2009 to August
2011 (rastered on a 2◦ × 2◦ grid) have been used. Each evaluated grid
box contains at least 26 retrievals using GOSAT data, included GOME-
2/SCIAMACHY SIF retrievals own a cloud fraction lower than 0.5. The
one-to-one line (solid line) is depicted as well as a linear fit (dotted line).

30◦S, which results in extraordinary high SEM values for the GOME-2 SIF data set in
nearby regions. Overall, higher SEM values occur where a significant amount of SIF can
be observed (see Fig. 3.10). It can also be seen that the SEM is generally lower for the
GOME-2 SIF composites (except for the SAA affected regions). It is remarkable that the
SAA seems to have a much lower impact on measurements performed by SCIAMACHY
in particular for July 2011, although the difference in orbit height is only about 20 km.
In view of Fig. 3.16 it is even questionable whether there is an impact of the SAA on
SCIAMACHY data at all.
In contrast to the SCIAMACHY data set, the impact of the SAA on GOME-2 data

translates also to the residual sum of squares (RSS) of the SIF retrieval (not shown). High
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Figure 3.16: Monthly composites of the standard error of the mean (SEM, Eq. (3.11))
of SIF for January (left column) and July (right column) 2011 derived from
SCIAMACHY (top) and GOME-2 data (bottom) in a spatial resolution of
1.5◦ × 1.5◦. The underlying SCIAMACHY SIF values are again scaled by
the relationship in Table 3.2 in order to ensure a good visual comparison.
The center of the SAA at 40◦W and 30◦S, the analyzed region for Fig. 3.12
(yellow) and the analyzed region for Fig. 3.18 (red) are depicted in each
map.

RSS values occur in particular in the region of large SEM values on the South American
continent. This allows the conclusion that the noise and thus the measurement error is
much higher than expected from our error propagation depicted in Fig. 3.13. Although
all single retrievals with an RSS bigger than 2 (mW/m2/sr/nm)2 are filtered, care should
be taken when using SIF retrieval results from affected areas, especially for GOME-2 SIF
retrievals.

3.5.6 North–south bias in training set

Consistency checks and plausibility controls of the derived SIF values have lead to another
source of error. We retrieved SIF values from the training set (sea, desert and ice)
with the expectation that all SIF values are close to zero. It turned out that there is
a slight time- and latitude-dependent offset in retrieved SIF values which amounts to
up to 0.3 mW/m2/sr/nm for GOME-2 SIF results. Two different ways to sample the
training data have been tested for July 2011 in order to investigate if this bias is related
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Figure 3.17: Mean SIF of two different training sets derived with data from GOME-2 and
SCIAMACHY averaged over latitudes for July 2011. The first training set
(Training 1, solid lines) corresponds to a daily sampling of the data while
the second training set (Training 2, dotted lines) is sampled on a 3-day basis.

to the sampling method or if there is an instrumental issue. The first training set has
been sampled on a daily basis as explained in Sect. 3.5.1 for both satellite instruments.
In contrast, the second training set has been sampled on a 3-day basis, whereas the
SAA affected region has been excluded (longitudes between 90◦W–15◦E and latitudes
between 10◦N–90◦S) and spectra have been selected with respect to their latitudinal
representativeness (the number of sampled spectra per latitude corresponds to the median
number of spectra per latitude). Figure 3.17 depicts the monthly composite of SIF
of the two different training sets averaged over latitudes derived from GOME-2 and
SCIAMACHY data for July 2011. As can be seen, there is almost no difference between
the different sampling methods of the SCIAMACHY training data. Nevertheless, a slight
offset of about 0.1 mW/m2/sr/nm is introduced in latitudes above 40◦N. The offset in
retrieved SIF values from the GOME-2 training set is decreased when the second sampling
method is applied, even though the latitudinal dependency is conserved and the offset is
more pronounced than in the two SCIAMACHY training sets. A slight zero level offset
is also observable in the data provided by Joiner et al. (2014), which supports the thesis
that this bias is related to an instrumental issue. One reason might be a temperature-
dependent dark current change. This issue should be considered in further investigations.

3.5.7 Impact of clouds on the retrieval

In contrast to the usually applied pre-filtering of cloud contaminated measurements (dis-
cussed in Sect. 3.5.1), we run the retrieval using GOME-2 data in 2009 without restricted
cloud fractions in order to examine the impact of clouds.
Tropical rainforest areas are frequently covered by clouds and therefore, it is expected

that clouds may affect the retrieval of SIF in particular in such regions. Therefore, we
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Figure 3.18: Time series of SIF retrievals from GOME-2 data over a box in the Ama-
zon Basin (70◦–65◦W, 5◦–0◦S (shown in Fig. 3.16), covered with evergreen
broadleaf forest) for different cloud fraction thresholds. The time series
corresponds to 12 day means in 2009. The standard deviation (top) and
the number of included retrievals (bottom) per time step are depicted as
barplots.

produced a time series over a box in the Amazon Basin (70◦–65◦W, 5◦–0◦S (shown in
Fig. 3.16), covered with evergreen broadleaf forest) with different cloud fraction thresh-
olds, which is shown in Fig. 3.18. Care was taken when selecting the area to ensure that
the impact of the SAA is as low as possible and the IGBP land cover (Friedl et al., 2002)
(evergreen broadleaf forest) is mostly homogenous.

Overall it can be seen that SIF values are decreasing with an increasing cloud frac-
tion threshold, whereby the temporal pattern remains almost unaffected. Using only
retrievals with a low cloud fraction (< 0.25) implies a significant loss of measurements
while the standard deviation (or fluctuation) is only slightly smaller and even equal for
some time steps. SIF values successively decrease by relaxing the threshold, which is con-
sistent with the expectation that the SIF signal is partly shielded by clouds (Frankenberg
et al., 2012). An exception occurs in one time step where the reported standard devia-
tion is significantly higher than in the other time steps. Simultaneously, the number of
included retrievals is low and differences in cloud fraction values from FRESCO are only
marginal. For these reasons, the time step at the end of October 2009 is not meaningful
to evaluate the impact of clouds on the retrieval. Applying a cloud fraction threshold of
0.5 results in differences about 0.1 mW/m2/sr/nm in comparison to the SIF averages of
the lowest evaluated cloud fraction. The highest increase of measurements with respect
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to a cloud fraction threshold of 0.25 can be achieved by using measurements with cloud
fractions up to 0.5. A further increase of the cloud fraction has the consequence that
more measurements can be used but the amount of SIF averages is distinctly decreasing.
It must be noted that results remain consistent for different spatiotemporal scales and
the presented region has been chosen as a representative example. On this basis, a cloud
fraction threshold of 0.5 is a reasonable compromise between the loss of measurements
and changes in the SIF average. As a consequence, we provide the global SIF data set
for measurements with cloud fractions lower than 0.5 including also measurements with
unknown cloud fractions in the presence of snow. Nevertheless, in view of these results
it can be concluded that the presented SIF retrieval method is robust against moderate
cloud contamination.

3.6 Conclusions

A new statistically based approach to retrieve SIF from GOME-2 and SCIAMACHY
data has been introduced. Building upon previous works from Guanter et al. (2013) and
Joiner et al. (2013), our approach solves the important issue of the arbitrary selection of
the number of free model parameters.
The basic assumption to retrieve SIF from space is that the contribution of SIF can

adequately be separated from low and high frequency components due to surface and
atmospheric properties. In our forward model, the low and high frequency components
are represented by a combination of a third-order polynomial in wavelength with atmo-
spheric PCs. A backward elimination algorithm selects the required model parameters
automatically with respect to the goodness of fit balanced by model complexity. Our
sensitivity analysis reveals that the precision is enhanced, retrieval noise is reduced and
the risk of an overfitting is minimized by applying the stepwise model selection to our
forward model.
The retrieval approach has also been applied to spectra acquired by GOME-2 and

SCIAMACHY. Thus, we were able to present a continuous SIF data set covering the
08/2002–03/2012 time period using SCIAMACHY data and the 2007–2011 time span
using GOME-2 data. The number of selected PCs and total model parameters for the
GOME-2 data is in line with the expectation from the sensitivity analysis while twice
as many PCs (on average 14) are employed for SCIAMACHY data. Nevertheless, our
approach suggests using a significantly smaller number of PCs as compared to Joiner
et al. (2013, 2014).
Although the achievable spatial resolution of SIF maps from SCIAMACHY data is

coarser than from GOME-2, there is now a decade long continuous SIF time series avail-
able. However, a significant discrepancy in absolute SIF values arises when comparing
our retrieval results with the V25 results from Joiner et al. (2014), although spatiotempo-
ral patterns are similar. A detailed comparison of the V25 algorithm with our algorithm
using simulated data might explain the discrepancy, but that is beyond the scope of this
work. It remains exceedingly difficult at present to judge which values are more accurate.
Despite this issue, a comparison to GOSAT SIF data obtained by Köhler et al. (2015a)
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showed an enhanced correlation for long-term averages between the different retrieval
types, evaluated wavelength and satellite instruments for the presented approach. This
allows us to conclude that progress has been achieved but also that there is still research
to be done. In particular, there is a need for ground-based validation, ideally in areas
with relatively homogeneous vegetation.
Furthermore, it must be considered that the SAA causes high uncertainties in large

parts of the South American continent when using GOME-2 data. In contrast, a sig-
nificant impact of the SAA on SCIAMACHY data has not been found. The analysis of
different training sets revealed that there is a slight zero level offset in GOME-2 SIF re-
trievals which is probably related to an instrumental issue. On the basis of the GOME-2
SIF data set in 2009, we have shown that the retrieval is only moderately affected by
cloud contamination. It has essentially been found that the SIF signal decreases with an
increasing cloud fraction, but the seasonality is maintained.
Finally, it has to be noted that the flexibility of the retrieval method makes it also

applicable to other instruments with a similar spectral and radiometric performance as
GOME-2 and SCIAMACHY, such as the upcoming TROPOMI (Veefkind et al., 2012)
on board the Sentinel-5 Precursor and the Earth Explorer 8 mission candidates FLEX
(Rascher et al., 2008) and CarbonSat (Bovensmann et al., 2010).
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Abstract

Two new remote sensing vegetation parameters derived from spaceborne spectrometers
and simulated with a three dimensional radiative transfer model have been evaluated in
terms of their prospects and drawbacks for the monitoring of dense vegetation canopies:
(i) sun-induced chlorophyll fluorescence (SIF), a unique signal emitted by photosyn-
thetically active vegetation and (ii) the canopy scattering coefficient (CSC), a vegeta-
tion parameter derived along with the directional area scattering factor (DASF) and
expected to be particularly sensitive to leaf optical properties. Here, we present the
first global data set of DASF/CSC and examine the potential of CSC and SIF for
providing complementary information on the controversially discussed vegetation sea-
sonality in Amazon forests. A comparison between near-infrared SIF derived from the
Global Ozone Monitoring Experiment-2 (GOME-2) instrument and the Orbiting Car-
bon Observatory-2 (OCO-2) (overpass time in the morning and noon, respectively) re-
veals the response of SIF to instantaneous photosynthetically active radiation (PAR)
and the response of SIF to changing pigment concentrations (’green-up’). Large-scale
seasonal swings of GOME-2 SIF amount up to 21%, peaking in October and around
February, while OCO-2 SIF peaks in February and November. We further examine
anisotropic reflectance characteristics with the finding that the hot spot effect signifi-
cantly impacts observed GOME-2 SIF values. On the contrary, our sensitivity analysis
suggests that CSC is highly independent of sun-sensor geometry as well as atmospheric
effects. The slight annual variability of CSC (4%) shows a seasonal cycle attributable
to variations in leaf area (R = −0.87) and/or the amount of precipitation (R = 0.87)
which rather supports the ’green-up’ hypothesis for periods of less intense precipitation.
Although there is still research to be done, SIF and CSC may serve as complemen-
tary and valuable vegetation parameters under the conditions in the Amazon rainforest.

4.1 Introduction

The importance of the Amazon rainforest regarding its role in the global carbon cy-
cle (e.g., Tian et al., 2000) and its species diversity (e.g., Ter Steege et al., 2013) is
represented by a tremendous number of studies. Simultaneously, the sheer number of
studies also reveals the challenge posed by the complex ecosystem. Poorly accessible
areas and the large extent of the Amazon Basin constrain ground-based observation
capacities. Satellite-based remote sensing therefore provides a crucial opportunity to
continually monitor these areas, but even recent findings of satellite-based analyses ad-
dressing vegetation dynamics, seasonality as well as its response to drought events remain
contradictory.
The majority of studies report an increase (’green-up’) in photosynthetic activity dur-

ing months with less intense precipitation (usually June-October; e.g., Huete et al., 2006;
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Samanta et al., 2012; Bi et al., 2015). In contrast, Morton et al. (2014) claim that struc-
ture and greenness and thus photosynthetic activity remain constant if the satellite data
are accurately corrected for directional reflectance effects in the measurement. These
controversial results might be explained due to the fact that the monitoring of dense
vegetation represents a complicated case in optical remote sensing: Reflected solar ra-
diation saturates and becomes weakly sensitive to vegetation changes, while there is a
substantial influence of changing sun-sensor geometry and residual atmospheric effects
(Verrelst et al., 2008; Hilker et al., 2015; Maeda and Galvão, 2015).
Thanks to recent advances in the analysis of spaceborne spectroscopic measurements,

two new and promising vegetation parameters, sun-induced chlorophyll fluorescence (SIF)
and the canopy scattering coefficient (CSC), have become available. While SIF is directly
related to photosynthesis, CSC is a structural parameter assumed to be particularly
sensitive to leaf properties (Samanta et al., 2012; Knyazikhin et al., 2013). The CSC
may capture leaf age-effects when considering that Roberts et al. (1998) observed an 10%
increase in the near-infrared (NIR) absorption in matured tropical leaf spectra. A strong
argument to lay particular emphasis on such effects was recently raised by Wu et al.
(2016). They specifically examined seasonal variations of several vegetation parameters
from ground, tower and satellite measurements at four sites in the Amazon and concluded
that the canopy phenology, i.e., the leaf age, drives the photosynthetic seasonality rather
than seasonal variations of climate conditions. It would therefore be clearly beneficial if
a basin-wide measure of leaf phenology could be established. On the other hand, three
characteristics of SIF might be advantageous compared to traditional reflectance-based
vegetation indices (VIs): (i) a saturation of SIF has not yet been observed, (ii) SIF
appears to be less affected by sub-pixel clouds (Frankenberg et al., 2012; Guanter et al.,
2015), (iii) SIF is expected to provide a direct link to actual photosynthetic rates, while
greenness based indices indicate potential photosynthesis represented by their response
to chlorophyll content. Both SIF and CSC may therefore contain relevant information
to re-assess vegetation dynamics in the Amazon region.
Global SIF data sets are available from several spaceborne sensors, including:

1. Greenhouse Gases Observing Satellite-Fourier Transform Spectrometer (GOSAT-
FTS; Frankenberg et al., 2011a; Joiner et al., 2011, 2012; Guanter et al., 2012;
Köhler et al., 2015a),

2. SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIA-
MACHY; Joiner et al., 2012; Köhler et al., 2015b; Wolanin et al., 2015),

3. Global Ozone Monitoring Experiment-2 (GOME-2; Joiner et al., 2013; Köhler et al.,
2015b; Wolanin et al., 2015),

4. Orbiting Carbon Observatory-2 (OCO-2; Frankenberg et al., 2014).

However, only a few studies relating SIF to productivity in tropical forests can be found in
the literature so far. Lee et al. (2013) and Parazoo et al. (2013) reported that wet season
productivity (proxied by SIF) exceeds the ’dry’ season productivity in southern Ama-
zon forest regions, where pronounced precipitation variations occur. Guan et al. (2015)
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examined global tropical evergreen forest regions and concluded that the photosynthetic
activity can be maintained during the drier season if the annual water availability is
sufficient.

Based on the concept of canopy spectral invariants (e.g., Knyazikhin et al., 2011),
Samanta et al. (2012) expressed the spectral reflectance in terms of directional area
scattering factor (DASF; Knyazikhin et al., 2013) and CSC (Smolander and Stenberg,
2005). By means of detailed theoretical considerations with respect to this expression,
Samanta et al. (2012) argue that changes in NIR reflectance of Amazon forests could be
explained by both changes in leaf area and leaf optical properties, but unlikely by changes
in leaf area alone. Leaf optical property variations due to leaf aging effects translate into
changes in CSC; however, Samanta et al. (2012) simultaneously acknowledge that leaf
optical variations might also be caused by coating substances (e.g., water or dust).

GOME-2 is at present the only spaceborne spectrometer that provides time series of
spectroscopic measurements in the 650–800 nm wavelength range, enabling simultaneous
computations of DASF, CSC, SIF and NDVI. An encouraging aspect for retrieving several
vegetation parameters from GOME-2 data lies in the wide range of covered observation
geometries, allowing to address directional effects. Albeit the importance of directional
effects has increasingly been recognized when analyzing VIs, less is known about the ef-
fects on satellite-based SIF data sets, though several studies suggest to similarly consider
changing illumination and view conditions (van der Tol et al., 2009b; Guanter et al.,
2012; Damm et al., 2015; Liu et al., 2016). Another benefit of simultaneous retrievals of
different vegetation parameters from one sensor is the consistent spatial sampling, even
though GOME-2 measurements have a relatively coarse spatial resolution as opposed
to the more frequently used products obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS). The large footprint size of GOME-2 (40 km x 40 km) likely
involves undetected sub-pixel clouds, representing a further limiting factor.

Here, we primarily aim to evaluate prospects and drawbacks of both SIF and CSC for
tracking vegetation dynamics and productivity in Amazon forests by examining simulated
and real satellite data. We present SIF time series derived from measurements of the
GOME-2 instrument (Köhler et al., 2015b) and from OCO-2 (Frankenberg et al., 2014)
for a region within the central Amazon Basin and we subsequently discuss limitations
due to sun-sensor geometry and illumination conditions at the overpass time. Moreover,
DASF and CSC have been computed from atmospherically corrected GOME-2 data which
enables us to present the first global data set of these parameters. We have also computed
the well-established Normalized Difference Vegetation Index (NDVI) and make use of
supplementary data sets to provide a basis for interpreting the results obtained. Finally,
we present long-term monthly averages to illustrate the large-scale seasonality of SIF,
CSC and NDVI in the Amazon forest as seen from the GOME-2 instrument.
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Figure 4.1: IGBP land classification (Friedl et al., 2002). The darkened areas within the
red box define the study domain.

4.2 Data & Methods

4.2.1 GOME-2

We use spectral radiance measurements from the GOME-2 instrument onboard EU-
METSAT‘s polar orbiting Meteorological Operational Satellite MetOp-A (Munro et al.,
2006) acquired between August 2013 and April 2015. This time period has been selected
because the swath width has changed since 15th July 2013 from 1920 km to 960 km,
resulting in a reduced ground pixel size of about 40 km x 40 km (previously 80 km x
40 km). Spectra acquired by the fourth detector channel, covering the 600 to 790 nm
spectral range with a resolution of 0.5 nm and a signal-to-noise ratio up to 2000, are
relevant for our analysis. The effective cloud fraction from the Fast Retrieval Scheme for
Clouds from the O2 A-band (FRESCO, Wang et al., 2008) is used for cloud screening.

4.2.2 Study Domain & Spatial Averaging

Our analysis of large-scale vegetation dynamics (Sect. 4.4.4) is focused on a domain in
southern Amazonia, indicated by the red box in Fig. 4.1 (latitudes between 0◦ - 10◦ S and
longitudes between 70◦W–50◦W). Special care has been taken to minimize the impact of
structural composition effects on the resulting time series as it will be explained below.
At first, GOME-2 measurements are pre-selected based on the International Geosphere

and Biosphere Program (IGBP) land classification (Friedl et al., 2002) shown in Fig. 4.1.
The main land cover is determined under consideration that each GOME-2 footprint has
a spatial extent represented by a polygon. Measurement polygons classified as evergreen
broadleaf forest with a land cover fraction higher than 0.9 form the basis for the spatial
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average. Pre-selected polygons are subsequently averaged on a monthly basis on a 0.2◦

x 0.2◦ grid (about 22 km x 22 km), while a value is transferred if the polygon covers the
center of a grid cell.
The study domain is further confined by masking grid cells which potentially own

differing structural properties compared to the majority of grid cells. In particular, a
k-means approach has been applied to the supplementary LAI data set (see Sect. 4.2.8)
to identify such grid cells. The remaining grid cells, shown as darkened areas in Fig. 4.1,
define the underlying region for the actual analysis. It is remarkable that particularly
grid cells close to the Amazon River and other water bodies were identified to have differ-
ent structural properties which might be associated with large floodplain areas (Várzea
forests).

4.2.3 Sun-induced chlorophyll fluorescence (SIF)

Chlorophyll pigments in terrestrial vegetation absorb sunlight to cover the energy de-
mand during the process of photosynthesis. A part of the excess energy dissipates as
sun-induced fluorescence (SIF) emitted by chlorophyll a in the red and NIR spectral
region (650-800 nm). Though the amount of SIF represents only a few percent of the
total light energy absorbed, SIF measurements can serve as a valuable tool to assess the
photosynthetic performance of vegetation. The capability of spaceborne SIF measure-
ments for providing a link to the carbon uptake through photosynthesis (gross primary
production, GPP) has already been proven for Amazon regions (Lee et al., 2013; Para-
zoo et al., 2013) as well as for cropland and grassland ecosystems (Guanter et al., 2014).
However, it is further important to consider the instantaneous nature of satellite-based
SIF data when evaluating seasonal cycles. For example, SIF time series intrinsically de-
pend on the illumination condition at the overpass time, while the temporal trajectory
(e.g., maximum and minimum) changes with the considered daytime (discussed in detail
in Sect. 4.4.2).
In contrast to reflectance based VIs, which are sensitive to canopy structure and pig-

ment concentrations, it can be assumed that SIF also tracks rapid changes in the vegeta-
tion photosynthetic status. Drawbacks arise from the rather coarse spatial resolution of
gridded SIF data, which is due either to a large footprint size (GOME-2, SCIAMACHY)
or to spatially discrete measurements (GOSAT, OCO-2). Here, we analyze SIF estimates
from GOME-2 (overpass time at ∼9:30 local solar time, LST) and OCO-2 (overpass time
at ∼13:30 LST) data derived with fundamentally different retrieval approaches as dis-
cussed below.

GOME-2 SIF

The retrieval methodology of the GOME-2 SIF data set used in this study was described
by Köhler et al. (2015b). This data set has been extended until April 2015 (previ-
ously 2007-2011) and can be retrieved from ftp://ftp.gfz-potsdam.de/home/mefe/
GlobFluo/. GOME-2 SIF retrievals generally rely on a statistically based approach to
separate the SIF emission from spectral features related to atmospheric absorption, scat-
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tering and surface reflectance. This specific retrieval essentially reconstructs the radiance
spectrum in the 720-758 nm interval and provides a value for the second of two char-
acteristic peaks of the fluorescence emission spectrum at 740 nm. Modeled spectra are
compared to the original measurements to exclude corrupted retrievals. This is done by
a radiance residual check which has been reinforced for our investigation in the Amazon
Basin to reduce the impact of potential error sources on resulting time series. In par-
ticular, Joiner et al. (2013) and Köhler et al. (2015b) reported that the South Atlantic
Anomaly, a region with an anomalously reduced strength in the Earth‘s magnetic field,
leads to an increased retrieval noise in large parts of the South American continent. The
residual sum of squares (RSS) is therefore limited to 0.5 (mW m−2 sr−1 nm−1)2 instead
of using the 2 (mW m−2 sr−1 nm−1)2 threshold documented by Köhler et al. (2015b).
The number of evaluated retrievals within the study domain is consequently reduced by
about two thirds.

OCO-2 SIF

The OCO-2 instrument was launched in July 2014 and provides spectrally high resolved
measurements in the O2 A-band (757-775 nm, FWHM=0.042 nm), which allows to eval-
uate the in-filling of solar Fraunhofer lines at 757 and 770.1 nm by SIF (Frankenberg
et al., 2014). OCO-2 acquires 24 spectra per second with a much smaller ground-pixel
size (1.3 km x 2.25 km) as compared to GOME-2 (40 km x 40 km). The high spectral
resolution enables robust and accurate retrieval results (Frankenberg et al., 2014), but
the fine spatial sampling with the narrow swath width of 10.3 km increases the revisit
time up to 16 days (GOME-2: 3 days) and involves a lack of continuous global coverage
(i.e., gaps between swaths for a full repeat cycle). Here, we use cloud free nadir observa-
tions of offset corrected OCO-2 SIF at 757 nm (version B7101) between September 2014
and November 2015.

4.2.4 Atmospheric correction of GOME-2 radiance spectra

Radiance received by GOME-2 at the top-of-atmosphere (TOA) is composed of direct
and diffuse irradiance contributions from both atmosphere and surface. The magnitude
of atmospheric effects can vary largely depending on the atmospheric state, surface prop-
erties and wavelength. Thus it is necessary to correct the TOA signal for atmospheric
effects to estimate the actual surface reflectance (ρs), which is in turn used to derive
other parameters (ρNIR, DASF, CSC and NDVI).
We based the atmospheric correction on simulations performed with the Matrix Oper-

ator MOdel (MOMO) radiative transer code (Fell and Fischer, 2001), mostly consistent
to a subset of simulations used in Joiner et al. (2013); Guanter et al. (2015); Köhler
et al. (2015b). Simulations were performed between 500 nm and 800 nm with a spec-
tral sampling of 0.005 nm and include three viewing zenith angles (0◦, 16◦, 27◦), four
solar zenith angles (15◦, 30◦, 45◦, 70◦), a mid-latitude summer temperature profile, four
surface pressures (955, 980, 1005, 1030 hPa), four water vapor columns (0.5, 1.5, 2.5,
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4.0 g cm−2), an aerosol layer height between 600–800 hPa using a continental aerosol
model and five aerosol optical thicknesses at 550 nm (0.05, 0.12, 0.2, 0.3, 0.4).
A solution for the radiative transfer in a plane-parallel atmosphere with a perfectly

diffuse (Lambertian) surface can be formulated as

FTOA = F0 +
Eg · ρs

π(1− ρsSatm)
, (4.1)

where FTOA is the (measured) TOA radiance, F0 is the atmospheric path radiance, Eg
is the transmitted global irradiance (direct and diffuse), Satm is the atmospheric spher-
ical albedo (i.e., the reflectance of the atmosphere for isotropic light entering it from
the surface) and ρs is the surface reflectance (all variables own a spectral component).
FTOA, F0, Eg and S are assumed to be functions of solar zenith angle (SZA), viewing
zenith angle (VZA), mean sea level pressure (MSL), water vapor column (WVC) and
aerosol optical thickness at 550 nm (AOD). Azimuthal resolution of sun-sensor geometry
and adjacency effect are not included. Although a natural surface reflects solar radia-
tion anisotropically, we assume that Lambertian equivalent surface reflectance estimates
through Eq. (4.1) satisfy the requirements for this analysis. Hu et al. (1999) evaluated
relative errors in canopy reflectance estimates for MODIS data when using a Lambertian
assumption. They reported that MODIS relative errors are about 5% in the red band
and 2% in the NIR band (for hardwood forest and an AOD of 0.2; median AOD of
observations used here is about 0.15).
A lookup table approach in conjunction with supplementary data sets (see Sect. 4.2.8)

of MSL, WVC and AOD is applied to estimate the spectral bidirectional reflectance.
Fig. 4.2 depicts a sample measurement spectrum of GOME-2 together with the atmo-
spherically corrected surface reflectance estimate in the relevant wavelength range be-
tween 660–790 nm. It needs to be mentioned that the highly complex radiative transfer
in the strong O2 A-band (759-774 nm) causes a high frequency spectral pattern in ρs,
although vegetation has a spectrally smooth reflectance signature in the considered wave-
length range. We therefore fit a second order polynomial to the reflectance in two spectral
windows around the O2 A-band, assumed to be mostly devoid of atmospheric absorption
(743-758 mn and 774-782 nm), and replace the unreasonable reflectance estimates.

4.2.5 Directional Area Scattering Factor (DASF) & Canopy Scattering
Coefficient (CSC)

We adopted the approach of Knyazikhin et al. (2013) to retrieve CSC from atmospheri-
cally corrected NIR reflectances using GOME-2 data. This approach relies on the idea to
scale scattering processes from the leaf to the canopy level. The theory of such a scaling
has made significant progress since one of the initial attempts from Knyazikhin et al.
(1998). In particular, the concept of canopy spectral invariants (summarized in Huang
et al., 2007) provides the basis for a physically consistent and thus more direct approach
to relate reflectance-based measurements to leaf structure and biochemistry.
First, it should be considered that the recollision probability (p) for scattered photons
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Figure 4.2: Sample measurement spectrum of GOME-2 and atmospherically corrected
surface reflectance estimate between 660-790 nm (633 spectral points). The
measurement within the study domain (center latitude 1.1◦ S, center longi-
tude 57.3◦ W) was carried out at 07/04/2014, atmospheric correction was
performed with following input parameters: SZA = 46.8◦, VZA = 10.7◦,
AOD = 0.06, WVC = 3.87 g/cm2, MSL = 1015.4 hPa. A second order
polynomial fit using the 743-758 mn and 774-782 nm spectral intervals (blue)
is applied to replace the unreasonable reflectance estimates inside the O2

A-band (759-774 nm) by fitted values.

within a canopy is wavelength independent (spectral invariant) because scattering ob-
jects are large compared to the wavelength of solar radiation (Lewis and Disney, 2007).
Smolander and Stenberg (2005) have shown that a combination of different recollision
probabilities on the leaf level, namely for shoots and needles as the most important
scattering elements within coniferous canopies, results in one equivalent recollision prob-
ability on the canopy scale. The scaling even applies from the leaf interior to the canopy
level when neglecting leaf surface reflection (Lewis and Disney, 2007). Besides simula-
tion based studies (Knyazikhin et al., 1998; Smolander and Stenberg, 2005; Huang et al.,
2007; Lewis and Disney, 2007), the p theory has been succesfully applied to remote
sensing applications (e.g, Schull et al., 2011; Knyazikhin et al., 2013). Particularly the
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study from Knyazikhin et al. (2013) may have long-term consequences for the remote
sensing of canopy chemistry. They introduced the following representation of the canopy
bidirectional reflectance (BRF)

BRFλ(Ω) = DASF (Ω) ·Wλ, (4.2)

where Ω is the direction towards the sensor, DASF is the directional area scattering
factor and Wλ the (wavelength dependent) canopy scattering coefficient. It might be
noted that BRFλ is equivalent to ρs in Eq. (4.1). The wording is changed in this section
to remain consistent with the literature. Furthermore, it should be emphasized that Wλ

refers to the spectral canopy scattering coefficient, while the abbreviation CSC refers to
the canopy scattering coefficient at NIR wavelengths (discussed below in Sect. 4.2.5).
The DASF is a spectral invariant estimate of the BRFλ for a non-absorbing canopy and
encapsulates macro-structural properties such as the tree spatial distribution. The key
benefit of the approach from Knyazikhin et al. (2013) is that no prior knowledge is needed
to estimate the DASF from reflectance spectra in the 710 to 790 nm spectral interval as
described in the following.

DASF estimation

Assuming that the observed canopy is sufficiently dense (background/surface effects
are negligible), the spectral bidirectional reflectance (BRF) can be approximated as
(Knyazikhin et al., 2011)

BRFλ(Ω) =
ρ(Ω)i0(Ω0)ωλ

1− ωλp
, (4.3)

where ρ(Ω) is the directional gap density giving the escape probability for scattered
photons in direction Ω, i0(Ω0) is the initial collision probability or canopy interceptance
for the direction of incoming radiation Ω0 (fraction of photons that initially collide with
foliage elements, close to unity in dense vegetation canopies), p is the mean probability
that a scattered photon will interact within the canopy again (recollision probability)
and ωλ is the canopy albedo.
Eq. (4.3) is still formulated on the canopy level but p implicitly incorporates the scaling

to the leaf level. Specifically, the scaling to the next smaller structural organization (i.e.,
from the canopy to the leaf level) can be expressed by accumulated scattering orders of
local recollision probabilities (Smolander and Stenberg, 2005)

ωλ =

∞∑
n=0

[pnLω
n
L,λ(1− pL)] =

1− pL
1− pLωL,λ

ωL,λ, (4.4)

where the leaf scale is indicated by the subscripted L. An empirical analysis of measured
leaf albedo spectra suggests that one fixed reference leaf albedo (ω0,λ) can be used instead
of the actual single leaf albedo (ωL,λ) without violating the spectral invariant relationship
from Eq. (4.4) in the 710 to 790 nm spectral interval (Schull et al., 2011). It is further
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necessary to decompose ωλ into

ωλ = iLω̄λ + sL, (4.5)

where iL is the leaf interceptance, ω̄λ is the transformed leaf albedo giving the fraction
of photons scattered by the interior of leaves and sL is the portion of photons reflected
from the leaf surface. Assuming that the scattering by the leaf interior dominates in the
710 to 790 nm spectral region, Eq. (4.4) becomes (Knyazikhin et al., 2013)

ωλ ≈ iLω̄λ =
1− pL

1− pLω0,λ
iLω0,λ. (4.6)

By substituting Eq. (4.6) into Eq. (4.3) and rearranging terms, Knyazikhin et al. (2013)
arrived at

BRFλ(Ω)

ω0,λ
= peffBRFλ(Ω) + iLρ(Ω)i0(1− pL), (4.7)

with peff = pL + iLp(1 − pL). It might be noted that peff is equivalent to the spectral
invariant relationship between recollision probabilities of shoots and needles documented
by Smolander and Stenberg (2005). Here, peff describes the scattering within leaves as
seen from the canopy level, i.e., the probability of being scattered inside the leaf (pL) is
combined with the probability that a photon escapes the leaf (1−pL) and enters another
leaf within the canopy (iLp). A simple linear regression between BRFλ/ω0,λ vs. BRFλ
(see Eq. 4.7) gives the slope m = peff and intercept n = iLρ(Ω)i0(1 − pL). Finally, the
ratio n/(1 −m) results in the following representation of the DASF (Knyazikhin et al.,
2013)

DASF (Ω) =
iLρ(Ω)i0(Ω0)

1− iLp
. (4.8)

Note that the DASF becomes independent of pL; and moreover, the DASF appears to
be independent of the choice of ω0,λ (Schull et al., 2011), which both seems reasonable
considering that the DASF conveys macro-structural properties. A reference leaf albedo
derived with the PROSPECT model (chlorophyll content of 16 µg cm2, equivalent water
thickness of 0.005 cm−1, dry matter content of 0.002 g/cm2 as suggested by Knyazikhin
et al., 2013) is used for the linear regression in the 710-790 nm spectral region. The
R2 value of the linear fit indicates the retrieval quality and applicability of assumptions
(e.g., sufficiently dense vegetation). Our analysis is therefore based on DASF retrievals
with a R2 value above 0.9 (this threshold will be further discussed in Sect. 4.4.1). It is
further worth noting that NIR reflectance and DASF are closely related in terms of their
sensitivity to view-illumination conditions.
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CSC & NIR leaf albedo estimation

When expressing BRFλ in terms of DASF and Wλ (Eq. 4.2) and considering that the
DASF conveys macro-structural properties, leaf properties (represented by Wλ) can po-
tentially be extracted from reflectance measurements through the ratio BRFλ/DASF.
In contrast to visible wavelengths where pigment absorption dominates, residual varia-
tions in the NIR are mostly due to canopy/leaf structure (Hikosaka et al., 2015). Here,
the 780-785 nm NIR spectral interval serves as weakly absorbing wavelength range to
compute CSC (or WNIR).
An analytical representation of Wλ is given by (Knyazikhin et al., 2013)

Wλ =
1− piL

1− ω̂λpiL
ω̂λ, (4.9)

with ω̂λ = ωλ/iL. In this case, p is the probability that a scattered photon will interact
again within the canopy (recollision probability), ωλ is the leaf albedo and iL is the leaf
interceptance (fraction of radiation that enters the leaf interior). Note that Eq. (4.9) in-
cludes no explicit dependency on illumination or observation geometry, although the leaf
albedo is in principle subject to a certain bidirectional reflectance distribution function
(BRDF). However, considering that the ground pixel size of GOME-2 (40 km x 40 km)
involves a vast number of leaves, it can be anticipated that any angular preference will
tend to average out. Conceptually, this vegetation parameter should therefore be inde-
pendent of sun-sensor geometry, which is indeed supported by our results in Fig. 4.9 of
Sect. 4.4.3.
Wλ increases as the albedo increases, but as can be seen from Eq. (4.9), Wλ is also

subject to changes in canopy structure through the dependency on the p value. More
specifically, p increases with LAI (Knyazikhin et al., 1998; Smolander and Stenberg, 2005)
which can be explained by a higher chance for photons to be absorbed (Samanta et al.,
2012). Consequently, the absolute value ofWλ decreases with increasing LAI. Smolander
and Stenberg (2005) approximate the relationship between p and LAI by

p = pmax[1− exp(−k LAIb)], (4.10)

with pmax = 0.88, k = 0.7 and b = 0.75. We use this relationship to extract large-scale
variations in leaf properties (Sect. 4.4.4) by estimating p from the supplementary LAI
data set and evaluating the rearranged Eq. (4.9)

ω̂NIR =
ωNIR
iL

=
WNIR

iLp(WNIR − 1) + 1
, (4.11)

under the assumption of iL = 1, neglecting the sensitivity of CSC (WNIR) to leaf surface
properties (Smolander and Stenberg, 2005, have introduced Wλ under this assumption).
However, it should be mentioned that the approximation in Eq. (4.11) might be critical
as results rely on (i) the accuracy of both CSC and LAI estimates in addition to (ii) the
validity and applicability of Eq. (4.11) under the conditions in the Amazon forests. We
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will further evaluate this approach in Sect. 4.3.2, based on simulated data.
The formalism to compute DASF, CSC and NIR leaf albedo (ωNIR) can be summarized

as follows:

1. Perform atmospheric correction of measured BRFλ (Sect. 4.2.4).

2. Perform a linear fit between BRFλ/ω0,λ vs. BRFλ in the 710–790 nm spectral
window (389 spectral points), where ω0,λ is a reference leaf albedo (Sect. 4.2.5).

3. The ratio n/(1 − m) of slope, m, and intercept, n, from the linear fit results in
DASF as represented by Eq. (4.8).

4. CSC (WNIR) results from the ratio BRFNIR/DASF, where BRFNIR is the averaged
atmospherically corrected reflectance between 780-785 nm.

5. Compute p from supplementary LAI data through Eq. (4.10) and evaluate Eq. (4.11)
to estimate NIR leaf albedo (ωNIR) from p and CSC.

4.2.6 Normalized Difference Vegetation Index

For the sake of comparison, the simple but effective Normalized Difference Vegetation
Index (NDVI, Tucker, 1979) has been computed from GOME-2 data. The standard
definition is given by the band ratio

NDV I =
ρNIR − ρRED
ρNIR + ρRED

, (4.12)

where ρNIR and ρRED are computed from averaged atmospherically corrected reflectances
between 780-785 nm and 660-665 nm, respectively. Joiner et al. (2013) reported that
GOME-2 NDVI spatial patterns are similar to those of the MODIS NDVI product, even
when atmospheric effects are not considered.
We acknowledge that the large-scale NDVI seasonality in the central Amazon Basin

will potentially result from seasonal variations in cloud cover (Kobayashi and Dye, 2005;
Hilker et al., 2015). Nevertheless, we consider that a spatially consistent comparison
of GOME-2 SIF and CSC with a conventional VI provides an improved basis for the
interpretation.

4.2.7 Characterization of Sun-Sensor Geometry

In general, four angles are needed to characterize the illumination and observation geom-
etry, namely: solar zenith angle (θ0), solar azimuth angle (φ0), viewing zenith angle (θv)
and viewing azimuth angle (φv). The position of the azimuth angles to each other can
also be expressed by the relative azimuth angle (φ), where φ = 180◦ means that sun and
satellite sensor are oppositely aligned. It is further appropriate to combine θ0, θv and φ
to the phase angle (γ) by applying the spherical law of cosines

γ = acos[cos(θ0)cos(θv) + sin(θ0)sin(θv)cos(φ)], (4.13)
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Figure 4.3: Viewing and illumination geometry of GOME-2 within our study domain.
Shown are (a) solar zenith angle, (b) viewing zenith angle, (c) relative azimuth
angle and (d) phase angle (Eq. 4.13).

which gives the angle between the directions to the sun and detector as seen from the
surface (Hapke, 2012). Here, γ is defined positive if the solar azimuth angle is larger
than viewing azimuth angle and negative otherwise to be able to separate those cases.
The phase angle replaces three angles to characterize the sun-sensor geometry, while
approaching γ = 0◦ corresponds to the situation when sun and sensor are located along
one axis.

Fig. 4.3 depicts the illumination and viewing conditions for GOME-2 measurements
within our study domain. The seasonality of the sun-sensor geometry is comparable to
MODIS observations shown by Bi et al. (2015), whereas several studies (Morton et al.,
2014; Maeda and Galvão, 2015; Verrelst et al., 2008; Hilker et al., 2015) highlight the
importance to take such a seasonality into account when evaluating VIs. In the case
of MODIS, measurements are typically related to a fixed sun-surface-sensor geometry.
We follow another strategy in Sect. 4.4.4: GOME-2 observations are limited to phase
angles from −65◦ to −40◦ because this range of angles occurs in all considered months.
Thus, a seasonality in sun-sensor geometry and a potential influence on time series can
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be avoided.

4.2.8 Supplementary data

A series of data is required for our atmospheric correction and beyond that, for provid-
ing a basis to interpret the results obtained. The following list briefly summarizes all
supplementary data sets used in this study.

(a) Cloud free nadir observations of offset corrected OCO-2 SIF at 757 nm (Frankenberg
et al., 2014, version B7101) between September 2014–November 2015.

(b) IGBP land cover (Friedl et al., 2002) provided on a 0.05◦ x 0.05◦ (about 5 km x
5 km) grid.

(c) LAI (Baret et al., 2013) from the Copernicus Global Land Service. Specifically,
the SPOT-VGT LAI (version 1.3) is used between 08/2013 and 05/2014 and the
PROBA-V LAI (version 1.4) from 06/2014 to 04/2015. Both data sets are provided
on a 10-day basis with a spatial resolution of 1 km and have been aggregated to
monthly averages on a 0.2◦ x 0.2◦ grid.

(d) Collection 5 of the Aqua MODIS NDVI data provided on a 0.05◦ x 0.05◦ grid
(MYD13C1, 2016, 16-day Vegetation Indices) quality flagged as good (’use with
confidence’), aggregated to monthly averages on a 0.2◦ x 0.2◦ grid.

(e) Monthly precipitation data from the Tropical Rainfall Measuring Mission (TRMM,
2011, product 3B43 version 7) on a 0.25◦ x 0.25◦ grid.

(f) ERA-Interim re-analysis data (Dee et al., 2011) of photosynthetically active radi-
ation (PAR, 400-700 nm, 3-hourly), WVC (6-hourly) and MSL (6-hourly). Here,
WVC and MSL (PAR) data sets on a 0.75◦ x 0.75◦ (0.125◦ x 0.125◦) grid have
been used.

(g) AOD (6-hourly) from the Monitoring Atmospheric Composition and Climate (MACC,
2016) re-analysis data set on a 0.75◦ x 0.75◦ grid.

4.2.9 Simulated SIF and reflectance

Radiative transfer simulations of SIF and reflectance provide a possibility to review
the basic validity of assumptions made. Furthermore, a departure of observations with
respect to the simulated data may point to specific characteristics and problems.
Simulations of incoming PAR, top of canopy (TOC) reflectance, and TOC SIF between

650 and 850 nm have been computed by the spatially explicit three dimensional plant
canopy radiative transfer model (FLiES, Kobayashi and Iwabuchi, 2008), capable of
simulating the multiple scattering within the plant canopy. We adopted the boundary
conditions from the sun-sensor geometry of GOME-2 (Sect. 4.2.7) in combination with
monthly averages of the LAI data set for 2014. Specifically, monthly averages of the
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solar zenith angle represent a simplified annual cycle of illumination, whereas all discrete
viewing zenith angles as well as averages of the two separate regimes of the relative
azimuth angle represent the observation geometry. The LAI ranges from 4.02 to 5.39
units, incorporating a changing canopy structure. Further, a realistic tropical forest
landscape has been simulated by the empirical forest structure dynamics model (Yang
et al., 2016, in preparation). The forest simulation includes a tree density of 2398 trees
ha−1, a canopy height of 5 to 50 m following a Weibull distribution, and a 99% crown
cover. The parameters of the forest structure dynamics model were determined based on
the allometric relationships obtained in the tropical forests. Optical parameters consist of
a broadleaf type leaf spectral reflectance and transmittance, woody reflectance (medium
reflectivity), and soil reflectance (medium reflectivity) data sets. These optical data
were compiled from the existing literature and publicly available data sets (Kobayashi,
2015). The atmospheric condition is characterized by a tropical temperature profile and
a continental aerosol model with an AOD of 0.2 for a cloud-free sky.

4.3 Sensitivity Analysis

4.3.1 Sensitivity to Cloud Effects

Even though the impact of clouds on computed GOME-2 vegetation parameters can
be limited by means of the FRESCO cloud fraction data attached to GOME-2 mea-
surements, residual cloud contamination (i.e., undetected sub-pixel clouds) might be
unavoidable due to the frequent cloud cover in tropical rainforest areas in combination
with the large GOME-2 footprint size. It is therefore crucial to examine potential cloud
effects before a possible seasonality can be identified.

Here, simulated TOA radiance spectra as described in Sect. 4.2.4 have been used by
incorporating different levels of cloud optical thickness (COT) values. It might be noted
that the simulations are consistent with those used by Guanter et al. (2015). Fig. 4.4
illustrates the sensitivity of SIF, NDVI, ρNIR, DASF and CSC to COT values ranging
from 0–3, corresponding to optically thin cirrus or scattered cumulus clouds. Surprisingly,
CSC appears to be highly independent of atmospheric effects (+3% at a COT of 3)
because the dependencies of DASF and ρNIR on cloud contamination tend to compensate
by rationing. SIF appears to be only moderately affected by cloud contamination, which
basically reflects previous findings of decreasing SIF values through the shielding effect
by clouds (Frankenberg et al., 2012; Guanter et al., 2015). On the contrary, considerably
decreasing NDVI values with an increasing COT may complicate the further evaluation.
This strong effect can essentially be explained by the impact of clouds on both red and
NIR wavelengths in addition to the shielding of the green vegetation.

Overall, it should be mentioned that the unknown degree of undetected cloud contam-
ination of GOME-2 measurements represents the most limiting factor of this analysis.
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Figure 4.4: Simulated relative intensity changes of SIF, NDVI, ρNIR, DASF, and CSC
as a function of cloud optical thickness (COT) for optically thin clouds.

4.3.2 Sensitivity of DASF, CSC & ωNIR to LAI

The question may arise to which extent DASF and CSC are influenced by canopy struc-
ture (through the sensitivity of p to LAI, Eq. 4.10) under the conditions in the Amazon
rainforest. Furthermore, the basic validity of our approach to extract leaf properties in
terms of ωNIR from CSC (Eq. 4.11) needs to be evaluated. It is therefore essential that
the simulations (Sect. 4.2.9) allow us to review these aspects.
The simulations include soil absorption and are driven with constant leaf properties,

while LAI and sun-sensor geometry vary similarly to real GOME-2 observations. Given
that DASF is an estimate for the non-absorbing canopy’s reflectance, the DASF should
be consistently higher than the NIR reflectance (ρNIR) to support the basic applicability
of the p theory on our simulations. A similar seasonality of CSC and LAI would then
indicate the expectable magnitude of a response of CSC to LAI. Finally, the constant leaf
properties in our simulation should lead to a seasonally flat ωNIR to provide evidence
for the basic capability to extract leaf properties through Eq. (4.11). Here, the LAI is
exactly known as it is an input parameter, however, it should already be considered that
this will not apply for real satellite data. Uncertainties in LAI will propagate into ωNIR
estimates, complicating the interpretation in case of real data. This approach might
therefore be understood as proof of concept.
The first panel of Fig. 4.5 reveals that the DASF is indeed higher than ρNIR, con-

sistent with the underlying theory. NIR reflectance/DASF intensity changes are highly
correlated to the LAI input values (R = 0.97/0.98) and amount up to 8.3%/10.5% (from
March to September). The second panel of Fig. 4.5 indicates that the CSC is sensitive
to changes in LAI (R = −0.88), even though this sensitivity is rather low, i.e., a 25%
increase in LAI from March to September translates into a 2.9% decrease in CSC. The
low sensitivity can be explained by the asymptotic behavior of the recollision probability
which reflects the saturation effect in dense vegetation canopies. A significant impact of
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Figure 4.5: ρNIR (upper panel, blue), DASF (upper panel, orange), CSC (middle panel,
purple) and ωNIR (bottom panel, purple) computed from simulated data for
a realistic tropical forest observed under a simplified GOME-2 sun-sensor
geometry. The standard deviations (shaded areas) result from two relative
azimuth angles and 14 viewing zenith angles (value depends on month, see
Fig. 4.3). The LAI input value (middle panel, black) corresponds to the
monthly average of the study domain for 2014. In the bottom panel, the
canopy p value (black) is computed from the LAI input through Eq. (4.10),
while ωNIR (purple) is estimated from CSC and p through Eq. (4.11).

viewing zenith angle variations on absolute CSC values has not been found, but the stan-
dard deviation increases with viewing zenith angles. The third panel of Fig. 4.5 reveals
a 5.8% increase of the canopy p value from March to September (computed by Eq. 4.10).
Our strategy to extract leaf properties from CSC (Eq. 4.11) results in an average NIR leaf
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albedo of 0.957 with a standard deviation of 0.001 albedo units, while intensity changes
are below 0.5%. The basic validity of this approach might thus be confirmed because the
simulations own constant leaf properties.

4.4 Results

4.4.1 Spatiotemporal Composites

We performed global DASF retrievals from GOME-2 soundings with relative cloud frac-
tions (from FRESCO, Wang et al., 2008) below 0.5 for the 08/2013-04/2015 time period.
The processed data can be retrieved from http://is.gd/GOME_2_DASF. As described in
Sect. 4.2.5, the R2 value of the underlying linear fit Eq. (4.7) is a measure of retrieval
quality and applicability of assumptions. We have therefore tested different R2 value
thresholds to examine the impact on resulting composites. In general, it appeared that
non-vegetated areas and regions with sparse vegetation (e.g., deserts and ice sheets) are
masked by a R2 value above 0.7. Furthermore, it has emerged that a more stringent R2

filter criterion also results in reduced relative cloud fraction averages:

1. R2 > 0.7: 7.4% of remaining soundings own a cloud fraction larger than 0.3

2. R2 > 0.9: 3.5% of remaining soundings own a cloud fraction larger than 0.3

Global monthly composites of DASF(R2 >= 0.9) and GOME-2 SIF for July 2014
on a 0.2◦ x 0.2◦ grid are shown in Fig. 4.6. It is interesting to note the high DASF
and SIF average in northern mid-latitudes with peak values in the US Corn Belt region.
This peak in SIF and DASF in large cropland and grassland areas might be explained
by the rather less complex vegetation structure associated with an enhanced escape
probability for scattered/emitted photons. Equally remarkable is that spatial DASF
patterns apparently reproduce spatial SIF averages. This characteristic can be attributed
to a similar sensitivity to canopy structure and illumination conditions. For example, a
complex canopy structure leads to enhanced multiple scattering by which less photons
escape regardless whether photons originate from the sun or from SIF.
Even though the ratio ρNIR/DASF (CSC) appears to be robust against cloud con-

tamination (see Sect. 4.3.1), we based the further analysis on DASF retrievals with a
R2 value above 0.9 in combination with a strict cloud filter (cloud fraction equal zero)
to ensure that the impact of clouds is as low as possible. Fig. 4.7 depicts composites of
CSC, SIF and NDVI derived from GOME-2 data in the Amazon region for the July–
September 2014 period. In addition, the MODIS NDVI (MYD13C1, 2016) composite
for the same time period is shown, illustrating the largely consistent spatial patterns as
well as consistent absolute values with respect to the GOME-2 NDVI composite. Both
composites clearly demonstrate the saturation effect of the NDVI in dense vegetation
canopies. The consistency is particularly remarkable against the background of a consid-
erable difference in the spectral and spatial sampling of the satellite instruments. While
spectral broadband measurements in channel 1 (red band: 620–670 nm) and channel 2
(NIR band: 841–876 nm) with a fine spatial sampling of 250 m form the basis to compute
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Figure 4.6: Monthly (a) DASF(R2 >= 0.9) and (b) SIF composites for July 2014 on a
0.2◦ x 0.2◦ grid derived from GOME-2 soundings with relative cloud fractions
(from FRESCO, Wang et al., 2008) below 0.5. The center of the SAA at 40◦W
and 30◦S, the extent of the region shown in Fig. 4.1, 4.7 (blue) and our study
domain (red) are in addition depicted in map (b).
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Figure 4.7: Composites of (a) CSC, (b) SIF and (c) NDVI derived from GOME-2 data
with relative cloud fractions equal zero for the July–September 2014 period
on a 0.2◦ x 0.2◦ grid in the Amazon region. Figure (d) shows a MODIS NDVI
composite (MYD13C1, 2016, see Sect. 4.2.8) on a 0.05◦ x 0.05◦ grid for the
same time period. White areas indicate missing values. The spatial sampling
of CSC is consistent with that of GOME-2 NDVI, missing values are primarily
due to underlying DASF retrievals with R2 < 0.9 (see Sect. 4.2.5). Missing
values in the GOME-2 SIF composite are mostly due to our restrictive RSS
filter criterion in order to reduce the impact of the SAA (see Sect. 4.2.3).
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the NDVI in case of MODIS, we use 2 subsets of the fourth channel from the GOME-2
instrument (660–665 nm, 780–785 nm) with a large ground pixel size of 40 km x 40 km
for the same purpose.
In view of the sensitivity of CSC to the canopy p value (Eq. 4.9) and subsequently to the

LAI (Sect. 4.3.2), it seems reasonable that grasslands and savannas (see Fig. 4.1 for the
regional land cover distribution) reach high, partly saturated CSC levels, while evergreen
broadleaf forest regions are clearly separated through lower CSC values. In contrast
to the NDVI, the saturation effect appears to be reversed; the CSC saturates in regions
covered by less dense vegetation. This supports the CSC as valuable vegetation parameter
particularly for dense vegetation canopies such as the Amazon forests. The GOME-2
SIF composite in Fig. 4.7b also reveals a few interesting aspects. First, a spatially highly
variable structure can be observed which might either indicate an elevated noise level or
may point to a high degree of spatial heterogeneity in the SIF emission. As mentioned in
Sect. 4.2.3, we reduce the impact of the SAA on GOME-2 SIF by a restrictive filtering of
potentially corrupted retrievals, leading to a concentrated appearance of missing values in
south-eastern regions of the shown region. The large extent of the affected region on the
South American continent can be seen from the global composite in Fig. 4.6b. Although
the SAA represents a limiting factor, remaining grid cells in Fig. 4.7b reveal reasonable
SIF averages with respect to the land cover distribution. For example, sparsely vegetated
areas at Peru’s largely arid Pacific coast and the Andes mountains (south-western sector
of the map) show consistently SIF values close to zero.

4.4.2 Comparison between SIF from OCO-2 & GOME-2

This section addresses the question whether SIF from GOME-2 data is consistent with
SIF from OCO-2 data. Fig. 4.8 depicts monthly SIF averages from both instruments for
our study domain. A few properties and assumptions, which complicate a comparison,
are discussed in the following.
First, it should be noted that the spatial coverage is substantially limited since only

grid cells which contain SIF retrievals from both OCO-2 and GOME-2 measurements
are compared. The cloud filter threshold of GOME-2 SIF retrievals had to be relaxed
(maximum cloud fraction is 0.5, mean cloud fraction is 0.11) to ensure that there are
overlapping regions in all evaluated months. Köhler et al. (2015b) have shown (for a
similar area) that absolute SIF values decrease by relaxing the cloud filter threshold,
while the temporal pattern remains almost unaffected. This can also be concluded from
Fig. 4.10 in Sect. 4.4.4. Nevertheless, the number of overlapping grid cells per month is
rather low and ranges from 36-523, which corresponds to 1%-14% of total grid cells. It
might also be considered that absolute SIF values are expected to be different, which is
primarily due to different overpass times (GOME-2: ∼9:30 LST, OCO-2: ∼13:30 LST)
and evaluated wavelengths (GOME-2: 740 nm, OCO-2: 757 nm). Finally, the GOME-2
SIF data have been extended from May 2015 onwards by monthly averaged data between
August 2013 and May 2015, which is due to the lack of complete overlapping data sets
in time. This implies the assumption of a repeating cycle every year.
The most obvious difference in the time series lies in the seasonal cycle, which highlights
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Figure 4.8: Comparison of the cosine of the solar zenith angle (θ0), phase angle, SIF and
SIF/cos(θ0) from OCO-2 (blue) and GOME-2 (green). Only study domain
grid cells which contain SIF retrievals from both instruments form the basis
of the shown monthly averages. Monthly long-term averages of GOME-2 are
displayed in darkgreen and have been computed due to the lack of complete
overlapping data sets in time. Shaded areas indicate the spatial standard
deviation.
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the instantaneous nature of the SIF signal, i.e., the annual maximum of SIF retrieved
from OCO-2 occurs in February, while the maximum SIF obtained from GOME-2 data is
observed in October. Both annual peak values coincide with the associated maximum of
the cosine of the solar zenith angle, which can be regarded as a proxy for instantaneous
PAR (under cloud free conditions), and the minimum of the average phase angle. We
included a time series of the cosine of the solar zenith angle for OCO-2 if the overpass time
would be the same as for GOME-2 to emphasize the changing annual cycle of illumination
with daytime. Considering the relaxed cloud filter in case of SIF from GOME-2 and the
maximum of OCO-2 SIF during the wet season, it is remarkable that the large agreement
of SIF with instantaneous PAR seems to discard a seasonality being driven by clouds.
Interestingly, a close examination of the GOME-2 time series shows that SIF roughly

follows the course of illumination with two exceptions: (i) the slight increase in February
2015 followed by a drop in March 2015 and (ii) the increase during the June to August
time period. The latter feature coincides with the period of less intense precipitation
(dry season), which ranges typically from June to October. This feature might there-
fore indicate an increase in photosynthetic activity during the dry season, however, the
September increase could again be explained by illumination. On the contrary, the OCO-
2 SIF time series seems to be out of the illumination phase only in October and November
2014/2015 where SIF values slightly increase, while instantaneous PAR declines (proxied
by the cosine of the solar zenith angle), resulting in a side peak in November.
In order to remove the influence of the instantaneous illumination angle, it might be

appropriate to normalize the retrieved SIF values by a correction factor, e.g., the cosine
of the solar zenith angle (Joiner et al., 2013). This approach is assumed to extract a
possible underlying seasonality (besides the instantaneous PAR driven seasonality) but
might only be applicable in areas where the SIF level is relatively high throughout the
year. Noise in SIF would otherwise be amplified, in particular for low SIF values in
combination with inclined illumination angles. Furthermore, it should be considered
that second order characteristics such as the amount of sunlit/shaded leaves are likely to
become more pronounced.
The bottom panels of Fig. 4.8 show the normalized time series and reveal that the

SIF level is almost maintained during the time period covered, i.e., even the lowest value
in May 2015 (for GOME-2 and OCO-2) barely exceeds the spatial standard deviation
of the remaining months. A significant seasonality is not visible, but the identified
features of both time series are preserved. Note the local maximum in February 2015
which could be linked to reduced precipitation and increased PAR during that particular
month. Furthermore, the relatively low GOME-2 SIF/cos(θ0) level from March to May
corresponds to months with the most intensive precipitation, while the increase in June
is associated with the start of the dry season. This provides evidence for a response of
SIF to changing pigment concentrations (green-up). On the contrary, the overall less
characteristic seasonality in OCO-2 SIF is apparently not affected by the amount of
precipitation. In addition, there is an opposing trend between GOME-2 and OCO-2
SIF during October and November when the difference in illumination and observation
geometry is minimized. In view of the above, it might be concluded that the sensitivity
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of SIF to environmental conditions varies with the time of day.
Overall, OCO-2 and GOME-2 SIF show consistent seasonal cycles driven by instan-

taneous PAR, clearly demonstrating the need to consider the time of measurement in
addition to the observation geometry.

4.4.3 Directional Effects

The necessity to address the sun-surface-sensor geometry arises from anisotropic re-
flectance characteristics of natural surfaces, also known as directional effects. It has
already been proven that a significant impact on reflectance data, which consequently
translates into VIs, complicates the interpretation of satellite remote sensing products,
particularly in the Amazon rainforest (Maeda and Galvão, 2015; Hilker et al., 2015).
Simulations (van der Tol et al., 2009b) and measurements (Liu et al., 2016) at the TOC
level reveal that SIF is also subject to the hot spot effect. Guanter et al. (2012) have
shown that even satellite-based SIF measurements from GOSAT data are strongly af-
fected by directional effects. Hence it is reasonable to examine the sensitivity of GOME-2
SIF to view-illumination effects, which has not been considered so far.
A wide range of phase angles from GOME-2 observations within the study domain

occurs in October (see Fig. 4.9) and provides the opportunity to estimate and compare
intensities and characteristics of directional effects on all retrieved vegetation parameters
simultaneously. Although there is a lack of a controlled environment and a certain level
of change may be anticipated, we assume that the canopy remains sufficiently invariant
during one month and that the study domain is fairly homogeneous to provisionally
estimate the directional effects.
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Figure 4.9: Relative intensity of ρNIR, NDVI, CSC, SIF and normalized SIF as a function
of phase angle. Underlying absolute values are averages from GOME-2 in the
study domain for October 2014, sampled in 5◦ phase angle steps.
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Fig. 4.9 depicts relative intensities of ρNIR, NDVI, CSC, SIF and SIF/cos(θ0) as a
function of phase angle in October 2014. It has emerged that the FRESCO algorithm
preferentially detects higher effective cloud fractions when the phase angle approaches
0◦. We therefore relaxed the cloud filter threshold similar to Sect. 4.4.2 (average cloud
fraction is 0.11) in order to cover the largest possible phase angle range.
Overall, our results confirm that NIR reflectance is significantly affected by phase angle

variations (e.g., Maeda and Galvão, 2015). In particular, the NIR reflectance shape
illustrates the hot spot effect, which exhibits the most pronounced directional effect
among the tested parameters (intensity varies within 35%). A less clear directionality is
visible in the NDVI-phase angle dependency, where values tend to decrease with lower
absolute phase angles, while the substantial variation amounts up to 30%. Compared to
NIR reflectance and NDVI, SIF seems to be significantly less affected by changing phase
angles (intensity changes are well below 20%, change in terms of absolute values amounts
up to 0.4 mW m−2 sr−1 nm−1). Nevertheless, there appears to be a tendency for higher
SIF values towards 0◦ phase angle, which is somewhat similar to the hot spot effect in
NIR reflectance, indicating a similar directionality as observed in simulations (van der
Tol et al., 2009b) and GOSAT SIF data (Guanter et al., 2012). The actual magnitude of
this effect might even be larger because the solar zenith angle increases (from ∼ 31◦ to
∼ 39◦) with decreasing absolute phase angle values (not shown). Accordingly, a decline of
SIF values could be expected because of the decrease in instantaneous PAR with inclined
illumination angles. However, the opposite behavior is observed, suggesting that the hot
spot effect overcompensates the slight decrease in illumination. It should be noted that
this effect is even amplified by normalizing SIF with the cosine of the solar zenith angle,
resulting in intensity changes slightly above 20% (0.7 mW m−2 sr−1 nm−1). Seasonal
changes in average phase angles will therefore likely affect the SIF time series for the
study domain if not accounted for. This finding suggests to carefully address seasonal
changes in view-illumination geometry also in further investigations. In contrast to the
previously evaluated parameters, it is remarkable that CSC is almost unaffected by phase
angle variations as predicted by theory (Sect. 4.2.5). This characteristic combined with
the benefit of being highly independent of atmospheric effects (Sect. 4.3.1) makes CSC
initially a promising tool for the monitoring of leaf properties in dense canopies. However,
the remaining sensitivity to canopy structure as suggested by our sensitivity analysis is
a limiting factor regarding the assessment of actual leaf properties.

4.4.4 Large-scale vegetation dynamics

The persistence of recurring phase angles in GOME-2 observations (see Fig. 4.3) al-
lows us to suppress seasonal changes in sun-sensor geometry by limiting the phase angle
range. OCO-2 observations, by contrast, are subject to an inseparable seasonality in av-
erage phase angle values (not explicitly shown, but essentially consistent with the course
shown in the second panel of Fig. 4.8). For this reason, we focus on retrieved vegetation
parameters from phase angle limited (between −65◦ and −40◦) GOME-2 measurements
in this section.
Fig. 4.10 depicts long-term monthly averages from August 2013 to May 2015 of com-
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Figure 4.10: Long-term monthly averages (August 2013 – May 2015) of SIF (green), nor-
malized SIF (green), CSC (purple) and NDVI (red) retrieved from GOME-2
data together with simulation results (blue) and MODIS NDVI (MYD13C1,
2016, black). The strict (relaxed) filter indicates that underlying measure-
ments own a cloud fraction equal 0 (below 0.5) and phase angles between
−65◦ and −40◦ (except for CSC). The simulations of a realistic tropical
forest landscape are subject to following boundary conditions: simplified
GOME-2 like sun-sensor geometry, cloud free sky, monthly LAI averages for
2014. In addition, averages of PAR (based on 3-hourly data), precipitation
and LAI from supplementary data sets are depicted in black, where circles
(triangles) indicate a spatial collocation (full spatial coverage) with respect
to the spatial coverage of SIF. Spatial standard deviations are depicted by
shaded areas.
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puted vegetation parameters (SIF, SIF/cos(θ0), CSC and NDVI) and of environmental
conditions (PAR, precipitation, LAI) within our study domain (Sect. 4.2.2). The spatial
coverage of each month is also depicted in Fig. 4.10 where differences for the retrieved
vegetation parameters arise from individual filter criteria as described in the following.
The strict/relaxed filter (denoted by circles/crosses) constrains all underlying mea-

surements to own a relative cloud fraction equal 0/below 0.5. In addition, SIF (strict
filter) and NDVI retrievals are only included if the phase angle ranges between −65◦ and
−40◦. The phase angle restriction is not necessary for CSC as it can be concluded from
Fig. 4.9, however, the number of selected CSC retrievals might be reduced through the
quality filter of the underlying DASF computation (R2 > 0.9, see 4.2.5). The remaining
SIF retrievals (strict filter) result in the lowest spatial coverage which is mainly due to
the restrictive RSS threshold (see Sect. 4.2.3).
Fig. 4.10 reveals that the spatial coverage is substantially reduced during months with

intense precipitation. The supplementary data sets have therefore been collocated with
valid SIF grid cells (strict filter) to avoid a spatial mismatch, while monthly averages
for the entire study domain are nevertheless denoted by triangles. The minor differences
between the sparsest (SIF) and the full spatial coverage for the supplementary data
sets suggest that the spatial sampling is sufficiently representative for the entire study
domain. Nevertheless, it should be noted that the coverage is reduced to about 25% for
averages in March and May.
Similar to Fig. 4.8, two annual peaks can be observed in the SIF time series. The

maximum in October can be linked to the maximum in PAR, while the lower peak
around February is not explained by the shown environmental variables. It seems that
the SIF time series is a superposition of monthly averaged PAR (based on 3-hourly
data, R=0.75) and an additional seasonality. In view of the comparison between OCO-2
and GOME-2 SIF (Sect. 4.4.2), it is remarkable that the illumination conditions at the
overpass time of GOME-2 (9:30 LST) track seasonal variations of instantaneous as well
as monthly PAR. A slight discrepancy between simulated and retrieved SIF occurs in the
January to May period. At the same time, the spatial coverage is reduced to less than
50% and the spatial standard deviation of the LAI data set is increased. This may point
to a departure of simulated conditions with respect to those actually observed: A higher
true LAI, for example, could explain the difference. Large-scale leaf age effects (e.g., Wu
et al., 2016) could possibly offer an alternative explanation for the observed SIF increase
around February. The magnitude of seasonal swings in SIF amounts up to 21% (28%
for the relaxed filtering), which is close to the 25% change in green leaf area reported by
Myneni et al. (2007).
The normalization of SIF by the cosine of the solar zenith angle emphasizes the peak

around February which is also observed in OCO-2 SIF. Similarly, relatively low averages
during April and May, which can also be observed in OCO-2 SIF in Fig 4.8, become more
pronounced. The seasonal swings are decreased to 17% (18% for the relaxed filter) when
removing the influence from instantaneous PAR.
The large-scale seasonality of CSC is less variable (intensity change amounts up to

4%), revealing a peak in February and minimum in August. The CSC time series is
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Figure 4.11: Long-term monthly averages (August 2013 – May 2015) of NIR leaf albedo
(ωNIR) estimated from monthly GOME-2 CSC averages in combination with
monthly aggregated LAI values using Eq. (4.11). The spatial standard de-
viation is depicted by the shaded area.

highly anti-correlated with LAI (R=-0.87) and equally high positively correlated with
the amount of precipitation (R=0.87). Although the sensitivity to LAI and cloud con-
tamination appeared to be small, the low variability of CSC could entirely be controlled
by these effects (LAI: 3%, cloud contamination:0-3%). However, particularly the negative
correlation with LAI could indicate a green-up during the dry season.

The NDVI simulation results (with constant leaf, wood and soil properties; LAI > 4)
and the MODIS NDVI indicate that the sensitivity of NDVI to LAI is almost saturated.
At the same time results from our sensitivity analysis (Sect. 4.3.1) and previous inves-
tigations (e.g., Kobayashi and Dye, 2005; Hilker et al., 2015) demonstrate the strong
sensitivity to atmospheric conditions. It seems therefore likely that the GOME-2 NDVI
time series is dominated by undetected sub-pixel clouds, which in turn may point to
an insufficient cloud filtering.

We have used monthly aggregated LAI values (per grid cell) to estimate the canopy
p value (Eq.4.10) and subsequently the NIR leaf albedo (Eq. 4.11). The resulting large-
scale seasonality is depicted in Fig. 4.11, showing only a fractional variability in monthly
ωNIR averages. It should be considered that changes are in the same order of magni-
tude as our simulation results with a constant leaf albedo (0.5%). At the same time,
the spatial standard deviation is more pronounced which could indicate a high degree
of inhomogeneity. However, our analysis reaches its limits in this case: The residual
sensitivity of CSC to canopy structure is removed by LAI estimates with an accuracy
of 0.5–0.8 units at a maximum change of one unit. This attempt might therefore be
considered as non-conclusive.
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4.5 Summary

We have examined two new vegetation parameters, namely SIF and CSC, with respect
to their prospects and drawbacks for the monitoring of vegetation dynamics and produc-
tivity in the central Amazon Basin. For this purpose, we have used data derived from
currently operating satellite sensors as well as simulated data from the MOMO and the
FLiES radiative transfer models.
The comparison between OCO-2 and GOME-2 SIF emphasizes the instantaneous na-

ture of SIF measurements, i.e., the annual cycle is closely related to illumination condi-
tions at the overpass time (instantaneous PAR). To this end, OCO-2 and GOME-2 SIF
show consistent seasonal cycles. However, we have illustrated that the seasonality of daily
averaged illumination is in general not represented by the seasonality of instantaneous
illumination. The GOME-2 overpass time around 9:30 LST appears to be an exception,
its seasonality is indeed representative for variations in PAR (based on 3-hourly data)
on the monthly time scale. A drawback of using SIF in the Amazon region arises from
the South Atlantic Anomaly: Increased noise requires a strict filtering and leads to a
considerably reduced number of reliable SIF retrievals. Nevertheless, large-scale aver-
ages of GOME-2 SIF are largely consistent with our simulations and reveal two distinct
contributions to the seasonality of photosynthetic activity. First, the dominant season-
ality is associated with variations in PAR with a peak in September/October. Thus, the
repeatedly reported dry-season green-up (e.g., Huete et al., 2006; Samanta et al., 2012;
Bi et al., 2015) is not rejected by our analysis. Second, a peak around February indicates
an increase in photosynthetic activity during parts of the wet season and, consequently,
similar wet and dry season SIF averages are observed. This is in agreement with the
reported maintained photosynthetic activity if water availability is sufficient (Lee et al.,
2013; Guan et al., 2015). Our analysis of phase angle effects provides evidence for a
significant impact of the hot spot effect on GOME-2 SIF data.
Contrastingly, CSC appears to be highly independent of sun-sensor geometry as well

as atmospheric effects. A major benefit of CSC for the monitoring of dense vegetation
lies in the reversed saturation compared to NDVI. However, the slight response to LAI
variations limits the informative value regarding the assessment of actual leaf properties.
We have found an overall low variability of CSC from GOME-2 data within the central
Amazon Basin, showing a consistent seasonality with respect to variations in LAI (’green-
up’). Nevertheless, it should be noted that the seasonality of CSC could also be explained
by cloud contamination. We have further tested if seasonal changes in NIR leaf albedo
can be extracted from CSC by estimating the canopy p value through supplementary
LAI data. Although our simulations suggested that this should in principle be possible,
uncertainties in LAI weaken the applicability to real satellite data. The resulting minor
large-scale variations in NIR leaf albedo might therefore be classified as non-conclusive.
The frequent cloud cover in tropical rainforests in combination with the relatively large

pixel size of GOME-2 complicates the analysis because undetected sub-pixel clouds and
areas of less dense vegetation are likely to occur. Indeed, the comparison between GOME-
2 NDVI and simulated/MODIS NDVI suggests that cloud contamination represents the
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most limiting factor of our study, although both SIF and CSC are significantly less
affected by fractional cloud-cover than traditional VIs. However, further studies are
needed to fully exploit the potential of space-based SIF and CSC observations in the
Amazon region. Even though OCO-2 already provides a fine spatial sampling in case of
SIF, it is nevertheless crucial that simultaneous and spatially continuous retrievals of both
SIF and CSC will also be possible for the next generation of satellite instruments with a
similar spectral resolution/coverage as GOME-2, such as the TROPOspheric Monitoring
Instrument (TROPOMI; 7 km x 7 km, Veefkind et al., 2012) and the FLuorescence
EXplorer (FLEX, 0.3 km x 0.3 km; Rascher et al., 2008).
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Chapter 5
Conclusions and Outlook

The objectives of this thesis are embedded in the overarching goal of the GlobFluo
project of the Deutsche Forschungsgemeinschaft (GU 1276/1-1), which is to assess global
terrestrial photosynthesis through the monitoring of SIF from space. More specifically,
the presented thesis aims to contribute to the development of state-of-the-art SIF retrieval
techniques and to establish a basis for interpreting satellite-based SIF data.
In this chapter, I will first summarize the main outcomes of this thesis with respect

to the specific objectives, research questions, and main objectives outlined in Sect. 1.3.
A brief review of published research articles, taking advantage of SIF data sets produced
within the framework of this thesis, is given in Sect. 5.2. The outlook in Sect. 5.3
comprises future prospects and research recommendations.

5.1 Conclusions

The purpose of this section is to present key results according to the specific research
objectives. Subsequently, the overall research questions and main objectives will be
addressed.

Specific objectives

Chapter 2 describes a physically-based SIF retrieval method which has been applied
to GOSAT-FTS data acquired from June 2009–August 2011.

• Simplifying some of the assumptions in the state-of-the-art retrieval approach from
Frankenberg et al. (2011a) without a loss in retrieval accuracy.

Instead of using two micro-fitting windows, only one fitting window (755–759 nm) has
been taken into account in the GARLiC algorithm. Furthermore, spectral stretch effects
within this narrow fitting window have been neglected. Moreover, the spectral shift
between solar reference and measurement spectrum has been estimated prior to solving
the forward model. Consequently, the forward model is linear and easy to invert, resulting
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in a more efficient algorithm in terms of computation time. A comparison to results from
more stringent retrieval approaches (see next point) suggests that the retrieval accuracy
is not affected by the simplifications made.

• Comparing results from existing retrieval approaches (Frankenberg et al., 2011b;
Guanter et al., 2012) with results from the presented retrieval approach (GARLiC).

A comparison of global annual averages and biome-specific 15-day means revealed an over-
all good correlation in terms of absolute values as well as temporal trajectories. It has
essentially been found that almost all GARLiC values lie in between those from Franken-
berg et al. (2011b) and Guanter et al. (2012). This implies that the GARLiC algorithm
works well, simultaneously reinforcing confidence on the other data sets derived from
GOSAT.

• Evaluating the impact of cloud contamination on SIF time series qualitatively by
empirical radiance thresholds.

Based on a strict, normal, and relaxed cloud filter threshold, it has been shown that
strongly different levels of cloud contamination do not translate into similar changes in
retrieved SIF. This means, cloud contamination barely affects SIF retrievals using Fraun-
hofer lines in spectral regions devoid of significant atmospheric absorption, confirming
the finding from Frankenberg et al. (2012) which was based on simulated data.

Chapter 3 proposes a statistically-based method to retrieve SIF from medium spectral
resolution spaceborne spectrometers.

• Providing a solution for the arbitrary selection of free model parameters in the
retrieval approaches from Guanter et al. (2013) and Joiner et al. (2013).

The presented approach combines a third-order polynomial in wavelength with atmo-
spheric PCs to model low and high frequency components of the TOA radiance spectrum
in a linear way. Consequently, the linear forward model allows to apply a backward elim-
ination algorithm, selecting the required model parameters automatically with respect
to the goodness of fit balanced by model complexity.

• Evaluating the retrieval performance through a simulation-based retrieval test.

The retrieval algorithm was extensively tested to (i) assess the retrieval precision and
accuracy, (ii) determine the optimum number of provided PCs, (iii) evaluate the influ-
ence of the backward elimination algorithm, and (iv) optimize the fitting window. In
essence, it has been found that (i) input and retrieved SIF values agree very well, (ii) the
described retrieval approach suggests using significantly less PCs as opposed to Joiner
et al. (2013, 2014), (iii) noise is reduced by selecting only appropriate model parame-
ters (overfitting is avoided), positively affecting retrieval accuracy and precision, and (iv)
a fitting window ranging from 720–758 nm provides the most accurate results (regarding
the tested scenarios).
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• Applying the same retrieval to data acquired from different sensors (GOME-2 and
SCIAMACHY).

In principle, the same retrieval method can be employed to retrieve SIF from both
GOME-2 and SCIAMACHY data. However, it has emerged that the retrieval algo-
rithm selects on average twice as many atmospheric PCs when using SCIAMACHY data
(6 and 14 PCs, respectively). It is therefore crucial that the backward elimination al-
gorithm ensures stable results, regardless how many PCs are initially provided to the
retrieval. The entire time series of SCIAMACHY L1B data from August 2002–March
2012 has been processed, whereas the retrieved GOME-2 SIF covers the period from
January 2007–April 2015 (until December 2011 at the time of publishing the research
article). It might further be noted that the SCIAMACHY fluorescence retrievals in the
740 nm spectral region are the first ones in the literature.

• Comparing SIF data from different sensors and retrieval approaches with respect
to their consistency (GOSAT, GOME-2, and SCIAMACHY).

First, a very good agreement has been found between SCIAMACHY and GOME-2 SIF
derived with the method described. Absolute SIF values obtained from SCIAMACHY are
slightly lower than those from GOME-2, which may be due to a higher cloud contamina-
tion of the larger SCIAMACHY footprints. Second, a comparison with NASA GOME-2
SIF data provided by Joiner et al. (2014) reveals a substantial difference in absolute val-
ues between the retrieval approaches, while spatial patterns compare well. Specifically,
SIF values from the presented retrieval are about twice as large as those reported by
Joiner et al. (2014). In this context, it should be noted that a significant decrease in
absolute SIF values in successive versions of the NASA SIF data sets (Joiner et al., 2013,
2014) occurred. Furthermore, a comparison of the NASA GOME-2 SIF (Joiner et al.,
2014) and the produced GOME-2/SCIAMACHY SIF data with the GOSAT SIF data
set from chapter 2 shows an enhanced correlation for SIF data derived with the presented
approach. In summary, SIF data sets are highly consistent concerning spatiotemporal
patterns, while uncertainties reside in absolute values.

• Identifying possible limitations and shortcomings of the retrieval results.

Besides the uncertainty about absolute SIF values, an increased retrieval noise in large
parts of the South American continent due to the SAA is one of the most noteworthy
issues to consider. Moreover, a slight time- and latitude-dependent bias has been ob-
served in the training data set (where SIF values should be zero) when using GOME-2
data. It has been hypothesized that this bias is related to an instrumental issue (e.g.,
a temperature-dependent dark current change).

• Evaluating the impact of cloud cover on SIF time series by using an additional data
set of relative cloud fractions.

Based upon a time series of GOME-2 SIF retrievals in the Amazon Basin, the retrieval
appears to be only moderately affected by cloud contamination. SIF values successively
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decrease by relaxing the cloud filter threshold, but the seasonality is maintained. This
is in agreement with the finding of Frankenberg et al. (2012), Guanter et al. (2015), and
Köhler et al. (2015a) (here chapter 2).

Chapter 4 assesses the potential of SIF and CSC for tracking vegetation dynamics in
Amazon forests. It might be noted that the first global data set of CSC (derived along
with DASF) is presented within this chapter. Time series of GOME-2 SIF and CSC
are examined for the August 2013–April 2015 period to take advantage of the reduced
ground pixel size (see Sect. 1.2.2).

• Analyzing the sensitivity of SIF and CSC to atmospheric, structural and view-
illumination (directional) effects under the conditions of Amazon forests with re-
spect to the well established NDVI.

Simulations consistent with those used by Guanter et al. (2015) and GOME-2 SIF time
series reveal that SIF is only moderately affected by cloud contamination, thus confirming
results presented by Frankenberg et al. (2012), Köhler et al. (2015a) (here chapter 2),
and Köhler et al. (2015b) (here chapter 3). A close examination of the GOME-2 SIF
time series might indicate a response of SIF to changing pigment concentrations during
periods with less intense precipitation (June–October ’green-up’). Moreover, the hot
spot effect is found to significantly impact GOME-2 SIF data. CSC appears to be
highly independent of atmospheric effects. The reason lies in similar sensitivities of
NIR reflectance (ρNIR) and DASF to cloud contamination which tend to compensate by
rationing (ρNIR/DASF=CSC). This principle also leads to a compensation of the hot
spot effect, making CSC less prone to interference from seasonal changes in sun-sensor
geometry. Furthermore, CSC exhibits a low sensitivity to structural effects, i.e., changes
in leaf area translate into changes in CSC with about one-tenth of their intensity. In
summary, both SIF and CSC are substantially less affected by cloud contamination and
sun-sensor geometry than NDVI, which is essentially saturated under the conditions of
the Amazon forests.

• Comparing SIF data from different sensors (GOME-2, OCO-2) with particular em-
phasis on differences due to their overpass times (morning and noon, respectively).

SIF time series derived with data from GOME-2 (Köhler et al., 2015b, here chapter 3)
and OCO-2 (Frankenberg et al., 2014) show consistent seasonal cycles with respect to
the response of SIF to instantaneous PAR. However, temporal trajectories of instanta-
neous PAR in the morning and at midday are different, i.e., annual peak values occur in
September/October in case of GOME-2 (overpass time in the morning) and in February
in case of OCO-2 (overpass time at noon). Even though second order characteristics such
as the amount of sunlit/shaded leaves are likely to become more pronounced when SIF
is normalized by the cosine of the solar zenith angle (as proxy for instantaneous PAR),
a peak in February occurs in normalized GOME-2 and OCO-2 SIF time series.

• Examining prospects of CSC for the monitoring of dense vegetation in general and
of leaf optical properties in particular.
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Three properties emphasize the beneficial value of CSC for the monitoring of dense
vegetation: (i) A low sensitivity to cloud contamination, (ii) insensitivity to sun-sensor
geometry (hot spot effect), and (iii) a reversed saturation effect with respect to the NDVI.
The residual sensitivity to canopy structure effects (changes in leaf area) is a limiting
factor regarding the assessment of leaf optical properties. Therefore, a strategy to es-
timate the NIR leaf albedo from CSC has been proposed and tested. Although results
were encouraging for simulated data, the application to real satellite data is weakened
due to uncertainties in LAI estimates.

• Investigating large-scale vegetation dynamics represented by SIF and CSC in Ama-
zon forests with respect to environmental conditions.

Large seasonal swings of GOME-2 SIF (changes amount up to 21%), with peak values
in October and February, indicate two distinct contributions to the seasonality of pho-
tosynthetic activity in Amazon forests. Specifically, the dominant peak in October can
be linked to the maximum in PAR, while the lower peak around February is not clearly
attributable to environmental drivers (such as PAR, precipitation, and LAI). Therefore,
leaf-age effects might explain this peak. CSC may capture changes in leaf optical proper-
ties and thus leaf-age effects, assuming that an increased absorption in NIR wavelength
occurs in matured leaves (according to Roberts et al., 1998). However, the derived season-
ality of CSC is only slightly variable (changes amount up to 4%) and might be attributed
to variations in leaf area and/or the amount of precipitation. That means the residual
sensitivity of CSC to canopy structure (see previous point) might control the observed
seasonality. Consequently, the ’green-up’ hypothesis would be supported, but it has to
be mentioned that cloud contamination could also explain the observed seasonality. In
particular, the comparison between simulated/MODIS NDVI and GOME-2 NDVI points
to an undetected cloud contamination of GOME-2 measurements, representing a limiting
factor for the analysis in chapter 4.

Research questions

• How can SIF retrieval methods be streamlined in order to improve their efficiency
and robustness?

Chapter 2 shows that simplifying some of the assumptions of an existing physically-based
retrieval approach is not accompanied by a loss in retrieval accuracy. Therefore, the
efficiency in terms of computation time could be improved. A solution for the arbitrary
selection of free model parameters in statistically-based retrieval methods is provided in
chapter 3. Consequently, a simulation-based retrieval test revealed an enhanced precision,
reduced retrieval noise, and an minimized risk of overfitting. These aspects are expected
to be of particular relevance when using real satellite measurements. Thus, the proposed
method improves the robustness of statistically-based SIF retrievals.

• How do results from different retrieval approaches compare with each other and
how consistent are different data sets?
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The different satellite data sets provide a valuable tool for consistency checks, even
though a global validation of spaceborne SIF observations with a ground truth still re-
mains to be done. In general, all SIF data sets (GOSAT, GOME-2, SCIAMACHY, and
OCO-2) compare well in terms of their spatiotemporal patterns. However, discrepancies
arise when considering absolute values. In this context, it should be emphasized that
presently, a spatiotemporal consistency is of much more interest since absolute values
are not applied in current research. When comparing seasonal cycles, special attention
should be paid to the satellite overpass time. This is due to the response of SIF to instan-
taneous PAR. For instance, the comparison between GOME-2 and OCO-2 in chapter 4
clearly demonstrates that the seasonality of SIF in Amazon forests is primarily driven by
instantaneous illumination conditions, which in turn differ with the considered daytime.

• Which are the main confounding factors and pitfalls when analyzing SIF data?

First and foremost, one needs to bear in mind that canopy structure inevitably impacts
SIF measurements. For instance, a complex vegetation structure (e.g., rainforests) leads
to an enhanced re-absorption of SIF within the canopy, decreasing the detectable amount
of SIF. Structural composition effects can be taken into account through a partitioning of
retrieval results with respect to the land cover classification and LAI as done in chapter 4.
Second, the instantaneous nature of the SIF signal (response to PAR, see previous re-
search question) needs to be considered. This includes to account for possible variations
in the satellite overpass time due to orbit drifts/maneuvers when analyzing trends. One
possibility to remove the influence of instantaneous PAR consists of normalizing SIF by
a correction factor such as the cosine of the solar zenith angle. However, it should be noted
that retrieval noise will be amplified in case of low SIF values and inclined illumination
angles. Simultaneously, second order characteristics (e.g., the amount of sunlit/shaded
leaves and the leaf angle distribution) become increasingly important. Third, directional
effects can alter the observed seasonality in SIF if not accounted for. Therefore, the
sun-sensor geometry should be carefully addressed; for instance, by evaluating the sea-
sonality with respect to the observational phase angle. Furthermore, a significant issue
related to the retrieval of SIF from space is an increased noise in large parts of the South
American continent due to the SAA, addressed in chapter 3. Hence, care should be
taken when evaluating SIF retrievals from affected areas. This issue can be addressed
by employing a restrictive residual check to remove potentially corrupted SIF retrievals
(as in chapter 4). Lastly, it is worth noting that results presented by Frankenberg et al.
(2012), Guanter et al. (2015), and chapters 2–4 suggest that atmospheric effects due to
cloud contamination appear to be, unlike traditional reflectance-based products, of minor
importance for the retrieval of SIF from spaceborne instruments.

• Can the concept of canopy spectral invariants (underlying theory to compute DASF
and consequently CSC) be utilized to add information regarding structural effects
on SIF data?

Given the intrinsic influence of canopy structure, combining SIF with appropriate vege-
tation parameters, ideally retrievable from the same sensor and explicitly accounting for
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structural effects, may be one key aspect to relate SIF to canopy photosynthesis without
having to rely on biome dependent empirical relationships. Here, the concept of canopy
spectral invariants, involving DASF and CSC, has been identified as a promising can-
didate for this purpose when observing densely vegetated areas by means of data from
medium spectral resolution spectrometers such as GOME-2. Yet, the experience with
satellite-based DASF/CSC data is very limited. This applies also for SIF time series con-
cerning the impact of satellite overpass times and directional effects. Therefore, chapter 4
initially assessed prospects and drawbacks of SIF and DASF/CSC for the monitoring of
dense vegetation in Amazon forests, explicitly addressing relevant influencing factors.
However, a definitive answer to the research question is difficult, mostly due to the fre-
quent cloud cover in tropical regions in combination with the relatively large footprint
size of GOME-2 soundings. Hence, it must be stated that more research is needed to
fully exploit the potential of SIF and DASF/CSC with respect to the research question
posed.

Main objectives

• Developing new methods for the global retrieval of SIF.

This first core objective has been pursued in Köhler et al. (2015a) (here chapter 2) and
Köhler et al. (2015b) (here chapter 3). In particular, a physically- and a statistically-
based approach to retrieve SIF from spaceborne spectrometers were proposed. As a key
result, three new SIF data sets have been produced:

1. GOSAT SIF (June 2009–August 2011),

2. SCIAMACHY SIF (August 2002–March 2012),

3. GOME-2 SIF (January 2007–April 2015).

Fig. 5.1 depicts monthly composites of the different SIF retrievals for July 2010, showing
the overall good correspondence of spatial patterns.

• Exemplarily analyzing SIF data with respect to relevant influencing factors in order
to establish a basis for interpreting satellite-based SIF data.

Based upon biome specific SIF time series and intercomparisons between the different SIF
data sets, this second core objective is essentially addressed throughout the main part
of this thesis (chapters 2–4). The results provide evidence for the robustness of satellite-
based SIF retrievals against cloud contamination. On the other hand, two aspects have
been identified to be of particular relevance which are often disregarded when evaluating
the seasonality of photosynthetic activity proxied by SIF:

1. The need to carefully address sun-surface-sensor geometry due to anisotropic SIF
emission characteristics.

2. The importance to consider the time of measurement due to the sensitivity of SIF
to instantaneous PAR (instantaneous nature of the SIF signal).
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Figure 5.1: Monthly composites of SIF derived from GOSAT (2◦ x 2◦ grid, chapter 2),
SCIAMACHY (1.5◦ x 1.5◦ grid, chapter 3), and GOME-2 (0.5◦ x 0.5◦ grid,
chapter 3) for July 2010.

5.2 Overview on studies derived from data sets produced in
this thesis

The global SIF data sets derived from GOSAT, SCIAMACHY, and GOME-2 in this
thesis were made freely available to the user community and are frequently requested
by research groups worldwide. Thus, several studies and follow-up publications take
advantage of those data sets. Accordingly, a brief review of the published scientific
literature is given below.
State-of-the-art XCO2 (column-averaged dry-air mole fraction of atmospheric carbon

dioxide) retrievals typically rely on multiple spectral bands, including the O2 A-band, to
account for atmospheric effects due to scattering in optically thin cirrus clouds and/or
aerosol layers as well as surface pressure. Neglecting SIF may lead to biases in retrieved
atmospheric parameters when the O2 A-band is employed, potentially propagating into
XCO2 estimates (Frankenberg et al., 2012). Consequently, SIF may systematically in-
terfere with XCO2 retrievals using the O2 A-band (Frankenberg et al., 2012). Reuter
et al. (2015) explicitly account for SIF in their SCIAMACHY XCO2 retrieval approach.
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Specifically, the SCIAMACHY SIF product has been implemented in the post-processing
of the Bremen Optimal Estimation DOAS1 (BESD) algorithm for the retrieval of XCO2

(version v02.01.01, Reuter et al., 2015).
Detmers et al. (2015) quantified the overall increase in carbon uptake in Australia

during the La Niña phase from the end of 2010 to early 2012 by means of GOSAT XCO2

retrievals. The variation of XCO2 shows a consistent anti-correlation with GOME-2 SIF
and soil moisture, justifying a high level of confidence in the results obtained.
Walther et al. (2015) analyzed the start and end of the photosynthetically active season

of boreal forests by means of the GOME-2 SIF product. It was essentially found that
the active period indicated by SIF is up to six weeks longer than indicated by the EVI
(Enhanced Vegetation Index). Their finding supports model results and studies which
evaluated in-situ observations.

5.3 Outlook

Given the short period of time since first satellite-based SIF retrievals have been devel-
oped, the wealth of outcomes is quite remarkable. However, several limitations need to
be addressed, paving the way for future research. One intrinsic limitation of current SIF
data sets arises from the rather coarse spatial resolution of global maps (0.5◦-2◦) which
can either be attributed to a large footprint size in case of GOME-2 and SCIAMACHY
or to spatially discrete measurements when using GOSAT and OCO-2 SIF products. It
is therefore crucial that future satellites missions will contribute to overcome this issue.
First, the upcoming TROPOspheric Monitoring Instrument (TROPOMI, Veefkind et al.,
2012), payload of the Sentinel-5 Precursor mission, will provide spatially continuous spec-
troscopic measurements in the 675–775 nm spectral window with a much finer spatial
resolution (7 km x 7 km) compared to GOME-2 (40 km x 40 km) and SCIAMACHY
(240 km x 30 km). TROPOMI will enable a substantial improvement in SIF monitoring
and can reduce uncertainties in mapping SIF by more than a factor of two with respect to
GOME-2 (Guanter et al., 2015). Moreover, the FLuorescence EXplorer (FLEX, Rascher
et al., 2008) is the first space mission specifically designed to measure the broadband
SIF signal. FLEX was recently selected as ESA’s Earth Explorer 8 mission, planned to
be launched in 2022, and will carry the Fluorescence Imaging Spectrometer (FLORIS).
FLORIS will measure spatially continuous with a small footprint of 300 m, outperform-
ing the spatial resolution of GOSAT (10.5 km diameter) and OCO-2 (1.3 km x 2.25 km).
However, it should be remarked that the narrow swath width of 150 km increases the
revisit time up to 27 days. In view of the upcoming satellite instruments, it can be
anticipated that the availability and quality of global SIF data will continue to increase
over the next few years. However, it is widely acknowledged that further research is
needed to fully exploit the potential of space-based SIF observations as an indicator of
photosynthetic activity (e.g., Grace et al., 2007; Baker, 2008; Porcar-Castell et al., 2014).
In this context, the following aspects might be particularly relevant:

1 differential optical absorption spectroscopy (DOAS)
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1. Future retrieval approaches should capture the red and NIR peak values of the SIF
emission spectrum.

2. Illumination and directional effects (e.g., hot spot effect) must be carefully consid-
ered in further investigations (e.g., Damm et al., 2015, chapter 4).

3. Further simulation-based studies are needed to predict the influence of biochem-
istry, leaf and canopy structure on SIF (scaling from leaf to canopy level).

4. Ground-based validation is needed for a proper characterization of uncertainties and
to obtain certainty about absolute SIF values obtained by satellite instruments.

5. Up-scaling approaches are required to fill the gap between canopy and ecosystem
levels (Schaepman et al., 2008; Porcar-Castell et al., 2014).

6. An increased temporal resolution would be necessary to assess diurnal cycles of
SIF.

While this thesis focuses on the retrieval of the NIR fluorescence peak, recent studies
demonstrated the feasibility to also retrieve red fluorescence from space using GOME-
2 and SCIAMACHY data (Wolanin et al., 2015; Joiner et al., 2016). A simultaneous
retrieval of both red and NIR SIF or a joint data set is therefore the next step to-
wards a better understanding of the link between SIF and terrestrial photosynthesis
(point 1). Simultaneously, it is important to increase the efforts in incorporating the
canopy structure and view-illumination effects (points 2 and 3). The comparison of
ground-based SIF with satellite-based SIF measurements (point 4) will remain compli-
cated due to the discrepancy between the observed scales. However, future validation
campaigns will benefit from approved strategies of the Committee on Earth Observing
Satellites’ Working Group on Calibration and Validation (CEOS WGCV, e.g., Morisette
et al., 2006) and the existing infrastructure of established validation networks such as
FLUXNET (Baldocchi et al., 2001). Besides the ground-based validation, it will also be
worth to compare different satellite data sets as it is done by Joiner et al. (2013), Köhler
et al. (2015a,b) (here chapters 2 and 3) as well as chapter 4. In this context, an inter-
sensor comparison between TROPOMI and OCO-2 is particularly promising. A possible
pathway to close the gap between canopy and ecosystem levels (point 5) would be to
up-scale SIF derived from airborne spectrometers to OCO-2 SIF and subsequently to
TROPOMI SIF. Near-real time observations of global photosynthetic activity (point 6)
would require a constellation of geostationary satellites capable of retrieving SIF. Un-
fortunately, there are currently no plans for such satellite missions, although a suitable
instrumentation was already developed more than one decade ago, namely the Geosta-
tionary Imaging Fourier Transform Spectrometer (GIFTS, Smith et al., 2002). It may
nevertheless be remarked that the Sentinel-4/UVN (Ultraviolet Visible Near-infrared;
Bazalgette Courrèges-Lacoste et al., 2011) instrument on board the geostationary MTG-
S (Meteosat Third Generation-Sounder) will enable a continuous monitoring of SIF in
a spectral region close to the NIR fluorescence peak (750-775 nm) above Europe and
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northern Africa. Summarising the above, it can be stated that there is a lot of research
to be done with present and near-future resources.
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