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Introduction

The theory of Markov decision processes (MDP) is a well established tool for an-

alyzing situations in which the dynamics of a stochastic process can be influenced

by a decision maker. It provides a framework for solving optimization problems

that arise in a wide range of fields like operations research, epidemic control or

management science [74]. The research of Markov decision processes goes back to

the 1950s. Of central relevance was the introduction of the dynamic programming

concept by Bellman [5,6]. It allows to break down a complex problem into smaller

subproblems and is expressed by the so called Bellman equation which states the

optimization problem in a recursive form.

A Markov decision process is a Markov process which is subject to the control

of a decision maker. Given the state of the process at some point in time, the

decision maker has to choose a suitable action which regulates the future stochastic

dynamics of the process. Depending on the process evolution, the control can be

adapted anytime. The controlled process produces costs according to a given cost

function, and the goal is to find a control policy which minimizes a given cost

criterion. The precise description and solution of a Markov control problem depend

on the characteristics of the underlying state space and the time index which both

can be discrete or continuous. Another basic component of a Markov control model

is the observability of the process: in the original Markov control theory the process

is assumed to be observable at all times, while in the theory of partially observable

Markov decision processes and related models the information about the process is

incomplete. In this thesis we will focus on continuous-time Markov decision

processes on discrete state spaces and develop a new model for the situation

of limited state information.

In the general theory of Markov decision processes, the time scale of the con-

trol procedure coincides with the one of the process itself, i.e. a continuous-time

process allows for a continuous interaction by the controller. This is based on the

assumption that the information about the process (even if it is incomplete) is pro-

vided permanently over time, and that, given a new information, the action can

immediately be adapted. However, in many applications (like medical therapies,

asset management, machine maintenance problems etc., see e.g. [35, 36, 51]) such a

permanent information and control is not feasible. Instead, it is an obvious idea

that the state of a continuous-time process might only be determinable at single
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points in time - just as the health status of a patient has to be determined by a

medical test, or the condition of a machine is identified by an inspection. Moreover,

such a test or inspection is in general not free of charge, but produces a particular

instantaneous cost, which is independent of the process costs measured by the given

cost function. The Markov control model presented in this thesis will contain an

explicit parameter

kinfo > 0

of information costs which arise each time the state of the process is determined and

the action is adapted. While the controlled process itself is continuous in time, its

observation and the choice of actions take place at discrete but flexible points in

time. To determine these observation times will be part of the control procedure.

That is, in the new setting a control policy will assign to each state not only an action

but also a date for the next state observation. We will reformulate the common

criteria of discounted costs and average costs such that they include the cost of

information which arise during the control procedure, and derive the corresponding

dynamic programming equations which will be the basis for an efficient numerical

calculation of the related optimal control policies.

A detailed analysis of the new Markov control problem with information costs will

be followed by an application in the medical context where we determine optimal

therapeutic strategies for the treatment of the human immunodeficiency virus (HIV)

in resource-rich and resource-poor settings.

The problem of a Markov decision process which is not completely observable is

well-known in the literature. The most general approach to handle such problems

of limited information is given by the theory of partially observable Markov deci-

sion processes (POMDP), see [10, 33, 46, 49, 63] among others. Here, the process is

usually assumed to be discrete in time, and the degree of information is determined

by the chosen action. Based on indirect observations, the process is turned into a

completely observable process on the set of probability distributions. On the one

hand, this allows a very general analysis and application within the setting of dis-

crete time; on the other hand, due to the high dimensionality of the new state space

of distributions, the resulting optimization problem is very complex to solve.

More special settings of Markov control with incomplete state information, both for

discrete and for continuous time, are given in the context of machine maintenance.

These approaches all have in common that they assume the controlled dynamics to

exhibit a special structure: interaction consists of sending the process to a special

state (e.g. repairing a machine); the state space exhibits an ordered structure; the

dynamics are in some sense monotone; or other assumptions [1, 34, 50, 51, 54, 72].

The model presented in this thesis will be suitable for a general discrete state space

and arbitrary continuous dynamics, without fixing any interpretation or system-

atic. In contrast to the theory of POMDPs, the information about the state of the

process will be independent of the applied action. We will assume that the state de-

termination always delivers perfect information about the state of the process at the

observation times and that the action can only be adapted after such a state obser-
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vation (and not “blindly“ in between). This permits a compact and comprehensible

formulation of the control problem, as well as an efficient calculation of its solution

by standard numerical methods. At the same time, it delivers a straightforward

interpretation which is suitable for many real-world applications.

Outline of the thesis

In Chapter 1 we will give an introduction to the theory of Markov decision processes

and its modifications, presenting the standard of knowledge on the basis of the ex-

isting Markov control literature. We begin in Section 1.1 with completely observable

Markov decision processes in continuous time and analyze the two cost criteria of

discounted costs and average costs over an infinite time horizon. For both criteria,

the main result is given by the Bellman equation which does not only characterize

the function of optimal costs, but also delivers the basis for a numerical calculation

of the optimal policy. A detailed description of the existing optimization algorithms

will be given in Section 1.2. Then, in Section 1.3, we will see how the situation of

incomplete state information is handled in the literature, describing both the gen-

eral theory of partially observable Markov decision processes, as well as a range of

special settings. This first chapter is meant to provide a scientific background for the

analysis that will follow in Chapter 2. Moreover, some of the presented results can

directly be transferred to the new setting, which will simplify the further analysis.

Given this overview, we will develop the novel Markov control model containing

the additional parameter kinfo > 0 of information costs (Chapter 2). In Section 2.1

we will explain the corresponding control procedure in detail and define the two

criteria of discounted costs and average costs within the new setting. An extensive

analysis of the two criteria will be given in the subsequent Sections 2.2 (discounted

costs) and 2.3 (average costs). In each case, the first step is to reformulate and prove

the Bellman equation, which will be done in Section 2.2.1 resp. 2.3.1. Interestingly,

the approaches will be completely different: While the discounted-cost criterion per-

mits a direct analysis, the average-cost criterion can be handled by turning the given

process into an equivalent completely observable Markov decision process which al-

lows to transfer the results presented in Section 1.1 to our new framework. For both

criteria, we will calculate a cost splitting in order to determine the contribution of

the information costs to the total costs (Section 2.2.2 resp. 2.3.2). At the same time,

this splitting allows to make an unbiased comparison with the optimal costs of the

related original Markov control problem. We will further analyze the impact of the

information cost parameter kinfo on the optimal costs and on the optimal control pol-

icy, exploring properties of monotony and continuity to some extend (Section 2.2.3

resp. 2.3.3). The underlying idea is that a reduction of the information costs kinfo
should lead to more frequent testing and a decrease in the process costs. Again,

we can link the new model to the original Markov control model by considering the

limit kinfo → 0. Another question that will be answered for both criteria concerns

the optimal observation times given a fixed kinfo (Section 2.2.4 resp. 2.3.4): How do

deviations from the optimal observation times affect the costs? This question has a



4 Introduction

practical motivation, thinking of circumstances that prevent from an exact adher-

ence of the prescribed test dates in real-world applications. We close this chapter

by comparing the two cost criteria with each other (Section 2.4).

In Chapter 3 we will apply the developed theory of Markov control with infor-

mation costs to an example in a medical context. Considering the process of drug

resistance development of the human immunodeficiency virus (HIV), we determine

optimal therapeutic strategies for resource-rich and resource-poor settings from a

national economic perspective. In this application, the cost of information kinfo
refers to the price of a drug resistance test.

The first step will be to define all parameters of the corresponding Markov control

model (Section 3.1). Given the model, we will determine the optimal control policy

for both settings and calculate the cost splitting for different values of information

costs kinfo (Section 3.2). We will use the cost splitting for a comparison with the two

extreme situations of vanishing information costs (as in the original Markov control

theory) and infinite information costs (resulting in constant control without state

observations). In Section 3.3 we will analyze the sensitivity with respect to devia-

tions from the optimal testing dates for the resource-poor setting where it may not

be possible to follow a recommended diagnostic surveillance scheme accurately due

to a limited infrastructure. Finally, Section 3.4 will deal with the life expectancy

of a patient under optimal therapy, investigating which impact the reduction of

information costs and treatment costs have in this matter.

Acknowledgements

I would like to thank all those people who supported and encouraged me during the

last years of research. First of all, I thank my advisor Christof Schütte for giving me

the opportunity to write this thesis, guiding my research and giving helpful advice.

I am happy to be a member of the biocomputing group which offers such a pleasant

and motivating working atmosphere. Especially, I thank Carsten Hartmann for

steady exchange and valuable suggestions, Marco Sarich for being a pleasant office

mate and giving helpful support in scientific and technical issues, Max von Kleist

for a great teamwork, and Natasa Djurdjevac, Antonia Mey and Ralf Banisch for

reading this thesis and giving useful comments.

Finally, I would like to thank my family for their steady mental and practical

support. The helping hand of my parents and my mother-in-law allowed me to

combine the pleasure of motherhood with an interesting and delighting employment.

I thank Lars for walking all the way together and giving me strength, and Clara for

just being there.



Chapter 1

Fundamentals of Markov

Control Theory

Markov decision processes (MDPs) provide a mathematical framework for modeling

situations in which the evolution of a process is partly random and partly control-

lable. These situations arise in many application areas such as machine mainte-

nance, population control, financial engineering, manufacturing, queuing systems

or epidemic control. Within the last century, Markov decision processes have been

studied by many authors, see e.g. [5, 24, 26, 32, 43, 48]. One of the pioneers in this

area of research was the American mathematician Richard E. Bellman (1920-1984).

His central contribution is given by the Bellman equation which rephrases an op-

timization problem in a recursive form and thereby breaks it down into smaller

subproblems [5, 6]. This is the basic step for an efficient determination of the opti-

mal solution by numerical methods.

In this chapter we will present the main ideas and results for Markov decision pro-

cesses on a countable state space based on standard Markov control literature. Our

aim is not to deliver a complete and technically general analysis, but to give an

overview which allows to put the new ideas of Chapter 2 into the right context. In

this regard, the observability of the process will be of main interest, and so we will

focus not only on the original Markov control theory (where the process is assumed

to be observable at all times), but also give an introduction to the theory of partially

observable Markov decision processes (POMDPs) and related approaches.

In Section 1.1 we will consider completely observable Markov decision processes on a

discrete state space which are continuous in time. We will present the two common

criteria of discounted costs and average costs for an infinite time horizon and for-

mulate the related optimality equations. Sometimes we will restrict the analysis to

finite state spaces in order to permit compact formulations and justifications which

are not taken from the literature but are based on our own approaches. For the

numerical implementation which will be the object in Section 1.2 such a limitation

to finite state spaces is naturally given, anyway. Here, we will present different

algorithms for the calculation of the optimal control policy for both cost criteria.

In Section 1.3, we will briefly introduce the theory of POMDPs and see how the

situation of limited information is handled in the literature.
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1.1 Original Markov Control Theory

In this section, we consider continuous-time Markov decision processes which are

at all times completely observable. The state space is assumed to be discrete, such

that, for a fixed control rule, the resulting stochastic process is a Markov jump

process. Following common practice, the first step is to identify a Markov control

model containing all relevant parameters of the control process. Based on such

a Markov control model, the term policy – as a rule for making the decisions –

can accurately be defined in a mathematical sense. We will see how the controlled

process evolves over time and formulate the two optimality criteria of discounted

costs and average costs. Both criteria will be analyzed subsequently, discovering the

structure of the cost functional for a given policy and formulating the corresponding

Bellman equation in terms of the value function of optimal costs.

In this section, we closely follow the approaches presented in [26] – a book by X. Guo

and O. Hernández-Lerma (2009) which is specifically devoted to continuous-time

Markov decision processes.

The Markov control model

A Markov control model is given by a tuple
(

S, A, {A(x) : x ∈ S}, {La : a ∈ A}, c
)

(1.1)

with the following components [26].

• The state space S: This is the set of all possible states of the considered

process. We assume S to be denumerable.

• The action space A: This is the set of actions which are available in order to

control the process. We allow A to be any topological space and denote the

corresponding Borel σ-algebra by B(A).

• The family {A(x) : x ∈ S} of available actions: For each x ∈ S, it is A(x) ⊂ A
the set of actions that are available to the controller when the process is in

state x.

• The set of generators (La)a∈A: For each action a ∈ A, the infinitesimal genera-

tor La describes the dynamics of the process given this action. More precisely,

La(x, y) ≥ 0 is the transition rate for a transition from x ∈ S to y ∈ S, y 6= x,

while La(x, x) is defined by

La(x, x) := −
∑

y 6=x

La(x, y).

We assume the transition rates to be stable in the sense of

sup
a∈A(x)

la(x) <∞ ∀x ∈ S,

where la(x) := −La(x, x).
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• The cost function c : S ×A → [0,∞): Depending on the actual state and the

chosen action this function measures the costs produced by the process per

unit of time.

We will mostly be concerned with the situation where A(x) = A for all x ∈ S,

i.e. for every state all actions are available.

Given the Markov control model (1.1), the control procedure consists of assigning

to each state x ∈ S an action a ∈ A which is applied whenever the process is in this

state. This motivates the following definition.

Definition 1.1 (Markov policy). A randomized, time-dependent Markov policy is a

set of functions (πt)t≥0,

πt : S × B(A)→ [0, 1],

which satisfies the following conditions.

(i) For all x ∈ S and B ∈ B(A), the mapping t 7→ πt(x,B) is measurable on

[0,∞).

(ii) For all t ≥ 0 and x ∈ S, the mapping B 7→ πt(x,B) is a probability measure

on B(A) with πt(x,A(x)) = 1. It is πt(x,B) the probability that an action

a ∈ B is chosen when the process is in state x ∈ S at time t ≥ 0.

Such a policy is called stationary if πt(x,B) ≡ π(x,B) is independent of t. It is

called deterministic if for each t ≥ 0 and x ∈ S there is an a ∈ A(x) such that

πt(x, ·) = δa is a Dirac measure. A deterministic stationary Markov policy is given

by a function

u : S → A

with u(x) ∈ A(x) for all x ∈ S, assigning to each state an available action in a

deterministic way.

We denote the set of all randomized, time-dependent Markov policies by Π and the

set of all deterministic stationary Markov policies by U .

Here, the term “Markov” refers to the fact that the policy is a function of the

actual state x ∈ S and does not depend on the complete history of the process.

The continuous-time Markov decision process

A policy π ∈ Π determines the evolution of the control system in the following way.

Given that the process is in state x ∈ S at time t ≥ 0, the decision maker chooses

an action a ∈ A according to the distribution πt(x, ·). During the time interval

[t, t+ dt) the process then evolves according to the generator La and produces costs

c(x, a) per unit of time. For a deterministic stationary policy u ∈ U the action

remains constant until a transition to a state y ∈ S with u(y) 6= u(x) occurs, see

Figure 1.1.
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Figure 1.1: Controlled Markov process. Possible trajectory of a Markov decision

process given a deterministic stationary policy u ∈ U . Starting in a state x ∈ S, the

dynamics of the process are given by the generator Lu(x), i.e. the process stays in x

for some random period of time which is exponentially distributed with parameter

lu(x) and then jumps (at time tjump
1 ) to a state y ∈ S with probability

Lu(x)(x,y)

lu(x)
. As

soon as the jump occurs, the action is adapted and the process proceeds according

to the generator Lu(y).

More precisely, a policy π ∈ Π together with an initial distribution ν on S defines

a probability measure P
π
ν on the set of possible state-action-realizations

{(Xt, At)t≥0 : Xt ∈ S, At ∈ A ∀t ≥ 0}

by

• P
π
ν (X0 = x) = ν(x),

• P
π
ν (At ∈ B|Xt = x) = πt(x,B),

• ∂
∂t
P
π
ν (Xt = x|At = a) =

∑

y∈S La(y, x)P
π
ν (Xt = x|At = a),

where t ≥ 0, B ∈ B(A), x ∈ S and a ∈ A.

For the case of ν = δx (deterministic start in x ∈ S) we write P
π
x. The corresponding

expectation value is denoted by E
π
ν resp. Eπx.

In this thesis, we will restrict the analysis to deterministic stationary policies

u ∈ U . This does not mean any crucial restraint: Given any measurable function

f : S × A → R, we can set

f(x, π) :=

∫

A(x)
f(x, a)π(x, da)

in order to extend the definition to non deterministic policies π ∈ Π, which allows a

direct transfer of all analytic results to the more general set of policies Π. Moreover,
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for the cost criteria that will be considered (see page 10) the optimal policy –

assuming its existence – is deterministic and stationary anyway [26]. The advantage

of the restriction is that analytic expressions get more compact and, at the same

time, allow for a straightforward interpretation.

Given a policy u ∈ U , we write E
u
ν resp. Eux for the expectation value referring to

the measure P
u
ν resp. Pux which has the same definition as P

π
ν resp. P

π
x. Especially,

it holds

P
u
ν(At ∈ B|Xt = x) = δu(x)(B).

In order to illustrate the given situation, we consider the following simple exam-

ple which will reappear several times throughout the entire work.

Example 1.2 (Two states). Let S = {x1, x2} and A = A(x1) = A(x2) = {a1, a2}
with

L1 =

(

−0.01 0.01

0.01 −0.01

)

, L2 =

(

−0.1 0.1

0.1 −0.1

)

and c(x, a) = cS(x)+ cA(a), where cS(x1) = 0, cS(x2) > 0, cA(a1) = 0, cA(a2) > 0.

In this setting, x1 is the “good” state: As long as the process is in state x1, it does not

produce any costs, while when being in state x2, it produces costs at rate cS(x2) > 0.

The first action is free of charge (cA(a1) = 0), but has a small rate to push the

process back to state x1 when being in state x2, while the costly action a2 increases

this rate.

A possible policy consists of choosing the free action a1 as long as the process is in

the cost-free state x1, while choosing action a2 when the process is in state x2 in

order to quickly push it back to state x1. Whether this policy is in fact favorable,

can be answered after formulating an optimization criterion.

x x1 2

a

a

a

a

1

1

2

2

Figure 1.2: 2-state-example. Action a2 increases the transition rates between the

“good” state x1 and the “bad” state x2, which is indicated by the thickness of the

corresponding arrows.

Optimality criteria

The aim of the decision maker is to find a policy which optimizes a given performance

criterion. For an infinite time horizon there are mainly two common criteria, namely
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a) The expected discounted-cost criterion : Given an initial state x ∈ S and a

discount factor λ > 0, the total expected discounted costs under control u ∈ U
are defined by

Jλ(x, u) := E
u
x

(∫ ∞

0
e−λsc(Xs, u(Xs)) ds

)

. (1.2)

The corresponding optimal discounted-cost function or value function of dis-

counted costs is given by

Vλ(x) := inf
u∈U

Jλ(x, u).

b) The expected average-cost criterion : Given an initial state x ∈ S, the long-run

expected average costs under control u ∈ U are defined by

J̄(x, u) := lim sup
T→∞

E
u
x

(

1

T

∫ T

0
c(Xs, u(Xs)) ds

)

. (1.3)

The corresponding optimal average-cost function or value function of average

costs is given by

V̄ (x) := inf
u∈U

J̄(x, u).

Given ε > 0, a policy u∗ ∈ U is said to be ε-optimal (with respect to discounted

resp. average costs) if

Jλ(x, u
∗) ≤ Vλ(x) + ε ∀x ∈ S

resp.

J̄(x, u∗) ≤ V̄ (x) + ε ∀x ∈ S.

The policy u∗ is called optimal (with respect to discounted resp. average costs) if

Jλ(x, u
∗) = Vλ(x) ∀x ∈ S

resp.

J̄(x, u∗) = V̄ (x) ∀x ∈ S.

In order to guarantee the existence of an optimal policy, one has to make further

assumptions (for example that A is finite or that A is compact and c and L are

continuous on A). While the existence of an optimal policy cannot be taken for

granted, an ε-optimal policy exists without any further assumptions.

The set of policies is a very high-dimensional space such that finding an optimal

policy is a nontrivial problem. However, as we will see, the optimal policy can be

characterized by a dynamic programming equation, the so called Bellman equation,

which allows an efficient numerical computation.
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Remark 1.3 (Time-discrete setting). The introduced Markov control model (1.1)

refers to a continuous-time setting which will be relevant in Chapter 2. However,

for some of the considerations in the following sections we will have to deal with a

discrete time parameter. For this reason, we here briefly present the discrete-time

analogue of the Markov control model, compare [41].

A discrete-time Markov control model is given by a tuple

(

S, A, {A(x) : x ∈ S}, {Pa : a ∈ A}, c̃
)

, (1.4)

where S, A and A(x) are defined as before. For each a ∈ A, Pa(x, y) = P(Xn+1 =

y|Xn = x,An = a) is the probability for a transition from x ∈ S to y ∈ S given that

action a is applied, and c̃ : S × A → [0,∞) is a cost function giving the costs per

(discrete) time step.

Just as in the continuous-time situation, a (deterministic stationary) policy is a

function u : S → A with u(x) ∈ A(x) for all x ∈ S indicating for each state which

action to choose, and such a policy (together with an initial distribution) defines a

probability measure on the set of discrete state-action-combinations

{(Xn, An)n∈N0 : Xn ∈ S, An ∈ A ∀n ∈ N0} .

The expected discounted-cost criterion is given by

J̃λ(x, u) := E
u
x

(

∞
∑

n=0

e−λnc̃(Xn, u(Xn))

)

,

while the expected average-cost criterion gets the form

J̃(x, u) := lim sup
N→∞

E
u
x

(

1

N

N−1
∑

n=0

c̃(Xn, u(Xn))

)

.

In the case of ergodic dynamics (compare page 20 for details), the value J̃(x, u) does

not depend on x ∈ S such that we can define the constant

η̃u := J̃(x, u)

of average costs independent of x.

In the next sections the two cost criteria (discounted costs and average costs)

will be analyzed for the continuous-time setting. We will give an overview of the

fundamental results based on standard Markov control literature. For both criteria

we will proceed in a parallel manner: In a first step, the cost functional Jλ(x, u)

resp. J̄(x, u) of a given deterministic policy u is analyzed, introducing an appropriate

recursion which, as for finite state spaces, uniquely characterizes the functional. In

a second step, we consider the value function of optimal costs and present criteria

for a policy to be optimal.

By limiting some of the analysis to finite state spaces, we will be able to give our own

simplified approach to prove the presented statements. For more general results, we

will refer to common Markov control literature, e.g. [26, 48, 75].
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1.1.1 The Discounted-Cost Criterion

Given the Markov control model (1.1), we consider, for a given policy u ∈ U , the

criterion of expected discounted costs

Jλ(x, u) = E
u
x

(
∫ ∞

0
e−λsc(Xs, u(Xs)) ds

)

defined in (1.2). Before turning to the analysis of optimal policies and related

minimal costs, we provide an insight into the characteristics of the cost functional

Jλ(x, u) for an arbitrary policy u ∈ U .

Cost functional Jλ(x, u) for a given policy u ∈ U

For a given policy u ∈ U , we set

lu(x) := −Lu(x)(x, x).

If the process is in state x ∈ S and policy u is applied, the jump time (i.e. the

time until the process leaves x for the first time) is exponentially distributed with

parameter lu(x). By means of this jump time parameter lu(x) one can formulate a

recursive equation for the functional of discounted costs [26].

Lemma 1.4. Given a policy u ∈ U , the corresponding cost functional Jλ(x, u) fulfills

the recursion

Jλ(x, u) =
c(x, u(x))

λ+ lu(x)
+

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y)Jλ(y, u). (1.5)

Proof. Starting in x ∈ S, let t1 be the (random) time of the first jump to another

state y ∈ S, y 6= x. We split the cost functional Jλ(x, u) up into the costs arising

before t1 and after t1:

Jλ(x, u)

= E
u
x

(∫ t1

0
e−λsc(x, u(x)) ds +

∫ ∞

t1

e−λsc(Xs, u(Xs)) ds

)

= E
u
x

(
∫ t1

0
e−λsc(x, u(x)) ds

)

+ E
u
x

(
∫ ∞

t1

e−λsc(Xs, u(Xs)) ds

)

= E
u
x

(

1− e−λt1
λ

· c(x, u(x))
)

+
∑

y 6=x

P
u
x(Xt1 = y) · Eux

(∫ ∞

t1

e−λsc(Xs, u(Xs)) ds

∣

∣

∣

∣

Xt1 = y

)
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(a)
=

∫ ∞

0
lu(x)e

−lu(x)t ·
[

1− e−λt
λ

· c(x, u(x))

+
∑

y 6=x

P
u
x(Xt1 = y) · Eux

(∫ ∞

t1

e−λsc(Xs, u(Xs)) ds

∣

∣

∣

∣

t1 = t,Xt1 = y

)

]

dt

(b)
=

∫ ∞

0
lu(x)e

−lu(x)t ·
[

1− e−λt
λ

· c(x, u(x))

+
∑

y 6=x

Lu(x)(x, y)

lu(x)
· e−λt · Euy

(
∫ ∞

0
e−λsc(Xs, u(Xs)) ds

)

]

dt

=

∫ ∞

0
lu(x)e

−lu(x)t ·
[

1− e−λt
λ

· c(x, u(x)) +
∑

y 6=x

Lu(x)(x, y)

lu(x)
· e−λt · Jλ(y, u)



 dt

=
c(x, u(x))

λ+ lu(x)
+

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y) · Jλ(y, u).

In (a) we used the fact that t1 is exponentially distributed with parameter lu(x),

whereas (b) follows from the Markov property of the process and the properties of

the generator.

The right-hand side of equation (1.5) can be understood as the application of a

linear operator on the cost functional Jλ:

Given an action a ∈ A and a real-valued function J on S, define the operator Ta by

(TaJ)(x) :=
c(x, a)

λ+ la(x)
+

1

λ+ la(x)

∑

y 6=x

La(x, y)J(y). (1.6)

In the case of infinite S, we assume J to be non-negative in order to guarantee that

Ta is well defined.

In line with this, we define the operator Tu for a (deterministic stationary) policy

u ∈ U by

(TuJ)(x) := (Tu(x)J)(x) =
c(x, u(x))

λ+ lu(x)
+

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y)J(y). (1.7)

By this notation and Juλ (x) := Jλ(x, u), equation (1.5) can be written as Juλ (x) =

(Tu(x)J
u
λ )(x) resp. Juλ = TuJ

u
λ , which is a common representation [26]. This means

that Juλ is a fix-point of the operator Tu. The question is whether the fix-point

equation

J = TuJ. (1.8)

uniquely characterizes the function Juλ . For a finite state space the answer to this

question is yes.
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Lemma 1.5. For finite S, the operator Tu is a contraction on (R|S|, || · ||∞) for all

u ∈ U .

Proof. For J, J̃ ∈ R
|S| it holds

||TuJ − TuJ̃ ||∞ = max
x∈S
|(TuJ)(x)− (TuJ̃)(x)|

= max
x∈S

∣

∣

∣

∣

∣

∣

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y) ·
(

J(y)− J̃(y)
)

∣

∣

∣

∣

∣

∣

≤ max
x∈S

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y) · |J(y)− J̃(y)|

≤ max
x∈S

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y) · ||J − J̃ ||∞

= ||J − J̃ ||∞ max
x∈S

∑

y 6=x Lu(x)(x, y)

λ+ lu(x)

= ||J − J̃ ||∞ max
x∈S

lu(x)

λ+ lu(x)

= ||J − J̃ ||∞ · α

with α := maxx∈S
lu(x)

λ+lu(x)
< 1.

By the contraction property of the operator Tu and the uniqueness of its fix-

point, we can directly deduce

Corollary 1.6. For finite S, the function Juλ of expected discounted costs given a

policy u ∈ U is uniquely defined as the solution of the fix-point equation (1.8). In

this case, the matrix λI−Lu (with I ∈ R
|S|,|S| being the identity matrix) is invertible

and it holds

Juλ = (λI − Lu)−1cu,

where Lu(x, y) := Lu(x)(x, y) and cu(x) := c(x, u(x)) for all x, y ∈ S.

Proof. In order to show that λI − Lu is invertible, we assume that the equation

(λI − Lu)v = 0 has a solution v 6= 0. Let x∗ := argmaxx∈S |v(x)|, such that

||v||∞ = |v(x∗)|. From (λI − L)v = 0 it follows especially

λv(x∗) =
∑

y 6=x∗

L(x∗, y)(v(y) − v(x∗)).

Assuming v(x∗) > 0 we get λv(x∗) > 0 but v(y) ≤ v(x∗) for all y 6= x∗ such that
∑

y 6=x∗ L(x, y)(v(y) − v(x∗)) ≤ 0. On the other hand, v(x∗) ≤ 0 means λv(x∗) ≤ 0

but v(y) ≥ v(x∗) for all y 6= x∗ such that
∑

y 6=x∗ L(x, y)(v(y)− v(x∗)) ≥ 0. In both

cases this gives a contradiction.
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By Corollary 1.6, we can directly deduce a property of the operator Tu which will

be useful for the analysis of optimal policies as well as for the numerical approaches

in Section 1.2.

Lemma 1.7. If a non-negative function J on S fulfills

J(x) ≥ (TuJ)(x) ∀x ∈ S, (1.9)

then J(x) ≥ Jλ(x, u) holds for all x ∈ S.

Proof. We give the proof for finite S, making use of Corollary 1.6. For infinite S we

refer to [26]. From (1.9) we can conclude that there exists a non-negative function

f on S with

J(x) = (TuJ)(x) +
f(x)

λ+ lu(x)

=
c(x, u(x)) + f(x)

λ+ lu(x)
+

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y)J(y)

=: (T̃uJ)(x),

where T̃ is an operator corresponding to the considered Markov control model with

modified cost function c̃(x, a) := c(x, a) + f(x). From Corollary 1.6 we know that

J has to be the cost functional J̃λ(x, u) for this modified model, i.e.

J(x) = J̃λ(x, u) = E
u
x

(∫ ∞

0
e−λsc̃(Xs, u(Xs)) ds

)

,

which is monotone in c̃, such that

J(x) ≥ Jλ(x, u) ∀x ∈ S

because it holds c̃(x, a) ≥ c(x, a) for all x ∈ S, a ∈ A.

In the case of infinite S, the cost functional Juλ is the minimum non-negative

solution of the fix-point equation (1.8), see [26]. Instead of a convergence ||(Tu)nJ−
Juλ ||∞

n→∞−→ 0 (uniform convergence), there is a pointwise convergence (T nu J0)(x)→
Juλ (x) ∀x ∈ S for J0 = 0.

Moreover, for any S, the operator Tu (resp. Ta) is obviously monotone, i.e. J̃(x) ≥
J(x) ∀x ∈ S implies (TuJ̃)(x) ≥ (TuJ)(x) ∀x ∈ S. Together this means:

By defining

J0 := 0, Jn+1 := TuJn for n ≥ 0

we get a non-decreasing sequence (Jn)n∈N0 with Jn(x)
n→∞−→ Jλ(x, u) for all x ∈ S

(S finite or infinite).
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Optimal policy and value function

So far we considered the cost functional Jλ(x, u) for a given policy u ∈ U and

discovered it to be the fix-point of the monotone operator Tu. Now, the essential

problem is to characterize a policy which optimizes the costs and to calculate the

corresponding optimal value of the cost functional. In general, the existence of an

optimal policy cannot be taken for granted; here we will need further constraints.

Before we turn to this issue, we give a characterization of the value function

Vλ(x) = inf
u∈U

Jλ(x, u).

The corresponding results do not require the state space to be finite.

Theorem 1.8 (Discounted cost optimality equation/Bellman equation). The value

function Vλ satisfies the recursion

Vλ(x) = inf
a∈A(x)







c(x, a)

λ+ la(x)
+

1

λ+ la(x)

∑

y 6=x

La(x, y)Vλ(y)







∀x ∈ S. (1.10)

The Bellman equation (1.10), also known as dynamic programming equation, is

named after its discoverer Richard Bellman. The dynamic programming concept

consists of solving complex problems by breaking them down into simpler subprob-

lems – which here refers to converting a minimization problem on the (huge) set of

policies into a pointwise minimization for each state x ∈ S. This is the essential

step to enable an effective numerical calculation of the optimal policy.

Theorem 1.8 is a well-established result of Markov control theory, see e.g. [26]. We

will formulate the proof by means of the operators Ta resp. Tu introduced in (1.6)

resp. (1.7).

Proof of Theorem 1.8. Equation (1.10) can be written as Vλ(x) = infa∈A(x)(TaVλ)(x).

For an arbitrary policy u ∈ U it holds by definition that Juλ (x) ≥ Vλ(x) such that

(as Ta is a monotone operator for any a ∈ A)

Juλ (x) = (Tu(x)J
u
λ )(x) ≥ (Tu(x)Vλ)(x) ≥ inf

a∈A(x)
(TaVλ)(x).

This yields

Vλ(x) = inf
u∈U

Juλ (x) ≥ inf
a∈A(x)

(TaVλ)(x).

On the other hand, assuming the existence of an x∗ ∈ S with the property Vλ(x
∗) >

infa∈A(x∗)(TaVλ)(x
∗) yields

Vλ(x) = inf
a∈A(x)

(TaVλ)(x) + ε(x) ∀x ∈ S,
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where ε(x) ≥ 0 for all x ∈ S and ε(x∗) > 0. Depending on x we can choose an

action a = u(x) such that

Vλ(x) ≥ (TuVλ)(x) +
ε(x)

2

=
c(x, u(x)) + (λ+ lu(x))

ε(x)
2

λ+ lu(x)
+

1

λ+ lu(x)

∑

y 6=x

Lu(x)(x, y)Vλ(y)

=: (T̃uVλ)(x),

where T̃u is an operator referring to a new cost function c̃(x, a) := c(x, a) + (λ +

lu(x))
ε(x)
2 . With c̃(x∗, a) > c(x∗, a) we have

J̃λ(x
∗, u) = E

u
x∗

(
∫ ∞

0
e−λsc̃(Xs, u(Xs)) ds

)

> Jλ(x
∗, u)

for the cost functional determined by c̃ and T̃u. By Lemma 1.7 we can deduce

Vλ(x
∗) ≥ J̃λ(x∗, u) > Jλ(x

∗, u), in contradiction to Vλ(x
∗) = infu∈U Jλ(x

∗, u).

Lemma 1.9. Assume Vλ(x) <∞ for all x ∈ S. Then the Bellman equation (1.10)

is equivalent to

λVλ(x) = inf
a∈A(x)

{c(x, a) + (LaVλ)(x)} ∀x ∈ S.

For the proof of Lemma 1.9 we refer to [23].

The Bellman equation (1.10) characterizes not only the value function Vλ but

also the discounted-cost optimal policy, assuming that for each x ∈ S the infimum

in (1.10) can be replaced by a minimum.

Theorem 1.10. Suppose that there exists a policy u∗ ∈ U which attains the mini-

mum in the Bellman equation (1.10), i.e.

Vλ(x) =
c(x, u∗(x))

λ+ lu∗(x)
+

1

λ+ lu∗(x)

∑

y 6=x

Lu∗(x)(x, y)Vλ(y) (1.11)

= min
a∈A(x)







c(x, a)

λ+ la(x)
+

1

λ+ la(x)

∑

y 6=x

La(x, y)Vλ(y)







∀x ∈ S.

Then u∗ is discounted-cost optimal, i.e. it holds Vλ(x) = Jλ(x, u
∗) for all x ∈ S.

Proof. Compare Theorem 4.10 in [26]: By definition it holds Vλ(x) ≤ Jλ(x, u∗). On

the other hand, equation (1.11) means Vλ = Tu∗Vλ, such that by Lemma 1.7 we get

Vλ ≥ Jλ(x, u∗). Together we get Vλ = Jλ(x, u
∗).

The next manifesting question is under which conditions the existence of a policy

u∗ fulfilling (1.11) can be guaranteed. It is common practice to make the following

assumption.
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Assumption 1.11.

a) The set of available actions A(x) is compact for each state x ∈ S.

b) For all x, y ∈ S, the functions c(x, a) and La(x, y) are continuous on A(x).
c) The cost function c(x, a) is bounded on S × A.

Note that for finite S part c) of Assumption 1.11 directly follows from a) and

b). There exist several conditions that verify Assumption 1.11, see for example

[24,27,48]. One possibility is to assume both the state space S and the action spaceA
to be finite. Although this restraint is quite restrictive, we will choose it here because

it allows for a compact proof of Theorem 1.12 and at the same time guarantees the

convergence of the policy iteration algorithm which will be presented in Section 1.2.

For the more general setting (and appropriate formulations of Theorem 1.12) we

again refer to [26].

Let S be finite. In the style of [23, 26], we define the operator T ∗ : R|S| → R
|S| by

(T ∗J)(x) := inf
a∈A(x)







c(x, a)

λ+ la(x)
+

1

λ+ la(x)

∑

y 6=x

La(x, y)J(y)







= inf
a∈A(x)

(TaJ)(x).

For finite A we replace “ inf” by “min”.

Theorem 1.12. Assume both S and A to be finite and define

V0 := 0, Vn+1 := T ∗Vn for n ≥ 0.

For each n ≥ 0, let un ∈ U be such that Vn+1(x) = (Tun(x)Vn)(x), i.e. un chooses

the minimum argument in (T ∗Vn)(x) = mina∈A(x)(TaVn)(x) depending on x ∈ S.
Then

a) (Vn)n∈N is non-decreasing in n ≥ 0.

b) limn→∞ Vn(x) = Vλ(x) for all x ∈ S.

c) There is a policy u∗ ∈ U with un(x)
n→∞−→ u∗(x) for all x ∈ S, and u∗ is

discounted-cost optimal, i.e. Jλ(x, u
∗) = Vλ(x) for all x ∈ S.

Proof. First of all, we observe that Vn ≤ Juλ for all u ∈ U and n ∈ N, which follows

by induction: Clearly V0 = 0 ≤ Juλ , and assuming Vn ≤ Juλ for an n ∈ N one can

deduce Vn+1 = T ∗Vn = infu TuVn ≤ TuVn ≤ TuJuλ = Juλ .

Now a) and b) immediately follow from the fact that all Tu are contractions.

With S and A also the set U of policies is finite such that there exists a u∗ ∈ U with

Vλ = minu J
u
λ = Ju

∗

λ . For u ∈ U denote by αu := maxx∈S
lu(x)

λ+lu(x)
the contraction

constant of Tu. Set ε = minu
1−αu

αu
||Ju − Vλ||∞. By b) there is an n0 ∈ N such that
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0 < Vλ(x)− Vn(x) < ε for all n ≥ n0, x ∈ S. Applying Tu, u 6= u∗, to Vn for n ≥ n0
we have

||Ju − TuVn||∞ = ||TuJu − TuVn||∞
≤ αu||Ju − Vn||∞
≤ αu(||Ju − Vλ||∞ + ||Vλ − Vn||∞)

< αu(||Ju − Vλ||∞ + ε)

≤ αu(||Ju − Vλ||∞ +
1− αu
αu

||Ju − Vλ||∞)

= ||Ju − Vλ||∞.
Thus, for each u 6= u∗, there is x ∈ S with |Ju(x) − Vλ(x)| = ||Ju − Vλ||∞ > ||Ju −
TuVn||∞ ≥ |Ju(x) − (TuVn)(x)|. As Ju ≥ Vλ, we get Vn+1(x) = (TuVn)(x) > Vλ(x)

which stands in contradiction to a) and b).

This means that for n ≥ n0 it has to be un = u∗, which completes the proof.

Example 1.2 (cont). We calculate the discounted costs for the 2-state-example

1.2 from page 9 and all possible policies, see Table 1.1. We set λ = 0.1 as well as

cS(x2) = 10 and cA(a2) = 2, where c(x, a) = cS(x) + cA(a). Remember that state

x1 and action a1 are assumed to be cost-free.

u(x1) u(x2) Jλ(x1, u) Jλ(x2, u)

a1 a1 8.33 91.67

a1 a2 5.71 62.86

a2 a1 58.10 96.19

a2 a2 53.33 86.67

Table 1.1: Discounted costs. The expected discounted costs Jλ(x, u) depending

on the policy u ∈ U for the 2-state-example 1.2.

We see that, as supposed, the optimal policy is given by u∗(x1) = a1, u
∗(x2) = a2,

and the value function fulfills

Vλ(x1) = 5.71 = 0 +
0.01 · 62.86
0.1 + 0.01

=
c(x1, a1)

λ+ l1(x1)
+
L1(x1, x2)Vλ(x2)

λ+ l1(x1)

and

Vλ(x2) = 62.86 =
12

0.1 + 0.1
+

0.1 · 5.71
0.1 + 0.1

=
c(x2, a2)

λ+ l2(x2)
+
L2(x2, x1)Vλ(x1)

λ+ l2(x2)
.

In Example 1.2 a straightforward comparison of all possible policies was feasible

due to the small number of states and actions. In general, however, the number of

policies will be very large making such a direct approach impossible. Instead, the

optimal policy can be calculated by two types of dynamic programming algorithms

that will be presented in Section 1.2.

Before we turn to the numerical realization, we now consider the average-cost crite-

rion and deduce equivalent analytical results.
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1.1.2 The Average-Cost Criterion

Recall that the average-cost criterion is given by

J̄(x, u) = lim sup
T→∞

E
u
x

(

1

T

∫ T

0
c(Xs, u(Xs)) ds

)

,

compare (1.3). Parallel to the case of discounted costs we tend to first characterize

the cost functional J̄(x, u) for a given policy u and then deduce some optimality

criteria. There exists a lot of literature concerned with the average-cost criterion,

see e.g. [25, 59, 81, 82]. All the approaches require several assumptions which are

rather complicated than transparent. For instance, a typical restraint goes back to

the discounted-cost criterion and assumes that there exists a state x0 ∈ S and some

decreasing sequence of discount factors with λn → 0 such that λnVλ(x0) is bounded

in n ∈ N.

Instead of following the common practice, we will give an own approach by restricting

the analysis to finite state spaces and ergodic dynamics. More precisely, we assume

that for each policy u ∈ U , the dynamics of the controlled process are ergodic

in the following sense: Given a policy u ∈ U , there exists a unique equilibrium

distribution µu on S fulfilling µuLu = 0 [56] (where as before Lu(x, y) := Lu(x)(x, y),

see Corollary 1.6) such that

J̄(x, u) = lim
T→∞

E
u
x

(

1

T

∫ T

0
c(Xs, u(Xs)) ds

)

= 〈µu, cu〉 ∀x ∈ S,

where cu(x) := c(x, u(x)) and 〈·, ·〉 refers to the standard inner product on R
|S|. In

this case, the function J̄(x, u) of long-run expected average costs is independent of

x ∈ S and we can define the constant

ηu := J̄(x, u)

of average costs given policy u ∈ U .

Average costs ηu for a given policy u ∈ U

For the discounted-cost criterion we showed that the cost functional Juλ of a given

policy fulfills a recursion (see Lemma 1.4) and that for finite state spaces this recur-

sion uniquely determines the cost functional which results in an analytic expression

for Juλ in terms of the given cost function and the generator Lu. Equivalent state-

ments for the average-cost criterion and a finite state space will be given in the

following lemma. Here, we formulate all parts together because the proofs are con-

nected.

Lemma 1.13. Let the state space S be finite.

a) Given a policy u ∈ U , there exists a function v : S → R such that the cor-

responding constant ηu of long-run expected average costs fulfills the equation

ηu = c(x, u(x)) +
∑

y∈S

Lu(x)(x, y)v(y) ∀x ∈ S. (1.12)
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b) The constant ηu is uniquely determined by (1.12) and coincides with the first

component of the vector

(E − Lu)−1cu,

where

E :=







1 0 . . . 0
...

...
...

1 0 . . . 0






∈ R

|S|,|S|.

Proof. We begin with part b) and show the uniqueness of the constant.

Assume that ρ ∈ R and v : S → R fulfill

ρ = c(x, u(x)) +
∑

y∈S

Lu(x)(x, y)v(y) for all x ∈ S. (1.13)

Due to the structure of the generator matrix Lu it holds Lu(v + d) = Luv for any

constant vector d ∈ R
|S| such that we can set v(1) = ρ without loss of generality.

Equation (1.13) can now be written as

Ev = cu + Luv

which yields

v = (E − Lu)−1cu.

The matrix E − Lu is invertible by the following argumentation. If it was not

invertible the equation

(E − Lu)w = 0 (1.14)

would have a solution w 6= 0. Now, equation (1.14) is equivalent to w(1) = (Luw)(x)

for all x ∈ S. However, for xmin := argminw(x) and xmax := argmaxw(x) we

have

(Luw)(xmin) =
∑

y 6=xmin

Lu(xmin, y) · (w(y)− w(xmin)) ≥ 0

and

(Luw)(xmax) =
∑

y 6=xmax

Lu(xmax, y) · (w(y)− w(xmax)) ≤ 0.

This leads to 0 ≤ (Luw)(xmin) = w(1) = (Luw)(xmax) ≤ 0 which means that w(1)

has to be zero, and thus Luw = 0 holds. This equation, however, is fulfilled by any

constant vector w. As we assumed the process to be ergodic, the eigenvalue 0 is of

multiplicity one, which means that such a constant w is the only possible choice.

This implies w(x) = w(1) = 0 for all x, in contradiction to w 6= 0.

This means that, given the side constraint v(1) = ρ, the quantities ρ and v are

uniquely defined by Lu and cu. (Without this side constraint, the constant ρ is still

unique, whereas v can be replaced by v + d for any constant vector d ∈ R
|S|.)

It remains to show that ρ = ηu which is part a) of the theorem. Fixing the generator

Lu, we consider the function f : R|S| → R given by f(c) =
(

(E − Lu)−1c
)

(1) =
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c(x) + (Lu(E −Lu)−1c)(x) = c(x) + (Luvc)(x), independent of x ∈ S. (We write vc
in order to underline the dependence of the vector v on the cost function c.) This

function delivers the constant ρ depending on the cost function c. As f is obviously

linear in c, by the Riesz representation theorem (see e.g. [71]) there exists a vector

w ∈ R
|S| such that

f(c) = 〈w, c〉.

Applying f to a vector of the form Luc yields f(Luc) = (Luc)(x) + (Lu(E −
Lu)

−1c)(x) = (Luc)(x) + (Luvc)(x) = Lu(c + vc)(x) = ρ for all x. Now the last

equality corresponds to equation (1.13) by setting the cost function to zero such

that the constant ρ is given by f(0) = 〈w, 0〉 = 0. We get f(Luc) = 0 and with it

f(Luc) = 〈w,Luc〉 = 〈L′
uw, c〉 = 0

for all c ∈ R
|S|. By choosing c(1) = 1 and c(x) = 0 for all x 6= 1 we get 〈L′

uw, c〉 =
(L′

uw)(1) = 0, and equivalently we can deduce (L′
uw)(x) = 0 for all other x ∈ S.

However, the resulting equation L′
uw = 0 is exactly the characterization for the

equilibrium distribution µu such that w = µu and with it

f(c) = 〈µu, c〉 = ηu

which proves a).

Part a) of Lemma 1.13 is also true for non-finite state spaces; however, as men-

tioned above, this requires several additional assumptions (e.g. that the jump rates

are uniquely bounded on S, i.e. supx∈S supa∈A(x) la(x) < ∞), see [25, 81] among

others.

In analogy to Lemma 1.7 of the discounted-cost criterion, we now formulate the

following monotony property which holds for arbitrary (denumerable) S.

Lemma 1.14. Let u ∈ U be a given policy. It holds:

a) If there exists a constant g ≥ 0 and a non-negative function v on S such that

g ≥ c(x, u(x)) +
∑

y∈S

Lu(x)(x, y)v(y) ∀x ∈ S, (1.15)

then g ≥ ηu.

b) If there exists a constant g ≥ 0 and a non-negative function v on S such that

g ≤ c(x, u(x)) +
∑

y∈S

Lu(x)(x, y)v(y) ∀x ∈ S, (1.16)

then g ≤ ηu.

Proof. We make use of Lemma 1.13 to prove both statements for finite S. For

infinite S we refer to [26].
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a) Define

h(x) := g −



c(x, u(x)) +
∑

y∈S

Lu(x)(x, y)v(y)





such that

g = h(x) + c(x, u(x)) +
∑

y∈S

Lu(x)(x, y)v(y) ∀x ∈ S.

By (1.15) we have h(x) ≥ 0 for all x ∈ S. As c̃(x, u(x)) := h(x) + c(x, u(x)) ≥
c(x, u(x)) and

g = c̃(x, u(x)) +
∑

y∈S

Lu(x)(x, y)v(y) ∀x ∈ S

we can infer from Lemma 1.13 that g is the constant of average costs under the

given policy u for the cost function c̃, i.e.

g = lim
T→∞

E
u
x

(

1

T

∫ T

0
c̃(Xs, u(Xs)) ds

)

≥ lim
T→∞

E
u
x

(

1

T

∫ T

0
c(Xs, u(Xs)) ds

)

= ηu,

which completes the proof of a).

Part b) is analogous.

Optimal policy and value function

Being aware that the constant ηu of long-term average costs for a policy u ∈ U is

part of the solution of a system of linear equations, compare Lemma 1.13, we are

now interested in the characterization of the optimal average costs

η∗ := inf
u∈U

ηu.

To this end, we will again formulate an optimality equation which forms the back-

ground for the numerical calculation of an optimal policy in Section 1.2. Inter-

estingly, the proof will resort to the results for the discounted-cost problem from

Section 1.1.1. Moreover, we will make use of Lemma 1.13 and Lemma 1.14 which

both were formulated only for finite S. For this reason, we again assume S to be

finite for the following statements. However, all these statements are also true for

non-finite S, and even the proofs in principle coincide; we refer to [26].

In contrast to the case of discounted costs, the formulation of an average-cost

optimality equation requires additional assumptions concerning the cost function,

the generators and the sets A(x) of available actions. One possibility is to employ

assumption 1.11, what we will do here because it allows for a compact analysis and

suffices to get an insight into the structure of the control problem. For more general

results we again refer to common Markov control literature.
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Theorem 1.15 (Average cost optimality equation/Bellman equation). Suppose that

Assumption 1.11 holds. Then there exists a function v∗ : S → R and a constant

g ≥ 0 satisfying

g = inf
a∈A(x)







c(x, a) +
∑

y∈S

La(x, y)v
∗(y)







∀x ∈ S. (1.17)

The constant g coincides with the optimal average costs η∗.

Note that the function v∗ is fixed and not part of the minimization argument.

Proof. The approach is taken from the proof of Theorem 5.7 in [26].

By Assumption 1.11 c) there exists a constant cmax > 0 such that 0 ≤ c(x, a) ≤ cmax

for all x ∈ S and a ∈ A. From this we can deduce 0 ≤ λVλ(x) ≤ cmax for all x ∈ S
and λ > 0, where Vλ is the value function of the corresponding discounted-cost

problem. Moreover, fixing a state x0 ∈ S and setting hλ(x) := Vλ(x) − Vλ(x0), it

holds 0 ≤ |hλ(x)| ≤ cmax for all x ∈ S and λ > 0.

The Bolzano-Weierstrass theorem gives the existence of a subsequence (λn)n∈N of

discount factors with λn
n→∞−→ 0, a constant g and a function v∗ on S such that

g = lim
n→∞

λnVλn(x0) and v∗(x) = lim
n→∞

hλn(x) ∀x ∈ S.

We note that it holds λnhλn(x)
n→∞−→ 0 for all x ∈ S and thereby

λnVλn(x) = λnhλn(x) + λnVλn(x0)
n→∞−→ g ∀x ∈ S.

Now, for ε > 0 and n ∈ N, Lemma 1.9 provides a policy un ∈ U with

λnVλn(x) ≥ c(x, un(x)) + (LunVλn)(x)− λnε ∀x ∈ S.

By part a) of Assumption 1.11 there exists a policy u0 ∈ U and a subsequence

(uk)k∈N of (un)n∈N with uk(x)
k→∞−→ u0(x) for all x ∈ S and, by part b) of Assumption

1.11,

lim
k→∞

c(x, uk(x)) = c(x, u0(x)), lim
k→∞

Luk(x, y) = Lu0(x, y) ∀x, y ∈ S.

Together we get

g = lim
k→∞

λkVλk(x)

≥ lim
k→∞

(c(x, uk(x)) + (LukVλk)(x)− ελk)

= lim
k→∞

(c(x, uk(x)) + (Lukhλk)(x) − ελk)

= c(x, u0(x)) + (Lu0v
∗)(x)

≥ inf
a∈A(x)

{c(x, a) + (Lav
∗)(x)} ∀x ∈ S.
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At the same time, using Lemma 1.9, we obtain

λnVλn(x) ≤ c(x, a) + (LaVλn)(x) ∀x ∈ S, a ∈ A(x),

and with it

λnVλn(x) ≤ c(x, a) + (Lahλn)(x) ∀x ∈ S, a ∈ A(x).

Taking the limit n→∞ on both sides delivers

g ≤ c(x, a) + (Lav
∗)(x) ∀x ∈ S, a ∈ A(x),

thus

g ≤ inf
a∈A(x)

{c(x, a) + (Lav
∗)(x)} ∀x ∈ S.

It remains to argue that g = η∗: On the one hand, by g ≥ c(x, u0(x)) + (Lu0h)(x)

and Lemma 1.14 it holds g ≥ ηu0 and therefore g ≥ η∗. On the other hand, for any

policy u ∈ U , it is

g = lim
k→∞

λkVλk(x)

≤ lim sup
k→∞

λkJλk(x, u)

(∗)

≤ lim sup
T→∞

1

T
E
u
x

(

1

T

∫ T

0
c(Xs, u(Xs)) ds

)

= ηu,

where (∗) goes back to the Tauberian theorem [26, 76]. This implies g ≤ infu ηu =

η∗u.

As in the case of discounted costs, the Bellman equation (1.17) characterizes not

only the optimal average costs but also the optimal policy (if existent), see e.g. [81].

Theorem 1.16. Suppose that there exists a policy u∗ ∈ U which attains the mini-

mum in the Bellman equation (1.17), i.e.

g = c(x, u∗(x)) +
∑

y∈S

Lu∗(x)(x, y)v
∗(y)

= min
a∈A(x)







c(x, a) +
∑

y∈S

La(x, y)v
∗(y)







∀x ∈ S. (1.18)

Then u∗ is average-cost optimal and it holds η∗ = J̄(x, u∗) = g for all x ∈ S.

Proof. This obviously follows from Lemma 1.13 and Theorem 1.15.

Again, Assumption 1.11 guarantees the existence of an optimal policy, and es-

pecially for finite S and A its existence is out of question.
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Example 1.2 (cont). We consider again the 2-state-example 1.2 and calculate the

average costs depending on the policy. The results are given in Table 1.2. As for the

discounted-cost criterion, the optimal policy is given by u∗(x1) = a1, u
∗(x2) = a2.

u(x1) u(x2) η

a1 a1 5.00

a1 a2 1.09

a2 a1 9.27

a2 a2 7.00

Table 1.2: Averaged costs. The average costs depending on the policy u ∈ U for

the 2-state-example 1.2.

1.2 Numerical Realization

In the previous chapter we have seen that – given a Markov control model and

an optimization criterion – the optimal policy can be characterized by a Bellman

equation. We will now analyze how these results can be used in order to determine

the optimal policy numerically. There exist two kinds of dynamic programming al-

gorithms, the so called value iteration and policy iteration approach. They will be

presented here for both the discounted- and the average-cost criterion.

The value iteration approach introduced by Bellman (1957) [6] consists of a succes-

sive approximation of the value function. Given this approximation, the correspond-

ing (optimal) policy can be determined. In contrast, a policy iteration runs through

the set of policies and alternates between a policy evaluation step in which the value

of the current policy is calculated and a policy improvement step in which the cur-

rent policy is improved. This procedure was proposed by Howard (1960) [32].

The algorithmic complexity of policy iteration is a matter of actual research. For a

fixed discount factor the policy iteration algorithm is polynomial in |S| and |A| [79].
The same is true for value iteration [43]. The dependence of the runtime on the

discount factor, however, is not polynomial [31]. For average costs, policy iteration

has exponential runtime [20]. Generally, policy iteration converges no more slowly

than value iteration [48].

We will in the following assume both S and A to be finite and, as in

Section 1.1.2, consider the controlled process to be ergodic for all possible policies.

Discounted costs

First of all, we consider the discounted-cost criterion Jλ(x, u), compare (1.2). Here,

Theorem 1.12 directly delivers the following value iteration scheme.
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The discounted-cost value iteration algorithm:

1. Let V0 := 0 and k = 0, and define a threshold ε > 0.

2. Obtain

Vk+1(x) = (T ∗Vk)(x) = min
a∈A(x)







c(x, a)

λ+ la(x)
+

1

λ+ la(x)

∑

y 6=x

La(x, y)Vk(y)







and choose

uk+1(x) = arg min
a∈A(x)







c(x, a)

λ+ la(x)
+

1

λ+ la(x)

∑

y 6=x

La(x, y)Vk(y)







(such that Vk+1 = Tuk+1
Vk).

3. If ||Vk+1 − Vk||∞ ≤ ε, then stop. Otherwise increment k by 1 and return to

Step 2.

The value function of optimal costs Vλ is approximated by Vk and the optimal

policy is approximated by uk. The advantage of the value iteration algorithm is

the straightforward calculation: There is no need to take the inverse of a (possibly

huge) matrix or to solve a system of linear equations, as it will be the case in the

evaluation step of policy iteration. However, it can be observed that within the

value iteration the policies (uk)k=0,1,2,... often become (exactly) optimal long before

the sequence (Vk)k=0,1,2,... of approximations converged, see [47] and Table 1.3 of

the example that will follow. This motivates to relocate the iteration steps directly

onto the set of policies, as it is done in policy iteration, compare [26].

The discounted-cost policy iteration algorithm:

1. Pick an arbitrary u ∈ U . Let k = 0 and u0 := u.

2. (Policy evaluation) Obtain Jkλ = (λI − Luk)−1cuk .

3. (Policy improvement) For each x ∈ S, calculate

m(x) := min
a∈A(x)







c(x, a) +
∑

y∈S

La(x, y)J
k
λ (y)







and set ak(x) := argmina∈A(x)

{

c(x, a) +
∑

y∈S La(x, y)J
k
λ (y)

}

.

Define uk+1 as follows:

uk+1(x) :=







ak(x), if m(x) < λJkλ (x),

uk(x), if m(x) = λJkλ (x).

4. If uk+1 = uk, then stop. Otherwise increment k by 1 and return to Step 2.
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Theorem 1.17. The discounted-cost policy iteration algorithm yields a discounted-

cost optimal policy in a finite number of iterations.

Proof. Let (uk)k=0,1,2,... be the sequence of policies obtained by the algorithm. By

definition of uk+1 it holds λJkλ (x) > c(x, uk+1(x))+
∑

y∈S Luk+1(x)(x, y)J
k
λ (y) which

is equivalent to Jkλ > Tuk+1
Jkλ . By Lemma 1.7 we get Jk+1

λ ≤ Jkλ meaning that the

cost functional decreases with increasing k. As the policies uk, k = 0, 1, 2, ..., are all

different and the number of policies is finite, the iterations must stop after a finite

number K ∈ N of iterations. The function JKλ (x) = Jλ(x, uK) fulfills the Bellman

equation (1.10), such that uK is discounted-cost optimal.

The most “tricky” part of the policy iteration algorithm is the evaluation step:

Here the inverse of the matrix λI − Luk ∈ R
|S|,|S| has to be calculated. For a small

state space, however, this will pose no problem and the policy iteration usually

performs better than the value iteration.

In order to get an impression of how the two algorithms work, we perform the

calculations for the simple 2-state-example considered in the previous sections.

Example 1.2 (cont). Reconsider the 2-state-example 1.2 with

L1 =

(

−0.01 0.01

0.01 −0.01

)

, L2 =

(

−0.1 0.1

0.1 −0.1

)

and cS(x2) = 10 and cA(a2) = 2 combined with the discounted-cost criterion. Table

1.3 shows the steps for the value iteration algorithm choosing ε = 0.001, while Table

1.4 shows the results for the policy iteration algorithm. The value function is given

by Vλ(x1) = 5.71 and Vλ(x2) = 62.86.

k Vk(x1) Vk(x2) uk(x1) uk(x2)

0 0 0 - -

1 0 60 a1 a2
2 5.45 60 a1 a2
3 5.45 62.73 a1 a2
...

...
...

...
...

9 5.71 62.86 a1 a2

Table 1.3: Value iteration for discounted costs. The steps of the value iteration

algorithm for the 2-state-example 1.2 given the discounted-cost criterion.

We can observe that both algorithms deliver the same result (as they should do),

however the value iteration needs more iteration steps than the policy iteration. The

reason for this is the slow convergence of the value iteration function Vk: Although u1
already coincides with the optimal policy, the corresponding value iteration function

V1 strongly differs from the value function Vλ.
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k Vk(x1) Vk(x2) uk(x1) uk(x2)

0 8.33 91.67 a1 a1
1 5.71 62.86 a1 a2

Table 1.4: Policy iteration for discounted costs. The steps of the policy iter-

ation algorithm for the 2-state-example 1.2 given the discounted-cost criterion. In

fact, for any given initial policy the algorithm converges after one iteration step.

Average costs

When considering the average-cost criterion in the setting of continuous-time MDPs

on a discrete state space, it seems to be common to deal only with policy iteration.

While for discrete-time MDPs there exist several value iteration approaches (see

e.g. [2]), in the continuous-time case value iteration is usually not mentioned in the

literature. In the following, we will present our own approach for a value iteration in

the setting of continuous-time MDPs. Using the results of [60], we will translate the

given continuous-time MDP into an equivalent discrete-time MDP and then apply

an appropriate discrete-time value iteration algorithm.

Given the Markov control model
(

S, A, {A(x) : x ∈ S}, {La : a ∈ A}, c
)

, we

define for each a ∈ A a transition matrix Pa ∈ R
|S|,|S| by

Pa(x, y) :=







La(x,y)
lmax

for x 6= y,

1− la(x)
lmax

for x = y,

and a cost function c̃ : S × A → [0,∞) by

c̃(x, a) :=
c(x, a)

lmax
,

where lmax := maxx∈S,a∈A la(x). Remember that S and A are assumed to be finite.

We consider the discrete-time Markov control model
(

S, A, {A(x) : x ∈ S}, {Pa :

a ∈ A}, c̃
)

, as well as the corresponding Markov Decision Process (Xn)n∈N0 and

the average-cost criterion J̃(x, u), see Remark 1.3. Serfozo [60] states that, for a

given policy u ∈ U , it holds

J̄(x, u) = lmax · J̃(x, u),

resp.

ηu = lmax · η̃u,
where J̄(x, u) resp. ηu are the average costs of the continuous-time MDP we started

with, see Section 1.1. This means that the optimal policy of the discrete setting

coincides with the optimal policy of the continuous setting.

The Bellman equation for the discrete setting is given by

η̃∗ + v(x) = min
a∈A(x)







c̃(x, a) +
∑

y∈S

Pa(x, y)v(y)







,
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where v : S → R [7].

For the discrete-time MDP we now consider the so called relative value iteration

algorithm which is due to White [73], see also [2]:

1. Let V0 := 0, ρ0 := 0 and k = 0. Define a threshold ε > 0 and pick an arbitrary

x0 ∈ S.1

2. Obtain

ρk+1 = min
a∈A(x)







c̃(x0, a) +
∑

y∈S

Pa(x0, y)Vk(y)







and

Vk+1(x) = min
a∈A(x)







c̃(x, a) +
∑

y∈S

Pa(x, y)Vk(y)







− ρk+1

and choose

uk+1(x) = arg min
a∈A(x)







c̃(x, a) +
∑

y∈S

Pa(x, y)Vk(y)







.

3. If k > 1 and |ρk+1 − ρk| ≤ ε, then stop. Otherwise increment k by 1 and

return to Step 2.

The value η̃∗ = minu∈U η̃u of optimal average costs is approximated by ρk and

the corresponding ε-optimal policy is given by uk, see Proposition 6 in Chapter 8.2

of [7]. In [59] one can find conditions for the convergence of the value iteration

algorithm.

The algorithm is called “relative” because the values Vk(x) are put in relation to

Vk(x0) which avoids an unnecessary growth of Vk(x) in k and (in our calculations)

results in a faster convergence.

In the notation of the continuous-time MDP this yields:

The average-cost (relative) value iteration algorithm:

1. Let V0 := 0, ρ0 := 0 and k = 0. Define a threshold ε > 0 and pick an arbitrary

x0 ∈ S.

2. Obtain

ρk+1 = min
a∈A(x)







c(x0, a)

lmax
+ Vk(x0) +

∑

y∈S

La(x0, y)

lmax
Vk(y)







1In [7] the state x0 has to fulfill the following condition: There exist α > 0 and m ∈ N such that

Pm
u (y, x0) ≥ α for all y ∈ S , u ∈ U . As we assumed the state space to be finite and the process to

be ergodic for all policies this assumption is naturally fulfilled for all states.
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and

Vk+1(x) = min
a∈A(x)







c(x, a)

lmax
+ Vk(x) +

∑

y∈S

La(x, y)

lmax
Vk(y)







− ρk+1

and choose

uk+1(x) = arg min
a∈A(x)







c(x, a)

lmax
+ Vk(x) +

∑

y∈S

La(x, y)

lmax
Vk(y)







.

3. If k > 1 and |ρk+1 − ρk| ≤ ε, then stop. Otherwise increment k by 1 and

return to Step 2.

Here, ρk · lmax delivers an approximation for η∗, and the final uk is (approximately)

optimal.

The properties of the value iteration scheme for average costs are the same as

for discounted costs: The calculations within an iteration step are comparatively

simple, but the number of iteration steps can be very large. Again, the opposite is

true for the following policy iteration scheme (derived from [82]).

The average-cost policy iteration algorithm:

1. Pick an arbitrary u ∈ U . Let k = 0 and uk := u.

2. (Policy evaluation) Find a constant ηk and a real-valued function vk on S
satisfying

ηk = c(x, uk(x)) +
∑

y∈S

Luk(x)(x, y)vk(y) ∀x ∈ S.

3. (Policy improvement) For each x ∈ S calculate

m(x) := min
a∈A(x)







c(x, a) +
∑

y∈S

La(x, y)vk(y)







and set ak(x) := argmina∈A(x)

{

c(x, a) +
∑

y∈S La(x, y)vk(y)
}

.

Define uk+1 as follows:

uk+1(x) :=







ak(x), if m(x) < ηk,

uk(x), if m(x) = ηk.

4. If uk+1 = uk, then stop. Otherwise increment k by 1 and return to Step 2.

Parallel to Theorem 1.17 we can state that the average-cost policy iteration

algorithm delivers an average-cost optimal policy in a finite number of iteration

steps. The proof is analogous, making use of Lemma 1.14 and Theorem 1.15.
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Example 1.2 (cont). We apply both average-cost algorithms to the 2-state-

example 1.2. Table 1.5 shows the steps for the value iteration algorithm choosing

ε = 0.001 and x0 = 1, while Table 1.6 shows the results for the policy iteration

algorithm.

We can make the same observations as in the case of discounted costs: Both algo-

rithms deliver the same result (the functions Vk are equivalent because they differ

only by a constant). Though, the value iteration requires more iteration steps than

the policy iteration algorithm.

k ρk Vk(x1) Vk(x2) uk(x1) uk(x2)

0 0 0 0 - -

1 0 0 100 a1 a1
2 10 0 110 a1 a2
3 11 0 109 a1 a2
4 10.9 0 109.1 a1 a2
5 10.91 0 109.09 a1 a2
6 10.909 0 109.091 a1 a2

Table 1.5: Value iteration for average costs. The steps of the relative value

iteration algorithm for the 2-state-example 1.2 given the average-cost criterion. By

lmax = 0.1 we get ρ6 · lmax = 1.0909 = η∗, compare Table 1.2.

k ηk Vk(x1) Vk(x2) uk(x1) uk(x2)

0 5 5 505 a1 a1
1 1.0909 1.0909 110.1818 a1 a2

Table 1.6: Policy iteration for average costs. The steps of the policy iteration

algorithm for the 2-state-example 1.2 given the average-cost criterion. For any given

initial policy the algorithm converges after one iteration step.

Evidently, the considered example has very low dimensionality such that the

optimal policy could have also been found by a direct comparison of the |A||S| = 4

policies. In the following example with |A||S| = 2100 this is not the case.

Example 1.18 (Controlled Population). We consider a simple birth-death-process

of an “undesirable” population such as a virus or some harmful bacteria. The birth

and death rates are denoted by α and β, respectively (α, β ≥ 0), and describe the

rates at which the population increases or decreases in time [42]. The damage caused

by the population is measured by some cost function cS(x) which is assumed to be

nondecreasing in the population size x ∈ N0. The process can be influenced by

changing the birth and death rates.

More precisely, we are concerned with the state space S = N0 and an action space A
where each action a ∈ A is determined by the parameters αa and βa. The generators



1.2. NUMERICAL REALIZATION 33

La have the form

La =















0 0 0 · · ·
βa −(βa + αa) αa 0 · · ·
0 2βa −2(βa + αa) 2αa 0 · · ·
0 0 3βa −3(βa + αa) 3αa 0 · · ·
...

...
. . .

. . .
. . .















.

An action a ∈ A produces costs at rate cA(a), and the cost function c is of the form

c(x, a) = cS(x) + cA(a).

In the following, we will present some numerical results for linear costs, cS(x) = x.

We assume that there are only two actions a1, a2 with A(x) = A = {a1, a2} for

all x ∈ S and choose the discounted-cost criterion.2 The infinite state space N0 is

approximated by a finite one, S = {0, ..., N} with N ∈ N big enough. The generators

and the cost function for this finite model are calculated via an algorithm deduced

from [39].

We set N = 100 and λ = 0.1, as well as

• α1 = 0.5, β1 = 0.7, cA(a1) = 0, i.e. action a1 is free with small drift towards 0,

• α2 = 0.5, β2 = 0.9, cA(a2) = 10, i.e. action a2 is costly with higher drift

towards 0.

Both the value iteration and the policy iteration algorithm deliver the optimal policy

u∗ given by

u∗(x) =







a1 for x ≤ 15,

a2 for x > 15,

and the value function illustrated in Figure 1.3. On average, the policy iteration is

approximately 100 times faster than the value iteration.

Relation to other optimization methods

Why is value iteration resp. policy iteration the right ansatz? Is it possible to

find the optimal policy by other common optimization algorithms such as linear

programming or the gradient-descent method? These questions will be answered in

the following.

The problem of computing the optimal policy for a MDP with the discounted-

cost criterion can indeed be formulated as a linear programming problem [14]. Then

the simplex method can be used to calculate the optimal control policy [79]. How-

ever, linear programming does not make use of the special structure that is given

by a Markov control problem [43] such that policy iteration is regarded as the more

efficient approach [31].

2As the state x = 0 is absorbing, the long-term average costs are given by cS(0) = 0 independent

of the chosen action. This is why it only makes sense to consider discounted costs.
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Figure 1.3: Value function Vλ(x). Function of optimal discounted costs for the

controlled population process of Example 1.18. The respective cost function is given

by c(x, a) = cS(x) + cA(a) with cS(x) = x.

As for the application of the gradient-descent method we make the following

consideration. The given optimization problem consists of finding a policy minimiz-

ing the cost functional Jλ resp. J̄ . The impact of the policy onto the cost functional,

however, is quite complex and somehow indirect: The policy determines the genera-

tor and the cost function which enter the cost functional. In general, there might be

no systematic structure in this relationship. Instead, the impact on the generator

and the impact on the cost function can be completely independent of each other.

For the application of the gradient-descend method one would have to assume that,

for each state x ∈ S, the action a = u(x) defines a continuous parameter and that

the cost functional is differentiable with respect to this parameter.

For an illustration, we give an idea of how a gradient-descent could look like for the

2-state-example 1.2. Given the two actions a1, a2, we consider some kind of linear

interpolation: For 0.01 ≤ a ≤ 0.1 define

La =

(

−a a

a −a

)

and c(x, a) = cS(x)+
2

0.1−0.01 · (a− 0.01) such that for a = 0.01 resp. a = 0.1 we get

exactly the generator and the cost function defined in Example 1.2. Calculating the

cost functional Jλ and its gradient for state x2 and all policies delivers Figure 1.4.

Here, the gradient-descent method would deliver the optimal policy u∗(x1) = 0.01,

u∗(x2) = 0.1.

In some sense, the policy iteration approach can be seen as a discrete, point-

wise analogue to the gradient-descent method: Given a policy, the algorithm looks

pointwise (i.e. for each state separately) for a maximal improvement.

We can conclude that, from all mentioned numerical approaches it is the policy

iteration method which is best suited to solve a Markov control problem. In practice,

policy iteration is widely used and shows a satisfying performance [79].
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Figure 1.4: Gradient descent. Cost functional Jλ and its gradient for state x2
and all policies of the 2-state-example 1.2.

So far, we considered Markov decision processes that are completely observable

at all times and permit an instantaneous control adaption. Situations of limited

state information are analyzed in the theory of partially observable Markov decision

processes which will be presented in the following section.

1.3 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) can be seen as a general-

ization of a Markov decision process allowing uncertainty with respect to the state

of the process. While a (standard) Markov decision process is assumed to be com-

pletely observable at all times, the information about the state of a POMDP may

be incomplete. There exist many application areas for POMDPs such as machine

maintenance or quality control.

A lot of research has been done on POMDPs, see for example the survey paper

by Monahan [46]. In the following, we will give a short overview about the theory

of POMDPs for a discrete state space and discrete time, considering the discounted-

cost criterion. In general, the ideas can be transferred to more general state spaces

[49]. In the end of this section, we describe further approaches for Markov control

with incomplete information, particularly in the context of machine maintenance.
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We consider the discrete-time Markov control model

(

S, A, {A(x) : x ∈ S}, {Pa : a ∈ A}, c̃
)

,

see Remark 1.3, where A(x) = A for all x ∈ S. The corresponding Markov decision

process (Xn)n∈N0 will here be called the core process. We assume both S and A to

be finite.

In the theory of POMDPs the states of the core process cannot be observed directly.

Instead, there is another stochastic process (On)n∈N0 associated with (Xn)n∈N0

which takes on values in a denumerable set O called the observation space. The

observation process (On)n∈N0 delivers an indirect information about the core pro-

cess. More precisely, the relation between (Xn)n∈N0 and (On)n∈N0 is defined by an

information rule q : S × O → [0, 1] with

q(x, o) = P(On = o|Xn = x),

i.e. given that the state of the core process is Xn = x ∈ S, an observation o ∈ O
is induced with probability q(x, o). Just like the transition matrix Pa and the cost

function c̃, also the information rule may depend on the action. In this case we

write qa(x, o) for a ∈ A. Moreover, given a ∈ A, let Qa = (qa(x, o))x∈S,o∈O be the

information matrix.

Without loss of generality, we assume that the costs produced by the process are not

observable during the control procedure. Observable costs would give an additional

information about the process and have to be considered as a part of the observation

process [63].

The POMDP can be converted into an equivalent completely observable MDP

by considering the set

Ψ(S) := {ψ ∈ R
|S| :

∑

x∈S

ψ(x) = 1, ψ(x) ≥ 0 ∀x ∈ S}

of probability measures on S as a new state space [55]. To this end, let Hn :=

(ψ0, A0, O1, A1, ..., An−1, On) be the series of observations and chosen actions up

to time n ∈ N, where ψ0 is a given initial distribution on S. Hn represents the

information available at time n ∈ N. For each n ∈ N, the history Hn depends on the

core process (Xk)k=0,...,n up to this time and is therefore a random variable itself.

We define the process (ψn)n∈N of so called information vectors on the new state

space Ψ(S) by

ψn(x) := P(Xn = x|Hn),

where generally P(B|Y ) := E(1B|σ(Y )) for a measurable set B (element of a given

σ-algebra) and a random variable Y . Given ψn as well as An = a and On+1 = o,

the next information vector ψn+1 is determined by Bayes’ formula and the law of
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total probability:

ψn+1(x) = P(Xn+1 = x|ψn, An = a,On+1 = o)

=
P(On+1 = o|Xn+1 = x, ψn, An = a) · P(Xn+1 = x|ψn, An = a)

P(On+1 = o|ψn, An = a)

=
qa(x, o) ·

∑

y∈S Pa(y, x)ψn(y)
∑

ỹ∈S qa(ỹ, o) ·
∑

y∈S Pa(y, ỹ)ψn(y)
=: Tx(ψn|a, o). (1.19)

For notational convenience, we define T (ψ|a, o) := (Tx(ψn|a, o))x∈S (such that

ψn+1 = T (ψn|a, o)) and

γ(o|ψ, a) :=
∑

ỹ∈S

qa(ỹ, o) ·
∑

y∈S

Pa(y, ỹ)ψ(y)

which refers to the denominator in equation (1.19).

The vector ψn summarizes all the information available at time n ∈ N, see

e.g. [7, 63]. As ψn is a function of the (random) history Hn, the series (ψn)n∈N0 is

again a stochastic process. For each sequence a0, a1, ... ∈ A of actions, this process

fulfills the Markov property (see e.g. [30]), i.e. it holds

P(ψn+1 ∈ B|ψ0, ..., ψn, an) = P(ψn+1 ∈ B|ψn, an) ∀n ∈ N0, B ∈ B(Ψ(S)),

where B(Ψ(S)) is the Borel-σ-algebra on Ψ(S). Note that the state space Ψ(S) of

this Markov process is not denumerable anymore.

The cost functional associated with the process (ψn) is defined by

C(ψ, a) :=
∑

x∈S

ψ(x)c̃(x, a) = E
(

c(Xn, a)|ψ
)

,

denoting the expected costs given the information ψ. A (deterministic stationary)

policy is a function

u : Ψ(S)→ A,
where u(ψ) denotes the action to chose when the current information is ψ. The set

of all policies is denoted by U . Given a policy u ∈ U , the system evolves according

to the following procedure, see Figure 1.5 for a schematic representation. Given the

information ψn at time n ∈ N (corresponding to a hidden state Xn = x ∈ S and an

observation On = o ∈ O), an action An = a ∈ A is chosen according to u. We have

to pay the costs C(ψ, a), and the next state Xn+1 of the core process is determined

according to the transition rule Pa. Instead of Xn+1 we get an observation On+1

which is generated by Qa. This observation together with ψn and a determines the

next information ψn+1, and the procedure restarts.

Given a policy u ∈ U and an initial information ψ ∈ Ψ(S), consider the

discounted-cost criterion defined by

Jλ(ψ, u) = E
u
ψ

(

∞
∑

n=0

e−λnC(ψn, u(ψn))

)

, (1.20)
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✻

❄
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u(ψ)

qa(x, ·)
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✲ C(ψ, a)

n→ n+ 1

Figure 1.5: Schematic representation of a POMDP.

where λ > 0 is a discount factor as in Section 1.1. The optimal value function,

defined by

Vλ(ψ) := inf
u∈U

Jλ(ψ, u), ψ ∈ Ψ(S),

fulfills the Bellman equation

Vλ(ψ) = inf
a∈A

{

C(ψ, a) + e−λ
∑

o∈O

Vλ(T (ψ|a, o))γ(o|ψ, a)
}

, (1.21)

see [46]. For a finite action space there exists an optimal policy u∗ [55] which

minimizes the right hand side of (1.21). Other criteria which guarantee the existence

of an optimal policy are given in [30].

A typical example for a POMDP is the following.

Example 1.19 (Quality control/Machine Maintenance). Consider a machine which

can be either in a good condition (state x1) or in a bad condition (state x2). The state

of the machine cannot be observed directly. Instead we get an indirect information

by observing the machine’s output which can have a good quality (observation o1) or

a bad quality (observation o2). There are three possible actions available: a1 stands

for doing nothing (produce without inspection), a2 stands for inspecting the machine,

and a3 stands for repairing the machine. Let the corresponding transition matrices

and information matrices be given by

P1 =

(

1− γ γ

0 1

)

, Q1 =

(

α1 1− α1

1− α2 α2

)

,

P2 =

(

1− γ γ

0 1

)

, Q2 =

(

β1 1− β1
1− β2 β2

)

,

P3 =

(

1 0

1 0

)

, Q3 =

(

1 0

0 1

)

,
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where 0 ≤ γ, α1, α2, β1, β2 ≤ 1. The probability of the machine to deteriorate is

given by γ, while α1, α2 resp. β1, β2 describe the grade of information when doing

nothing resp. when inspecting the machine: For example, α1 = 1, α2 = 0 and

β1 = β2 = 1 means that there is no information for action a1 (doing nothing)

and full information for action a2 (inspecting the machine). The optimal policy

with respect to these parameters and the discounted-cost criterion (1.20) is given in

Figure 1.6. The choice of P3 implies that after repairing the machine it will almost

surely be in a good condition and Q3 represents complete information.
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Figure 1.6: Value function and optimal policy for machine maintenance.

Function Vλ(ψ) of optimal discounted costs and related optimal policy for Example

1.19 given that λ = 0.1, γ = 0.1, α1 = 1, α2 = 0, β1 = β2 = 1 and c(x, a) =

cS(x) + cA(a) with cS(x1) = 0, cS(x2) = 10, cA(a1) = 0, cA(a2) = 2, cA(a3) = 10.

For ψ(x2) < 0.12, which refers to a low probability for the machine to be in a bad

condition, the optimal action to choose is a1 (do nothing); for 0.12 ≤ ψ(x2) < 0.46

the optimal choice is given by a2 (inspect the machine); and for ψ(x2) ≥ 0.46 the

optimal choice is given by a3 (repair the machine).

Numerics

We have seen that a POMDP with state space S can be turned into a completely

observable MDP on the information space Ψ(S). This suggests to apply the algo-

rithms described in Section 1.2 in order to calculate an optimal policy for a POMDP.

The arising difficulty is that the new state space is continuous. One way to handle

this new setting is to simply discretize the set Ψ(S). However, it is not clear how

the discretization should be chosen and under which conditions it delivers a good

approximation of the exact value function resp. optimal policy.
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It is still possible to use dynamic programming for POMDPs. This is due to the fact

that the value function can be approximated arbitrarily closely by piecewise linear

and concave functions and that the value iteration step (see Section 1.2) preserves

these properties [28, 62].3 See Figure 1.6 for an illustration. The concavity of the

value function (as a function of the information ψ) has an intuitive interpretation:

In the “middle” of the information space Ψ(S) we are concerned with a high uncer-

tainty about the true state of the system which prevents from choosing the action

appropriately and results in higher costs. The outer boundaries of Ψ(S), however,

refer to high exactness and allow for adequate control.

A piecewise linear and concave function f can be represented by a finite set V of

|S|-dimensional vectors by writing

f(ψ) = min
v∈V
〈ψ, v〉,

where 〈·, ·〉 again refers to the standard inner product on R
|S|. Each vector v ∈ V

corresponds to the choice of an action, and therefore each step in the value iteration

approach consists of finding a suitable set V. Different algorithms have been devel-

oped to perform this step [9,10,46]. The set V∗ corresponding to the optimal policy

possibly contains an exponential number of vectors which implies an exponential

runtime of the related algorithms. Given the set V∗ (or at least an approximation),

the final step in this approach is to extract the corresponding policy. How this can

be done is described in [28, 33] and others.

Beside the value iteration approach there also exists an ansatz for finding the op-

timal policy by search in policy space. Hansen [28] proposes an algorithm which

clearly outperforms the value iteration in several examples.

In summary one can state that problems of POMDP are more complex to solve

than problems assuming full observability which is not surprising due to the more

complex structure of the control model.

Machine maintenance as a special setting

Different variants of the quality control example 1.19 as a special case of a POMDP

are discussed by several authors. Ross [51] considers the situation given in Example

1.19 with α1 = 1, α2 = 0 (no information without inspection) and β1 = β2 = 1 (full

information with inspection) and discovers that the optimal policy is always of the

form illustrated in Figure 1.7. Note that for the case of imperfect information (i.e.

β1, β2 6= 1) the optimal policy can have a much more complicated structure [46].

Rosenfield [50] generalizes the two-state results presented by Ross to the case

of an arbitrary finite number of states. As a new state space Rosenfield considers

the set of pairs (x, k), where x ∈ S is the last state of the process known exactly to

the controller and k ∈ N0 is the number of time steps since this state was observed.

3The authors consider the problem of maximizing rewards instead of minimizing costs which

implies convexity instead of concavity. We translated their results to our situation of minimizing

costs.
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Figure 1.7: Structure of the optimal policy for machine maintenance. Given

Example 1.19 with α1 = 1, α2 = 0, β1 = β2 = 1, the optimal control policy always

has the indicated structure [51]. If the probability ψ(x2) is smaller than p1 or in

between p2 and p3, the optimal choice of action is a1 (produce without inspection);

for p1 < ψ(x2) < p2 it is recommended to choose a2 (make an inspection); for

ψ(x2) > p3, the optimal choice is given by a3 (repair the machine).

A structure of the optimal policy equivalent to the one of the two-state-example is

discovered. In [72], White gives similar results but for weaker conditions. All of

them consider both the discounted- and the average-cost criterion.

All contributions to this problem of machine maintenance have in common that

the state space exhibits an ordered structure (measuring in some sense the de-

gree of deterioration of the considered object) and that the natural dynamics are

nondecreasing in the sense that the system cannot improve its status without any

intervention by the controller. Especially the last state (failure) is assumed to be

absorbing. Possible interaction consists of sending the system back to the initial

state (repairing).

Continuous-time Markov decision processes with limited state informa-

tion

So far the mentioned literature referred to discrete-time POMDPs. Models with a

continuous time parameter were examined (among others) by the following authors.

Bather [4] describes an optimal stopping problem for a Brownian motion which

cannot be observed directly. Instead, the decision maker may “buy” some incom-

plete information about the process. The problem is converted into a completely

observable control process on the set of normal distributions which is then divided

into three regions corresponding to the choice of possible actions: (i) do not inter-

act, (ii) collect information, (iii) stop the process. The goal is to declare the regions

such that the expected costs (which consist of the total information costs and the

final costs when stopping the process) are minimized. This is done by formulating

partial differential equations which describe the boundaries of the optimal regions.

The author does not give any reference to the theory of POMDPs.

A similar model is given by Anderson and Friedman in [1]. They extend the

theory to situations where – instead of stopping the process – one can bring it back

to the initial state, and consider the case of defective observations.

In [54] Savage studies surveillance problems for production processes. The

considered process is assumed to be a Poisson process (implying continuous time,
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discrete state space) which can be observed by making a costly inspection. After

such an inspection (which is assumed to give perfect information about the state of

the process) it has to be decided whether to let the process continue or to interact by

making a repair which sends the process back to some initial state. In this setting a

policy consists of declaring a continuation region as well as a state dependent time

for the next observation. A recursive equation for the optimal income is given, but

without reference to dynamic programming resp. the Bellman equation.

More recent work has been carried out by Kim [34]. The author considers a

continuous-time process of deterioration similar to the discrete settings of machine

maintenance described above. The system is assumed to be nondecreasing in the set

of states “healthy”, “warning” and “failure” and can be influenced by choosing one of

three actions (do nothing, inspect or interact). A policy is defined as a function of

the probability of being in the warning state, and the optimal policy is characterized

by critical thresholds for this probability. The state of the process is determined by

taking a sample which is only possible at predefined equidistant discrete points in

time. Other recent works considering the inspection times as a part of a maintenance

problem are given by [17, 70] and others.

In [80] a medical context is examined. Here the process of disease detection is

described by considering the three states “healthy”, “having undiagnosed disease”

and “having diagnosed disease”. The goal is to find an optimal arrangement of a

fixed number of examinations within a fixed time interval.

As in the discrete-time setting all these approaches assume a special structure

in the state space and only allow for a restricted type of interaction. The aim

of this thesis is to find a more general setting which avoids the interpretation of

deterioration and repair/replacement in a maintenance problem. To this end, we

will in the following Chapter 2 develop a modified control model for continuous-

time Markov decision processes that can be observed at discrete but flexible points

in time. The state and action space will be free of interpretation, and the dynamics

will have no special structure.



Chapter 2

Markov Control with

Information Costs

A Markov decision process is a stochastic process that can be controlled by manip-

ulating its transition rates within a given framework. The process and its control

produce costs according to a given cost function, and the goal is to find a control

rule which minimizes a fixed cost criterion. How such an optimization problem can

be formulated and solved has been described in Chapter 1. We also discussed situ-

ations of limited state information where the process is not completely observable.

The different approaches to handle such a situation lead to a significant extension

of the state space (compare the theory of POMDPs) or assume the state and action

space to have a special ordered structure.

In this chapter we will introduce a novel model for continuous-time Markov decision

processes on a discrete state space which are not permanently observable. Instead,

each observation of the process produces costs which enter the considered cost func-

tional. The resulting control problem consists of finding for each state not only an

adequate action but also a date for the next examination of its state. The situa-

tion resembles the machine maintenance problems described in Section 1.3, however

we will formulate the problem for a general state and action space without fixing

any special characteristics of the considered dynamics. This general setting enables

both a thorough theoretical analysis and an interesting real-world application in the

medical context (see Chapter 3).

We will first establish in Section 2.1 the modified Markov control model and define

the corresponding control procedure. Of central relevance will be the parameter

kinfo of so called information costs which arise each time the state of the process is

detected. We will reformulate the two optimality criteria of discounted and average

costs for the new setting and give a detailed analysis for both of them in Sections

2.2 and 2.3. This analysis will contain the derivation of a modified Bellman equa-

tion and the calculation of a cost splitting where the total costs are divided into

components of state costs, action costs and information costs. Furthermore, we will

study how the optimal policy and the optimal costs depend on the information cost

parameter kinfo and how deviations from the optimal examination times influence

the overall costs.
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2.1 The Control Model

In line with the notation of section 1.1, we define the Markov control model with

information costs to be a tuple

(

S, A, {A(x) : x ∈ S}, {La : a ∈ A}, c , kinfo
)

. (2.1)

As before, S is the set of states which is assumed to be denumerable. A is a Borel

space of actions and A(x) denote the set of actions available in state x ∈ S. For

simplicity, we assume A(x) = A for all x ∈ S which is no decisive restriction.

Moreover, La is the generator describing the dynamics of the process given action

a ∈ A, fulfilling La(x, y) ≥ 0 for all x 6= y as well as La(x, x) = −
∑

y 6=x La(x, y). We

set la(x) := −La(x, x) and assume supa∈A la(x) < ∞ for all x ∈ S. The function

c : S × A → [0,∞) defines the costs produced by the process per unit of time

depending on the state and the chosen action. The new parameter

kinfo > 0

is a constant number denoting the price for a state observation. That is, each time

we determine the state of the system we have to pay the fee kinfo.

More precisely, the control procedure is the following. Starting with some

(known) state Xt0 = x0 ∈ S at time t0 = 0, one has to choose not only an ac-

tion a ∈ A(x0) but also a time t1 = t0 + τ > t0 for the next state observation.

Within the time interval (t0, t1) the process (Xt)t≥0 evolves according to the gener-

ator La and produces costs according to c(·, a). This evolution and the arising costs

cannot be observed, we only determine the state Xt1 at time t1 by making a test

which produces costs kinfo. Given the state of the process at time t1, the procedure

restarts.

The resulting observation times (tj)j∈N0 which are recursively determined by this

procedure identify the moments in time where the state of the process is observed

and a decision has to be taken. We call the related process of observations (Xtj )j∈N0

the observation process.

The following assumption basically determines the setting and will permit a clear

and comprehensible formulation of the control problem.

Assumption 2.1.

a) The test is assumed to give instantaneous and full information such that the state

of the process at the observation times is known with certainty.

b) During a time interval (tj , tj+1) the action is constant, i.e. it cannot be changed

blindly without making a test to determine the state.

We now define the term “policy” within the new setting. Knowing from the

original Markov control theory that a restriction to deterministic, time homogeneous

policies has no further significance, we directly focus on this class of control rules.
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Definition 2.2 (Markov policy). Given the Markov control model with information

costs (2.1), a deterministic, time homogeneous Markov policy is a function

u : S → A× (0,∞], u(x) = (a(x), τ(x)),

declaring for each state x ∈ S an action a(x) ∈ A as well as a lag time τ(x) ∈ (0,∞]

defining the time length for the next period of hidden progress.

We denote the set of all these policies by U .

We explicitly allow the parameter τ(x) to be infinite. The choice of τ(x) =∞
has a reasonable interpretation: It simply means to make no further tests at all, but

to let the process run under constant control forever. We set

e−λ∞ := 0 and eLa∞ := lim
t→∞

eLat, (2.2)

assuming that this limit exists; otherwise we set eLa∞ := I.4 By this definition, all

analytic expressions will have a straightforward interpretation for cases of infinite

lag times.

In contrast, the value τ(x) = 0 is excluded by the following argument: A vanishing

lag time would mean to immediately repeat a state test, which delivers no further

information but produces additional costs kinfo > 0 and is therefore not reasonable.

Given an initial distribution ν on S, a policy u defines a probability measure P
u
ν

on the set of possible state-action-realizations

{

(Xt, At)t≥0 : Xt ∈ S, At ∈ A ∀t ≥ 0
}

by

• P
u
ν(X0 = x) := ν(x),

• t0 := 0 and tj+1 := tj + τ(Xtj ) for j ∈ N0,

• At := a(Xtj ) for all tj ≤ t < tj+1, tj <∞,

• ∂
∂t
P
u
ν(Xt = x|At = a) =

∑

y∈S La(y, x)P
u
ν (Xt = x|At = a),

where x ∈ S, a ∈ A. Note that the observation times tj are random variables which

may have the value ∞; in this regard we interpret tj +∞ := ∞ for tj <∞ as well

as ∞+∞ :=∞.

Again, we write P
u
x for ν = δx and denote the corresponding expectation values by

E
u
ν resp. Eux.

Figure 2.1 illustrates the controlled process (Xt)t≥0 for a fixed policy u ∈ U .

4In fact, the definition of eLa∞ is of no further significance as this expression will always be

multiplied by e−λ∞ = 0.
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Figure 2.1: Controlled Markov process with information costs. Possible

trajectory of a Markov decision process with information costs given a deterministic

stationary policy u. Starting in a (known) state x ∈ S at time t0, the dynamics of the

process during the time interval [t0, t0+τ(x)) are determined by the generator La(x),

i.e. the process stays in x for some random period of time which is exponentially

distributed with parameter la(x)(x) = −La(x)(x, x) and then jumps to a state y 6=
x with probability

La(x)(x,y)

la(x)(x)
. However, these dynamics are unobserved which is

illustrated by the transparency of the corresponding lines and dots. We only get a

pointwise information about the state of the process at time t1 = t0 + τ(x). Given

this state Xt1 = z, the control is adapted and the procedure restarts.

Optimality criteria

We are interested in formulating optimality criteria which measure not only the

process costs defined by the cost function c but also the costs for making the tests.

While the process costs arise continuously over time and depend on the evolution

of the process, the information costs kinfo are a fixed constant which has to be paid

instantaneously when making a test. As in Section 1.1 we consider discounted costs

and average costs for an infinite time horizon.

a) The expected discounted-cost criterion : Given an initial state x ∈ S and a

discount factor λ > 0, the total expected discounted costs under control u ∈ U
are defined by

Jλ(x, u) := E
u
x









∑

j∈N0
tj<∞

(

∫ tj+1

tj

e−λsc(Xs, a(Xtj )) ds + e−λtj+1kinfo

)









. (2.3)

The corresponding optimal discounted-cost function or value function of dis-

counted costs is given by

Vλ(x) := inf
u∈U

Jλ(x, u). (2.4)
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b) The expected average-cost criterion : Given an initial state x ∈ S, the long-run

expected average costs under control u ∈ U are defined by

J̄(x, u) := lim sup
T→∞

E
u
x









1

T

∑

j∈N0
tj<T

(

∫ tj+1∧T

tj

c(Xs, a(Xtj )) ds + kinfo

)









, (2.5)

where tj+1∧T := min{tj+1, T}. The corresponding optimal average-cost func-

tion or value function of average costs is given by

V̄ (x) := inf
u∈U

J̄(x, u). (2.6)

Note that in both definitions the function c is evaluated in the first argument at

Xs with s running over time, while in the second argument it is evaluated at a(Xtj )

with tj fixed for each interval. This follows from the fact that the state (which we

do not observe during such an interval) changes as usual, while the action stays the

same.

The definition of optimal (resp. ε-optimal) policies is analogous to the one given

in the original setting, see page 10.

Remark 2.3. In the case of finite lag times τ(x) (resulting in finite testing times

(tj)j=0,1,...) we can rewrite the average-cost criterion (2.5) as

J̄(x, u) = lim sup
n→∞

E
u
x





1

tn

n−1
∑

j=0

(

∫ tj+1

tj

c(Xs, a(Xtj )) ds + kinfo

)



 . (2.7)

For infinite tj , however, this expression has no direct interpretation, which motivates

to choose the more general notation given in equation (2.5).

Note further that the choice of the average-cost criterion (2.5) is not self-evident.

Another idea would be to set, as for finite tj,

J̃(x, u) = lim sup
n→∞

E
u
x





1

n

n−1
∑

j=0

1

tj+1 − tj

(

∫ tj+1

tj

c(Xs, a(Xtj )) ds + kinfo

)





which means to first calculate the average costs for each time interval – resulting

in a new cost function depending on state and control – and afterwards calculate

the average over all intervals. It turns out that the formulation of the Bellman

equation in this case is much easier than for the function defined in (2.5): We just

have to consider a discrete-time process jumping between the states according to

the transition probabilities of Pa,τ := exp(Laτ) with a cost function defined by the

average costs of the state. The problem is that in this scheme the total time spent in

one state gets lost – and due to this the proportions of the total times for different

states. That is, we only optimize the average costs and the transition probabilities,

but not the relation of total times. For a “costly” state this can result in long residence

times τ although it would be (judging according to our intuition) better to quickly

switch to a better state.
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Comparison to other control models

Before we start the analysis of the two cost criteria, we briefly explain how the

presented model differs from other models of stochastic control. Regarding the

original Markov control theory, the main difference is given by the observability

of the process and the permanence of interaction: While a standard Markov decision

process is permanently observed and controlled (see e.g. [5,26,48]), the evolution of

the process in the new setting is most of the time hidden to the controller. Only

at single discrete points in time the state is determined and the action is adapted.

This is generated by the additional parameter of information costs kinfo.

This difference in the time scales of the process itself (which is continuous in

time) and its observation and control (which are discrete in time) also separates the

new model from the theory of partially observable Markov decision processes,

see e.g. [33, 46, 63]. As described in Section 1.3, the grade of information about a

POMDP is defined by the chosen action, and the choice of actions takes place on

the same (usually discrete) timescale as the underlying process.

In contrast to the setting of machine maintenance which deals with deterio-

rating systems, our control model (2.1) is not linked to any specific interpretation.

The approaches in the theory of machine maintenance always make use of the spe-

cial structure in the state space and dynamics (see e.g. [38, 51, 72]), such that they

cannot be transferred to our general setting.

Another type of control problem is the so called impulse control, see e.g.

[19, 37, 45]. Congruently with the control procedure in our setting, an impulse

control takes place at single points in time – called the intervention times – while

the underlying dynamics are continuous in time. Choosing these intervention times

is part of the control problem and each interaction produces a fixed amount of

“intervention costs”, just as in our model. However, the intervention times are

allowed to be stopping times with respect to the underlying dynamics – which implies

full information about the process evolution. In other words, the controlled process

is assumed to be completely observable at all times, and the decision whether to

interact or not at some point in time may depend on the state of the process at this

time. Moreover, in a problem of impulse control, the interaction at the intervention

times usually consists of shifting the process to another state. This is motivated

by the typical application in portfolio management where the value of the portfolio

is controlled by selling or buying assets. In our setting, however, the interaction

is given by the choice of an action which determines the future dynamics of the

process.
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2.2 The Discounted-Cost Criterion

Given the Markov control model (2.1) with information cost parameter kinfo, our

aim is now to analyze the discounted-cost criterion

Jλ(x, u) = E
u
x









∑

j∈N0
tj<∞

(

∫ tj+1

tj

e−λsc(Xs, a(Xtj )) ds + e−λtj+1kinfo

)









defined in (2.3). The analysis will be restricted to finite S.

In Section 2.2.1 we will reproduce the results of the original setting presented in

Section 1.1.1: We will show that the new cost functional Jλ(x, u) fulfills a recursion

which can be interpreted as a fix-point equation of a suitable operator. This op-

erator again satisfies special monotonicity properties and can be used to prove the

discounted-cost optimality equation for the new setting. As before, this equation

characterizes not only the value function of minimal costs but also the optimal pol-

icy. We will discuss the existence of an optimal policy as well as its determination

by iterative methods.

The further analysis (Sections 2.2.2-2.2.4) has no analogue in the original setting;

instead, the information cost parameter kinfo will play an essential role. First of all,

we will calculate a “cost splitting” of the value function separating the optimal costs

according to their origins. Especially, we are interested in the “net costs” – which

are the total costs without the information costs caused by kinfo – as these are the

basis for a comparison to the optimal costs of the original control problem.

Then we will analyze how the value function and the optimal policy depend on the

parameter kinfo: Is there some kind of monotonicity and/or continuity regarding the

respective dependency?

Upon answering this question, we will close by a short sensitivity analysis for the lag

time parameter τ , checking how slight deviations from the optimal lag time influence

the costs.

2.2.1 The Discounted-Cost Optimality Equation

Adapting the procedure of Section 1.1.1, we first investigate the cost functional

Jλ(x, u) for a given policy u ∈ U , in order to then consider the value function of

optimal costs and the related optimal policies.

Cost functional Jλ(x, u) for a given policy u ∈ U

For ease of notation we introduce a new cost function

C(x, a, τ) := E
a
x

(∫ τ

0
e−λsc(Xs, a) ds

)

denoting the expected costs during the time interval (0, τ), τ ∈ (0,∞], of hidden

progress when the process starts in x ∈ S and action a ∈ A is applied. By this
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definition we can write the cost functional given in (2.3) as

Jλ(x, u) = E
u
x









∑

j∈N0
tj<∞

e−λtj
(

C(Xtj , a(Xtj ), τ(Xtj )) + e
−λτ(Xtj

)
kinfo

)









. (2.8)

This notation reveals the discrete nature of the observation process (Xtj )j∈N0 .

For a fixed policy u ∈ U we consider Jλ(x, u) as a function of x and use the notation

Juλ (x) := Jλ(x, u).

Similar to the results given in Section 1.1.1 we can decompose the sum in (2.8) to

get a recursive equation for Juλ and directly obtain

Lemma 2.4. Given a policy u ∈ U , the cost functional Juλ fulfills the recursion

Juλ (x) = C(x, a(x), τ(x)) + e−λτ(x)
(

kinfo + (eLa(x)τ(x)Juλ )(x)
)

. (2.9)

Proof. Straightforward decomposition of Juλ .

The question is whether Juλ is uniquely characterized by this recursion. As we

fixed the state space S to be finite, the answer is yes. To see this, we analyze an

operator Tu : R|S| → R
|S| similar to the one considered in Section 1.1.1.

Given an action a ∈ A and a lag time τ ∈ (0,∞], define the operator Ta,τ : R|S| →
R
|S| by

(Ta,τJ)(x) :=







C(x, a, τ) + e−λτ
(

kinfo + (eLaτJ)(x)
)

, if τ <∞,

C(x, a,∞), if τ =∞.
(2.10)

In line with this, we define the operator Tu : R
|S| → R

|S| for a policy u(x) =

(a(x), τ(x)) by

(TuJ)(x) :=
(

Tu(x)J
)

(x) =
(

Ta(x),τ(x)J
)

(x). (2.11)

Moreover, let the transition matrix Pa,τ ∈ R
|S|,|S| for an action a ∈ A and a lag

time τ ∈ (0,∞] be defined by

Pa,τ (x, y) :=







(

eLaτ
)

(x, y), if τ <∞,

limt→∞

(

eLa·t
)

(x, y), if τ =∞.
(2.12)

For a policy u ∈ U , define the transition matrix Pu by

Pu(x, y) := Pu(x)(x, y) = Pa(x),τ(x)(x, y). (2.13)

This transition matrix defines the dynamics of the observation process (Xtj )j∈N0

given that the underlying process (Xt)t≥0 is steered by the policy u.
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By this notation, equation (2.9) can be seen as a fix-point equation, namely

Juλ = TuJ
u
λ .

Again, we can argue that the function Juλ is uniquely characterized by this equation

because the operator Tu is contractive.

Lemma 2.5. For every policy u ∈ U , the operator Tu defined in (2.11) is a con-

traction on (R|S|, || · ||∞).

Proof. For J, J̃ ∈ R
|S| and α := maxx∈S e

−λτ(x) (satisfying 0 ≤ α < 1) it holds that

||TuJ − TuJ̃ ||∞ = max
x∈S

∣

∣

∣(TuJ)(x) − (TuJ̃)(x)
∣

∣

∣

= max
x∈S

∣

∣

∣

(

e−λτ(x)eLa(x)τ(x)(J − J̃)
)

(x)
∣

∣

∣

≤ α ·max
x∈S

∣

∣

∣

(

eLa(x)τ(x)(J − J̃)
)

(x)
∣

∣

∣

= α ·max
x∈S

∣

∣

∣

(

Pu(J − J̃)
)

(x)
∣

∣

∣

= α · ||Pu(J − J̃)||∞
≤ α · ||J − J̃ ||∞,

where the last step follows from the fact that Pu is a stochastic matrix. Note that,

by e−λ∞ := 0, this calculation is valid for the case τ(x) = ∞ for one (or several)

x ∈ S, as well.

In order to find a compact expression for Juλ regarded as a vector in R
|S|, we

introduce some notations that will be used again throughout this chapter.

Given a policy u = (a(x), τ(x)), define the discount vector eτ ∈ R
|S| by

eτ (x) :=







e−λτ(x), if τ(x) <∞,

0, if τ(x) =∞,
(2.14)

as well as a diagonal matrix Dτ ∈ R
|S|,|S| by

Dτ (x, x) := eτ (x) and Dτ (x, y) := 0 for x 6= y. (2.15)

For the optimal policy u∗ = (a∗(x), τ∗(x)) we write eτ∗ resp. Dτ∗ .

Lemma 2.6. Given a policy u ∈ U , the corresponding cost functional Juλ ∈ R
|S| is

given by

Juλ = (I −DτPu)
−1(Cu + kinfoeτ ), (2.16)

where Cu(x) := C(x, a(x), τ(x)) for all x ∈ S and u(x) = (a(x), τ(x)).
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Proof. Recursion (2.9) can be written in the form

Juλ = Cu + kinfoeτ +DτPuJ
u
λ ,

which is equivalent to

(I −DτPu)J
u
λ = Cu + kinfoeτ .

Now the matrix I−DτPu is invertible by the following argumentation. If it was not

invertible, the equation

(I −DτPu)v = 0

would have a solution v ∈ R
|S| 6= 0. We write v = DτPuv and note that for those

states x ∈ S with τ(x) = ∞ it holds Dτ (x, y) = 0 for all y ∈ S which delivers

v(x) = 0. Hence, we can assume τ(x) <∞ for all x ∈ S; otherwise we consider only

those components of the equation referring to states with finite lag time. Now, as

Dτ is a diagonal matrix with diagonal entries 0 < e−λτ(x) < 1, its inverse D−1
τ exists

and is again diagonal with D−1
τ (x, x) = eλτ(x) > 1. We write Puv = D−1

τ v and take

the maximum norm on both sides (which is finite because S is finite). As Pu is a

transition matrix, the entries of Puv are convex combinations of the entries of v, such

that ||Puv||∞ ≤ ||v||∞ holds. On the other hand, it holds that ||D−1
τ v||∞ > ||v||∞,

as each entry of v is multiplied by a constant larger than 1. Together we get

||v||∞ ≥ ||Puv||∞ = ||D−1
τ v||∞ > ||v||∞,

a contradiction to v 6= 0.

Taking the inverse of I −DτPu completes the proof.

The properties of the operator Tu considered in Section 1.1.1 are also valid for

the operator Tu defined in (2.11). Along the lines of Lemma 1.7, we formulate

Lemma 2.7. If a function J on S fulfills

J(x) ≥ (TuJ)(x) ∀x ∈ S, (2.17)

then J(x) ≥ Jλ(x, u) ∀x ∈ S.

Proof. Analogous to the proof of Lemma 1.7.

Again, it is evident that Tu is a monotone operator, such that the sequence of

functions defined by

J0 := 0, Jn+1 := TuJn for n ≥ 0

is non-decreasing with Jn(x)
n→∞−→ Jλ(x, u) for all x ∈ S.



2.2. THE DISCOUNTED-COST CRITERION 53

Optimal policy and value function

The preparatory work enables to directly reproduce the results for optimal policies

from Section 1.1.1 in the new setting and the value function Vλ(x) = infu∈U Jλ(x, u)

defined in (2.4).

Theorem 2.8 (Discounted cost optimality equation/Bellman equation). The value

function Vλ satisfies the recursion

Vλ(x) = inf
a∈A,τ∈(0,∞]







C(x, a, τ) + e−λτ



kinfo +
∑

y∈S

Pa,τ (x, y)Vλ(y)











∀x ∈ S.

(2.18)

Proof. Analogous to the proof of Theorem 1.8: Equation (2.18) can be written as

Vλ(x) = infa∈A,τ∈(0,∞] (Ta,τVλ) (x). For an arbitrary u ∈ U it holds that Juλ (x) ≥
Vλ(x) ∀x ∈ S and, as Ta,τ is a monotone operator for each a ∈ A and τ ∈ (0,∞],

we get

Juλ (x) = (Tu(x)J
u
λ )(x) ≥ (Tu(x)Vλ)(x) ≥ inf

a∈A,τ∈(0,∞]
(Ta,τVλ)(x).

This implies

Vλ(x) = inf
u∈U

Juλ (x) ≥ inf
a∈A,τ∈(0,∞]

(Ta,τVλ)(x).

On the other hand, assuming Vλ(x
∗) > infa∈A,τ∈(0,∞](Ta,τVλ)(x

∗) for an x∗ ∈ S,

yields

Vλ(x) = inf
a∈A,τ∈(0,∞]

(Ta,τVλ)(x) + ε(x) ∀x ∈ S,

where ε(x) ≥ 0 for all x ∈ S and ε(x∗) > 0. Depending on x we can choose an

action a(x) and a lag time τ(x) ∈ (0,∞] such that

Vλ(x) ≥ (Ta(x),τ(x)Vλ)(x) +
ε(x)

2

= C(x, a, τ) +
ε(x)

2
+ e−λτ



kinfo +
∑

y∈S

Pa,τ (x, y)Vλ(y)





=: (T̃uVλ)(x),

where T̃u is an operator referring to a new cost function C̃(x, a, τ) := C(x, a, τ)+ ε(x)
2 .

By C̃(x∗, a, τ) > C(x∗, a, τ) we get

J̃λ(x
∗, u) = E

u
x∗









∑

j∈N0
tj<∞

e−λtj
(

C̃(Xtj , a(Xtj ), τ(Xtj )) + e
−λτ(Xtj

)
kinfo

)









> Jλ(x
∗, u)

for the cost functional determined by C̃ and T̃u. By Lemma 2.7 we can deduce

Vλ(x
∗) ≥ J̃λ(x∗, u) > Jλ(x

∗, u), in contradiction to Vλ(x
∗) = infu∈U Jλ(x

∗, u).
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Equation (2.18) characterizes not only the value function Vλ, but also the optimal

policy, as long as the infimum can be replaced by a minimum which will be assumed

in the following theorem.

Theorem 2.9. Suppose that there exists a policy u∗(x) = (a∗(x), τ∗(x)) ∈ U which

attains the minimum in the Bellman equation (2.18), i.e.

Vλ(x) = C(x, a∗(x), τ∗(x)) + e−λτ
∗(x)



kinfo +
∑

y∈S

Pa∗(x),τ∗(x)(x, y)Vλ(y)



 (2.19)

= min
a∈A,τ∈(0,∞]







C(x, a, τ) + e−λτ



kinfo +
∑

y∈S

Pa,τ (x, y)Vλ(y)











∀x ∈ S.

Then u∗ is discounted-cost optimal, i.e. it holds Vλ(x) = Jλ(x, u
∗) for all x ∈ S.

Proof. Analogous to the proof of Theorem 1.10, using of Lemma 2.7 instead of

Lemma 1.7.

Let us again (as in Chapter 1) assume A to be finite. By the lag time parameter

τ the set of policies in our new setting is extended from the discrete set AS to the

uncountable set (A × (0,∞])S . This means that even for finite state and action

spaces the existence of an optimal policy given the cost criterion Jλ(x, u) is not self-

evident. Fortunately, we can observe that the cost functional Jλ(x, u) is a continuous

function of the lag times τ(x) determined by the policy u, see Lemma 2.10. Noting

further that

lim
τ(x)→0

Jλ(x, u) =∞ ∀x ∈ S,

which is due to kinfo > 0, we can locate a lower bound ε > 0 for the optimal lag

times. The continuity of Jλ(x, u) together with the compactness of [ε,∞] guarantees

– for finite A – the existence of a policy u∗ ∈ U with Jλ(x, u
∗) = minu∈U Jλ(x, u).

Lemma 2.10 (Continuity of Jλ(x, u) with respect to τ(x)). For all x ∈ S and

a ∈ A, the cost functional Jλ(x, u) of a given policy u(x) = (a(x), τ(x)) is continuous

with respect to the lag time parameter τ(x) ∈ (0,∞].

Proof. The continuity of Jλ(x, u) with respect to τ = τ(x) follows from the conti-

nuity of the expressions e−λτ , eLaτ and C(x, a, τ) which are the τ -dependent com-

ponents in

Juλ = (I −DτPu)
−1(Cu + kinfoeτ ),

compare Lemma 2.6 and the definitions given in (2.12) and (2.14). Especially, the

continuity at τ(x) =∞ follows from the definitions given in (2.2).

Note that, instead of assuming A to be finite in order to guarantee the existence

of an optimal policy, we can use Assumption 1.11 or any other constraints which

ensure the existence of an optimal policy in the original setting.
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Numerical realization

From

(T ∗J)(x) := min
a∈A,τ∈(0,∞]

(Ta,τJ)(x)

and V0 = 0, Vn+1 = T ∗Vn (n ∈ N) we get a nondecreasing sequence of functions

converging to the value function Vλ and defining implicitly a sequence of policies

converging to the optimal policy. The justifying argumentation is analogous to

the proof of Theorem 1.12. This directly delivers a value iteration approach to

numerically determine the optimal policy of the considered Markov control problem

with information costs.

Likewise, the policy iteration algorithm described in Section 1.2 can be transferred

to the new framework which yields

The discounted-cost policy iteration algorithm:

1. Pick an arbitrary u ∈ U . Let k = 0 and u0 := u.

2. (Policy evaluation) Obtain Jkλ = (I −DτPu)
−1(Cu + kinfoeτ ).

3. (Policy improvement) For each x ∈ S calculate

m(x) := min
a∈A,τ∈(0,∞]

(

Ta,τJ
k
λ

)

(x)

and set (ak(x), τk(x)) := argmina∈A,τ∈(0,∞]

(

Ta,τJ
k
λ

)

(x).

Define uk+1 = (ak+1, τk+1) as follows:

uk+1(x) :=







(ak(x), τk(x)), if m(x) < Jkλ (x),

uk(x), if m(x) = Jkλ (x).

4. If uk+1 = uk, then stop. Otherwise increment k by 1 and return to Step 2.

It should be noticed that the policy improvement step now contains a mini-

mization with respect to the continuous parameter τ ∈ (0,∞] of lag times. One

approach to numerically perform this step is to simply discretize the domain (0,∞]

of the lag time parameter τ . In many real-world applications, the lag time param-

eter naturally exhibits some kind of discrete quality given by the considered time

unit (years/days/hours/seconds ...). In such a case, an arbitrarily precise placing of

interaction times might not be possible, see for example the application described in

Chapter 3. This naturally suggests to consider discrete lag times. Such a discretiza-

tion depending on the given problem strongly simplifies the policy improvement

step. All numerical calculations within this work are based on such a discretization

and always showed a satisfying performance.

Still, the question is whether there exist other numerical approaches (other than

policy iteration) which are suited to determine the optimal policy within the new

setting of Markov control with information costs. The optimization problem con-

sists of minimizing the cost functional Juλ over the domain of policies given by



56 CHAPTER 2. MARKOV CONTROL WITH INFORMATION COSTS

(A× (0,∞])S . As we consider finite sets A of actions, this domain has both discrete

and continuous components. However, all types of continuous optimization meth-

ods (like the gradient descent method, Newton’s method or convex programming)

require the underlying domain over which they optimize to be connected subsets of

R
n (n ∈ N) [3, 8, 15]. These methods assume the objective function to be differen-

tiable and/or convex on the given domain which precludes from considering discrete

variables. For methods of discrete optimization, on the other hand, it is not clear

how to deal with the continuous lag time parameter τ ∈ (0,∞].

This means that these methods are not able to replace the policy iteration algorithm.

Instead, they can be combined with the policy iteration approach by applying them

in each policy improvement step. For example, one could use the gradient descent

method in order to determine the minimum with respect to the lag time parameter

τ for fixed a ∈ A. However, as we will see in Section 2.2.4, the sensitivity of the

cost functional with respect to the lag time parameter can be very low which would

imply a slow convergence of the gradient descent method.

In summary, we can state that – as long as state and action space are not too

large – the presented policy iteration combined with a discretization of the lag time

parameter is totally suited to numerically calculate the optimal control policy for

a Markov decision process with information costs. In this regard, also multi-level

approaches could help to efficiently calculate the optimal lag time τ for fixed a ∈ A
by combining different discretization levels for the set (0,∞].

Several examples will illustrate our results.

Example 2.11 (Two states). Once again consider the 2-state-example 1.2 intro-

duced on page 9 with S = {x1, x2}, A = {a1, a2},

L1 =

(

−0.01 0.01

0.01 −0.01

)

, L2 =

(

−0.1 0.1

0.1 −0.1

)

and c(x, a) = cS(x)+ cA(a), where cS(x1) = 0, cS(x2) > 0, cA(a1) = 0, cA(a2) > 0.

The optimal policy in the original setting (i.e. assuming full observability of the

process) for cS(x2) = 10 and cA(a2) = 2 was given by u∗(x1) = a1 and u∗(x2) = a2,

resulting in the value function Vλ(x1) = 5.71, Vλ(x2) = 62.86, compare Table 1.1.

Now we assume that for each observation of the process we have to pay a fee kinfo > 0.

One can expect the optimal policy to have the following form: Being in state x1 one

chooses action a1 for some time period τ(x1). Then a test determines the actual

state. If this state is x2 one chooses action a2 for another time period τ(x2) in order

to quickly return to state x1. As action a2 is more expensive and the dynamics given

generator L2 are faster, it should hold τ(x1) > τ(x2).

We calculate the optimal policy and the corresponding value function for different

values of cS(x2), cA(a2), kinfo, λ by the presented policy iteration algorithm. The

results are given in Table 2.1.

One can observe that increasing the information costs kinfo leads to longer optimal

lag times for both states (compare the first two rows), while increasing the action

costs cA(a2) results in a larger value of τ∗(x1) combined with a smaller value of
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cS(x2) cA(a2) kinfo λ a∗(x1) a∗(x2) τ∗(x1) τ∗(x2) Vλ(x1) Vλ(x2)

10 2 1 0.1 a1 a2 11.3 1.8 7.78 69.77

10 2 2 0.1 a1 a2 19.7 2.6 8.2 72.3

10 3 1 0.1 a1 a2 13.7 1.6 8.0 75.5

5 2 1 0.1 a1 a2 46.6 2.1 4.2 42.0

10 2 1 0.5 a1 a1 ∞ ∞ 0.4 19.6

10 2 10 0.1 a1 a2 ∞ ∞ 8.3 86.7

Table 2.1: Parameter dependent optimal policy and value function. This

table shows the optimal policy for the 2-state-example 2.11 and different values of

cS(x2), cA(a2), kinfo and λ, given the discounted-cost criterion. In state x1 (resp.

x2) one has to choose action a∗(x1) (resp. a∗(x2)) for a time period τ∗(x1) (resp.

τ∗(x2)) which results in the value function Vλ given by Vλ(x1), Vλ(x2). Advice:

Compare each row to the first one.

τ∗(x2) (compare rows 1 and 3). In both cases the value function increases for both

states. Decreasing the state costs cS(x2) also increases the optimal lag times but

decreases the value function (compare row 4 to row 1). For a “high” discount factor

λ = 0.5, state testing is not profitable at all (τ∗(x1) = τ∗(x2) = ∞, see row 5).

Instead, the strong discount of future costs eases the damage caused by being in state

x2 such that a quick leaving is not necessary anymore (a∗(x2) = a1). A complete

omission of state testing is also caused by high information costs kinfo = 10, however

in this case we get a∗(x2) = a2 (see row 6).

In the following, we extend the 2-state-model by adding an intermediate state xI
lying “in between” the two state x1 and x2, compare Figure 2.2.

Example 2.12 (Three states). We take the 2-state-model (Example 2.11) and add

an intermediate state xI which represents the transition area. This state xI gets the

same cost value as state x1, i.e. cS(xI) = cS(x1) = 0, but higher exit rates. When

interpreting x1 as the “good” state and x2 as the “bad” state, then the new state

xI is still “good”, but transitions from xI to the “bad” state x2 become pretty likely.

Finding the process in state xI stands for ringing the alarm bell: We need to keep

the process from switching into the “bad”/costly state x2 where switching back to xI
becomes difficult. The goal is to compare the 3-state-model to the 2-state-model. We

would expect an improvement of the values (i.e. lower costs for the optimal policy)

because of the warning character of the intermediate state.

Given the original generators L1, L2 of the 2-state-model and some new tran-

sition rates ra(x1, xI), ra(xI , x1) between the states x1 and xI (which indicate how

much the states xI and x1 are connected), we want to find a transition rate ra(xI , x2),

between xI and x2 such that the equilibrium distribution in x2, comparing the new

3-state-model to the original 2-state-model, stays the same. It is easy to check that

one has to choose

ra(xI , x2) = la(x1, x2) ·
ra(x1, xI) + ra(xI , x1)

ra(x1, xI)
.
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Figure 2.2: 3-state-example. Action a2 increases the transition rates between the

states x1, xI and x2, which is indicated by the thickness of the corresponding arrows.

The new generators are then given by

L̃a =





−ra(x1, xI) ra(x1, xI) 0

ra(xI , x1) −ra(xI , x1)− ra(xI , x2) ra(xI , x2)

0 la(x2, x1) −la(x2, x1)



 .

We consider the concrete values from the first line of Table 2.1 in Example 2.11 and

calculate the optimal policy of the new 3-state-model for different transition rates

between x1 and xI . Choosing r1(x1, xI) = 0.05, r2(x1, xI) = 0.5, r1(xI , x1) = 0.1,

r2(xI , x1) = 1 we get

L̃1 =





−0.05 0.05 0

0.1 −0.13 0.03

0 0.01 −0.01



 , L̃2 =





−0.5 0.5 0

1 −1.3 0.3

0 0.1 −0.1



 ,

and the optimal policy is given by

a∗(x1) = a1, a∗(xI) = a1, a∗(x2) = a2,

τ∗(x1) = 17.8, τ∗(xI) = 6.4, τ∗(x2) = 1.8,

with the value function

Vλ(x1) = 4.5, Vλ(xI) = 12.9, Vλ(x2) = 72.6.

Comparing this to the original values of the 2-state-model (τ∗(x1) = 11.3, τ∗(x2) =

1.8, Vλ(x1) = 7.78, Vλ(x2) = 69.77), we can see that for state x1 the optimal time τ

grows and the value function decreases, while for state x2 the time stays the same and

the value function increases. The values for new state xI are arranged in between.

The increase in Vλ(x2) is due to the fact that when leaving state x2 the process does

not directly enter the (more or less) “safe” state x1. Instead, it reaches the transition

area xI where a return to x2 is more likely.

By increasing the transition rates ra between x1 and xI , the results converge to

the original numbers: Choosing for example r1(x1, xI) = 100, r2(x1, xI) = 1000,

r1(xI , x1) = 100, r2(xI , x1) = 1000 results in

L̃1 =





−100 100 0

100 −100.02 0.02

0 0.01 −0.01



 , L̃2 =





−1000 1000 0

1000 −1000.3 0.3

0 0.1 −0.1



 ,
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and the optimal policy is given by

a∗(x1) = 1, a∗(xI) = 1, a∗(x2) = 2,

τ∗(x1) = 11.3, τ∗(xI) = 11.3, τ∗(x2) = 1.8,

with the value function

Vλ(x1) = 7.8, Vλ(xI) = 7.8, Vλ(x2) = 69.8.

The state xI looses its role of an intermediate state and merges with state x1.

In order to learn more about the possible structure of the optimal policy and the

value function, we reconsider the population process that was introduced in Sec-

tion 1.2 as a third example .

Example 2.13 (Controlled Population (cont.)). We consider again the controlled

birth-death-process described in Example 1.18, i.e. the state of the process is given

by the number of individuals and the goal is to decrease the population size. This

time, we assume that the process cannot be observed for free. Instead, each observa-

tion produces costs kinfo = 1. Let the other parameters be the same as in Example

1.18. We calculate the optimal policy for two kinds of cost functions cS : linear costs

cS(x) = x and quadratic costs cS(x) = x2. The results are shown in Figure 2.3 and

2.4.
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Figure 2.3: Optimal policy for controlled population and cS(x) = x. Given

the information that the process from Example 2.13 is at time t in state x, one has

to choose action a∗(x) (shown in panel A) for a time period τ∗(x) (shown panel B).

The next information is taken at time t + τ∗(x). The related optimal discounted

costs are given by Vλ(x) (shown in panel C). For x ∈ {0, ..., 19} we get τ∗(x) =∞.

As one can see – and as one would expect –, the optimal policy is in both cases

of the form a∗(x) = a1 ∀x ≤ x∗ and a∗(x) = a2 ∀x > x∗ for some critical state

x∗ ∈ S. That is, the more expensive action a2 which increases the death rate, is
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applied whenever the population size exceeds a fixed number. For quadratic costs

(x∗ = 3) this critical state is smaller than for linear costs (x∗ = 19). While the

optimal lag times τ∗(x) are monotonously increasing in x for states x > x∗, they

are infinite (given linear costs) resp. decreasing (given quadratic costs) for states

x ≤ x∗.
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Figure 2.4: Optimal policy for controlled population and cS(x) = x2. Given

the information that the process in Example 2.13 is at time t in state x, one has to

choose action a∗(x) (shown in panel A) for a time period τ∗(x) (shown in panel B).

The next information is taken at time t + τ∗(x). The related optimal discounted

costs are given by Vλ(x) (shown in panel C). It is τ∗(0) =∞.

2.2.2 Cost Splitting for Discounted Costs

Given the Markov control model with information costs (2.1), an evident question is

how the corresponding value function is related to the value function of the original

control problem (with complete observability). In the new setting, the value function

contains not only the process costs (defined by the cost function c) but also the

information costs induced by kinfo under optimal control. Therefore, in order to

carry out a comparison, we initially have to calculate the net costs for the new

setting, which are the total expected discounted costs without the information costs:

Jnet(x, u) := E
u
x









∑

j∈N0
tj<∞

∫ tj+1

tj

e−λsc(Xs, a(Xtj )) ds









.

Especially, we are interested in the net costs under optimal control u∗,

Vnet(x) := Jnet(x, u
∗).
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In line with this, the information costs under optimal control are given by

Vinfo(x) := E
u∗

x









∑

j∈N0
tj<∞

e−λtj+1kinfo









. (2.20)

Remember that the observation times (tj)j∈N0 are random variables with a distri-

bution determined by the initial state x ∈ S and the policy u∗.

Now we can split up the value function Vλ into two parts:

Vλ = Vnet + Vinfo.

The goal is to calculate this function Vnet by means of the value function Vλ and

the optimal policy u∗.

A decomposition of the sum in equation (2.20) directly yields the recursion

Vinfo(x) = e−λτ
∗(x)kinfo + e−λτ

∗(x)
∑

y∈S

Pu∗(x, y)Vinfo(y). (2.21)

From this we can deduce the following

Lemma 2.14 (Information costs). For the information costs under optimal control

it holds

Vinfo = kinfo(I −Dτ∗Pu∗)
−1eτ∗ ,

where I ∈ R
|S|,|S| is the identity matrix.

Proof. Equivalent to the proof of Lemma 2.6.

That is, once we know the optimal policy, we can calculate the information costs

Vinfo and the net costs Vnet.

A further splitting up of the value function is possible if the cost function c is of the

form

c(x, a) = cS(x) + cA(a),

which was the case in several of the considered examples. This means that the costs

induced by the state are independent of the costs induced by the chosen action. It

suggests itself to define the action costs under optimal control u∗(x) = (a∗(x), τ∗(x))

by

VA(x) := E
u∗

x









∑

j∈N0
tj<∞

∫ tj+1

tj

e−λscA(a
∗(Xtj )) ds









and the state costs under optimal control u∗ by

VS(x) := E
u∗

x









∑

j∈N0
tj<∞

∫ tj+1

tj

e−λscS(Xs) ds









.
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Given this notation, it is Vnet = VS + VA as well as

Vλ = VS + VA + Vinfo.

For the function VA of optimal action costs it holds

VA(x) =

∫ τ∗(x)

0
e−λscA(a

∗(x)) ds + e−λτ
∗(x)

∑

y∈S

Pu∗(x, y)VA(y)

=
1

λ
(1− e−λτ∗(x))cA(a∗(x)) + e−λτ

∗(x)
∑

y∈S

Pu∗(x, y)VA(y), (2.22)

which results in

Lemma 2.15 (Action costs). For the action costs VA under optimal control it holds

VA =
1

λ
(I −Dτ∗Pu∗)

−1(I −Dτ∗)c
∗
A,

where c∗A ∈ R
|S| is defined by c∗A(x) = cA(a

∗(x)) for all x ∈ S.

Proof. The recursion (2.22) can be written as

VA =
1

λ
(I −Dτ∗)c

∗
A +Dτ∗Pu∗VA.

This directly leads to

(I −Dτ∗Pu∗)VA =
1

λ
(I −Dτ∗)c

∗
A

and

VA =
1

λ
(I −Dτ∗Pu∗)

−1(I −Dτ∗)c
∗
A.

The fact that the matrix I−Dτ∗Pu∗ is invertible was shown in the proof of Lemma 2.6.

Having deduced an analytical formula for both the information costs and the

action costs under optimal control, we want to do the same for the optimal state

costs VS . By a decomposition we get

VS(x) = E
u∗

x

(

∫ τ∗(x)

0
e−λscS(Xs) ds

)

+ e−λτ
∗(x)

∑

y∈S

Pu∗(x, y)VS(y), (2.23)

and we get

Lemma 2.16 (State costs). For the state costs VS under optimal control it holds

VS = (I −Dτ∗Pu∗)
−1H cS

with H ∈ R
|S|,|S| defined by

H(x, y) :=
(

La∗(x) − λI
)−1

(

e(La∗(x)−λI)τ
∗(x) − I

)

(x, y), x, y ∈ S.
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Proof. For the first summand in (2.23) we have

E
u∗

x

(

∫ τ∗(x)

0
e−λscS(Xs) ds

)

=

∫ τ∗(x)

0
e−λs

(

eLa∗(x)scS
)

(x) ds

=

∫ τ(x)

0

(

e(La∗(x)−λI)scS

)

(x) ds

=
[

(La∗(x) − λI)−1
(

e(La∗(x)−λI)τ
∗(x) − I

)

cS

]

(x).

By the definition of the matrix H this means

VS = H cS +Dτ∗Pu∗VS ,

and

(I −Dτ∗Pu∗)VS = H cS .

Taking the inverse of I −Dτ∗Pu∗ (compare again the proof of Lemma 2.6) proves

the statement.

For the sake of completeness we note a compatible analytic expression for the

net costs Vnet under optimal control.

Corollary 2.17 (Net costs). For the net costs Vnet = VS + VA it holds

Vnet = (I −Dτ∗Pu∗)
−1Cu∗ .

Figure 2.5 illustrates the cost splitting for the controlled population from Ex-

ample 2.13 with linear costs cS(x) = x.

Throughout this section we considered the optimal policy u∗ and formulated the

cost splitting for the corresponding optimal costs. Of course, such a cost splitting

can also be done for any non optimal policy u ∈ U with respect to the function Juλ
of total discounted costs under this policy. The analysis is completely analogous

and delivers the same analytic expressions for all parts of the cost splitting.

The presented cost splitting is by itself an interesting tool to analyze the struc-

ture of the value function for a given control problem. For instance, within the

medical application presented in Chapter 3 the state costs will be associated with

the health damage of a patient. In this case, it is of fundamental interest to extract

the state costs from the total costs in order to assess the impact of a medical therapy

on the health status of the patient.

As another advantage, we are now able to make an unbiased comparison to the case

of cost-free information, which will be done in the following.

Comparison to the original Markov control problem

Our intention is to compare the value function of a given Markov control problem

with information costs to the value function of the corresponding original Markov

control problem. In order to get a first insight, we consider the 2-state-example 2.11
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Figure 2.5: Cost splitting for controlled population and cS(x) = x. The

value function Vλ for Example 2.13 (compare Figure 2.3) is divided into its compo-

nents VS (blue), VA (green) and Vinfo (red). For x ∈ {0, ..., 19} the information and

action costs vanish due to the fact that τ∗(x) =∞ and a∗(x) = a1 with cA(a1) = 0

for those x.

and calculate the cost splitting for the value function of both problems. To this end,

we note that in the original control problem the state costs under optimal control

u∗ are given by

(λI − Lu∗)−1cS ,

while the action costs under optimal control u∗ are given by

(λI − Lu∗)−1c∗A,

where c∗A ∈ R
|S| is defined by c∗A(x) := cA(u

∗(x)) (keeping in mind that for the

original control problem a deterministic policy is of the form u : S → A). The

results are given in Figure 2.6.

We can see that for the 2-state-example the optimal net costs (Vnet = VS + VA)

of the control problem with information costs clearly exceed the optimal costs of the

original control problem which coincides with our intuition: It should be clear that

a continuous interaction without information costs can only lead to better results.

Nevertheless, we will in the following try to give an explanation of this relation.

First of all note that a policy in the original setting cannot that easily be ex-

pressed in terms of the new definition, i.e. by a tuple (a(x), τ(x)). One would have

to set τ(x) = 0 for all x ∈ S in order to obtain a continuous interaction without

time delay; this, however, cannot be handled in the new setting. The idea is to

find a superior definition for the term “policy” which fits both the original and the

information cost model.

This can be done by assigning to each state x ∈ S a tuple (a(x),T (x)), where a(x)
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Figure 2.6: Cost splitting for the 2-state-example. The value function Vλ for

Example 2.11 is divided into its components VS (blue), VA (green) and Vinfo (red)

and compared to the free information case where the splitting is given by VS + VA.

The respective cost parameters are given by cS(x2) = 10, cA(a2) = 2, kinfo = 1 and

λ = 0.1, compare first row of Table 2.1.

refers, as usual, to an action, while T (x) is a random variable declaring the length

of time until the next adaption of control.

The cost functional (without information costs) for a policy u(x) = (a(x),T (x)) is

given by

Ĵλ(x, u) = E
u
x









∑

j∈N0
tj<∞

∫ tj+1

tj

e−λsc(Xs, a(Xtj )) ds









,

where t0, t1, ... are random time points given by t0 = 0 and tj+1 = tj + T (Xtj ).

For the Markov control model with information costs, it is T (x) = τ(x), i.e.

T (x) is a deterministic function of x, and tj+1 is σ(tj ,Xtj )-measurable.

For the original model, in contrast, T (x) is the waiting time in x before a jump

occurs, i.e. T (x) = inft>0{Xt 6= x|X0 = x}.

Finding an optimal policy in each of the two different settings refers to an op-

timization within a subset of policies (i.e. an optimization with side constraints).

The two sets of admissible policies (policies with deterministic T and policies with

T given by the jump time of the process) are disjoint. The following consideration

shows that for an (overall) optimal policy the times of control adaption have to

coincide with the jumping times of the process, i.e. T (x) has to be the waiting time

in x before a jump occurs as in the original control model.

Take an optimal policy u(x) = (a(x),T (x)) and assume that T (x) is not the
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Figure 2.7: Unadapted control of a Markov process. Possible trajectory of a

controlled process for a policy u(x) = (a(x),T (x)) where T (x) is not the waiting

time in x. The green areas mark the periods of time where the process control is

adapted to the actual state, while the red areas mark the periods of time where

the control is not adapted to the actual state and therefore cannot be optimal. The

unfilled circles and closely dashed lines refer to a sequel that could arise if the control

was continuously adapted.

waiting time in x. Imagine the process starting in state x ∈ S at time t = 0, see

Figure 2.7. According to the given optimal policy we chose the generator La(x)
and let the process run until time T (x). However, with a positive probability, the

process switches to another state y ∈ S at some point in time tjump

1 < T (x). We

consider this time point tjump

1 as a new starting point of the whole process which is

reasonable due to its Markov property. Then the optimal control would prescribe

another generator La(y) (generally La(y) 6= La(x)). That is, during the time interval

(tjump

1 ,T (x)) the process is not optimally controlled, which is a contradiction.

From these considerations it immediately follows that the value function of the

information cost problem is bounded below by the value function of the original

control problem.

Comparing the Markov control problem with information costs to the original

control problem suggests to consider the information cost parameter kinfo as a vari-

able and to detect how the value function depends on this variable. This will be

part of the analysis in the next section.

2.2.3 Monotonicity and Continuity with respect to kinfo

Given a Markov control problem with information costs, we tend to analyze how

the information cost parameter kinfo influences the value function and the optimal

policy. More precisely, we will answer the following questions.
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1. Monotonicity of Vλ with respect to kinfo: Given a control problem and changing

(only) the cost parameter kinfo, how does the value function change? Do

smaller kinfo lead to smaller Vλ(x) for all x ∈ S?

2. Continuity of Vλ with respect to kinfo at kinfo > 0: Do small changes in kinfo > 0

lead to small changes in the value function or are there critical values of kinfo
where the value function performs a jump?

3. Continuity of Vλ with respect to kinfo at kinfo = 0: Considering the limit

kinfo → 0, does the value function converge (pointwise) to the value function

of the original control problem (without information costs)?

4. Monotonicity of τ∗ with respect to kinfo: Given a control problem and changing

(only) the cost parameter kinfo, how do the optimal lag times τ∗(x) change?

Do smaller kinfo lead to smaller τ∗(x) for all x ∈ S?

5. Continuity of τ∗ with respect to kinfo: Considering the limit kinfo → 0, do the

optimal lag times τ∗ converge (pointwise) to 0 as well?

As we will now show, the answer to each of the first three questions is yes.

Monotonicity and continuity of Vλ with respect to kinfo

Lemma 2.18 (Monotonicity of Vλ with respect to kinfo). Let Vλ be the value function

of a given control problem with information cost parameter kinfo. Changing the

information cost parameter to k̃info with k̃info < kinfo results in a value function Ṽλ
with

Ṽλ(x) ≤ Vλ(x) ∀x ∈ S.

Proof. Let u∗ be the optimal policy with respect to the parameter kinfo, i.e. it holds

Vλ(x) = Jλ(x, u
∗) for all x. For a fixed policy, the cost functional Jλ, defined in

(2.3), is obviously monotone in kinfo. This means that

J̃λ(x, u
∗) ≤ Jλ(x, u∗),

where J̃λ is the cost functional given the parameter k̃info. From Ṽλ(x) ≤ J̃λ(x, u
∗)

∀x ∈ S it directly follows Ṽλ ≤ Vλ.

Theorem 2.19 (Continuity of Vλ with respect to kinfo at kinfo > 0). For each state

x ∈ S, the function Vλ(x) is continuous in kinfo > 0.

Proof. We show continuity from right and left separately.

Continuity from the right: For a given kinfo > 0 consider the corresponding optimal

policy u∗ and the value function Vλ. Applying the policy u∗ for some k̃info =

kinfo + δ > kinfo , δ > 0, increases only the information costs (as a part of Vλ),

namely by the factor k̃info
kinfo

= kinfo+δ
kinfo

> 1, such that for the corresponding cost

functional it holds

J̃λ(x, u
∗) ≤ kinfo + δ

kinfo
Vλ(x)
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for any x ∈ S. Let Ṽλ denote the value function given the parameter k̃info. From

Ṽλ(x) ≤ J̃λ(x, u∗) for all x ∈ S it follows

Ṽλ(x) ≤
kinfo + δ

kinfo
Vλ(x) ∀x ∈ S,

and, using the monotonicity of Vλ with respect to kinfo,

0 < Ṽλ(x)− Vλ(x) ≤
δ

kinfo
Vλ(x) ∀x ∈ S.

Hence, given an ε > 0 and x ∈ S, we can choose δ < ε·kinfo
Vλ(x)

to guarantee

|Ṽλ(x)− Vλ(x)| < ε.

Continuity from the left: Starting with a kinfo > 0 we now consider k̃info = kinfo−δ <
kinfo, δ > 0, and the corresponding optimal policy ũ as well as the value function

Ṽλ(x) = J̃λ(x, ũ). By the same arguments as before we get

Vλ(x) ≤
kinfo

kinfo − δ
Ṽλ(x) ∀x ∈ S,

and

0 < Vλ(x)− Ṽλ(x) ≤
δ

kinfo
Vλ(x).

Given ε > 0 and x ∈ S, we choose again δ < ε·kinfo
Vλ(x)

and get

|Vλ(x)− Ṽλ(x)| < ε

which completes the proof.

Theorem 2.20 (Continuity of Vλ with respect to kinfo at kinfo = 0). Given a

Markov control problem with information costs, let Vλ,kinfo = Vλ,kinfo(x) denote the

value function depending on the parameter kinfo. Let Vλ,0 = Vλ,0(x) denote the value

function of the corresponding original Markov control problem (without information

costs). It holds

Vλ,kinfo(x)
kinfo→0−→ Vλ,0(x) ∀x ∈ S.

Proof. By Corollary 1.6 we can state that the value function Vλ,0 of the original

control problem fulfills

Vλ,0 = (λI − La0)−1ca0 ,

where a0 : S → A is the corresponding optimal policy and La0(x, y) := La0(x)(x, y)

as well as ca0(x) := c(x, a0(x)) for all x, y ∈ S. We will proceed as follows: Given for

each state x ∈ S the optimal action a0(x) ∈ A of the original control problem and a

cost parameter kinfo > 0, we define a policy u : S → A× (0,∞] for the information

cost problem and calculate the corresponding cost functional Jλ,kinfo(x, u). We show

that these cost functionals Jλ,kinfo converge to Vλ,0 for kinfo → 0. Then, we use the

fact that
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1. Vλ,kinfo(x) ≤ Jλ,kinfo(x, u) (Vλ,kinfo is optimal),

2. Vλ,kinfo(x) ≥ Vλ,0(x) for all kinfo > 0, x ∈ S (Vλ,0 is lower bound, see Sec-

tion 2.2.2),

to see that Vλ,kinfo converges to Vλ,0 for kinfo → 0 as well.

Given kinfo > 0, we define τ0 :=
√
kinfo (independent of x) and consider the policy

u(x) = (a0(x), τ0) which is in general not optimal. The corresponding cost functional

is given by

Jλ,kinfo = (I −Dτ0Pu)
−1(Cu + kinfoeτ0),

see Lemma 2.6, where Cu(x) := C(x, a0(x), τ0) (as in Lemma 2.17) and Pu(x, y) =

eLa0(x)
τ0 for all x, y ∈ S. Calculating the limit of this functional for kinfo → 0 leads

to the following problem: with kinfo → 0 we get τ0 → 0, and with it the matrix

I −Dτ0Pu converges to zero and is not invertible anymore. At the same time, the

expression Cu+ kinfoeτ0 converges to zero as well. The idea is to multiply the whole

expression by the term τ0
τ0

which leads to

Jλ,kinfo =
τ0

τ0
(I −Dτ0Pu)

−1(Cu + kinfoeτ0)

=

(

1

τ0
(I −Dτ0Pu)

)−1 1

τ0
(Cu + kinfoeτ0).

Now we analyze the matrix 1
τ0
(I−Dτ0Pu). For a special row, referring to some state

x, one can write

[Dτ0Pu](x, ·) =
[

e(La0(x)
−λI)τ0

]

(x, ·)

=





∞
∑

j=0

(La0(x) − λI)j(τ0)j
j!



 (x, ·)

and

[

1

τ0
(I −Dτ0Pu)

]

(x, ·)

=

[

1

τ0

(

I −
(

I + (La0(x) − λI)τ0 +
1

2
(La0(x) − λI)2(τ0)2 + ...

))]

(x, ·)

=

[

−(La0(x) − λI)−
1

2
(La0(x) − λI)2τ0 + ...

]

(x, ·)

τ0→0−→ [λI − La0x)](x, ·)

For the whole matrix 1
τ0
(I −Dτ0Pu) this means

1

τ0
(I −Dτ0Pu)

τ0→0−→ λI − La0 .
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Next we analyze the term 1
τ0
Cu. We write ca(x) := c(x, a) for fixed a ∈ A and

calculate

C(x, a, τ) = E
a
x

(∫ τ

0
e−λsc(Xs, a) ds

)

=

∫ τ

0
e−λs

[

eLasca
]

(x) ds

=
[

(La − λI)−1
(

e(La−λI)τ − I
)

ca

]

(x).

This implies

1

τ0
Cu(x) =

1

τ0

[

(La0 − λI)−1
(

e(La0−λI)τ0 − I
)

ca0

]

(x)

=
1

τ0

[

(La0 − λI)−1

(

(La0 − λI)τ0 +
1

2
(La0 − λI)2(τ0)2 + ...

)

ca0

]

(x)

=
1

τ0

[(

τ0 +
1

2
(La0 − λI)(τ0)2 + ...

)

ca0

]

(x)

=

[(

1 +
1

2
(La0 − λI)τ0 + ...

)

ca0

]

(x)

τ0→0−→ ca0(x),

such that, for the whole vector:

1

τ0
Cu

τ0→0−→ ca0 .

In a final step, we consider the expression 1
τ0
kinfoeτ0 , replacing kinfo = (τ0)

2:

1

τ0
kinfoeτ0 =

1

τ0
(τ0)

2e−λτ0

= τ0e
−λτ0

τ0→0−→ 0.

We can put everything together and get (as kinfo → 0 is equivalent to τ0 → 0):

Jλ,kinfo
kinfo→0−→ (λI − La0)−1ca0 = Vλ,0.

Now, from

Vλ,0 ≤ Vλ,kinfo ≤ Jλ,kinfo
kinfo→0−→ Vλ,0,

the convergence of Vλ,kinfo immediately follows.

Figure 2.8 shows the value function for the 2-state-example depending on the

information cost parameter kinfo.
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Figure 2.8: kinfo vs. optimal discounted costs for the 2-state-example.

The value function Vλ,kinfo for Example 2.11 depending on the information costs

kinfo in a logarithmic scale, evaluated at state x1 (panel A) and state x2 (panel

B). For kinfo = 1 the values agree with those given in the first row of Table 2.1

(Vλ,kinfo(x1) = 7.78, Vλ,kinfo(x2) = 69.77). For kinfo = 10−10 the values are close

to the values Vλ,0(x1) = 5.71 and Vλ,0(x2) = 62.86 of the original Markov control

model without information costs.

Now we turn to the last two questions that were formulated in the beginning of this

section: How does the optimal lag time τ∗ depend on the information costs kinfo?

Connection between kinfo and τ∗

Knowing that the value function is monotone and continuous in kinfo, we now analyze

the structure of the optimal policy depending on kinfo. How do the optimal lag times

τ∗(x) change when kinfo changes? Intuitively, a reduction of the information costs

should lead to a higher frequency of tests, or, equivalently, to smaller lag times.

However, as the following simple example shows, such a monotonicity does not hold

in general.

Example 2.21 (No monotonicity in τ∗). We consider again a 3-state-model similar

to the one described in Example 2.12. We choose

L1 =





−0.1 0.1 0

0.1 −0.2 0.1

0 0 0



 , L2 =





−0.1 0.1 0

1 −1.1 0.1

0 15 −15



 ,

as well as cS(x1) = cS(xI) = 0, cS(x2) = 10, cA(a1) = 0, cA(a2) = 2 and λ = 0.1.

Again, x2 is the “bad” state producing a lot of state costs, and a2 is the expensive

action driving the process quickly out of this “bad” state and towards the “safe” state

x1, while for the free action a1, state x2 is absorbing.

We calculate the optimal policy for different kinfo and observe the following structure.

It holds a∗(x1) = a1 and a∗(x2) = a2 for all kinfo > 0, whereas for the intermediate
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state the optimal action depends on kinfo. For kinfo < 0.48 the optimal action is

given by a∗(xI) = a1, while for kinfo ≥ 0.48 it holds a∗(xI) = a2. For x1 and x2 the

optimal lag time τ∗ is increasing in kinfo. However, for the intermediate state xI
there is a point of discontinuity at kinfo = 0.48: With the switchover in the optimal

action, the optimal lag time decreases in a volatile way. Only for areas of constant

action the lag time τ∗(xI) increases with kinfo. At kinfo = 6.55 there is another

point of discontinuity in τ∗ for xI and x2: From τ∗(xI) ≈ τ∗(x2) ≈ 9.3 it jumps to

τ∗ =∞ for all kinfo > 6.55, see Figure 2.9.

The corresponding value functions are shown in Figure 2.10.
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Figure 2.9: kinfo vs. optimal lag times for the 3-state-example. The optimal

lag times τ∗(x) for Example 2.21 depending on the information costs kinfo. At

kinfo = 0.48 the optimal lag time τ∗(xI) of the intermediate state xI performs a

jump.

Interpretation: As long as tests are not too expensive, the optimal policy consists

of choosing the free action a1 for state xI . Then, a test will follow after a short time

interval of unobserved progress, such that in case of a transition to x2 the action can

be adapted without too much loss in time. This way, the process is prevented from

staying for a longer time in state x2. In case of larger kinfo this kind of safeguarding

is not affordable such that a better choice (starting from xI) is to choose action a2,

which leads the process back to the “safe” state x1 with a certain (high) probability. In

order to avoid too many action costs, a (more or less) quickly following test indicates

whether the process returned to state x1 such that the action can be adapted.

Analysis of the points of discontinuity: In order to understand what is happening

at the breaking points kinfo = 0.48 and kinfo = 6.55, we calculate some “conditional”

optimal policies, i.e. policies which are optimal within a set of policies fulfilling

special conditions.
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Figure 2.10: kinfo vs. optimal discounted costs for the 3-state-example. The

value function Vλ,kinfo for Example 2.21 depending on the information costs kinfo.

The conditions are

A: The action chosen for xI has to be a1 and the lag time has to be finite, i.e.

a(xI) = a1, τ(xI) <∞.

B: The action chosen for xI has to be a2 and the lag time has to be finite, i.e.

a(xI) = a2, τ(xI) <∞.

C: The lag time chosen for xI has to be ∞, i.e. τ(xI) =∞.

The sets of policies referring to these three conditions form a disjoint and full par-

tition of the overall set of policies.

The corresponding conditional value functions for xI are shown in Figure 2.11.

There are two points of intersection where the minimum property switches from

one of these functions to another. These intersection points coincide with the given

breaking points kinfo = 0.48 and kinfo = 6.55. The connection should be clear: The

overall optimal policy is the minimum of the conditional optimal policies, and the

overall value function Vλ is the minimum of the conditional value functions.

By means of Example 2.21 we see that the optimal lag time τ∗ is in general

not monotone in kinfo. At the same time, this example refutes the continuity of

τ∗ with respect to kinfo, compare the breaking points kinfo = 0.48 and kinfo = 6.55

where its value performs a jump. Still it seams that for kinfo → 0 the optimal

lag time converges to 0 which would again, as in the considerations for the value

function (Theorem 2.20), give a reasonable connection to the original Markov control

process (without information costs). However, a simple argument shows that such
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Figure 2.11: kinfo vs. conditional value functions. Conditional value functions

VA, VB and VC , evaluated at the intermediate state xI , for the 3-state-example 2.21

and the conditions described therein. The vertical lines indicate the intersection

points at which the minimum property switches from one conditional value function

to another. These points coincide with the breaking points kinfo = 0.48 and kinfo =

6.55.

a continuity at kinfo = 0 is not given in general: Let us assume that there exists a

state x ∈ S which is absorbing for all available actions, i.e. once the process enters

this state it will never leave it again, no matter which action is chosen. Independent

of the given kinfo > 0, the optimal lag time for this state will be τ∗(x) = ∞, as no

further observation is reasonable. Excluding this situation, we can indeed formulate

Theorem 2.22 (Continuity of τ∗ with respect to kinfo at kinfo = 0). Assume the

action space A to be finite. Let a0 denote the optimal policy (i.e. optimal choice

of action) of the original control problem (without information costs). For x ∈ S
assume that there exists a state y ∈ S with a0(x) 6= a0(y) and Pa0(x)(Xt = y|X0 =

x) > 0 for some t > 0.

Then it holds

τ∗kinfo(x)
kinfo→0−→ 0,

where τ∗kinfo(x) is the optimal lag time for state x given the information costs kinfo.

Proof. We seek a proof per contradiction.

Assuming that τ∗kinfo(x) does not converge to zero for some x ∈ S means

∃ε > 0 ∀δ > 0 ∃kinfo < δ : τ∗kinfo(x) ≥ ε.

In other words: For this x, there exist an ε > 0 and a sequence (kninfo)n∈N with

kninfo → 0 but τ∗kninfo
(x) ≥ ε ∀n. Use the short notation τ∗n := τ∗kninfo

. Let Vλ,n be the

value function referring to kninfo, and let a∗n resp. L∗
n be the corresponding optimal



2.2. THE DISCOUNTED-COST CRITERION 75

choice of action resp. the suitable generator. We know from Theorem 2.20 that

Vλ,n
n→∞−→ Vλ,0, where Vλ,0 is the value function of the original control problem.

We now consider the time interval [0, ε) and analyze for each n the difference between

the control u∗n = (a∗n, τ
∗
n) and a0. For this purpose, we imagine switching at time

ε from the policy u∗n = (a∗n, τ
∗
n) to the policy a0 (assuming that from time ε on

information about the process is free of charge), see Figure 2.12, which would result

in costs wε(x, a
∗
n(x)), where

wε(x, a) := E
a
x

(∫ ε

0
e−λsc(Xs, a) ds

)

+
(

e−λεeLaεVλ,0

)

(x).

x

y

z

(x)*
nε

dynamics under L a*(x)

a*(y)dynamics under L 

dynamics under L a*(z)

time t

st
a

te
 s

p
a

ce

0 τ

Figure 2.12: Controlled Markov process. Possible trajectory given that the pro-

cess is controlled according to the policy u∗n = (a∗n, τ
∗
n) before time ε and according

to a0 after time ε (assuming for simplicity that a∗n(x) = a0(x)). As in Figure 2.7,

the green areas mark the periods of time where the process is optimally controlled

according to the actual state, while the red area marks the period of time where the

control is not adapted to the actual state. The dynamics of this switched system do

not depend on τ∗n as it holds τ∗n > ε.

Noting that such a switching to the (overall) optimal policy a0 at time ε can

only lead to an improvement in the total costs makes clear that it holds

Vλ,n(x) ≥ wε(x, a∗n(x)).

At the same time, we have

wε(x, a) > Vλ,0(x)

for all a ∈ A. In order to see this we make the following distinction of cases.

Case 1: a = a0(x). In this case, starting from state x at time t = 0, the dynamics

of the processes conducted by a and a0, respectively, coincide as long as there is no

jump to a state y ∈ S with a0(y) 6= a0(x). However, given the existence of such

a y with Pa0(x)(Xt = y|X0 = x) > 0 for some t > 0 (see assumptions) it follows
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Pa0(x)(Xt = y|X0 = x) > 0 for all t > 0. (This is due to the fact that the jumping

times are exponentially distributed and can be arbitrarily small or large, while the

transition probabilities do not depend on these jumping times.) Especially, it holds

Pa0(x)(Xt = y for some t ∈ (0, ε)|X0 = x) > 0, which means that with a positive

probability the dynamics of the two processes during the time interval [0, ε) are

different.

Case 2: a 6= a0(x). In this case, from time zero on the difference in the action leads

to a difference in the dynamics.

For both cases, the difference in the dynamics during the time interval [0, ε) together

with the optimality of the control a0 yields

wε(x, a) > E
a0
x

(
∫ ε

0
e−λsc(Xs, a0(Xs)) ds

)

+
(

e−λεeLa0ε
)

Vλ,0(x)

= Vλ,0(x).

Now we use the fact that A is finite to define (for fixed x ∈ S)

d := min
a∈A

{wε(x, a)− Vλ,0(x)} .

By

Vλ,n(x) ≥ wε(x, a∗n(x)) > Vλ,0(x)

it follows

Vλ,n(x)− Vλ,0(x) ≥ wε(x, a∗n(x)) − Vλ,0(x) ≥ d > 0

for all n ∈ N, which is a contradiction to Vλ,n
n→∞−→ Vλ,0.

Remark 2.23 (Monotonicity of τ∗ for fixed actions). In Example 2.21 the jump of

the optimal lag time at the critical value kinfo = 0.48 is connected to a switch in the

optimal action a∗(xI). However, for those values of kinfo where the optimal choice of

action is constant the optimal lag time seems indeed to be monotone. The following

argumentation confirms this observation. Clearly, the information costs

Jinfo(x, u) = E
u
x









∑

j∈N0
tj<∞

e−λtj+1kinfo









for a given policy u decrease with increasing τ(y) for all states y ∈ S, i.e. it holds

Jinfo(x, ũ) ≤ Jinfo(x, u) for τ̃(y) > τ(y),

where the policy ũ coincides with u for all parameters except the lag time τ̃(y) > τ(y).

Given an optimal policy u∗ with finite τ∗(x) for all x ∈ S, we can conclude that the

net costs Jnet(x, u
∗) = Jλ(x, u

∗) − Jinfo(x, u∗) have to be increasing with increasing

τ(y); otherwise τ∗(y) could be increased in order to minimize the total costs Jλ(x, u).

Given a value kinfo of information costs, the optimal lag time in some sense defines

the right “equilibrium” between decreasing information costs and increasing net costs.
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Meanwhile, the parameter kinfo can be seen as a weighting factor identifying the

impact of the information costs on this equilibrium. Hence, as long as we stick

to the same choice of actions, a smaller value of kinfo reduces the impact of the

information costs and causes smaller optimal lag times.

2.2.4 Sensitivity with respect to Lag Times τ (x)

In the last section we analyzed how the value function and the optimal policy depend

on the information cost parameter kinfo. While the value function was discovered

to be monotone and continuous in kinfo, the optimal lag times can perform jumps

which can go both downward and upward.

Another question of interest concerns the sensitivity of the value function with

respect to deviations from the optimal lag time τ∗: Given the optimal policy, how do

small changes in the lag times affect the cost functional? In real-world applications

it might be an evident problem that an exact compliance with the prescribed lag

times is not possible.

In fact, the answer to this question was already given in Lemma 2.10: The

continuity of the cost functional Juλ with respect to the lag time τ implies that “small”

changes in τ cannot have a crucial effect on the expected costs. Of course, what

“small” means depends on the concrete example. In order to get an impression of how

the cost functional behaves depending on τ , we consider again the 2-state-example

2.11. The graphics in Figure 2.13 show the cost functionals Juλ and Junet = Jnet(·, u)
for u(x) = (a(x), τ(x)) as functions of τ(x1) (resp. τ(x2)), while the other lag time

τ(x2) (resp. τ(x1)) is fixed. The actions are fixed to be optimal.

As for Figure 2.13 we can make the following observations. While the net costs

Junet (total cost minus information costs) are monotonously increasing in τ and do

not attain a minimum (which agrees with Remark 2.23), the total costs Juλ exhibit a

unique minimum. The minimum points τ∗ of Juλ (x1) and Juλ (x2) coincide. Panel A

shows that the costs are nearly constant for a wide area of values of τ(x1), roughly

3 ≤ τ(x1) ≤ 20. The response towards changes in τ(x2) is more sensitive, see panel

B: The value of the cost functional Jλ(x2) clearly increases when τ(x2) differs from

its optimum τ∗(x2) = 1.8.

Choosing a non optimal combination of actions (e.g. a(x1) = 2, a(x2) = 1) for

this example results in monotonously decreasing cost functionals without minimum.

That is, in this case the optimal lag times would be infinite.

Numerical consequences

In the case of a low sensitivity of the cost functional with respect to the lag time

parameter τ – as it is given in panel A of Figure 2.13 – the problem of finding the

minimum solution is numerically ill-conditioned. A gradient descent with respect

to τ would be extremely slow because the gradient would almost vanish within

a wide area around the minimum solution. However, as mentioned on page 55,

many applications suggest to discretize the domain of the parameter τ (because
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Figure 2.13: Sensitivity with respect to τ for the 2-state-example 2.11.

A: Lag time τ(x1) vs. cost functionals Juλ and Junet for fixed τ(x2) = 1.8 and

a(x1) = 1, a(x2) = 2. B: Lag time τ(x2) vs. cost functionals Juλ and Junet for fixed

τ(x1) = 11.3 and a(x1) = 1, a(x2) = 2.

All other parameters coincide with those given in the first line of Table 2.1, i.e.

cS(x2) = 10, cA(a2) = 2, kinfo = 1, λ = 0.1. The minima of Juλ (x1) and Juλ (x2) are

attained at τ∗(x1) = 11.3 (panel A) resp. τ∗(x2) = 1.8 (panel B) with Juλ (x1) =

Vλ(x1) = 7.78 and Juλ (x2) = Vλ(x2) = 69.77 which is consistent with the values of

the optimal policy declared in Table 2.1.

tests cannot be placed arbitrarily exact in time), which overcomes this difficulty.

Furthermore, for practical purpose, a nearby solution is completely satisfying as

long as the resulting costs are close to optimal.

2.3 The Average-Cost Criterion

So far we deduced an optimality equation for the discounted-cost criterion in the

new setting of Markov control with information costs; we extended the analysis by

calculating a cost splitting and compared the net-costs to the optimal costs of the

original control problem. Moreover, we considered the information cost parameter

kinfo as a variable and explored how the value function and the optimal lag times

depend on this parameter. Finally, we studied the sensitivity of the expected dis-

counted costs with respect to deviations from the optimal lag times.

All these steps will now be reproduced for the average-cost criterion. Again we

will restrict the analysis to finite state spaces. Interestingly, the approach will be

completely different. Instead of directly analyzing the new cost functional, we will

construct a freely observable Markov decision process which – as for the expected

average costs – is equivalent to the given Markov decision process with information

costs. Due to this preparatory work, we can apply all the results of Section 1.1.2
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(the average-cost criterion in the original setting) to deduce an optimality equation

for the new setting without further effort. The subsequent calculation of a cost

splitting will be straightforward, and the monotonicity and continuity analysis will

conform to the case of discounted costs.

2.3.1 The Average-Cost Optimality Equation

Recall that for a Markov decision process without information costs the average-cost

criterion is given by

lim sup
T→∞

E
u
x

(

1

T

∫ T

0
c(Xs, u(Xs)) ds

)

,

compare Section 1.1. For ergodic dynamics, this value does not depend on x ∈ S but

is given by a constant ηu = 〈µu, cu〉, where µu is the unique equilibrium distribution

of the process under control u. The constant ηu fulfills the equation

ηu = c(x, u(x)) + (Luv)(x) ∀x ∈ S,

where v is a real-valued function on S which has no direct interpretation but forms

a weighting factor between the different states, see Lemma 1.13. In the following,

we will deduce an equivalent equation for the case of information costs and the cost

functional

J̄(x, u) = lim sup
T→∞

E
u
x









1

T

∑

j∈N0
tj<T

(

∫ tj+1∧T

tj

c(Xs, a(Xtj )) ds + kinfo

)









, (2.24)

where tj+1 ∧ T := min{tj+1, T} as well as t0 = 0, tj+1 = tj + τ(Xtj ) for j ∈ N and

u(x) = (a(x), τ(x)), compare (2.5).

Ergodic dynamics and finite lag times

For the case of ergodic dynamics, we tend to express the cost functional J̄(x, u) for

a given policy u ∈ U with finite lag times (i.e. τ(x) <∞ for all x ∈ S) in terms of

an equilibrium distribution of the process (Xt)t≥0.
5 However, the controlled process

(Xt)t≥0 itself is not a Markov process: Which generator determines the dynamics

of the process at time t depends on the last observation Xtn with tn = max {tj : j ∈
N, tj ≤ t} and not on the actual state Xt. In other words, the past (and not only

the present) is relevant for the future evolution of the process. It is therefore not

clear how an equilibrium distribution could be characterized.

Being aware that also the costs produced by the process at time t depend on the

5For infinite lag times the long-term average costs depend on the initial state and cannot be

expressed in terms of an equilibrium distribution of the process (Xt)t≥0.
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last observation Xtn , the idea is to consider the observation process (Xtj )j∈N0 which

is itself a Markov process with discrete index. Its transition matrix Pu is given by

Pu(x, y) = eLa(x)τ(x)(x, y) for all x, y ∈ S. (2.25)

Let us denote the equilibrium distribution with respect to Pu by µ, i.e. we assume

µ ∈ R
|S| to be a probability vector with

µPu = µ.

Each time the observation process (Xtj )j∈N0 is in state x ∈ S, the costs per unit of

time during the following time interval [tj , tj + τ(x)) of constant control are given

by

C(x, a(x), τ(x)) := E
a(x)
x

(

1

τ(x)

∫ τ(x)

0
c(Xs, a(x)) ds

)

. (2.26)

In order to include the information costs kinfo appearing at the end of this time

interval, we define

C̃(x, a(x), τ(x)) := C(x, a(x), τ(x)) +
kinfo

τ(x)
. (2.27)

In other words, this is the cost rate for all times t ≥ 0 at which the last observation of

the underlying process (Xt)t≥0 has been x. Now the question is: What is the average

proportion of time for this situation to appear? Naturally, we can calculate this

proportion – let us denote it by µ̃(x) – by multiplying the value of the equilibrium

distribution µ(x) (specifying how often this situation appears) by the lag time τ(x)

(denoting how long the situation remains), followed by a scaling with respect to the

weighted average of lag times, i.e. it holds

µ̃(x) =
µ(x)τ(x)

∑

y∈S µ(y)τ(y)
. (2.28)

In order to verify this equation, we can find an analytic expression for µ̃, namely

µ̃(x) = lim
n→∞

E
u
y





1

tn

n−1
∑

j=0

∫ tj+1

tj

1{Xtj
=x} ds



 ,

which – for ergodic dynamics – is independent of the initial state y ∈ S. As it holds
1
tn

∑n−1
j=0

∫ tj+1

tj
1{Xtj

=x} ds ≤ 1 for all n ∈ N, by the dominated convergence theorem

we can take the limit into the expectation value and write

µ̃(x) = E
u
y



 lim
n→∞

1

tn

n−1
∑

j=0

∫ tj+1

tj

1{Xtj
=x} ds



 .

Noting that
∫ tj+1

tj

1{Xtj
=x} ds =







τ(x) if Xtj = x,

0 otherwise ,
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we can state that, by the strong law of large numbers,

n−1
∑

j=0

∫ tj+1

tj

1{Xtj
=x} ds ∼ n · µ(x)τ(x) (a.s.) for n→∞.

At the same time, we have

tn ∼ n ·
∑

y∈S

µ(y)τ(y) (a.s.) for n→∞,

and putting both together we get (2.28).

We can now calculate the long-term average costs for the given policy u by taking

the µ̃-weighted average of C̃:

J̄(x, u) =
∑

y∈S

µ̃(y)C̃(y, u(y)) = 〈µ̃, C̃u〉 =: ηu for all x ∈ S (2.29)

with C̃u(x) := C̃(x, u(x)).

An equivalent freely observable Markov decision process

Consider the Markov control model with information costs (2.1) and let (Xt)t≥0 be

the controlled process given a policy u ∈ U . The idea is to formulate another control

process (Yt)t≥0 which is freely observable but has the same long-term average costs

as the process (Xt)t≥0.

To this end, we consider the process (tj ,Xtj )j∈N0 of observation times and ob-

servations of the given process (Xt)t≥0. In a first step, we again consider finite lag

times. What is the expected time the observation process (Xtj )j∈N0 stays in some

state x ∈ S before switching to another state y 6= x when action a ∈ A and lag

time τ ∈ (0,∞) are chosen? That is, what is the expectation value of the “residence

time”

r(x) := min {tj : j ∈ N,Xtj 6= x}

given that X0 = x? As the underlying process (Xt)t≥0 can still or again be in state

x after time τ , this residence time can be any multiple of τ . The number of time

intervals of length τ that pass before the state of the observation process changes

for the first time after starting in x ∈ S is geometrically distributed with parameter

p(x) := 1− eLaτ (x, x), and so it holds

E(r(x)) =
τ

p(x)
=

τ

1− eLaτ (x, x)
.

Under the condition that a transition takes place, the transition probabilities for

the observation process (Xtj )j∈N0 are given by

eLaτ (x, y)
∑

ỹ∈S,ỹ 6=x e
Laτ (x, ỹ)

.
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Adopting these characteristics of the observation process, we define for each action

a ∈ A and each lag time τ ∈ (0,∞) a generator Ga,τ ∈ R
|S|,|S| by

Ga,τ (x, y) :=
1

τ
eLaτ (x, y) for y 6= x, Ga,τ (x, x) := −

1

τ
(1− eLaτ (x, x)). (2.30)

For τ =∞ we set

Ga,∞(x, y) := 0 ∀y ∈ S (2.31)

which is convenient in the sense that the observation process (Xtj )j∈N0 will never

leave a state x ∈ S with τ(x) =∞ because no further tests are made. (The under-

lying process (Xt)t≥0 of course switches between the states as usual.) Moreover, by

this choice we obtain a continuity

lim
τ→∞

Ga,τ = Ga,∞ (2.32)

which will be relevant for future statements.

Now, we consider the process (Yt)t≥0 to be a completely observable Markov

decision process with state space S, action space A × (0,∞] and set of generators

{Ga,τ : a ∈ A, τ ∈ (0,∞]}. Given a ∈ A and τ ∈ (0,∞], the dynamics of the

process (Yt)t≥0 are determined by Ga,τ . That is, the control parameters stay the

same, however, their interpretation changes: τ has no longer an interpretation of a

lag time between observations but only – together with a – determines the generator.

The process (Yt)t≥0 is freely observable at all times and the generator is adapted

as soon as a transition takes place, i.e. for a given policy u(x) = (a(x), τ(x)) the

process is driven by the generator Gu with

Gu(x, y) := Ga(x),τ(x)(x, y) for all x, y ∈ S. (2.33)

In terms of the transition matrix Pu defined in (2.25) it holds, as for finite τ(x),

Gu =









. . . 0
1

τ(x)

0
. . .









(Pu − I), (2.34)

where I ∈ R
|S|,|S| is the identity matrix. By interpreting 1

∞ := 0 this equation

holds for infinite lag times, as well, no matter how the corresponding entries of the

transition matrix Pu are defined.

The two processes (Yt)t≥0 and (Xt)t≥0 are completely independent of each other.

However, as for the average dynamics, the process (Yt)t≥0 can be seen as the con-

tinuous analogue of the observation process (Xtj )j∈N0 : By construction, the ex-

pected residence times coincide for these two processes, and a transition of the pro-

cess (Yt)t≥0 to another state refers to getting a new information about the process

(Xt)t≥0. In this sense, the process (Yt)t≥0 can be interpreted as an information pro-

cess, reflecting the average dynamics of the information about the process (Xt)t≥0.

It remains to define a new cost function such that for each policy the average

costs of the process (Yt)t≥0 coincide with those of the process (Xt)t≥0. In fact,
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an adequate choice is just given by the cost function C̃(x, a, τ) defined in (2.27)

denoting the average costs within the time interval [0, τ) of hidden progress under

the condition that the process (Xt)t≥0 starts in state x ∈ S and action a ∈ A is

chosen. For infinite lag times we set

C̃(x, a,∞) = C(x, a,∞) := lim
T→∞

E
a
x

(

1

T

∫ T

0
c(Xs, a) ds

)

. (2.35)

Now we can state the analogy of the processes (Xt)t≥0 and (Yt)t≥0 with respect to

the average costs for a given policy.

Lemma 2.24. For each policy u ∈ U the freely observable process (Yt)t≥0 together

with the cost function C̃ has the same expected average costs as the process (Xt)t≥0,

i.e. it holds

lim
T→∞

E
u
x

(

1

T

∫ T

0
C̃(Ys, u(Ys)) ds

)

= J̄(x, u) (2.36)

with J̄(x, u) given in (2.24).

Proof. For ergodic dynamics and finite lag times we only need to show that µ̃ (de-

fined in (2.28)) is the equilibrium distribution for the process (Yt)t≥0, which simply

follows from

µ̃Gu = µ̃









. . . 0
1

τ(x)

0
. . .









(Pu − I) =
1

∑

y∈S τ(y)µ(y)
(µPu − µI) = 0

because µPu = µ. Then it holds

lim
T→∞

E
u
x

(

1

T

∫ T

0
C̃(Ys, u(Ys)) ds

)

=
∑

y∈S

µ̃(y)C̃(y, u(y)) = J̄(x, u) ∀x ∈ S,

compare (2.29).

In the case of non ergodic dynamics we can carry out the same analysis for each of

the communication classes which coincide for the two processes (Xt)t≥0 and (Yt)t≥0.

For those states which do not belong to any communication class (because they are

either absorbing states or cannot be reached by any other state) it suffices to note

that this property is also preserved when switching from one process to the other.

For τ(x) =∞ the process (Yt)t≥0 almost surely stays in x such that

lim
T→∞

E
u
x

(

1

T

∫ T

0
C̃(Ys, u(Ys)) ds

)

= lim
T→∞

E
u
x

(

1

T

∫ T

0
C̃(x, a(x),∞) ds

)

= C̃(x, a(x),∞)

= J̄(x, u),

compare (2.35) and (2.24).

For X0 = Y0 = y 6= x with τ(y) < ∞ but τ(x) = ∞, both processes (Xtj )j∈N0
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and (Yt)t≥0 will reach x almost surely after a finite amount of time (assuming that

x and y communicate). As such a single finite time interval has no impact on the

long-term average costs, this means for both processes that the long-term average

costs starting in y are given by the long-term average costs starting in x. If – in

this situation – there exist several states x ∈ S with τ(x) =∞, both processes will

reach one of them almost surely after a finite amount of time. Which one will be

reached is random, but the probabilities coincide for both processes. The long-term

average costs starting in y are given by the weighted mean of the long-term average

costs of the states x.

Note that in (2.36) the second argument u(Ys) of the cost function C̃ is running

in time, whereas in the definition (2.5) resp. (2.24) of J̄(x, u) it was evaluated at

the beginning tj of a time interval.

Example 2.25 (Two states). In order to get an impression of how the processes

(Xt)t≥0 and (Yt)t≥0 evolve over time, we consider again the 2-state-example 2.11

from Section 2.2 with S = {x1, x2} and A = {a1, a2} as well as

L1 =

(

−0.01 0.01

0.01 −0.01

)

, L2 =

(

−0.1 0.1

0.1 −0.1

)

and c(x, a) = cS(x)+cA(a), where cS(x1) = 0, cS(x2) = 10, cA(a1) = 0, cA(a2) = 2.

For the policy u(x) = (a(x), τ(x)) we choose a(x1) = a1, τ(x1) = 5, a(x2) = a2,

τ(x2) = 2.

The corresponding matrix Pu is

Pu =

(

0.9524 0.0476

0.1648 0.8352

)

,

with the stationary distribution

µ =
(

0.7760 0.2240
)

,

which delivers

µ̃ =
(

0.8965 0.1035
)

.

The relevant values of the cost function C̃ are given by

C̃(x1, a1, 5) = 0.4419, C̃(x2, a2, 2) = 11.6210,

and we get

ηu =
∑

x∈S

µ̃(x)C̃(x, u(x)) = 1.5989.

Finally, the resulting generator Gu of the process (Yt)t≥0 is given by

Gu =

(

−0.0095 0.0095

0.0824 −0.0824

)

.
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Figure 2.14: Accumulated costs for (Xt)t≥0. Accumulated costs Jt(x1, u) de-

fined in (2.37) up to time t ≥ 0 for a trajectory of the Markov decision process

(Xt)t≥0 with information costs kinfo described in Example 2.25. The long-term

asymptotics are given by ηu · t = 1.5989 · t. The detail shows the cost increase for

the time period t ∈ [495, 515]. The dashed lines are located at the observation times

tj; at each of these observation times the costs increase instantaneously by kinfo.

The gray area indicates the period of time where the process (Xt)t≥0 is in state x2,

while it is in state x1 at all other times.

Figure 2.14 shows the accumulated costs

Jt(x1, u) :=

n(t)−1
∑

j=0

(

∫ tj+1

tj

c(Xs, a(Xtj )) ds + kinfo

)

+

∫ t

tn(t)

c(Xs, a(Xtn(t)
)) ds,

(2.37)

n(t) := max {j ∈ N : tj ≤ t},

up to time t > 0 for a realization of the process (Xt)t≥0 starting in X0 = x1 and

given control u. It contains a detailed view for the time interval t ∈ [495, 515] which

illustrates the structure of cost increase for the situation of information costs.

We can see that after the observation at time t = 501 the process switches to

state x2 which leads to a higher increase in the costs. At time t = 506 this switch is

observed and the action is adapted. Now the more expensive action a2 leads again

to a higher increase in the costs, but at the same time accelerates the return to state

x1 which happens at t ≈ 508.4. At time t = 510 this is realized and action a2 is

replaced by action a1. Every observation leads to a jump in the accumulated costs

of size kinfo = 1.
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Figure 2.15: Accumulated costs for (Yt)t≥0. Accumulated costs J̃t(x1, u) defined

in (2.38) up to time t ≥ 0 for a trajectory of the equivalent freely observable Markov

decision process (Yt)t≥0 given Example 2.25. Like for the process (Xt)t≥0 the long-

term asymptotics are given by ηu · t = 1.5989 · t. The detail shows the cost increase

for the time period t ∈ [730, 750]. Again, the gray area indicates the period of time

where the process (Xt)t≥0 is in state x2, while it is in state x1 at all other times.

Observations are continuous (and cost-free) over time and the action is immediately

adapted after a switch of the state occurs.

Equivalent graphs are given for the freely observable process (Yt)t≥0: Figure 2.15

shows the accumulated costs

J̃t(x1, u) :=

∫ t

0
C̃(Ys, u(Ys)) ds (2.38)

up to time t > 0 for a realization of the process (Yt)t≥0 starting in Y0 = x1 and

given control u. It contains the details for the time interval t ∈ [730, 750].

For the process (Yt)t≥0 a change in the state is followed by an instantaneous

change in the action, and so there are only two increase rates: A low increase

C̃(x1, a1, 5) (induced by the information costs kinfo that are included in C̃) when the

process is in state x1, and a high increase C̃(x2, a2, 2) (induced by positive action-

and state costs and kinfo) when the process is in state x2.

The preceding analysis permits a straightforward transfer of the results presented

in Section 1.1.2 to the new setting of Markov control with information costs and

policies with finite lag times. The case of infinite lag times will require a separate

investigation as it breaches the ergodicity condition. Before turning to optimal

policies, we will now analyze the average costs for an arbitrary policy.
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Average costs for a given policy u ∈ U

For a policy u ∈ U with finite lag times, i.e. τ(x) <∞ ∀x ∈ S, the process (Yt)t≥0

(driven by the generator Gu, see (2.33)) is ergodic such that the average costs are

given by a constant ηu. Remember that we assumed the state space to be finite,

such that Lemma 1.13 can directly be applied replacing the cost function c by C̃

and the generator Lu by Gu.

Lemma 2.26. Consider the Markov control model with information costs (2.1).

a) Given a policy u(x) = (a(x), τ(x)) with τ(x) <∞ ∀x ∈ S, there exists a func-

tion v : S → R such that the corresponding constant ηu of long-run expected

average costs (compare (2.29)) fulfills the equation

ηu = C̃(x, a(x), τ(x)) +
∑

y∈S

Ga(x),τ(x)(x, y)v(y) ∀x ∈ S (2.39)

with C̃ resp. Ga,τ defined in (2.27) resp. (2.30).

b) The constant ηu is uniquely determined by (2.39) and coincides with the first

component of the vector

(E −Gu)−1C̃u,

where

E :=







1 0 . . . 0
...

...
...

1 0 . . . 0






∈ R

|S|,|S|,

and C̃u(x) = C̃(x, a(x), τ(x)).

Proof. This directly follows from Lemma 1.13 and Lemma 2.24.

Lemma 2.27. Let u ∈ U be a given policy with finite lag times. It holds:

a) If there exists a constant g ≥ 0 and a function v : S → R such that

g ≥ C̃(x, a(x), τ(x)) +
∑

y∈S

Ga(x),τ(x)(x, y)v(y) ∀x ∈ S, (2.40)

then g ≥ ηu.

b) If there exists a constant g ≥ 0 and a function v : S → R such that

g ≤ C̃(x, a(x), τ(x)) +
∑

y∈S

Ga(x),τ(x)(x, y)v(y) ∀x ∈ S, (2.41)

then g ≤ ηu.

Proof. This is just an analogue of Lemma 1.14.
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In the case of infinite lag times the long-term average costs might depend on

the initial state: Imagine a policy u ∈ U fulfilling τ(x) = τ(y) = ∞ but a(x) 6=
a(y) for two states x 6= y. That is, starting in X0 = x ∈ S the process (Xt)t≥0

will forever be steered by La(x) and produce costs according to c(·, a(x)), while for

X0 = y ∈ S action a(y) determines the remaining dynamics. Generally, it will hold

C(x, a(x),∞) 6= C(y, a(y),∞) for the corresponding long-term average costs, and

with it

J̄(x, u) 6= J̄(y, u).

This is consistent with the choice of the generator Ga,∞, compare (2.31): Its zero

entries refer to the fact that for the equivalent control process (Yt)t≥0 the considered

states x, y are absorbing. In other words, given infinite lag times, the dynamics of

(Yt)t≥0 are not ergodic and so the long-term average costs are in general not given

by a constant. If in this situation there exists another state z ∈ S with finite lag

time τ(z) <∞, the process will (after starting in z) reach one of the two states x, y

after some random period of time, and thus the expected long-term average costs

will be a weighed average of J̄(x, u) and J̄(y, u).

We can conclude that the statements of Lemma 2.26 and Lemma 2.27 have no direct

analogue for infinite lag times. Instead, in this case the calculation of the long-term

average costs requires a separate analysis for each of the given states.

Fortunately, such a separate analysis will be redundant in the case of optimal

policies. The described situation with J̄(x, u) 6= J̄(y, u) naturally excludes the

referring policy u from being optimal as it either holds J̄(x, u) > J̄(y, u) or J̄(x, u) <

J̄(y, u). In the first case the long-term average costs when starting in x could be

decreased by choosing action a(y) instead of the given a(x) which would lead to a

policy ũ with

J̄(x, ũ) = C(x, a(y),∞)
(∗)
= C(y, a(y),∞) = J̄(y, u) < J̄(x, u).

The second equality (∗) is due to the fact that the underling dynamics are assumed to

be ergodic such that the long-term average costs in the case of infinite lag times only

depend on the action but not on the initial state. In the case of J̄(x, u) < J̄(y, u)

we simply interchange the roles of x and y in order to show that the given policy

u cannot be optimal. By this argumentation we can see that the long-term average

costs of an optimal policy actually will be given by a constant.

In the following, we will use this insight for the analysis of optimal policies.

Again, we can directly transfer the results from the original setting to the new

model with information costs.
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Optimal policy and value function

Our aim is now to characterize the constant η∗ of optimal average costs,

η∗ := inf
u∈U

ηu, (2.42)

as well as the optimal policy (if existent) for the Markov decision process with

information costs. In fact, we simply tend to reformulate Theorem 1.15 (the Bellman

equation) and Theorem 1.16 (characterization of the optimal policy) of Section 1.1.2

in terms of the new setting. The only crucial step is to check Assumption 1.11 which

was used in Section 1.1.2 to prove both theorems. It suggests that the set of available

actions is compact for each state x ∈ S and that both the cost function and the

generators are continuous in the action parameter. (As we consider a finite state

space we can ignore the third part of Assumption 1.11.) In the new setting, the

action parameter is of the form (a, τ) and the set of available actions for any state

x ∈ S is given by A× (0,∞]. As in the case of discounted costs (compare page 54)

we can state that, by kinfo > 0, it holds

lim
τ(x)→0

J̄(x, u) =∞ ∀x ∈ S.

Again this means that we can find a lower bound ε > 0 for the optimal lag times

such that the relevant set of actions can be restricted to A× [ε,∞].

Therefore, the compactness condition is naturally fulfilled as long as A is compact.

It remains to note that the new cost function C̃ defined in (2.27) and the generators

Ga,τ defined in (2.30) are all continuous in τ (compare the statement in (2.32) and

the definition in (2.35) for τ = ∞), such that the continuity condition only needs

to be checked for A. We will write the function C̃ as a composition of C and kinfo
τ

in order to directly note the parameter kinfo, setting kinfo
∞ := 0 for infinite lag times.

As the second component kinfo
τ

does not depend on a, the continuity condition with

respect to a ∈ A only concerns the function C.

Hence, the formulation of the average-cost optimality equation for Markov deci-

sion processes with information costs is the following.

Theorem 2.28 (Average cost optimality equation/Bellman equation).

Suppose that A is a compact set and that for all x, y ∈ S and τ ∈ (0,∞] the

functions C(x, a, τ) and Ga,τ (x, y) are continuous in a ∈ A. Then there exists a

function v∗ : S → R and a constant g ≥ 0 satisfying

g = inf
a∈A,τ∈(0,∞]







C(x, a, τ) +
kinfo

τ
+
∑

y∈S

Ga,τ (x, y)v
∗(y)







∀x ∈ S. (2.43)

The constant g coincides with the optimal average costs η∗.

Proof. By the proceeding argumentation this is the adequate analogue to Theo-

rem 1.15.
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Theorem 2.29. Suppose that there exists a policy u∗(x) = (a∗(x), τ∗(x)) ∈ U which

attains the minimum in the Bellman equation (2.43), i.e.

g = C (x, a∗(x), τ∗(x)) +
kinfo

τ∗(x)
+
∑

y∈S

Ga∗(x),τ∗(x)(x, y)v
∗(y)

= min
a∈A,τ∈(0,∞]







C(x, a, τ) +
kinfo

τ
+
∑

y∈S

Ga,τ (x, y)v
∗(y)







∀x ∈ S.(2.44)

Then u∗ is average-cost optimal and it holds η∗ = J̄(x, u∗) = g for all x ∈ S.

Proof. This is the analogue to Theorem 1.16.

In Section 1.1.2 we stated that Assumption 1.11 guarantees the existence of

an optimal policy for the average-cost criterion. We just noted that – within the

setting of Markov control with information costs – the compactness and continuity

conditions of Assumption 1.11 only have to be checked for A, whereas they are

naturally fulfilled for the lag time parameter τ . That is, as long as A is compact

and C̃ and Ga,τ are continuous with respect to a ∈ A, the existence of an optimal

policy can be taken for granted. This is especially fulfilled for finite A.

For a numerical calculation of the optimal policy for the process (Xt)t≥0 we can

apply the average costs value iteration and policy iteration algorithms of Section 1.2

to the equivalent completely observable process (Yt)t≥0 deduced on page 81. As in

the case of discounted costs, the complexity of the problem dramatically increases

due to the lag time parameter τ . The idea how to deal with this complexity in the

case of average costs agrees with the one given for the discounted-cost criterion on

55. Also the analysis of numerical alternatives is the same. Again we can state

that a policy iteration combined with a discretization of the lag time parameter τ

delivers a satisfying optimization method.

Example 2.25 (cont.) The optimal policy for the 2-state-example 2.25 with dif-

ferent cost parameters is given in Table 2.2. As in the case of discounted costs, the

“good” state x1 causes the application of a1, while the “bad” state x2 requires the

application of the more expensive action a2 for a short time. An increase of the

information costs induces an increase in the lag times (compare the first two rows).

Higher action costs cA(a2), however, reduce the time for its application (compare

row 1 and 3).

Comparing the results to the case of discounted costs, see Table 2.1, we can see

that the optimal time intervals are much shorter for the case of average costs. An

explanation for this relation will be given in Section 2.4.

The value of optimal costs η can not be compared to the value function of the

discounted-cost problem as one would compare costs per unit of time with total dis-

counted costs.

Example 2.30 (Three states). For the discounted-cost criterion we analyzed, given

the 2-state-model, how an additional intermediate state influences the optimal policy,
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cS(x2) cA(a2) kinfo a∗(x1) a∗(x2) τ∗(x1) τ∗(x2) η∗

10 2 1 a1 a2 5.3 1.3 1.59

10 2 2 a1 a2 7.7 1.8 1.79

10 3 1 a1 a2 5.4 1.2 1.68

Table 2.2: Parameter dependent optimal policy and optimal average costs

for the 2-state-example. This table shows the optimal policy for Example 2.25

and different values of cS(x2), cA(a2) and kinfo, given the average-cost criterion. In

state x1 (resp. x2) one has to choose action a∗(x1) (resp. a∗(x2)) for a time period

τ∗(x1) (resp. τ∗(x2)) which results in optimal costs η∗ (independent of the state).

see Example 2.12. Now we do the same for the average-cost criterion, see Table 2.3.

Comparing these results to the ones of the 2-state-example given in Table 2.2 we can

cS(x2) cA(a2) kinfo a∗(x1) a∗(xI) a∗(x2) τ∗(x1) τ∗(xI) τ∗(x2) η∗

10 2 1 a1 a1 a2 8.8 3.0 1.4 1.52

10 2 2 a1 a1 a2 11.7 4.3 2.2 1.70

10 3 1 a1 a1 a2 8.9 3.0 1.3 1.62

Table 2.3: Parameter dependent optimal policy and optimal average costs

for the 3-state-example. This table shows the optimal policy for Example 2.30

and different values of cS(x2), cA(a2) and kinfo, given the average-cost criterion. In

state x1 (resp. I resp. x2) one has to choose action a∗(x1) (resp. a∗(I) resp. a∗(x2))

for a time period τ∗(x1) (resp. τ∗(I) resp. τ∗(x2)) which results in optimal costs η∗

(independent of the state).

observe slightly better optimal costs. The lag times in state x1 and x2 increase, and

the intermediate state xI has a relatively short waiting time.

This is exactly what one would expect: As direct transitions from the “good” state

x1 to the costly state x2 are not possible, state x1 can be interpreted as a “safe”

area which does not require frequent testing. However, finding the process in the

intermediate state xI makes a soon following transition to x2 more likely, such that

the optimal control policy proposes to quickly make a test again. The additional

information resulting from the splitting of the original state x1 into a safe area and

a transition region leads to better optimal costs.

The example of a controlled population (compare Example 2.13) will not be

considered here: As the model contains an absorbing state, the average-cost criterion

is not suited to evaluate the dynamics.

2.3.2 Cost Splitting for Average Costs

As in the case of discounted costs, we can ask ourselves how the optimal costs η∗ split

up into components of information costs, action costs and state costs. Again, we
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will profit from the formulation of the equivalent freely observable process (Yt)t≥0,

see page 81, and express these components – as for finite lag times – in terms of the

equilibrium distribution µ̃ of the generator Gu∗ defined in (2.33), where u∗ is the

optimal policy. The case of infinite lag times will be analyzed separately.

Assuming the process to be ergodic and the optimal lag times τ∗(x) to be finite,

we can write

η∗ = lim
T→∞

Ex

(

1

T

∫ T

0
C̃(Ys, u

∗(Ys)) ds

)

=
∑

y∈S

µ̃(y) · C̃(y, u∗(y)) (2.45)

for the average costs under optimal control. Let the cost function c be of the form

c(x, a) = cS(x) + cA(a) and write

C̃(x, a, τ) = E
a
x

(

1

τ

∫ τ

0
cS(Xs) + cA(a) ds

)

+
kinfo

τ

= E
a
x

(

1

τ

∫ τ

0
cS(Xs) ds

)

+ cA(a) +
kinfo

τ
.

Now it is easy to split the total average costs η of an arbitrary policy with finite lag

times into its components: Set

η = ηinfo + ηA + ηS

with

ηinfo :=
∑

x∈S

µ̃(x) · kinfo
τ(x)

,

ηA :=
∑

x∈S

µ̃(x) · cA(a(x)),

ηS :=
∑

x∈S

µ̃(x) · CS(x, a(x), τ(x)),

and

CS(x, a, τ) := E
a
x

(

1

τ

∫ τ

0
cS (Xs) ds

)

. (2.46)

In Lemma 2.26 we stated that the total average costs η are given by the first

entry of the vector

(E −Gu)−1C̃u

where

E :=







1 0 . . . 0
...

...
...

1 0 . . . 0






.

Equivalent formulas hold for the components ηinfo, ηA and ηS :
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Lemma 2.31 (Information costs). The average information costs ηinfo for the op-

timal policy u∗ are given by the first entry of the vector

kinfo · (E −Gu∗)−1









...
1

τ∗(x)
...









.

Lemma 2.32 (Action costs). The average action costs ηA for the optimal policy u∗

are given by the first entry of the vector

(E −Gu∗)−1c∗A

with c∗A(x) := cA(a
∗(x)) for all x ∈ S.

Lemma 2.33 (State costs). The average state costs ηS for the optimal policy u∗

are given by the first entry of the vector

(E −Gu∗)−1C∗
S

with C∗
S(x) := CS(x, a

∗(x), τ∗(x)) for all x ∈ S, compare (2.46).

All three statements follow directly from Lemma 2.26 when setting for each case

two of the three components cS , cA and kinfo in C̃ to zero, which results in a cost

functional containing only information-, action- or state costs, respectively.

As in the case of discounted costs, all the statements can be formulated in an

equivalent way for any non optimal policy u 6= u∗ with finite lag times.

In the case of infinite lag times the information costs vanish since no state tests

are made. (This even holds for a state with finite lag time as long as it communicates

with another state with infinite lag time because – in the long run – this state will

almost surely be reached, and so the number of tests will stay finite.)

The action costs and the state costs possibly depend on the state: The action costs

of a state x ∈ S with infinite lag time τ(x) =∞ are given by

J̄A(x, u) = cA(a(x));

and the corresponding state costs are given by

J̄S(x, u) = lim
T→∞

E
a(x)
x

(

1

T

∫ T

0
cS(Xs) ds

)

.

Comparison to the original Markov control problem

Let us use the presented cost splitting of the optimal average costs in order to

compare the given Markov control problem with information costs to the original

problem. Figure 2.16 shows the optimal average costs for both settings applied

to the 2-state-example 2.25. Naturally, the optimal value of the Markov control

problem with information costs exceeds the one of the original control model. The
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same is true when comparing only the net costs ηnet = ηS + ηA (blue and green

area) to the optimal costs of the original model. This relation holds in general and

not only for the considered example. The justifying argumentation is the same as

for the discounted-cost criterion, compare Section 2.2.2: In order to guarantee an

(overall) optimal control, the points in time where the action is adapted have to

coincide with the jumping times of the process. Otherwise, there will be periods in

time where the influence on the process is not optimal.

0
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Figure 2.16: Cost splitting for the 2-state-example. The constant of optimal

average costs η∗ defined in (2.42) for Example 2.25 is divided into its components η∗S ,

η∗A and η∗info and compared to the free information case where the splitting is given

by η∗S + η∗A. The respective cost parameters are given by cS(x2) = 10, cA(a2) = 2

and kinfo = 1, compare first row of Table 2.2.

2.3.3 Monotonicity and Continuity with respect to kinfo

We continue to consider ergodic dynamics such that the value function V̄ of optimal

average costs is given by a constant η∗. (Remember that by the consideration from

page 88 the optimal long-term average costs have to be constant even if the optimal

lag times are infinite.) Given the insight into the characteristics of this constant η∗

and its different components, we now turn to the analysis of the central parameter

kinfo and its influence on the optimal costs resp. the optimal lag times. Again we

ask the questions given in Section 2.2.3: Is the constant of optimal average costs η∗

of optimal costs monotone and continuous with respect to kinfo? And how do the

optimal lag times depend on kinfo?
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Monotonicity and continuity of η∗ with respect to kinfo

Lemma 2.34 (Monotonicity of η∗ with respect to kinfo). Let η∗ = infu∈U J̄(x, u) be

the optimal average costs of a given control problem with information cost parameter

kinfo. Changing the information cost parameter to k̃info with k̃info < kinfo results in

optimal average costs η̃∗ with

η̃∗ ≤ η∗.

Proof. The argumentation is analogous to the one in Lemma 2.18: Let u∗ be the

optimal policy with respect to the parameter kinfo, i.e. it holds η∗ = J̄(x, u∗) for all

x. For a fixed policy, the cost functional J̄ , defined in (2.24), is obviously monotone

in kinfo. This yields

J̃(x, u∗) ≤ J̄(x, u∗),

where J̃ is the cost functional for the parameter k̃info. By η̃∗ ≤ J̃(x, u∗) ∀x ∈ S the

statement follows.

Theorem 2.35 (Continuity of η∗ with respect to kinfo at kinfo > 0). The quantity

η∗ of optimal average costs is continuous in kinfo > 0.

Proof. Analogous to the proof of Theorem 2.19.

Theorem 2.36 (Continuity of η∗ with respect to kinfo at kinfo = 0). Given a Markov

control model with information costs, let η∗kinfo denote the optimal average costs de-

pending on the parameter kinfo. Let η0 denote the optimal average costs of the cor-

responding original Markov Control model (without information costs). It holds

η∗kinfo
kinfo→0−→ η0.

Figure 2.17 shows the optimal average costs η∗ as a function of kinfo for the

2-state-example 2.25.

Proof of Theorem 2.36. Again, the argumentation is analogous to the case of dis-

counted costs, compare Theorem 2.20. We consider the optimal policy a0 of the

original Markov control problem. Defining ca0(x) := c(x, a0(x)) and La0(x, y) :=

La0(x)(x, y), x, y ∈ S, we get

η0 = ca0(x) + (La0v)(x) ∀x ∈ S,

where v is a suitable function on S. Given kinfo > 0, set τ(x) = τ∗ =
√
kinfo for all

x ∈ S and consider the policy u(x) = (a0(x), τ
∗) which is in general not optimal.

According to Lemma 2.26 the average costs ηkinfo induced by this policy u are given

by the first component of

vkinfo :=













1 0 . . . 0
...

...
...

1 0 . . . 0






−Gu







−1

C̃u,
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Figure 2.17: kinfo vs. optimal average costs for the 2-state-example. The

constant of optimal average costs η∗kinfo for Example 2.25 depending on the informa-

tion costs kinfo in a logarithmic scale. For kinfo = 1 the values agree with the one

given in Table 2.2 (η∗ = 1.59). For kinfo = 10−10 the value is close to the optimal

costs of the original model (η∗ ≈ 1.09).

where, for the given policy u,

C̃u(x) = C̃(x, a0(x), τ
∗) = E

a0(x)
x

(

1

τ∗

∫ τ∗

0
c(Xs, a0(x)) ds

)

+
kinfo

τ∗
.

We analyze the vector vkinfo for vanishing information costs: From kinfo → 0 it

follows τ∗ → 0 and
kinfo

τ∗
=

kinfo√
kinfo

→ 0.

For x 6= y it holds

Gu(x, y) =
1

τ∗
eLa0(x)

τ∗(x, y)

=
1

τ∗

[

I + La0(x)τ
∗ +

1

2
L2
a0(x)

(τ∗)2 + ...

]

(x, y)

I(x,y)=0
=

1

τ∗

[

La0(x)τ
∗ +

1

2
L2
a0(x)

(τ∗)2 + ...

]

(x, y)

τ∗→0−→ La0(x)(x, y),

while

Gu(x, x) = − 1

τ∗

(

1− eLa0(x)
τ∗(x, x)

)

= − 1

τ∗

(

1−
[

I + La0(x)τ
∗ +

1

2
L2
a0(x)

(τ∗)2 + ...

]

(x, x)

)

I(x,x)=1
=

1

τ∗

[

La0(x)τ
∗ +

1

2
L2
a0(x)

(τ∗)2 + ...

]

(x, x)

τ∗→0−→ La0(x)(x, x),
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and so we get Gu
τ∗→0−→ La0 . Next, using ca(x) := c(x, a), we have

E
u
x

(

1

τ∗

∫ τ∗

0
c(Xs, a0(x)) ds

)

=
1

τ∗

∫ τ∗

0

(

eLa0(x)
sca0(x)

)

(x) ds

=
1

τ∗

∫ τ∗

0

([

I + La0(x)s+
1

2
(La0(x))

2s2 + ...

]

ca0(x)

)

(x) ds

=
1

τ∗

[

ca0(x)s+
1

2
(La0(x)ca0(x))(x)s

2 + ...

]τ∗

0

= ca0(x) +
1

2
(La0(x)ca0(x))(x)τ

∗ + ...

τ∗→0−→ ca0(x)(x).

Putting everything together we get

vkinfo
kinfo→0−→













1 0 . . . 0
...

...
...

1 0 . . . 0






− La0







−1

ca0 ,

which, by Lemma 1.13, delivers η0 in its first component, i.e. it holds vkinfo(1)
kinfo→0−→

η0. Noting that η0 ≤ η∗kinfo ≤ vkinfo(1) = ηkinfo completes the proof.

Connection between kinfo and τ∗

The analogy of the results for discounted and average costs persists when analyzing

the connection between the information costs kinfo and the optimal lag times τ∗(x).

We can even use the same 3-state-example (see Example 2.21) to show that τ∗(x) is

in general not monotone and/or continuous in kinfo. Figure 2.18 shows the optimal

lag times τ∗(x) as functions of kinfo for the average-cost criterion. The corresponding

function of optimal average costs is given in Figure 2.19.

The graph in Figure 2.18 looks similar to the one for discounted costs, compare

Figure 2.9: For the states x1 and x2 the optimal lag time is monotone and continuous

in kinfo, while for the intermediate state xI there is a breaking point which is situated

at kinfo ≈ 0.12. Again, this critical value of kinfo is linked to a switch in the optimal

choice of action. For kinfo ≤ 0.12 the optimal action for state xI is a∗(xI) = a1,

while for kinfo > 0.12 it holds a∗(xI) = a2.

As before, this structure can be explained by the effect that both actions have

on the process in state xI : In the short run, action a1 is preferred because it is free

of charge (c(xI , a1) = 0). However, given a1, the process is more likely to switch

next to the “bad” state x2, such that a soon following test and control adaption is

required. If the test is too expensive (kinfo > 0.12) it is favorable to choose the “safe”

(but more expensive) action a2 in order to push the process towards the “good” state

x1.
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Figure 2.18: kinfo vs. optimal lag times for the 3-state-example. The optimal

lag times τ∗(x) for Example 2.21 depending on the information costs kinfo. At

kinfo = 0.12 the optimal lag time τ∗(xI) of the intermediate state performs a jump.

Again, one could formulate “conditional” optimal policies, fixing the action for

the intermediate state xI , which would lead to a continuity and monotonicity of the

lag times depending on kinfo, compare Example 2.21.

For vanishing information costs the optimal lag times seem to converge to zero,

which gives a reasonable connection to the original Markov control model. To verify

this property we have to assume that state testing is generally profitable, which will

be done in the following theorem.

Theorem 2.37 (Continuity of τ∗ with respect to kinfo at kinfo = 0). Assume the

action space A to be finite. Let a0 denote the optimal policy (i.e. optimal choice of

action) of the original control problem (without information costs), and let µ0 be the

corresponding equilibrium distribution. Let x ∈ S be such that µ0(x) > 0 and assume

that there exists a state y ∈ S with a0(x) 6= a0(y) and Pa0(x)(Xt = y|X0 = x) > 0

for some t > 0.

Then it holds

τ∗kinfo(x)
kinfo→0−→ 0,

where τ∗kinfo(x) is the optimal lag time for state x given the information costs kinfo.

Proof. The justification is analogous to the proof of Theorem 2.22: Assuming that

τ∗(x) does not converge to zero means that there exist periods in time where the

process is not optimally controlled, compare Figure 2.12. This leads to a difference

in the costs for each time the process is in state x. As µ0(x) > 0, this difference

has an impact on the long-term average costs, as well. This means that the optimal

long-term average costs η∗info of the information cost model would not converge to the

optimal long-term average costs η0 of the original problem, which is a contraction

to Theorem 2.36.
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Figure 2.19: kinfo vs. optimal average costs for the 3-state-example. The

constant of optimal average costs for Example 2.21 depending on the information

costs kinfo, compare Theorem 2.36.

2.3.4 Sensitivity with respect to Lag Times τ (x)

We end this section by presenting a short sensitivity analysis with respect to the

lag times τ in the case of average costs. The motivation remains the same: Due to

practical restrictions, an exact adherence of the calculated optimal lag times might

not be possible in a real application. In the following, we question the possible

consequences of such an irregularity.

According to the analysis of Section 2.3.1, we know that both the generators

Gu and the cost function C̃u are continuous with respect to τ(x) for all x ∈ S
which implies that the average costs ηu are continuous with respect to the lag time

parameter. This is a reassuring fact in the sense that deviations from the optimal

lag times – as long as they are not too large – will not lead to crucial changes in the

costs.

In analogy to Section 2.2.4, we would like to see how ηu depends on τ for the 2-

state-example 2.25. Figure 2.20 shows the impact of changes in τ(x1) resp. τ(x2)

when all other parameters are fixed to be optimal. In both cases, the net costs

ηnet are monotonously increasing in τ , whereas the total costs η exhibit a unique

minimum. However, around these minima, there exists a wide area of values where

the constant η of long-term average costs is nearly constant, which indicates a low

sensitivity with respect to the lag times for this concrete example.

As for the numerical consequences of such a low sensitivity we can argue as in

the case of discounted costs, compare Section 2.2.4. On the one hand, an exact

minimization by numerical methods would require an enormous number of iteration

steps. On the other hand, the exact adherence of a prescribed lag time might not

be realistic anyway, such that a nearby optimal solution will be satisfying.
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Figure 2.20: Sensitivity with respect to τ for the 2-state-example.

A: Lag time τ(x1) vs. long-term average costs η and ηnet for fixed τ(x2) = 1.3 and

a(x1) = 1, a(x2) = 2. B: Lag time τ(x2) vs. long-term average costs η and ηnet for

fixed τ(x1) = 5.3 and a(x1) = 1, a(x2) = 2.

All other parameters coincide with those given in the first line of Table 2.2, i.e.

cS(x2) = 10, cA(a2) = 2, kinfo = 1. The minimum of the total average costs η is

attained at τ∗(x1) = 5.3 (panel A) resp. τ∗(x2) = 1.3 (panel B) with η = η∗ = 1.59

which is consistent with the values of the optimal policy declared in Table 2.2.

2.4 Comparing Discounted and Average Costs

In some situations it might not be clear which of the two presented cost criteria is

more appropriate for a given application. In this regard, it is interesting to analyze

how these criteria are related to each other: Given a fixed control problem, how do

the optimal policies differ from each other? How are the optimal costs related to

each other? Is there a case in which both criteria lead to the same optimal policy?

These questions will be answered in the following.

Looking once again at the 2-state-process in Example 2.11 and Example 2.25

with cS(x2) = 10, cA(a2) = 2 and kinfo = 1 (first line of Table 2.1 and Table 2.2)

one can observe that the choice of actions coincides for both criteria, while time

intervals and value function are different. Table 2.4 shows the optimal policies and

the value functions for the discounted-cost criterion and different discount factors

λ.

We can observe that, with decreasing λ, the values τ∗(x) of optimal lag times

of the discounted-cost problem decrease, while the value function increases. The

(relative) difference between the values Vλ(x1) and Vλ(x2) tends to zero. For λ =

10−4, the lag times τ∗(x1) and τ∗(x2) approximately coincide with those of the

average-cost criterion, and for the value function it holds

Vλ(x1) ≈ Vλ(x2) ≈
1

λ
η∗.
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λ a∗(x1) a∗(x2) τ∗(x1) τ∗(x2) Vλ(x1) Vλ(x2)

10−1 a1 a2 11.3 1.8 7.8 69.8

10−2 a1 a2 5.7 1.4 145.2 255.1

10−3 a1 a2 5.4 1.3 1.57 · 103 1.69 · 103
10−4 a1 a2 5.3 1.3 1.59 · 104 1.59 · 104

Table 2.4: Optimal policy and value function of discounted costs depending

on λ. This table shows the dependence of the optimal policy and the value function

on the discount factor λ for the 2-state-example 2.11 and fixed cost parameters

cS(x2) = 10, cA(a2) = 2 and kinfo = 1. The corresponding results for the average-

cost criterion are: a∗(x1) = a1, a
∗(x2) = a2, τ

∗(x1) = 5.3, τ∗(x2) = 1.3, η∗ = 1.59,

see Table 2.2.

Why are the values τ∗(x) larger for the discounted-cost criterion than for the

average-cost criterion? In other words, why does the optimal policy for discounted

costs afford a smaller number of tests? The reason should be the following: The

damage which arises from rare testing (because of a delayed/suboptimal switch of

action choice) is less valued because it is discounted!

The relationship

ηu = lim
λց0

λJλ(x, u)

is well known for the original model [26]. However, we only translated the average-

cost problem to an equivalent original Markov control model, while for the discounted-

cost criterion a direct approach was feasible. The observation ηu = limλց0 λJλ(x, u)

for the information cost model thus suggests that for small λ also the discounted-cost

problem is related to the original Markov decision process (Yt)t≥0 with generator

Gu and cost function C̃ which was derived from the average-cost problem, compare

(2.33) and (2.27).





Chapter 3

Application to Treatment

Scheduling in HIV-1

Controlling a random process that cannot be observed without effort is a realistic

situation. It is common practice to pay for information – whether by money or

indirectly by spending time or energy. A central aspect is to decide when to gather

the information in order to permit a satisfying control without producing too many

information costs. Especially situations in a medical context follow this scheme; a

medical practitioner does not only have to decide which medicine to prescribe, but

must also find a date for the next checkup. His decision will depend on the actual

health status of the patient and the dynamics of the disease process given the medical

treatment. The Markov control model which was developed in Chapter 2 exactly

reflects this interplay of information purchase and control adaption. The essential

finding was the reformulation of the Bellman equation which provides a numerical

scheme for the calculation of the optimal policy by means of dynamic programming.

The results will now be applied to a detailed example in the medical context. We will

consider the dynamics of the human immunodeficiency virus (HIV) and determine

– from the national economic perspective – optimal therapeutic policies in resource-

rich and resource-poor settings.

Optimal control methods have previously been applied by other research groups

in the context of HIV-therapy: Luo et al. [44] and Vargas et al. [29] treated the

underlying system deterministically, which fails to capture the intrinsic stochas-

tic nature of HIV drug resistance development and the time-scales on which drug

resistance develops [52]. Furthermore, it does not allow for individualized (patient-

specific) treatment optimization. Shechter et al. [61] used MDPs (machine main-

tenance approaches) to maximize expected residual lifetime under treatment which

allows for patient-specific treatment optimization but does not take into account the

“cost of observation” and neither the virological state in a patient. Both aspects,

however, will play an essential role and will be thoroughly addressed in our analysis.

In Section 3.1 we will define the parameters of the Markov control model

(

S, A, {A(x) : x ∈ S}, {La : a ∈ A}, c , kinfo
)
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for the given application. In this regard, the most critical step is the definition of the

cost function. Here, we have to assign costs to health damage and death – but does

this not reflect a somehow unconscionable intend? Under ethical consideration, the

death of a person cannot be measured in any form of monetary currency, as the life

of an individual is priceless. However, medical treatment does produce a significant

amount of costs and especially resource-poor countries cannot afford an arbitrarily

individualized therapy which does not underlie any monetary restrictions. Instead,

from the economic point of view the arrangement of the health system in fact requires

a weighting of costs and benefit. We will handle the situation by taking the gross

domestic product (GDP) of a country as a reference and measuring the costs of

health damage in terms of the productivity loss with respect to the GDP.

Given the model for the HIV dynamics, we will in Section 3.2 determine the optimal

policy for a resource rich and a resource poor setting. We will further calculate the

cost splitting for different values of the information cost parameter kinfo and compare

the optimal policy with the two extreme cases of continuous control (in the sense of

original Markov control theory) and constant control (referring to fixing the action

for all times).

In Section 3.3 we will analyze how deviations from the optimal lag times influence

the process costs. Finally, the impact of cost reductions on the survival benefit will

be considered in Section 3.4.

3.1 HIV Dynamics Model

In the following, we will introduce the HIV-model to which we will apply the theory

of Markov control with information costs developed in Chapter 2. First of all, the

state space S and the action space A of the HIV-model will be defined. Then we

will explain how distinct treatments a ∈ A manipulate the entries of the generators

La and parametrize the corresponding cost function.

State space S and action space A

HIV dynamics and drug resistance development can accurately be described by

stochastic reaction kinetics [52, 68, 69]. The fundamental evolution equation for

stochastic kinetics is the chemical master equation (CME), for which each state

comprises a combination of discrete numbers of individuals of the respective species

(e.g. viral strains), resulting in state space dimensions N0 × N0 × ... × N0, which is

numerically infeasible in terms of a direct solution.

In order to reduce the dimensionality of the state space, we consider four com-

bined states of copy numbers for each virus type. If a virus type is absent, we denote

the respective state by 0; if it is present in low copy numbers, i.e. for < 50 virus

copies/mL blood (detection limit of assays used in the clinic), the respective state

is denoted by ℓ; for medium copy numbers between 50 and 4000 virus copies/mL

blood we denote the state by m; and for high copy numbers with more than 4000

virus copies/mL blood the state is denoted by h. This coarse graining is in line with
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the levels of virus produced in the distinct cellular reservoirs of HIV, see e.g. [69].

The ℓ-states are reflecting states, which is justified by inability to eradicate HIV

(the persistence of virus in reservoirs [21,40]), and the h-states are reflecting states

because there is a maximum carrying capacity of the system (i.e. the virus does

not grow indefinitely). Further, the ℓ-states do not affect patient health (thus not

producing state costs) as the virus is essentially suppressed [11]. Costs are produced

by the h-states and the m-states respectively, and the h-states produce more costs

than the m-states (denoted later in Table 3.2).

The dynamics of the virus may be influenced by different lines of medical treat-

ment. In line with [77] and [78], we choose the set of actions

A = {a∅, a1, a2},

where a∅ denotes the absence of medical intervention, while a1 and a2 denote the

application of two distinct treatment lines. This choice is motivated by the fact that

in the following we will focus on HIV treatment in resource-constrained settings in

which only two treatment lines (a1 and a2) are available.

According to their treatment susceptibility, the model distinguishes 4 viral strains

M (“mutants”): a strain WT (wild type) that is susceptible to both treatment lines,

a strain R1 which is susceptible to a2 but unaffected by (resistant to) a1, a strain

R2 that is susceptible to a1 but unaffected by a2 and a highly resistant strain HR

which is resistant to both treatments.

Considering all permutations of viral strains M ∈ {WT,R1,R2,HR} and respective

copy numbers nC(M) ∈ {0, ℓ,m, h} as well as patient death z, the state space of

the corresponding Markov control model turns out to be

S = {0, ℓ,m, h}4 ∪z

with |S| = 44 + 1 = 257 states in total.

In order to describe a state x ∈ S, we choose a compact vector notation of the form

x =
[

nC(WT) , nC(R1) , nC(R2) , nC(HR)
]

.

For example, the state x =
[

h, ℓ,m, 0
]

describes the situation of a high number of

wild type strains, a ℓow number of R1-mutants, a medium number of R2-mutants

and the absence of highly resistant mutants. We use this notation also for sets of

states by writing, e.g.
[

{m,h}, ∗, 0, 0
]

, which stands for a medium or high number of

wild type strains, an arbitrary number of R1-mutants and the absence of R1-mutants

and highly resistant mutants.

Generator entries

For each action a ∈ {a∅, a1, a2} the generator La is a matrix in R
|S|,|S| containing the

transition rates between the different states given this action. For the considered

HIV-model the transitions between states can be split up into three categories:
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First, the copy number nC(M) can increase or decrease for each viral strain M .

Second, a patient can die such that the process switches to state z. Third, there

are transitions between the different viral strains due to mutations. By the structure

of the HIV-model some of these rates naturally should be zero: For example, there

is no direct switch from a low copy number to a high copy number, instead such

a growth process always runs through the state of a medium copy number. All

the non-zero entries of the generators will now be explained, starting with the first

category.

The basic transitions between copy number states nC(M) for a particular viral

strain M (here exemplified for the wild type strain WT) of our continuous-time

Markov model are the following:

[

ℓ , ∗ , ∗ , ∗
]

kℓ,a−−→←−−−
δm

[

m, ∗ , ∗ , ∗
]

,
[

m, ∗ , ∗ , ∗
]

km,a−−−→←−−
δh

[

h , ∗ , ∗ , ∗
]

, (3.1)

where ∗ indicates an arbitrary number of the respective virus strain (R1,R2 and

HR in the example above). The parameters kℓ,a and km,a denote the reaction rates

for a transition from copy number ℓ to copy number m and from copy number

m to copy number h, respectively (viral growth), which depend on the treatment

a ∈ {a∅, a1, a2}. The parameters δm and δh are independent of the treatment and

denote the reaction rates of going from copy number m to copy number ℓ and from

copy number h to copy number m, respectively (virus elimination).

The occurrence of death is considered in the following way:

[

h , ∗ , ∗ , ∗
] dh−−→ z,

[

m, ∗ , ∗ , ∗
] dm−−→ z,

[

ℓ , ∗ , ∗ , ∗
] dℓ−−→ z. (3.2)

The parameters dh > dm > dℓ denote the rate for the death of the patient. These

parameters are also unaffected by the treatments. We assume that high viral burden

(states h and m respectively) increases the risk of death, whereas dℓ equals the rate

for “natural death”. The rate for natural death is computed according to dℓ =

1/(residual life expectancy healthy) and is exemplified in the caption of Table 3.2.

Likewise, dh and dm are computed using the average residual life expectancy in

states h and m.

A visualization of the transitions between copy numbers and the occurrence of death

is given in Figure 3.1 (left).

The considered transitions (mutations) between viral strains M are depicted in

Figure 3.1 (right). Specifically, mutation generates a ℓow number of viral particles

from either a medium or high number of viruses belonging to a distinct strain.

Exemplified for the wild type strain WT those are:

[

h , 0 , ∗ , ∗
] µh,R1,a−−−−→

[

h , ℓ , ∗ , ∗
]

,
[

m, 0 , ∗ , ∗
] µm,R1,a−−−−−→

[

m, ℓ , ∗ , ∗
]

, (3.3)
[

h , ∗ , 0 , ∗
] µh,R2,a−−−−→

[

h , ∗ , ℓ , ∗
]

,
[

m, ∗ , 0 , ∗
] µm,R2,a−−−−−→

[

m, ∗ , ℓ , ∗
]

, (3.4)
[

0 , h , ∗ , ∗
] µh,R1,a−−−−→

[

ℓ , h , ∗ , ∗
]

,
[

0 , m , ∗ , ∗
] µm,R1,a−−−−−→

[

ℓ , m , ∗ , ∗
]

, (3.5)
[

0 , ∗ , h , ∗
] µh,R2,a−−−−→

[

ℓ , ∗ , h , ∗
]

,
[

0 , ∗ , m , ∗
] µm,R1,a−−−−−→

[

ℓ , ∗ , m , ∗
]

. (3.6)
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Figure 3.1: Simplified HIV Model. Left: Transitions between copy numbers

nC ∈ {0, ℓ,m, h} within a viral strain M ∈ {WT,R1,R2,HR} and occurrence of

death. Right: Transitions in between different viral strains M . Taken from [77].

The lines (3.3) and (3.4) indicate mutation arising from the wild type strain and the

lines (3.5) and (3.6) indicate mutations yielding the wild type strain. The param-

eters µh,R1,a and µh,R2,a denote the propensity for the emergence or disappearance

of a mutation that confers drug resistance to treatment a1 and a2, respectively,

emanating from copy number state h. Analogously, µm,R1,a and µm,R2,a denote the

propensity for the emergence or disappearance of a mutation emanating from copy

number state m. Note that we consider only the following mutations: WT ↔ R1,

WT ↔ R2, R1 ↔ HR and R2 ↔ HR, which is motivated by the fact that a direct

transition from WT ↔ HR is very unlikely, because the genetic distance between

the two viral strains is too large to be overcome at once.

The effect of the treatments a1 and a2 on the growth and mutation rates is

considered in the following way:

kℓ,a =

(

1− η(a,M)

)

kℓ,∅, km,a =

(

1− η(a,M)

)

km,∅, (3.7)

µh,M̃,a =

(

1− η(a,M)

)

µh,M̃,∅, µm,M̃,a =

(

1− η(a,M)

)

µm,M̃,∅, (3.8)

whereM ∈ {WT,R1,R2,HR} is the present viral strain which induces the reaction.6

The parameter η(a,M) denotes the efficacy of treatment a ∈ {a1, a2} on this viral

strain M ∈ {WT,R1,R2,HR}; i.e. if strain M is susceptible to treatment a ∈
{a1, a2}, then 0 < η(a,M) ≤ 1, and if the viral strainM is insusceptible to treatment

a ∈ {a1, a2} then η(a,M) = 0. The parameters kℓ,∅ and km,∅ resp. µh,M̃,∅ and µm,M̃,∅

denote the growth rates resp. mutation rates in the absence of intervention, i.e. for

a∅ (see Table 3.1).

6In fact, this means that the described parameters additionally depend on the considered viral

strain, i.e. one would have to write kℓ,a(M), µh,M̃,a(M) in order to notice this dependency. Here

we omit this additional parameter for the purpose of legibility.
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We estimated all parameters by fitting the presented model to clinical data of

virus decay- and rebound dynamics, choosing a least square criterion, see [77]. Some

of the described rates are country specific, while others can be chosen generically.

The generic model parameters are given in Table 3.1, while the country specific

parameters are shown in Table 3.2.

param. value param. value param. value

δh 6.13 · 10−2 µh,R1,∅ 1.24 η(a1, {WT,R2}) 0.979

δm 5.1 · 10−2 µm,R1,∅ 4.34 · 10−2 η(a1, {R1,HR}) 0

kℓ,∅ 0.13 µh,R2,∅ 2.41 · 10−4 η(a2, {WT,R1}) 0.966

km,∅ 0.13 µm,R2,∅ 2.33 · 10−2 η(a2, {R2,HR}) 0

Table 3.1: Generic model parameters. All parameters in units [1/day] except η

[unit less]. For the death rates dh, dm, dℓ see Table 3.2.

Cost parameters

Our analysis is conducted from a country’s or a public health-care/monetary per-

spective. The costs are produced by the health damage of a patient on the one

hand (giving the state costs) and by the price for medical intervention on the

other hand (giving the action costs), such that the cost function is of the form

c(x, a) = cS(x) + cA(a). The costs cS(x) of being in the respective states x ∈ S
are computed based on the average productivity loss pL(nC) (depending on the

copy number of a viral strain) times the average daily monetary contribution of one

individual (assessed in terms of daily per capita GDP), i.e.

cS(x) = pL(x) ·GDP

with pL(x) := max
M

pL(nC(M)) for x ∈ {0, ℓ,m, h}4, and pL(z) = 1, which means

that death is interpreted in terms of a complete loss in productivity. The values are

adapted from [58].

We tend to assess optimal policies in the case where two treatment lines (a1
and a2) are available in (i) developed countries with Germany as a representative,

and (ii) in resource-constrained settings exemplified for South Africa because of

the extraordinary high prevalence (17.8%) of HIV in this country [67]. The daily

costs cA of treatment in Germany and in resource-constrained settings were derived

from [64, 65]. In resource-constrained settings, the William J. Clinton Foundation

has negotiated prices for antiviral drugs which are highly subsidized, giving access

to antivirals in these settings. The respective parameters are displayed in Table 3.2.

The costs for drug resistance testing are kinfo ≈ 400 US$ per test in the western world

[58]. In resource-constrained settings, these tests are not subsidized. Furthermore,

because of the often undeveloped infrastructure tests may be even more expensive,

thus justifying the adjustment to a steeper value of kinfo = 500 US$ per test. All

parameters related to costs are displayed in Table 3.2.
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param. value value unit ref.

Germany S. Africa

cA(a∅) 0 0 - -

cA(a1) 48.5 0.3 US$/d [64, 65]

cA(a2) 58.8 1.08 US$/d [64, 65]

kinfo 400 500 US$/d [58]

dℓ 6.2 · 10−5 9.4 · 10−5 1/d ♮

dm 2.7 · 10−4 2.7 · 10−4 1/d †
dh 5.5 · 10−4 5.5 · 10−4 1/d †
GDP 43 742 8 066 US$/p.p./y [66]

pL(ℓ) 0 0 - [58]

pL(m) 0.1 0.1 - [58]

pL(h) 0.4 0.4 - [58]

pL(z) 1 1 - -

λ 1 · 10−4 1.75 · 10−4 1/d ‡

Table 3.2: Country specific model parameters. Here, kinfo refers to the price

for a drug resistance test and λ is the discount factor. The GDP refers to the

estimation for the year 2011 by the International Monetary Fund. ♮ Computed from

the overall residual life expectancy normalized by AIDS related death. The overall

life expectancy in Germany and South Africa is 79.4 and 49.3 years, respectively,

with an average age of HIV detection of 35 and 25 years and HIV prevalence of 0.1%

and 17.8%, respectively. † For states m and h we assumed a respective residual life

expectancy of 10 and 5 years. ‡ Assuming an annual inflation of 3.5% and 6.2% for

Germany and South Africa, respectively.

Remark 3.1. The presented HIV-model is based on the aggregation of possible copy

numbers into four combined states which strongly coarsens the true dynamics. Of

course, a consideration of the exact master equation would be a more accurate ap-

proach. However, such a detailed approach would cause two problems: First, the

parameters of the exact model are difficult to determine, and second, the detailed

model would enormously extend the run time of the considered optimization algo-

rithms due to its giant state space. Finding a way to handle these problems clearly

exceeds the scope of this thesis.

It is common practice – especially in the context of molecular dynamics – to approxi-

mate complicated dynamical behaviour by low dimensional models in order to reduce

numerical effort, see e.g. [12,13,16,18,53,57]. Typically, the essential dynamics of a

system are detected by identifying almost invariant (or metastable) sets of the state

space. The combined states of copy numbers (0, ℓ, m, h) of the presented HIV-model

are metastable in the sense that the process of virus growth typically stays in each

of these states for a comparably long time.

For the real-world application another point is relevant: Using the detailed model

would require to determine the exact copy number of the virus in the body of a pa-

tient by medical tests which is not realistic.
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3.2 Optimal Control and Cost Splitting

In the following, we will apply the developed Markov control theory of Chapter 2

to treatment scheduling and diagnostic testing in HIV-1 using the model presented

in Section 3.1. As the model contains an absorbing state (the death of a patient),

it only makes sense to consider the discounted-cost criterion defined in (2.3). The

discount factor λ is chosen with reference to the inflation in the considered countries,

see Table 3.2.

The optimal control is determined by the discounted-cost policy iteration algo-

rithm presented on page 55. The results are displayed in Table 3.3, both for the

resource-rich and the resource-poor setting, given the cost parameters of Table 3.2.

The composition of the value function for state x =
[

h , 0 , 0 , 0
]

and its dependence

on the cost parameters is analyzed subsequently.

states a∗(x) τ∗(x) a∗(x) τ∗(x)

Germany South Africa
[

ℓ , 0 , 0 , 0
]

a1 155 a1 ≥ τmax
[

{m,h} , 0 , 0 , 0
]

a1 6− 24 a1 11− 45
[

∗ , 0 , {ℓ,m, h} , 0
]

a1 20− 554 a1 ≥ τmax
[

∗ , {ℓ,m, h} , 0 , 0
]

a2 159 − 567 a2 ≥ τmax

otherwise a∅ ≥ τmax a1 ≥ τmax

Table 3.3: Optimal policy. Calculated optimal policy for the resource-rich (Ger-

many) and resource-poor setting (South Africa) giving the optimal choice of treat-

ment a∗(x) and the optimal lag time τ∗(x) (in days) depending on the state of the

patient. For clarity reasons, states are merged according to their related treatment

choice. The values given for τ∗ refer to the respective minimum and maximum

value of τ∗(x) for the states x indicated in the first column; e.g. for the second row

it holds τ∗(
[

h, 0, 0, 0
]

) = 6 and τ∗(
[

m, 0, 0, 0
]

) = 24 for Germany. For the numerical

computations we chose τmax = 2000 days.

According to Table 3.3, treatment a1 is chosen whenever only wild type (WT)

virus is present or wild type (WT) and strains resistant to treatment a2 (R2) coin-

cide. Treatment a2 is only chosen if drug resistance to treatment a1 has emerged

(R1) while the virus is still susceptible to treatment a2. Interestingly, there is a

difference in the handling of the other states (i.e. highly resistant strains HR, or the

concurrence of R1 and R2): While when considering Germany no treatment (a∅)

is given, treatment a1 is applied in the resource-poor setting. This result is due to

the fact that the use of treatment in patients that carry drug resistant viruses may

provide limited benefit in comparison to the treatment costs for Germany, whereas

costs for treatment in resource-constrained settings are in fact so low that their

application in the case of drug-resistant virus is still cost-optimal. This is also sup-

ported by the cost-splitting in Table 3.4 (baseline parameters in first column): For
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Germany, treatment cost cA produce more than 20% of the total optimal costs,

whereas they only produce about 2.5% of the total costs in South Africa. In fact,

Stoll et al. [64] argued that treatment may be too expensive in Germany because

of the use of original manufacturer’s drugs instead of generic drugs.

kinfo
basel.⋆ 200 100 50 5

G
er

m
an

y Vinfo(x) 10 502 7 681 5 393 3 684 950

VA(x) 208 100 211 150 212 950 214 030 215 510

VS(x) 705 380 698 180 693 710 690 900 686 880

Vλ(x) 923 982 917 011 912 053 908 624 903 340

S
.
A

fr
ic

a Vinfo(x) 2 294 2 467 1 838 1 314 369

VA(x) 1 739 1 899 1 965 1 909 1 842

VS(x) 65 116 62 408 60 928 60 928 60 104

Vλ(x) 69 149 66 774 64 731 64 151 62 315

Table 3.4: Cost splitting. Calculated cost splitting Vλ(x) = VS(x) + VA(x) +

Vinfo(x) (in US$) for state x =
[

h, 0, 0, 0
]

in the resource-rich and resource-poor

setting, respectively, using the results of Section 2.2.2. ⋆ Baseline costs for resistance

tests are 400 US$ and 500 US$ in Germany and South Africa, respectively.

As can be seen in Table 3.3, much longer periods between tests are proposed

in the resource-constrained setting in comparison to the resource-rich setting. In

fact, drug-resistance testing (and thus the ability to adapt one’s individual therapy)

is only recommended in states
[

{m,h}, 0, 0, 0
]

in the resource-poor setting. It may

therefore be indicated for the resource-constrained setting, that despite the availabil-

ity of subsidized treatment, their optimal use may not be feasible because informed

decision making is not possible as a consequence of unaffordable diagnostics (kinfo
is too high). Note that drug resistance tests are currently not part of the standard

of care in resource-constrained settings. In the resource-rich setting (Germany) in-

formation costs produce 1.1% of the total costs, whereas they produce 3.3% of total

costs in the resource-poor setting (South Africa), see Table 3.4. Interestingly, the

cost of information (Vinfo in Table 3.4) is not reduced for South Africa when the

price for diagnostics is reduced from kinfo = 500 to kinfo = 200 US$, while at the

same time the total costs are reduced, which can be fully attributed to a state cost

reduction. This indicates that the price reduction for diagnostics enables their more

frequent use (thus no Vinfo reduction), which seems to fully benefit the patient (lower

VS). In total, state costs VS are reduced by 2.6% in Germany when comparing the

baseline parameters with kinfo = 5 US$ per test, whereas they are reduced by 7.7%

in South Africa. Finally, it can be seen that the total expected costs (last rows in

Table 3.4) are disproportionately higher in Germany than in South Africa (compare

their differences with the differences in GDP in Table 3.2).
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Example 3.2 (Trajectory under optimal control). A numerical simulation of the

process under optimal control for the resource-poor setting delivered the trajectory

displayed in Figure 3.2. The parameters of the optimal policy are taken from Ta-

ble 3.3. After starting in x0 = [h, 0, 0, 0] at time t0 = 0, action a1 is applied and

the process quickly switches to [m, 0, 0, 0] which means a virus elimination. This is

observed at time t1 = t0 + τ∗(x0) = 11 and leads to a further application of action

a1. The copy number of the wild type is again reduced, carrying the process to state

[ℓ, 0, 0, 0]; however, at the next observation time t2 = t1 + τ∗([m, 0, 0, 0]) = 56 the

process already returned to [m, 0, 0, 0]. Within the following time period of hidden

progress, a mutation originates the viral strain R1 which successively grows. A test

at time t3 = t2 + τ∗([m, 0, 0, 0]) = 101 indicates this behaviour, and the action is

adapted to a∗([m,h, 0, 0]) = a2. From now on, by τ∗([m,h, 0, 0]) =∞, the action is

fixed and no further tests are made.

0 100 200 300 400 500 600 700 800 900 1000

time t in days
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21
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Figure 3.2: Sample path. Sample of virus dynamics given the optimal policy for

South Africa, compare table 3.3. The gray area marks the time where action a2 is

applied, otherwise action a1 determines the dynamics. The dotted lines indicate the

points tn in time where tests are made and the state is observed.

Comparison to constant control and original Markov control problem

As in the theoretical analysis of Chapter 2, the cost splitting provides a basis for a

comparison to the original Markov control problem where the process is assumed to

be completely observable. Such a comparison will be done in the following, both in

terms of the net costs and in terms of the probability of death which is of special

interest in the given application. As a contrasting extreme case, we consider the

process under constant control, i.e. the action is fixed for all times. Comparing the
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optimal policy given in Table 3.3 to these two settings of (i) continuous control and

(ii) constant control, we get an overview of the impact that different policies have

on the process evolution.

(i) For the original Markov control setting we consider the discounted-cost cri-

terion given in (1.2). The calculation of the optimal policy is conducted according

to the discounted-cost policy iteration algorithm introduced in Section 1.2. The

result is quite complex: Parallel to the optimal policies given in Table 3.3, both

for Germany and for South Africa action a1 is chosen whenever only the wild type

(WT) is present or a combination of WT and strain R2 appears. If the wild type is

accompanied by strain R1 (resistance to a1), generally a2 is the right choice, except

for state [m,h, 0, 0] which requires a1. The reason seems to be the slightly higher

efficiency η(a1,WT) of treatment a1 with respect to the wild type: While the high

copy number of viral strain R1 makes its control redundant (because its copy num-

ber can only decrease and the decrease rate is not effected by the actions), the wild

type can still be prevented from growing further which justifies to apply the more

effective treatment a1.
7

Such a pattern reappears in the resource-constrained setting (with interchanged

roles of a1 and a2) when additionally R2 is present, i.e. for states of the form

[∗, ∗, {ℓ,m, h}, 0]. In this case, action a1 is optimal, except for those states with

nC(R1) = m which require a2. This time the reason is not only given by the growth

rate of R1 (which is unaffected by a1), but also by the mutation rates µh,R2,∅ and

µm,R2,∅: Given nC(R1) = m, the value µm,R2,∅ (> µh,R2,∅) is reduced by a2 making

a mutation R1→ HR less probable. For nC(R1) = h, however, such a reduction is

not required because µh,R2,∅ is very small already, compare Table 3.1, and so a1 is

the right choice.8 In the presence of highly resistant strains (HR), both treatments

a1 and a2 appear as optimal (depending on the state), and especially for the case

of high copy numbers no medical intervention (a∅) is recommended, which is again

due to the fact that the decrease rates are not effected by the (costly) treatments

a1 and a2.

For the resource-rich setting, the structure is similar; however, there are much more

states where a∅ has to be chosen, which can be explained by the high action costs

in this setting.

(ii) The process under constant control refers to the situation in which an action

is initially chosen and maintained for the remaining time. It can be associated to

infinitesimal large information costs (kinfo = ∞) which make testing unaffordable

(τ(x) =∞ for all x ∈ S). In the presented model this situation refers to the choice

of either a∅, a1, or a2 for all times. The corresponding costs are given by

Jaλ(x) := E
a
x

(
∫ ∞

0
e−λsc(Xs, a) ds

)

(3.9)

with a ∈ {a∅, a1, a2}. Especially, the choice of a = a∅ stands for the “natural” disease

7Setting η(a1,WT) = η(a2,WT) yields a2 for all states [∗, {ℓ,m, h}, 0, 0].
8Setting µm,R2,∅ = µh,R2,∅ avoids the switch to a2 as long as nC(R2) > ℓ.
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kinfo =∞ kinfo = 500 kinfo = 0

constant control MDP wt.

info costs

original

MDPa∅ a1 a2

total costs 107 350 76 790 70 030 69 149 61 420

net costs 107 350 76 790 70 030 66 855 61 420

state costs 107 350 76 024 66 940 65 116 59 589

Px0(X3y = z) 0.44 0.22 0.15 0.15 0.13

Px0(X5y = z) 0.63 0.34 0.24 0.23 0.21

Px0(X15y = z) 0.95 0.69 0.62 0.60 0.54

Table 3.5: Comparison to constant control and original MDP for South

Africa. The net costs are given by Jaλ([h, 0, 0, 0]) in the case of constant control,

by VS([h, 0, 0, 0])+VA([h, 0, 0, 0]) in the case of MDP with information costs and by

V̂λ([h, 0, 0, 0]) in the case of original MDP. The probability of death Px0(Xt = z) =

P(Xt = z|X0 = x0) after 3, 5 or 15 years when starting in state x0 = [h, 0, 0, 0] was

computed by analytically solving the Kolmogorov equations in the case of constant

control and in the original MDP setting, where we used the generator under optimal

control L∗(x, y) = La∗(x)(x, y). In the MDP with information costs setting, we

approximated P(Xt = z|X0 = [h, 0, 0, 0]) using a well-established Monte-Carlo-

Method [22].

process without medical intervention.

Naturally, it holds that

Jaλ(x) ≥ Vλ(x) ≥ V̂λ(x) ∀a ∈ A, x ∈ S, (3.10)

where V̂λ is the value function of the original Markov control model. The first

inequality follows from the fact that the policy of constant control is contained in

the set of policies U over which we minimize to determine Vλ, while the second

inequality was motivated in Section 2.2.2. The same is true if we consider – instead

of the total optimal costs Vλ – the net costs Vnet = VS+VA which are the total costs

without information costs. As both Jaλ and V̂λ do not contain any information costs

(in the original setting information is for free, and in the setting of constant control

there are no tests at all) considering the net costs Vnet instead of Vλ is better suited

to make a comparison.

Table 3.5 shows the costs and the probability of death for the two settings (i) and

(ii) as well as for kinfo = 500 (compare Table 3.2) in the resource-constrained setting,

choosing the initial state x = [h, 0, 0, 0]. We can make the following observations.

In accord with (3.10), the costs of the optimal MDP scheme with information costs

go below those of any constant control, while they exceed the costs of the original

MDP scheme with permanent optimal control. There is a huge difference between

the costs resulting from the absence of medical treatment (a∅ at all times) and

those arising under constant control with a1 or a2. While the values of the net

costs all significantly differ from each other, the value of the total optimal costs
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kinfo =∞ kinfo = 400 kinfo = 0

constant control MDP wt.

info costs

original

MDPa∅ a1 a2

total costs 1 083 800 993 100 991 320 923 982 901 490

net costs 1 083 800 993 100 991 320 913 480 901 490

state costs 1 083 800 825 700 761 340 705 380 685 630

Px0(X3y = z) 0.44 0.20 0.12 0.11 0.11

Px0(X5y = z) 0.63 0.31 0.20 0.18 0.17

Px0(X15y = z) 0.95 0.64 0.57 0.49 0.47

Table 3.6: Comparison to constant control and original MDP for Germany.

Again, the net costs are given by Ja([h, 0, 0, 0]) in the case of constant control, by

VS([h, 0, 0, 0]) + VA([h, 0, 0, 0]) in the case of MDP with information costs and by

V̂ ([h, 0, 0, 0]) in the case of original MDP. The computational details agree with

those described in Table 3.5.

V ([h, 0, 0, 0]) = 69 149 arising from optimal control with information costs is very

close to the costs under constant control with a2. This means that in terms of the

total costs, the optimal policy with information costs (kinfo = 500) is only slightly

better than a “blind”/constant control which could challenge the utility of medical

testing. In fact, it is the reduction of action- and state costs which justifies the

medical tests.

In terms of survival benefit, the optimal MDP scheme with information costs

(information costs kinfo = 500) is clearly better than the absence of medical inter-

vention (a∅ at all times) and better than a constant treatment with only therapy

line a1, however, it is only slightly better than a constant treatment with a2 for the

time horizon analyzed (3, 5 and 15 years). For larger time horizons though, the

differences between constant treatment with only a2 and the optimal MDP scheme

with information costs can be expected to further increase. Best in terms of survival

benefit is the permanent optimal control of the original MDP model. The biggest

difference in the probability of death can again be found when comparing the ab-

sence of medical intervention with all other considered policies. This emphasizes

that the fundamental step is to start a medical treatment, while the details of the

treatment policy are secondary.

The results for the resource-rich setting have the same structure, see Table 3.6,

such that the analysis is completely analogous. It suffices to mention that the

difference between the optimal control with information costs (kinfo = 400) and the

constant control with a2 is more pronounced, whereas there is only a slight further

improvement by permanent control. This highlights the positive effect that – even

rare – state observations have on the process evolution as long as these observations

are well placed in time.
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3.3 Sensitivity with respect to Lag Times τ (x)

For the given application, the calculated lag times τ(x) refer to the length of time

between two medical tests. That is, in a practical application, these lag times give a

reference for the time interval between appointments for a patient and his medical

practitioner. However, such appointments underlie additional restrictions (such as

the disposability of the medical practitioner or a limited flexibility of the patient)

which may preclude an exact adherence of the recommended lag times. Especially

in South Africa, a limited infrastructure might enforce this situation, which leads

back to the sensitivity analysis that was given in section 2.2.4: How do deviations

from the optimal lag times increase the expected process costs? This question will

now be answered for the resource-constrained setting.

We have shown in Lemma 2.10 that the cost functional Juλ is continuous with

respect to the lag time parameters τ(x) for all x ∈ S. In our application, the

optimal policy for the resource constrained setting (South Africa) gives only two

states (
[

m, 0, 0, 0
]

and
[

h, 0, 0, 0
]

) for which diagnostic testing is indicated. We

therefore computed the impact of τ -variations around the optimum in Figure 3.3

for the indicated states by using equation (2.16).
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Figure 3.3: Sensitivity with respect to τ . Cost functionals Juλ (x) and JuS (x, u) for

x = [h, 0, 0, 0] (panel A) and x = [m, 0, 0, 0] (panel B) with u varying in τ([h, 0, 0, 0])

resp. τ([m, 0, 0, 0]) (while being optimal in all other parameters). Taken from [78].

For state x =
[

h, 0, 0, 0
]

, the total costs sharply rise if τ is decreased or -increased

(solid blue line in Figure 3.3 A) in relation to its optimum value τ∗ (solid dot). The

increase of Juλ (x) upon increasing values of τ is paralleled by an increase in the state

costs JuS (x) (dashed red line). When τ is decreased, the opposite is true, namely

JuS (x) decreases, but the overall costs Juλ (x) increase. Note that the slope of JuS (x)

(dashed red line) corresponds to the cost-increase attributed to patient health dam-

age.
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Although we observe a very sensitive response towards changes in τ
([

h, 0, 0, 0
])

,

we get much less sensitivity towards deviations from τ∗ for the second considered

state
[

m, 0, 0, 0
]

(see Figure 3.3 B, solid blue line and solid black dot). In particular,

upon increases in τ , total- (solid blue line) and state costs (dashed red line) are only

marginally increased.

If we focus on the potential health damage to the patient (dashed red lines in

Figure 3.3), we can conclude that there is little margin if diagnostic testing is be-

hind schedule for patients that are in state
[

h, 0, 0, 0
]

(high virus load). For state
[

m, 0, 0, 0
]

belated diagnosis will have no rigorous consequences for the health of the

patient.

A summary in terms of a two-dimensional contour plot is shown in Figure 3.4.

It takes variation in both τ
(

[

h, 0, 0, 0
]

)

and τ
(

[

m, 0, 0, 0
]

)

simultaneously into

account and confirms the observations made from Figure 3.3, indicating that if

patients have a high viral load (state
[

h, 0, 0, 0
]

), they should strictly comply with

the optimal policy.

τ([h,0,0,0])

τ(
[m

,0
,0

,0
])
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Figure 3.4: Sensitivity with respect to τ . Cost functional Jλ(x, u) for x =

[h, 0, 0, 0] and u varying in τ([h, 0, 0, 0]) (x-axis) and τ([m, 0, 0, 0]) (y-axis), while

being optimal in all other parameters. Taken from [78].
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3.4 Life Expectancy subject to Parameter Variations

We conclude this application chapter by an additional analysis which has no direct

analogue in the theoretical part. It is motivated by the special role that the state of

death plays in the given application. Besides the minimization of the total expected

costs, it is of fundamental interest to maximize the life expectancy of an infected

patient. In Table 3.5 and Table 3.6 we already quoted the probability of death

after 3, 5, and 15 years for the different settings of control referring to kinfo = ∞,

kinfo = 500 (resp. = 400) and kinfo = 0. Now, we extend the analysis and see how

the probability of death depends on a graduated reduction of the costs for diagnostic

tests kinfo and the costs of treatment. Instead of the total probability of death, we

calculate the probability of AIDS-related death, i.e. we exclude situations of natural

death in order to get an unbiased overview of the relations.

The probability of AIDS-related death was computed using a well-known Monte-

Carlo method [22]. With baseline parameters, the probability of AIDS-related death

for the resource-rich setting after 1000-, 3000- and 5000 days of treatment is 5.0%,

15.5% and 25.2%, see also Figure 3.5 A (blue circles). In the resource-poor setting,

the risk of AIDS-related death is higher; 5.1%, 16.3% and 31.0% respectively (see

Figure 3.5 C, blue circles), which may be a result of the inability to change treatment

in time (τ =≥ τmax for many states in Table 3.3). We therefore evaluated whether

a reduction of the test costs may improve survival. In Figure 3.5 A and C we show

the probability of AIDS-related death for reduced prices of drug resistance tests

kinfo = 200, 100, 50, 5 US$.

It can be seen that a reduction in diagnostic test prices may significantly improve

patient survival in resource-poor settings and that the difference becomes more

evident if later time points are evaluated (panel C). For resource-rich countries,

patient survival is only insignificantly altered (panel A). To visualize the benefit of

reduced diagnostic test prices, we show the 5000 days probability of AIDS-related

death as a function of the price reduction factor for drug resistance tests in Figure 3.5

B and D. It can be seen that a price reduction factor of 2.5 (200 US$ per test) in

the resource-poor setting may already enable a level of death prevention similar

to the resource-rich setting. In the resource-poor setting (panel D) the probability

of AIDS-related death 13.7 years (5000 days) after treatment initiation is 31%,

24.2%, 21.8%, 19.2% and 17.6% respectively for tests costs kinfo = 500, 200, 100, 50, 5

US$ per test. The probability of AIDS-related death 13.7 years (5000 days) after

treatment initiation in the resource-rich setting is 25.2%, 24.1%, 22.7%, 21.4% and

20.1% respectively for tests costs kinfo = 400, 200, 100, 50, 5 US$ per test.

For the resource-rich setting, we also evaluated whether treatment cost reduc-

tion would improve patient survival. We found the effect to be quite small: The

probability of AIDS-related death 13.7 years (5000 days) after treatment initiation

is 23.8%, 23.5%, 23.6% and 21.3% respectively if treatment cost are reduced 2-, 4-,

10-, and 20-fold. It should be mentioned that in resource-rich countries like Ger-

many a more sophisticated treatment schedule may be realistic because more than
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Figure 3.5: Reduction of diagnostic test costs kinfo and effect on AIDS sur-

vival A: Probability of AIDS-related death 1000-, 3000- and 5000 days after treat-

ment initiation under application of a cost-optimal policy with drug resistance test

costs kinfo = 400, 200, 100, 50, 5 US$ per test in a resource-rich setting (Germany). B:

Probability of AIDS-related death 5000 days after treatment initiation as a function

of test price reduction in a resource-rich setting (Germany). C: Probability of AIDS-

related death 1000-, 3000- and 5000 days after treatment initiation under application

of an cost-optimal policy with drug resistance test costs kinfo = 500, 200, 100, 50, 5

US$ per test in a resource-constrained setting (South Africa). D: Probability of

AIDS-related death 5000 days after treatment initiation as a function of test price

reduction in a resource-constrained setting (South Africa). The initial state is given

by x = [h, 0, 0, 0].

two treatment options may be available. For resource-poor settings, however, our

limited approach is quite realistic.

In conclusion, it may be said that prices for diagnostic test costs are too high in

resource-poor settings to allow for cost-optimal and life-saving treatment. A small
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price reduction on the other hand may significantly improve patient survival in a

cost-optimal way. In the resource-rich setting it is not indicated that price-reduction

for either diagnostics or treatment significantly improve patient survival in a cost-

optimal way. The simultaneous price reduction of treatment and diagnostics may,

however, do so.



Summary

For several decades, the theory of Markov decision processes has been successfully

used to model situations of controlled stochastic dynamics in various application

areas. Beside the original setting which assumes the controlled process to be com-

pletely observable at all times, there exist several variants of Markov control theory

for cases of incomplete state information. All these variants underlie special restric-

tions: The time scale of the process has to be discrete, the state space is assumed to

exhibit a special ordered structure or the type of dynamics is in some sense prede-

fined. In this thesis we developed a novel model of Markov control with incomplete

state information which is applicable to all kinds of continuous-time dynamics on

a discrete state space. The observation of the process and the choice of actions

take place at discrete points in time which themselves are subject to the control of

the decision maker. Each observation produces a fixed amount of information costs

kinfo which are included in the considered cost criteria. The chosen action deter-

mines the stochastic dynamics of the process within the next time period of hidden

progress. The resulting combined optimization of observation times and interaction

was extensively studied in this thesis.

Given the new setting, we redefined the two criteria of discounted costs and av-

erage costs in an appropriate way. Both criteria were analyzed subsequently. Their

relation to the cost criteria considered in the original Markov control theory was

established and the impact of the control parameters and of the information cost

parameter kinfo was explored. One main result was the reformulation of the Bellman

equation which delivered the basis for an efficient numerical calculation of the opti-

mal control policy. The corresponding value function of optimal costs was discovered

to be monotone and continuous in kinfo and to coincide with the value function of

the original setting when considering vanishing information costs.

The proposed model not only permitted a coherent and productive theoretical anal-

ysis, but also formed the basis for an interesting real-world application. We con-

sidered the dynamics of HIV and used the developed theory to calculate optimal

therapeutic strategies for resource-rich and resource-poor settings. We discovered,

among other things, that a decrease of diagnostic costs in resource-poor settings

would significantly enhance the medical success of cost optimal therapies.

This thesis provides a comprehensible framework for analyzing situations of con-

trolled dynamics which are not permanently observable. The framework is based

on the two fundamental assumptions that a state test always delivers instantaneous

and perfect information and that the action can only be adapted after such a test. A

question of interest is how far these assumptions can be eased in order to generalize

the control model. Finding an answer to this question proves to be a topic of future

research.





Zusammenfassung

Seit einigen Jahrzehnten wird die Theorie der Markov-Kontroll-Prozesse erfolgreich

genutzt, um Situationen von kontrollierter stochastischer Dynamik für vielen An-

wendungsbereiche zu modellieren. Neben der ursprünglichen Theorie, die von einer

vollständigen Beobachtbarkeit des Prozesses ausgeht, existieren verschiedene Ansät-

ze für die Modellierung von unvollständiger Zustandsinformation. Die Ansätze unter-

liegen alle gewissen Einschränkungen: Der Zeitindex wird als diskret vorausgesetzt,

der betrachtete Zustandsraum muss eine spezielle Struktur aufweisen oder die Art

der Dynamik ist in einem bestimmten Sinne vordefiniert. In dieser Arbeit wurde eine

neuartiges Markov-Kontroll-Modell für den Fall unvollständiger Zustandsinformati-

on entwickelt, das für jegliche kontinuierliche Dynamik auf diskretem Zustandsraum

anwendbar ist. Die Beobachtung des Prozesses sowie die Wahl der Kontrollaktionen

finden an einzelnen diskreten Zeitpunkten statt, die selbst wiederum der Kontrol-

le des Entscheiders unterliegen. Jede Beobachtung verursacht fixe Kosten kinfo, und

diese Informationskosten fließen in die betrachteten Kostenkriterien ein. Die gewähl-

te Aktion bestimmt die Entwicklung des Prozesses bis zum Zeitpunkt der nächsten

Beobachtung. Das Problem der kombinierten Optimierung von Beobachtungszeit-

punkten und Interaktion wurde in dieser Arbeit umfassend erforscht.

Auf Grundlage des neuen Modells wurden die üblichen Kostenkriterien (dis-

kontierte Kosten und langfristige Durchschnittskosten) in geeignetem Sinne formu-

liert und umfassend analysiert. Dabei wurden ihre strukturellen Eigenschaften be-

trachtet, der Zusammenhang zu den Kostenkriterien aus der ursprünglichen Theorie

wurde erklärt und die Bedeutung der Kontrollparameter und der Informationsko-

sten wurde untersucht. Ein Hauptergebnis war die Umformulierung der Bellman-

Gleichung als Basis für eine effiziente numerische Berechnung der optimalen Kon-

trollstrategie. Außerdem wurde gezeigt, dass die zugehörige Wertefunktion optimaler

Kosten monoton und stetig in kinfo ist und für verschwindende Informationskosten

mit der Wertefunktion der ursprünglichen Theorie übereinstimmt. Das Modell er-

möglichte nicht nur eine stimmige und ergebnisreiche theoretische Analyse, sondern

war außerdem Ausgangspunkt für ein interessantes Anwendungsbeispiel. Betrachtet

wurde die Dynamik des HI-Virus, und die neue Theorie wurde genutzt, um optima-

le therapeutische Strategien für verschiedene Wirtschaftssituationen zu berechnen.

Dabei stellte sich unter anderem heraus, dass eine Senkung der Diagnosekosten in

ressourcen-armen Ländern zu einer deutlichen Erhöhung des medizinischen Erfolgs

von kostenoptimalen Therapien führen würde.

Diese Arbeit bietet ein anschauliches Modell für die Modellierung von Markov-

Kontroll-Prozessen mit beschränkter Zustandsinformation. Das Modell basiert auf

den zwei Annahmen, dass eine Beobachtung des Prozesses stets sofortige, perfekte

Information liefert und dass die Kontrollaktion nur nach einer solchen Beobachtung

angepasst werden kann. Von Interesse ist die Frage, in wieweit diese Annahmen

abgeschwächt werden können, um so das Kontrollmodell weiter zu verallgemeinern.

Die Beantwortung dieser Frage wird Gegenstand zukünftiger Forschung sein.
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