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Abstract

Autonomous vehicles are virtually regarded as the panaceas for the future of road
transport due to numerous promising benefits. Thus, they have attracted wide at-
tention from both academia and industry. Although associated technologies have
been investigated and developed for decades, several obstacles still need to be over-
come. One of the major obstacles is the total cost of the needed sensors. Therefore,
it would be a long-term and effective solution to use less expensive sensors that can
provide the same or even better performance.

The main focus of this dissertation is to design and implement a feature-based
localization system. It aims to substitute the most expensive part of the present au-
tonomous test vehicle, Applanix POS LV 510 which is four times more expensive
than the vehicle. To do that, feature maps were first constructed through the log files
of the test drive in Berlin. Then an algorithm is proposed to localize the test vehicle
within the pre-built maps by using the Velodyne LIDAR and the Electronic Stabil-
ity Program (ESP) associated sensors. The Velodyne LIDAR is employed to extract
pole-like features from the previously mapped environments. Gyroscope and wheel
speed sensors from the ESP are utilized to carry out the relative localization. The es-
timation does not need any GPS information after initialization. The performance
of the proposed localization algorithm was evaluated through two datasets and the
results indicate that it is comparable to the Applanix system. The real on-road tests
also verified its effectiveness and robustness in terms of accuracy and precision. It is
even more precise than the Applanix system as it shows higher repeatability.

The main innovations and contributions of this thesis can be summarized in
three aspects. First, an innovative two-point localization scheme is proposed. It
can greatly mitigate the influence of the wrong feature matching during the data
association stage, thus it can get more accurate estimations. Second, an Ackermann
constraint based trajectory smoothing method is proposed, which can smooth the
trajectories especially during U-turns. Finally, the idea of using the online data to
create feature maps is also evaluated and tested on the real roads. It is less accurate
than the method of using the log files to create feature maps, but it can create city
scale feature maps in a more efficient and convenient way.
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“mach es nicht so kompliziert, mach es einfach”

Raúl Rojas

1
Introduction

Two decades ago, when it came to autonomous driving, people must think it
only existed in the science fiction. But now it has become a reality and self-driving
cars are gradually becoming consumer cars in the near feature. Especially after the
2005 DARPA Grand challenge and the 2007 DARPA Urban challenge, autonomous
driving has entered the public view and attracted interest from the public and compa-
nies a like. With the effort of the Google Self-Driving project, many research groups
and other car manufacturers, autonomous driving has already achieved remarkable
advances. However, many critical challenges still need to be overcome. From the
technical perspective, the autonomous driving related technologies are not so reli-
able. From the cost perspective, main sensors are still expensive in comparison to
the cost of the vehicles. From the legal view, few states in the United States have
passed legislation and laws to allow testing autonomous vehicles on public roads.
To realize fully autonomous driving, therefore, it still has a long way to go.

This dissertation focuses on addressing the fundamental problem of autonomous
driving, localization. Most state-of-the-art autonomous test vehicles are equipped
with commercial high accuracy GPS-based Inertial Navigation Systems (INS), such
as Applanix POS LV. Such systems are quite expensive in comparison with their plat-
form vehicles. This hinders the mass adoption and the development of autonomous
vehicles. Therefore, our purpose here is to employ fewer and cheaper sensors to get
the same order of magnitude of accuracy as that of commercial systems. To realize
this goal, a feature-map based scheme has been successfully implemented. Thou-
sands of times of tests and real on-road tests verified its effectiveness and robustness.
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Chapter 1 Introduction

1.1 Motivation

1.1.1 Why Autonomous

Autonomous vehicles, also known as self-driving cars, belong to outdoor mobile
robots. They employ many different types of sensors for localization and perceiv-
ing their environments. And they depend on the on-board computers to perform
autonomous driving tasks. As a long-term goal, such vehicles will replace human
drivers to drive passengers to their destinations. The mass adoption of autonomous
vehicles has numerous benefits.

• Safety
The widespread embrace of autonomous vehicles is widely believed to be a
solution to reduce the rate of traffic accidents. This belief stems from the
statistics data related to car accidents. The statistics results show that the lead-
ing cause of about 90% of reported car accidents results from human errors.
Such errors are not limited to novice drivers but also including trained and
experienced experts [1]. Such driving errors include drunk driving, fatigue
driving, slow reaction time in emergencies and so on. According to a World
Health Organization study, around 3400 people all over the world lose the
lives on roads every day, equaling over 1.2 million deaths each year [2]. Since
most of such traffic accidents are induced by human errors, autonomous ve-
hicles could eventually reduce the rate of vehicle related deaths. They will
eventually eradicate vehicle related accidents. Another exciting aspect is that
physiological conditions will not be problems of driving, irrespective of age
or physical disability [3].

• Less Pollution
As many researchers predicted and the media reported [4], autonomous vehi-
cles can increase fuel efficiency and reduce the pollutant emissions. Nowadays
the traditional fuel vehicles are still the dominant form of transport around the
world. And extensive adoption of electronic and autonomous vehicles still has
a long way to go. Under such context, gas emissions from vehicles, especially
the greenhouse gas, are the leading source of air pollution. Specialized control
algorithms allow autonomous vehicles to drive under more efficient driving
patterns, avoiding repeated speeding up and braking, and thus increase the fuel
efficiency. The autonomous car sharing program will further reduce the air
pollution [4].

2



1.1 Motivation

• Freedom of Time
For those who abandon public transport but choose to drive, the commute
to work could be nothing but drive. And long-distance driving may cause
fatigue to drivers, which will be prone to traffic accidents. Autonomous vehi-
cles will release you from such tedious driving. This gives you more freedom
to do whatever you would like to do, such as reading news or working on a
report. Therefore rather than wasting hours on commuting, such moment
would become a time for relaxation, preparation, which will make you more
productive.

• Space
Autonomous vehicles can save space in two ways. First, such vehicles powered
by intelligent systems can drive much more smoothly and react faster than we
human beings because of high update rates. This allows them to travel closer
on roads. Second, car sharing can reduce the demand for cars, since people do
not have to buy their own cars. The fewer household vehicles, the less parking
lots will be needed. After taking customers to their destinations, the vehicles
will pick up their nearby customers according to their demands, which will
reduce the parking time. As a matter of fact, cars are used one hour per day
on average, that means over 95 percent of the time cars are parked [5]. Thus
increasing vehicle usage can also reduce parking lots. Saved spaces can be used
for public area, which will benefit citizens.

Of course, the widespread adoption of the autonomous vehicles is not a panacea
for all existing problems. Instead, it will present disadvantages as well. For instance,
if fewer vehicles are in demand, it is a fatal blow to automobile related industries.
Those industries contribute a huge percentage of GDP (Gross Domestic Product) in
many countries, especially in countries like Germany (several important indicators
can prove this [6]). Professional drivers would no longer be needed and probably
the first released cars are too expensive for most ordinary consumers. However,
the advantages outweigh the drawbacks and are the motivations for developing au-
tonomous vehicles.

1.1.2 Why Localization and This Work

Try to imagine that you walk to the nearest supermarket from your home with
eyes closed. How could you make it without other people’s help? Having a good
impression of the surroundings, deciding which path to go and knowing the location

3



Chapter 1 Introduction

of every step are the minimum requirements. From this simple everyday example,
a conclusion can be drawn that if we want to go somewhere, at least we should con-
tinuously localize ourselves in either a mental or a real map. A mobile robot also
has to consider those problems and ask similar questions, such as “where am I?”,
“where do I have to go” and “how could I get there?” [7]. To answer the former
question in robotics is involved in the eternal task, localization. It is a procedure
that a mobile robot estimates its pose, including position and orientation regarding
to a defined global coordinate. As many papers narrated, precise and reliable lo-
calization is a prerequisite for mobile robots to perform high level tasks [8]. As a
special outdoor mobile robot, having precise knowledge of its ego location is a must
for an autonomous vehicle. Without precise localization, safe self-driving cannot
be achieved, as localization is the basis of navigation and avoidance of obstacles and
pedestrians. Thus, localization is an important topic in the autonomous research.

For laypersons, localization should be a simple task since they may hear a lot
about the American Global Positioning System (GPS). Although the GPS is the
most widely adopted system for localization, a stand-alone GPS unit cannot pro-
vide the required order of magnitude of the localization precision for autonomous
vehicles. As a general rule of thumb, safely driving an autonomous vehicle in urban
environments requires the localization accuracy within a few centimeters [9]. Due
to the technical restrictions, a stand-alone GPS unit cannot satisfy this requirement.
Therefore, most state-of-the-art autonomous research vehicles are configured with
the GPS-based Inertial Navigation Systems [10, 11, 12]. These systems function well
in vast open areas but suffer from multipath propagation and satellite blockage in
dense urban environments [13]. Apart from that, such systems are usually consider-
ably expensive compared to the total cost of the whole systems. In this dissertation,
an alternative solution is presented with the aim of using cheaper on-board sensors
to achieve equivalent localization precision. For the purposes of simplicity and high
accuracy, the proposed solution is based on pre-built feature maps. When a map is
available, localization becomes a straightforward problem for the robot pose estima-
tion. But in the long run, to achieve fully autonomous driving relied on pre-built
maps is not the way to go. Mostly, pre-built maps are not available. And building a
map is both a time-consuming and tedious task, especially when manual annotation
is required. Under such circumstance, being capable of exploring unknown envi-
ronments enables the robot to fulfill fully autonomous driving. To give robots such
ability, researchers devote their efforts to studying the fantasy topic, simultaneous
localization and mapping (SLAM).

4



1.2 Brief Introduction of Autonomous Driving Projects

1.2 Brief Introduction of Autonomous Driving Projects

By now, the benefits of developing autonomous vehicles and the importance of
localization have been discussed. In this section, the significant autonomous driving
projects will be introduced, especially the milestone moments. Autonomous project
at the Free University of Berlin will also be presented, on which the author works.

1.2.1 Important Autonomous Driving Projects

Human beings have long expected to implement autonomous robots. But in the
realm of autonomous vehicles, experiments began in the 1920s. Promising research
took place in the 1950s. And a substantial progress was made in the late 1970s. Then
researchers realized that vehicles have to perceive their environments and make de-
cisions independently [4]. A lot of pioneering work was carried out by universities
and car manufactures. However, in this section, only important autonomous driv-
ing projects will be introduced. The DARPA Grand Challenge and the DARPA Ur-
ban Challenge were the most important events in the history of autonomous driv-
ing. They have been speeding up the development of autonomous driving. And
the Google Self-Driving Car Project is the most widely reported project. It is a
promising project with the aim of delivering autonomous cars to the masses. A
more detailed introduction can be found in [4, 14].

• 2004-2005 DARPA Grand Challenge
To promote autonomous technologies, the Defense Advanced Research Projects
Agency (DARPA) launched the DARPA Grand Challenge. The winners of
participated autonomous ground vehicles were supposed to complete an off-
road course without any human intervention with a time limit. The first com-
petition was held in 2004 in the Mojave Desert region of the United States,
along a 150-mile route following the Interstate Highway 15 from Barstow,
California to Primm, Nevada. The exact route, defined as an ordered list of
GPS coordinate waypoints, was kept as a secret until shortly before the race.
No participated vehicles finished the route and the best result was 11.78 km
of the course. Therefore no winner was declared and the second competition
was scheduled for 2005.

In 2005, the DARPA updated the challenge and doubled the prize money to $
2 million. It also took place in the Mojave Desert region but with a 132-mile
route. This time five teams completed the course and four of them satisfied the
rule to finish within 10 hours. The first prize went to Stanley, from Stanford
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(a) Stanley Won the 2005 DARPA
Grand Challenge1

(b) Touted as the most difficult section: Beer
Bottle Pass 2

Figure 1.1: The 2005 DARPA Grand Challenge.

Racing Team led by Sebastian Thrun, which completed the course within 7
hours. The moment was captured in Figure 1.1 (a) when Stanley successfully
finished the whole course.

(a) Boss Won the 2007 DARPA Urban
Challenge3

(b) The final event course map of the
Urban Challenge4

Figure 1.2: The 2007 DARPA Urban Challenge.

• 2007 DARPA Urban Challenge
To further speed up autonomous driving technologies, the DARPA Urban
Challenge set the competition in an urban traffic environment (see Figure 1.2).
The contest required the participated vehicles to perform complex maneuvers
such as merging into traffic, avoiding participants and obstacles, parking and
negotiating intersection, while obeying all traffic rules [15]. The competition

1http://i.i.cbsi.com/cnwk.1d/i/blog/buzz/StanleyWins_300.gif
2https://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2005)
3http://sportruck.com/news/2007-DARPA-Urban-Challenge-Tahoe/4.jpg
4http://archive.darpa.mil/grandchallenge/docs/UC07UCEBrochuretoPrint.

pdf
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course was chosen at the site of the now closed George Air Force Base in Vic-
torville, California [4]. The 96 km involved urban area course was required to
be completed in less than 6 hours. This time six teams managed to finish the
entire course and four out of them completed it within 6 hours. The Tartan
racing team with its entry “Boss” from Carnegie Mellon University won the
$ 2 million prize. Teams from Stanford University and Virginia Tech won the
second and third place, respectively.

• The Google Self-Driving Car Project
After DARPA Grand and Urban Challenge, the Google self-driving car project
attracts attention from both the Media and the public. Google started the
project in 2009. The project attracted many top scientists and engineers from
Carnegie Mellon University and Stanford University who won twice the DARPA
challenge prize. To carry out research, several different types of cars have been
converted into autonomous cars. They developed their own prototype cars as
well. Different kinds of sensors are mounted on those cars for the purposes
of localization and perception. Well developed software help them making
driving decisions. They claimed that they had self-driven over 1 million miles
on the streets of Mountain View, California in 2015 [16]. Safety drivers are
always required during the testing, who should take over driving if needed and
watch over the cars’ driving behavior. They still involved in some minor ac-
cidents, although they emphasized that no accidents have occurred under the
self-driving mode. Besides the self-driving research, they also try to commer-
cialize their cars (see Figure 1.3).

1.2.2 Autonomous Project at the Free University of Berlin

The autonomous driving project at the Free University of Berlin was initiated in
2006, led by Prof. Dr. Raúl Rojas. To carry out research, three autonomous vehicles
were developed successively, named as “Spirit of Berlin”, “MadeInGermany” (a.k.a
MIG) (Figure 1.4) and the autonomous electric vehicle “e-Instein”. Spirit of Berlin
participated in the 2007 DARPA Urban Challenge and reached the semi-finals of
the competition. It demonstrated the ability of safe driving in urban environments.
After the Urban Challenge, the second car, MIG was built to test in heavy traffic
environments [4]. Since MIG is the present experimental autonomous vehicle in
our lab, it will be narrated in the rest of this section. One more thing needed to be
mentioned is that in October 2015, this test autonomous car set a 2,414-kilometer
autonomous driving record in Mexico without much intervention. It has become
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(a) A row of Google Self-driving cars5

(b) The prototype of Google self-driving car6

Figure 1.3: The Google Self-driving Car project.

the longest autonomous driving ever achieved in Mexico and Latin America [17].
MIG is a modified 2010 Passat Variant 3C with the support of its car maker Volk-

swagen. The modification consists of the Drive-by-Wire system, localization sys-
tem, multiple sensors and cameras. The Drive-by-Wire system is a bridge between
the vehicle and computers. It allows the computers directly to access the vehicle’s
actuators via the CAN bus. Thus, the engine, steering, brakes and other actuating
units can be controlled by computers. So it is the important interface which makes
the autonomous driving possible. The localization system currently utilized is the

5http://www.autoblog.com/
6https://www.google.com/selfdrivingcar/
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Figure 1.4: Spirit of Berlin and MadeInGermany [18].

Applanix POS LV system. The system integrates all the information from the GPS
receivers, an Initiate Measurement Unit (IMU) and a Distance Measurement Indica-
tor (DMI). So it can provide more accurate positional estimation than a stand-alone
GPS solution, especially during the GPS outages. Therefore it is an ideal localiza-
tion system for working in urban environments. As for sensors, they are mainly
LIDAR (also written as LiDAR or lidar in various publications) and radars. The
most important LIDAR sensor is definitely the “Velodyne HDL-64E S2”, which is
a spinning LIDAR sensor mounted on top of the vehicle. Due to the spinning feature
and well distributed 64 lasers in vertical, it provides a 360◦ horizontal field of view
(FOV) and a 27◦ vertical field of view [19]. It produces over 1.3 million point cloud
measurements (bearing, range, intensity) per second and the range can be up to 120
meters with the accuracy of less than 2 cm. Thus, this sensor can provide enough
information to build 3D maps of its environment and can be used to correct the ve-
hicle’s position. The radar sensors are also installed on the vehicle because they can
determine the speed of objects for obstacle avoidance based on the Doppler effect.
However, the exact positions of objects are difficult to obtain through this effect. To
overcome the constraints of the radar, other LIDAR sensors are mounted around the
vehicle. By combining those two kinds of sensor, accurate position and speed infor-
mation of the surrounding objects can be acquired. Besides, some laser scanners are
used to detect street curbs and lane markings. There is still one more thing needed
to be noticed, the emergency stop buttons. Since autonomous technologies are still
under development, the vehicles cannot handle all unexpected emergencies or sys-
tem failures caused by software issues. Those emergency stop buttons enable the
safety driver to take over control at any moment [18].
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1.3 Contributions of the Dissertation

The main innovations and contributions of this dissertation are three aspects.

(A) An innovative two-point feature based localization scheme is proposed. It
turns out to be a simple and elegant approach. The extended Kalman filter frame-
work is applied to deal with data fusion problem like most of the published works.
But this work is different from the classical EKF localization scheme in the way
of handling the measurement update stage. Most papers use a single measurement
to calculate the measurement update, under the assumption that the data associa-
tion problem is known. But this is not the case in practice. This work employs
the two-point matching method to solve this problem, which can greatly mitigate
the influence of the wrong feature matching during the data association stage thus
can get more accurate estimations. The performance of the proposed localization
algorithm was evaluated through two recorded datasets. And the results indicate
that it is comparable to the Applanix system. The real on-road tests also verified the
effectiveness and robustness of the proposed localization scheme.

(B) In addition to using a second EKF to smooth the trajectory, an Ackermann
constraint based trajectory smoothing method was proposed, which can smooth the
trajectories especially during U-turns.

(C) We are probably the first group to use the online data to create pole-like
feature maps. This method was also evaluated in this thesis and tested on the real
roads as well. It is less accurate than the method of using the log files to create feature
map. But it can create city scale feature maps in a more efficient and convenient way.

1.4 Thesis Structure

This thesis will present a pole-like feature-based localization scheme for autonomous
vehicles. In the next chapter, widely used data fusion algorithms will be introduced
and compared, including Kalman filter and particle filter. Chapter 3 will discuss the
sensors utilized in this scheme. Chapter 4 presents the core work of this thesis. And
chapter 5 will evaluate the performance of the presented scheme. The last chapter
concludes the whole work, and the outlook for future work will be extended as well.
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“Make things as simple as possible but not simpler.”

Albert Einstein

2
Related Work

Mobile robot localization is an active and attractive research field and myriads
of papers addressing this problem have been published. They can be classified as
the Kalman filtering based and the particle filtering based. This chapter will intro-
duce the related algorithms and make a comparison between them. Mapping is also
important as it affects the map construction and computational complexity. Thus,
some conventional mapping techniques will be introduced in the first section. The
related work of mapping and localization will be presented as well.

2.1 Mapping

For mobile robots, navigating from one location to another without a map is
not an easy task as this involves in localization and path planning. Localization
provides instant location information in some given form. And representing the
observed world on a map would be an ideal choice. Path planning needs to know
the initial position and the target position, and these two positions are properties
on a map. Thus a pre-built map would be a prerequisite for lots of complicated and
high-level applications. For autonomous vehicles driving in urban scenarios, they
have to comply with traffic rules according to given traffic signs and lane markings.
If these rules have not been transformed into map properties, an autonomous vehicle
needs to sense them in real-time with a high degree of robustness. But nowadays,
computers are still not good at perceiving related tasks. Therefore, if traffic related
information is embedded into a prior map, it will greatly improve the robustness and
reduce overall complexities. However, a map is not always being available, especially
when a robot explores an unknown environment. Under such scenario, the robot
has to perform the well-known task, Simultaneous Localization and Mapping.
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Chapter 2 Related Work

To create a map, we first need to define a coordinate frame or reference so that
the position of a point or feature can be represented unambiguously. Essentially, a
map is a set of sensor-measuring records and it consists of a list of objects’ locations
in the environments or coordinates in a defined reference frame. Thus, a map is
an abstract representation of its environment [20]. Since the sensor measurement
is prone to uncertainty, probabilistic techniques are widely employed to deal with
this problem. Besides, maps can be created in two dimensions and three dimen-
sions. Two-dimensional maps are easy to build and much efficient in computing.
And three dimensional maps model environments with more information. So they
can provide more accurate localization results than that of two-dimensional maps.
For the purposes of simplicity, maps presented in this work are in two dimensions.
Finally, the most widely adopted mapping techniques can be classified into three
categories, known as location-based, feature-based and topological maps. However,
the location-based and feature-based maps can be certainly grouped under the metric
maps [21, 22].

1. Location-Based Maps
The occupancy grid map is the famous and widespread location-based map
representation. Owing to the simplicity in implementation and application,
it has been widely used for environment modeling in mobile robotics. It was
first introduced by A. Elfes [23]. It is a volumetric map. It offers information
not only about the objects but also the free space in the environment by fine
grained metric grids [21]. What is more, it is capable of representing arbitrary
features and offering sufficient detail. As each grid cell must be defined as being
either occupied or free, the maps consume more memory space than other
maps. Since the correlation among grids is not taken into consideration and
the robot’s pose exists uncertainty, it cannot guarantee the map consistency in
large environments [24]. But the beauty of the occupancy grid maps lies in the
fact that it is perfect for mobile robots to navigate in unoccupied spaces [21].

2. Feature-Based Maps
This map, just as its name implies, extracts typical geometric features from
the environment to model its perceived world. Tree trunks, poles of traffic
lights and other pole-like objects in the street can be treated as point features.
The straight street curbs and wall-wall intersection or wall-ground lines can
be identified as lines. Normally only the location information of the features
is utilized to build the map. But other information, such as the features’ size,
color and LIDAR intensity value can be used during feature matching stage
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as well [24]. Feature matching also refers to the data association problem,
which is trying to find the correspondence between observed features and fea-
tures on the map. Data association is both difficult and important. Accurate
localization depends on the correct data association. And wrong data asso-
ciation will lead to inconsistent in localization. Since the feature-based map
only stores well-chosen features’ locations, which makes it smaller in file size
and possible to represent a large-scale environment. In robotics, features nor-
mally correspond to distinct physical objects. Thus, those objects are known
as landmarks [21]. One disadvantage of such maps is that they typically do not
provide any information to distinguish between drivable and non-drivable ar-
eas. Thus, they are not suitable for the path planning task.

3. Topological Maps
Topological maps choose graphs to describe the connectivity between differ-
ent locations of features [22, 24]. It is different from the former two fashions
which present the environment in Cartesian coordinate frames. The graphs
include nodes and arcs which correspond to possible travel paths. Nodes rep-
resent important features, such as entries and exits, and arcs in the graph indi-
cate that direct paths exist between the neighbor nodes. Thus, they use graphs
rather than specific geographic information to present the environment and
they will not consume much storage, which is suitable for fast path planning
tasks. One of the main drawbacks of using such maps is wrong recognition in
complex environments where two places look alike. Under this circumstance,
the logic of the map will be destroyed and the robot cannot estimate its posi-
tion [24]. The famous topological map format is the Route Network Defini-
tion File (RNDF). It was first used in the 2007 DARPA Urban Challenge and
later by many autonomous car projects. In the last part of this section, a brief
introduction of the RNDF will be presented.

The organizer of the DARPA Urban Challenge, DARPA introduced the RNDF
which conveys the road network information of the racecourse. It is a high-level
topological map which defines accessible areas for navigation [4, 25]. It uses road
segments to represent structured areas and one or more lanes to make up a segment.
The free-travel ‘zones’ are introduced to define unstructured areas, used for like park-
ing lots. Extra information, such as way-points and stop signs, is provided in the
RNDF as well. The RNDF also provides the latitude and longitude position infor-
mation of checkpoints. They are key locations on lanes and utilized for specifying
the ordered set of goal locations in the navigation mission file, known as the Mission
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Data File (MDF). The MDF also includes the speed limit for each segment. After
participating in the DARPA Urban Challenge, our team continues to use the RNDF
for navigation. To get rid of its flaws, a new graph map named RNDFGraph was
developed [4]. To create our own RNDF from scratch, the first step we manually
drive the test vehicle in the expected areas. Then we will resort to the RNDFGraph
editor to create maps by playing the recorded log files. Although the graphic ed-
itor relieves the burden to create digital maps, it still needs much manual editing
work, such as adding speed limits to all road segments. Thus, a smarter and highly
automatic editor is in demand in the long run.

2.2 Localization

In robotics, localization is one of the most important and fundamental tasks.
For a mobile robot, knowing the precise real-time location is a prerequisite for per-
forming all the high-level tasks [21]. The essence of the localization problem for a
mobile robot is to estimate the pose related parameters. Those parameters include
position and orientation with regard to a given reference frame. Localization can
also be seen as establishing the correspondence between the measurements and fea-
tures within a map. However, the localization problem is still difficult, though it
has been extensively studied in the communities. The reasons are threefold. First,
the uncertainty is widely existed in estimation. Second, the perfect motion model
is hard to approximate. Last one is the unobserved states in practice. Thus, this sec-
tion will introduce and compare both the absolute and relative localization scheme.
Then the state-of-the-art LIDAR-based localization works will be introduced.

2.2.1 Absolute and Relative Localization

The absolute localization is a global localization solution which relies on the
GNSS (Global Navigation Satellite System) constellations or landmarks to restore
the position and orientation information with regard to a global reference frame. As
one component of the GNSS, although the GPS technology is a terrific engineering
achievement, the principle behind the technology is pretty simple. A GPS receiver
employs a complex version of mathematical technique, trilateration to determine
its location and speed. GPS is a time-of-arrival (TOA) system, which means that it
estimates the distance from a receiver to a valid satellite by multiplying the speed of
electromagnetic waves in free space by the transit time of a signal [26]. The time is
critical as three nanoseconds will lead to the range error up to one meter [27]. Out
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of the cost consideration, the clocks used on the user side are inexpensive crystal
clocks, which are not so precise as that of used on GPS satellites. Moreover, the re-
ceived power of GPS signal is so weak that it can be affected by many factors, such
as the troposphere and tree canopies. A clear view of the sky is a basic requirement.
So upon driving in tunnels, and underground parking lots, GPS is out of work. In
inner cities, tall buildings can introduce the multipath effects, further deteriorating
the precision. Because of these reasons, the GPS is often outage and the localization
accuracy is not so high, on the order of meters. To get better performance by com-
pensating external and systematic influence, Assisted GPS (A-GPS) and Differential
GPS (DGPS) were developed. For DGPS, it heavily relies on nearby reference sta-
tions to broadcast the corrected information that can be used to improve accuracy
of local GPS results. In addition, the update rate of GPS is relatively slow, at a fre-
quency of 1 Hz, which means every 27 meters will produce a value if traveling at a
speed of 100 km/h. Therefore, GPS alone cannot provide safety autonomous driv-
ing through city streets, as mere centimeters error may cause collisions.

Another absolute localization method is based on landmarks, which is widely
employed in communities. Landmarks can be either natural objects [28, 29], such
as trees or artificial ones [7, 30, 31], such as reflectors, radio beacons and street-lamps.
They also can be classified as either active or passive according to how sensors sense
them, specifically speaking emitting energy or not. In this work, pole-like features
in the urban environments are selected as landmarks. The localization scheme based
on these features is more accurate and robust than the GPS way. This conclusion
can be proved in the following chapters.

The relative localization technique is a local localization technique. It uses on-
board sensors and kinematic models to estimate the robot’s pose relative to its initial
pose. The popular dead reckoning belongs to the relative localization. Dead reck-
oning is relatively precise within a brief period of time but suffers drift in the long
term due to the inherent drawbacks. The main drawbacks include the inaccurate
kinematic model and the drift accumulation. First, the kinematic model is not al-
ways accurate, as it is hard to take external conditions and wheel slippage into con-
sideration. Second, as the estimation integrates measurements over time, the drift
accumulates as well. Since the method itself has no other mechanisms to mitigate
the accumulated error, it cannot avoid drift over long time scales and the error grows
without bound. On the contrary, the absolute localization does not have drift prob-
lem and can be used to correct drifts. In practice, therefore, combining these two
different techniques to obtain better results is widely employed.

Both absolute and relative localization have advantages and drawbacks, as sum-
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marized in Table 2.1. Combining them can obtain more accurate and robust mea-
surements, as they are complementary to each other. Therefore, many research
teams including our team employ the Applanix POS LV as the localization system.
It combines the strengths of both relative and absolute localization. Therefore it can
provide good position results even when GPS is outage. The RMS localization er-
ror in X and Y directions are about 40 cm when the GPS signal is not available [32].
However, sudden position discontinuities would happen upon entering or leaving a
GPS outage stage or switching DGPS reference stations [33].

Table 2.1: Comparison between relative and absolute localization

Relative Localization Absolute Localization

Reference Relative to its initial position Global reference frame

Requirements No particular Conditions must satisfy

Error Error accumulated
Drift over time

No drift
Independent of time

Application Widely used Possibility of outage

Note: The cells with red background color represent merit of features.

2.2.2 LIDAR-Based Localization

A myriad of papers focus on studying the localization problems. Different pa-
pers may use different sensors, such as GPS, LIDAR and Cameras. This work is
based on LIDAR. So here we only introduce LIDAR-based works.

Over the last decade, the LIDAR-based localization scheme for autonomous ve-
hicles has gained remarkable achievements, especially after introducing the 3D LI-
DAR sensors. For instance, in 2004, Scheunert et al. [29] proposed a precise ve-
hicle localization scheme by using multi-sensors and landmarks. The motivation
is that DGPS is unreliable in difficult areas. In their work, they also relied on the
LIDAR sensor to detect the natural landmarks. By fusing all the measurements,
the performance has improved dramatically, especially after utilizing the landmarks.
Therefore, the availability of landmarks clearly influences the performance. Weiss et
al. [34] used a high accurate feature map, GPS, dead reckoning sensors and an IBEO
laser scanner to estimate a vehicle’s ego state in urban scenario. They proposed
a Triangle-Association algorithm for associating landmarks with the data obtained
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from the laser scanner and correcting vehicle’s pose. But the authors did not provide
any specific value regarding the localization results. In [35], they used GraphSLAM-
like off-line relaxation techniques to create a 2D orthographic ground infra-red re-
flectivity map of flat road surfaces by integrating Velodyne LIDAR data with GPS,
IMU and odometry. Then they used a particle filter to align LIDAR measurements
with the reference data in the a priori map to localize a moving car. Experimen-
tation results showed that a reliable real-time centimeter-accurate localization was
achieved. However, it seriously relies on maps. This may lead to failure due to
many changes, like road paint changes or in adverse weather, like a snow-covered
road. In addition, the map takes much memory, requiring about 10 MB per mile of
storage [36] which may limit its adoption. The authors extended this work in [37]
by modeling the environment as a probabilistic grid, so that a Gaussian distribution
can be assigned to each cell regarding the infra-red remittance. Localization practice
in many dynamic environments proved that this extension outperformed previous
work. However, it is not absolutely independent of tough weather conditions or
changing environments.

Wolcott and Eustice [38] proposed a method that used only one monocular cam-
era to localize a vehicle within an a priori 3D map. The map data was collected by a
four Velodyne HDL-32E LIDAR equipped vehicle. The essence of the algorithm is
to maximize the so-called normalized mutual information between live camera view
and many synthetic views. And the synthetic views are generated from the prior 3D
map at a guessing pose. Results showed that it got similar localization accuracy as
that of [35], but with a much cheaper sensors. In [39], the same authors proposed a
scan matching algorithm through multi-resolution Gaussian mixture maps to local-
ization a car under adverse weather or poorly textured roadways.

Many researches have been employing feature patterns for localization in large-
scale outdoor environments, which are similar to this work in spirit. Claus Bren-
ner [40, 41, 42] and his team [43, 44] have studied this problem through different
methods. In [40], the author explored the method that uses local pole patterns to
carry out global localization. First, they created a global map off-line by extracting
local descriptors from the raw data recorded by high accuracy and high resolution
LIDAR sensors. Then vehicles configured with low-end sensors tried to estimate
their global position by recovering part of these descriptors. The major focus was on
exploring of the local pole patterns. He also proposed a pole-like feature extraction
approach for driver assistance systems [41] and evaluated the performance under
simulation when a trajectory was given. The results proved that relative position-
ing is possible through poles and high accuracies can be expected. [43] presented a

17



Chapter 2 Related Work

method to localize vehicles by establishing the correspondence of triangulated point
patterns. The proposed path-like point pattern matching scheme for localization in
spirit is the same as the Delaunay triangulation-based methods for fingerprint veri-
fication [45]. The matching step tried to match a set of observed triangles with a set
of reference ones in a given map regarding their geometric similarities. The exper-
imental test gave a promising result that the method could be executed in real-time
and was robust enough to overcome random errors. Alexander Schlichting [44] also
presented a vehicle localization scheme which was based on multi-layer automotive
laser scanners for feature extraction and local patterns for matching. The authors
employed extracted pole-like features and building facades from laser point cloud
to create feature patterns descriptor, unlike previous methods which only utilized
poles to build descriptors. It also relied on matching descriptors to localize the ve-
hicles. Results showed that the proposed matching algorithm could dramatically
reduce the number of false matching compared with a nearest neighbor matching
solution.

Researchers from Oxford University proposed several methods for vehicle lo-
calization by using LIDAR. In [46], the authors proposed a low cost LIDAR-based
localization method for autonomous vehicles. A local 3D map was created by uti-
lizing the odometry information to estimate the pose of the vehicle and only one
2D push-broom LIDAR to scan the environment. It tried to localize the vehicle
by matching the local 3D map with a previously built global 3D map, and gained
centimeter-level accuracy. Although this implementation cannot run in real-time, it
does indicate that Velodyne can be replaced to some extent. This work was extended
in [47] by using two 2D LIDAR systems. They used the horizontally mounted one
to infer linear and rotational velocity and the declined one to scan the surroundings.
With these two fixed LIDARs, velocity and position can be estimated simultane-
ously. As an extension to previous work of [48, 49], an experience-based localiza-
tion scheme was presented in [50]. It is a promising approach for future vehicle
localization as it takes changing environments into consideration. A novel mapping
and localization approach allows vehicles to have multiple “memories” of the same
location under different experiences. This is different from a traditional map which
relies on a single static global representation. New driving experience can always
be added to an existing map and the best experience can be used to match current
driving experience for localization. Over one year test-drive demonstrated that this
method could provide real-time centimeter-level localization accuracy.

This work employed the LIDAR for feature detection as well but only used pole-
like features to create feature maps. It makes the created maps smaller than other
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methods as they just store the features’ position and uncertainties. Further, this
method is independent of the environment changes. And the main algorithm is
based on two-point matching method. The execute time for the feature matching
and localization is less than 1 ms, which makes the real-time on-line operation possi-
ble. Besides, we are the first group which used the online data to create feature maps
and successfully tested this idea on the real road. Although almost every method
provided some experimental results, it is difficult to compare them because of a lack
of the general benchmark. Therefore, this work used our group’s own datasets for
performance evaluation and execution of field tests.

2.3 Filtering Foundations

Filtering has become one of the most important tools on signal and information
processing, as it is difficult to generate or obtain clean signals in practice. For in-
stance, sensors are imperfect and are prone to picking up noise in measurements,
which contributes to the uncertainties in measurements and estimation. Thus, in
robotics, researchers prefer to employ probability tools, Bayesian filters, to deal with
this problem. Filtering has been widely adopted for dealing with uncertainties and
data fusion. In this section, popular filter algorithms, such as Kalman filter and par-
ticle filter will be briefly introduced, and some notable features are summarized and
compared in Table 2.2.

Table 2.2: Comparison among the mainstream filters

System/Update
Model Noise Model Application

KF Linear

Gaussian distribution

Optimal performance

EKF Moderate
non-linearities

Difficult to implement
Difficult to tune

UKF Highly non-linear Improved performance
over EKF

PF No particular No particular
Best performance for
non-linear, non-Gaussian
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2.3.1 Kalman Filter

Kalman Filter (KF) is a famous and fundamental filtering technique. Kalman
filter and its variants are widely used for mapping and localization for mobile robots.
It is an ideal filter for linear and Gaussian distributed systems. It is also the optimal
filter as it is derived under the criteria of minimizing the mean square error. And it
satisfies nearly any kind of relevant criterion of optimality [51]. Both pros and cons
of this algorithm are the Gaussian distribution. The beauty of the special Gaussian
distribution is that multiplying and adding two Gaussian functions still get another
Gaussian function, a consistent and elegant result. Its drawback lies in the fact of
narrowing its application within the normal distribution uncertainty.

As derived from the Bayesian equation, the Kalman filter is a recursive filter,
which consists of two stages, motion prediction and measurement update. It works
recursively in these two stages. Motion prediction is based on the kinematic model
or simply dead reckoning, which will increase the uncertainty. This stage is also
named as time update stage. Then the filter incorporates measurements to update the
estimation, which will reduce the overall uncertainty. For the sake of convenience
and intuition, equations will be utilized to express these two stages. The equations
used here follow their original formulations in [52] and they are described at discrete
time serials. The derivation of the Kalman filter is beyond the scope of this thesis.
Refer [21, 51, 53] for a better understanding or an overview of the mathematical
derivation of the Kalman filter or the extended Kalman filter equations.

1. Motion Prediction
In general, the Kalman filter updates the state of a system from its previous
state at time t-1 to present t by adding the control inputs. The estimation of
the state is expressed as the mean of the Gaussian distribution. The variance
of estimation is also estimated. The process can be expressed in the following
equations (2.1) and (2.2).

x̂−t =At x̂t−1+Bt ut (2.1)

where:

■ x̂−t : is the predicted state vector at time t

■ At : is the state transition matrix

■ Bt : is the control input matrix

■ ut : is the control vector at time t
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P−t =At Pt−1AT
t +Qt (2.2)

where:

■ P−t : is the predicted covariance in state space at time t

■ Pt−1: is the covariance in measurement space at time t − 1

■ Qt : is the process noise covariance matrix at time t

After At Pt−1AT
t , the covariance is transferred from measurement space into

state space so that the process noise covariance Q can be added to the uncer-
tainty estimation. This is the reason why this step increases uncertainty of
estimation.

2. Measurement Update
The measurement update incorporates measurements to previous estimation.
So a better estimation is supposed to get and its uncertainty will be lower
as well. The first task during this stage is to compute the Kalman gain, Kt .
The Kalman gain is a ratio, showing the uncertainty ratio between the pre-
diction and measurement. If the estimation is more confident about the mea-
surements, it will put more weight on the Kalman gain, and vice versa. After
computing the Kalman gain, the posterior state can be estimated with more
confidence.

Kt = P−t H T
t (Ht P−t H T

t +Rt )
−1 (2.3)

where:

■ Kt : is the Kalman gain at time t

■ Ht : is the transformation matrix which projects the state vector into the
measurement domain at time t

■ Rt : is the measurement noise covariance matrix at time t

x̂t = x̂−t +Kt (Zt −Ht x̂−t ) (2.4)

where:

■ x̂t : is the state vector after incorporating measurement update t

■ Zt : is the measurement vector in the measurement domain
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Pt = (I −Kt Ht )P
−
t (2.5)

where:

■ Pt : is the posterior error covariance estimate t

2.3.2 Extended Kalman Filter

The Kalman filter assumes the motion and measurement equations are linear
and the uncertainties of all the random variables follow the Gaussian distribution.
In practice, however, the assumptions of optimality are difficult to satisfy due to the
nonlinearities of the system model or the measurement model. It is common to ap-
ply the Kalman filter extensively by easing the assumptions of optimality. Hence the
extended Kalman filter (EKF) was introduced by linearization of systems described
by non-linear equations, such as through a first order Taylor series approximation.
The extended Kalman filter has almost the same equations as the Kalman filter ex-
cept some minor difference. In the EKF, the At in the equation (2.1) is the Jacobian
matrix of partial derivations of process update function with respect to the state vec-
tor. And the Ht in the equation (2.4) is the Jacobian matrix of partial derivative of
the measurement function with respect to the state vector.

The EKF has become a standard and widely adopted technique to address non-
linear estimation. However, the main drawback of the EKF is the approximation by
means of the first order truncation. It can introduce error in the posterior estimation
and may lead to suboptimal performance or even divergence. This becomes serious
when the non-linear models are approximated and the higher order terms in the
Taylor series are more important than the first order term. In order to cope with
this disadvantage, a new improvement of the extended Kalman filter was proposed,
the Unscented Kalman Filter by Julier and Uhlman [54].

2.3.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) was introduced to deal with the approx-
imation issues of the EKF, based on the intuition that approximating a Gaussian
distribution is much easier and more accurate than approximating a highly non-
linear function [55]. Instead of approximating the non-linear process and observa-
tion models as the EKF, the sigma points of the UKF directly use the true non-linear
models. It works similar to the particle filter, using samples to represent the state
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distribution. But the major difference is that the UKF chooses a minimal set of rep-
resentative sample points to capture the distribution of the state completely, while
the particle filter uses as much as possible samples to represent its state distribution.
Compared with the EKF, the UKF captures the posterior distribution more accu-
rate than that of the EKF, specifically speaking to the third order of Taylor series
expansion for any nonlinearity [56].

The unscented transformation (UT) is the essence of the UKF. It is a method for
computing statistics of a random variable which undergoes a non-linear transfor-
mation [54]. A couple of equations are employed to elaborate this transformation,
following the equation style in [57]. Consider a L-dimensional random variable x
with mean x and covariance Px through a non-linear function, y = g (x). 2L+ 1
weighted sigma points are utilized to calculate the statistics of y as the flowing equa-
tion (2.6).

x0 = x ω0 =
λ

L+λ
i = 0

xi = x +(
Æ

(L+λ)Px)i ωi =
1

2(L+λ)
i = 1, .., L (2.6)

xi = x − (
Æ

(L+λ)Px)i ωi =
1

2(L+λ)
i = L+ 1, .., 2L

where:

■ ωi : is the weight of the i th sigma-point and the sum of all weights equal 1

■ λ: is a scaling parameter

■ (
p

(L+λ)Px)i : is the i th row (or column) of the matrix square root of the
weighted covariance matrix

p

(L+λ)Px .

Then the non-linear function, y = g (x) is applied to transform these sigma
points as the equation (2.7). The mean and covariance for y can be calculated us-
ing the standard statistics equation.

yi = g (xi ) i = 0, ..., 2L (2.7)

y =
2L
∑

i=0

ωi yi (2.8)
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Py =
2L
∑

i=0

ωi (yi − y)(yi − y)T (2.9)

In comparison with the Monte-Carlo sampling and the EKF linearization tech-
nique in a two-dimensional example, the author in [57] used the Figure 2.1 to demon-
strate the accuracy of the unscented transformation. The left side of the plot shows
the Monte-Carlo sampling results. The middle part of the plot shows the results of
the linearization of the EKF. And the right side shows the superior performance of
the unscented transformation. Thus, the UKF is more suitable for non-linear appli-
cation. Although the UKF is introduced to cope with non-linear problem, it also
can be used in linear system [58]. When it comes to computational complexity, the
UKF and the EKF have the same performance.

Figure 2.1: Comparison of the accuracy of the UT for mean and covariance with other
two approaches [57].

2.3.4 Particle Filter

Thus far, all introduced filters, the KF, the EKF and UKF assume the associated
noises follow the Gaussian distribution. What if the noise models do not follow
the Gaussian distribution? And what if a filter is required to track more than one
target simultaneously? Obviously a new filtering technique, particle filter has to be
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introduced to cope with these problems. Particle filter is a popular optimal estima-
tion solution for non-linear and non-Gaussian application. The main advantage of
particle solutions over standard approximation methods, such as the EKF, is that
they are not dependent on any functional linearization or approximation, but rely
on a bunch of random particles with associated weights to represent the posterior
distribution. Thus, particle filter can be used in more circumstances and with much
flexibility. Due to this flexibility, the particle filter is computationally expensive.
However, this constraint can be overcome eventually by the ever-increasing com-
putational power and the application areas will be enlarged. Another bottleneck of
the particle filter is the sample impoverishment or depletion of samples because of
the sample resampling [59]. It is a step in the filtering process that is employed to
duplicate particles with high importance weights and to get rid of the particles with
low importance weights like wise. Although the resampling step was introduced to
mitigate the influence of the particle degeneracy problem caused by the Sequential
Importance Sampling (SIS), this side effect caused by the resampling will ruin the
diversity of samples. Since the resampling step can lead to the particle depletion,
myriads of the proposed algorithms are trying to handle this issue. The remainder
of this subsection will briefly introduce the basic idea of the particle filter, aiming at
helping readers to figure out the underlying ideas and concepts.

In a broad sense, particle filters belong to the class of Bayesian filters. They re-
cursively perform the prediction of the state of systems according to the state space
models and update through noisy measurement at each time step. In essence, par-
ticle filters are based on the sequential Monte Carlo methods, which employ mass
samples to represent the probability densities [60]. The key concept of Monte Carlo
methods is using average value of samples to substitute the integral calculation which
exists in the Bayesian equations. The reason is that the integral calculation is more
difficult. However, the target posterior distribution is also difficult to obtain. Thus,
the Importance Sampling was introduced to solve this problem and for computa-
tional efficiency, the SIS is utilized in a real application. But the sampling step will
lead to the degeneration of particles after several iterations, resulting in only a few
particles with significant weights and the others with extremely low weights. If fur-
ther steps are not employed, most computational efforts will be wasted on updating
the non significant particles. A widely adopted solution to solve the degeneracy is-
sue is resampling, such as the Sampling Importance Resampling (SIR). As mentioned
before, this step will cause the sample impoverishment. For better and further un-
derstanding, a couple of papers or tutorials can be used as references [60, 61].
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2.4 Summary

Since localization is the main topic of this thesis, this chapter has reviewed the
mapping and localization related techniques. As noise is present in almost every
state space and measurement, a better estimation performance relies on the filter-
ing. Foundations of widely used filtering algorithms have been introduced as well.
Besides, both the merit and the constraints of each filter have been analyzed.

26



“Sharp tools make good work.”

Chinese Proverb

3
Sensor Set-up and Modeling

Sensors serve as eyes and ears to an autonomous vehicle, sensing its environ-
ments. A central computer running special programs acts as the brain of the ve-
hicle, making different kinds of decisions and handling many situations. To fully
understand how an autonomous vehicle works requires familiarity with its hard-
ware set-up. To work with various types of sensors also requires the knowledge of
their features. Thus, the hardware set-up and software framework of MadeInGer-
many will be depicted in detail in this chapter. Since this work needs to incorporate
several sensors, this chapter will introduce these sensors thoroughly to some extent,
especially focusing on their disadvantages or the application challenges.

3.1 Overall Sensor Set-up for MadeInGermany

Our present main test platform, “MadeInGermany”, has a similar sensor set-
up to many other well-known autonomous test vehicles [9]. As briefly mentioned
in Chapter 1, section1.2.2, MadeInGermany is an autonomous vehicle transformed
from a 2010 Volkswagen Passat Variant 3C. The transformation consists of installing
the Drive-by-Wire system and equipping with many different types of sensors. In-
stalling the Drive-by-Wire system is the first step to implement an autonomous vehi-
cle, because it allows computer commands to control the vehicle. Manual operation,
however, is not excluded. On the contrary, the safety driver can always take control
of the vehicle with a higher priority out of safety considerations. Sensors include
LIDAR sensors, Radar sensors, ultrasonic sensors and video cameras. Localization
system can be treated as a special sensor as well. The rest of this section will intro-
duce these sensors, respectively. Figure 3.1 illustrates the externally-visible part of
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sensor configuration. And Figure 3.2 sketches its sensor coverage.

Velodyne HDL 

Applanix POS LV 

Ibeo Lux Lidar Radars 

Guppy Cameras 

INKA Cameras 

Figure 3.1: Sensor set-up of MadeInGermany7. Only the externally-visible part of sen-
sors are illustrated.

Ibeo LUX

Velodyne HDL

Hella Radar

SMS Radar

TRW Radar 

Figure 3.2: Illustration of sensor coverage of MadeInGermany8.

7Inspired by [18].
8Inspired by [18].
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3.1 Overall Sensor Set-up for MadeInGermany

1. Control Interface
The Drive-by-Wire system is the key element of vehicle control interface, en-
abling the computer-driven control. It makes the software control over the ve-
hicles possible, by transforming the traditional mechanically actuated throttle,
gear shifter and steering system into electronically actuated ones. Thanks to
its carmaker, Volkswagen, they factory-opened the Drive-by-Wire interface to
us for the purpose of research. Thus, communications between computers and
the vehicle’s actuator systems can be established directly via Ethernet to the
Controller Area Network (CAN) bus. For instance, steering commands are
sent directly to the embedded controller system of the steering motor, which
is a Maccon hollow shaft motor to manipulate the steering wheel [4]. The
brake, however, must be always available for safety drivers because of safety
reasons.

2. Applanix POS LV
The estimation of the vehicle’s position, orientation and other states is ob-
tained from an Applanix™ POS-LV 510, which provides an inertial GPS navi-
gation solution. This system operates at up to 200 Hz. It combines a position
and orientation computing system, an Inertial Measurement Unit (IMU), a
Distance Measuring Indicator (DMI) and differential GPS [32]. The IMU and
DMI provide the relative position and orientation information while GPS gen-
erates absolute information. So the system takes advantage of these two local-
ization schemes and generates stable and highly accurate position and orienta-
tion information. This integrated solution has uncomparable advantages over
a stand-alone GPS solution, especially during the GPS outages, this scheme
can still provide the inertial data alone. This allows the vehicle to safely pass
through GPS outage area for a period of time. However, it also suffers from
sudden position discontinuities upon switching between GPS coverage and
outage [33], or between different GPS reference stations.

3. Video Cameras
There are three kinds of cameras equipped behind the windshield, the Con-
tinental™ HDR camera, two monochrome Hella-Aglaia INKA™ stereo cam-
eras and a pair of AVT (Allied Vision) Guppy™ cameras. The Continental
HDR camera is an important part of the built-in production-line lane depar-
ture warning system [4]. It is employed to carry out robust lane detection.
The Hella-Aglaia INKA 2 firewire COMS cameras with the back-end FPGA
build up a powerful stereo vision system, generating a real time depth map
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for object recognition and obstacle detection [18]. The Guppy cameras can
be used in a wide range of application, such as lane detection, traffic signal
detection and recognition, stereo vision and so on [4].

4. LIDAR Sensors
LIDAR sensors have an advantage that can provide precise depth information
regarding their surroundings, which is more accurate than that provided by
stereo cameras. Thus, they are widely equipped in autonomous vehicles. Two
types of LIDAR sensors is installed on the MadeInGermany, a Velodyne™
HDL-64E scanner and six Ibeo LUX™ laser scanners. The Velodyne HDL-
64E is a very powerful spinning LIDAR sensor on board. It provides a 360◦

horizontal field of view and a 26.8◦ vertical field of view. It scans with 64
laser beams and spins at 5-15Hz. Further information about Velodyne will
be discussed in next section. Six Ibeo LUX laser scanners, with three built in
the front and three integrated in the rear, provide another almost 360◦ field of
view around the car. And each of these scanners is a four-layer scanner with an
110◦ horizontal field of view and a 3.2◦ vertical field of view. It is convention-
ally used for obstacle detection and collision avoidance [62]. Obstacles can
be detected up to 200 m by these scanners, which are required for highway
tracks [18].

5. Radar Sensors
Unlike LIDAR sensors, accurate distance is difficult to obtain for radar sen-
sors. But the obstacle’s speed relative to the vehicle can be easily determined
by applying the Doppler effect. Thus, radars are normally used in auto-mobile
for automatic cruise control and lane change assistance [18]. Three types of
radars installed in our vehicle. The first one is the SMS short-range radar,
which is used to merge obstacles detected by the laser scanner [18]. Second
one is the Hella Blind-spot radar, which is used to assist lane change by ob-
serving the neighbor lanes [18]. The last one is the TRW long-range radar,
which can detect obstacles up to 200 m. It is important for high speed driving
on highways [18].

6. Ultrasonic Sensors
Ultrasonic sensors are built-in sensors on board, with four in the front and
another four in the rear. They are integrated for serving the Park Distance
Control and the Park Assistant System. They observe objects within 2.5 m in
front and back of the vehicle. They will be turned off automatically when the
vehicle’s speed exceeds 10 km/h and vice versa [18].
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Sensors alone are not powerful enough, but definitely powerful with their respec-
tive computing systems. The reasons are two-fold. First, plugging all sensors with
different interfaces into a single computer is not an easy task. Second, processing
the huge amount of data with different update-rates in real-time is a great challenge
even for a single current high-performance mobile computing platform. One Velo-
dyne HDL alone generates over 1.3 million point cloud measurements per second,
let alone other sensors. Thus, all the sensor data are processed by several computers
on different networks and computing systems normally are installed in the trunk.
Take Applanix POS LV as an example, its computing system acquires data from its
GPS, IMU and DMI to generate high accuracy real-time vehicle navigation informa-
tion. A high-performance workstation laptop acts as the “brain” of the vehicle for
environment representation, behavioral decision and operational monitor.

3.2 Software Architecture

The software ran on MadeInGermany is quite complex. It is hard to imagine if
there is no framework to manage the whole system. A framework would greatly
benefit the entire project, such as reducing the programming effort. The software
framework used in our project is the Open Robot Control Software (OROCOS)
framework. OROCOS is an open source real-time robot control software package
organized in the form of C++ libraries [63]. Especially, the OROCOS Real-Time
Toolkit (RTT) can be used to create a module-based and data-flow centered control
architecture without delving into the code of the whole system [4, 63]. In coopera-
tion with CORBA (Common Object Request Broker Architecture), it can provide
strict distributed real-time services for Linux systems [4].

Under this framework, software design obeys the concept of modular design.
For instance, a sensor’s operation is implemented as an abstract module. A specific
task can also be modeled as a module. An XML file, called xmltest, is used to define
the connection between modules. Then modules initiate communication via soft-
ware ports, that is one module writes data into its output port and the connected
module can read it from its input port. Thus, data can be exchanged in a lock-free and
thread-safe state [4]. A module can be triggered periodically or by external events.
Other properties can be configured through Attributes, Properties, and Operations
without the need to compile the whole project [4].

Figure 3.3 depicts an abstract high-level schematic of the modules used in the
architecture. The architecture can be divided into three levels, sensing, behavior
and actuator. The first level involves in the environmental perception, related to
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Figure 3.3: Abstract data flow chart of MadeInGermany [18].

cameras, LIDARs and radar sensors. The middle level acts as decision making role
in dealing with different situations and translates high-level commands into low-
level control commands to drive the actuators. The actuator level receives control
commands to execute them. Since the work presented in this thesis is related to the
localization problem, it belongs to the first level.

Although this work is still based on the OROCOS, few teams and developers
have been maintaining the OROCOS project at present. And ROS (Robot Operat-
ing System) is a popular framework in robotic communities. Thus, ROS is currently
employed to replace the old framework, OROCOS on our project.

3.3 Sensor Set-up for This Work

A brief introduction to the overall sensor set-up for MadeInGermany was given
in previous section. The motivation of this work is to develop an effective localiza-
tion scheme using fewer, cheaper or onboard sensors. Thus, this section will intro-
duce the main sensors employed in this work, both advantages and disadvantages.
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3.3.1 Velodyne for Feature Detection

For autonomous driving, the vehicle has to perceive its environment both cor-
rectly and reliably. Better environment perception capability gives the vehicle more
confidence to perform more complex tasks like localization and obstacle avoidance.
For feature detection, LIDAR sensors are the most reliable sensors among any exist-
ing sensors, as they are almost independent of weather and illumination conditions
and have best directionality. They can be classified into two categories, 2D and 3D.
Conventional 2D LIDAR sensors utilize a rotational mirror to reflect a single laser
beam to scan the environment. This mechanism limits them to work in a single
plane but they are still widely used in robotics. With multi-beam and also rotational
mechanism, such LIDAR sensors are classified into 3D LIDAR sensors. One such
example is the well-known Velodyne HDL-64E S2. Its prototype was introduced
by the Velodyne TeamDAD in the 2005 DARPA Grand Challenge. And its mature
product was adopted by five out of six teams that successfully completed the entire
course of the 2007 DARPA Urban Challenge [64]. It will be further introduced in
the rest of this section.

Figure 3.4: 64 vertically arranged lasers embedded inside the Velodyne HDL-64E.

Velodyne™ HDL-64E S2 comprises a vertical array of 64 laser emitters. They are
well arranged in a spinning house, as shown in Figure 3.4, rotating at a user selectable
rate ranging from 5 to 15 Hz. Change rotating rate does not change the data rate, but
does change the horizontal angle resolution. The higher the rotation rate, the lower
the angle resolution. It generates point cloud measurements (bearing, range, inten-
sity) at a rate of over 1.3 million per second. And the effective measurement range
can be up to 120 meters with an accuracy of less than 2 cm. The rotation feature
gives a full 360-degree horizontal field of view. The well arranged 64 laser emitters
are spread out over a 27-degree vertical field of view. Thus, combining with precise
INS system, this sensor can be employed to create 3D maps of its environments and
can be utilized to correct the vehicle’s position. One competitive advantage over
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other sensors is that the Velodyne LIDAR needs no ambient light to work, so it can
robustly provide information for the vehicle at night.

Although the introduction of such novel devices in autonomous driving has
dramatically changed the way in which robots perceive their environments, it also
presents many challenges. First, like many other sensors, calibration is an indis-
pensable step before any real application. A set of geometric parameters must be
determined. They are defined to determine the relative position between each laser
beam and the LIDAR sensor. Calibrating only one laser beam is not a daunting task
but calibrating multi-beams simultaneously is an overwhelming task [64]. Second,
processing large amount of data requires developing powerful algorithms and con-
sumes huge computing power. Even though both sensors and research in computer
vision area have made remarkable progress, sensors still cannot directly recognize
features like we human beings. In this project, pose-like features should be extracted
from the rich 3D point clouds. Finally, mounting such devices on mobile platforms
also brings challenges to applications as an entire scan needs some time to complete,
as illustrated in Figure 3.5. This is different from a stereo camera which can obtain
a single image in one shot. And this issue will be further explained in section 4.3.3.
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Figure 3.5: Illustration of one scan of Velodyne in the plan view. The red lines represent
the laser beams while the black X crosses represent the Vehicle’s positions. (For
illustrative purposes only, no units involved.)

3.3.2 Odometry for Motion Prediction

Odometry is widely used in robotics by both legged and wheeled robots, which
provides a simple and low-cost localization solution. Odometry estimates the rela-
tive robot displacement related to a starting position, by counting how many time
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the wheel turned over time. Though this method is easy to implement, it suffers
errors from the drift and slippage. Without feedback or other sensors for correc-
tion, the drift cannot be overcome and grows without bound over time [65]. There-
fore, to be used effectively, other sensors and calibration processing are required to
cooperate with odometry sensors. Technically speaking, an odometry sensor is a
measurement sensor rather than a control sensor. But in practise, it is treated as a
control unit for motion prediction in Kalman Filters [21].

Basically, three methods can be employed to do odometry calculation, the model-
based, Visual Odometry and probabilistic approaches. The straightforward approach
is the model-based calculation. The Ackermann steering model is doubtlessly the
representative model [66]. This model exploits geometric relationships between
the vehicle and the trajectory under the control law. A common simplified version
of the Ackermann steering model is the bicycle model. It simplifies a four-wheel
model into a two-wheel model and places an imaginary wheel pair at the centers of
the front and rear axles [67]. The bicycle model also assumes that the vehicle moves
on a plane. However, non-systematic errors will worsen the estimation results with-
out using other sensors. Thus in this work, the author tries to fuse the wheel speed
data with the gyroscope data to obtain a better estimation. Visual Odometry is an-
other method to handle odometry calculation. This method determines the pose
of a robot by finding relationships from sequential camera images. Stereo vision
is commonly used to estimate the 3D position of features and track them between
frames to evaluate displacement [68]. Visual Odometry can be employed to im-
prove navigational accuracy. The last method is based on probabilistic approaches
by using Kalman Filters. But tuning uncertainty covariance matrices is a difficult
task. Thus it is difficult to improve the accuracy. An automatic tuning of noise
parameters approach is proposed in [69].

Regarding this work, the vehicle has already installed the widely adopted Elec-
tronic Stability Program (ESP), also referred to as Electronic Stability Control. With
the knowledge of ESP, we know ESP is a computerized system that assists the driver
to control the vehicle in dangerous situations. To do that, it detects the vehicle’s rota-
tion rate and monitors the angle of steering wheel to predict the driver’s intentions.
Then it applies braking forces to individual wheels and adjusts the engine perfor-
mance as well [70]. Wheel speed sensors are standard components in ESP, which
detect how fast each individual wheel is turning. Thus, here they can be treated as
odometric sensors. The derive of the motion model will be presented in the next
chapter.
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3.3.3 Gyroscope for Heading Estimation

The odometric sensors alone can be utilized to calculate the angle changes from
motion equations. But it is difficult to increase the estimation accuracy due to ex-
ternal influences, such as road on uneven terrain, bump and slippage. Moreover, the
accuracy of heading estimation influences the quality of Dead Reckoning (DR). The
more accurate the heading estimation, the smaller the DR drift [71]. Therefore, to
get more accurate heading estimation, we need to add a gyroscope to the system as a
gyroscope is a specialized device to measure the angular changes, also known as an-
gular velocity or yaw rate. After the well calibration, it will provide more accurate
measurements. Integrating measurements over time will obtain the changes of the
robot’s heading. Since yaw rate sensor is an essential unit in ESP, extra gyroscope
is not needed any more for not so sensitive applications. Therefore, the yaw rate
sensor here acts as a gyroscope. Such sensors are more accurate than other counter-
part sensors, such as odometric sensors, because it takes all external influences into
consideration rather than its physical limits.
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Figure 3.6: Scatter plot showing strong linear relationship.

Gyroscopes normally suffer from the influence of zero-rate level [72] (also known
as drift). Zero-rate level is a term introduced to describe the phenomena that gyro-
scope still has reading even if there is no angular rate present, caused by temperature
and other factors. Thus, it changes slightly over time and temperature as well. For
most common applications, the impact can be ignored due to the factory tested and
trimmed operation. So no further calibration is required. However, in order to
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achieve best results, the yaw rate value still needs to be calibrated. The calibration
is conducted off-line by comparing the calculated yaw rate with the reading of yaw
rate sensor. The data related to those two parameters is extracted from the log files
of test driving of MadeInGermany in Berlin. The calculated yaw rate is based on the
ground truth heading provided by the Applanix system. To represent the correla-
tion graphically, a scatter plot (3.6) was constructed. The variable on the horizontal
axis represents the yaw rate value read from the gyroscope, while the variable in an-
other axis represents the calculated yaw rate. It can be clearly seen that they present
a strong linear correlation. Ideally, these two variables should be equal only with
a fixed coefficient due to the difference between units, specifically speaking radian
over degree. And the fixed coefficient should be equal to

π

180
or (0.01745). It also

presents the additive bias of yaw estimation, owing to the effect of zero-rate level.
These two parameters can be determined through linear regression or random sam-
ple consensus (RANSAC).
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Figure 3.7: The raw data and filtered data with delay removed.

Considering the raw yaw rate data are polluted by noise, an FIR (Finite Impulse
Response) filter is applied to the raw data, as Figure 3.7 shown. The blue line repre-
sents the raw data and the red line represents the processed data. From the magnified
local plots, it can be clearly seen that the chosen filter has greatly smoothed the raw
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Figure 3.8: Scatter plot of the filtered yaw rate versus computed yaw rate.

data. Then we applied linear regression to the processed yaw rate and calculated yaw
rate as shown in Figure 3.8. The scatter about the line is still big. The slope of the
line is almost equal to the expected value, which confirms the correctness of the es-
timation. The biased value means the zero-rate level cannot be completely filtered.
So the filtering solution does not dramatically improve the estimation result. And
filtering introduces delay, which would worsen the estimation. Therefore, if better
results are needed, better gyroscope should be installed.

Although the bias value cannot be filtered, it still can be calibrated online. The
calibration can be carried out by averaging the reading of the gyroscope with abso-
lute value when the vehicle is stationary. The typical value of the sensor bias for our
test vehicle is around 0.33◦/s .

Besides, gyroscopes are also influenced by the lag problem. Readings of gyro-
scopes are normally delayed, lagging behind the current value. The influence of this
phenomenon is significant, especially during a dramatic angular changing period,
which leads to worse estimations. According to our knowledge, there is not much
work in the community solving this problem.

3.3.4 Multi-Sensor Output Synchronization

As introduced in previous sections, multiple sensors are employed in this work.
They have different output rates, as illustrated in the timing diagram 3.9. The Velo-
dyne LIDAR rotates at constant frequency at 15 Hz. The yaw rate sensor runs
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Figure 3.9: The multi-sensor output timing diagram in one second.

mainly on 50 Hz, while the wheel speed sensor almost at 100 Hz. Except the Velo-
dyne LIDAR, the update rate of other two sensors does not run at consistent fre-
quencies. And time is critical to the estimation of the both yaw angle and distance.
Thus, the output of multi-sensor must be carefully aligned. In this work, the output
port of vehicle speed from the on-board ESP sensor is chosen as the event trigger
port. The main reason is that it can provide a 100 Hz update rate as higher update
rate means much safer for driving. The output of other two sensors will be aligned
to that of the speed sensor.

3.4 Summary

Sensors serve as eyes and ears to an autonomous vehicle, sensing its environ-
ments. To fully understand how an autonomous vehicle works, one needs to be fa-
miliar with its hardware set-up. To use a sensor properly needs to know its features.
This chapter, therefore, thoroughly introduced the installed sensors to some extent,
especially their disadvantages or the application challenges. It is a good preparation
for the next chapter, as it provides basic information for deriving motion model used
in the following chapter.
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“Measure what can be measured, and make measurable

what cannot be measured.”

Galileo Galilei

4
Feature-Based Localization

For an autonomous vehicle, localization is an essential task of estimating the
vehicle’s pose relative to a given map. Maps are used to register the features’ loca-
tions and other necessary information in coordinate systems. Maps, however, are
independent of the vehicle’s poses. Therefore, localization can be regarded as estab-
lishing correspondences between the coordinate of the map and the coordinate of
the vehicle. Unfortunately, such correspondences cannot directly be measured by
sensors. Thus, the estimated poses have to be inferred from the sensed data.

As introduced in the previous chapters, one motivation of this work is to em-
ploy low cost sensors to take the place of the expensive DGPS-based inertial navi-
gation system, Applanix POS LV 510. In this work, data for constructing feature
maps is still acquired by the high precision inertial navigation system and Velodyne
LIDAR due to their relatively low uncertainties. Then a feature map based localiza-
tion scheme is proposed by only using Velodyne LIDAR and other lower accuracy
on-board sensors. The essence of the localization scheme is a novel two-point based
localization method, which provides a simple and elegant solution. In this chapter,
a localization solution based on the extended Kalman filter will be presented. The
extended Kalman filter will be employed to fuse the odometric position estimation
and measurements to the pole-like features extracted from Velodyne LIDAR point
cloud. This chapter is organized as follows. First, several important coordinates will
be defined. Then, localization related subjects will be introduced, including map
construction, motion prediction and measurement update. Finally, two trajectory
smoothing methods are proposed.
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Chapter 4 Feature-Based Localization

4.1 Coordinate Systems

Coordinate systems are of crucial importance for localizing the vehicle and pre-
senting sensors’ data. For this work, several coordinate systems are adopted. First
for localizing the vehicle in a map, a global coordinate system should be either
adopted or defined in the beginning. With a global coordinate system, features can
be easily added to a map and vehicles’ poses can be conveniently described with re-
gard to the coordinate system. Besides, the vehicle and its carried sensors all have
their own coordinate systems. Thus, this section will introduce the coordinate sys-
tems utilized in this work.

Four coordinate systems are adopted in this work, which include:

■ the vehicle related coordinate system,

■ the local East-North-Up (ENU) coordinate system,

■ the Velodyne LIDAR related polar coordinate system,

■ the World Geodetic System 1984 (also known as WGS84) coordinate system.

Lateral Y

Longitudinal X

Vertical Z

Pitch

Yaw

Roll

(ENU)
East X

North Y

Up Z

Figure 4.1: Vehicle related coordinate system. It is defined as a right hand orthogonal
coordinate system. The origin of this coordinate system is placed at the center
of the front axle of the vehicle. The x-axis is along the longitudinal axis of the
vehicle, while y-axis is along its lateral axis.

Figure 4.1 illustrates the vehicle related coordinate system. The origin of this
coordinate system is placed at the center of the front axle of the vehicle. It is also the
reference point to the vehicle’s position, which is critical for modeling the vehicle’s
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4.1 Coordinate Systems

motion, as different points of the vehicle have different trajectories. Choosing dif-
ferent reference points, thus, leads to different motion models. The x-axis is along
the longitudinal axis of the vehicle, while y-axis is along its lateral axis.

θ

β 

P(r,β) 

Y

X

N
o
rt

h

East

r

Figure 4.2: Top view of coordinate systems to demonstrate their relationships. The
local ENU coordinate system is shown in black. The vehicle rated coordinate
system is highlighted in red. And the Velodyne LIDAR ralated polar coordinate
system is colored green. θ is defined as the yaw angle. (r,β) are the range and
bearing to feature P, respectively.

For the localization problem addressed in this work, the vehicle’s pose st in two-
dimensional space (the Special Euclidean 2, or SE2 for short) will be considered.
It consists of Cartesian position (x, y) and orientation θ related to the local ENU
coordinate system, as illustrated in the top view in Figure 4.2. The X axis in the
ENU coordinate points towards the true east and the Y axis points in the direction
of the true north, which follow the conventional definition. The orientation θ is
also known as the heading angle of a land vehicle or yaw angle. It is defined between
the vehicle’s x-axis and the X axis of the local ENU coordinate. Measurements of
the features are carried out in the Velodyne LIDAR related polar coordinate system,
as highlighted in green in the figure. Its origin is placed at the center of the Velodyne
LIDAR. Its polar axis is along the longitudinal axis of the vehicle. Thus, (r,β) are
the range and bearing to the feature P, respectively.

For realizing the global localization, the world geodetic system 1984 (a.k.a WGS84)
is adopted. It can provide a single feature with a unique latitude and longitude posi-
tion information in a global coordinate frame, which is useful during mapping stage
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φ 
λ 

North
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Figure 4.3: Relationship between the geodetic and a local ENU coordinate systems. ϕ
and λ are represent latitude and longitude of the geodetic coordinate system,
respectively. The ENU frame is colored green.

due to the unique property. However, latitude and longitude are not convenient for
computation and querying maps. Therefore, for map matching and localization, a
local ENU coordinate system is employed. The relationship between the geodetic
and a local ENU coordinate system are illustrated in Figure 4.3. For the geodetic
frame, ϕ and λ represent the latitude and longitude respectively to the local ENU
frame which is colored green. However, the coordinate transformations among all
these coordinate system are not presented here. For converting the WGS84 to a local
ENU, please refer to [73] for more detailed introduction.

4.2 Overall System Structure

Figure 4.4 shows the localization module in the overall system structure. The
whole system has three layers, the sensor layer, the localization layer and the frame-
work layer. In the sensor layer, it includes a Velodyne HDL for pole-like feature
detection, ESP related sensors for dead reckoning and for creating Ego state. The
localization layer consists of two Extended Kalman filters, the localization EKF and
the smoothing EKF. The localization EKF is utilized to fuse estimation from dead
reckoning and measurements from pole-like feature extraction. It is the main unit of
the localization module. As its name implied, the smoothing EKF takes the output
of the localization EKF and dead reckoning as input to make the trajectory much
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4.3 Localization EKF

smoother in real time. To create an Ego state module that can be used by other mod-
ules in the system, the vehicle’s speed and accelerations from ESP related sensors are
also employed besides the output of the smoothing EKF. If treating the whole local-
ization module as a stand-alone system, it is an alternative to the Applanix POS LV
510.

Vehicle Speed,

Accelerations

(ESP)

Velodyne HDL
Vehicle Speed, 

Gyroscope

(ESP)

RNDF/ARND

Sensors

Localization

Pole-like

Feature Detection

Localization

EKF

Smoothing

EKF

Vehicle

Egostate

Pole-like

Feature Map

Navigation  Controller

Framework

Egostate

Nearest poles Location

Figure 4.4: Localization module in the overall system structure. The localization mod-
ule consists of two Extended Kalman Filters. The localization EKF is the main
unit of estimation. The smoothing EKF is employed to smooth the estimated
trajectory in real time. Then an Egostate is created to provide the vehicle state
information to other modules.

4.3 Localization EKF

Localization is the task of estimating a robot’s pose in a known or unknown
environment. In a known environment, the pre-built map is available for localiza-
tion which makes the task easier. In an unexplored environment, such as dangerous
disaster sites, outer space planets, maps may not be easy to get previously. Then
SLAM related techniques are required. Here, to simplify the localization problem
and improve the performance, we assume that an a priori map is available for ap-
plications. Since the inherent uncertainties and bias are unavoidable for estimation,
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Chapter 4 Feature-Based Localization

it is of importance to have the knowledge of the uncertainties, in addition to es-
timation itself. Therefore, this problem is suitable to be solved in a probabilistic
way. The whole estimation is under the frame of the EKF since the state and the
measurement are non-linear. In the following subsections, several related aspects,
for example map building, motion prediction and measurement update will be pre-
sented, respectively. Figure 4.5 illustrates the overview of the frame. First, an a
priori map was created previously. Second, the readings of wheel speed sensors and
gyroscope are used to calculate the motion prediction. Then, features are extracted
from the Velodyne point cloud and matched with the features stored in the a priori
map. After data association, the estimation is updated by fusing the measurement
results.

Wheelspeeds

& Gyroscope

Motion

Prediction

Measurement

Update

Data 

Association

Feature

Map

Submap

Extraction

Velodye HDL

Feature

Extraction

Figure 4.5: Overview of the localization EKF module. First, an a priori map was created
previously, which named as Feature Map and illustrated as a green cylinder. Sec-
ond, the readings of wheel speed sensors and gyroscope are used to compute the
motion prediction. Then, features are extracted from the Velodyne point cloud
and matched with the features stored in the a priori map. After data association,
the estimation is updated by fusing the measurement results.

4.3.1 Map Building

As introduced in the previous chapter, several kinds of maps can be adopted to
build the maps for this work. Here feature maps are chosen for convenience. For
simplicity’s sake, only pole-like features, such as tree trunks, lamp post and poles
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of traffic signs, are chosen to build maps. The reason is that they are upright with
homogeneous shape and can be easily identified in almost all environments. They
are different from the road surface and lane markings which can be easily affected
by many situations, ambient light, snow and fallen leaves. Of course, other features,
such as corners and straight street curbs, can also be used. But pole-like features are
more reliable and representative than other features because they normally remain
in the same place for a longer time. Another reason why pole-like objects are chosen
is that they can be regarded as point features in a two-dimensional map. For a single
feature, much information, like the feature’s size, position and LIDAR intensity, can
be stored in the map and used during the feature matching stage. In this work, only
the features’ position and the associated uncertainties are utilized to build the map.

For the purposes of testing and debugging, two kinds of feature maps are created.
One map is created through the log files of the test drive in Berlin, hereafter dubbed
as the LOG map. The other one is created through the online data obtained from
the FIS-Broker1, hereafter dubbed as the FIS map. Basically, the LOG map is more
accurate than the FIS map. But the FIS map can be created in a much easier way and
on a large scale.

4.3.1.1 LOG Map

The LOG maps are created through the log files of the test drive by combining
the vehicle’s ego state information and the extracted features’ information, as shown
in Figure 4.6. The vehicle’s ego state information was obtained from the Applanix
POS LV and the features’ information was extracted from the Velodyne point cloud.
The feature extraction method and algorithm which were contributed by a former
colleague [74], however, are beyond the scope of this work, so they will not be
discussed here. To record the test logs, two testing sites were chosen in the vicinity
of our lab. One is just in front of the main building of the campus (Thielallee in
the western part of Berlin), which is often chosen by our group as the autonomous
driving demonstration course. The street is covered with trees on road medians and
roadsides. The other testing site is in Englerallee, which is a neighboring street near
our lab. The test logs recorded at this site usually consist of several laps to test the
repeatability.

After choosing the right map format and acquiring the test log files, maps can
be constructed. To create a local map based on a test log file, the origin of the map
should be set at first. To use this map in a large area or provide consistent localiza-

1FIS stands for “Fachübergreifendes InformationsSystem” in german, which means “Interdisci-
plinary Information system”.

47



Chapter 4 Feature-Based Localization
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Figure 4.6: The mapping date flow diagram. Pole-like features are first extracted from
the Velodyne point cloud and represented in polar coordinates. Combining
the Applanix reported location information, the features can be expressed in
a global coordinate. Then features are identified through the nearest neighbor
matching. New features will be added to the map. Existing features will be used
to update the map.

tion information, it is convenient to employ the WGS84 coordinates to denote its
origin. Then all the features can be put in the map by adding their coordinates to
the map. Due to the uncertainty problem, exact position for each feature is difficult
to obtain. The same single feature can be observed by Velodyne LIDAR multiple
times, when it locates within the operational range of Velodyne LIDAR. But the
feature’s position calculated at different moments is different. So the feature’s po-
sition presents uncertainty. To get better results, the position will be estimated by
averaging all the single estimation. Thus, the a priori map of the environmentM
can be defined as an origin of GPS coordinates in WGS84 and a set of features:

M =







OGP S

[L1, L2, . . . , Ln]T






.

Each feature describes its coordinate position and measurements’ uncertainties as:

Ln = [xn, yn, V a rn]
T
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Since the number of times of a feature being detected is different from feature to
feature, here we use simple iteration equations to update the positions in real time.
In other words, the equations update the previous estimation whenever there is a
new measurement coming. Although the basic equations are obvious and can be
found on many textbooks, deriving their iteration equations here is just for ease of
programming. Due to page restrictions, many intermediate steps are omitted. the
equation (4.1) shows the position update as follows:

Xn+1 =
1

n+ 1

�

nXx + xn+1

�

=
n

n+ 1
Xn +

1
n+ 1

xn+1

(4.1)

where:

■ xn+1: is the new coming data for the (n+ 1)t h time

■ Xn: is the n times averaged position

■ Xn+1: is the (n+ 1) times averaged position

The uncertainties are estimated, including variance and covariance as shown in fol-
lowing Equations form (4.2) to (4.5).
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(4.2)

where:

■ σ2
n: is the variance through n times iteration

■ Xn: is the n times averaged position
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where:

■ σ2
n: is the variance through n times iteration

■ σ2
n+1: is the variance through n+ 1 times iteration

■ xn+1: is the new coming data for the (n+ 1)t h time

■ Xn: is the n times averaged position

Cov(Xn,Yn) =
1
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n
∑
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=
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n
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(4.4)

where:

■ Cov(Xn,Yn): is the covariance between two variables X and Y

■ Xn: is the n times averaged value in X axis

■ Yn: is the n times averaged value in Y axis
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Cov(Xn+1,Yn+1) =
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where:

■ Cov(Xn+1,Yn+1): is the covariance between two variables X and Y

■ Xn+1: is the n+ 1 times averaged value in X axis

■ Yn+1: is the n+ 1 times averaged value in Y axis

4.3.1.2 FIS Map

Creating the FIS maps is another way to create feature maps by using the available
online data. A huge set of data related to many aspects of the city of Berlin, including
but not limited to nature, environment, traffic and so on, is published online via the
FIS-Broker. As for our application, the position information of several pole-like
features, such as trees and lamp posts lining Berlin’s streets, can be used to create
the feature map. First, the number of such features is pretty large. Street lining
trees alone account for around 438,000 [75], that means there is a tree in every 12
meters on Berlin’s streets. Besides, over 210,000 lamp posts present in the streets
as well [76]. Second, the data is trustworthy as the data is managed by the Senate
Department for Urban Development. We were told by one technical staff from the
department that the typical position accuracy of a tree is from 50 to 100 centimeters,
some areas even 10 to 15 cm. Although the accuracy is lower than the log file way, it
is much easier and more convenient to create a city scale feature map. In contrast, it
is extremely expensive to create the same scale map through the log file way. Thus,
constructing maps in this way is quite promising.

To create maps, converting coordinates is a fundamental requirement as the fea-
tures’ positions are recorded in the EPSG 25833 coordinate. Despite the EPSG 25833
is a Cartesian coordinate, it is also a projected coordinate. A projected coordinate
must bring distortions to the features’ positions [77]. To convert such coordinate to
the local coordinate, first need to convert EPSG 25833 to WGS84, then from WGS84
to ECEF, and finally from ECEF to ENU coordinate.
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4.3.2 Motion Prediction

Odometric sensor and gyroscope are the main sensors for motion prediction,
whose measurements can be used as the basis to calculate the vehicle’s motion over
time. This subsection will derive the motion model and its error model.

4.3.2.1 State Vector

Here an assumption that the vehicle drives in planar environments is made. The
vehicle’s pose (or state vector) is denoted as si , and as expressed in the equation (4.6).
Its’ position and orientation are further denoted as (xi , yi ) andθi respectively, related
to a local ENU coordinate frame go, as illustrated in Figure 4.7.

g0

xi

yi

Pose si

θі 

Pose sj

xij

yij

θіj/2

θіj 
θіj 

∆x

∆y

Figure 4.7: Geometry of the odometry process. From pose si to pose s j , the vehicle drives
in a circular trajectory. θi j is the yaw increment. xi j and yi j are the displace-
ment in the local coordinate of pose si . The ∆x and ∆y are the displacement
in the local ENU coordinate. Figure is inspired by [78].

si = [xi , yi , θi]
T (4.6)

The odometry is used for the relative localization, such that it cannot estimate
the vehicle’s pose directly, unlike GPS. It generally estimates the robot pose related
to an initial pose by integrating the displacement over time. If the robot starts at pose
i and moves to pose j the resulting local displacement measurement with respect to
pose i is denoted as si j .
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si j = [xi j , yi j , θi j ]
T

The elements in si j are random variables calculated from odometry by integrat-
ing wheel speeds ∆ϑ and other dead reckoning related methods over time. The
heading change θi j can be calculated by using the method introduced in the pre-
vious chapter. Here we assume the trajectory of the vehicle in this period of time
closes to the circular path. The length of the arc or the distance traveled by the vehi-
cle is calculated by averaging the distance covered by two wheels. And each distance
is calculated by integrating the wheel speed over time. Here the length of the arc is
denoted as∆l =∆ϑ ·∆t . The line segment from pose si to pose s j is denoted as D.
Based on the knowledge of Euclidean geometry, the length of D can be calculated
as the equation (4.7).

D = 2sin

�

θi j

2

�

· ∆l
θi j

where θi j in radians (4.7)

Then xi j and yi j can be calculated through the trigonometric functions. as shown
in the equation (4.8). The results show that the length of line segment is almost equal
to that of the arc when the vehicle travels in a brief period of time.
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(4.8)

where: if θi j ≪ 0.0873 radians (or 5◦), the small-angle approximation is satisfied.

4.3.2.2 System Model

This part is going to derive the kinematics model which is utilized to predict
how the state updates from one pose to another. Given an initial pose si in the
ENU frame and a measured displacement si j in a frame local to si , the current pose

estimate s j can be calculated by integrating the control signal ui =
�

∆l ,θi j

�T
in the

ENU coordinate frame as the equation (4.9) shown. Although ui represents incre-
mental measurement which is computed from wheel speed sensors and gyroscope,
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it is treated as control signals as presented in the previous chapter.
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(4.9)

For some applications, the relative displacement si j between two given poses si

and s j in the ENU frame can be solved as shown in the equation (4.10).
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(4.10)

The pose covariance is a fundamental parameter in the EKF. Thus, obtaining this
parameter is required. First, recalling the KF equation (2.2) in chapter 2, P j is the
predicted covariance and Aj is the state transition matrix. For the Extended Kalman
Filter, Aj is the Jacobian matrix of partial derivations of process update function
with respect to the state vector. This equation will be used in later and here detailed
coefficient will be presented below (4.11).

P−j =Aj Pi A
T
j +Q j
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where:
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(4.11)

The input Jacobian B j is the Jacobian matrix of partial derivations of process
update function s j with respect to the input vector ui , as represented in the equation
(4.12).
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4.3.2.3 Noise Model

The EKF framework assumes that the process noise follows a Gaussian distribu-
tion. The general form of its covariance matrix can be defined as

Q j =
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(4.13)

where σ2
x , σ2

y and σ2
θ

represent the variance in x, y and θ, respectively. Other
elements represent the covariances between any two of the three variables. σ2

x also
represents the estimation uncertainty in the lateral direction, while σ2

y represents
the uncertainty in the longitudinal direction. The actual elements of the covariance
matrix depend on the system model. In practice, a simple model assumes that x,
y and θ are mutually independent for a tiny displacement. That is to say, all the
covariances are set to zero for simplicity.

4.3.3 Data Association

Data association is one of the critical steps for localization. To some extent, it
determines the performance of localization. Technically speaking, data association
is the task of establishing the correspondences between sensors’ measurements and
features in a map. Given any new measurements, data association involves deter-
mining the correct matches to an existing part of the map. It is universally acknowl-
edged that data association is one of the hardest and most important problems in
localization [79]. If correct correspondences cannot be established, then the sen-
sors’ measurement cannot provide any useful information for localization. Wrong
matches may even distort the estimation.

There are a couple of strategies to deal with data association problem, such as
the maximum likelihood, the nearest neighbor. The maximum likelihood correspon-
dence uses the probabilistic method to determine the most likely value of the corre-
spondence variable, and then takes this value as the best match [21]. What if there
is more than one equally likely hypothesis for the correspondence variable? Then
it turns out to be not so effective. However, this case can be avoided by designing
the system in two techniques. First, make sure that the selected features are suffi-
ciently distinct and far away from each other. Second, ensure that the uncertainty
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of the robot’s pose remains as small as possible. These two strategies are somehow
in conflict with each other. Nevertheless, maximum likelihood techniques are still
widely adopted in practice [21]. The straightforward technique is the nearest neigh-
bor correspondence. This classical approach considers each matching between sen-
sor measurements and features in a given map independently. And it does not take
the correlated errors of measurement prediction into consideration. So it increases
the possibility of wrong matchings [80]. In essence, it is based on the estimated ve-
hicle pose to find the correspondence. Its performance, therefore, is determined by
the quality of the pose estimation. A brief analysis of the influence of the heading is
shown as follows.

■ let θ be the ground truth heading, given in radians;

■ letθe be the angle uncertainty, and its absolute value is less than 0.09 in radians;

■ let r be the range from the vehicle to the pose, and assume it is quite accurate.

re r r o r = r
Æ
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�

�

�

= r |θe |

(4.14)

So the related error can be expressed in the equation (4.14). It is proportional
to |θe | with a given distance. Reducing the uncertainty in heading will increase the
accuracy. In this work, the nearest neighbor approach is also used for the primary
map matching step. If the threshold for accepting the matching uncertainty is set to
0.7 m, the real matching error is up to 1.2 m due to the uncertainty of the vehicle’s
position and heading, as shown in Figure 4.8. Here, the nearest neighbor matching
error is defined as the distance from the feature’s estimated position to its matched
feature’s position. And the real matching error is defined as the distance from the fea-
ture’s real position to its matched feature’s position. If a real matching error is bigger
than 0.7 m, it is probably a wrong matching. So this method may introduce many
wrong matches. Without further operation, these wrong matches will seriously in-
fluence the localization accuracy. However, this is just the first step for matching and
the wrong matches are sometimes unavoidable. For robust matching and obtaining
better performance, a two-point scheme is employed. The two-point approach will
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further reject most spurious matches introduced in the nearest neighbor matching
step.
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Figure 4.8: The performance of the nearest neighbor matching.

4.3.3.1 Pose Compensation

Since localization needs to estimate both the vehicle’s Cartesian position and
heading, at least two features are required to determine these parameters in a planar
environment. For robust applications, a minimum of three features are needed. The
operational method of Velodyne LIDAR also poses a challenge to localization. The
main reason is that it cannot detect all the features around itself simultaneously at
the same place when its carrier vehicle moves. Therefore, features are detected at
different moments and at different poses of the vehicle, as illustrated in Figure 4.9.
Consequently, if we use two detected features’ coordinates as the centers of two cir-
cles and the respective ranges as the radius of circles to plot two circles, these two
circles will not intersect at one point which lies on the trajectory of the vehicle. In
order to utilize two or more features to locate the vehicle in one position, a little
compensation work is needed here by applying dead reckoning in a brief period of
time.

In the software side, the localization program will be triggered to update by the
trigger event. Here we choose the event of the speed reporting as the trigger event
because of its around 100 Hz update rate. Higher update rate means safer driving.
During the interval of two consecutive trigger moments ∆t , the change in yaw an-
gle, ∆θ is calculated by integrating yaw rate over time. And the displacement, ∆d
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Figure 4.9: Illustration of feature detection by Velodyne LIDAR9.

is calculated by integrating the average reading of the wheel speed sensors over time.
Then to compensate for the positions of those features and the bearings which are
angles from the vehicle to poles, the equation (4.15) and (4.16) were used. After com-
pensation, it seems that all detected features were detected at the same time when the
triggering event arrives, as illustrate in Figure 4.10.
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Figure 4.10: Pose compensation. (a) illustrates the LIDAR distortion problem and (b)
represents the pose compensation. Here red circles with numbers represent
poles, while the black points represent vehicle’s positions. The colorful line
segments indicate the LIDAR beams.

■ let Ti be the instant when the i th pole was detected;

9Picture courtesy: Ricardo Carrillo.
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■ let To be the last triggering moment;

■ let θi be the bearing from the vehicle to the i th pole;

■ let ri be the range from the vehicle to the i th pole;

■ let (xi , yi ) be the coordinates of the i th matched feature in the map.

Now it’s time to calculate the percentage of time in the interval ∆t , that the i th

feature took. Let the coefficient of the percentage be denoted as pi .

pi =
Ti −To

∆t
(4.15)

Then the compensated coordinates and bearing would be expressed in the fol-
lowing equation (4.16). And the range values will remain the same.



















x
′

i = xi +(1− pi ) ·∆d [x]

y
′

i = yi +(1− pi ) ·∆d [y]

θ
′

i = θi − (1− pi ) ·∆θ

(4.16)

4.3.3.2 Two-Point Matching

After applying pose compensation to both observed features and matched fea-
tures in the map, finding the correspondence between these two sets of points can be
processed. In this part, the two-point matching approach is proposed. Let us assume
the vehicle’s position is O(xo, yo) and its orientation is θo. Two matched features’
coordinates in the a priori map are denoted by P (x1, y1) and Q(x2, y2), respectively.
As introduced before, we need to compensate the features’ position such that we can
assume these features are detected simultaneously. After compensation, they can be
represented as P ′(x ′1, y ′1) and Q ′(x ′2, y ′2), respectively. And the measurements to these
two features consist of the ranges and bearings. Let (r1,θ

′

1) and (r2,θ
′

2) be the range
and bearing pair to the feature P ′ and Q ′

, respectively. With all these notations, the
two-point matching approach can be derived through the following equations.
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�

where i = 1,2, · · · , n (4.17)

If subtract the equation (4.17) when i = 1,2, another equation will be got as
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follows:
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Then
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cosθo =
a∆x + b∆y

a2+ b 2

sinθo =
a∆y − b∆x

a2+ b 2

(4.20)

Thus
θo = atan2 (sinθo, cosθo)

= atan2 ((a∆y − b∆x) , (a∆x + b∆y))
(4.21)

From the equation (4.21), the vehicle’s estimated yaw angle can be obtained. This
estimated value, however, should be compared with the value estimated in the mo-
tion prediction step. The reason for this comparison is two-fold. On the one hand,
the estimated yaw angle in the motion predict step is close to the true value though
with tiny error; on the other hand, the nearest neighbor matching is prone to in-
troducing many wrong matches and through the two-point matching examination,
the wrong matches can be easily identified. Thus, after the two-point matching, the
spurious matches can be rejected and better results can be anticipated. After the yaw
angle estimation, the positional information can be obtained by the equation (4.17).
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4.3.3.3 Trilateration

After applying the pose compensation to the matched features, we can use the tri-
lateration algorithm to estimate the vehicle’s position. The trilateration algorithm
is the fundamental algorithm used in the GPS solution. The advantage of this ap-
proach is that it does not require any angle measurements. Knowing a set of coor-
dinates of reference points and the distance measurements to them, the unknown
position can be determined by trilateration calculations. The minimum number of
the reference points are three for 2D positioning or four for 3D. The aim of this
approach is to find the intersection of related circumferences in the scenario of 2D
positioning or spheres in 3D. And their centers are the coordinates of these reference
points. The point of the intersection is calculated by solving several non-linear equa-
tions simultaneously. The solution to this problem, however, is not feasible because
of producing a high-degree non-linear equation [81]. Murphy et. al in [81] thor-
oughly studied this problem and presented several solutions, including linearized
equations, linear least squares method and non-linear least squares. Although it
seems that this algorithm is quite promising, this work does not use it as the tri-
lateration algorithm does not provide more accurate results and it is prone to failure
under some circumstances.

4.3.3.4 Point Pattern Matching

If the pose estimation presents a big uncertainty, the Nearest Neighbor approach
may fail to solve the crucial data association problem. Then the estimation cannot
obtain measurement update and its uncertainty will increase without bound. Un-
der such circumstance, a more robust matching approach should be employed. Point
pattern matching, or point set registration, is an ideal approach to solve this prob-
lem. Several techniques can be used to solve the point pattern matching problem.
These techniques include the geometric hashing approach [82], the Iterative Closest
Point (ICP) approach [83], the triangulation [43] and so on. Compared with the
nearest neighbor approach, these methods are computational expensive. For a given
iterative times, the ICP approach may not be able to give an accurate solution. In this
work, the execution time for solving the point pattern matching problem should be
less than 0.01 seconds. Thus, these methods are difficult to apply to this work. How-
ever, they can be used to find the initial estimate by recovering the correspondence
between the map and the measurement.
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4.3.4 Measurement Update

The measurement stage uses the measurement data to update the estimation.
Normally, the measurement function is represented in the equation (4.22). Further,
it can be represented in the equation (4.23). And this equation is widely adopted
by numerous papers in robotics [21, 84]. Here Z k

j denotes the measurements to the
k th landmark. The variable items r k

j and θk
j denote the range and bearing to this

landmark at the state s j , respectively. And (xk
j , yk

j ) are the coordinates of the k th

landmark.

Z j = h(s j )+δ j (4.22)
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However, such equation is set up, provided that the critical data association is
known, which is not always true in practice. For instance, in this work the wrong
matching is unavoidable. Therefore, we used two-point matching to solve the data
association in this thesis. Since the data association step obtained the estimation
directly, the measurement function is linear. Thus, the computational complexity
for measurement update stage dramatically reduced.

4.4 Trajectory Smoothing

Due to the presence of the unavoidable uncertainties in maps and the measure-
ment update, the output of the localization EKF oscillates, even taking less correc-
tion from the observation, like 2 percent. As a consequence, the trajectory looks
like waves especially during making U-turns. And the steering wheel turns much
frequently, which makes the driving experience not so pleasant. Under such cir-
cumstance, some smoothing techniques are employed. A second smoothing EKF
and the smoothing method based on Ackermann constraint are tested in this work.
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4.4.1 Smoothing EKF

As its name implied, the smoothing EKF is utilized to smooth the trajectory.
This filter uses the odometry to carry out the motion prediction and the output
of the localization filter to conduct the measurement update. And it gives higher
weight to the odometry. Then it smooths the trajectory. The performance is shown
in the evaluation chapter. However, our intuition may tell us that one filter is
enough, since two filters have the same structure. So why combining two extended
Kalman filters has better performance? Mathematical analysis is shown as follows.
First, we use the equation (4.24) and (4.25) to model the system and measurement
equations. Since they have the same output, the measurement transition matrix for
the smoothing EKF is an identity matrix. Then the relationship between these two
filters can be expressed in (4.29). It can be seen that the second filter is unnecessary
if and only if K2 is an identity matrix.

X i
t = Ft X

i
t−1+Bt ut (4.24)

where:

■ X i
t : is the state vector at time t .

■ i = 1,2: is used to differentiate the first and second filter.

■ Ft : is the state transition matrix.

■ Bt : is the control input matrix

■ ut : is the control vector at time t

Zt =Ht Xt (4.25)
where:

■ Zt : is the measurement vector at time t .

■ Ht : is the measurement transition matrix.

X 1−
t = Ft X

1
t−1+Bt ut (4.26)

X 1
t =X 1−

t +K1(Zt −Ht X
1−
t ) (4.27)

X 2−
t = Ft X

2
t−1+Bt ut (4.28)

X 2
t =X 2−

t +K2(X
1
t −X 2−

t ) (4.29)
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4.4.2 Ackermann constraint

The concept behind the Ackermann constraint is that the movement of any
point is constrained by the Ackermann steering law. And its position cannot swing
due to the mechanical and geometrical constraints. Its position can be calculated
based on the geometrical constraint. Given the position of the rear wheel center in
the present and last instant, an angle can be computed. Ideally, this computed angle
should be equal to the averaged yaw angle at these two moments, as shown in Figure
4.11. If the difference between these two angles bigger than a given empirical thresh-
old, the estimated position in the center of the front wheels must be inaccurate to
some extent. Then correcting the position of the rear wheel center can achieve a
better estimation. Algorithm 1 describes the whole procedure in pseudo-code.

𝜃𝑡  

𝜃𝑡−1 

𝜃𝑎𝑣𝑒𝑎𝑔𝑒  

𝑃𝑟 𝑡 − 1  

𝑃𝑟
− 𝑡  

∆𝑃𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦  

𝜃𝑐𝑜𝑚𝑝𝑢𝑡𝑒  

+ 𝑃𝑟 𝑡  

Figure 4.11: Yaw angle relationship between two consecutive instants.

Data: P−f (t ), vehicle pose estimate from the localization EKF
Result: P f (t ), corrected pose estimate

1 while do
2 P−r (t ) = computeRearPose(P−f (t ));

3 ∆Pr (t ) = P−r (t )− Pr (t − 1);
4 θcom p u t e = atan2(∆Pr (t )[1],∆Pr (t )[0]);
5 θave ra g e = θt −θt−1;

6 ∆θ= fabs(θcom p u t e −θave ra g e);
7 if ∆θ >∆θthreshold then
8 Pr (t ) = ξ ∗ P−r (t )+ (1− ξ ) ∗ (Pr (t − 1)+∆Pod ome t r y);
9 P f (t ) = computeFrontPose(Pr (t ));

Algorithm 1: Position correction based on Ackermann constraint
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4.5 Summary

The focus of this chapter was on investigating the feature-based localization scheme
under the EKF framework for autonomous vehicles. First, several coordinate sys-
tems were defined. Then the EKF localization related parts were extended. Related
parts consisted of the map building, motion prediction, data association and mea-
surement update. Especially, in the data association section, a two-point matching
approach was proposed which can significantly improve the accuracy of localization.
And the two-point matching approach is one of innovative approaches first proposed
in this thesis. In order to obtain smooth trajectory, two trajectory smoothing meth-
ods were also proposed in the end. The smoothing method based on Ackermann
constraint is another original idea in this work.
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“To measure is to know. If you can not measure it, you

can not improve it”

Lord Kelvin

5
Evaluation and Results

A feature-based localization method was introduced in the previous chapter.
And this chapter will present its performance. The results show that it is compa-
rable to the most expensive and currently used system, Applanix POS LV 510. It
confirms the idea of using a cheaper localization solution to take the place of the
expensive counterpart. Numerous real on-road tests in urban scenarios proved the
effectiveness and robustness of the proposed localization scheme as well.

In the first section of this chapter, benchmark will be introduced, which consists
of recording datasets and defining the evaluation metrics. Then in the second sec-
tion, the evaluation results will be presented in terms of accuracy and precision. In
the accuracy aspect, it will present the positioning and heading errors compared with
the ground truth. In the precision aspect, the trajectory similarity will be tested. The
real on-road tests will be presented in the third section. Finally, a concise discussion
will be given in the fourth section.

5.1 Benchmark and Datasets

5.1.1 Benchmark

To evaluate the performance of the proposed localization algorithm, a bench-
mark (also referred to as the ground truth) should be defined or chosen at the begin-
ning. First, it is capable of providing quantitative results to evaluate the effectiveness
of an algorithm. Second, several existing algorithms can be compared when they are
evaluated under the same benchmark. Basically, there are three ways to obtain the
ground truth. One way relies on the highly accurate INS/GNSS systems (with dif-
ferential GPS or Real-Time Kinematic technique for correction) [85], such as the
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widely used Applanix POS LV [40, 44] or NovAtel SPAN-CPT [86, 87]. Unfortu-
nately, this method only works fine in open outdoor environments, but does not
work well in urban outdoor environments or indoor scenarios [85]. Another way
is implemented through human labeled reference data [46, 88, 89]. In the work
by [46], although the vehicle was equipped with the highly accurate DGPS/INS,
large estimation errors were still encountered due to the outages and the multipath
effects. So reference was still needed to be defined manually. The last method relies
on the simulation [85]. It is a convenient and low-cost way, as it allows researchers
to examine their algorithms under simplified or well defined conditions over and
over again at an early stage. However, simulation cannot fully approximate the real
situations, and thus it cannot substitute the real tests.

Besides, benchmarks must have higher degrees of precision than their compared
counterparts. Therefore, they are difficult to get owing to constraints from tech-
niques and cost. Even for the high accuracy Applanix, it is not so accurate as it ex-
pected to be. The specification reads that its RMS (Root Mean Square) error is forty
centimeter even during the GPS outage [32]. The real field tests, however, showed
that the lateral error for a single lap can be larger than 1 meters [4]. Actually ac-
cessing the quality of the Applanix is proven to be an uneasy task. Nonetheless, the
Applanix POS LV and the Velodyne LIDAR are still the most accurate units we can
rely on. Therefore, in this work, we got the ground truth by combining an Applanix
POS LV 510 and a Velodyne HDL 64E LIDAR scanner.

5.1.2 Datasets

To verify the correctness of the proposed algorithms and evaluate their perfor-
mance, we collected two datasets around our lab. As introduced before, these two
datasets were recorded by MadeInGermany with the Applanix POS LV 510 and the
Velodyne HDL 64E LIDAR. The first dataset is named after the street “Thielallee”,
where is often chosen by our group to demonstrate the autonomous driving. This
test site includes straight sections and U-turns, as shown in Figure 5.1a. The dataset
is a 3 minutes long log file, covering 1.3 km trajectory. It recorded several driving
states: driving, waiting for traffic lights, or making way for other vehicles during per-
forming a U-turn. The second dataset is also named after the street “Englerallee”,
as shown in Figure 5.1b. This test site includes straight sections and two U-turns as
well. The dataset recorded a two and half lap trajectory. We also recorded a four lap
trajectory in this test site to evaluate the trajectory similarity, which will be intro-
duced in Section 5.2.4.

68



5.1 Benchmark and Datasets

(a) Thielallee test site10 (b) Englerallee test site11

Figure 5.1: Views of the test sites from Google Maps.

Some statistics on the pole-like features in both test sites are listed in Table 5.1.
The information includes the test sites’ length and number of features and their den-
sities. Density here refers to the number of features per meter. As it can be seen from
the densities, there is roughly one feature for every two meters spreading along the
streets. So these two areas are rich in pole-like features. They are quite suitable for
testing our localization algorithms.

Table 5.1: Map statistics on the test sites

Test site Length Pole-like features Density

(m) (Quantity) (1/m)

Thielallee 745 378 0.51

Englerallee 300 224 0.74

The number of features extracted from a full 360 degree scan (or one entire rota-

10Image created through Google Maps(Map data ©2016 GeoBasis-DE/BKG (©2009), Google)
11Image created through Google Maps(Map data ©2016 GeoBasis-DE/BKG (©2009), Google)
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tion of Velodyne) is summarized in Table 5.2. The same information is shown as a
boxplot in Figure 5.2. It can be seen that they have the same median value. But their
entire distributions are not the same. Actually, both the table and the figure do not
show any information about the distribution of a specific whole scan. The value is
unevenly distributed around the scan. When the scan directions point towards the
road directions, more features will be extracted, or else a few or none features are
detected. This is the reason why an entire scan rather than part of scan, like one
sixth, is chosen to perform the data association.

Table 5.2: Statistics on the number of features extracted from one entire scan

Minimum Maximum Median Mean

Thielallee 2 30 13 14

Englerallee 0 28 13 13
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Figure 5.2: The number of features extracted from one entire rotation of velodyne for
two datasets.

As introduced before, the features in the map also present some degree of uncer-
tainties, which contribute further errors to the estimation results. The uncertainties
are measured by the size of error ellipses. They are presented in two ways. First,
statistical results are presented in Table 5.3. The semi-major axes and semi-minor
axes of the uncertainty ellipses represent one standard deviation from their means.
It can be seen that the longest semi-major axis is more than 60 cm and the longest
semi-minor axis is more than 30 cm. Even the mean error is quite large. Second,
the positional uncertainties are also depicted in Figure 5.3 for the Thielallee dataset
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and Figure 5.5 for the Englerallee dataset based on the LOG maps (see section 4.3.1),
Figure 5.4 and 5.6 based on the FIS maps (also see section 4.3.1). Since there is no
uncertainty information available for features in the FIS map, all the features are
assigned the same uncertainty value, 50 cm for the semi-major axes and 15 cm for
semi-minor axes. It can be seen that the features are not evenly distributed, includ-
ing both sparse and dense areas. The sizes of ellipses are also different from area to
area. All of these characteristics lead to changing localization performance.

Table 5.3: Statistics on the uncertainty ellipses of the LOG Maps for two datasets, defined
by a semi-major axis a and a semi-minor axis b .

Thielallee Englerallee

a (cm) b (cm) a (cm) b (cm)

Mean 27 13 35 16

Median 27 13 36 17

Maximum 69 31 66 37

Minimum 5 1 4 0

5.1.3 Evaluation Metrics

For evaluating the positioning performance, several metrics were adopted, such
as the along track error (ATE), the cross-track error (XTE), the longitudinal error,
the lateral error and so on. However, they are not equivalent, as different metrics
focus on different properties. The along track error is employed to calculate the
error in the intended direction, and it is a projected distance. The value is positive
when the error is along the intended direction, and otherwise negative. The cross-
track error calculates the distance from the estimated position to a line formed by
its nearest way-points in the intended direction. It measures how far the estimated
position drifts away from the left or right of the intended course. This metric is
widely used in the GPS associated navigation scenarios. The longitudinal and lateral
error are reported with regard to the ground truth. Longitudinal refers to forward
and backward of the vehicle’s moving direction and lateral refers to left and right.
Such far, evaluating the along track error and the cross track error needs to use two
way-points to determine the intended direction. For the longitudinal and lateral
error, they are difficult to calculate as the road is not always straight and spreading
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Figure 5.3: Overview of the LOG map for the Thielallee dataset. The red line is the
trajectory. The black ellipses present three standard deviation of their means.
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Figure 5.4: Overview of the FIS map for the Thielallee dataset. The red line is the
trajectory. The black ellipses present three standard deviation of their means.
All the features are assigned the same uncertainty value due to lack of data.
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Figure 5.5: Overview of the LOG map for the Englerallee dataset. The red line is the
trajectory. The black ellipses present three standard deviation of their means.
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Figure 5.6: Overview of the FIS map for the Englerallee dataset. The red line is the
trajectory. The black ellipses present three standard deviation of their means.
All the features are assigned the same uncertainty value due to lack of data.
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in one direction. And for safety reason, the localization error in the lateral direction
is more important than in the longitudinal direction as the lane width is narrower
than its length. Therefore, we introduced the dubbed direct-track error (DTE) in this
work. We define the direct-track error as the distance from the estimated position
to a line formed by the ground-truth position and the yaw angle of the vehicle, as
depicted in Figure 5.7. In spirit, the direct-track error defined here is similar to the
cross-track error.

y

xg

(xo, yo)

y= tanθ (x-xo) + yo

(xe, ye)

Figure 5.7: Illustration of the direct-track error. Here (xe , ye ) is the estimated vehicle
position. (xo , yo , ) and θ are vehicle’s ground truth position and heading. These
two parameters can be expressed by a line passing through (xo , yo , ) with the
slope t anθ. Ld is the direct-track error.

Another important metric is the deviation from the ground-truth heading, or
the heading estimation error, as the heading plays more important role in the pose
estimation. First, an error existed in the heading estimation can contribute error to
the pose estimation. Second, a big heading estimation error can lead to failure during
the data association stage or loop closure stage. Thus, we employ both the position-
ing errors and the heading estimation error to evaluate the localization performance
of the algorithm.
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5.2 Experimental Results

The experimental results are presented in this section and the quantitative results
are presented in the beginning. With such results, we can get a better understanding
of the localization performance. The performance is evaluated in terms of accuracy
and precision. To evaluate their accuracies, two kinds of errors, the positioning
estimation errors and the heading estimation errors, are calculated. The estimation
errors are calculated at each time step as the autonomous vehicle is a high mobility
robot and for safety reasons, it needs to know its position in real-time. The interval
between two consecutive time steps is equal to that of wheel speed trigger events,
around 0.01 seconds. Therefore, many charts shown below put the time step on their
horizontal axes or x-axes, that is, the estimation errors over time step are presented.
The positioning estimation errors include the lateral error, the longitudinal error
and previously dubbed direct track error. However, such errors are presented only
for the purposes of reference as the ground truth is also not precise. To evaluate
their precision, the method for measuring trajectory similarity is employed.

Table 5.4: Comparison of RMS errors for two datasets, measured in centimeters

ATE XTE Lateral Longitudinal DTE

Thielallee
LOG Map 15.95 19.20 19.54 15.52 20.94

FIS Map 101.59 87.45 106.23 81.65 104.43

Englerallee
LOG Map 55.79 47.22 45.47 57.22 51.73

FIS Map 98.19 103.80 117.70 81.02 112.98

Table 5.5: Comparison of heading errors for two datasets

Mean Std.dev. RMS

Thielallee
LOG Map 0.04◦ 0.01◦ 0.011◦

FIS Map 0.14◦ 0.29◦ 0.33◦

Englerallee
LOG Map −0.22◦ 0.34◦ 0.41◦

FIS Map −0.27◦ 0.26◦ 0.38◦

Before starting new subsections, some results are first summarized in Table 5.4
and 5.5, which were obtained by playing the log files over 50 times. The RMS er-
rors for positioning estimation are presented in Table 5.4. The performance for the
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Thielallee dataset is much better than that of the Englerallee dataset as the Engler-
allee dataset includes two and half rounds. Although during data recording stage,
the human driver was trying to keep two rounds with the same trajectories, the Ap-
planix POS LV still showed big discrepancies between two rounds. These discrep-
ancies can be a few meters, as obtained from the empirical data. Thus, for multiple
rounds trajectory, another metrics should be adopted rather than directly use the
Applanix results as reference. Nonetheless, it still maintains the error levels at a
comparable order of magnitude as the former dataset. For the heading estimation
error, the evaluation for the Thielallee dataset also has better results.

As introduced in the previous section, two datasets are used to evaluate the per-
formance of the proposed algorithm. So the results for each dataset are shown sep-
arately. The following two subsections will show the results in figures which will
take up many pages. Due to page restrictions, for the same dataset, unless explicitly
point out, only the results based on the LOG map will be presented.

5.2.1 Thielallee Dataset

To begin with, Figure 5.8 and 5.9 show the comparisons of the estimated trajec-
tories with the Applanix reported trajectory. The blue line indicates the estimated
trajectory while the green line shows the estimated trajectory before smoothing.
And the red line represents the Applanix reported ground truth trajectory. It can
be seen that the estimated trajectories match well with the Applanix trajectory most
of the time, except the U-turn section. The reason is that the heading estimation er-
ror is bigger during performing U-turns. The bigger heading estimation errors lead
to big positioning errors. Then, to show how the positioning errors change, trajec-
tories are colored by the positioning errors in Figure 5.10. Finally, Figure 5.11 shows
the lateral and longitudinal errors in histogram form. It can be seen that these errors
are mainly concentrated within±40 cm of their ground truth. In some poor feature
areas, the performance is a little bit worse than this value but only exists in the tails
of the histograms.

The number of poles utilized to estimation may affect the performance of our
tests. As can be expected, the estimation accuracy depends to some extent on the
number of pole-like features. The direct track error versus the number of poles is
shown as a boxplot in Figure 5.12. The estimation errors are plotted as a function of
the number of poles for the Thielallee dataset. The matched poles varied between
3 and 27. It can be seen that as the number of poles increases, the error has a trend
toward decreasing. However, this trend is not so dramatic because the accuracy is
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Figure 5.8: Comparison of trajectories for the Thielallee dataset by using the LOG
map. The red line represents the Applanix reported ground truth trajectory.
The blue line indicates the estimated one and the green line shows the estimated
trajectory before smoothing. And the trajectory estimated by dead reckoning
is colored black. Two important sections are zoomed in with different zoom
factors to highlight details.
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Figure 5.9: Comparison of trajectories for the Thielallee dataset by using the FIS map.
The red line represents the Applanix reported ground truth trajectory. The
blue line indicates the estimated one and the green line shows the estimated
trajectory before smoothing. And the trajectory estimated by dead reckoning
is colored black. Two important sections are zoomed in with different zoom
factors to highlight details.
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Figure 5.10: Trajectories colored by the positioning errors for the Thielallee dataset.
In (a), for the direct-track error , the darker the red, the bigger the error. In
(b), for the lateral error, the darker the blue, the bigger the error. In (c), for the
longitudinal error, the darker the red, the bigger the error.
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Figure 5.11: Histograms of lateral and longitudinal error for the Thielallee dataset. It
can be seen that these two errors are mainly concentrated within ±40 cm of
their ground truth.

also affected by other reasons, such as the feature uncertainties in the prior map.
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Figure 5.12: Boxplot of the direct track error versus the number of poles for the
Thielallee dataset.

After evaluating the positioning performance, the heading estimation perfor-
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mance can be seen from Figure 5.13 to 5.15. In Figure 5.13, the estimated yaw an-
gle matches well with the ground truth counterpart. And their difference can be
seen from Figure 5.14. Most of the time, the error is within ±0.2 degrees, and the
worse parts happen when the vehicle makes sharp turns, like U-turns. Due to the
influence of the lag problem from the gyroscope, the estimation is smaller than the
Applanix value at the beginning of the sharp turns. The same results are also shown
in histogram form, as demonstrated in Figure 5.15. The histogram shows that most
values lie within 2 sigmas, ±0.2 degrees. Therefore, the heading estimation is quite
accurate.
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Figure 5.13: Comparison of estimated yaw angle against the ground truth. The esti-
mated value matches well with the ground truth. There is no distinct discrep-
ancy from an overall perspective.
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Figure 5.14: The heading estimation error over time for the Thielallee dataset. Though
under the worse case, the deviation is bigger than 0.4 degrees, such case is very
rare. Most frequently, the estimated errors are within ± 0.2 degrees.
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Figure 5.15: Histogram of the heading estimation error for the Thielallee dataset. The
red dash line here is employed to fit the histogram. It indicates that the error
follows the Gaussian distribution. Knowing the distribution and its related
parameters, it can be clearly seen that over 96% of values are concentrated
within ±0.3 of the ground truth.

5.2.2 Englerallee Dataset

For the Englerallee dataset, the evaluation process is the same as that of the
Thielallee dataset. The comparison of the estimated trajectories with the Applanix
reported ground truth can be seen in Figure 5.16 and 5.17. And the trajectories are
colored by the positioning errors in Figure 5.18. It can be seen that the worse per-
formance also happened when the vehicle performed U-turns. Figure 5.19 shows
the lateral and longitudinal errors in histogram form. Comparison of Figure 5.22
and Figure 5.21 shows that the heading estimation follows a similar pattern. It per-
forms badly when the vehicle makes U-turns. Apart from this, it achieves as good
performance as the former dataset, i.e., it also stays within ±0.5 degrees. By com-
parison, the performance is not as good as that of the Thielallee dataset, because the
Englerallee dataset has two laps and the GPS values for the same position are dif-
ferent. Actually, the discrepancy for two laps is quite large. This, on the one hand,
increased the uncertainties of features’ positions upon creating the feature maps. On
the other hand, here directly taking the uncorrected value as the ground truth is not a
suitable reference. To achieve better results, maybe in the future the corrected value
should be used as the ground truth, such as using post-processing results. Besides,
for a multi-lap trajectory, assessing its repeatability is a good choice [90].
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Figure 5.16: Comparison of trajectories for the Englerallee dataset by using the LOG
map. The red line represents the Applanix reported ground truth trajectory.
The blue line indicates the estimated one and the green line shows the esti-
mated trajectory before smoothing. And the trajectory estimated by dead reck-
oning is colored black. Two important sections are zoomed in with different
zoom factors to highlight details.
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Figure 5.17: Comparison of trajectories for the Englerallee dataset by using the FIS
map. The red line represents the Applanix reported ground truth trajectory.
The blue line indicates the estimated one and the green line shows the esti-
mated trajectory before smoothing. And the trajectory estimated by dead reck-
oning is colored black. Two important sections are zoomed in with different
zoom factors to highlight details.
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Figure 5.18: Trajectories colored by the positioning errors for the Englerallee dataset.
In (a), for the direct-track error, the darker the red, the bigger the error. In (b),
for the lateral error, the darker the blue, the bigger the error. In (c), for the
longitudinal error, the darker the red or the blue, the bigger the error.
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Figure 5.19: Histograms of lateral and longitudinal error for the Englerallee dataset.
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Figure 5.20: Boxplot of the direct track error versus the number of poles for the En-
glerallee dataset.
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Figure 5.21: Comparison of estimated yaw angle against the ground truth. The esti-
mated value matches well with the ground truth. There is no distinct disparity
from an overall perspective. And the sharp changes of angle indicate U-turns
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Figure 5.22: The heading estimation error over time for the Englerallee dataset. If com-
pare this figure with Figure 5.21, it can be clearly seen that the performance is
quite bad when the vehicle performs U-turns. Except that the errors almost
stay with ±0.5 degrees.
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Figure 5.23: Histogram of the heading estimation error for the Englerallee dataset.
The estimation error follows Gaussian distribution. About 99.7% of all errors
lie with ±1 degrees.
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5.2.3 Trajectory Smoothing

As introduced in the previous chapter, it is difficult to get very smooth trajecto-
ries by using only one EKF. Two schemes are employed. Adding another EKF, here
dubbed as the double EKF scheme, is the main method. The other one is based on
the Ackermann constraint. The performance is shown in Figure 5.24 and 5.25. As
can be seen, the trajectories have been greatly smoothed via these two methods. And
the Ackermann constraint scheme gets better performance at the end of U-turns, as
the trajectories are even straighter.
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Figure 5.24: Trajectory smoothing based on the double EKF scheme.
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Figure 5.25: Trajectory smoothing based on the Ackermann constraint scheme.
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5.2.4 Trajectory Similarity Measure

The accuracy of Applanix results is limited and the reported value has dramatic
offset, sometimes up to several meters. Under such circumstance, directly compar-
ing the estimation with the Applanix results does not make any sense. Therefore,
extra metrics should be employed. Here the trajectory similarity measure is pro-
posed, which is similar to reproducible measure [90] or precision measurement. The
essence of the trajectory similarity measure is that the localization algorithm ideally
should gain the same estimation when the vehicle travels through the same posi-
tion. Trajectory similarity measures have been intensively studied in the commu-
nity [91, 92]. Several popular measures were proposed, including Euclidean distance
measure, Dynamic Time Warping (DTW) based, Edit distance based and longest
common subsequence based measures [92]. In this work, the Dynamic Time Warp-
ing based measure is used.

To test the trajectory similarity, an extra dataset was recorded in the test area
of Englerallee. The test driver was trying to drive on the same route on all four
laps. For each lap, the starting and stopping position were almost in the same po-
sition, within 10 cm uncertainties. The Applanix POS LV reported trajectory and
the estimated trajectory are shown in the Figure 5.26. As it can be seen that the es-
timated trajectory has higher similarity than the Applanix reported one. Especially
at the starting and ending position, Applanix had over 1 meters drift for one lap.
The results of the trajectory similarity measure based on the Dynamic Time Warp-
ing method are given in Table 5.6. Smaller numbers mean higher similarity, as the
DTW method calculates the minimum overall distance between two laps. So it also
has unit, here in meters. The first lap is chosen as the reference trajectory. The three
remaining laps are compared with that of the reference. According to the results, we
can safely conclude that the estimated trajectory has higher similarity than the one
reported in Applanix.

Table 5.6: Comparison of the trajectory similarity between the estimated and the
Applanix reported trajectory. T1 to T4 means the first to the fourth lap.
T1/T2(also T3 and T4) means the comparison between the first and the other
three laps.

T1/T2 T1/T3 T1/T4

Estimated 689.39 m 637.47 m 882.88 m

Applanix 866.54 m 956.56 m 1462.18 m
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Figure 5.26: Trajectory similarity measure in the test area of Englerallee. Four laps
were driven in the test area, starting and stopping in the same position for all
laps. It can be seen that the estimated trajectory has higher similarity than
the Applanix reported one. Especially at the starting and ending position,
Applanix had over 1 meters drift for one lap.
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5.2.5 Execution Times

For autonomous vehicles, the higher the data output rate the localization unit
provides, the safer the vehicle drives and the smoother the controller works. In this
work, the data output rate is around 100 Hz, which is the same as that of the speed
sensors. For a real-time application, this means the algorithm should be executed
within 10 ms. The most time consuming part of this work is the localization and
visualization section. The localization section consists of the feature matching and
two-point localization. The execution time of this section is positively correlated
with the number of detected features. Figure 5.27 shows the relationship that as the
number of poles increases, the related execution time increase as well. However,
the longest execution time is still shorter than 0.3 ms, which is far less than 10 ms.
As for visualization section, the average execution time is about 0.19 ms. Even the
longest time is shorter than 6 ms. Thus, the proposed algorithm can be executed
in real-time. Please note that all these results were obtained on an Intel i7 4910MQ
mobile workstation.
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Figure 5.27: Boxplot of the execution time versus the number of poles.

5.3 Real On-Road Tests

To evaluate the proposed method in real urban scenarios, many field tests have
been conducted in the test areas of Thielallee and Englerallee (see Figure 5.28). Using
previously introduced localization method, the vehicle was driven autonomously on
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the roads with minimal human intervention. And it drove along with other traffic
participants. The interventions occurred when we had to pause the vehicle in case
of heavy traffic, while making U-turns. But the necessary interventions didn’t have
much influence on the localization performance.

Figure 5.28: Real road autonomous test in the test area of Englerallee.

The real on-road tests did validate the effectiveness of the proposed localization
method. And they achieved the same order of accuracy and precision as the evalua-
tion based on datasets. For instance, the localization method can get similar trajecto-
ries for all laps. That means the proposed localization method has high repeatability.
In comparison to the Applanix POS LV, our localization method is more accurate
and precise. Even when Real Time Kinematic (RTK) correction is available, the Ap-
planix sometimes still presents up to several meters drift. In contrast, the proposed
method presents much lower uncertainty in position.

Besides, maps created based on the online data provided by the FIS-Broker (see
section 4.3.1) were tested in the previously mentioned test areas as well. Although
such maps are less accurate than those created through the log files of the test drive,
they are accurate enough for supporting autonomous driving. The main problem
for these maps is that the uncertainty of each feature is different. The data in some
areas is much more accurate than other areas. As a result, the localization provides
much smoother results in areas with much accurate data. However, this way has its
superior advantages, which arrows to create a city scale map in a cheaper, easier and
faster way.

94



5.4 Discussion

5.4 Discussion

The results presented in the previous section have successfully evaluated the ef-
fectiveness of the proposed approach to localize the test autonomous vehicle by em-
ploying pole-like features. The proposed algorithm can deliver an RMS error in
centimeter range. And the RMS accuracy of heading estimation errors is within
±0.4 degree.

However, this method is not without problems. First, the Applanix cannot pro-
vide consistent value when driving around the same place several times. The ground
truth is, therefore, not consistent for direct comparison. That is why the perfor-
mance on the Englerallee dataset is worse. Second, the Velodyne feature extraction
algorithm is not robust enough to get rid of surplus features, like pedestrians and
planes of moving vehicles. These wrong features can add a burden to the calculation
and deteriorate the performance.

To improve the performance, the existing problems should be solved. First, the
corrected ground truth rather than raw data from Applanix should be utilized for
both mapping and evaluation. Second, a more robust feature extraction algorithm
is needed in the future. Or adding a camera for assisting the feature detection and
extraction is another way to go.

5.5 Summary

In this chapter, the performance of the proposed localization algorithm was pre-
sented. It confirmed the effectiveness of the approach. To do that, the benchmark
and datasets for accessing the performance were introduced in the beginning. Then,
evaluation results based on datasets and real on-road tests were provided. Finally, a
brief discussion was made.
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“Always look on the bright side of life.”

Monty Python

6
Conclusion and Future Work

Autonomous driving technology is one of the most promising technologies, at-
tracting intense research interest from both academia and industry. Fully autonomous
driving is within the realm of possibility. In the near future, autonomous driving
will allow people to have much safer and more convenient driving experience. Fol-
lowing this trend, the focus of this thesis is to solve the fundamental problem of
autonomous driving, localization. A feature-based localization method is proposed
with the aim of replacing the currently used expensive INS/GPS system, which is
four times more expensive than the vehicle. This method is based on the pre-built
feature maps and online detection and matching features for localization. The per-
formance of the proposed localization algorithm is evaluated through two datasets,
and real on-road tests as well. The results indicate that it is comparable to the expen-
sive system.

This chapter intends to finish the thesis by summarizing the previous chapters,
providing a retrospective view on localization, and giving an outlook on future
work.

6.1 Conclusion

As an outdoor wheeled robot, an autonomous vehicle should always have an ac-
curate knowledge of its pose within an environment. This is because any high-level
tasks that an autonomous vehicle performs need such knowledge. Thus, the main
target of this work has concentrated on the accurate localization for autonomous
vehicles by using fewer and cheaper or just on-board sensors to develop a robust al-
ternative to the most expensive currently used Applanix POS LV 510. In the first
two chapters of the thesis, the motivation and related work have been introduced,
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intending to help readers to have a better grasp of related areas. Especially, chap-
ter 2 presented an overview of state-of-the-art LIDAR-based localization approaches
for autonomous vehicles, reviewing the different sensor setups and experimental
results. These approaches highlighted the common practice in the community that
localizing autonomous vehicles heavily relies on the pre-built lane-level maps at high
levels of precision. Such maps are obtained from highly precise survey vehicles and
through off-line processes, such as GraphSLAM.

Sensors play important roles in enabling the capabilities of autonomous driving,
as they serve as eyes and ears to them. Therefore, sensor set-up was introduced in
chapter 3. The overall sensor set-up for our test vehicle was introduced first. Then
sensors used in this work were introduced thoroughly to some extent, especially
their application challenges encountered in this work.

Chapter 4 and chapter 5 are the main parts in this thesis. Chapter 4 proposed a
feature map based localization scheme under the EKF framework. It was involved
in defining several coordinates, constructing the feature map, modeling the motion
model and measurement update. The performance of the proposed approach was
presented in chapter 5. The results indicate that it is comparable to the most ex-
pensive and fundamental system equipped on the vehicle. Therefore, this thesis
contributes to strengthening the idea that it is possible to substitute the expensive
localization systems by cheaper ones.

6.2 Contributions

The main innovations and contributions of this thesis can be summarized in
three aspects.

(A) An innovative two-point localization scheme is proposed. It greatly mitigates
the influence of the wrong feature matching during the data association stage.
Thus, it gives much more precise estimation.

(B) A new trajectory smoothing method that is based on the Ackermann con-
straint is proposed. The proposed method can ensure much smoother trajec-
tories especially during U-turns.

(C) The idea of using online data to create feature maps is also evaluated in this
thesis and tested on the real roads. It is less accurate than the method of using
the log files to create feature map. But it can create city scale feature maps in a
more efficient and convenient way.
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6.3 Future Work

Although the proposed method is proven to be effective, there is still room for
improvements and refinements. For instance, to increase the accuracy of the local-
ization, one should look into improving the results of the reference platform. So a
couple of expected improvements are summarized as follows:

1. Better Reference System

Though Applanix POS LV 510 can produce more accurate location estimation
than other low cost solutions, it cannot provide consistent estimation. This leads
to two unexpected results. First, using the readings of Applanix as ground truth for
the purposes of comparison may not reflect the real performance of the proposed
approach. Second, building maps based on Applanix presents uncertainties, which
affects the performance of localization. Therefore, a correction work should be
done with the reference.

2. Robust Feature Detection Solution

Currently features are only extracted from 3D Velodyne point clouds. However,
the Velodyne feature extraction algorithm is not robust enough to get rid of surplus
features, like pedestrians and planes of moving vehicles. These surplus features can
add burden to the calculation and worsen the performance. Therefore, a more ro-
bust feature extraction algorithm is needed in the future. Maybe it is wise to resort
to computer vision for removing surplus features.

3. Smart Map Management

In the present work, each map consists of several hundred of features. In such
scale, map storage and management are straightforward. As the map size increases, a
naive map management algorithm turns out to be inefficient and an efficient method
is needed. For example, applying the binary tree is a good choice for map storage
and querying. Designing a dynamic map management algorithm is another way to
go. Such maps can maintain parts of maps in the memory according to the vehicle’s
location. In this approach, the vehicle can fulfill a city scale driving.
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A
Zusammenfassung

Aufgrund vielversprechender Vorteile werden autonome Fahrzeuge als die Zukunft
des Straßenverkehrs angesehen. Es ist zu erwarten, dass sie in absehbarer Zeit zum
Alltag gehören werden. Da autonome Fahrzeuge viel sicherer fahren als menschliche
Fahrer und deutlich weniger CO2-Emissionen erzeugen, werden sie zu einem neuen
Trend im akademischen und industriellen Bereich. Obwohl die damit verbunde-
nen Technologien seit Jahrzehnten erforscht und entwickelt wurden, müssen noch
einige Hindernisse überwunden werden. Eines dieser großen Hindernisse sind die
Kosten der erforderlichen Sensoren. Daher wäre die Verwendung von weniger teuren
Geräten eine langfristige und effektive Lösung.

Der Schwerpunkt dieser Dissertation liegt auf dem Entwurf und der Implemen-
tierung eines featurebasierten Lokalisierungsalgorithmus, der den teuersten Teil des
derzeitigen autonomen Testfahrzeugs, ein inertiales DGPS-Navigationssystem (Ap-
planix POS LV 510) robust ersetzen kann. Eine entscheidende Implementierung
verwendet, unter Zuhilfenahme von Velodyne LIDAR, Gyroskop, Raddrehzahlsen-
soren, den oft genutzten erweiterten Kalmanfilter (EKF), um das Fahrzeug zu lokalisieren.
Das Velodyne LIDAR wird verwendet, um pfahlartige Strukturen aus der zuvor
abgebildeten Umgebung zu extrahieren. Gyroskop und Raddrehzahlsensoren wer-
den verwendet, um eine relative Lokalisierung durchzuführen, die hauptsächlich
während der Bewegungsprädiktion des EKF verwendet wird. Ein Vorteil dieser
Methode ist, dass sie keine GPS-Informationen nach der Initialisierung benötigt,
wodurch sie genauer und robuster ist als eine GPS-Lösung. Die Leistungen des
vorgeschlagenen Lokalisierungsverfahrens werden durch zwei Datensätze evaluiert.
Die Ergebnisse zeigen, dass es mit dem INS / DGPS-System vergleichbar ist. Die
echten On-Road-Tests in städtischen Szenarien verifizierten auch die Wirksamkeit
und Robustheit des vorgeschlagenen Lokalisierungssystems.
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