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Abstract
We consider Riemannian manifolds which arise naturally as asymptotically flat initial data
sets in general relativity. We introduce a new evolution equation for hypersurfaces in such
manifolds where the speed is given by the reciprocal of the null mean curvature. This
PDE unites the theory of marginally trapped surfaces (MOTS) in Lorentzian spacetimes
with the study of inverse mean curvature flow in asymptotically flat Riemannian mani-
folds. A theory of weak solutions to this new flow is developed using level-set methods
and an appropriate variational principle. The key ingredient is the use of elliptic regu-
larisation, which amounts to solving an elliptic PDE which can be interpreted as Jang’s
equation [J] with a gradient regularisation term. As noted by Metzger [M], the assumption
of an appropriate sign on the mean curvature on the initial data set prevents solutions of
Jang’s equation from blowing up to negative infinity over marginally inner trapped sur-
faces (MITS) in the initial data set. For similar reasons, it is necessary to restrict to initial
data sets with non-negative mean curvature in this work. We then prove existence of a
weak solution of the flow under this curvature assumption. This new flow has a natu-
ral application as a variational-type approach to constructing MOTS, and and this work
also gives new insights into the theory of weak solutions of inverse mean curvature flow.

Zusammenfassung
Wir untersuchen Riemannsche Mannigfaltigkeiten, welche in natürlicher Weise als asymp-
totisch flache Anfangsdaten in der Allgemeinen Relativitätstheorie auftreten. Dazu führen
wir eine neue Evolutionsgleichung für Hyperflächen solcher Mannigfaltigkeiten ein. Hierbei
ist die Geschwindigkeit als die reziproke mittlere Krümmung in Richtung des Lichtkegels
gegeben. Diese partielle Differentialgleichung verbindet die Theorie der MOTS (engl.
“marginally outer trapped surfaces”) in Lorentzschen Raumzeiten mit dem Studium des in-
versen mittleren Krümmungsflusses in asymptotisch flachen Riemannschen Mannigfaltikeiten.
Mit Hilfe der Niveaumengenmethode und einer geeigneten Variationsformulierung entwick-
eln wir eine Theorie schwacher Lösungen für diesen Fluss. Der Kernpunkt dabei ist die Be-
nutzung der sog. elliptischen Regularisierung, welche das Problem auf das Lösen einer ellip-
tischen partiellen Differentialgleichung zurückführt. Diese kann als die Jangsche Gleichung
[J] mit einem Gradienten-Regularisierungsterm verstanden werden. Wie schon von Metzger
[M] bemerkt, verhindert die Annahme eines Vorzeichens an die mittlere Krümmung, dass
Lösungen der Jangschen Gleichung am Rand der MITS (engl. “marginally inner trapped
surfaces”) der Anfangsdaten nach minus Unendlich divergieren.

Aus ähnlichen Gründen ist es notwendig sich in diesem Kontext auf Anfangsdaten mit
nicht-negativer mittlerer Krümmung zu beschränken. Unter diesen Annahmen beweisen
wie die Existenz von schwachen Lösungen.

Wir skizzieren eine Anwendung dieses Flusses auf die Exisitenztheorie für MOTS, und
zeigen zudem, dass wenn eine schwache Lösung als Limes von Lösungen der regularisierten
Gleichung gewonnen wird, das Innere des Sprungregion durch glatte MOTS geblättert
wird.
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1 Introduction

In this work we introduce a new geometric evolution equation which unites the theory of
marginally outer trapped surfaces in Lorentzian spacetimes with the study of inverse mean
curvature flow in asymptotically flat Riemannian manifolds. In what follows we consider
an initial data set (Mn+1, g,K) that arises as an asymptotically flat, spacelike hypersurface
Mn+1 in a spacetime (Ln+2, h), with induced metric g and second fundamental form K.
Let ~n denote the future directed timelike unit normal vector field of M ⊂ L, and consider
a 2-sided hypersurface Σn ⊂ Mn+1 with globally defined outer unit normal vector field ν
in M . The mean curvature vector of Σ inside the spacetime L is then given by

~HΣ := Hν − P~n,

where H := divΣ(ν) denotes the mean curvature of Σ in M , and P := trΣK is the trace of
K over the tangent space of Σ.

The new initial value problem is then defined as follows. Given a smooth hypersurface
immersion F0 : Σ→M , the evolution of Σ0 = F0(Σ) by inverse null mean curvature is the
one-parameter family of smooth immersions F : Σ× [0, T )→M satisfying

∂F

∂t
(p, t) =

ν

H + P
(p, t), p ∈ Σ, t ≥ 0,

F (·, 0) = F0.
(∗)

The quantity H + P corresponds to the component of ~HΣt in the future null direction
l+ := ν+~n of Σt = F (·, t)(Σ), and we assume that (H +P )|

Σ0
> 0 so that (∗) is parabolic

and the surface Σt expands under the flow.
The aim of this thesis is to develop a theory of weak solutions of the classical flow (∗),

and outline some key geometric properties and applications of such solutions. We begin
with an informal discussion motivating the choice of this new flow, and then summarise
the main results in Section 1.2.

1.1 Background

The main motivation for this work is the theory of inverse mean curvature flow, which
corresponds to the special case K ≡ 0 of (∗). In particular, given a smooth immersion
F0 : Nn → Mn+1 of a hypersurface N0 = F0(Nn) in a Riemannian manifold Mn+1, the

1



2 1 Introduction

smooth family F : Nn× [0, T )→M of hypersurfaces Nt = F (·, t)(Nn) solves inverse mean
curvature flow if 

∂F

∂t
(p, t) =

ν

H
(p, t), p ∈ N, t ≥ 0,

F (·, 0) = F0.
(IMCF)

We make the additional assumption that H is positive, and therefore that (IMCF) is
parabolic.

Inverse mean curvature flow is characterised by the fundamental property that the area
of the evolving surface grows exponentially in time,

|Nt| = |N0|et/n. (1.1)

Interest in the PDE was first sparked by Geroch’s discovery [G] of the famous monotonicity
formula governing the evolution of the Hawking mass under inverse mean curvature flow.
In particular, the Hawking mass of a connected hypersurface in a manifold of non-negative
scalar curvature is non-decreasing along solutions of inverse mean curvature flow. This
yields a proof of the positive energy theorem for asymptotically flat 3-manifolds under the
assumption that the manifold admits a smooth global solution of inverse mean curvature
flow.

Jang and Wald [JW] showed that, when applied to an asymptotically flat 3-manifolds
containing a single outermost minimal sphere, a similar approach using smooth inverse
mean curvature flow and Geroch’s monotonicity formula provides a rigorous proof of the
so-called Riemannian Penrose Inequality.

In order to prove the general case of the Riemannian Penrose inequality, however, it
is necessary to establish the existence theory for generalised solutions of inverse mean
curvature flow. This program was carried out by Huisken and Ilmanen in [HI]. We note
that an independent proof of the Riemannian Penrose inequality - which uses different
techniques and which applies to the case of multiple horizons - was later provided by Bray
[Br].

A classical PDE analysis of inverse mean curvature flow was first carried out by Gerhardt
[Ge], who proved that the solution starting from any starshaped surface with positive mean
curvature will exist for all time and become round in the limit; see also Urbas [U]. Existence
and regularity relies on an upper bound on the mean curvature

sup
Nt

H ≤ C sup
N0

H · e−
t
n , C = C(sup

M
|Ric|), (1.2)

which is generated by the sign on the zero order term in the evolution

∂H

∂t
=

∆H

H2
− 2|DH|2

H3
− |A|

2

H
− Ric(ν, ν)

H
.

Huisken and Ilmanen [HI2] later characterised smoothness by the condtion that the mean
curvature remains bounded away from zero.
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Within the class of mean-convex surfaces, however, the solution of inverse mean curvature
flow will in general become singular in finite time. For example, starting from a thin torus
with positive mean curvature in R3, we have minNt H → 0 as t approaches some finite
singular time T <∞.1 At this point the classical description breaks down and it is in fact
clear that any appropriate weak definition of inverse mean curvature flow would need to
allow for a change of topology in order to continue the evolution in this example.

Motivated by observations of this kind, Huisken and Ilmanen [HI] put forward an al-
ternative level-set formulation of inverse mean curvature flow and a corresponding theory
of weak solutions. Given an initial surface N0 = ∂Σ0, they interpret the surfaces Nt as
level-sets of the scalar function u : M\Ω0 → R which maps each point x ∈ M\Ω0 to the
time t when x ∈ Nt. This transforms (IMCF) from a parabolic system to the following
degenerate elliptic partial differential equation for the scalar function u,

div

(
Du

|Du|

)
= |Du|. (?)

It follows from a direct computation that (?) is equivalent to (IMCF) wherever u is smooth
and |∇u| 6= 0. Furthermore, the level-set formulation inherently allows the evolving surface
to change topology by jumping instantly across a positive volume, ie. the level-sets of u
“jump” across regions where u is constant.

This level-set approach was inspired by work of Evans and Spruck [ES1] and Chen,
Giga and Goto [CGG], who independently developed a theory of weak solutions to mean
curvature flow using viscosity techniques. By contrast, however, Huisken and Ilmanen
define a locally Lipschitz function u on M to be a weak solutions of (?) if it satisfies a
certain minimisation principle with respect the the energy functional

Ju(v) =

∫
Ω

|∇v|+ v|∇u|, {u 6= v} ⊂ Ω ⊂⊂M. (1.3)

It is this variational principle that determines how and when the surfaces jump. Moreover,
at a heuristic level, this is the mechanism that can be seen to preserve the monotonicity
of the Hawking mass in the weak setting. The complete proof of the Geroch monotonicity
formula for the weak evolution is one of the most technical breakthroughs in [HI].

Carefully combining the classical argument with these new ideas, Huisken and Ilmanen
were able to establish the first rigorous proof of the Riemannian Penrose inequality in
General Relativity.

Subsequent (suprising) applications of Huisken and Ilmanen’s weak inverse mean curva-
ture flow were recently uncovered by Bray and Neves, and by Bray and Miao. In [BN], Bray
and Neves used the weak solution of inverse mean curvature flow to prove the Poincaré
conjecture for the class of three-manifolds with σ-invariant greater than that of RP3. In
[BM], Bray and Miao derive an upper bound for the capacity of a surface in Riemannian
3-manifolds of non-negative scalar curvature in terms of the area and Willmore functional

1The minimum is attained on the inner hole of torus.



4 1 Introduction

of the surface.

The motivation for introducing the genearlised inverse mean curvature type flow (∗)
follows from the theory of marginally outer trapped surfaces in general relativity. Given
a 2-sided hypersurface Σn in the initial data set (Mn+1, K, g), the null mean curvature or
null expansion θ+

Σ of Σ with respect to its future directed outward null vector field l+ is
given by

θ+
Σ := HΣ + PΣ.

Physically this outward null expansion measures the divergence of the outward directed
light rays emanating from Σ. If θ+ vanishes on all of Σ, then Σ is called a marginally outer
trapped surface, or MOTS for short. MOTS play the role of apparent horizons, or quasi-
local black hole boundaries in general relativity, and are particularly useful for numerically
modelling the dynamics and evolution of black holes.

From a mathematical point of view, MOTS are the Lorentzian analogue of minimal
surfaces. This is especially true with regard to stability, since many results for stable
minimal surfaces carry over directly to their Lorentzian counterpart. However, since MOTS
are not stationary solutions of an elliptic variational problem, the direct method of the
calculus of variations is not a viable approach to the existence theory. One successful
approach to proving existence of MOTS comes from studying the blow-up set of solutions
of Jang’s equation (

gij − ∇
iu∇ju

|∇u|2 + 1

)(
∇i∇ju√
|∇u|2 + 1

+Kij

)
= 0, (1.4)

which was an essential ingredient in the Schoen-Yau proof of the positive mass theorem
[SY]2. In their analysis, Shoen and Yau showed that the boundary of the blow-up set of
Jang’s equation consists of marginally trapped surfaces. Building upon this work, exis-
tence of MOTS in compact data sets with two boundary components, such that the inner
boundary is (outer) trapped and the outer boundary is (outer) untrapped, has been proven
by Andersson and Metzger [AM], and subsequently by Eichmair [E], using a different ap-
proach. Despite the lack of a variational principle, a “minimising” property arises naturally
for the MOTS constructed via the Perron method for Jang’s equation in [E]. Similarly, we
see below that Jang’s equation also plays a key role in the existence theory for the evolu-
tion by inverse null mean curvature, and that the solution Σt also satisfies a minimising
property at each time t.

As a final remark on the motivation for this work, we note that the spacetime Penrose
Inequality generalizes the Riemannian Penrose Inequality to the Lorentzian codimension-
2 setting. It was noted in [HI] that the Hawking mass is also monotone under smooth

2The equation proposed by Jang in [J] and studied by Schoen and Yau in [SY] is actually (1.4) with
respect to the tensor −K, but we will refer to (1.4) as Jang’s equation since this is the equation that
is relevant to our work below.
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inverse mean curvature flow of spacelike 2-surfaces in a Lorentzian 4-manifold, thus in
theory it may be possible to generalize the approach of Huisken and Ilmanen in order to
prove the full Penrose Conjecture. However additional analytic difficulties arise in this
case since the embedding functions describing the flow along the inverse mean curvature
vector satisfy a backward-forward parabolic system. There is no general theory which
guarantees local existence of solutions to such systems, so any successful approach would
require a clever utilisation of the special geometric properties of this flow. On the other
hand, the evolution by inverse null mean curvature (∗) is a generalisation of (IMCF) that
incorporates the extrinsic curvature K of M in the spacetime, whilst being an analytically
tractable problem. It is therefore hoped that this flow can be used to gain insight into the
full Penrose Inequality in general relativity.

1.2 Overview of main results

Smooth evolution by inverse null mean curvature. At the curvature level, the flow
by inverse null mean curvature leads to a reaction-diffusion system – typical of nonlinear
heat flows – controlling the evolution of the null mean curvature. We establish the following
interior estimate for the null mean curvature under the smooth evolution.

Lemma 1.1 (Interior null mean curvature estimate) Let Σt be a smooth solution of (∗)
for 0 ≤ s ≤ t. Then for each p ∈ Σt

H(p, t) + P (p, t) ≤ max ((H + P )R, C) , (1.5)

where (H + P )R is the maximum of H + P on the parabolic boundary of Σt ∩ BR(p), and
C = C(n,R, ‖K‖C0 , ‖K‖C1) = o (R−1) as R→∞.

This estimate is the key to existence and regularity of weak solutions.

The level-set flow and elliptic regularisation. Rather than defining the evolving
surfaces as smooth immersions, they can alternatively be represented as level-sets

Σt = ∂{x ∈M\Ω0

∣∣ u(x) < t} (1.6)

of a scalar function u : M\Ω0 → R, for some open, bounded set Ω0 ⊂ Mn such that
Σ0 = ∂Ω0. Then whenever u is smooth and ∇u 6= 0, (∗) is equivalent to the following
degenerate elliptic scalar PDE

div

(
∇u
|∇u|

)
+

(
gij − ∇

iu∇ju

|∇u|2

)
Kij = |∇u|, (∗∗)

where the left hand side is the null mean curvature θ+
Σt

of the surface Σt and the right hand
side is the inverse speed of the family of level-sets. Since |∇u| = H + P , (1.5) suggests
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that it is reasonable to expect locally Lipschitz solutions of (∗∗). However, in order for
u(x) to correspond to the time t when the evolving surface passes through the point x, the
function u should be monotone non-decreasing, which implies in particular that the zero
function must be a subsolution barrier for the Dirichlet problem (∗∗). For this reason, it
only makes sense to study (∗∗) on initial data sets (M, g,K) satisfying trMK ≥ 0.

In order to solve (∗∗), we employ the method of elliptic regularisation, and study solutions
of the following strictly elliptic equation

(∗∗)ε div

(
∇uε√

|∇uε|2 + ε2

)
+

(
gij − ∇

iuε∇juε
|∇uε|2 + ε2

)
Kij =

√
|∇uε|2 + ε2.

A notable feature of elliptic regularisation is that the downward translating graph

Σ̃ε
t := graph

(uε
ε
− t

ε

)
(1.7)

solves the classical evolution (∗) in the product manifold (M × R, ḡ = g ⊕ dz2) where we
extend the given data K to be parallel in the z-direction. Therefore elliptic regularisation
transforms the singular level-set formulation (∗∗) in Mn+1 into a smooth, non-compact
evolution one dimension higher in Mn+1 × R.

Furthermore, this elliptic regularisation problem sheds new light on the study of Jang’s
equation (1.4), since a rescaling of (∗∗)ε can be interpreted as Jang’s equation (1.4) with
a gradient regularisation term. We find that in order to solve (∗∗)ε, it is in fact necessary
to restrict to initial data sets satisfying trMK ≥ 0. In Section 3 we compare this mean
curvature condition for the gradient regularised Jang’s equation, to the corresponding
properties of capilarity-regularised solutions of Jang’s equation, which were analysed in
detail by Scheon and Yau in [SY].

Proposition 1.2 Let trMK ≥ 0. Then there exists a smooth solution uε of (∗∗)ε such
that uε possesses a uniform Lipschitz estimate on each compact subset of M\Ω0.

The Weak Solution. A variational principle is used to define weak solutions to (∗∗).
This is motivated by the observation that freezing |∇u|− trΣtK = |∇u|− (gij− νiΣtν

j
Σt

)Kij

and treating it as a bulk term in the energy functional

J A
u,ν(v) :=

∫
A

|∇v|+ v
(
|∇u| −

(
gij − νiνj

)
Kij

)
, (1.8)

allows one to interpret (∗∗) as the Euler-Lagrange equation of (1.8). The special case
K ≡ 0 corresponds to the functional employed by Huisken and Ilmanen [HI] to define

weak solutions to inverse mean curvature flow. Here in the general case, ν =
∇u
|∇u|

is

the unit normal to the surfaces Σt defined by (1.6). However, since
∇u
|∇u|

is undefined on
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plateaus of the (locally Lipschitz) function u, that is, in jump regions, the concept of weak
solution in this case requires an appropriate notion of normal vector in the jump region.

A suitable vector field can be constructed by taking an appropriate limit of the smooth
translating solution Σ̃ε

t of (∗), where Σ̃ε
t was defined by (1.7). The level-set function de-

scribing Σ̃ε
t is defined by

Uε(x, z) := uε(x)− εz, (x, z) ∈ (M\Ω0)× R,

since Σ̃ε
t = {Uε = t}. The uniform local Lipschitz estimates for uε means that there exists

a locally Lipschitz function u and a subsequence εi such that

ui → u, (1.9)

locally uniformly on M\Ω0. Then setting

U(x, z) := u(x), (1.10)

we obtain that Ui → U locally uniformly on (M\Ω0) × R. Since the null mean curvature
of the surfaces Σ̃i

t = {Ui = t} is uniformly bounded, results of measure theory allow us to
control these surfaces in C1,α. At a jump time t0 of U , this approach then leads to a foliation
of the interior K̃t0 of the jump region {U = t0} = {u = t0} × R by C1,α hypersurfaces

Σ̃X0 , X0 ∈ K̃t0 , (1.11)

with corresponding C0,α unit normal vector field ν. Furthermore, this vector field ν is
translation invariant in the R direction, since each jump region hypersurface Σ̃ is either
(part of) a vertical cylinder, or is a graph over an open subset of K̃t0 in the stack

Σ̃ + z en+2, z ∈ R, (1.12)

of vertical translates of Σ̃. Projecting the normal vector field ν of this hypersurface foliation
to TM produces a vector field that extends∇u/|∇u| as a calibration across the jump region
of u in M\Ω0. However, since in general information will be lost by projecting the normal
vector field ν of the graphical hypersurfaces (1.12) to TM , we study a formulation of
weak solutions of (∗∗) one dimension higher in M × R, in terms of a translation invariant
vector field ν ∈ C0,α

loc (T (M\Ω0)×R) and a translation invariant function U(x, z) = u(x) ∈
C0,1

loc (M × R) satisfying
J A
U,ν(U) ≤ J A

U,ν(V ), (1.13)

for every V ∈ C0,1
loc (M × R) such that {V 6= U} ⊂⊂ (M\Ω̄0)× R, and any compact set A

containing {V 6= U}, where

JU,ν(V ) = J A
U,ν(V ) :=

∫
A

|∇̄V |+ V
(
|∇̄U | − (ḡij − νiνj)Kij

)
. (1.14)

The variational principle (1.13) has an equivalent formulation in terms of individual
level-sets (which holds for general U and ν that are not necessarily translation invariant
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like we demand for the weak solution). Namely, let F̃ ⊂ (M\Ω0)×R be a Caccioppoli set
with reduced boundary ∂∗F̃ , and consider the functional

JU,ν(F̃ ) = J A
U,ν(F̃ ) := |∂∗F̃ ∩ A| −

∫
F̃∩A
|∇̄U | − (ḡij − νiνj)Kijdx. (1.15)

The relationship between the two formulations can be explained as follows. The locally
Lipschitz function U satisfies (1.13) on an open set Ω if and only if the open set Et :=
{U < t} minimises (1.15) in Ω for each t. That is, if

JU,ν(Et) ≤ JU,ν(F̃ ), (1.16)

for each t and each F̃ that differs from Et on a set compactly contained in Ω.

In Section 7 we show that each jump region hypersurface (1.11) forms part of the
boundary of a Caccioppoli set that minimises (1.15). With this in mind, we call the
pair (U, ν) a weak solution of (∗∗) with initial condition E0 if U ∈ C0,1

loc (M × R) and
ν ∈ C0,α

loc (T (M\E0)× R) satisfy

1. U(x, z) = u(x) is translation invariant in the vertical direction.

2. The set Et = {U < t} minimises JU,ν in (M\E0)× R for each t > 0. At jump times
t0, each point X0 = (x0, z0) in the interior K̃t0 of the jump region {U = t0} lies in
the boundary of a Caccioppoli set EX0 that minimises JU,ν in K̃t0 .

3. ν is the translation invariant, unit vector field normal to ∂Et at each point X =
(x, z) ∈ ∂Et, and normal to ∂EX0 at each point X = (x, z) ∈ ∂EX0 at a jump time
t0.

The following weak existence theorem is the main result of this thesis.

Theorem 1.3 Let (M, g,K) be a complete, connected, asymptotically flat initial data
set satisfying trMK ≥ 0, and let E0 be any precompact, smooth open set in M . Then there
exists a weak solution of (∗∗) in M × R with initial condition E0.

Given a weak solution (U(x, z) = u(x), ν) on M × R, the pair (u, νM := ν|
TM

) then
satisfy

Ju,νM (u) ≤ Ju,νM (v) (1.17)

on M\E0, for every v ∈ C0,1
loc (M) such that {v 6= u} ⊂⊂ M\E0, where Ju,νM is defined by

(1.8).

The minimisation principle (1.16) also leads to a geometric characterisation of the jump
regions. In particular, if (U(x, z) := u(x), ν) is a weak solution of (∗∗), (1.16) implies that
the sets Et := {u < t} are outward optimising (with respect to νM := ν

∣∣
TM

) for each t > 0,
in the sense that

|∂∗Et| ≤ |∂∗F |+
∫
F\Et

(gij − νiMν
j
M)Kij (1.18)
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for any set F containing Et such that F\Et ⊂⊂M . That is, each Et minimises “area plus
bulk energy P” on the outside. This leads to the following heuristic interpretation of the
flow: Et evolves by inverse null mean curvature until a set E ′t appears that contains Et
and gives equality in (1.18), then Et jumps to the “outermost” such set E ′t and the flow
continues.

Furthermore, the surfaces Σ̃X0 from (1.11) foliating the jump region K̃t0 minimise area
plus bulk energy P , and therefore satisfy a stronger variational principle than (1.16).

Proposition 1.4 The surfaces (1.11) foliating the interior K̃t0 of the jump region {u =
t0} × R at a jump time t0 consist of vertical cylinders and stacks of graphs (5.6), where
each is a smooth MOTS in K̃t0 (with respect to the normal vector ν).

Since the surfaces Σ̃t := ∂{U < t} and Σ̃+
t := ∂{U > t} bound Caccioppoli sets that

minimise JU,ν in (M\E0)×R, together with Proposition 1.4, this implies that elliptic regu-
larisation produces a family of surfaces in (M\E0)×R such that each bounds a Caccioppoli
set minimising JU,ν . The pair (u, ν

M
:= ν|

TM
) also have the following interpretation in

M\E0. Namely, they satisfy

|ν
M
| ≤ 1, ∇u · ν

M
= |∇u| a.e.,∫

Ω

∇ξ · ν
M

+ ξ
(
|∇u| −

(
gij − νi

M
νj
M

)
Kij

)
= 0 for all ξ ∈ C1

c (Ω) (1.19)

Applications of the flow. The evolution by inverse null mean curvature has the
following immediate application to the existence theory for MOTS. Consider an initial
initial data set (M, g,K) satisfying trMK ≥ 0 that contains an outer trapped surface
Σ0 = ∂E0 such that θ+

Σ0
< 0. If we take E0 to be the initial condition for the flow, then

the outward optimisation property (1.18) of the solution, together with the fact that Σ0

is outer trapped, forces the weak solution to jump at time t = 0 to the vertical cylinder
∂{U > 0} = Σ× R over a MOTS Σ in M\E0.

Proposition 1.5 Let (U(x, z) = u(x), ν) be a weak solution of (∗∗) with initial condition
E0 satisfying θ+

∂E0
< 0. Then ∂{u > 0} is a smooth MOTS in M\E0.

If the mean curvature of the initial data set instead satisfies trMK ≤ 0, the correspond-
ing existence result applies for the flow with inverse speed equal to H −P , with analogous
interpretations of the solution in relation to marginally inner trapped surface (MITS) in
the initial data set.

We make the final remark that applying this work to the special case K ≡ 0 provides a
new point of view on weak solutions to inverse mean curvature flow. Namely, a family of
C1,1

loc hypersurfaces in (M\E0)×R associated to the pair (U, ν), such that each surface satis-
fies the parametric variational principle (1.16), and the pair (u, ν|

TM
) have a corresponding



10 1 Introduction

interpretation in M\E0 analogous to (1.19). Furthermore one obtains the following result
for the hypersurfaces foliating in the jump region.

Corollary 1.6 Let u be the weak solution to IMCF. Then the interior of the jump region
{u = t0} × R at jump times t0 is foliated by smooth area minimising surfaces.

Acknowledgements. I would like to thank my advisor, Gerhard Huisken, for introducing
me to this topic and for his insightful and enthusiastic guidance throughout the develop-
ment of this work. Many thanks also to Klaus Ecker for his ongoing mathematical and
moral support.



2 Evolution by inverse null mean curvature

In this work we introduce a new evolution equation for hypersurfaces inside asymptotically
flat spacetime initial data sets. Let Mn+1 be a complete, connected Riemannian manifold
of dimension n + 1 ≥ 3, without boundary, which arises as a spacelike hypersurface in a
Lorentzian manifold (Ln+2, h), with induced metric g and second fundamental form K.
We further assume that the initial data set (M, g,K) is asymptotically flat, that is, there
exists a compact set Ω ⊂ M such that M\Ω consists of a finite number of components,
each diffeomorphic to Rn+1\B̄(0, 1) and such that under these diffeomorphisms

|gij − δij| ≤
C

|x|n−1
, |gij,k| ≤

C

|x|n
(2.1)

|Kij| ≤
C

|x|n
, |Kij,k| ≤

C

|x|n+1
,
∣∣∣∑

i

Kii

∣∣∣ ≤ C

|x| n+3
2

. (2.2)

We work in an adapted coordinate system where Greek indices run from 0 to n on the
ambient space, and latin indices run from 1 to n on the evolving hypersurface.

Now consider the smooth immersion F0 : Σ → M of a hypersurface Σ0 = F0(Σ) in M .
We say that the smooth family F : Σn × [0, T ]→ Mn+1 of hypersurfaces Σt = F (·, t)(Σn)
evolves by inverse null mean curvature if

∂F

∂t
(p, t) =

ν

H + P
(p, t), p ∈ Σ, t ∈ [0, T ), (∗)

F (p, 0) = F0, p ∈ Σ,

where H = divΣ(ν) is the mean curvature of Σt in M , P := trΣt(K) = trMK −K(ν, ν),
and we assume that (H + P )|N0 > 0.

2.1 The smooth flow

Since the aim of this work is to develop the weak theory for the evolution by inverse null
mean curvature, we will not discuss existence of solutions to the classical flow (∗), except
to remark that the leading order term of the linearised equation is 1

(H+P )2 ∆gt , where ∆gt

denotes the Laplace-Beltrami operator with respect to the metric at time t. This is an

11



12 2 Evolution by inverse null mean curvature

elliptic operator as long as (H + P )−2 remains non-singular, so (∗) is parabolic so long as
the null mean curvature of the evolving surface remains strictly positive.

In Chapter 2.3 we construct an explicit, non-compact solution of (∗), for which we require
an upper null mean curvature bound. The objective of this section is therefore to derive the
interior H+P estimate (2.5) for smooth solutions of (∗) (which also holds for non-compact
solutions). We begin by stating the evolution equations for some fundamental quantities.
Let ∇ be the connection on (M, g) and let the induced connection and second fundamental
form on Σt be denoted by D and A = {hij} respectively.

Lemma 2.1 Smooth solutions of (∗) with H + P > 0 satisfy the following evolution
equations.

i)
d

dt
H =

1

(H + P )2
∆(H + P )− 2

|D(H + P )|2

(H + P )3
− 1

H + P
(|A|2 + R̄ic(ν, ν)).

ii)
d

dt
P =

1

H + P
(∇νtrMK − (∇νK)(ν, ν))− 2

(H + P )2
Di(H + P )Kiν .

iii)
d

dt
(dµ) =

H

H + P
(dµ).

iv)
d

dt
gij =

2

H + P
hij.

v)
d

dt
ν = −∇(H + P ).

In the case where Σ0 is closed, we also obtain

vi)
d

dt
|Σt|+

∫
V (Σt)\V (Σ0)

P dV = |Σt|, where V (Σ) denotes the volume enclosed by Σ.

Proof. These are well known computations, except for the evolution of P which satisfies

d

dt
P=

d

dt
trMK − νiνj

d

dt
Kij − 2νjKij

d

dt
νi

=
1

H + P
∇νtrMK − νiνj

∇νKij

H + P
− 2νjKijDi

(
1

H+P

)
=

1

H + P
(∇νtrMK − (∇νK)(ν, ν))− 2

(H + P )2
Di(H + P )Kiν .

Combining i) and ii) above, we obtain

d

dt
(H + P ) =

∆(H + P )

(H + P )2
− 2|D(H + P )|2

(H + P )3
− |A|

2 + R̄ic(ν, ν)

H + P
+
∇νtrMK − (∇νK)(ν, ν)

H + P

− 2Di(H + P )Kiν

(H + P )2
, (2.3)
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and for the speed function ψ :=
1

H + P
,

∂ψ

∂t
= ψ2(∆ψ + |A|2ψ +Ric(ν, ν)ψ + (∇νtrMK − (∇νK)(ν, ν))ψ + 2DiψKiν). (2.4)

Lemma 2.2 (Interior null mean curvature estimate.) Let Σt be a smooth solution of (∗)
on M for 0 ≤ s ≤ t. Then for each x ∈ Σt and R < σ(x)

H(x, t) + P (x, t) ≤ max

(
(H + P )R,

λ

R
(√

α2 + 2nλ− α
)) , (2.5)

where λ := 4 (3n+ (12 + 3n)‖K‖C0R + n‖K‖C1R2), α := 12 + 4n‖K‖C0R and (H + P )R
is the maximum of H + P on BR, the parabolic boundary of Σt ∩BR(x).

Like in [HI], the supremum σ(x) of radii r for which (2.5) holds is defined as follows.

Definition 2.3 Let dx denote the distance to x. Then for any x ∈M , we define σ(x) ∈
(0,∞] to be the supremum of radii R such that BR(x) ⊂⊂M , Ric ≥ − 1

100(n+1)R2 in BR(x),

and there exists p ∈ C2(BR(x)) such that

p(x) = 0, p ≥ d2
x on ∂BR(x), yet |∇p| ≤ 3dx and ∇2p ≤ 3g on BR(x).

Proof. We wish to construct a subsolution to (2.4). Since

|A|2 ≥ H2

n
=

1

n

(
(H + P )2 − 2P (H + P ) + P 2

)
≥ 1

n

(
(H + P )2 − 2P (H + P )

)
,

and Dψ ≤ |∇ψ|, P ≤ n‖K‖C0 and ∇νP ≤ n‖K‖C1 , from (2.4) we obtain

∂ψ

∂t
≥ ψ2∆ψ +

ψ

n
− ψ3

100(n+ 1)R2
− 2‖K‖C0ψ2 − n‖K‖C1ψ3 − 2|∇ψ| ‖K‖C0ψ2. (2.6)

We allow Σt to have a smooth boundary ∂Σt, and define the parabolic boundary of the
flow Σt ∩BR to be

BR = BR(x, t) := (BR ∩ Σ0)× {0} ∪ (∪0≤s≤t(BR ∩ ∂Σs)× {s}),

and
(H + P )R = (H + P )R(x, t) := sup

(y,s)∈PR
H(y, s) + P (y, s).

Now consider the function

φ = φδ(y) :=
Cδ
R

(
R2 − p(y)

)
,
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where Cδ :=
(
max

(
R(H+P )R,

λ

(
√
α2+2nλ−α)

))−1−δ, for 0 < δ � 1 and p as defined above.

Note that
∆φ = trΣt(∇2φ)−H〈∇φ, ν〉.

Then for y ∈ Σt ∩BR, we have(
∂

∂t
− φ2∆

)
φ = 〈∇φ, ∂y

∂t
〉 − φ2trΣt∇2φ+Hφ2〈∇φ, ν〉

= −Cδ
R
〈∇p, ν〉

(
ψ +

φ2

ψ
− Pφ2

)
+ φ2Cδ

R
trΣt∩BR(∇2p). (2.7)

Since φ ≤ CδR ≤
1

(H + P )R
− δR < ψ, it follows that φ < ψ on BR. In order to obtain a

contradiction, let 0 < s ≤ t denote the first time when (ψ−φ)(y, s) = 0 for y ∈ Σs∩BR(x).
At this point (

∂

∂t
− φ2∆

)
(ψ − φ) ≤ 0.

On the other hand, since φ < R, it follows from (2.6), (2.7) and the condtions on p defined
above that at the point (y, s)(
∂

∂t
− φ2∆

)
(ψ − φ) >

> φ

(
1

2n
− 2‖K‖C0φ− n‖K‖C1φ2 − 2|∇φ| ‖K‖C0φ+

Cδ
R
〈∇p, ν〉(2− Pφ)− φCδ

R
trΣt∩BR(∇2p)

)
≥ φ

(
1

2n
− 2‖K‖C0φ− n‖K‖C1φ2 − 2|∇φ| ‖K‖C0φ− 3Cδ (2 + n‖K‖C0φ)− 3nC2

)
≥ φ

(
1

2n
− 2Cδ

(
3 + n‖K‖C0R

)
− C2

δ

(
3n+ 12‖K‖C0R + n‖K‖C1R2 + 3n‖K‖C0R

))
= 0.

Thus ψ > φ on all of Σt ∩ BR(x). In particular ψ(x, t) > φ(x, t) = CδR, and as δ was
arbitrary it follows that ψ(x, t) ≥ C0R. This completes the proof of the lemma.

In Chapter 2.3 we see that the null mean curvature upper bound given by Lemma 2.2
is the key to existence and regularity, and that this estimate remains true in the weak

setting. On the other hand, the reaction term − |A|
2

H+P
in the evolution (2.3) of the null

mean curvature in general leads to singularity formulation in finite time, analogous to
inverse mean curvature flow. We therefore turn to the question of a weak formulation of
solutions to the evolution by inverse null mean curvature.



3 Level-set description and elliptic regulari-
sation

In this section we outline a level-set description of the evolution by inverse null mean cur-
vature. We use the method of elliptic regularisation as a tool to approximate solutions
of the level set problem by smooth solutions of a strictly elliptic equation. Studying the
properties of the regularised solutions helps to guide us towards the optimal formulation
for weak solutions of (∗∗), which we then define in Chapter 6.

Level-Set Formulation. The following ansatz lies at the foundation of the level-set
formulation. We assume that the evolving surfaces are given by the level-sets of a scalar
function u : M → R via

Et := {x : u(x) < t}, Σt := ∂Et. (3.1)

We call u the time-of-arrival function1 for the evolution by null mean curvature. Then

wherever u is smooth and ∇u 6= 0, the normal vector to Σt is given by ν =
∇u
|∇u|

and the

boundary value problem
div

(
∇u
|∇u|

)
+

(
gij − ∇

iu∇ju

|∇u|2

)
Kij = |∇u|,

u
∣∣∣
∂E0

= 0,

(∗∗)

describes the evolution of the level-sets of u by inverse null mean curvature. In this smooth
setting, the left hand side is the null mean curvature of Σt and the right hand side is the in-
verse speed of the family of level-sets. Since |∇u| = H+P , the local uniform estimate (2.5)
for the null mean curvature suggests that it is reasonable to expect locally Lipschitz solu-
tions of (∗∗). In order to interpret (∗∗) as the level-set formulation of the classical flow (∗),
where u is the time-of-arrival function, it is necessary for the zero function be a subsolution
barrier for the Dirichlet problem (∗∗). In particular, this suggests that it only makes sense
to study (∗∗) on initial data sets (M, g,K) satisfying trMK ≥ 0. We see below that this
mean curvature restriction also comes up when studying the elliptic regularisation problem.

1This term was coined by Brian White in [W].

15
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Elliptic regularisation. In order to solve the degenerate elliptic problem (∗∗), we study
solutions of the following strictly elliptic equation on the precompact domain ΩL := FL\Ē0,

(∗)ε


Eεuε := div

(
∇uε√

|∇uε|2 + ε2

)
+

(
gij − ∇

iuε∇juε
|∇uε|2 + ε2

)
Kij −

√
|∇uε|2 + ε2 = 0 in ΩL,

uε = 0 on ∂E0,

uε = L− 2 on ∂FL,

where FL := {v < L} for an appropriate comparison function v defined below. In this
chapter we prove existence of a smooth solution of (∗)ε.

The remarkable utility of epsilon regularisation is revealed by rescaling (∗)ε via uε := εûε,
to obtain

(∗)ε̂ div

(
∇ûε√
|∇ûε|2 + 1

)
+

(
gij − ∇

iûε∇jûε
|ûε|2 + 1

)
Kij = ε

√
|∇ûε|2 + 1.

Here we interpret the left hand side as the null mean curvature Ĥε+ P̂ε of the hypersurface
graph(ûε) in the product manifold

(Mn+1 × R, ḡ), ḡ := g ⊕ dz2, (3.2)

where we extend the given data K to be constant in the z-direction. Then on the right

hand side of (∗)ε̂ we have
√
|∇ûε|2 + 1 = −〈τn+2, ν̂ε〉−1, where ν̂ε :=

(∇ûε,−1)√
1 + |∇ûε|2

is the

lower unit normal to graph(ûε). Thus (∗)ε has the geometric interpretation that the down-
ward translating graph

Σ̃ε
t := graph

(
ûε −

t

ε

)
, (3.3)

solves (∗) smoothly in ΩL × R. This is equivalent to the statement that the function

Uε(x, z) := uε(x)− εz, (x, z) ∈ ΩL × R,

solves (∗∗) in ΩL × R, since Uε is the time-of-arrival function for the solution Σ̃ε
t , that is

Σ̃ε
t = {Uε = t}. (3.4)

Therefore elliptic regularisation allows one to approximate solutions of (∗∗) by smooth,
noncompact solutions of (∗) one dimension higher. This observation proves to be useful
in the forthcoming work, since results for the smooth evolution (∗) can be applied to the
solution Σ̃ε

t .
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In fact, (∗)ε̂ has the further interpretation as Jang’s equation(
gij − ∇

iu∇ju

|∇u|2 + 1

)(
∇i∇ju√
|∇u|2 + 1

+Kij

)
= 0, (3.5)

with a gradient regularisation term.2 In [J], Jang used equation (3.5) to generalise Geroch’s
[G] approach to proving the positive mass theorem from the time symmetric case to the
general case. He noted however that the equation cannot be solved in general, leaving the
question of existence and regularity of solutions open. The analytical difficulty is the lack
of an a priori estimate for sup |u| due to the presence of the zero order term trM(K). In
[SY], Schoen and Yau bypass this issue using a positive capillarity regularisation term

(
gij − ∇

iuτ∇juτ
|∇uτ |2 + 1

)(
∇i∇juτ√
|∇uτ |2 + 1

+Kij

)
= τuτ on M,

uτ → 0 as |x| → ∞,
(3.6)

which provides a direct sup estimate via the maximum principle. They prove existence and
regularity estimates for solutions uτ to (3.6), whose graphs Στ have a smooth, embedded
sub-sequential limit Σ as τ → 0. The components of the limit Σ consist of graphical
solutions of Jang’s equation, as well as cylindrical components, whose cross-sections are
apparent horizons in the initial data set.

In the case of the Dirichlet problem for Jang’s equation, appropriate trapping assump-
tions must be placed on the boundaries in order to obtain the required boundary gradient
estimates (see [AM], [E], and [AEM] for an overview).

In the case of the Dirichlet problem (∗)ε, we see below that the zero order term trM(K)
obstructs the existence of a subsolution barrier at the inner boundary. In order to ob-
tain the required boundary gradient estimate at this inner boundary, we must impose the
restriction that the ambient mean curvature trM(K) = gijKij is nonnegative on M . Sim-
ilarly, restricting to trMK ≥ 0 in (3.6) makes the zero function a subsolution barrier for
(3.6), which has the effect of preventing the solution from blowing-up to negative infinity
over marginally inner trapped surfaces in the initial data set. This connection between the
blow-up of solutions to Jang’s equation and the mean curvature of the initial data set was
observed by J. Metzger [M] in the context of solving the capilarity-regularised Jang’s equa-
tion with zero Dirichlet boundary condition on initial data sets with non-empty boundary.

3.1 A priori estimates

As stated above, we will use a comparison function v to prescribe the outer boundary ∂FL
of the annulus domain ΩL for the Dirichlet problem (∗)ε. Since M is asymptotically flat,
outside some compact set Ω ⊂ M we can choose a radial coordinate chart such that for

2For the sake of convenience we call 3.5 Jang’s equation, despite the wrong sign on the tensor K.



18 3 Level-set description and elliptic regularisation

an appropriately chosen α > 0, the function v = α log r is a smooth subsolution of the
following approximating level-set equation

Div

(
∇u
|∇u|

)
+ s

(
gij − ∇

iu∇ju

|∇u|2

)
Kij = |∇u|, (3.7)

for s ∈ [0, 1] in this asymptotic region M\Ω. To prove existence of solutions to the Dirichlet
problem (∗)ε, we then consider solutions of the family of approximating equations

(∗)ε,s


div

(
∇uε,s√

|∇uε,s|2 + ε2

)
+ s

(
gij − ∇

iuε,s∇juε,s
|∇uε,s|2 + ε2

)
Kij −

√
|∇uε,s|2 + ε2 = 0 in ΩL,

uε,s = 0 on ∂E0,

uε,s = s(L− 2) on ∂FL,

for s ∈ [0, 1], where the subsolution v = α log r to (3.7) prescribes the outer boundary
∂FL = ∂{v < L} for the Dirichlet problems (∗)ε,s and (∗)ε.

Lemma 3.1 For every L > 0, there exists ε(L) > 0 such that for 0 < ε < ε(L) and
s ∈ [0, 1], a smooth solution of (∗)ε,s on Ω̄L satisfies the following a priori estimates:

uε,s ≥ −ε in Ω̄L, uε,s ≥ v + (s− 1)(L− 2)− 2 in F̄L\F0, (3.8)

uε ≤ C(L, ‖K‖C0) in Ω̄L, (3.9)

|∇uε,s| ≤ H+ε+ n|p| on ∂E0, |∇uε,s| ≤ C(L, ‖K‖C0) on ∂FL, (3.10)

|∇uε,s(x)| ≤ max
∂ΩL∩Br(x)

|∇uε,x|+ ε+ C, x ∈ Ω̄L, (3.11)

|uε,s|C2,α(Ω̄L) ≤ C(ε, L, n, ‖K‖C0 , ‖K‖C1). (3.12)

Proof. Let

Eε,suε,s := div

(
∇uε,s√

|∇uε,s|2 + ε2

)
+ s

(
gij − ∇

iuε,s∇juε,s
|∇uε,s|2 + ε2

)
Kij −

√
|∇uε,s|2 + ε2 = 0,

and let |λ| denote the size of the largest eigenvalue of Kij on Ω̄L. Aside from the superso-
lution barrier at the outer boundary, the following a-priori estimates follow essentially as
in [HI, Lemma 3.4].
Boundary Gradient Estimates
1. Subsolution barrier at the inner boundary.
We wish to construct a subsolution that bridges from E0 to where v starts in the asymptotic
region. We seek a a subsolution that allows for unrestricted jumps in the compact part of
the manifold, and therefore consider perturbations of zero. Furthermore, as mentioned in
Section 3, we want zero to be a subsolution for the level-set flow (∗∗) in the limit ε → 0,
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which suggests the need to restrict to initial data sets (M, g,K) satisfying trMK ≥ 0.

Let Cut(E0) be the cut locus of E0 in M . We construct a subsolution to (∗)ε on M\
(
E0∪

Cut(E0)
)
. Define G0 = E0, Gd := {x : dist(x,E0) < d} and choose dL large enough that

GdL ⊇ FL. In general, for a surface moving in normal direction with speed f , the evolution
of the mean curvature is given by

∂H

∂t
= −∆f − |A|2f −Ric(ν, ν)f. (3.13)

We can therefore estimate the mean curvature of the surfaces ∂Gd via

∂H

∂d
= −|A|2 −Ric(ν, ν) ≤ C1(L) on ∂Gd\Cut(E0), 0 ≤ d ≤ dL,

yielding

H∂Gd ≤ max
∂E0

H+ + C1d ≤ C2(L) on ∂Gd\Cut(E0), 0 ≤ d ≤ dL,

where H+ = max(0, H). Consider the prospective subsolution

v1(x) := f(d) = f(dist(x,G0)), x ∈ ḠdL\E0, f
′ < 0.

Since ∇v1 = f ′ν, we have ∇2
ijv1 = f ′〈∇eiν, ej〉 = f ′hij and thus

(gij − νiνj)∇2
ijv1 = f ′H∂Gd ≥ f ′C2.

Hence√
f ′2 + ε2Eε,sv1 =

(
gij − f ′2νiνj

f ′2 + ε2

)(
∇2
ijv1 + s

√
f ′2 + ε2Kij

)
− f ′2 − ε2

=

(
gij − νiνj +

ε2νiνj

f ′2 + ε2

)
∇2
ijv1 + s

√
f ′2 + ε2gijKij − s

f ′2√
f ′2 + ε2

Kνν − f ′2 − ε2

≥ −|f ′|C2 +
ε2f ′′

f ′2 + ε2
+ s
√
f ′2 + ε2gijKij − |f ′||Kνν | − f ′2 − ε2.

If we restrict to initial data sets (M, g,K) with gijKij ≥ 0, we can discard the bad term

s
√
f ′2 + ε2gijKij and use the following barrier

f(d) :=
ε

A
(−1 + e−Ad) on 0 ≤ d ≤ dL.

Then |f ′| ≤ ε on 0 ≤ d ≤ dL, and if we restrict ε such that ε ≤ e−AdL , then |f ′| = εe−Ad ≥ ε2

and ε2 ≤ |f ′| ≤ ε.
Thus we have

(f ′2 + ε2)(|f ′|C2 + |f ′||Kνν |+ f ′2 + ε2) ≤ 2ε2(C2 + |Kνν |+ 2)|f ′|
≤ ε2f ′′
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if we take A := 2(C2 + |λ|+ 2).

This shows that, for sufficiently small ε, the function v1,s(x) :=
ε

2(C2 + |λ|+ 2)

(
e−(2C2+|λ|+2)d − 1

)
is a smooth subsolution for Eε,s on GdL\

(
E0 ∪ Cut(E0)

)
. Furthermore, v1,s is a viscosity

subsolution of Eε,s on all of GdL\Ē0. Since u ≥ v1 on the boundary, it follows by the
maximum principle for viscosity solutions [CIL, Thm 3.3] that

u ≥ v1 ≥ −ε in Ω̄L, and
∂u

∂ν
≥ ∂v1

∂ν
≥ −ε on ∂E0. (3.14)

1b) Subsolution barrier at outer boundary.
We construct a subsolution on F̄L\F0. Assume L > 1 and consider the function

v2 :=
L− 1

L
v − 1 + (s− 1)(L− 2).

Then

E0,sv2 = Div

(
∇v
|∇v|

)
+ s

(
gij − ∇

iv∇jv

|∇v|2

)
Kij −

L− 1

L
|∇v| > 0

on F̄L\F0. Since the domain is compact, for all sufficiently small ε we obtain Eε,sv2 > 0.
From (3.14) we have that u ≥ −ε in Ω̄L, thus u ≥ v2 on ∂F0 and u = s(L−2) = v2 on ∂FL.
It then follows from the maximum principle that u ≥ v2 ≥ v+(s−1)(L−2)−2 in F̄L\F0,
thus

∂u

∂ν
≥ −C(L) on ∂FL. (3.15)

A rescaled version of v2 provides the required barrier when L ≤ 1.

2a) Supersolution barrier at outer boundary.
The zero order term trM(K) prevents constant functions from being supersolutions to (∗)ε,s,
like in [HI]. We therefore construct a linear supersolution to (∗)ε on FL\

(
E0 ∪Cut(∂FL)

)
,

where Cut(∂FL) is the cut locus of ∂FL in F̄L. Consider v3(x) := f(d) = f(dist(x,G0))
whereG0 := ∂FL, Gd := {x : dist(x, ∂FL) < d} and choose d0 large enough thatGd0 ⊇ ∂E0.
From (3.13) we find

∂H

∂d
= |A|2 +Ric(ν, ν) ≥ −C1(L) on ∂Gd\Cut(∂FL), 0 ≤ d ≤ d0,

yielding

H∂Gd ≥ −max
∂FL

H− − C1d ≥ −C2(L) on ∂Gd\Cut(∂FL), 0 ≤ d ≤ d0,

where H− = −min(H, 0). Setting f(d) := s(L − 2) +

(
m+

2

d0

)
d, where m > 0 is to be

chosen, we obtain√
f ′2 + εEε,sf(d) = −f ′H∂Gd +

ε2f ′′

f ′2 + ε2
+ s

(
gij − f ′2νiνj

f ′2 + ε2

)√
f ′2 + ε2Kij − (f ′2 + ε2)

≤ f ′C2 + (f ′ + ε)|gijKij|+ f ′|Kνν | − f ′2

≤ f ′(C2 + 2|gijKij|+ |Kνν | − f ′).
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Setting m := C2+2|gijKij|+|λ| ensures
√
f ′2 + εEε,sf(d) ≤ 0 for all sufficiently small ε (so

that ε ≤ f ′). Then v3(x) is a smooth supersolution on Gd0\
(
E0∪Cut(∂FL)

)
. Furthermore,

v3 is a viscosity subsolution on all of Gd0\Ē0. Since u = f on ∂FL and u < f on ∂E0, it
follows by the maximum principle for viscosity solutions that

u ≤ f ≤ L+ (C2 + 2|gijKij|+ |p|) d0 in Ω̄L, (3.16)

∂u

∂ν
≤ C2 + 2|gijKij|+ |p|+

2

d0

= C(L, ‖K‖C0) on ∂FL. (3.17)

2b)Supersolution barrier along ∂E0.
Choose a smooth function v3 which vanishes on ∂E0 such that

H+ + n‖K‖C0 <
∂v4

∂ν
≤ H+ + ε+ n‖K‖C0 along ∂E0. (3.18)

Let ν be the normal vector to ∂E0, and τ be the tangent to ∂E0 satisfying

ν = λ
∇v4

|∇v4|
+
√
λ2 − 1τ, for some λ ≥ 1.

Then

div

(
∇v4

|∇v4|

)
=

1

λ
div

(
∇u
|∇u|

)
−
√
λ2 − 1

λ
div(τ) =

1

λ
H∂E0 ,

thus along ∂E0 we obtain

E0,sv4 = div

(
∇v4

|∇v4|

)
+s

(
gij − ∇

iv4∇jv4

|∇v4|2

)
Kij−|∇v4| <

1

λ
H∂E0+n‖K‖C0−

(
H++n‖K‖C0

)
≤ 0.

This implies that E0v4 < 0 in the neighbourhood U := {0 ≤ v4 ≤ δ}, for sufficiently small
δ > 0.
Now define the scaled-up function

v5 :=
v4

1− v4/δ
, x ∈ U.

So v5 →∞ for v4 → δ, ie on ∂U\∂E0, and

E0,sv5 = div

(
∇v4

|∇v4|

)
+ s

(
gij − ∇

iv4∇jv4

|∇v4|2

)
Kij −

|∇v4|
(1− v4/δ)

2 ≤ E0,sv4 < 0.

Since E0,sv5 < 0 for v5 ≥ 0, for ε sufficiently small (depending on L and m) we obtain that
Eε,sv5 < 0 on the set V := {0 ≤ v5 ≤ L + md0}. From (3.16) we have u ≤ L + md0 on
Ω̄L, thus u ≤ v5 on ∂V .
Then by the maximum principle, u ≤ v5 on V , and therefore

∂u

∂ν
≤ ∂v5

∂ν
=
∂v4

∂ν
≤ H+ + ε+ n|p| on ∂E0 (3.19)
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for sufficiently small ε.

Interior Gradient Estimate
The desired gradient estimate can be obtained from the interior estimate for H + P in
Lemma 2.2. Since we can not apply the result directly to (∗)ε,s (except when s = 1), we
instead rework the proof of Lemma 2.2 for the evolution equation

∂F

∂t
=

1

H + sP
ν, s ∈ [0, 1], (∗)s

to obtain the corresponding estimate

H(x, t) + sP (x, t) ≤ max

(
(H + sP )R,

λ(√
α2 + 2nλ− α

)) . (3.20)

Here λ and α are as defined above, and (H + sP )R is the maximum of H + sP on PR, the
parabolic boundary of Σ

s

t ∩BR(x).

The downward translating graph

Σ̃ε,s
t := graph

(
uε,s
ε
− t

ε

)
,

is a smooth solution of (∗)s, described by the level-set function

Uε,s(x, z) := uε,s(x)− εz,

since Σ̃ε,s
t = {Uε,s = t}. We then relate estimate (3.20) to |∇uε,s| via (∗)ε,s, which asserts

that

(H + sP )Σ̃ε,st
=
√
|∇uε,s|2 + ε2.

Now let B := Bn+1
R (x, z), be an (n+1)-dimensional ball in M×R. Since Σ̃ε,s

t is a translating
solution to (∗s), its parabolic boundary is just a translation of ∂ΩL in time. Furthermore,
as |∇uε,s| is independent of z, applying (3.20) to Σ̃ε,s

t ∩B yields√
|∇uε,s|2 + ε2 ≤ sup

t
max

∂Σ̃ε,st ∩B

√
|∇uε,s|2 + ε2 + C

≤ max
∂ΩL∩BnR(x)

|∇uε,s|+ ε+ C,

where C := λ

(
√
α2+2nλ−α)

is defined in Lemma 2.2. For ε small enough, we obtain from the

boundary gradient estimates

|∇uε,s(x)| ≤ max
∂E0∩BR(x)

H+ + 2 + C̃(L, n, ‖K‖C1) + C, (3.21)
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which leads to the Lipschitz estimate

|uε,s|C0,1(Ω̄L) ≤ C(L, n, ‖K‖C1).

Then by reworking the proof of the Nash-Moser-De Giorgi estimate ([GT], Thm 13.2), we
obtain

|uε,s|C1,α(Ω̄L) ≤ C(ε, L, n, ‖K‖C1),

for some α = α(ΩL). This implies a bound on the Hölder modulus of continuity for the
coefficients of Eεu, so Schauder theory improves this estimate to C2,α

|uε,s|C2,α(Ω̄L) ≤ C(ε, L, n, ‖K‖C1). (3.22)

3.2 Existence of solutions

Lemma 3.2 (Existence for the ε-problem) A smooth solution of (∗)ε exists.

Proof. Recall,

(∗)ε,s


Eε,su := div

(
∇uε√

|∇uε|2 + ε2

)
+ sgij

Σ
Kij −

√
|∇uε|2 + ε2 = 0 in ΩL,

uε = 0 on ∂E0,

uε = s(L− 2) on ∂FL.

We first prove there is a solution for s = 0 and small ε. Let û = uε
ε

and rewrite (∗)ε,0 as

(∗)ε̂

F (û) :=
1√

|∇û|2 + 1
div

(
∇û√
|∇û|2 + 1

)
= ε in ΩL

û = 0 on ∂ΩL.

The map
F : C2,α

0 (Ω̄L)→ Cα(Ω̄L),

is C1, and possesses the solution F (0) = 0 for ε = 0. The linearisation of F at û = 0 is

DF |0 = ∆g : C2,α
0 (Ω̄L)→ Cα(Ω̄L).

The Laplacian on M is an isomorphism, so by the Implicit Function Theorem there exists
ε0 > 0 such that (∗)ε̂ has a unique solution for 0 ≤ ε < ε0.

We now fix ε ∈ (0, ε0) and vary s. Let I be the set of s such that (∗)ε,s has a solution
uε,s ∈ C2,α(Ω̄L). We have shown that I contains 0. We first show that I is open. Let π be
the boundary value map u 7→ u|∂Ω. Consider the map

G : C2,α(Ω̄L)× R→ Cα(Ω̄L)× C2,α(∂ΩL),
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defined by G(w, s) := Gs(w) =

(
Eε,s(w), π(w)−s(L−2)χ∂FL

)
, so that (∗)ε,s is equivalent

to Gs(w) = (0, 0). Gs(w) is C1, and possesses the solution G0(u0) = (0, 0), where u0 is the
C2,α

0 (Ω̄L) solution from above. The linearisation of G0 at u0 is the operator DG0
u0

given by

DG0
u0

=

(
Aij∇i∇j +Bi∇i

π

)
: C2,α → Cα(Ω̄L)× C2,α(∂ΩL), (3.23)

where

Aij =
1√

1 + |∇u0|2

(
gij − ∇

iu0∇ju0

1 + |∇u0|2

)
,

Bi = ∇jA
ij − ε ∇iu0√

|∇u0|2 + 1
.

Since DE0
u0

(w) is a linear elliptic equation with Hölder continuous coefficients, we can
apply Schauder theory (eg [GT], Thm 6.14) to deduce that DG0

u0
is a bijective map with

continuous inverse. It follows from the Implicit function theorem that G maps a neighbour-
hood of (u0, 0) onto a neighbourhood of (0, 0). Thus I is relatively open, which completes
the proof of existence of uε ∈ C2,α(Ω̄) solving (∗)ε. Smoothness then follows from standard
Schauder estimates.

In view of the local uniform Lipschitz estimates for uε, by the Arzela Ascoli theorem
there exist sequences εi → 0, Li → ∞, a subsequence ui and a locally Lipschitz function
u : M\E0 → R such that

ui → u (3.24)

locally uniformly on M\E0, and from (3.21), u satisfies

|∇u(x)| ≤ sup
∂E0∩BR(x)

H+ + C(L, n, ‖K‖C1). (3.25)

Thus by setting
U(x, z) := u(x), (3.26)

we obtain that Ui → U locally uniformly on (M\E0)× R, where Ui(x, z) := ui(x)− εiz is
the time-of-arrival function for the smooth translating solution Σ̃i

t of (∗). Therefore U is
the time of arrival function of the limit of the smooth flow t 7→ Σ̃i

t. Since U is independent
of z, at regular times t the level-sets of U are vertical cylinders.
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t

Our choice of variational formulation to define weak solutions to (∗∗), detailed in the next
section, is motivated by:

1. The variational properties of smooth solutions of (∗∗),

2. The limiting behaviour of the family Σ̃ε
t of translating solutions of (∗∗) in M × R.

In particular, we show that the sets Et = {u < t}, associated to a smooth solution u of
(∗∗), minimise the following parametric energy functional

J A
u,ν(F ) := |∂∗F ∩ A| −

∫
F∩A
|∇u| −

(
gij − νiνj

)
Kij, (4.1)

for each t > 0. That is
J A
u,ν(Et) ≤ J A

u,ν(F ), (4.2)

for each set F of locally finite perimeter that differs from the set Et on a compact subset
A of the domain. Here P = trΣtK = (gij − νiνj)Kij, where ν represents the unit normal
∇u/|∇u| to the surfaces Σt = ∂Et. The functional (4.1), together with the minimisation
principle (4.2), generalises the variational formulation employed by Huisken and Ilmanen
in [HI], and accordingly allows the evolving surfaces to jump instantaneously over a pos-
itive volume at plateaus of the time-of-arrival function, u. However, in the weak setting,
∇u/|∇u| is undefined on plateaus of the locally Lipschitz function u, so in order to in-
corporate the extra P term for this new flow, we must define an appropriate notion of
normal vector in these jump regions. In this section we show that such a vector field can
be obtained by taking an appropriate limit of the translating graphs Σ̃ε

t . Since the null
mean curvature of these surfaces is uniformly bounded, results of measure theory allow
us to control them in C1,α, which leads to a foliation of the interior of the jump region
{U = t0} = {u = t0 × R}, at jump times t0, by hypersurfaces satisfying the following
result.

Proposition 4.1 Let U(x, z) = u(x), where u ∈ C0,1
loc (M\E0) is the limit of the solution

uε of (∗∗)ε, as in (3.26). Then the interior, K̃t0, of the jump region {u = t0} × R =
{U = t0}, at jump times t0 is foliated by hypersurfaces with local uniform C1,α estimates,
where each such hypersurface is either a vertical cylinder or a graph over an open subset
of {u = t0}. Furthermore, each hypersurface bounds a Caccioppoli set that minimises JU,ν̃
in K̃t0, where ν̃ denotes the C0,α

loc normal vector field to the hypersurface foliation.

25
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The normal vector field ν̃ to this foliation extends
∇̄U
|∇̄U |

=
(∇u, 0)

|∇u|
across the jump

region K̃t0 in M × R, and this extended vector field helps motivate the definition of weak
solutions to (∗∗) in the next section. In this context, hypersurfaces and sets in M ×R will
be denoted by the ∼ superscript for the remainder of this work, unless otherwise stated,
and ∇̄ denotes the connection on (M × R, ḡ).

To prove Proposition 4.1 we utilise the following compactness result for sequences of
minimisers of (4.1).

Compactness Property 4.2 Let Ω̃ ⊂ M × R , and let Ẽi ⊂ Ω̃ be a sequence of
sets with C1,α

loc boundary such that ∂Ẽi → ∂Ẽ, locally in C1,α, with outward unit normal
νi ∈ C0,α

loc (T Ω̃) to ∂Ẽi satisfying νi → ν locally uniformly. Let Ui ∈ C0,1
loc (Ω̃) satisfy Ui → U

locally uniformly, and assume that for each Ã ⊂⊂ Ω̃, supÃ |∇̄Ui| ≤ C(Ã) for large i.
If the sequence Ẽi minimises JUi,νi on Ω̃, then Ẽ minimises JU,ν in Ω̃.

Proof. We use the inequality

JUi,νi(Ẽ1) + JUi,νi(Ẽ2) ≥ JUi,νi(Ẽ1 ∪ Ẽ2) + JUi,νi(Ẽ1 ∩ Ẽ2), (4.3)

for an appropriate choice of Caccioppoli sets Ẽ1 and Ẽ2 such that Ẽ1∆Ẽ2 is precompact.

We first prove that Ẽ minimises JU,ν on the outside in Ω̃. To this end, consider F̃ ⊃ Ẽ
with F̃\Ẽ ⊂⊂ Ω̃ and a suitable compact set G ⊂ Ω̃ containing F̃\Ẽ. Since the boundary
of G is not necessarily Lipschitz continuous, we consider a compact set Ḡ ⊂ Ω̃ with smooth
boundary and G ⊂ int(Ḡ) such that

|∂∗(F̃ ∪ Ẽi) ∩ ∂Ḡ| = |∂∗(F̃ ∩ Ẽi) ∩ ∂∗Ḡ| = |∂Ẽi ∩ ∂Ḡ| = 0,

for all i, with traces satisfying
∫
∂Ḡ
|ϕ−
F̃∪Ẽi

− ϕ+

Ẽi
|dHn+1 → 0. This is possible because

F̃ ∪ Ẽi → Ẽ and Ẽi → Ẽ in L1
loc(Ω̃\G). Then setting F̃i := Ẽi ∪ (F̃ ∩ Ḡ) we see that

|∂∗F̃i ∩ Ω̃| = |∂∗Ẽi ∩ (Ω̃\Ḡ)|+ |∂∗(F̃ ∪ Ẽi) ∩ Ḡ|+
∫
∂Ḡ

|ϕ−
F̃∪Ẽi

− ϕ+

Ẽi
|.

Now, since F̃i is an appropriate comparison function for Ẽi, we have
J Ḡ
Ui,νi

(Ẽi) ≤ J Ḡ
Ui,νi

(F̃i), implying

J Ḡ
Ui,νi

(Ẽi) ≤ J Ḡ
Ui,νi

(F̃ ∪ Ẽi) +

∫
∂Ḡ

|ϕ−
F̃∪Ẽi

− ϕ+

Ẽi
|.

Now inserting Ẽ1 = Ẽi and Ẽ2 = F̃ into (4.3) we obtain

J Ḡ
Ui,νi

(F̃ ) ≥ J Ḡ
Ui,νi

(Ẽi ∩ F̃ )−
∫
∂Ḡ

|ϕ−
F̃∪Ẽi

− ϕ+

Ẽi
|. (4.4)
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Next we pass to limits. Since the trace term converges to zero, using lower semicontinuity
we obtain

J Ḡ
U,ν(F̃ ) ≥ J Ḡ

U,ν(Ẽ).

The fact that Ẽ minimises JU,ν on the inside in G̃t0 amongst competing sets F̃ ⊂ Ẽ
satisfying Ẽ\F̃ ⊂⊂ Ω̃ can similarly be proven by again constructing Ḡ and considering the
comparison function F̃i := Ẽi ∩ F̃ for i >> 1 large enough.

To prove Proposition 4.1 we will also draw upon regularity theory for obstacle problems
of the type (4.6) below. In particular, if the set Et := {u < t} minimises Ju,ν , then it is
almost minimal in the sense that

|∂∗Et ∩BR| ≤ |∂∗F ∩BR|+ C(n, ‖Du‖∞, ‖K‖C0)Rn+1, (4.5)

for Et∆F ⊂⊂ BR. This means we can apply partial regularity results of geometric measure
theory to obtain higher regularity for the level-sets Σt = ∂Et. Specifically, we consider the
following C1,α result (see for example [T]), as quoted in [HI].

Regularity Theorem 4.3 Let f be a bounded measurable function on a domain Ω
with smooth metric g and dimension n + 1 < 8. Suppose E contains an open set A and
minimises the functional

|∂∗F |+
∫
F

f (4.6)

with respect to competitors F such that F ⊇ A, and F∆E ⊂⊂ Ω. If ∂A is C1,α, 0 <
α ≤ 1/2, then ∂E is a C1,α submanifold of Ω with C1,α estimates depending only on the
distance to ∂Ω, ess sup|f |, C1,α bounds for ∂A, and C1 bounds (including positive lower
bounds) for the metric g. When n+ 1 ≥ 8, this remains true away from a closed singular
set Z of dimension at most n− 7 that is disjoint from Ā.

Proof of Theorem 9.6: We break up the proof into the following Lemmata.

Lemma 4.4 The level-sets Σ̃ε
t = {Uε = t} are locally uniformly bounded in C1,α.

Proof. Since Σ̃ε
t = {Uε = t} is a smooth solution of (∗) on (M\E0) × R, with smooth

normal vector field νε = ∇̄Uε
|∇̄Uε| , the functional JUε,νε is well defined for sets F̃ ⊂ M × R

of locally finite perimeter. Using νε as a calibration and applying the divergence theorem
exactly as in the proof of Smooth Flow Lemma 6.4 shows that Ẽε

t := {Uε < t} minimises
JUε,νε in Ω := Ẽε

b\Ẽε
a for a ≤ t ≤ b.

Now consider x̄ = (x, x′) ∈ (M\Ē0)×R, and d = dist(x̄, ∂E0 ×R) = dist(x, ∂E0). Take
L′ large enough that BM

2d (x) ⊂ FL′ . Then for ε ≤ ε′ = ε(L′), (3.21) provides a uniform
bound for |∇uε| (and thus also |∇̄Uε| + PΣ̃εt

) on BM×R
d (x̄). It then follows from Theorem

4.3 that the surfaces Σ̃ε
t ∩Bn+1

d (x) are uniformly bounded in C1,α in ε and t.
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Lemma 4.5 Let K̃t0 denote the interior of the jump region {U = t0}, at a jump time t0.
Then each point X0 = (x0, z0) ∈ K̃t0 lies in a surface Σ̃X0 ⊂ K̃t0 that is locally uniformly
bounded in C1,α, and is either a vertical cylinder or a graph over an open subset of K̃t0.

Proof. The sought-after surfaces are constructed using a pointwise approach similar to that
used by Heidusch [He] to prove local uniform C1,1 regularity estimates for the level-sets of
the weak solution to inverse mean curvature flow. In particular, we fix a target point

X0 = (x0, z0) ∈ K̃t0 , (4.7)

and construct a surface containing that point.
Given the convergent sequence εi → 0 that produces the limit u of the elliptic regularised

solution uε as in (3.24), we consider the corresponding sequence of times, ti, at which the

surfaces Σ̃i
ti

= graph
(
ui
εi
− ti

εi

)
pass through the target point X0. This is possible because

the translating graphs Σ̃i
t for −∞ < t <∞ foliate Ωi×R, thus for every i there is a unique

ti such that X0 ∈ Σ̃i
ti

.

In order to write each surface Σ̃i
ti

locally as a graph over its tangent space TX0Σ̃i
ti

, we
use the exponential map to work locally in normal coordinate charts on small Euclidean
balls Bn+2. In particular, let ι(X0) be the injectivity radius of X0 in M\E0 × R, and set

d = d(X0) = min(ι(X0), dist(X0, ∂K̃t0)). (4.8)

By Corollary 5.2 there exists ε0 > 0 such that for all t and ε ≤ ε0, the surface pieces
Σ̃i
ti
∩BM×R

d (X0) are uniformly C1,α bounded in t and ε. Now consider the exponential map

expX0
= (expx0

, idR) : TX0(M × R) ∩Bn+2
d (0, z0)→ BM×R

d (X0), (4.9)

and set
Σ̂i
ti

= exp−1
X0

(Σ̃i
ti
∩BM×R

d (X0)) ⊂ TX0(M × R). (4.10)

In the R-direction the exponential map is just the identity, thus each surface Σ̂i
ti

translates

downwards in exactly the same manner as Σ̃i
ti

. Furthermore, the surfaces Σ̂i
ti

are uniformly
C1,α bounded in t and ε.

Then there exists R > 0, depending only on the locally uniform C1,α bound, such that
Bn+2
R (X̂0) ⊆ Σ̂i

ti
and thus the surface pieces Σ̂i

ti
∩ Bn+2

R (X̂0) possess uniform C1,α bounds.

Here X̂0 = (x̂0, ẑ0) = exp−1
q (X0) is our target point.

The corresponding normals ν̂i(X̂0) to Σ̂i
ti
∩ Bn+2

R (X̂0) create a sequence, a subsequence

of which converges uniformly to a vector ν̂(X̂0). The normal space to ν̂(X̂0) defines a
hyperplane T̂ containing X̂0. Then by taking i � 1 large enough, we can write the
converging surfaces Σ̂i

ti
∩Bn+2

R (X̂0) as graphs of C1,α functions ŵi over T̂ . By reducing R,

and taking i� 1 large enough, we can then write each Σ̂i
ti

locally as the graph of ŵi over

T̂ ∩Bn+1
R (x̂0).
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By Arzela-Ascoli, there exists a further subsequence ŵij and a C1 function ŵ : T̂ ∩
Bn+1
R (x̂0)→ R such that

ŵij → ŵ in C1(T̂ ∩Bn+1
R (x̂0)). (4.11)

Here ŵ is locally the graph of a surface Σ̂X̂0
around X̂0, and T̂ = TX̂0

Σ̂X0 . Since the C1,α

bounds on ŵi were independent of i, it follows that ŵ ∈ C1,α(T̂ ∩ Bn+1
R (x̂0)), with the

same uniform C1,α bounds as ŵi. Thus expq(Σ̂X̂0
) := Σ̃X0 ∩ BM×R

d (X0) is uniformly C1,α

bounded. By successively taking subsequences, the Σ̃i
ti

converge to a complete hypersurface

that we will henceforth denote by Σ̃X0 , since it coincides with Σ̃X0 near X0.
Now X0 ∈ {U = t0} where, by hypothesis, t0 := limi→∞ ti is a jump time. In order

to argue that Σ̃X0 is contained in the set {U = t0}, we note that it is a consequence of
the above construction that any y ∈ Σ̃X0 is the limit of a sequence yi ∈ Σ̃i

ti
. The local

uniform convergence ui → u implies that ûi → û uniformly on Bn+1
d (0). Thus the uniform

convergence Ui → U on BM×R
d (X0), together with the fact that limi→∞ yi = y then implies

that U(y) = t0, since

|Ui(yi)− U(y)| ≤ |Ui(yi)− Ui(y)|+ |Ui(y)− U(y)| → 0,

and lim
i→∞

U i(yi) = lim
i→∞

ti = t0, thus Σ̃X0 ⊂ {U = t0}.

This approach enables one to choose any point X0 in the jump region K̃t0 and construct
the corresponding surface Σ̃X0 containing X0. Since each Σ̃X0 is the limit of the graphs
Σ̃i
ti

with local uniform C1,α bounds, it is clear that each X̃0 is either a vertical cylinder

or a graph over an open subset of K̃t0 ∩M . Therefore, let ΩG denote the open region in
K̃t0 ∩M where |∇ûi| converges locally uniformly to a finite limit, and let ΩC denote the
region where |∇ûi| converges to infinity. Then the translating nature of Σ̃ε

t together with
the above construction dictates that the Σ̃i

ti
converge to a graph Σ̃X0 over ΩG, lying in a

stack

{Σ̃Xα} = Σ̃X0 + αen+2, α ∈ R, (4.12)

of vertical translates of Σ̃X0 . To see this, note that

X0 = (x0, z0) ∈ Σ̃
ij
tij

= graph

(
uij
εij
−
tij
εij

)
→ graph(w) = Σ̃X0 ,

implies Xα := (x0, z0 + α) ∈ Σ̃
ij
tij−αεij

, where

Σ̃
ij
tij−αεij

= graph

(
uij
εij
−
tij − αεij

εij

)
→ graph(w) + αez := Σ̃Xα ,

where w := expq(ŵ). Therefore ΩG ×R is bounded by vertical cylinders, and filled by the

stacks produced by the family {Σ̃Xα} of vertical translations of each graph Σ̃X0 .
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t

The possibility of two surfaces Σ̃P1 and Σ̃P2 from Lemma 5.3 touching tangentially at
one point P , such that the outward unit normals agree at P and Σ̃P1 lies outside Σ̃P2 (in
the direction of the outward normal near P ) is ruled out by the strong maximum principle.
Furthermore, the intersection of two surfaces in the limit is ruled out by the translation
invariance of the surfaces Σ̃ε

t and their local uniform C1,α bounds.
We now argue that we can construct a “normal” vector field ν̃ on K̃t0 using the sur-

faces from the proof of Lemma 5.3. Since the limit surfaces are vertical cylinders or
stacks of translation invariant graphs, the normal vector field ν̃ to the family of surfaces
in Kt0 is translation invariant, and we need only show that we can construct Σ̃X0 for each
X0 ⊂ K̃t0 ∩M . Therefore, choose a dense set of points in K̃t0 ∩M . This corresponds to a
countable set of points {pi}, and for each such pi ∈ K̃t0 ∩M, we consider the convergent
subsequence εi such that Σ̃i

ti
converges to the hypersurface Σ̃Pi in K̃t0 , where Pi := (pi, 0).

Then by taking a diagonal subsequence εi∗ , we obtain local convergence of Σ̃i∗
ti∗

to Σ̃Pi for
every point pi in the dense set.

Now consider a point p0 ∈ ΩG such that p0 is not in {pi}. We wish to argue that we
obtain local convergence to Σ̃P0 via the convergent sequence εi∗ . There exists a point pi in
the dense subset such that dist(pi, p0) < d/10. Let

dP := min(ι(P ), dist(P, ∂K̃t0)). (4.13)

By Corollary 5.2, the surfaces Σ̃ε
t are uniformly bounded inBM×R

dpi
(Pi). Then sinceBdPi/10(P0) ⊂

BdPi
(Pi), the surfaces Σ̃ε

t ∩ BdPi/10(P0) possess the same uniform C1,α bounds and we can

take a convergent subsequence of εi∗ such that we obtain convergence to a limit surface Σ̃P0

in BdPi/10(P0). Therefore this approach constructs a complete graph through each point
x0 ∈ ΩG, and we obtain the vector field ν̃ in all of ΩG.

Then given the uniform C0,α normal vector field ν̃ of the hypersurfaces constructed
through the dense set of points {pi}, we can extend the vector field ν̃ to any points that
have been missed in ΩC . Then translating ν̃ in the en+2 direction, we obtain a normal
vector field on the entire jump region K̃t0 . For the remainder of this work, let ν̃ denote
this translation invariant normal vector field to the surfaces Σ̃X0 foliating K̃t0 .

Lemma 4.6 Let ν̃ denote the normal vector field to the surfaces foliating the jump
region K̃t0, as above. Then each surface Σ̃X0 in the jump region bounds a Caccioppoli set
that minimises JU,ν̃ in K̃t0.

Proof. Consider the Caccioppoli set Ẽ that is bounded by the limit hypersurface Σ̃X0 , such
that ν̃ is the outward unit normal of the relative boundary ∂Ẽ∩K̃t0 . The sets Ẽi

ti
minimize

the functional JUi,νi in K̃t0 , where νi = ∇̄Ui
|∇̄Ui|

. Passing these sets to limits as in the proof of

Lemma 5.3 to obtain the limit surface Σ̃X0 , Theorem 4.2 then says that Ẽ minimises JU,ν̃
in K̃t0 .

Collecting the above results, we obtain a family of C1,α
loc hypersurfaces foliating ΩG ×R,

and by extending the family of cylindrical hypersurfaces in ΩC×R to any missed points in
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ΩC , we obtain a foliation of the entire interior region K̃t0 . At each point X0 = (x0, t0), the
corresponding leaf of the foliation passing through X0 is constructed by taking the limit of
the Σε

t locally around X0, as in Lemma 5.3. This completes the proof. �





5 The jump region in the elliptic regularisa-
tion limit

In this section we use the smooth epsilon-regularised solutions Σ̃ε
t = {Uε = t} to study the

jump regions of the limiting time-of-arrival function U defined by (3.26). In particular,
we show that taking an appropriate limit of these surfaces at jump times t0, leads to a
foliation of the interior K̃t0 of the jump region {U = t0} by hypersurfaces that minimise
area plus bulk energy P , and in particular are smooth MOTS.

Theorem 5.1 Let U ∈ C0,1
loc ((M\E0)×R) be the limit of Uε given by (3.26). At a jump

time t0, the interior K̃t0 of {U = t0} is foliated by smooth MOTS, each of which is either
(part of) a vertical cylinder or a smooth graph over an open subset of K̃t0.

The normal vector field to this foliation extends
∇̄U
|∇̄U |

as a calibration across the jump

region, and this is then used in Chapter 2.5 to prove existence of a weak solution.
We break up the proof of Theorem 5.1 into the following Lemmata.

Lemma 5.2 The level-sets Σ̃ε
t = {Uε = t} are locally uniformly bounded in C1,α.

Proof. Since Σ̃ε
t = {Uε = t} is a smooth solution of (∗) on (M\E0) × R, with smooth

normal vector field νε = ∇̄Uε
|∇̄Uε| , the functional

JUε,νε(F̃ ) = J Ã
Uε,νε(F̃ ) := |∂∗F̃ ∩ Ã| −

∫
F̃∩Ã
|∇̄Uε| −

(
ḡij − νiενjε

)
Kijdx.

is well defined, and Smooth Flow Lemma 6.4 implies that Ẽε
t minimises JUε,νε in Ω̃ :=

Ẽε
b\Ẽε

a for a ≤ t ≤ b. It is then a corollary of Theorem 4.3 that the level-sets Σ̃ε
t are

locally uniformly bounded in C1,α, with estimates depending on ‖K‖C0 and the local
Lipschitz bounds for Uε. The C1,α bound in the statement of Theorem 4.3 depends on
the bulk energy f of the functional (??) and the distance to the boundary ∂Ω. Consider
x̄ = (x, x′) ∈ (M\Ē0)× R, and d = dist(x̄, ∂E0 × R) = dist(x, ∂E0). Take L′ large enough
that BM

2d (x) ⊂ FL′ . Then for ε ≤ ε′ = ε(L′), (3.21) provides a uniform bound for |∇uε| (and
thus also |∇̄Uε| + PΣ̃εt

) on BM×R
d (x̄). It then follows from Theorem 4.3 that the surfaces

Σ̃ε
t ∩Bn+1

d (x) are uniformly bounded in C1,α in ε and t.

33
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Lemma 5.3 Let K̃t0 denote the interior of the jump region {U = t0}, at a jump time t0.
Then each point X0 = (x0, z0) ∈ K̃t0 lies in a surface Σ̃X0 ⊂ K̃t0 that is locally uniformly
bounded in C1,α, and is either a vertical cylinder or a graph over an open subset of K̃t0.

Proof. The sought-after surfaces are constructed using a pointwise approach similar to that
used by Heidusch [He] to prove local uniform C1,1 regularity estimates for the level-sets of
the weak solution to inverse mean curvature flow. In particular, we fix a target point

X0 = (x0, z0) ∈ K̃t0 , (5.1)

and construct a surface containing that point.
Given the convergent sequence εi → 0 that produces the limit u of the elliptic regularised

solution uε as in (3.24), we consider the corresponding sequence of times, ti, at which the

surfaces Σ̃i
ti

= graph
(
ui
εi
− ti

εi

)
pass through the target point X0. This is possible because

the translating graphs Σ̃i
t for −∞ < t <∞ foliate Ωi×R, thus for every i there is a unique

ti such that X0 ∈ Σ̃i
ti

.

In order to write each surface Σ̃i
ti

locally as a graph over its tangent space TX0Σ̃i
ti

, we
use the exponential map to work locally in normal coordinate charts on small Euclidean
balls Bn+2. In particular, let ι(X0) be the injectivity radius of X0 in M\E0 × R, and set

d = d(X0) = min(ι(X0), dist(X0, ∂K̃t0)). (5.2)

By Lemma 5.2 there exists ε0 > 0 such that for all t and ε ≤ ε0, the surface pieces
Σ̃i
ti
∩BM×R

d (X0) are uniformly C1,α bounded in t and ε. Now consider the exponential map

expX0
= (expx0

, idR) : TX0(M × R) ∩Bn+2
d (0, z0)→ BM×R

d (X0), (5.3)

and set
Σ̂i
ti

= exp−1
X0

(Σ̃i
ti
∩BM×R

d (X0)) ⊂ TX0(M × R). (5.4)

In the R-direction the exponential map is just the identity, thus each surface Σ̂i
ti

translates

downwards in exactly the same manner as Σ̃i
ti

. Furthermore, the surfaces Σ̂i
ti

are uniformly
C1,α bounded in t and ε.

Then there exists R > 0, depending only on the locally uniform C1,α bound, such that
Bn+2
R (X̂0) ⊆ Σ̂i

ti
and thus the surface pieces Σ̂i

ti
∩ Bn+2

R (X̂0) possess uniform C1,α bounds.

Here X̂0 = (x̂0, ẑ0) = exp−1
q (X0) is our target point.

The corresponding normals ν̂i(X̂0) to Σ̂i
ti
∩ Bn+2

R (X̂0) create a sequence, a subsequence

of which converges uniformly to a vector ν̂(X̂0). The normal space to ν̂(X̂0) defines a
hyperplane T̂ containing X̂0. Then by taking i � 1 large enough, we can write the
converging surfaces Σ̂i

ti
∩Bn+2

R (X̂0) as graphs of C1,α functions ŵi over T̂ . By reducing R,

and taking i� 1 large enough, we can then write each Σ̂i
ti

locally as the graph of ŵi over

T̂ ∩Bn+1
R (x̂0).
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By Arzela-Ascoli, there exists a further subsequence ŵij and a C1 function ŵ : T̂ ∩
Bn+1
R (x̂0)→ R such that

ŵij → ŵ in C1(T̂ ∩Bn+1
R (x̂0)). (5.5)

Here ŵ is locally the graph of a surface Σ̂X̂0
around X̂0, and T̂ = TX̂0

Σ̂X0 . Since the C1,α

bounds on ŵi were independent of i, it follows that ŵ ∈ C1,α(T̂ ∩ Bn+1
R (x̂0)), with the

same uniform C1,α bounds as ŵi. Thus expq(Σ̂X̂0
) := Σ̃X0 ∩ BM×R

d (X0) is uniformly C1,α

bounded. By successively taking subsequences, the Σ̃i
ti

converge to a complete hypersurface

that we will henceforth denote by Σ̃X0 , since it coincides with Σ̃X0 near X0.
Now X0 ∈ {U = t0} where, by hypothesis, t0 := limi→∞ ti is a jump time. In order

to argue that Σ̃X0 is contained in the set {U = t0}, we note that it is a consequence of
the above construction that any y ∈ Σ̃X0 is the limit of a sequence yi ∈ Σ̃i

ti
. The local

uniform convergence ui → u implies that ûi → û uniformly on Bn+1
d (0). Thus the uniform

convergence Ui → U on BM×R
d (X0), together with the fact that limi→∞ yi = y then implies

that U(y) = t0, since

|Ui(yi)− U(y)| ≤ |Ui(yi)− Ui(y)|+ |Ui(y)− U(y)| → 0,

and
lim
i→∞

U i(yi) = lim
i→∞

ti = t0,

thus Σ̃X0 ⊂ {U = t0}.
This approach enables one to choose any point X0 in the jump region K̃t0 and construct

the corresponding surface Σ̃X0 containing X0. Since each Σ̃X0 is the limit of the graphs
Σ̃i
ti

with local uniform C1,α bounds, it is clear that each X̃0 is either a vertical cylinder

or a graph over an open subset of K̃t0 ∩M . Therefore, let ΩG denote the open region in
K̃t0 ∩M where |∇ûi| converges locally uniformly to a finite limit, and let ΩC denote the
region where |∇ûi| converges to infinity. Then the translating nature of Σ̃ε

t together with
the above construction dictates that the Σ̃i

ti
converge to a graph Σ̃X0 over ΩG, lying in a

stack
{Σ̃Xα} = Σ̃X0 + αen+2, α ∈ R, (5.6)

of vertical translates of Σ̃X0 . To see this, note that

X0 = (x0, z0) ∈ Σ̃
ij
tij

= graph
(
uij
εij
− tij

εij

)
→ graph(w) = Σ̃X0 ,

implies

Xα := (x0, z0 + α) ∈ Σ̃
ij
tij−αεij

= graph
(
uij
εij
− tij−αεij

εij

)
→ graph(w) + αez := Σ̃Xα ,

where w := expq(ŵ).
Therefore ΩG × R is bounded by vertical cylinders, and filled by the stacks produced by
the family {Σ̃Xα} of vertical translations of each graph Σ̃X0 .
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The possibility of two surfaces Σ̃P1 and Σ̃P2 from Lemma 5.3 touching tangentially at
one point P , such that the outward unit normals agree at P and Σ̃P1 lies outside Σ̃P2 (in
the direction of the outward normal near P ) is ruled out by the strong maximum principle.
Furthermore, the intersection of two surfaces in the limit is ruled out by the translation
invariance of the surfaces Σ̃ε

t and their local uniform C1,α bounds.

We now argue that we can construct a “normal” vector field ν̃ on K̃t0 using the sur-
faces from the proof of Lemma 5.3. Since the limit surfaces are vertical cylinders or
stacks of translation invariant graphs, the normal vector field ν̃ to the family of surfaces
in Kt0 is translation invariant, and we need only show that we can construct Σ̃X0 for each
X0 ⊂ K̃t0 ∩M . Therefore, choose a dense set of points in K̃t0 ∩M . This corresponds to a
countable set of points {pi}, and for each such pi ∈ K̃t0 ∩M, we consider the convergent
subsequence εi such that Σ̃i

ti
converges to the hypersurface Σ̃Pi in K̃t0 , where Pi := (pi, 0).

Then by taking a diagonal subsequence εi∗ , we obtain local convergence of Σ̃i∗
ti∗

to Σ̃Pi for
every point pi in the dense set.

Now consider a point p0 ∈ ΩG such that p0 is not in {pi}. We wish to argue that we
obtain local convergence to Σ̃P0 via the convergent sequence εi∗ . There exists a point pi in
the dense subset such that dist(pi, p0) < d/10. Let

dP := min(ι(P ), dist(P, ∂K̃t0)). (5.7)

By Corollary 5.2, the surfaces Σ̃ε
t are uniformly bounded inBM×R

dpi
(Pi). Then sinceBdPi/10(P0) ⊂

BdPi
(Pi), the surfaces Σ̃ε

t ∩ BdPi/10(P0) possess the same uniform C1,α bounds and we can

take a convergent subsequence of εi∗ such that we obtain convergence to a limit surface Σ̃P0

in BdPi/10(P0). Therefore this approach constructs a complete graph through each point
x0 ∈ ΩG, and we obtain the vector field ν̃ in all of ΩG.

Then given the uniform C0,α normal vector field ν̃ of the hypersurfaces constructed
through the dense set of points {pi}, we can extend the vector field ν̃ to any points that
have been missed in ΩC . Then translating ν̃ in the en+2 direction, we obtain a normal
vector field on the entire jump region K̃t0 .

For the remainder of this work, let ν̃ denote this translation invariant normal vector field
to the surfaces Σ̃X0 foliating K̃t0 .

Lemma 5.4 Let ν̃ denote the normal vector field to the surfaces foliating the jump
region K̃t0, as above. Then each surface Σ̃X0 in the jump region bounds a Caccioppoli set
that minimises JU,ν̃ in K̃t0.

Proof. Consider the Caccioppoli set Ẽ that is bounded by the limit hypersurface Σ̃X0 , such
that ν̃ is the outward unit normal of the relative boundary ∂Ẽ∩K̃t0 . The sets Ẽi

ti
minimize

the functional JUi,νi in K̃t0 , where νi = ∇̄Ui
|∇̄Ui|

. Passing these sets to limits as in the proof of

Lemma 5.3 to obtain the limit surface Σ̃X0 , Theorem 4.2 then says that Ẽ minimises JU,ν̃
(defined by (??)) in K̃t0 .
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Lemma 5.5
|∇̄Ui| → 0 in L1

loc(K̃t0). (5.8)

Proof. Recall d defined by (5.2), consider a target point X0 = (x0, z0) such that z0 > 2d+1
and select a cutoff function φ ∈ C2

c (R) such that φ ≥ 0 and sptφ ⊆ [z0−2d, z0 + 2d]. Then
let T0 = z0 − 2d − 1, fix an arbitrary time T > T0, and consider T0 ≤ t ≤ T and
L ≥ T + 3 + z0 + 2d.

We wish to show that

lim inf
i→∞

∫
Σ̃iti
∩BM×R

d (X0)

|D(H + P )|2 <∞.

To this end, we calculate

d

dt

∫
Σ̃εt

φ(z)(H + P )2 =

∫
Σ̃εt

2φ(H + P )
∂

∂t
(H + P ) + (H + P )2∂φ

∂z
· νε
H + P

+ φH(H + P )

=− 2

∫
Σ̃εt

φ

(
(H + P )∆

(
1

H + P

)
+ |A|2 + R̄ic(νε, νε)− ∇̄νεP

+
2Di(H + P )

H + P
Kiνε

)
+ (H + P )

∂φ

∂z
· ν + φH(H + P )

=

∫
Σ̃εt

φ

(
−2
|D(H + P )|2

(H + P )2
− 2|A|2 − 2R̄ic(ν, ν) +H(H + P ) + 2∇̄νP

− 4
Di(H + P )

H + P
Kiν

)
− 2

φ

∂z
· D(H + P )

H + P
+ (H + P )

∂φ

∂z
· ν (5.9)

In view of the sup estimates (3.8) and (3.16) for uε, there is R(T ) > 0 depending only on
the subsolution v and Kij such that

Σ̃ε
t ∩ (M × sptφ) ⊆ S(T ) := (BR(T )\E0)× [z0 − 2d, z0 + 2d], T0 ≤ t ≤ T.

The Outward Optimising Property 7.1, applied to Ẽε
t compared to the perturbation Ẽε

t ∪
S(T ), then provides the area estimate

|Σ̃ε
t ∩ (M × sptφ)| ≤ C(T ) +

∫
S(T )\Ẽεt

P ≤ C(T, ‖K‖C0), T0 ≤ t ≤ T. (5.10)

Together with the interior estimate (2.5), and the boundary gradient estimates for uε, this
shows

|H + P | ≤ C(T, ‖K‖C1) on Σ̃ε
t ∩ (M × sptφ), T0 ≤ t ≤ T.

It follows that∫
Σ̃εt

φ|H|(H + P ) + φ(H + P )2 + |(H + P )∇̄φ · ν| ≤ C(T, ‖K‖C1), T0 ≤ t ≤ T.
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We estimate the Dφ and Kiν terms via∣∣∣∣2Dφ · D(H + P )

H + P

∣∣∣∣ ≤ 2
|Dφ|2

φ
+
φ

2

|D(H + P )|2

(H + P )2
≤ C +

φ

2

|D(H + P )|2

(H + P )2
,∣∣∣∣4φDi(H + P )

H + P
Kiν

∣∣∣∣ ≤ 8φ‖K‖2
C0 +

φ

2

|D(H + P )|2

(H + P )2
.

Thus (7.12) becomes

d

dt

∫
Σ̃εt

φ(H + P )2 ≤
∫

Σ̃εt

−φ |D(H + P )|2

(H + P )2
+ C(T, ‖K‖C1), (5.11)

and integrating gives∫ T

T0

∫
Σ̃εt∩(M×[z0−2d,z0+2d])

|D(H + P )|2

(H + P )2
≤ C(T, ‖K‖C1), (5.12)

using a φ such that φ = 1 on [z0 − 2d, z0 + 2d].
Applying Fatou’s Lemma, for any sequence εi → 0 we obtain

lim inf
i→∞

∫
Σ̃it∩(M×[z0−2d,z0+2d])

|D(H + P )|2

(H + P )2
<∞, a.e. t ≥ T0. (5.13)

Now consider the subsequence εij → 0 from (5.5) such that Σ̃
ij
tij
→ Σ̃0 in C1(T∩Bn+1

R (X0)),

where T = TX0Σ̃X0 . We write i = ij henceforth. Since (7.16) only holds for a.e. t ≥ T0, it
will take more work to argue that lim inf

i→∞

∫
Σ̃iti
∩BM×R

d (X0)
|D(H + P )|2 <∞. To this end, we

pick a sequence t̂i such that t̂i → t0 + δ for some |δ| > 0, |t̂i − ti| ≤ εid and

lim inf
i→∞

∫
Σ̃i
t̂i
∩(M×[z0−2d,z0+2d])

|D(H + P )|2 <∞. (5.14)

Define ẑi :=
ui(x0)

εi
− t̂i
εi

and δi := ẑi − z0. Then the fact that Σ̃i
t̂i

is just a translation of

Σ̃i
ti

by δi in the z-direction implies that∫
Σ̃iti
∩BM×R

d (X0)

|D(H + P )|2 =

∫
Σ̃i
t̂i
∩BM×R

d (x0,z0+δi)

|D(H + P )|2,

for each i. Furthermore, the condition |t̂i− ti| ≤ εid implies that |δi| = |ẑi− z0| ≤ d, which
ensures that Σ̃i

t̂i
∩ BM×R

d (x0, z0 + δi) ⊂ M × [z0 − 2d, z0 + 2d], and thus from (7.17) we
obtain that

lim inf
i→∞

∫
Σ̃i
t̂i
∩BM×R

d (x0,z0+δi)

|D(H + P )|2 ≤
∫

Σ̃i
t̂i
∩(M×[z0−2d,z0+2d])

|D(H + P )|2 <∞,
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from which our desired estimate follows

lim inf
i→∞

∫
Σ̃iti
∩BM×R

d (X0)

|D(H + P )|2 <∞. (5.15)

As in the proof of Lemma (5.3), the converging surfaces Σ̃i
ti

can be written locally, via

the exponential map, as graphs of C1,α
loc functions wi over the hyperplane T . This local

C1,α convergence of the hypersurfaces, together with the first variation of area formula and
the Riesz Representation Theorem then implies that HΣ̃

X0

exists weakly as a locally L1

function, with the weak convergence∫
Σ̃iti

HΣ̃iti
νΣ̃iti
·X →

∫
Σ̃
X0

HΣ̃
X0

νΣ̃
X0

·X, X ∈ C0
c (T (M\E0 × R)). (5.16)

Then by (7.18) and Rellich’s theorem there exists a subsequence (again denoted by i) such
that

(H + P )Σ̃iti
→ (H + P )Σ̃

X0

in L2(T ∩Bn+1
R (X0))). (5.17)

Now the level-sets Σ̃i
ti

= {Ui = ti} smoothly solve (∗) in Ωi × R, thus

(H + P )Σ̃iti
= |∇̄Ui|,

and ∫
Σ̃iti

|∇̄Ui|2 =

∫
Σ̃iti

(H + P )2 →
∫

Σ̃
X0

(H + P )2. (5.18)

To proceed, we consider the special behaviour of the solution in the jump region. Let us first
consider the case where the limit surface Σ̃X0 given by Lemma 5.3 is not a vertical cylinder.
Then it is a graph, which means that |∇ûi| converges locally uniformly to something finite,
and therefore that |∇ui| = εi|∇ûi| converges locally uniformly to 0. In the other case the
surface Σ̃X0 given by Lemma 5.3 is a vertical cylinder. We know from (7.18) and (7.21)
that |∇̄Uī| converges in L2 to something finite. However this limit can only be zero since
Ui → U locally uniformly, and U is constant in the jump region (namely U = t0 on K̃t0
by hypothesis). Furthermore, since the local uniform convergence of Ui → t0 holds for the
entire sequence i, we must have L2 convergence of the entire sequence |∇̄Ui|, namely∫

Σ̃iti

|∇̄Ui| → 0.

Lemma 5.3 and Lemma 7.4 imply the following corollary.

Corollary 5.6 Let ν̃ denote the normal vector field to the C1,α
loc hypersurface folation of

K̃t0, as constructed above. Then each surface Σ̃X0 in the jump region bounds a Caccioppoli
set that minimises area plus bulk energy (ḡij − ν̃iν̃j)Kij in K̃t0.
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To complete the proof of Theorem 5.1, it remains to show that each surface Σ̃X0 in
K̃t0 is in fact a smooth MOTS. To proceed, we use the well known connection between
parametric and non-parametric variational problems, that follows from the relationship
between a function w ∈ BVloc(Ω) and its subgraph

W = {(x, t) ∈ Ω× R : t < w(x)}. (5.19)

In particular, let ϕW denote the characteristic function of the subgraph (7.22). Then
Theorem 14.6 in [Gi] states ∫

Ω

√
1 + |∇w|2 =

∫
Ω×R
|∇ϕW |. (5.20)

In (5.5) we established that at each point X0 ∈ K̃t0 , there exists a subsequence ij and a

function ŵ ∈ C1,α(B̂R(x̂0)) such that

ŵij → ŵ in C1(B̂R(x̂0)),

where B̂R(x̂0) := T̂ ∩Bn+1
R (x̂0), where

graph(ŵ) = Σ̂X0 = exp−1
q

(
Σ̃X0 ∩BM×R

R (X0)
)

(5.21)

Then Corollary 5.6 establishes that each surface Σ̃X0 bounds a Caccioppoli set E in K̃t0
that minimises area plus bulk energy (ḡij − ν̃iν̃j)Kij in K̃t0 , where by construction ν̃ is the
outward unit normal vector to the relative boundary ∂Ẽ ∩ K̃t0 .

Therefore, writing the Caccioppoli set E locally as the subgraph of w := exp−1
q (ŵ), we

find from (7.23) that w minimises the functional

J̊
BR(x0)
ν̃ (w) :=

∫
BR(x0)

√
1 + |∇̄w|2dx+

∫
BR(x0)

∫ w(x)

0

trMKij(x, τ)−Kij(x, τ)ν̃i(x, τ)ν̃j(x, τ)dτdx

(5.22)
in BR(x0) := expq(B̂Rx̂0)), whose Euler-Lagrange equation is the MOTS equation

div

(
∇̄w√

1 + |∇̄w|2

)
+
(
ḡij − ν̃iν̃j

)
Kij = 0, (5.23)

and by construction ν̃ =
(∇̄w,−1)√
1 + |∇̄w|2

. The left hand side of (7.25) is an elliptic operator

of the form

Aw = aij(∇̄w)

(
∇̄i∇̄jw +

√
1 + |∇̄w|2Kij

)
,
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where

aij(p) :=
1√

1 + |p|2

(
ḡij − pipj

1 + |p|2

)
.

Since w ∈ C1,α(BR(x0)), aij ∈ C0,α(BR(x0)), Aw is strictly elliptic on BR(x0). Schauder
theory then implies that w ∈ C2,α(BR(x0)), and by bootstrapping further we obtain w ∈
C∞(BR(x0)). Using a suitable partition of unity, we obtain that each surface Σ̃X0 is a
smooth MOTS in K̃t0 .

Collecting the above results, we obtain a family of smooth MOTS foliating ΩG×R, and
by extending the family of smooth, cylindrical MOTS in ΩC × R to any missed points in
ΩC , we obtain a foliation of the entire interior region K̃t0 . At each point X0 = (x0, t0),
the corresponding leaf of the foliation passing through X0 is constructed by taking the
limit of the Σε

t locally around X0, as in Lemma 5.3. This completes the proof of Theorem
5.1. �





6 Variational formulation of weak solutions

By freezing |∇u| − trΣtK and treating it as a bulk term, one may interpret (∗∗) as the
Euler-Lagrange equation of the functional

Ju,ν(v) :=

∫
|∇v|+ v

(
|∇u| −

(
gij − νiνj

)
Kij

)
dx. (6.1)

For a smooth family of solutions of (∗), we will see below that the corresponding time-of-
arrival function u defined by (3.1) satisfies

Ju,ν(u) ≤ Ju,ν(v), (6.2)

among competing locally Lipschitz functions v, that differ from u on a compact subset of
M\Ē0. The relationship between the variational formulation (6.2) and the functional (4.1)
is then given by the following Lemma.

Lemma 6.1 Let u be a locally Lipschitz function in the open set Ω, and ν a measurable
vector field on TΩ. Then u satisfies (6.2) on Ω if and only if for each t, Et := {u < t}
minimizes (4.1) in Ω.

Proof. This follows exactly as in [HI, Lemma 1.1], with |∇u| − (gij − νiνj)Kij replacing
the bulk term |∇u|.

This equivalence between the two variational formulations also extends to the initial
value problem

u ∈C0,1
loc (M), ν a measurable vector field on T (M\E0),

E0 = {u < 0}, and u satisfies (6.2) in M\E0.
(6.3)

To see this equivalence, let Et be a nested family of open sets in M , closed under ascending
union, and define u as in the statement of Lemma 6.1 by the characterisation Et = {u <
t}. Then using Lemma 6.1 and approximating up to the boundary, we see that (6.3) is
equivalent to

u ∈ C0,1
locM, ν a measurable vector field on T (M\E0)

and Et minimises Ju,ν in M\E0 for each t > 0.
(6.4)
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Lastly, by approximating s↘ t, we see that (6.3) and (6.4) are equivalent to

u ∈ C0.1
loc (M), ν a measurable vector field on T (M\E0)

and {u ≤ t} minimises Ju,ν in M\E0 for each t ≥ 0.
(6.5)

We now present the precise definition of weak solutions to (∗∗). In the previous section
we highlighted the need to define the normal vector field ν in jump regions in order to
incorporate the P = (gij − νiνj)Kij term into a variational formulation of weak solutions
to (∗∗). We showed that taking an appropriate limit of the smooth translating solutions
Σ̃ε
t = {Uε = t} of (∗), provides a constructive method of foliating the interior K̃t0 of the

jump region {U = t0} = {u = t0}×R, one dimension higher, by C1,α
loc hypersurfaces Σ̃X0 in

M × R with uniform C0,α
loc unit normal vector field ν̃. Each such hypersurface Σ̃X0 in the

foliation is either (part of) a vertical cylinder, or is a smooth graph over an open subset of
K̃t0 , in the stack

Σ̃ + α en+2, α ∈ R, (6.6)

of vertical translates of Σ̃. The normal vector field ν̃ to each vertical cylinder is perpendic-
ular to the z-direction, and could therefore be projected to M without loss of information.
However, in the case of the graphical hypersurfaces (6.6), information would be lost if one
were to define the vector field ν in (4.1) to be the projection of ν̃ to TM .

This motivates the choice to formulate the weak solution to (∗∗) one dimension higher, in
terms of a translation invariant function U(x, z) = u(x) ∈ C0,1

loc (M × R), and a translation
invariant vector field ν̄ ∈ C0,α

loc (T ((M\E0) × R)) that extends ∇̄U/|∇̄U | across the jump
region. One then considers the analogously defined functionals JU,ν̄ to (6.1) and (4.1)
for such pairs (U, ν̄) in M × R, and we remark that Lemma 6.1 and the initial value
problem equivalences (6.3)-(6.5) hold in M×R (for general U and ν̄ that are not necessarily
translation invariant, like we will demand for the weak solution of (∗∗)).

In Lemma 5.4 we showed that each of the surfaces Σ̃X0 foliating the jump region K̃t0
bounds a Caccioppoli set that minimises JU,ν̃ in the jump region K̃t0 . Together with
Lemma 6.1, this motivates the restriction in Definition 6.2 below that at each point X ∈
(M\Ē0)×R, ν̃(X) be the normal vector to a C1,α hypersurface that bounds a Caccioppoli
set minimising JU,ν̄ in (M\E0)× R.

Definition 6.2 Let E0 ⊂ M be a precompact, open set with C2 boundary Σ0 = ∂E0.
We call the pair (U, ν̄) a weak solution of (∗∗) with initial condition E0 if U ∈ C0,1

loc (M ×R)
and ν̄ ∈ C0,α

loc (T (M\E0)× R) satisfy

(i) U is translation invariant in the vertical direction. In particular, there exists a locally
Lipschitz function u : M → R such that U(x, z) = u(x) and u satisfies

· u(x) ≥ 0 ∀x ∈M\E0,

· u
∣∣
∂E0

= 0, u(x) < 0 ∀x ∈ E0,

· u(x)→ +∞ as dist(x,E0)→∞.
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(ii) The set Ẽt = {U < t} minimises JU,ν̄ in (M\E0)× R for each t > 0. At jump times
t0, each point X0 = (x0, z0) in the interior K̃t0 of the jump region {U = t0} lies in
the boundary ∂ẼX0 ∈ C

1,α
loc of a Caccioppoli set ẼX0 that minimises JU,ν̄ in K̃t0 .

(iii) ν̄ is a translation invariant, unit vector field such that

· ν̄(X + α ez) = ν̄(X) ∀X ∈ (M\E0)× R, α ∈ R,
· ν̄(X) is the normal vector to ∂Ẽt at each point X ∈ ∂Ẽt,
· ν̄(X) is the normal vector to ∂ẼX0 at each point X ∈ ∂ẼX0 ,

at jump times t0.

Remarks 1. Unlike in the weak formulation of inverse mean curvature flow, which asks
only that Et = {u < t} minimise Ju,ν for each t > 0, we require the variational principle
(4.2) for JU,ν̄ to be satisfied everywhere, in particular in the interior of the jump region.
2. By Lemma 6.1, any weak solution (U(x, z) := u(x), ν) of (∗∗) satisfies (6.3) on (M\Ē0)×
R. Furthermore, we find that (u, νM := ν̄

∣∣
TM

) satisfies (6.2) in M\Ē0.

Lemma 6.3 Let (U(x, z) := u(x), ν̄) be a weak solution of (∗∗) with initial condition
E0. Then the pair (u, , νM) satisfies (6.2) on M\Ē0, and Et = {u < t} minimises Ju,νM
for each t > 0, where νM := ν̄

∣∣
TM

.

Proof. Since the tensor K is extended trivially in the z-direction, we find(
ḡij − ν̄iν̄j

)
Kij =

(
gij − νiMν

j
M

)
Kij, (6.7)

where νM := ν̄
∣∣
TM

. Let Bu,νM := |∇u| −
(
gij − νiMν

j
M

)
Kij denote the bulk term of Ju,νM .

Let v be a locally Lipschitz function such that {v 6= u} ⊂ A ⊂⊂ M\Ē0. Let φ(z) be a
cutoff function such that:

|φz| ≤ 2, φ = 1 on [0, s] and φ = 0 on R\(−1, s+ 1).

Then V (x, z) := φ(z)v(x) + (1 − φ(z))u(x) is an appropriate comparison function for U ,
and letting Ã := A× [−1, s+ 1], we obtain from (6.2)∫

Ã

|∇u|+ uBu,νM =

∫
Ã

|∇̄U |+ U
(
|∇̄U | −

(
ḡij − ν̄iν̄j

)
Kij

)
≤
∫
Ã

|∇̄V |+ V
(
|∇̄U | −

(
ḡij − ν̄iν̄j

)
Kij

)
≤
∫
Ã

φ (|∇v|+ v Bu,νM ) + (1− φ) (|∇u|+ uBu,νM )

+ |φz|||v − u|.
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This implies

s · J A
u,νM

(u) = s

∫
A

|∇u|+ uBu,νM .

≤
∫
Ã

φ (|∇u|+ uBu,νM )

≤
∫
Ã

φ (|∇v|+ v Bu,νM ) + |φz|||v − u|

≤ (s+ 2)

∫
A

|∇v|+ v Bu,νM +

∫
A×([−1,0]⊂[1,2])

|φz||v − u|

≤ (s+ 2)J A
u,νM

(v) + 4

∫
A

|v − u|.

Dividing by s and passing s → ∞ proves that the pair (u, νM) satisfies (6.2). Lemma 6.1
then implies that the sets Et := {u < t} minimise Ju,νM for each t > 0.

We now state some further properties of weak solutions of (∗∗). We begin by showing
that smooth solutions of the flow (∗) are weak solutions in the domain they foliate. This
follows as in [HI, Lemma 2.3].

Smooth Flow Lemma 6.4 Let (Σt)a≤t<b be a smooth solution of (∗) on M . Let U = t
on Σt×R, U < a in the region bounded by Σa×R, and Ẽt := {U < t}. Then Ẽt minimises
JU,ν̄ in Ẽb\Ẽa for a ≤ t < b, where ν̄ is the smooth normal to the vertical cylinder Σt×R,

given by ν̄ = (νΣt , 0) =
∇̄U
|∇̄U |

.

Proof. We use the smooth normal ν̃ =
∇̄U
|∇̄U |

as a calibration and apply the divergence

theorem to relate JU,ν̃(Ẽt) to JU,ν̄(F̃ ) for a competing set F̃ of finite perimeter with
F̃∆Ẽt ⊂⊂ Ω̃. Let BU,ν̄ := |∇̄U | − (ḡij − ν̄iν̄j)Kij denote the bulk energy term in JU,ν̄ .

JU,ν̄(Ẽt) =|∂Ẽt| −
∫
Ẽt

BU,ν̄ dx =

∫
∂Ẽt

ν∂Ẽt · ν̄dH
n−1 −

∫
Et

BU,ν̄ dx

=

∫
∂Ẽt∩ ¯̃F

ν∂Ẽt
· ν̄dHn−1 +

∫
∂Ẽt\F̃

ν∂Ẽt · ν̄dH
n−1 −

∫
Ẽt

BU,ν̄ dx

=

∫
∂∗F∩ ¯̃Et

ν∂∗F̃ · ν̄dH
n−1 +

∫
Ẽt\F̃

BU,ν̄ dx−
∫
Ẽt

BU,ν̄ dx

+

∫
∂∗F̃\Ẽt

ν∂∗F̃ · ν̄dH
n−1 −

∫
F̃\Ẽt

BU,ν̄ dx

=

∫
∂∗F̃

ν∂∗F̃ · ν̄dH
n−1 −

∫
F̃

BU,ν̄dx ≤ |∂∗F̃ | −
∫
F̃

BU,ν̄ dx = JU,ν̄(F̃ ).
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Weak Mean Curvature. In view of the local C1,α estimates given by Regularity
Theorem 4.3, we can consider the weak mean curvature of the surfaces Σ̃t = ∂{U < t}.

Let Ñ be a C1 hypersurface in M × R. Then a locally integrable function H on Ñ is
called the weak mean curvature provided∫

Ñ

divÑXdµ =

∫
Ñ

Hν ·Xdµ, ∀X ∈ C∞c (T (M × R)). (6.8)

Lemma 6.5 Let Ẽt := {U < t} minimise JU,ν̄ in Ã := Ẽb\Ẽa, for U ∈ C0,1
loc (Ã). Then

the surfaces Σ̃t = ∂Ẽt have weak mean curvature H satisfying H = |∇̄U | − P for a.e.
x ∈ Σ̃t and a.e. t ∈ (a, b), where P = (ḡij − ν̄iν̄j)Kij.

Proof. Let X be a compactly supported vector field defined on M , and (Φs)−ε<s<ε the flow
of diffeomorphisms generated by X with Φ0 = idM . For minimisers of JU,ν , we use the
area formula, the dominated convergence theorem and the co-area formula in the form∫

Rn+2

|∇̄f |dx =

∫ ∞
−∞

∫
{f=t}

dt

to obtain

0 =
d

ds

∣∣∣∣
s=0

JU,ν̄(U ◦ Φ−1
s )

=
d

ds

∣∣∣∣
s=0

(∫
W̃

|∇(U ◦ Φ−1
s )|+ (U ◦ Φ−1

s )
(
|∇̄U | − (ḡij − ν̄iν̄j)Kij

)
dx

)
=

d

ds

∣∣∣∣
s=0

(∫ ∞
−∞

∫
Σ̃t∩W̃

| det dΦs(x)|dHn(x)dt

)
−
∫
W̃

∇̄U ·X
(
|∇̄U | − (ḡij − ν̄iν̄j)Kij

)
dx

=

∫ ∞
−∞

∫
Σ̃t∩W̃

divΣ̃t
XdHndt−

∫
W̃

ν̄ ·X|∇̄U |
(
|∇̄U | − (ḡij − ν̄iν̄j)Kij

)
dx,

since ν̄ =
∇̄U
|∇̄U |

when ∇̄U 6= 0, and ν̄|∇̄U | = 0 when ∇̄U = 0. Then by the co-area

formula, we obtain

0 =

∫ ∞
−∞

∫
Σ̃t∩W̃

(
divΣ̃t

X + (P − |∇̄U |)ν̄
)
·XdHn+1dt.

Lebesgue differentiation and comparison with (6.8) yields the result.

Exactly as in the proof of [HI, Theorem 2.1], we also obtain the following compactness
theorem for the time-of-arrival function.
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Compactness Property 6.6 Let Ui ∈ C0,1
loc (Ω̃i) and ν̄i ∈ C0,α

loc (T Ω̃i) be a sequence of
solutions of (6.2) on open sets Ω̃i ⊂M × R, such that

Ω̃i → Ω̃, Ui → U, ν̄i → ν̄, (6.9)

locally uniformly, and such that for each Ã ⊂⊂ Ω̃, supÃ |∇̄Ui| ≤ C(Ã), for large i, where
C(Ã) is independent of i. Then (U, ν̄) solves (6.2) on Ω̃. In the special case where (Ui, ν̄i)
is a sequence of weak solutions of (∗∗) satisfying Definition 6.2, then the limit (U, ν̄) is a
weak solution of (∗∗).



7 Geometric characterisation of jump regions

In this section we introduce the concept of outward optimisation in order to give a geometric
characterisation of the criterion selecting jump times. Since weak solutions (U(x, z) =
u(x), ν̄) of (∗∗) are translation invariant and the level sets of U are vertical cylinders, this
characterisation follows from the parametric variational formulation (4.2) for (u, νM :=
ν̄|TM).

Let Ω be an open set in M . Then we call a set E outward optimising (in Ω) with respect
to ν, if E minimises ‘area plus bulk energy P ’ on the outside in Ω. That is, if

|∂∗E ∩ A| ≤ |∂∗F ∩ A|+
∫
F\E

(gij − νiνj)Kij, (7.1)

for any F containing E such that F\E ⊂⊂ Ω, and any compact set A containing F\E.
Here ν is a measurable vector field on F\E. The set E is then called strictly outward
optimising (in Ω) if equality in (7.1) implies that F ∩ Ω = E ∩ Ω a.e.

We use this concept to define the strictly outward optimising hull of a measurable set
E ⊂ Ω. Specifically, we define E ′ = E ′Ω to be the intersection of the Lebesgue points of all
the strictly outward optimising sets in Ω that contain E. We call E ′ the strictly outward
optimising hull of E (in Ω). Up to a set of measure zero, E ′ may be realised by a countable
intersection, so E ′ is strictly outward optimising, and open.

We then obtain the following interpretation of the variational formulation.

Outward Optimising Lemma 7.1 Suppose that (U(x, z) := u(x), ν̄) is a weak solution
of (∗∗) with initial condition E0, and that M has no compact components. Then:

(i) For t > 0, Et is outward optimising in M with respect to νM := ν̄
∣∣
TM

.

(ii) For t ≥ 0, E+
t is strictly outward optimising in M with respect to νM .

(iii) For t ≥ 0, E ′t = E+
t , provided E+

t is precompact.

(iv) For t > 0, |∂Et| = |∂E+
t |+

∫
E+
t \Et

(gij − νiMν
j
M)Kij, provided that E+

t is precompact.

This extends to t = 0 precisely if E0 is outward optimising.

49
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Furthermore, for general (U, ν̄) satisfying (6.3) in M × R, the analogous statements hold
on compact sets Ω̃ ⊂M × R with

|∂∗Ẽ ∩ Ã| ≤ |∂∗F̃ ∩ Ã|+
∫
F̃\Ẽ

(ḡij − ν̄iν̄j)Kij, (7.2)

replacing (7.1) in the definition of outward optimising.

To prove Outward Optimising Property 7.1, we will need the following Lemma.

Lemma 7.2 Let (U, ν̄) satisfy (6.2) on Ω̃. Then U has no strict local maxima or minima
on Ω̃.

Proof. First assume that U possesses a strict local maximum so that there is a connected,
precompact component Ẽ of {U > t} for some t. Define the Lipschitz function Vk by

Vk :=

{
k on Êk := Ẽk ∩ Ẽ,
U on Ω̃\Êk,

(7.3)

for 0 < k < sup
Ẽ

U and Ẽk := {U > k}. Then (6.2) and Hölder’s inequality yield

∫
Êk

|∇̄U |(1 + U − k) ≤
∫
Êk

(U − k)C0 ≤ C0

(∫
Êk

(U − k)
n
n−1

)n−1
n

|Êk|
1
n , (7.4)

where C0 = (n + 1)|λ| and |λ| is the size of the largest eigenvalue of K on Ω̃. Then using
the Sobolev inequality on the left hand side we obtain∫

Êk

|∇̄U |(1 + U − k) ≥
∫
Êk

|∇̄U | =
∫
Êk

|∇̄(U − k)| ≥
(∫

Êk

(U − k)
n
n−1

)n−1
n

. (7.5)

Combining (7.4) and (7.5) we find 1 ≤ C0|Êk|1/n, which leads to a contradiction since |Êk|
can be made arbitrarily small by choosing k close to sup

Ẽ

U .

Now assume that U possesses a strict local minimum and let Ẽ be a connected, pre-
compact component of {U < t} for some t, and again consider the function Vk defined by
(7.3), where this time k > inf

Ẽ
U and Ẽk := {U < k}. Then as above, (6.2) and Hölder’s

inequality yield ∫
Ẽk

|∇̄U |(1 + U − k) ≤ C0

(∫
Ẽk

(U − k)
n
n−1

)n−1
n

|Ẽk|
1
n , (7.6)

and by restricting to k small enough that 1 + U − k ≥ 1
2

on Ẽk, we obtain∫
Ẽk

|∇̄U |(1 + U − k) ≥ 1

2

(∫
Ẽk

(U − k)
n
n−1

)n−1
n

. (7.7)
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Combining (7.6) and (7.7) we find 1/2 ≤ C0|Ẽk|1/n, which leads to a contradiction since
|Ẽk| can be made arbitrarily small by choosing k close to inf

E
U .

In the case where (U(x, z) := u(x), ν̄) is a weak solution of (∗∗), repeating the above
calculation for u on M , using (6.3), yields the desired result.

Proof of Outward Optimising Property 7.1: Refer to [HI, Minimising Hull Property 1.4].
(i) This follows immediately from Lemma 6.3.
(ii) From (6.5) we obtain for suitable A

|∂∗E+
t ∩ A| ≤ |∂∗F ∩ A|+

∫
F\E+

t

(gij − νiMν
j
M)Kij − |∇u|dx, (7.8)

for any t ≥ 0, any F with F∆E+
t ⊂⊂M\E+

t , proving that E+
t is outward optimising.

To prove strictly minimising, suppose F contains E+
t and

|∂E+
t ∩ A| − |∂∗F ∩ A| =

∫
F\E+

t

(gij − νiMν
j
M)Kij.

Then by (7.8), ∇u = 0 a.e. on F\E+
t . Since F is also outward optimising, and the

Lebesgue points of an outward optimising set form an open set in M , by a measure zero
modification we may assume F is open. Then u is constant on each connected component
of the open set F\{u ≤ t}. Since M has no compact components, Lemma 7.2 (i) means
that no connected component of F can have closure disjoint from Ē+

t , therefore u = t on
F\Et and F ⊆ E+

t . This proves that E+
t is strictly outward optimising.

(iii) It is clear from part (ii) and the definition of E ′t that E ′t ⊆ E+
t . Assume E+

t is
precompact. Then if

|E ′t ∩ A| = |E+
t ∩ A|+

∫
E+
t \E′t

(gij − νiMν
j
M)Kij,

strict outward optimisation implies that E ′t = E+
t . Otherwise

|∂E ′t ∩ A| < |∂E+
t ∩ A|+

∫
E+
t \E′t

(gij − νiMν
j
M)Kij,

contradicting (7.8).
(iv) In view of (i), we can use E+

t as a competitor to obtain

|∂Et ∩ A| ≤ |∂E+
t ∩ A|+

∫
E+
t \Et

(gij − νiMν
j
M)Kijdx, (7.9)

for t > 0, and for t = 0 if E0 happens to be outward optimising itself. Since E+
t is

precompact, strict inequality in (7.9) would contradict (iii), implying equality in (7.9),
which proves (iv).
The proof for general (U, ν̄) satisfying (6.3) in Ω̃ ⊂M × R follows exactly as above. �
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Outward Optimising Lemma 7.1 implies that ∂Et satisfies the obstacle problem min-
imising “area plus bulk energy P”, with Et as the obstacle. This leads to a heuristic
interpretation of the minimisation principle (6.2). Namely, as long as Et remains strictly
outward optimising, it evolves by inverse null mean curvature, and when this condition
is violated, Et jumps to E ′t and continues. This implies that the null mean curvature is
nonnegative on the weak solution after time zero. Furthermore, part (iv) of Lemma 7.1
implies that the monotonicity property

d

dt
|Σt|+

∫
Et\E0

P = |Σt| (7.10)

derived in Lemma 2.1, also holds in the weak setting, as long as Σt remains compact.

The outward optimising property also implies a stronger result for the surfaces foliating
the jump region in Proposition 9.6, namely we see that each Σ̃X0 is a smooth MOTS in
K̃t0 .

Proposition 7.3 Each surface Σ̃X0 from Proposition 4.1 in the foliation of the interior
K̃t0 of the jump region in M × R is a smooth MOTS.

To prove Proposition 7.3, we require the following Lemma.

Lemma 7.4

|∇̄Ui| → 0 in L1
loc(K̃t0). (7.11)

Proof. Recall d defined by (5.2), consider a target point X0 = (x0, z0) such that z0 > 2d+1
and select a cutoff function φ ∈ C2

c (R) such that φ ≥ 0 and sptφ ⊆ [z0−2d, z0 + 2d]. Then
let T0 = z0 − 2d − 1, fix an arbitrary time T > T0, and consider T0 ≤ t ≤ T and
L ≥ T + 3 + z0 + 2d.

We wish to show that

lim inf
i→∞

∫
Σ̃iti
∩BM×R

d (X0)

|D(H + P )|2 <∞.
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To this end, we calculate

d

dt

∫
Σ̃εt

φ(z)(H + P )2 (7.12)

=

∫
Σ̃εt

2φ(H + P )
∂

∂t
(H + P ) + (H + P )2∂φ

∂z
· νε
H + P

+ φH(H + P )

=− 2

∫
Σ̃εt

φ

(
(H + P )∆

(
1

H + P

)
+ |A|2 + R̄ic(νε, νε)− ∇̄νεP

+
2Di(H + P )

H + P
Kiνε

)
+ (H + P )

∂φ

∂z
· νε + φH(H + P )

=

∫
Σ̃εt

φ

(
−2
|D(H + P )|2

(H + P )2
− 2|A|2 − 2R̄ic(νε, νε) +H(H + P )

+ 2∇̄νεP − 4
Di(H + P )

H + P
Kiνε

)
− 2

φ

∂z
· D(H + P )

H + P
+ (H + P )

∂φ

∂z
· νε

In view of the sup estimates (3.8) and (3.16) for uε, there is R(T ) > 0 depending only on
the subsolution v and Kij such that

Σ̃ε
t ∩ (M × sptφ) ⊆ S(T ) := (BR(T )\E0)× [z0 − 2d, z0 + 2d], T0 ≤ t ≤ T.

The Outward Optimising Property 7.1, applied to Ẽε
t compared to the perturbation Ẽε

t ∪
S(T ), then provides the area estimate

|Σ̃ε
t ∩ (M × sptφ)| ≤ C(T ) +

∫
S(T )\Ẽεt

P ≤ C(T, ‖K‖C0), T0 ≤ t ≤ T. (7.13)

Together with the interior estimate (2.5), and the boundary gradient estimates for uε, this
shows

|H + P | ≤ C(T, ‖K‖C1) on Σ̃ε
t ∩ (M × sptφ), T0 ≤ t ≤ T.

It follows that∫
Σ̃εt

φ|H|(H + P ) + φ(H + P )2 + |(H + P )∇̄φ · νε| ≤ C(T, ‖K‖C1), T0 ≤ t ≤ T.

We estimate the Dφ and Kiνε terms via∣∣∣∣2Dφ · D(H + P )

H + P

∣∣∣∣ ≤ 2
|Dφ|2

φ
+
φ

2

|D(H + P )|2

(H + P )2
≤ C +

φ

2

|D(H + P )|2

(H + P )2
,∣∣∣∣4φDi(H + P )

H + P
Kiνε

∣∣∣∣ ≤ 8φ‖K‖2
C0 +

φ

2

|D(H + P )|2

(H + P )2
.
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Thus (7.12) becomes

d

dt

∫
Σ̃εt

φ(H + P )2 ≤
∫

Σ̃εt

−φ |D(H + P )|2

(H + P )2
+ C(T, ‖K‖C1), (7.14)

and integrating gives∫ T

T0

∫
Σ̃εt∩(M×[z0−2d,z0+2d])

|D(H + P )|2

(H + P )2
≤ C(T, ‖K‖C1), (7.15)

using a φ such that φ = 1 on [z0 − 2d, z0 + 2d].
Applying Fatou’s Lemma, for any sequence εi → 0 we obtain

lim inf
i→∞

∫
Σ̃it∩(M×[z0−2d,z0+2d])

|D(H + P )|2

(H + P )2
<∞, a.e. t ≥ T0. (7.16)

Now consider the subsequence εij → 0 from (5.5) such that Σ̃
ij
tij
→ Σ̃0 in C1(T∩Bn+1

R (X0)),

where T = TX0Σ̃X0 . We write i = ij henceforth. Since (7.16) only holds for a.e. t ≥ T0, it
will take more work to argue that lim inf

i→∞

∫
Σ̃iti
∩BM×R

d (X0)
|D(H + P )|2 <∞. To this end, we

pick a sequence t̂i such that t̂i → t0 + δ for some |δ| > 0, |t̂i − ti| ≤ εid and

lim inf
i→∞

∫
Σ̃i
t̂i
∩(M×[z0−2d,z0+2d])

|D(H + P )|2 <∞. (7.17)

Define ẑi :=
ui(x0)

εi
− t̂i
εi

and δi := ẑi − z0. Then the fact that Σ̃i
t̂i

is just a translation of

Σ̃i
ti

by δi in the z-direction implies that∫
Σ̃iti
∩BM×R

d (X0)

|D(H + P )|2 =

∫
Σ̃i
t̂i
∩BM×R

d (x0,z0+δi)

|D(H + P )|2,

for each i. Furthermore, the condition |t̂i− ti| ≤ εid implies that |δi| = |ẑi− z0| ≤ d, which
ensures that Σ̃i

t̂i
∩ BM×R

d (x0, z0 + δi) ⊂ M × [z0 − 2d, z0 + 2d], and thus from (7.17) we

obtain that

lim inf
i→∞

∫
Σ̃i
t̂i
∩BM×R

d (x0,z0+δi)
|D(H + P )|2 ≤

∫
Σ̃i
t̂i
∩(M×[z0−2d,z0+2d])

|D(H + P )|2 <∞,

from which our desired estimate follows

lim inf
i→∞

∫
Σ̃iti
∩BM×R

d (X0)

|D(H + P )|2 <∞. (7.18)
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As in the proof of Lemma (5.3), the converging surfaces Σ̃i
ti

can be written locally, via

the exponential map, as graphs of C1,α
loc functions wi over the hyperplane T . This local

C1,α convergence of the hypersurfaces, together with the first variation of area formula and
the Riesz Representation Theorem then implies that HΣ̃

X0

exists weakly as a locally L1

function, with the weak convergence∫
Σ̃iti

HΣ̃iti
νΣ̃iti
·X →

∫
Σ̃
X0

HΣ̃
X0

νΣ̃
X0

·X, X ∈ C0
c (T (M\E0 × R)). (7.19)

Then by (7.18) and Rellich’s theorem there exists a subsequence (again denoted by i) such
that

(H + P )Σ̃iti
→ (H + P )Σ̃

X0

in L2(T ∩Bn+1
R (X0))). (7.20)

Now the level-sets Σ̃i
ti

= {Ui = ti} smoothly solve (∗) in Ωi × R, thus

(H + P )Σ̃iti
= |∇̄Ui|,

and ∫
Σ̃iti

|∇̄Ui|2 =

∫
Σ̃iti

(H + P )2 →
∫

Σ̃
X0

(H + P )2. (7.21)

To proceed, we consider the special behaviour of the solution in the jump region. Let us first
consider the case where the limit surface Σ̃X0 given by Lemma 5.3 is not a vertical cylinder.
Then it is a graph, which means that |∇ûi| converges locally uniformly to something finite,
and therefore that |∇ui| = εi|∇ûi| converges locally uniformly to 0. In the other case the
surface Σ̃X0 given by Lemma 5.3 is a vertical cylinder. We know from (7.18) and (7.21)
that |∇̄Uī| converges in L2 to something finite. However this limit can only be zero since
Ui → U locally uniformly, and U is constant in the jump region (namely U = t0 on K̃t0
by hypothesis). Furthermore, since the local uniform convergence of Ui → t0 holds for the
entire sequence i, we must have L2 convergence of the entire sequence |∇̄Ui|, which implies∫

Σ̃iti

|∇̄Ui| → 0.

Proof of Proposition 7.3: Proposition 4.1 and Lemma 7.4 imply that each surface Σ̃X0 in the
jump region bounds a Caccioppoli set that minimises area plus bulk energy (ḡij − ν̃iν̃j)Kij

in K̃t0 . To complete the proof of Proposition 4.1, it remains to show that each surface Σ̃X0

in K̃t0 is in fact a smooth MOTS. To proceed, we use the connection between parametric
and non-parametric variational problems, that follows from the relationship between a
function w ∈ BVloc(Ω) and its subgraph

W = {(x, t) ∈ Ω× R : t < w(x)}. (7.22)
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In particular, let ϕW denote the characteristic function of the subgraph (7.22). Then
Theorem 14.6 in [Gi] states ∫

Ω

√
1 + |∇w|2 =

∫
Ω×R
|∇ϕW |. (7.23)

In (5.5) we established that at each point X0 ∈ K̃t0 , there exists a subsequence ij and a

function ŵ ∈ C1,α(B̂R(x̂0)) such that

ŵij → ŵ in C1(B̂R(x̂0)),

where B̂R(x̂0) := T̂ ∩Bn+1
R (x̂0), where

graph(ŵ) = Σ̂X0 = exp−1
q

(
Σ̃X0 ∩BM×R

R (X0)
)

(7.24)

Then Lemma 5.4 establishes that each surface Σ̃X0 bounds a Caccioppoli set E in K̃t0 that
minimises area plus bulk energy (ḡij − ν̃iν̃j)Kij in K̃t0 , where by construction ν̃ is the
outward unit normal vector to the relative boundary ∂Ẽ ∩ K̃t0 .

Therefore, writing the Caccioppoli set E locally as the subgraph of w := exp−1
q (ŵ), we

find from (7.23) that w minimises the functional

J̊
BR(x0)
ν̃ (w) :=

∫
BR(x0)

√
1 + |∇̄w|2dx

+

∫
BR(x0)

∫ w(x)

0

trMKij(x, τ)−Kij(x, τ)ν̃i(x, τ)ν̃j(x, τ)dτdx

in BR(x0) := expq(B̂Rx̂0)), whose Euler-Lagrange equation is the MOTS equation

div

(
∇̄w√

1 + |∇̄w|2

)
+
(
ḡij − ν̃iν̃j

)
Kij = 0, (7.25)

and by construction ν̃ =
(∇̄w,−1)√
1 + |∇̄w|2

. The left hand side of (7.25) is an elliptic operator

of the form

Aw = aij(∇̄w)

(
∇̄i∇̄jw +

√
1 + |∇̄w|2Kij

)
,

where

aij(p) :=
1√

1 + |p|2

(
ḡij − pipj

1 + |p|2

)
.

Since w ∈ C1,α(BR(x0)), aij ∈ C0,α(BR(x0)), Aw is strictly elliptic on BR(x0). Schauder
theory then implies that w ∈ C2,α(BR(x0)), and by bootstrapping further we obtain w ∈
C∞(BR(x0)). Using a suitable partition of unity, we obtain that each surface Σ̃X0 is a
smooth MOTS in K̃t0 . �



8 Existence of weak solutions

In this section we use the normal vector field ν̃ of the hypersurface foliation of the jump
region K̃t0 from Proposition 4.1 to extend ν̄ = ∇̄U

|∇̄U | across the jump region, thereby con-

structing a globally defined normal vector field ν̄. Existence of weak solutions is then
proven by taking the limit of the translating graphs Σ̃ε

t , using Compactness Property 4.2.

Theorem 8.1 (Existence of weak solutions) Let (Mn+1, g,K) be a complete, connected,
asymptotically flat initial data set without boundary, that satisfies trMK ≥ 0. Then for any
nonempty, precompact, open set E0 ⊂M with C2 boundary, there exists a weak solution of
(∗∗) with initial condition E0.

Proof. Let U be the limit of Uε as given by (3.26). We construct the vertical cylinders
Σ̃t := ∂{U < t} and Σ̃+

t := ∂{U > t} with local uniform C1,α bounds and unit normal
vector field ν with local C0,α bounds. Then using Theorem (4.2), we show that {U < t}
minimises JU,ν̄ in (M\E0)× R for each t, where ν̄ is extended in the jump regions K̃t0 by
the normal vector field ν̃ to the family of smooth MOTS {Σ̃

X0
}X0∈K̃t0

.

i) In the case where Σ̃t = Σ̃+
t , the surface Σ̃t is constructed by fixing a point X0 = (x0, z0) ∈

Σ̃t and considering the sequence of times ti such that X0 ∈ Σ̃i
ti

for each i. It then follows

exactly as in the proof of Lemma 5.3 that Σ̃i
ti

converges locally uniformly to Σ̃t. Since

Σ̃t = Σ̃+
t is a vertical cylinder, convergence holds for the full sequence, and the unit normal

vector field ν̃ is equal to ∇̄U
|∇̄U | .

ii) We use a slightly different pointwise approach to construct Σ̃t and Σ̃+
t when Σ̃t 6= Σ̃+

t .
To this end, let X0 ∈ Σ̃+

t0 at a jump time t0. Since there are only countably many such

t0, there exists a sequence of points Xi ∈ Σ̃ti with ti > t0, satisfying lim
i→∞

Xi = X0 and

lim
i→∞

ti = t0. For i � 1 large enough, we can assume that Σ̃ti = Σ̃+
ti , and as above each

surface piece Σ̃ti ∩ BM×R
R (Xi) can therefore be written via the exponential map (denoted

by the hat superscript) as the graph of a C1,α function ŵi over TX̂iΣ̂ti , where

Σ̂ti := exp−1
Xi

(Σ̃ti ∩BM×R
d (Xi)).

Now consider the sequence ν̂i of normal vectors to Σ̂ti at X̂i. Since the ν̂i(X̂i) are uniformly
bounded in C0,α, there exists a subsequence ν̂ij and a unit vector field ν̂ such that ν̂ij → ν̂

57
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uniformly on Bn+2

R̂
(X̂i). Let T̂ denote the hyperplane containing X̂0 and orthogonal to

ν̂(X̂0). For i� 1 large enough, we can then write each surface Σ̂ti locally as the graph of a
C1,α function ŵi over T̂ ∩ Bn+2

R̂
(X̂0). By Arzela-Ascoli, there exists a further subsequence

ŵij and a C1,α function ŵ : T̂ ∩Bn+1

R̂
(X̂i) such that

ŵi → ŵ in C1(T̂ ∩Bn+1

R̂
(X̂i)),

where X̂0 ∈ graph ŵ and T̂ = TXgraph ŵ. In order to recognise graph ŵ as a piece of
Σ̂+
t0 and T̂ as TX̂0

Σ̂+
t0 , we consider a point Y ∈ graph ŵ. Then there exists a sequence

Yi ∈ graph ŵi ⊂ Σ̂ti such that Yi → Y , and thus Û(Yi) = ti implies Û(Y ) = t0, where
Û := U ◦ exp .

In order to obtain a contradiction, assume that Y ∈ Ê+
t0 . Then there exists δ > 0 such

that Bn+2
δ (Y ) ∈ Ê+

t0 , however this contradicts the fact that Yi ∈ Σ̂ti for ti > t0. Thus we

deduce that graph ŵ ∈ Σ̂+
t0 as required. The case where X0 ∈ Σ̃t0 for Σ̃t0 6= Σ+

t0 follows
analogously.

In Proposition 4.1 we constructed a family of surfaces {Σ̃
X0
}X0∈K̃t0

foliating the jump

region K̃t0 of U . This foliation has a C0,α
loc normal vector field ν̃, which extends the vector

field of the surfaces Σ̃t0 and Σ̃+
t0 as a calibration across the jump region at jump times t0

via the definition

ν̄(x) :=



∇̄U
|∇̄U |

(x) if x ∈ Σt at regular times t,

ν̃ if x ∈ K̃t0 at a jump time t0,

lim
i→∞

∇̄U
|∇̄U |

(xi) if x ∈ Σ̃t0 , where xi ∈ Σ̃ti for xi → x, ti ↗ t0,

lim
i→∞

∇̄U
|∇̄U |

(xi) if x ∈ Σ̃+
t0
, where xi ∈ Σ̃ti for xi → x, ti ↘ t0.

This global interpretation of the normal vector field ν̄ in M\Ē0 × R means the functional
JU,ν̄ is well defined on M\Ē0 ×R, and it follows from Compactness Property 4.2 that the
sets {U < t} minimises JU,ν̄ in M\Ē0×R for each t. The result then follows from Lemma
5.4.

Proposition 8.2 Let (U(x, z) := u(x), ν) be a weak solution to (∗∗) that is obtained via
a limit of elliptic regularisation, as in the proof of Theorem 8.1, where ν is the vector field
defined above.

Projecting the normal vector ν of the weak solution to TM produces a vector field ν
M

that extends ∇u/|∇u| as a calibration across the jump region. The pair (u, ν
M

) satisfy

|ν
M
| ≤ 1, ∇u · ν

M
= |∇u| a.e.,∫

M\E0

∇ξ̂ · ν
M

+ ξ̂
(
|∇u| − (gij − νi

M
νj
M

)Kij

)
= 0 for all ξ̂ ∈ C1

c (M\E0). (�)
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Proof. Since U(x, z) is independent of z, the level-sets of U are vertical cylinders for a.e.
t. Our approach will be to show that U solves∫

(M\E0)×R
∇̄ξ · ν + ξ

(
|∇̄U | − (ḡij − νiνj)Kij

)
= 0, (8.1)

for ξ such that
ξ(x, z) = ξ̂(x)φ(z), ξ ∈ C1

c ((M\Ē0)× R+), (8.2)

and then infer that u satisfies (�). Since the level-sets Σ̃i
t = {Ui = t} smoothly solve (∗)

on Ωi × R with H + P > 0 for −∞ < t <∞, the unit normal

νi :=
∇̄Ui
|∇̄Ui|

,

to Σ̃i
t is a smooth unit vector field on Ωi × R satisfying

div(νi) +
(
ḡij − νiiν

j
i

)
Kij − |∇̄Ui| = 0, (8.3)

where ∇̄ denotes the connection on M × R.

Multiply (8.3) by ξ satisfying (8.2), where φ is a cutoff function the z-direction satisfying
φ ≥ 0, sptφ ⊂ (0, λ] for some 0 < λ <∞ and

∫
φ(z)dz = 1. Integrating by parts we obtain∫

Σ̃it

∇̄ξ · νi + ξ(|∇̄Ui| − (ḡij − νiiν
j
i )Kij) = 0. (8.4)

To show convergence of the second term, we use the fact that |∇̄Ui| = (H + P )Σ̃iti
and

follow the approach of Huisken and Ilmanen in [HI, Ch. 5] to obtain L2 convergence of
the null mean curvature. In particular, we fix a time T > 0 and consider 0 ≤ t ≤ T and
L ≥ T + 2 + λ, ε < 1 so that ∂Σ̃ε

t is disjoint from sptξ for 0 ≤ t ≤ T and the boundary
term disappears when we perform the integration by parts in (7.12). Reworking the proof
of Lemma 7.4 in this scenario, we obtain the area estimate

|Σ̃i
t ∩ spt ξ| ≤ C(T ), 0 ≤ t ≤ T,

analogous to (7.13). Together with the interior estimate (2.5), and the boundary gradient
estimates for uε, this shows

|H| ≤ C(T, ‖K‖C1) on Σ̃ε
t ∩ spt ξ, 0 ≤ t ≤ T. (8.5)

As in the proof of Lemma 7.4, we obtain the following uniform L2 estimate for D(H + P )

lim inf
i→∞

∫
Σ̃it∩(M×[0,λ])

|D(H + P )|2 <∞, a.e. t ≥ 0. (8.6)
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For t satisfying (8.6), we have

Σ̃i
t → Σ̃t = Σt × R locally in C1,

where Σt := ∂{u < t}. Specifically, the converging surfaces Σ̃i
t can be written locally

as graphs of C1,α functions wi over the fixed hyperplane T̃ = TX0Σ̃t, for some X0 ∈ Σ̃t.
The local C1 convergence of these hypersurfaces, together with the first variation of area
formula and the Riesz Representation Theorem then implies that HΣ̃it

exists weakly as a

locally L1 function, with the weak convergence∫
Σ̃it

H
Σ̃it

ν
Nit

·X →
∫

Σ̃t

H
Σ̃t
ν

Σ̃t
·X, X ∈ C0

c (T (M\E0 × R)), (8.7)

analogous to (7.19). Then by Rellich’s theorem together with (8.6) and (8.7), there exists
a subsequence ij such that

(H + P )
Σ̃
ij
t

→ (H + P )Σ̃t
in L2(T̃ ∩ (M × [0, λ])). (8.8)

To establish that the full sequence converges, we note that (7.14) (reworked for the function
ξ) implies that the function

∫
Σ̃it
ξ(H + P )2 − C(T < ‖K‖C0 , ‖K‖C1)t is monotone for

0 ≤ t ≤ T . Then using growth control, we can take a diagonal subsequence î such that

lim
î→∞

∫
Σ̃ît

ξ(H + P )2 exists, a.e. t ≥ 0, (8.9)

from which it follows that the full sequence i converges, that is∫
Σ̃it

ξ(H + P )2 →
∫

Σ̃t

ξ(H + P )2 a.e. t ≥ 0. (8.10)

We now use Lemma (6.8) to identify
∫

Σ̃t
(H + P ) with

∫
Σ̃t
|∇̄U |. It then follows from

(8.4) and (8.10) that∫
Σ̃it

ξ|∇̄Ui|2 =

∫
Σ̃it

ξ(H + P )2 →
∫

Σ̃t

ξ(H + P )2 =

∫
Σ̃t

ξ|∇̄U |2 a.e. t ≥ 0. (8.11)

Now for the first and third terms in (8.4), the local uniform convergence of the normal
vector νi → ν implies∫

Σ̃it

∇̄ξ · νi − ξ
(
ḡij − νiiν

j
i

)
Kij →

∫
Σ̃t

∇̄ξ · ν − ξ
(
ḡij − νiνj

)
Kij, a.e. t ≥ 0, (8.12)

and we obtain

0 =

∫
Σ̃it

∇̄ξ · νi + ξ
(
|∇̄Ui| −

(
ḡij − νiiν

j
i

)
Kij

)
→
∫
Σ̃t

∇̄ξ · ν + ξ
(
|∇̄U | −

(
ḡij − νiνj

)
Kij

)
. (8.13)
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for a.e. t ≥ 0.
To determine the behaviour in the interior K̃t0 of the jump region at a jump time t0,

we use the pointwise approach of Chapter 7. As in the proof of Lemma (5.3), by taking a
diagonal subsequence, we obtain

Σ̃i
ti
→ Σ̃X0 locally in C1,

for each point X0 in the interior K̃t0 of {U = t0} = {u = t0}×R. Then using Lemma (7.4)
we obtain

0 =

∫
Σ̃iti
∩Bd(X0)

∇̄ξ ·νi+ξ
(
|∇̄Ui| − (ḡij − νiiν

j
i )Kij

)
→

∫
Σ̃X0
∩Bd(X0)

∇̄ξ · ν̃−ξ(ḡij− ν̃iν̃j)Kij , (8.14)

where Bd(X0) = BM×R
d (X0) for d defined by (5.2).

Since the surfaces Σ̃t0 and Σ̃+
t0 at the jump time t0 have zero (n+2)-dimensional Hausdorff

measure, and there are only countably many jump times, combining the above we obtain
(8.1), ∫

(M\Ē0)×R
∇̄ξ · ν + ξ

(
|∇̄U | − (ḡij − νiνj)Kij

)
= 0.

We now reduce this to (�). Since Σ̃t = Σt × R is a cylinder for a.e t and U(x, z) = u(x),
the integral of each geometric quantity A(x, z) = A(x) breaks up as∫

Σ̃t

ξA dµΣ̃t
=

∫ λ

0

φdz

∫
Σt

ξ̂A dµΣt =

∫
Σt

ξ̂A dµΣt , a.e.t ≥ 0. (8.15)

Using the fact that Kij was extended trivially in the z-direction, and that ν = (νM , 0) =(
∇u
|∇u| , 0

)
is perpendicular to ∇̄φ, we obtain∫

Σ̃t

ξ|∇̄U |2dµΣ̃t
=

∫ λ

0

φdz

∫
Σt

ξ̂|∇u|2dµΣt =

∫
Σt

ξ̂|∇u|2dµΣt ,∫
Σ̃t

∇̄ξ · νdµΣ̃t
=

∫ λ

0

φdz

∫
Σt

∇ξ̂ · νMdµΣt =

∫
Σt

∇ξ̂ · νMdµΣt , ,∫
Σ̃t

ξḡijKijdµΣ̃t
=

∫ λ

0

φdz

∫
Σt

gijKijdµΣt =

∫
Σt

gijKijdµΣt ,∫
Σ̃t

ξνiνjKijdµΣ̃t
=

∫ λ

0

φdz

∫
Σt

ξ̂νiMν
j
MKijdµΣt =

∫
Σt

ξ̂νiMν
j
MKijdµΣt ,

Therefore we obtain for a.e. t ≥ 0∫
Σ̃t

∇̄ξ · ν + ξ
(
|∇̄Ui| − (ḡij − νiνj)Kij

)
=

∫
Σt

∇ξ̂ · νM + ξ̂
(
|∇u| −

(
gij − νiMν

j
M

)
Kij

)
. (8.16)
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We next consider the interior K̃t0 of the jump region {u = t0}×R. When Σ̃X0 = ΣX0×R
is (part of) a vertical cylinder, then ν̃ = (νM , 0) is perpendicular to the z-direction and the
right hand side decouples as in (8.15) above to obtain∫

Σ̃X0
∩Bd(X0)

∇̄ξ · ν̃ − ξ(ḡij − ν̃iν̃j)Kij =

∫
ΣX0
∩Bd(X0)

∇ξ̂ · νM − ξ̂(gij − νiMν
j
M)Kij. (8.17)

In the other case ν̃ = (νM , ν
z), and, by reducing d if necessary, we can choose φ(z) ≥ 0

such that sptφ ⊆ [0, λ],
∫
φ(z)dz = 1 and φ(z) = 1 on [z0 − d, z0 + d]. There exists

0 < R ≤ d such that Σ̃X0 ∩ B̃R = Σ̃X0 ∩ (BM
R (x0) × [z0 − d, z0 + d]) ⊆ Σ̃X0 ∩ Bd, where

B̃R := (BM
R (x0) × R). The translation invariance of the surfaces Σ̃Xα in the stack (5.6)

means that ν̃(X0) = ν̃(X0 + αez) = (νM , νz) and we find∫
Σ̃X0
∩B̃R

∇̄ξ · ν̃ − ξ(ḡij − ν̃iν̃j)Kij =

∫
Σ̃X0
∩B̃R

φ∇ξ̂ · νM + ξ̂
∂φ

∂z
· νz − φξ̂(gij − νiMν

j
M )Kij

=

∫
BMR (x0)

∇ξ̂ · νM − ξ̂(gij − νiMν
j
M )Kij ,

(8.18)

since K was extended trivially in the z-direction.
Combining (8.16), (8.17) and (8.18) we obtain (�), thereby completing the proof of

Proposition (8.2).

We remark that one can show that a solution (u, νM) to (�) satisfies (6.2).

Lemma 8.3 If the pair (u, ν
M

) satisfy (�) in Ω ⊂ M , then Ju,ν
M

(u) ≤ Ju,ν
M

(v) for
every locally Lipschitz function v such that {u 6= v} ⊂⊂ Ω.

Proof. The locally Lipschitz function ξ := v − u has compact support in Ω for any such
v satisfying {v 6= u} ⊂⊂ Ω. Using approximation by C1 functions, for every δ > 0 there
exists a C1

c function ξ̄ : Ω → R that differs from ξ on a set of measure δ > 0. Then from
(�)

0 =

∫
Ω

∇ξ̄ · ν
M

+ ξ̄|∇u| (|∇u| − P ) dx

≤
∫

Ω

∇(v − u) · ν
M

+ (v − u) (|∇u| − P ) dx+ δ
(
|∇(ξ̄ − ξ)|+ (ξ̄ − ξ) (|∇u| − P )

)
≤
∫

Ω

−|∇u| − u (|∇u| − P ) + |∇v|+ v (|∇u| − P ) dx+ δ
(
C Lip(ξ) + (ξ̄ − ξ) (|∇u| − P )

)
.

Since δ can be made arbitrarily small, we obtain∫
Ω

|∇u|+ u (|∇u| − P ) ≤
∫

Ω

|∇v|+ v (|∇u| − P )

where P =
(
gij − νi

M
νj
M

)
Kij.



9 Applications of weak solutions

In this section we highlight the natural applications of weak solutions of (∗∗) to the exis-
tence theory for MOTS and to the theory of weak solutions of IMCF.

9.1 Applications to MOTS

In this section we present an application of the evolution by inverse null mean curvature
to the existence theory for MOTS, and compare this to the following existence theorem
combining [AM] and [E], as stated in [AEM].

Theorem 9.1 ([AM, E]) Let (M, g,K) be an initial data set of dimension n + 1 ≤
7 and let Ω ⊂ M be a connected bounded open subset with smooth embedded boundary
∂Ω. Assume this boundary consists of two non-empty closed hypersurfaces ∂+Ω and ∂−Ω,
possibly consisting of several components, such that

H∂+Ω − tr∂+ΩK > 0 and H∂+Ω + tr∂+ΩK > 0, (9.1)

where the mean curvature scalar is computed as the tangential divergence of the unit nor-
mal vector field that is pointing out of Ω. Then there exists a smooth closed embedded
hypersurface Σ ⊂ Ω homogolous to ∂−Ω such that HΣ + trΣK = 0 (where HΣ is computed
with respect to the unit normal pointing towards ∂−Ω). Σ is stable in the sense of MOTS
and it is λ minimising in Ω for λ = 2(n + 1)κ, where κ denotes the largest eigenvalue of
K with respect to g across Ω.

Here λ-minimising in Ω means that the surface Σ arises as (a relative boundary of) a
subset E ⊂ Ω with perimeter Σ in Ω such that

|∂E ∩W | ≤ |∂F ∩W |+ λLn+1(E∆F ), (9.2)

for every F ⊂ Ω such that E∆F ⊂⊂ W ⊂⊂ Ω, for the constant λ := (n + 1)κ, where κ
denotes the largest eigenvalue of K with respect to g across Ω. A detailed analysis of such
λ-minimising boundaries is carried out in [DS]. We say that the set E is λ-minimising
on the outside/inside in Ω if E satisfies (9.2) for every F such that E∆F ⊂⊂ W , where
F ⊆ E, F ⊇ E respectively.
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We point out the following relationship between the variational principle (4.2) and the
λ-minimising property (9.2).

Proposition 9.2 Let κ denote the size of the largest eigenvalue of K on Ω\E0, let
λ := (n + 1)κ and suppose the Caccioppoli set E satisfies (4.2) in Ω\E0, then E is λ-
minimising on the outside in Ω\E0.

In particular, let U ∈ C0,1
loc (M × R) satisfy (??) in M\E0 × R, then the sets Ẽt =

{U < t} and {U ≤ t} are λ-minimising on the outside for each t > 0, t ≥ 0 respectively.
Furthermore, the surfaces Σ̃X0 foliating the interior K̃t0 of the jump region are λ-minimising
in K̃t0.

The Outward Optimising Property 7.1 of solutions to (6.3), together with the Regularity
Theorem 4.3 implies the following existence theorem for MOTS in initial data sets (M, g,K)
containing an outer trapped surface ∂Ω0 such that θ+

∂Ω0
< 0.

Proposition 9.3 Let (Mn+1, g,K) be an asymptotically flat initial data set of dimension
n+ 1 ≤ 7 satisfying trMK ≥ 0, and let E0 be any nonempty, precompact, smooth open set
in M satisfying θ+

∂E0
< 0 with respect to the unit normal pointing out of E0. Then the level

set ∂{U > 0} of the locally Lipschitz solution U of (6.3) is a vertical cylinder Σ× R over
a smooth, outward optimising MOTS in Σ ⊂ (M\E0) with respect to the outward normal
vector of ∂{u > 0}.

Proposition 9.3 exploits the fact that the solution must jump at t = 0 wherever the null
mean curvature of ∂E0 is strictly negative. In the special case where the outermost MOTS
Σ = ∂E in M\E0 satisfies

|∂E| ≤ |∂F | − (n+ 1)κLn+1(E\F ), (9.3)

for every MOTS ∂F in M\E0, then the weak solution to (∗∗) will jump to the cylinder
Σ × R over the outermost MOTS Σ at t = 0. In general, given any initial data, and any
initial condition E0 satisfying θ+

∂E0
< 0, the surface can’t jump beyond the outmost MOTS

at t = 0, and the MOTS ∂{u > 0} is a barrier for the outermost MOTS Σ in M\E0.

9.2 Applications to IMCF

In this section we discuss the above results in the context of the work of Huisken and
Ilmanen [HI] on inverse mean curvature flow, which motivated and guided this thesis.
In particular, when applied to the special case K ≡ 0, Definition 9.7 provides a new
perspective on weak solutions to inverse mean curvature flow. Furthermore, the work of
Chapter 7 carries over to prove the analogous results for the jump region.

Recall from Chapter 1.1 that the boundary value problem
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
divM

(
Du

|Du|

)
= |Du|,

u
∣∣∣
∂E0

= 0,

(?)

describes inverse mean curvature flow of the level-sets of the scalar function u : M\E0 → R
wherever |∇u| 6= 0. Here E0 ⊂ M is an open bounded set such that the initial surface N0

of the flow satisfies N0 = ∂E0. In [HI], Huisken and Ilmanen define a locally Lipschitz func-
tion u ∈ C0,1

loc (M) to be a weak solution of (?) with initial condition E0 if E0 = {u < 0} and

Ju(u) ≤ Ju(v), (9.4)

for every locally Lipschitz function v with {v 6= u} ⊂⊂ M\E0, where the integral is
performed over any compact set K ⊇ {u 6= v}. It then follows that u is a weak solution if
and only if the open set Et := {u < t} minimizes the parametric energy functional

Ju(F ) = |∂∗F | −
∫
F

|∇u|, (9.5)

in M\E0 for each t > 0. This weak formulation has the following properties, and the
subsequent existence result is obtained.

Theorem 9.4 (Properties of weak solutions, [HI])

(i) Compactness: ui be a sequence of minimisers of (9.4) on Ωi ⊂ M such that ui →
u and Ωi → Ω locally uniformly, and such that for each K ⊂⊂ Ω and large i,
supK |∇ui| ≤ C(K). Then u minimises (9.4) on Ω.

(ii) Uniqueness: If (Et)t>0 and (Ft)t>0 minimise (9.5) in M with initial conditions sat-
isfying E0 ⊆ F0, then Et ⊆ Ft provided Et is precompact in M . In particular, there
exists at most one weak solution (Et)t>0 for a given E0 such that each Et is precom-
pact.

(iii) Smooth solutions of (IMCF) are weak solutions to (?) on the domain foliated by the
smooth solution.

Theorem 9.5 (Existence of weak solutions, [HI]) Let M be a complete, connected Rie-
mannian manifold without boundary. Suppose there exists a proper, locally Lipschitz, weak
subsolution v of (9.4) with a precompact initial condtion.1

Then for any nonempty, precompact, smooth open set E0 in M , there exists a proper, lo-
cally Lipschitz weak solution u of (?) with initial condition E0, which is unique on M\E0.

1If M is asymptotically flat, then as in Chapter 2.3.1 there exists α > 0 large enough such that α log r
is a subsolution. In part 2 of the proof of Theorem 3.1 in [HI], Huisken and Ilmanen show that it is
sufficient that M be only asymptotically conic.
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Furthermore, the gradient of u satisfies

|∇u(x)| ≤ sup
∂E0∩Br(x)

H+ +
C(n)

r
, a.e. x ∈M\E0, (9.6)

for each 0 < r ≤ σ(x), where σ is defined in Definition 2.3, and H+ := max(0, H∂E0).

The jump region
The theory of weak solutions to inverse mean curvature flow as laid out by Huisken and
Ilmanen in [HI] does not include a complete analysis of the jump regions. In [He], Heidusch
proved optimal C1,1

loc regularity for the surfaces Nt0 = ∂{u < t0} and N+
t0 = ∂{u > t0}

enveloping the jump region. Applying Chapter 7 in this special case where K ≡ 0, we
obtain a foliation of the interior of the jump region {u = t0} × R by area minimising
hypersurfaces, a result which was left open in [HI].

Corollary 9.6 Let u be the weak solution of (?) given by Theorem 9.5. At a jump
time t0, the interior K̃t0 of the region {u = t0} × R is foliated by smooth area minimising
surfaces, each of which is either a vertical cylinder or a smooth graph over an open subset
of K̃t0.

Weak solutions of IMCF
In this section we utilise the jump region hypersurfaces of Corollary 9.6 to present a new
perspective on weak solutions of inverse mean curavture flow. In particular, we show that
by instead considering the weak solution to be a family of hypersurfaces one dimension
higher in M × R, we obtain a richer notion of weak solution.

Definition 9.7 (Alternative weak formulation) Let u be the unique, locally Lipschtiz
weak solution to (?) on M\E0 given by Theorem 9.5, and define the locally Lipshitz
function U(x, z) := u(x) on (M\E0) × R. The weak solution to (?) is defined to be the

pair (U, ν), where ν is a unit length, translation invariant extension of
∇̄U
|∇̄U |

in the jump

regions such that at each point x ∈ K̃t0 , ν(x) is the normal vector to a C1,α hypersurface
passing through x, which bounds a Caccioppli set that minimises JU,ν in K̃t0 .

Remark 9.8 This weak solution (U, ν) has the following interpretation in M\E0. Pro-
jecting the normal vector ν to TM produces a vector field ν

M
that extends ∇u/|∇u| as a

calibration across the jump region. The pair (u, ν
M

) then have the following interpretation
in M\E0. Namely, there exists a measurable vector field ν

M
such that

|ν
M
| ≤ 1, ∇u · ν

M
= |∇u| a.e.,∫

Ω

∇ξ · ν
M

+ ξ|∇u| = 0 for all ξ ∈ C1
c (M\E0). (�)

We obtain the following weak existence result as a corollary of Theorem 8.1.
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Corollary 9.9 (Existence of weak solutions) Let M be a complete, connected Rieman-
nian n-manifold without boundary. Suppose there exists a proper, locally Lipschitz, weak
subsolution of (9.4) with a precompact initial condition.

Then for any nonempty, precompact, smooth open set E0 in M , there exists a weak
solution satisfying Definition 9.7 in M\E0×R with initial condition E0. Furthermore, the
locally Lipschitz function u associated to this weak solution uniquely solves (�) in M\E0.

Uniqueness of the function u solving (�) follows from the observation that solutions of
(�) satisfy Huisken and Ilmanen’s variational formulation (see proof of Lemma 8.3), which
enjoys the Uniqueness Property 9.4 ii).

Corollary 9.10 If the locally Lipschitz function u satisfies (�) in Ω, then

Ju(u) ≤ Ju(v)

for every locally Lipschitz function v such that {v 6= u} ⊂⊂ Ω.

We conclude therefore that the formulation (�) is equivalent to Huisken and Ilmanen’s
variational formulation under the hypothesis of Theorem 8.1. We further remark that
taking ν ≡ 0 in the jump regions is also a solution to (�), thus one can only expect
uniqueness for the function u solving (�), and not for the pair (u, ν

M
). This observation

that information is lost by projecting the normal vector field ν̃ to TM in the jump region
highlights why it is preferable to formulate the weak solution to inverse mean curvature
flow one dimension higher (as in Corollary 9.9), where one obtains a family of surfaces
satisfying the variational principle everywhere.





Bibliography

[AEM] Andersson, L., Eichmair, M., Metzger, J., Jang’s equation and it’s applications to
marginally outer trapped surfaces. Contemporary Mathematics 554:Complex Anal-
ysis and Dynamical Systems IV (2011)

[AM] Andersson, L., Metzger, J., The Area of Horizons and the Trapped Region. Commun.
Math. Phys. 290, 941-972 (2009)

[Br] Bray, H.L., Proof of the Riemannian Penrose inequality using the positive mass
theorem. J. Diff. Geom 59, 177-267 (2001)

[BM] Bray, H.L., Miao, P., On the capacity of surfaces in manifolds with nonnegative
scalar curvature. Invent. Math. 172, 459-475 (2008)

[BN] Bray, H.L., Neves, A., Classification of prime 3-manifolds with Yamabe invariant
greater than RP3. Ann. of Math. 159, 407-424 (2004)

[CGG] Chen, Y.G., Giga, Y., Goto, S., Uniqueness and existence of viscosity solutions of
generalized mean curvature flow equation. J. Diff. Geom. 33, 749-786 (1991)

[CIL] Crandall, M., Ishii, H., Lions, P-L., User’s guide to viscosity solution of second order
partial differential equations. Bull. Amer. Math. Soc. 27, 1-67 (1992)

[DS] Duzaar, F., Steffen, K., λ-minimising currents. Manuscripta Math. 80, 403-447
(1993)

[E] Eichmair, M., The Plateau problem for marginally outer trapped surfaces. J. Diff.
Geom. 83, 551-584 (2009)

[ES1] Evans, L.C., Spruck, J., Motion of level sets by mean curvature, I. J. Diff. Geom.
33, 635-681 (1991) J. Geom. Anal. 5, 77-114 (1995)

[Ge] Gerhardt, C., Flow of Nonconverx Hypersurfaces into Spheres. J. Diff. Geom. 32,
299-314 (1990)

[G] Geroch, R., Energy Extraction. Ann. New York Acad. Sci. 224, 108-117 (1973)

[GT] Gilbarg, D., Trudinger, N.S., Elliptic Partial Differential Equations of Second Order.
Springer (2001)

69



70 Bibliography

[He] Heidusch, M., Zur Regularität des inversen mittleren Krümmungsflusses. PhD thesis,
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