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Summary

Efficient and accurate methods are indispensible in the evaluation of
complex systems. Methods of various abstraction levels may be applied,
ranging from measurements in test-beds over simulation to analytical
approaches. These methods vary in their efficiency and accuracy. In or-
der to obtain realistic results, methods from all abstraction levels should
be applied. Furthermore, real-world phenomena must be represented in
a suitable way at all abstraction levels. This approach requires the use
of stochastic models for the faults that may affect a system. This thesis
explores several important issues of system evaluation using stochastic
fault models.

The first part of the thesis provides a survey of stochastic fault-
models for system evaluation. We survey a broad range of existing
fault-models and provide a new classification scheme for fault models
in service-oriented systems.

In the second part of the thesis we address the use of phase-type (PH)
distributions as fault models in system evaluation. We study algorithms
for random-variate generation and discuss their computational costs. An
optimisation method for reducing the cost of random-variate generation
by transformation of the representation is presented and an optimality
result for the sub-class of acyclic phase-type distributions is derived. We
then develop a new algorithm for efficient and user-friendly fitting of PH
distributions to data sets using clustering. The algorithm is implemented
as part of the HyperStar tool. We additionally illustrate application of
HyperStar as a graphical user interface for prototype algorithms using a
new algorithm for fitting general PH distributions.

The third part illustrates application of the results from the first and
second parts. We first study the application of stochastic fault models for
IP packet loss in fault-injection and investigate the interaction between
fault models and traffic arrival streams and its impact on evaluation
results. We then describe a library for random-variate generation from
phase-type distributions and show its use in two case-studies.





‘It is the nature of an hypothesis, when once a man has con-
ceived it, that it assimilates everything to itself, as proper
nourishment; and from the first moment of your begetting
it, it generally grows the stronger by everything you see,
hear, read, or understand. This is of great use.’

Laurence Sterne, The Life and Opinions of
Tristram Shandy, Gentleman, p.104f [Ste69]





Contents

Contents i

Introduction v
Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgments xv

I Stochastic Fault-Models for System Evaluation 1

1 A Survey on Fault Models for QoS Evaluation of Complex Dis-
tributed Systems 3
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 A Survey of Available Fault Models and Data . . . . . . . . . . . . . 8
1.3 SOA Fault Classification Schemes . . . . . . . . . . . . . . . . . . . . 22
1.4 Application: Fault Models in the Study of Service-Oriented and Mas-

sively Virtualised Systems . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

II Phase-type Distributions 35

2 Background on Phase-type Distributions 37
2.1 Notation, Formal Definition and Properties . . . . . . . . . . . . . . 37
2.2 Classes of Phase-type Distributions . . . . . . . . . . . . . . . . . . . 42
2.3 Transformations and PH Representations . . . . . . . . . . . . . . . 44
2.4 Canonical Representations . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Algorithms for Random-Variate Generation from Phase-type Dis-
tributions 61
3.1 General Terminology and Structure of the Survey of Algorithms . . . 62
3.2 Atomic Operations and Cost Metrics . . . . . . . . . . . . . . . . . . 63
3.3 The Inversion Method for Phase-type Random-Variate Generation . 66
3.4 The Acceptance-Rejection Method for Random-Variate Generation . 68
3.5 Characterisation Methods for Random-Variate Generation . . . . . . 70
3.6 Example: Costs of Random-Variate Generation . . . . . . . . . . . . 83
3.7 Computational Costs of Atomic Operations . . . . . . . . . . . . . . 88
3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

i



Contents

4 Optimisation of PH Generators for Random-Variate Generation 93
4.1 Optimisation for Acyclic Phase-Type Distributions . . . . . . . . . . 94
4.2 Optimisation for General Phase-type Distributions . . . . . . . . . . 103
4.3 Algorithms for Monocyclic Optimisation . . . . . . . . . . . . . . . . 107
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Efficient and User-Friendly PH Fitting 115
5.1 Cluster-based Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Case-Study: Application of HyperStar in Algorithm Development . . 133
5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

III Applications 147

6 On Stochastic Fault-Injection for IP-Packet Loss Emulation 149
6.1 Measurement, Modelling, and Injection of IP Packet Loss . . . . . . 150
6.2 Experiments with IP-Packet-Loss Models . . . . . . . . . . . . . . . 153
6.3 Concluding Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Phase-type Distributions in System Evaluation 159
7.1 The libphprng Library . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2 Case-Study I: Accurate Evaluation of Restart Strategies . . . . . . . 161
7.3 Case-Study II: Evaluation of PTP Performance in Tree-Structured

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Conclusion 179

ii



Contents

Appendices 181

A Small Proofs 183

B Stochastic Modelling Miscellany 185
B.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 185
B.2 The Embedded Markov Chain (EMC) . . . . . . . . . . . . . . . . . 187

C Moment-Matching for Erlang Distributions 189

D Projection Methods 191

Bibliography 197

iii





Introduction

System evaluation is an indispensible part of the design and development of com-
puter and communication systems. It provides us with insights into important
performance, dependability, and security properties of the systems we study, thus
fostering an understanding of the status quo as well as providing directions for future
developments.

As a running example for the kind of questions asked in system evaluation, let us
consider the problem of computing the restart timeout in a distributed client-server
system. The client uses this timeout to detect if a request takes very long to complete
or has failed altogether. When the timeout elapses, the client aborts and restarts
the request. If failures and long completion-times are caused by transient faults, the
restarted request may receive a response that arrives sooner than if the client had
waited for the response to the original request. Measurement studies show that large
response-times or failed requests can occur due to transient faults such as IP packet
loss and temporary server overload [RvMW04, RvMW06a, RW08b, RWW09]. In
many scenarios, the restart method can be used to improve both performance and
dependability. However, the restart timeout must be adapted to the scenario. If the
timeout is too small, the client may restart too often, thereby increasing the load and
exacerbating the problem. If, on the other hand, the timeout is too large, restart
will have litte effect on the response-times, as it is very unlikely to be triggered.
In order to develop algorithms for computing the restart timeout we first need to
understand the behaviour of existing systems in terms of response-times and request
failures. We must then quantify the effects of restart, in order to determine if our
algorithms reduce response-times and the number of failed requests.

Such problems can – and ideally should – be studied at different abstraction
levels. Experimentation on test-beds is necessary to gain an understanding of the
object of study under realistic conditions. On the other hand, formalisation of the
problem within an abstract mathematical framework is a prerequisite for obtaining
general results. Abstraction levels generally differ in the type of methods that are
available: At a high abstraction level, analytical methods can be applied, while more
detailed system models may become analytically intractable and require simulation.
Finally, the evaluation of realistic system behaviour under controlled conditions re-
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Introduction

quires experimentation using system test-beds. Typically, the higher the abstraction
level, the more elegant the solution methods. In particular, this affects the speed
with which solutions can be obtained, and thus the range of parameter variations
that can be explored. On the other hand, the attractiveness of elegant solution
techniques and general results comes at the disadvantage that a high-level abstrac-
tion may abstract away important aspects of the problem (or even the problem
itself). Combining approaches allows us to cross-check results obtained at different
abstraction levels and thus ensures that our results are both meaningful and general.

Referring to our running example, the question how to best compute the timeout
may be addressed using several approaches at different abstraction levels. One may
start by comparing implementations of restart algorithms using a test-bed with fault-
injection [RvMW06a, RW08a]. However, the results are then specific to the scenario
reflected in the test-bed, and experiments often require a considerable amount of
time. Insights that apply to other scenarios require more abstract approaches. For
instance, based on their model of response-times as a random variable the authors
of [vMW06] develop an algorithm for computing the restart timeout that minimises
response-times. This algorithm is very general in that it can be applied to all
situations where one is interested in reducing response-times. On the other hand,
it is limited in that the underlying model only considers restart by a single client.
The common situation where several clients apply restart requires a less abstract
model, such as the queueing-models proposed in [WR08, WR10]. Unfortunately,
in contrast to the one in [vMW06], these models cannot be solved analytically and
require simulation, which renders results less general. Furthermore, simulation often
requires more time than the analytical solution of [vMW06].

Irrespective of the abstraction level, it is helpful to think of a system evaluation
as being performed on a system model, which models the relevant behaviour of the
system. When studying problems of performance, dependability, or security we are
especially interested in the behaviour of the system under various common faults or
perturbations. System behaviour is assessed using measures defined for the system
model. For instance, a typical measure for queueing-network models is the job
completion time, while a common measure in a testbed is response-time.

In order to use a system model to study the effect of faults or perturbations
on a system, we must be able to add models for these faults to the system model.
Recurring to well-known terminology from fault-tolerant computing, we call these
models for faults fault models, but extend the classical definition by requiring that
the model allows us to reproduce the fault in a realistic way. Fault models are
parameters to the system model. Such a clear distinction between the fault model
and the system model is common in fault-injection experiments for dependability
benchmarking, where one explicitly describes a fault-load that the system is sub-
jected to [vMBP+08, VM02]. We apply this concept to system models in general,
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by describing the factors that affect the measures by fault models, which we treat as
parameters to our system model. Such parameterisation may be as simple as setting
a service rate in a queueing-network model, or a constant delay in a testbed. In this
case, the parameter to the system model is the constant service rate or the constant
delay. However, service rates or delays may vary over time. If we have a model for
these variations, we can replace the constants by this model. In doing so, we set the
fault-model parameter of the system model to be the model expressing service-rate
or delay variations.

This notion of fault models as parameters to system models implies that we
can obtain the same measures with the same interpretation from the system model,
regardless of the fault models that are used to represent faults. That is, using the
terminology of functional and non- (or extra-) functional behaviour, we require that
the system model maintains the same functional behaviour and the same system
structure when we change the fault model. This clarification is necessary because
with some model classes the system model may change significantly when the fault
model is changed. For instance, introducing response-times modelled by phase-
type (PH) distributions into a Continuous-Time Markov Chain (CTMC) model will
lead to a drastically different CTMC, as this is accomplished by replacing a single
transition by the Markov chain underlying the PH distribution. Still, the same
measures, such as first-passage time, can be computed for the original and the
modified model, and have the same interpretation for both.

The distinction between system models and fault models highlights a few require-
ments often encountered in system evaluation. First, fault models used in the eval-
uation must of course accurately reflect properties of the real world. Second, it
should be possible to use the fault models in different types of system models, such
that methods from the different abstraction levels can be used. Third, the resulting
models should allow efficient evaluation methods. Fourth, fault models should be
such that they can easily be derived and used, and, finally, fault models for typical
faults must be availabe.

Contributions

The contributions in this thesis help to address these requirements. The first part of
the thesis surveys fault models that are available for system evaluation and studies
issues of their application. The second part provides several improvements to the
state of the art in using phase-type distributions as fault models. The third part
illustrates these concepts in several applications.

In the following we give a short overview of these contributions. A chapter-
by-chapter summary is provided in the section titled Organisation of the Thesis,
below.
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Introduction

Part I: Stochastic Fault Models for System Evaluation In the first part
of the thesis we consider stochastic fault-models for system evaluation in general.
Irrespective of the method used when evaluating a system, an important problem
is the need for realistic models of the faults that can occur. Without realistic fault
models, evaluation results cannot be expected to be relevant. As discussed in the
second part, phase-type distributions are one important tool in modelling faults,
but many other types of models do exist. Ideally, fault-models are derived from
measurements of the real system. In practice, however, the real system may not be
accessible to the researcher or it may not even exist yet. These difficulties are partic-
ularly relevant for complex distributed systems consisting of many layers of complex
components. With these systems, models that can reproduce the fault-behaviour
of the component systems accurately are required in analytical, simulation, and ex-
perimental studies. In this work we discuss existing fault-models for component
systems and investigate the importance of accurate fault-models for IP packet loss
in simulation studies.

There exists a large number of measurement studies of various systems that
are often components in larger systems (e.g. the network or a web server), and in
recent years many measurement traces have been made available in data repositories
(e.g. the AMBER data repository [AMM10]). Models for the failures observed in
these studies can be used as fault models in larger systems, but existing results are
scattered widely, and for many component systems no fault models exist.

Using a service-oriented system as an example, we survey existing fault models
and classify them according to previously-proposed fault classification schemes. Our
survey gives an overview of fault models that allows the reader to select the required
fault models for system evaluation. With these fault models, the system model
can be parameterised such that it reflects the properties of a real-world system.
Additionally, we provide a fault-classification scheme that is well-suited to classifying
fault models. Our survey also helps to identify areas where no suitable fault models
are available yet.

The work in this part helps the reader to quickly and accurately parameterise
system models for evaluation studies using testbeds, simulation, and analytical ap-
proaches, such that the studies provide realistic results.

Part II: Phase-type Distributions The second part of the thesis focusses on
phase-type distributions, which can be used as a special type of fault-model. Phase-
type (PH) distributions [Neu81] are a well-known tool in the analytical community,
but are seldom used in simulation or experiments. For example, the well-known
simulation-tools NS-2 [ns2], OMNet++ [Var01] and Möbius [DCC+02] do not sup-
port phase-type distributions as part of their set of standard distributions, and the
same holds for system test-beds, e.g. the SOA test-bed generator GENESIS [JTD08].
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While in each of these tools PH distributions may be explicitly modelled, they can-
not be used as a ready-made module, in the same way that other distributions are
supported. As PH distributions can fit many properties of empirical distributions
very well and are also very well suited for analytical approaches, their application
as fault models in simulation would fill a gap between the abstraction levels, as it
helps to use the same fault models throughout all levels. This work focusses on
random-variate generation and fitting of PH distributions as two important aspects
of the use of these distributions.

Random-variate generation from PH distributions has received very little atten-
tion, both with respect to the development and implementation of algorithms and
with respect to the performance costs involved. In 1981, Neuts and Pagano [NP81]
proposed a first algorithm with optimisations for more efficient random-variate gen-
eration. This algorithm operates on the underlying structure of a PH distribution.
Brown et al. [BPdL98] explored numerical inversion of the distribution function as
a way of generating Phase-type and Matrix-Exponential random variates. Recently,
Horváth and Telek [HT11] developed an algorithm that uses the acceptance/rejec-
tion technique to improve efficiency. Kriege and Buchholz [KB11] support PH dis-
tributions as part of their module for generating stochastic processes in OMNeT++,
and thus provide tool support for the PH class. They implement a straightforward
algorithm without any optimisations for efficiency.

This work addresses random-variate generation from PH distributions both from
a theoretical and a practical point of view. We survey existing approaches and
present two new algorithms. Complexity of the random-variate generation algo-
rithms is compared in terms of atomic operations. We give a result for the optimal
representation of Acyclic Phase-type distributions in terms of the computational
costs of random-variate generation. Although the result does not extend to the
whole PH class, optimisation is still possible for general PH distributions, and we
provide heuristic algorithms for the optimisation process.

In contrast to simulation, fitting of PH distributions to data sets is a well-
explored area. Approaches include moment-fitting (e.g. [BPdL98, TH02a, BHT05,
CZS08]), Expectation-Maximisation (EM) algorithms (e.g. [ANO96, RDS02, TBT06,
WLS08, SH08]) and methods from non-linear optimisation (e.g. [HT02]). These ap-
proaches differ in the PH classes they support and in the fitting quality they provide.
From a practical point of view, tool support for PH fitting is equally important as
the fitting quality. Although not all of these methods are implemented in ready-
to-use tools, there exist several implementations: Moment-fitting is implemented in
e.g. the KPC-Toolbox [CZS08], EM algorithms are employed in e.g. G-FIT [TBT06]
and EMPHT [ANO96], and non-linear optimisation is used in PhFit [HT02].

This work augments the set of tools for PH fitting in two ways. First, a cluster-
based approach is proposed that allows efficient identification and fitting of impor-
tant features of the empirical data, such as peaks in the density. The method lends
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itself to intuitive optimisation of the fitting quality, as the user can set initial pa-
rameters by graphical selection of important properties. The algorithm forms the
basis of the HyperStar tool, which is an extensible tool for PH fitting. HyperStar
produces PH distributions that capture the density of typical distributions better
than established tools and are well-suited for simulation at the same time. Second,
the modular architecture of HyperStar allows its use as a graphical user interface
for new fitting algorithms. This is illustrated in a case-study of a new algorithm for
fitting general PH distributions. The algorithm gives results comparable to existing
tools, but provides sparse representations.

The work presented in the second part enables efficient and user-friendly appli-
cation of the PH class throughout all abstraction levels in system evaluation. This
allows the use of an integrated evaluation approach using analysis, simulation and ex-
perimentation, thereby improving the quality and significance of system-evaluation
results.

Part III: Applications The third part illustrates these concepts using several
case-studies. We first discuss the choice of appropriate fault-models for IP packet
loss, before illustrating the application phase-type distributions in efficient simula-
tion.

IP packet loss models are an important instance of fault models due to the
prevalence of networked systems. In particular, loss models are required to repro-
duce realistic working conditions in testbed-based evaluations of networked systems.
Gilbert models provide a good description of packet-loss dynamics in the Inter-
net (e.g. [ZPS00, ZDPS01, HGHl08]), since they can represent alternating phases of
high and low loss levels. Gilbert models describe the packet-loss process by a Markov
chain with different loss levels for the states of the chain. Such models are commonly
derived from traces of the packet loss between two hosts. A Gilbert model can be
understood both as an embedded Discrete-Time Markov Chain (DTMC) and as a
Continuous-Time Markov Chain (CTMC), and both models can describe packet-loss
traces equivalently well. We study the use of both interpretations of Gilbert mod-
els for packet-loss injection in a test-bed, and show that models which are identical
from the point of view of describing the packet-loss process can produce significantly
different results when reproducing the process. The Linux kernel module NetemCG,
which was developed as part of the evaluation, enables the injection of packet loss
according to a continuous-time Gilbert model. Results obtained using this model
appear more realistic than those of a discrete-time Gilbert model, as implemented
in [SLO10].

Our findings for efficient random-variate generation from phase-type distribu-
tions are implemented in the libphprng library, which is part of Butools [BBH+11].
With these contributions, efficient simulation of PH distributions becomes appli-
cable in a wide range of scenarios, as the library can easily be used in popular
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tools, such as OMNeT++ and NS-2. As illustrated in a case-study, the efficient
algorithms developed here enable simulation speeds almost four times as fast as the
approach in [KB11]. A second case-study demonstrates the performance gain that
can be achieved by using PH distributions to approximate complex sub-models in a
simulation.

Organisation of the Thesis

In the first part of the thesis we take a general perspective on fault models. Part I
has the following structure:

Chapter 1 surveys existing fault models using a recursive approach derived from
the structure of a service-oriented system. We discuss fault-classification schemes for
service-oriented systems and illustrate their application to order the fault models.
We identify areas where the behaviour of faults is still not well-understood and
discuss shortcomings of the existing classification schemes. These shortcomings are
addressed by the classification scheme that we use throughout the survey. An earlier
version of the work in this chapter is available in [RWM10].

The second part of the thesis concerns various aspects of using phase-type distribu-
tions as fault-models in system evaluation. Part II is structured as follows:

Chapter 2 summarises existing work on phase-type distributions in order to pro-
vide the necessary mathematical background. This chapter introduces basic nota-
tion, special and canonical representations, important properties, and operations
used throughout the remaining chapters of the first part of this work.

Chapter 3 discusses algorithms for random-variate generation from PH distribu-
tions. The chapter gives an overview of existing algorithms before embarking on
a detailed study of algorithms that rely on playing the Markov Chain of the PH
distribution. We show that the structure of the representation affects efficiency of
random-variate generation. We identify metrics for the cost of random-variate gen-
eration and derive expressions for these metrics that are based on atomic operations.
A measurement study illustrates that the costs of different atomic operations may
differ significantly. This chapter is based on work which has been presented before
in [RWBT09, RTW10, HRTW12, RBD12].

Chapter 4 describes optimisation of phase-type distributions for efficient random-
variate generation. Starting from the canonical form for the Acyclic Phase-type
(APH) class, we derive a theoretical result on the optimal representation for any
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APH distribution. We develop two algorithms that compute the optimal represen-
tation. We show that the optimality result does not extend to the whole PH class and
define heuristic algorithms that help to reduce the computational costs. An empir-
ical study explores typical cost savings available using the proposed approach. The
contributions in this chapter are based on the work published in [RTW10, HRTW12].

Chapter 5 discusses fitting of phase-type distributions to data. The emphasis in
this chapter is on user-friendly fitting approaches that provide distributions well-
suited for random-variate generation using the methods introduced in Chapters 3
and 4. We devise a clustering-based fitting algorithm that yields good fitting results
with little user interaction. The approach is implemented in the HyperStar tool.
HyperStar is extensible and can also act as a graphical user-interface for prototypes
of new fitting methods. This use of the tool is illustrated in the evaluation of a new
algorithm for fitting general phase-type distributions with sparse representations.
The cluster-based fitting algorithm and the HyperStar tool have been presented
in [RKW12a, RKW12b].

The third part of the thesis illustrates application of the results of the previous parts
and is structured as follows:

Chapter 6 discusses packet-loss injection as a means of emulating IP packet loss
in experiments on test-beds. We consider Bernoulli loss and two variants of Gilbert
models and measure their effect on Ping and TCP arrival streams. We compare an
implementation of an embedded DTCM Gilbert model to our own implementation
of a continuous-time Gilbert model. Our observations show that with Ping arrival
streams all models produce the same result, but that the embedded DTMC models
result in extended outage periods with TCP. The work in this chapter is based
on [RDW11, RW11].

Chapter 7 applies the findings for phase-type distributions in two case studies.
We introduce the Libphprng library for efficient random-variate generation from
PH distributions. We illustrate its application and evaluate its performance in a
case-study on the optimal restart interval. This case study further shows the impor-
tance of choosing realistic fault models for obtaining realistic results. The second
case-study shows the efficiency improvements that can be obtained by applying
phase-type distributions to approximate the behaviour of highly-detailed compo-
nent models in simulation studies. The contributions in this part are also available
in [WRM11, RH12].
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Organisation of the Thesis

The main part of the thesis is concluded with a summary and an outlook on future
work. The appendices contain details on several auxilliary aspects, such as small
proofs, and summarise some theoretical basics used in this work.
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Part I

Stochastic Fault-Models for
System Evaluation

1





Chapter One

A Survey on Fault Models for
QoS Evaluation of Complex
Distributed Systems

System evaluation requires realistic fault models to deliver relevant results. Recur-
ring to our example of the evaluation of restart algorithms, in order to obtain useful
results from an evaluation in either a testbed, a simulation, or an analysis, we need
realistic models of the faults behaviour in systems where restart is to be applied.
Such models may be obtained through measurement studies by the researcher prior
to the actual evaluation, or they may be taken from published work that focusses
on measurement studies. The latter approach has the advantage that it saves time
and that it enables the use of models for systems to which we have no access. Un-
fortunately, although a lot of measurement studies have been published, the area
is quite fragmented, with little to no general overviews of models that have been
obtained. Furthermore, the derivation of fault models is often not the primary con-
cern of measurement studies, and therefore not many models of the measurements
are available.

In this chapter we provide an overview of existing fault-models that can be used
in system evaluation using various approaches. In particular, we are interested in
fault-models for complex distributed systems, and we use service-oriented systems as
our example application. Service-orientation is an important paradigm for today’s
computing systems. A service-oriented system1 consists of many individual services,
often provided by independent business entities, that communicate over the Inter-
net in order to provide a composed service. With their increasing success in the
business environment, Quality of Service (QoS) issues of service-oriented systems

1We employ the terms service-oriented system and system with service-oriented architecture
(SOA system) synonymously.
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Systems

have become important. Our survey offers two major contributions to the use of
stochastic models in system evaluation, particularly with respect to service-oriented
systems: First, we provide an overview of the fault models available in the litera-
ture, using a fault-classification scheme based on architectural properties of a SOA
system. Second, we review schemes that have been proposed for classifying faults
in SOA systems.

The first part (Section 1.2) aims to give the researcher interested in QoS issues a
structured overview of available fault models that may be used for parameterisation.
It also highlights which components of SOA systems are as of yet lacking descriptions
suitable as fault models, and may thus serve to direct measurement efforts to these
components. The survey of fault models complements data repositories such as the
AMBER data repository [vMBP+08, vMAB+09, AMM10] in that we summarise
models and insights, whereas data repositories gather measurement data for further
analysis.

In the second part of the chapter we give an overview of fault-classification
schemes for SOA systems and apply them to the fault models surveyed in the study.
Our review is intended to serve as a guideline for a structured approach to building
and parameterising system models. The classification schemes enable researchers
to develop a system model that reflects the aspects of the service-oriented systems
most relevant to their work. Using our classifications of fault models, they may
then select fault models to reproduce faults of interest and study their effects. We
anticipate that both parts will help to improve the quality of analytic, simulation,
and experimentation-based studies of service-oriented systems by enabling the de-
velopment of system models that are not limited to one specific system, but rather
reflect general properties.

Note that while our discussion focusses on service-oriented systems for reasons
of clarity, the fault models we identify can be applied in studies of many other
distributed computing systems. We chose to focus on service-oriented systems in
order to have a distinct definition of the system for which we require fault models.
SOA systems are typical for many distributed systems, in that they are highly-
distributed, tremendously complex, and often opaque to the user. We illustrate
the application of our survey to another type of distributed systems in Section 1.4,
where we discuss performance evaluation of Cloud Computing.

1.1 Preliminaries

In this section we first provide a definition of the concept of a fault-model, as we em-
ploy it in the following. In order to clearly convey the underlying idea, we contrast it
to existing definitions from fault-tolerant computing. We then describe the structure
of the survey from a methodological point of view, as this aids the understanding
and application of the survey.
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1.1.1 What Constitutes a Fault Model?

In dependable and fault-tolerant computing systems, fault models have long been
used to describe certain fault-classes such as crash, omission, timing, or Byzantine
faults [LSP82, Cri91, RLT78, ALRL04]. These classic models have proved useful in
the development of algorithms that make systems tolerant towards faults of a certain
class. On the other hand, classic fault models are not sufficient for the quantitative
evaluation of the effects of faults on quality of service, because they focus on the
qualitative description of the fault and do not encompass occurrence characteristics.
In particular, temporal patterns are not captured by classic fault models. That is,
while a classic fault model tells us the type of fault that can occur (e.g. omission
of a message), it does not convey information on when the fault occurs or about
the likelihood of fault occurrence. Consequently, classic fault models do not allow
realistic replication of faults under controlled conditions.

As described above, we view fault models as parameters to a system model
that influence the modelled system’s QoS. Our definition of fault models suitable
in this context can be derived from the basic concepts of fault-tolerant computing.
Following [Cri91], we employ the notion of systems (servers) that implement a set
of functionality (the service) to be used by other systems (users, clients), which in
turn may be servers (and thus provide a service) to further systems. The distinction
between server, service and client is generic enough to be made in system models in
general, although this may not always be as obvious as with e.g. a queueing-network
model, where jobs are the clients, server stations are the servers, and the service is
provided by transition through the server stations. The service provided by a server
is correct if it is in accordance with the specification for the service, which may
define both functional and non-functional properties. Based on [ALRL04], we call
deviation from the service specification a service failure, and the cause of a failure
a fault.

Now, as the server provides its service to a client, which again can be thought
of as a server to other clients, a service failure in the server may be the cause of a
failure of the service the client in turn provides to its own clients, and hence the
server’s failure is a fault for the client. Different failures of the server (i.e. different
deviations from correct service) constitute different faults to the client and may
result in different client failures. Our notion of fault models as parameters to a
system model follows from this observation: By changing the characteristics of the
deviations from correct service we can induce different faults in the client system.
Consequently, to model the faults that may affect a system we need a description of
the failures of the server(s) that the system under study depends on. A fault model,
in a general sense, should therefore consist of descriptions of the server, the service,
and the characteristics of the deviations from correct service that constitute a failure.
Note that the latter often depend on the service as well. With response times, for
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instance, there may be a threshold beyond which service responses become useless
to the client; this threshold, however, may vary between clients. To account for
this, we relax our definition such that we also include models that do not explicitly
provide a description of the deviations from correct service that amount to a failure,
if they enable the derivation of such a description.

In the following, we assume that failure location is given by the description of the
server. That is, given a server providing a service, we focus on the characteristics of
the deviation from correct service. Based on the different ways to describe deviation
characteristics, we divide the large set of fault models that fit the above definition
into the following three types, based on how the models describe failure occurence
characteristics (in the server system) or, equivalently, fault occurence characteristics
(in the client system):

Bernoulli Trials With these, the fault is described as a Bernoulli-distributed ran-
dom variable. That is, the occurrence of the fault is defined by a probability p.
Typical examples for this type are fault models that reflect service availabil-
ity/unavailability, e.g. a service is unavailable with a probability of p = 0.05.
Bernoulli trials may be used to describe the case where no faults occur (p = 0)
as well as for deterministic faults (p = 1). Note that Bernoulli trials do not
encompass a notion of time.

General Random Variables Here, fault occurrence is described by a random
variable with a distribution that is more general than the Bernoulli distri-
bution. Ideally, the distribution should be specified completely, e.g. by its
distribution function, but we will also include less complete characterisations,
e.g. a mean or a quantile of the distribution. Examples for this kind of fault
model are response-time distributions. As different operating conditions may
affect the distribution, more elaborate models of this category allow parame-
terisation. For instance, response-times may vary with system load, and this
may be expressed by individual response-time distributions for the different
load-levels.

Stochastic Processes These provide a characterisation of faults over time, cap-
turing more complex random structures, e.g. correlation. We use a very loose
definition of a stochastic process, in that we only require that the fault model
contains a description of states and of state transitions. The states may pro-
vide arbitrarily complex characterisations of a fault, while the state transi-
tions serve to define the time-dependent behaviour. For instance, the classic
Gilbert-model (cf. e.g. [HGHl08]), which describes a no-loss and a loss state
and transition probabilities between both, is a stochastic process. Note, how-
ever, that we do not put any restrictions on the distributions characterising
state-transitions. In particular, we do not limit the focus to Markovian models.
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Figure 1.1: Functional structure of the SUN Java Adventure Builder reference im-
plementation.

Let us illustrate our definitions using a simple example: In [RW08b] we pre-
sented Acyclic Phase-type (ACPH) models of the transmission delays experienced
when sending SOAP messages over a network link with IP packet loss. Messages
were transmitted over WSRM (Web Services Reliable Messaging, [BIMT05]), which
provides a reliable message transport within the SOAP stack. Furthermore, the
SOAP transport used by the WSRM layer was HTTP over TCP, the latter of which
provides fault tolerance for IP packet loss.

In this case, the server is a link capable of reliably transmitting SOAP messages,
the service is end-to-end message transmission, and the client is an application that
depends on timely SOAP message transmission. We want to use this fault model in
a queueing network model of a SOA system. The definitions of the server, service
and client are required to determine where we can use this fault model in the SOA
system model. E.g., we can obviously not use it for a Web Service, but we can use it
for the network link required to invoke the Web Service. The behaviour of the service
of the link is described by ACPHs, which are general random variables according
to our above distinction. Based on these, we can define when a fault occurs by e.g.
defining a threshold consistent with the requirements of the application. However, it
may be preferable to use the distributions directly, thus leaving the exact definition
of a fault implicit, and only observing the effects of faults on the application.

1.1.2 Structure of the Survey

Before embarking on our survey of available fault models, we need to define a struc-
tured approach to the review of the literature. Fault-classification schemes help to
obtain a comprehensive overview, since they describe which faults we may observe
in a SOA system, and hence have to find models for. In Section 1.3 five fault-
classification schemes for service-oriented systems are discussed. Unfortunately, as
illustrated there, these schemes do not provide clear-cut criteria for many common
faults. This disadvantage manifests in overlaps between fault categories. Further-
more, the schemes tend to consider only abstract fault classes, and thus the guide-
lines they provide are incomplete.
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For these reasons, we employ a recursive system-based approach: We start with
the typical structure of a system and try to find fault models for the behaviour of
each of the components of the system at a high abstraction-level. We then look at
the typical structure of each of the components and repeat this recursion until we
have obtained suitable fault models or until further recursion becomes unlikely to
yield further insight.

We can derive the typical structure of a SOA system from the SOA reference
application SUN Java Adventure Builder [Sun06], which we briefly describe in the
following. The system implements an online travel agency that users can interact
with using a web site, accessible via HTTP over the Internet. The web site back-
end (Order Processing Center, OPC) calls four Web Services (WS), using the SOAP
protocol, which again translates to HTTP interactions over the Internet. Each of
the services (Bank, Airline, Lodging, Activity) shown in Figure 1.1, as well as the
web-site and back-end (OPC), corresponds to a physical system implementing the
functionality of the provided service. In the case of the web site, this system typically
consists of an HTTP server running on top of an operating system, which in turn
depends on the underlying hardware. The Web Services are deployed within appli-
cation servers, which again require an operating system (and hardware). Frequently,
services rely on storage systems such as databases for their operation. Furthermore,
the hardware beneath the operating system does not need to be a physical machine,
but may instead be a virtual machine that shares the physical hardware with several
other virtual machines. Faults in each of these (and their sub-systems) may affect
quality of service experienced by the user. A closer look at the communication links
between the components shows that a similar dissection can be performed here.
Faults can occur in the Web Services stack and in the Internet underlying the WS
stack. In both cases, the infrastructure and the transport itself are of interest.

This recursive approach to structure our survey extends the number of potential
sources for fault models by avoiding the limitation to studies specific to SOA systems.
For instance, Internet behaviour has been studied independently, and fault models
derived there are useful in SOA systems, which rely on message transmissions. On
the other hand, the structure implied by the recursion helps to limit the number of
studies to be considered. E.g. CPU register faults affect QoS of a SOA system only
if they cause faults of the platform, and thus they are not of interest in themselves.

1.2 A Survey of Available Fault Models and Data

This section presents a survey of fault models available in the literature. We start
with individual Web Services and typical sub-systems they rely on. We then consider
the communication part, using the same method. Our recursive approach results in
the following structure:
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1. Web Service

a) Platform

i. Application Server/SOAP Framework

ii. Virtualisation

b) Storage/Databases

2. Communication

a) Web Services Stack

i. Infrastructure

ii. Message Transport

b) Internet

i. Internet Infrastructure

ii. Transport

In terms of the definition of a fault model, each item in this list describes a server
that may deviate from its intended service. Thus in each of the following subsections
we consider studies that describe, or at least allow us to derive, characterisations
of the deviations from correct service for the respective server. Descending through
the layers listed above, at each layer we look for Bernoulli, Random-Variable and
Stochastic Process models of faults at the respective layer. For instance, at the
Service level a Bernoulli model would describe availability of the service to requests,
while a Random-Variable model might describe the times between failures or the
response-times of the service. A Stochastic-Process model, in turn, could even en-
compass variations in response-times over subsequent requests. Similarly, if we look
at the Internet Transport layer, a Bernoulli model could be used to describe uni-
form packet loss, a Random-Variable model could reflect delay characteristics, and
a Stochastic-Process model could describe variations in loss or delay.

The objective of this section is to provide a structured overview that lists suitable
fault models of each class at each layer. Table 1.1 on page 21 summarises the
surveyed fault model in this way.

1.2.1 Web Service

At the highest level, we study a system consisting of a Web Service and a user (human
or machine), e.g. in Figure 1.1 the back-end (Order Processing Center, OPC) is a
Web Service that is accessed by the Web Site. In our model of this system, the Web
Service is the server whose failures constitute the faults that affect the client. Thus
we require fault models that reflect the behaviour of Web Services, as seen by their

9



1. A Survey on Fault Models for QoS Evaluation of Complex Distributed

Systems

users. With our focus on quality-of-service aspects, we are interested in faults that
manifest as either unavailability of the service (i.e. the service does not respond to
or rejects requests) or insufficient speed of responses.

Bernoulli models for the availability of Web Services can be derived from the
study of the availability of Web Services in a publicly-accessible service repository
in [KR04]. The paper states that the availability of services in the repository is
0.84. More recent studies are available in [SF07, ZL08, ZZL10]. [SF07] provides
availability values for different public Web Services, including Amazon WS and
Google WS. The study shows that availability may vary between 0.82 for the Google
Web Service and 1 for several Amazon Web Services. In [ZL08], Zheng et al. observe
Amazon Web Services in several different locations and two public Web Services in
the USA using accesses from different countries. Unavailability values between 0
and 0.82 are reported, depending on the location of the user and the location of
the service. More recent observations are available in [ZZL10], where the Zheng et
al. also provide a more detailed analysis of failure probabilities. For instance, for
a random set of 100 public Web Services accessed from 24 countries, the authors
observe a mean unavailability of 0.045, with standard deviation 0.1732. The data
set analysed in [ZZL10] is publicly available.

General random variables for the response-times of Web Services may be defined
over a set of services, or over invocations to one specific service. The observation
in [KR04] that the 96% quantile is at 2 s for the set of Web Services analysed in
the study is an example for the former, while the finding in the same paper that
response-times for the Amazon and Google Web Services vary between 502–510 ms
and 329–1046 ms, respectively, is an instance of the latter. Another description of
response-times as a random variable over invocations to the same service may be
derived from [GKT+08], where histograms for two public Web Services are provided.
We note that neither of these studies gives explicit fault models, and furthermore,
that there is no description of the shapes of the probability distributions in [KR04].
Response-time measurements for Web Services are also available in [ZL08], where
both mean and standard deviation are given, divided by Web Service and user
location. Zheng et al. note that large mean values are typically correlated with
large standard variation and high failure rates.

More elaborate models still describe response-times by random variables, but
allow additional parameters to reflect operating conditions. Fault models of this
type may be derived from the studies in [DGP05, JKB03, TVN+03, RWW09]: In
[DGP05] and [JKB03] E-Commerce applications are studied in testbed environ-
ments. [DGP05] contains 90% quantiles for response-times at load levels of 50, 100,
150, and 200 clients simultaneously accessing the application. The results are split
by the services that make up the application and by two different usage profiles.
Depending on the load level and the usage profile (Browsing/Ordering), the Flights,
Credit Check and Process Order services exhibit 90% quantiles of response-times of
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150–200 ms/150–800 ms, 120–550 ms/150–700 ms, and 150–800 ms/200–900 ms, re-
spectively. A characterisation of load-dependent response-times by averages is given
in [JKB03]. For load varying between 10 and 100 users, mean response-times in-
crease from 500 ms to 1800 ms (flattening out at 60 users due to saturation). The
study of Web Services mean response-times in [TVN+03] shows that, starting at
140 requests per second, response-times rise steeply to slightly above 7000 ms at 160
requests/s, where a plateau is reached (due to saturation). Unfortunately, due to
the scaling of the graph, response-times for less than 140 requests per second are not
discernible. Finally, in [RWW09] we provide Acyclic Phase-type (ACPH) models for
the response-times of the SUN Java Adventure Builder at load levels of 10 and 50
users. Furthermore, the effect of IP packet loss on response-times is studied. It is
shown that load and packet loss both increase mean response-times and the variance
of the response-times distribution.

We note that, with the exception of [RWW09], the studies give very sparse
descriptions of response-time distributions. While one might assume that response-
times follow an exponential distribution (in which case the mean would be sufficient
for parameterisation), this seems doubtful from the findings in [RWW09]. To the
best of our knowledge, the ACPH models in [RWW09] are the only explicit fault
models for Web Service response-times, and even these only describe response-times
by random variables and cannot capture variations over time. We thus observe that
so far the behaviour of Web Services has not been captured sufficiently well by fault
models. Therefore we now perform the next step in the recursion, by splitting up
the Web Service into the platform on which it is deployed and the storage it requires
for operation.

1.2.1.1 Platform

We use the term ‘Platform’ to refer to the entire physical system implementing
the Web Service. That is, we now no longer view the Web Service as an abstract
entity that responds to requests, but instead consider the actual computer system(s)
involved. While we are not aware of studies that deal specifically with physical
systems for Web Services, one may argue that these systems are similar to other
complex computer systems. Based on this premise, we extend our view to include
fault models for computer systems in general. However, we should keep in mind
that these models are derived from the behaviour of physical systems that might
differ from those underlying Web Services.

Bernoulli and general random-variable models of the end-user availability of large
systems on the Internet can be parameterised based on [MP02]. Analysing service-
availability for three web sites, the authors report availability values ranging from
0.9305 to 0.9994, depending on the assumed locations of faults. In particular, they
state that local problems have a strong impact on availability. The presented graph
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of response-time over availability may serve to parameterise a random variable rep-
resenting timing-failures that amount to service failures.

Simple stochastic-process models for faults can be thought of as consisting of an
‘ok’ state and a ‘failed’ state. In the ‘ok’ state, the modelled system provides its
intended service, while in the ‘failed’ state the service is not available. Parameters
for this kind of model can be derived from [SG06], where failure data of systems in
the Los Alamos National Laboratory (LANL) from the period 1996–2005 is anal-
ysed, from [OGP03], where three commercial Internet services are studied, and from
[LMG95], where the reliability of Internet hosts is analysed.

In the model, sojourn times in the ‘ok’ and ‘failed’ states are characterised by
the time-to-failure (TTF) and time-to-repair distributions (TTR), respectively. For
the TTF analysis, the authors of [SG06] pick one system out of their data set. They
treat early system life and remaining life independently, since this system has sig-
nificantly higher failure-rates during early system life. Furthermore, as the chosen
system in [SG06] is comprised of 49 physical nodes, they consider failures occurring
in one single node and in the whole system. During early life, the TTF distribution
for the single node has a squared coefficient of variation of c2 = 3.9 and can be de-
scribed by a lognormal distribution, while no standard distribution provides a good
fit for data from the system-wide view. The latter finding is due to the high num-
ber of simultaneous failures, which imply failure interarrival-times of zero. During
remaining system lifetime the TTF distribution for the single node has c2 = 1.9 and
is approximated well by Weibull (shape parameter 0.7) and Gamma distributions.
Weibull (shape parameter 0.78) and Gamma distributions also describe TTF distri-
butions in the system-wide view. The TTR distribution is obtained over all systems
in the data set. This distribution has mean 355 min, median 54min and c2 = 187
and is approximated by a lognormal distribution. Mean and median repair times
depend on hardware type. Furthermore, repair-time distributions also depend on
the root-cause of the failure. Combined with the root-cause analysis also provided
in the study, this may be used to further parameterise repair-time distributions.
We note that, with the exception of the shape parameters for the Weibull distribu-
tions, the paper does not provide distribution parameters explicitly, but shows the
CDFs of the data and the fitted distributions. Time-to-failure and time-to-repair
distributions are often characterised simply by their means, i.e. the Mean Time To
Failure (MTTF) and Mean Time To Repair (MTTR). Assuming exponential TTF
and TTR distributions, MTTF and MTTR are sufficient to specify a stochastic-
process model. MTTR values for Internet services can be found in [OGP03]. The
study in [LMG95] provides distributions of MTTF and MTTR values over Internet
hosts. These distributions are described both by statistical properties and plotted
densities and distribution functions. According to their statistical properties, nei-
ther the empirical MTTF nor the empirical MTTR distribution are well-described
by an exponential distribution.
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We note that a stochastic-process fault model for a Web Services platform may
be derived from [SG06], if one deems the systems studied therein sufficiently similar
to the systems that Web Services are typically deployed on. The study in [OGP03],
whose data sets come from systems supposedly more similar to typical Web Services,
provides only limited insight, in that the TTF distribution is not studied at all, and
the TTR distribution is only characterised by mean values, which seems insufficient,
considering the finding in [SG06] that neither the TTF nor the TTR distributions
are exponential. The analysis in [LMG95] provides some insight into the distribution
of MTTF and MTTR values over hosts, but does not characterise Time To Failure
(TTF) and Time To Repair (TTR) distributions for the hosts in more detail.

We now apply the next step of recursion, by dividing the platform of a Web
Service into its components. We consider the application server and SOAP frame-
work, and virtualisation software. One further component of interest would be the
operating system.

Application Server/SOAP Framework The software implementing Web Ser-
vices is typically deployed within an application server and a SOAP framework,
which provide the run-time environment required by the service to run and com-
municate with other Web Services. We thus now consider the application server
and SOAP framework as a server, and the Web Service as a client to this server.
With respect to fault models the service is then the run-time and communication
functionalities required by the service. Again, both unavailability (which would in
turn render the Web Service unavailable to its clients) and timeliness are relevant
properties.

A stochastic-process model for application-server failures may be derived from
the Markov reward model for the availability of a dependable application server
presented in [TKDT04]. To this end, we consider the application server unavailable
(unable to provide the run-time environment for the Web Service) if the high-level
model is in one of the two ‘failure’ states. Transitions into and out of the ‘failure’
states are then described by exponential distributions, whose rates have been com-
puted based on sub-models which are parameterised partly based on measurements.

Models of SOAP framework throughput (served requests per second) as functions
of time under heavy load might be obtained from the study of the SOAP framework
Axis 1.3 in [SMS06]. There, it is shown that memory leaks in the framework result
in decreasing throughput, and even application-server crashes. From the figures,
it appears that, depending on the load, linear functions with a strong negative
slope or exponential functions may approximate the throughput degradation well.
Unfortunately, the authors have not attempted fitting analytic functions to their
data. We note that, although it appears likely that the causes of these memory leaks
have been addressed in later versions of Axis, one may still employ these observations
as guidelines when studying the effects of memory leaks, and software aging in
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Figure 1.2: CTMC fault model (incomplete) for virtual machine reboots.

general. Note that the data given in [SMS06] represents only single observations
at each time-point. Nonetheless, it may indicate how a stochastic process could
describe the effects of memory leaks.

Virtualisation Recent years have seen a resurgence of virtualisation as a technol-
ogy for increasing utilisation of expensive hardware and reducing power consump-
tion. When virtualisation is used, many server instances may run on a single physical
machine. With service-oriented systems, this implies that many services might be
running on the same physical system, each within its own application-server en-
vironment. The required virtualisation software, however, adds another layer of
complexity, and hence another source of faults, with respect to both timeliness and
availability. While we are not aware of studies focussing on virtualisation software
behaviour, it has been pointed out in [KC07] that faults, and fault-prevention by
rejuvenation of the virtualisation software may require that virtual machines be
stopped and restarted. The way in which these restarts affect the virtual machines
depends on the virtualisation software, and may differ from normal reboots on phys-
ical hardware.

A stochastic-process model for the effects of virtual-machine reboots can be
derived from [KC07]. The model (Figure 1.2) has one ‘ok’ state, in which the
virtualisation software has no effect on the system running in the virtual machine,
and three failure states (‘f1’ through ‘f3’), in which the virtual machines are down.
Additionally, there is one degraded state (‘d3’), in which the machines are up, but
provide service at reduced throughput. The three failure states reflect the different
machine resume strategies considered in [KC07], which differ in their effects on
the systems running in the virtual machines. Failure states ‘f1’ and ‘f2’ represent
‘resume from disk’ and ‘resume from RAM’, and these strategies differ only in the
incurred downtimes. The ‘f3’ state is used for the ‘cold reboot’ strategy. This
mechanism, besides incurring a delay, also results in a state where throughput of
the systems inside the virtual machines is degraded, since caches are emptied during
machine reboot. The authors of [KC07] provide measurements for the downtimes,
and also for the amount of throughput degradation. Assuming that downtimes follow
an exponential distribution, we may use these times as parameters in our model.
Throughput degradation provides a guideline to describe behaviour in the degraded
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state. Note that the model is incomplete, in that for some transitions (notably the
ones into the failed states) no characteristics are given. This is due to the fact that
[KC07] does not focus on the failure behaviour of virtualisation software and instead
concerns the effect of the resume strategies.

Virtual machines may be migrated between hosts, e.g. to improve performance
by exploiting locality properties, or to improve overall resource utilisation. The
time required for the migration of virtual machines and the effects of migration on
performance are studied by [ZF07]. Migration is split into resume, copy, and suspend
phases. Performance is assessed as the impact on the time to complete an iteration of
CPU-intensive and memory-intensive benchmarks. Furthermore, as an example for
the effects on realistic workloads, the throughput of HTTP servers deployed inside
the VMs is studied. Mean and standard deviation are given for various scenarios.
These can be considered random-variable models of the virtualisation component.

1.2.1.2 Storage/Databases

Most services rely on extensive data manipulation and storage, e.g. for storing
and retrieving service or business-process state. From the perspective of a service-
oriented system, the service of databases, or storage in general, is to store and
retrieve data.

Bernoulli models for the service availability of database systems can be derived
using [CRM00] and [VM03]. [VM03] give availability estimates for a database system
in normal operation and under the influence of operator faults. Depending on hard-
ware and software platform, database version and database configuration options,
availability observed at the server/client, respectively, varies between 74.2/68.7%
and 93.5/83.9%, with database configuration having the largest impact. The prob-
ability of low-level hardware/software faults causing database failures, studied in
[CRM00], may be used to parameterise a model for database faults, if the probabil-
ity of low-level faults is known.

A random-variable model for the throughput of database systems without and
with injected operator faults is the second type of model that can be derived from
[VM03]. Unfortunately, throughput is only specified by mean values. Throughput
depends on hardware and database configuration, varying between 1411 and 4394
transactions per minute without faults, and 896–3043 transactions per minute with
faults.

Recovery-times of a database system with two types of automatic recovery are
provided in [VM02]. The data is given as mean values for the recovery-time under
operator faults and with different database configurations. These may be used as
a parameter in a stochastic-process model, however, there is no characterisation of
the distribution of the recovery-times, and no times-to-failure are given.

A stochastic-process model of the occurrence of undetected disk errors (UDEs)
in RAID systems is available in [RBD+09]. Based on data obtained by [BGPS07]
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and [SG07], [RBD+09] derive a discrete-event model of UDEs. The model allows to
reproduce the occurrence of UDEs in RAID systems, dependent on the workload.
It should be noted, however, that, due to its complexity, the model may be too
expensive to be used in test-beds.

The papers only present a first glimpse into the behaviour of storage systems, as
seen by users of the systems. While these data may be used to derive fault models,
this area could greatly benefit from further analyses of such systems.

1.2.2 Communication

As service-oriented systems rely on communication between services, faults in the
communication adversely affect service quality. We split this part into faults in the
Web Services stack and in the Internet, where the former subsumes all technologies
specific to Web Services, and the latter has a broader focus on the faults in the
communication technologies that enable Web Services communication, but are not
specific to them.

1.2.2.1 Web Services Stack (Infrastructure)

The first category of interest is the Web Services Infrastructure, i.e. those compo-
nents of a service-oriented system that enable service communication. This category
contains service-repositories, infrastructure for service orchestration (e.g. BPEL en-
gines), SOAP proxies, etc. Unfortunately, we are not aware of studies specifically
focussing on Web Services infrastructure components. These components may be
seen as services, and consequently the fault models presented in the previous sections
may be used. However, more research effort should be directed towards understand-
ing the behaviour of the Web Services infrastructure, and on providing fault models
for it, as failures of the infrastructure are likely to have a heavy impact on quality
of service of the system.

1.2.2.2 Web Services Stack (Transport)

Next, our focus lies on the Web Services stack, i.e. on the communication protocols
specific to Web Services. In Figure 1.3 we show an instance of the SOAP stack; we
now consider all layers above the lowest two (HTTP and TCP/IP), which are not
specific to Web Services or service-oriented systems.

The Web Services Reliable Messaging Protocol (WSRM, [BIMT05]) is an addi-
tion to the SOAP stack that provides reliable SOAP message transmissions over un-
reliable SOAP transports. A set of Acyclic Phase-Type Distribution (ACPH) models
for the message-transmission times for several WSRM timeout strategies and sev-
eral levels of IP packet loss are described in [RW08b]. The measurement data shows
that, even though both TCP and WSRM mask the effects of IP packet loss, there
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Figure 1.3: SOAP Stack

are still characteristic patterns of the transmission-time distribution (viz. spikes at
the values of the TCP RTO timeout) in the message transmission times, which are
also captured in the models.

We note that, so far, only very few models for the behaviour of communication
components of service-oriented systems are available. Since Web Services typically
communicate over the Internet, or networks using Internet technology, their com-
munication is affected by the behaviour of these networks. This has long been a
field of intense study, and thus we may hope to find appropriate models that could
be used in the study of SOA systems. As with the Web Services stack, we divide
this part into infrastructure, which refers to those components enabling the commu-
nication, and transport, which is the actual transmission of upper-layer messages or
data packets.

1.2.2.3 Internet (Infrastructure)

Here, we consider two important infrastructure elements of the Internet, viz. the
Domain Name System (DNS) and the routing infrastructure. As both communi-
cation with the Web Services infrastructure and between services relies on DNS
lookups of the systems the services are deployed on, faults in the Domain Name
System may affect both availability and timeliness of Web Services communication:
If name lookup fails, then a Web Service may be invisible (and thus unavailable),
and delays in lookups lead to delays in the communication.

Bernoulli models for DNS server availability can be parameterised using [PHA+04],
where detailed availability values are given for name servers. In particular, the mean
availability over all analysed servers is 0.9785, with median 1, i.e. for most servers
no unavailability period could be observed, while those with outages tend to have
rather low availability.

Random-variable descriptions of DNS lookup response-times from correctly con-
figured servers, and from servers with one of three different misconfigurations can
be derived from [PXL+04]. The paper provides CDFs of these random variables. In
particular, non-responding servers increase mean response-times from about 60 ms
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to 3 s, and up to 30 s in extreme cases. The paper also analyses the frequency of
misconfigurations at various top-level domains, and thus gives the probability of
hitting a misconfigured server, if domains are chosen at random. Unfortunately,
no information on temporal dependencies, or variations in responses for individual
addresses is provided.

A stochastic-process model for service availability of DNS servers is the second
contribution in [PHA+04]. The model consists of an ‘ok’ and a ‘failure’ state, with
the former handling DNS requests as expected and the latter not responding to
requests. The transitions between both states are described by the time-to-failure
and time-to-repair distributions, which are characterised by mean, standard devia-
tion and median, and by graphical CDFs. The parameters differ depending on the
analysis method; however, it appears that time-to-failure (TTF) distributions are
hypo-exponential, while the recovery-time/time-to-repair (TTR) distributions are
hyper-exponential. For instance, one TTF distribution has mean 125.9 h and stan-
dard deviation 99.1 h, while the associated TTR distribution’s mean and standard
deviation are 7.2 h and 9.5 h, respectively. This means that, in relation to the mean,
TTF distributions exhibit low variance, whereas the variance for TTR distributions
is relatively large. However, note that time-scales of TTF and TTR times differ
widely, as evidenced by the means.

The routing subsystem is fundamental to all communication in the Internet.
With respect to Web Services, we expect routing failures to manifest as inability to
communicate with a service, i.e. service unavailability.

Based on the study of Internet routes in [LAJ99] both Bernoulli and stochastic-
process models of the routing system can be parameterised. The paper provides
CDFs for the availability of routes, and CDFs for the MTTF and MTTR of route
failures. All CDFs are over routes, i.e. specify the proportion of routes that exhibit a
particular property. It is stated that the MTTF of the majority of routes is 25 days,
with MTTR of at most 20 min.

1.2.2.4 Internet (Transport)

We now consider transport in the Internet. As an abstract concept, the Internet
itself is a single server whose service is data transfer, and where deviations could be
both unavailability and delays of data transfer.

A two-state stochastic-process model for the availability of the Internet is pre-
sented in [DCGN03a]. In the ‘available’ state, two hosts on the Internet are able
to communicate, while in the ‘unavailable’ state the hosts cannot communicate.
The model is parameterised based on several measurements in the period 1994–
2000. The time-to-failure distribution is assumed to be exponential, with a mean of
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48111 s. The time-to-repair distribution for unavailability events longer than 30 s2

is approximated by the Pareto distribution with CDF R(t) = 1 − 19t−0.85. Trun-
cated at 500,000 s, this distribution has a mean of 609 s. We note that the study
in [MP02] (see Section 1.2.1.1) may also be employed for deriving Bernoulli and
general random-variable models for Internet availability. However, in contrast to
[DCGN03a], in [MP02] the focus lies on host availability, not on network availabil-
ity.

Let us now look at the protocols that the SOAP stack depends on. As the
dominant SOAP transport in today’s service-oriented systems, HTTP will be of
interest. We then descend further in the SOAP stack (Figure 1.3) and investigate
the TCP/IP level, which underlies the HTTP transport.

HTTP When SOAP over HTTP is used without any further protocols (such as
WSRM), SOAP may behave almost identical to HTTP, as far as its reliability and
timeliness properties are concerned. There will be overhead due to SOAP processing,
but SOAP does not add any reliability mechanisms.

Based on [NA04, RvMW04, RvMW06b], general random variables can be used
to describe response-times of HTTP connections. [NA04] provide parameters for
Pareto distributions that fit file-transmission times in the Web, noting that file
sizes and network conditions only affect the location parameter, while the shape
parameter is only affected by server load. The analyses in [RvMW04, RvMW06b]
show that IP packet loss may have a strong impact on HTTP transmission times,
furthermore, the response-times for subsequent attempts to the same location are
often not correlated.

To the best of our knowledge, no models that capture temporal behaviour of
HTTP response times exist.

TCP/IP Findings in the papers from the previous section illustrate that low-
level failures affect quality of service, even though they are commonly masked by
higher-level protocols, especially TCP, which provides reliable transport over links
that exhibit IP packet loss. TCP’s fault-handling mechanism for packet loss results
in transmission delays, which then affect QoS. This section thus focusses on mod-
els for IP packet loss. Note that, while models for packet-loss may be difficult to
introduce into abstract models of service-oriented systems, they can be easily em-
ployed in test-beds, where they allow the study of the complex timing-behaviours
resulting from the interaction of the various fault-handling mechanisms in the SOAP
and TCP/IP stack. From these, abstract models for higher-level behaviour can be
obtained (cf. [RW08b, RWW09]).

2Unavailability events shorter than 30 s are excluded, since they are considered irrelevant for
the techniques studied in the paper ([DCGN03b], p. 9).
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Bernoulli models for packet loss can be parameterised based on [ZDPS01, PAB+05,
CWA+05]. According to [ZDPS01], 40% of the low-loss traces, but only 6% of the
high-loss traces analysed can be described by Bernoulli packet loss. This may indi-
cate that for high loss levels Bernoulli models are not appropriate. Only 1% of the
traces analysed in [ZDPS01] have loss rates larger than 10%. [PAB+05] remark that
even in a LAN environment packet-loss rates may exceed 1%.

Stochastic-process models for packet loss available in the literature may be di-
vided into Markovian, i.e. variants of the Gilbert-Elliott model, and non-Markovian
models. Both describe temporal dependencies in packet loss by at least two states
with differing loss probability, and characterisations of the transitions between the
states. Furthermore, one may distinguish between models that describe single-loss
events (i.e. loss of one packet) and loss-episodes (i.e. consecutive loss of packets, or
periods of elevated loss). The study of constancy of Internet properties in [ZDPS01]
concludes that packet-loss in change-free regions is well approximated by Markovian
models: With low loss, 89% of traces are described by the two-state Gilbert model,
98% by a three-state Gilbert model, and 99% by four-state Gilbert models. For
lossy traces, the numbers are 6%, 68%, 85%, and 96%. Furthermore, loss occurs in
bursts of consecutive losses, not in losses of nearby packets. This argues for mod-
els with loss probabilities of 0 and 1 in the loss-free and lossy states, respectively,
and consequently a description of the loss process as interchanging loss-free periods
and loss episodes. Loss-episode interarrivals are independent and identically dis-
tributed (IID) and well-modelled by exponential distributions at timescales up to
10 s. Beyond timescales of 10 s the authors observe correlation, which they attribute
to a mixture of loss-processes at these timescales. The paper contains some plots of
CDFs of inter-loss-episode- and loss-episode-lengths. Similar findings are presented
in [YMKT99]. The analysis in [HH08] provides explicit parameters for three varia-
tions of the Gilbert model: Simple Gilbert (loss probability 0 and 1), Gilbert (loss
probabilities 0 and 1−h) and Gilbert-Elliot (loss probabilities 1−k and 1−h). The
models are fitted to data on multiple timescales. The data was obtained by feeding
a trace into a bottleneck and observing packet loss due to tail drop.

Non-Markovian models for packet loss can be characterised based on [HNA02,
BS03, BS04, HS08]. In [HNA02] interloss-times for non-congestion-related loss are
described by a mixture of exponential distributions for intra-loss-burst times (with a
length below 1 s), and a Normal distribution for the inter-loss-burst times (with mean
10 s). The authors propose a six-state Markov-Modulated Poisson Process (MMPP)
to describe the inter-loss times. One state of the model is used to reproduce intra-
loss behaviour. Unfortunately, the authors omit the parameters for their model. The
studies in [BS03, BS04] contain plots of CCDFs for the lengths of loss-free and lossy
periods (regrettably omitting more detailed characterisations of the loss process, as
the paper’s focus is on a comparison of probe- and SNMP-based measurements). A
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Bernoulli Random Variable Stochastic Process

Service [KR04, SF07,
ZL08, ZZL10]

[KR04, GKT+08,
DGP05, JKB03,
TVN+03, RWW09,
ZL08]

—

Platform [MP02] — [SG06, OGP03,
LMG95, MP02]

— — —
Application Server/
SOAP Framework

— — [TKDT04, SMS06]

Virtualisation — [ZF07] [KC07]
Storage/Databases [CRM00, VM03] [VM03] [VM02, RBD+09]

Communication — — —
Web Services Stack — — —
WS Infrastructure — — —
WS Transport — [RW08b] —
Internet Infrastruc-
ture

[LAJ99, PHA+04] [PXL+04] [LAJ99, PHA+04]

Internet Transport [ZDPS01,
PAB+05,
CWA+05, MP02]

— [DCGN03a, NA04,
RvMW04, ZDPS01,
YMKT99, HH08,
HNA02, BS03,
BS04, HS08]

Table 1.1: Classification of fault models for service-oriented systems by architectural
level and fault model type.

Weibull distribution with shape parameter 2.9 and scale 0.3 is used to describe the
loss-interarrival times in [HS08].

1.2.3 Major Observations

Table 1.1 provides an overview of the papers containing fault models reviewed in
our study, classified by the components of a service-oriented system and the type of
fault model. We observe that the coverage by fault models differs between the levels.
For instance, while the Internet Transport level appears well-represented, there are
no models for an abstract Communication between Services available. The degree
of coverage also differs with respect to the types of models that are available. This
is particularly regrettable for the Service level, whose only descriptions are general
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random variables (which are often not even specified very rigorously, cf. e.g. Sec-
tion 1.2.1). Here, stochastic-process models that also describe changes in faults over
time would be of great use, since fault models of Web Services may be useful in
answering many research questions related to service-oriented systems.

1.3 SOA Fault Classification Schemes

In assessing QoS aspects of service-oriented systems, fault-classification schemes
serve three important purposes. First, they help to structure the study of available
fault models, second, they provide a structure for applying the fault models in the
system model, and thus, third, a structured way for developing models for SOA
systems that are not limited to modelling a specific system, but instead represent
general properties.

We already applied a fault-classification scheme to structure our survey in the
previous section. This scheme was inspired by architectural properties of SOA sys-
tems. Several other classification schemes for faults in service-oriented systems can
be found in the literature. In this section we provide an overview of these. For each
scheme, we first summarise its important aspects. We then illustrate and discuss
its use in classification of fault models by applying it to the models surveyed in the
first part of the chapter. The classifications thus derived serve the second purpose
identified above.

1.3.1 Phase/Level Classification

We begin with the classification scheme in [CFR03], where faults are distinguished
along a time dimension and an architectural dimension. In the time dimension,
service-oriented systems are considered phased-mission systems, i.e. systems whose
operational life consists of multiple phases with differing characteristics and require-
ments. [CFR03] argue that this view is correct when considering the experience of a
single user, where non-overlapping phases may be distinguished. Globally, however,
phases tend to overlap. The following phases are considered typical: Infrastructure
discovery and client registration, where the user discovers and enters the physical
environment; service registration, service discovery/lookup and service selection, in
which first the provider publishes the service, followed by the client discovering and
then selecting and invoking the service; and system configuration and service deliv-
ery, comprised of the infrastructure and the service dynamically adapting to meet
the client’s requirements, and finally the delivery of the service to the client. In
the architectural dimension, three levels are identified: The end-point level, which
contains client- and server-side application objects; the service delivery level, com-
prising the entities concerned with delivering the service; and the lookup/discovery
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level, consisting of the service registry and the discovery infrastructure. Additionally,
the network level is mentioned, but not described in detail.

We may attempt to use the classification scheme of [CFR03] as a means to order
the papers discussed in the survey comprising the first part of this chapter. This then
allows us to easily look up relevant papers for a given time-phase and architectural
level. In order to do so, the following assumptions on our part are necessary: We
interpret the End-point Level as equivalent to our high-level Web Service concept,
the Delivery Level as the Platform and Storage levels, the Lookup/Discovery Level
as the Web Services Infrastructure, and the Network level as a combination of our
WS Stack and Internet categories.

In the Infrastructure-Discovery phase, faults in the DNS have a strong im-
pact. These, analysed in [PXL+04], belong to the Network Level. For the Service-
Discovery/Lookup phase, the analysis of UDDI entry validity in [KR04] provides
a glimpse into faults at the Lookup/Discovery Level, while DNS faults ([PXL+04,
PHA+04]) again affect the Network Level. Turning our attention to the Service-
Delivery phase, we note that the distinction between the End-Point and Service-
Delivery levels becomes fuzzy, since the faults discussed in [KR04, DGP05, JKB03,
TVN+03, RWW09, TKDT04, ZL08, SF07, ZZL10] cannot be clearly attributed to
either of the two. Assuming that the Service-Delivery Level is equivalent to our
Platform and Storage levels, however, we can at least assign [SMS06, ZF07, KC07,
OGP03, SG06, LMG95, CRM00, VM03, VM02, RBD+09] to the Service-Delivery
Level. At the Lookup/Discovery Level, [KR04] again provides insight into UDDI
faults. Finally, the studies in [RW08b, PXL+04, DCGN03a, DCGN03b, NA04,
RvMW04, RvMW06b, ZDPS01, PAB+05, CWA+05, HNA02, BS03, BS04, HS08,
HH08, PHA+04], which are concerned with faults affecting communication, belong
to the Network Level at the Service-Delivery phase. The resulting classification of
the surveyed papers is shown in Table 1.2.

As pointed out in [CFR03], the phase-level scheme has the advantage of capturing
the fact that faults may have quite different effects, depending on when and where
they occur. Note, however, that in Table 1.2 many rows are empty. This implies
that at the respective phases none of the surveyed papers describe faults in any of
the architectural levels. On the other hand, some categories overlap, in that faults
cannot be clearly assigned to either category. In fact, one might argue that many
of the faults considered in the surveyed papers affect most or all of the time-phases
and levels, since in each of the phases and at all levels the involved systems are
often similar to each other. Database faults, for instance, may have an impact in
every phase and at every level where storage and lookup of data is required; and
IP packet loss affects all of the time-phases in service-oriented systems, since these
systems rely on communication between their distributed components. While the
overlap between categories may be partly due to a lack of rigour in the definition
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End-Point Level Service-Delivery
Level

Lookup/Dis-
covery Level

Network Level

Infrastructure
Discovery

— — — —

Client Reg-
istration

— — — —

Service Reg-
istration

— — — —

Service
Discov-
ery/Lookup

— — [KR04] [PXL+04,
PHA+04]

Service Se-
lection

— — — —

System
Configura-
tion

— — — —

Service De-
livery

[KR04, DGP05,
JKB03,
TVN+03,
RWW09,
TKDT04, ZL08,
SF07, ZZL10]

[KR04, DGP05,
JKB03,
TVN+03,
RWW09,
TKDT04,
SMS06, ZF07,
KC07, OGP03,
SG06, LMG95,
CRM00,
VM03, VM02,
RBD+09, MP02,
ZL08, SF07,
ZZL10]

[KR04] [RW08b,
PXL+04,
DCGN03a,
DCGN03b,
NA04,
RvMW04,
RvMW06b,
ZDPS01,
PAB+05,
CWA+05,
HNA02, BS03,
BS04, HS08,
HH08, PHA+04]

Table 1.2: Phase/Level Classification Scheme [CFR03] applied to the studies in our
survey.

of the time-phases and architectural levels, it also appears likely that the scheme is
too fine-grained to really describe real-world faults.

1.3.2 Three-level Classification

[GMKR07] propose a scheme that classifies faults solely along the architectural
dimension. In contrast to [CFR03], no time-dimension is considered. Three levels
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Service Side [KR04, DGP05, JKB03, TVN+03, RWW09, ZL08, SF07,
ZZL10]

Client Side Binding —
Network and System [TKDT04, SMS06, KC07, SG06, OGP03, LMG95, CRM00,

VM03, VM02, RBD+09, MP02, RW08b, PXL+04, DCGN03a,
NA04, RvMW04, RvMW06b, ZDPS01, PAB+05, CWA+05,
HH08, BS03, BS04, HNA02, HS08, PHA+04]

Table 1.3: Application of the Three-level Classification Scheme from [GMKR07].

are distinguished: Client-Side Binding, i.e. faults occuring in the client during the
binding (and perhaps also invocation) stage; Network and System, which comprises
faults affecting the communication between the services, including faults in the
Internet infrastructure and in the hosting subsystem (e.g. the application server);
and Service, describing faults that occur in the service itself during processing.

Again, we employ this scheme to structure the papers in our survey, in order to
be able to quickly identify studies concerned with faults of a given category. We map
the levels in [CFR03] to our categories as follows: The Service level is equivalent to
our Web Service level, while the Network and System level comprises the remainder
of the levels we distinguished. The Client-Side Binding level, however, does not
correspond to any of our categories. This is due to the fact that it only describes
programming faults, which have not been included in our survey. In fact, it appears
that these faults might be better described as affecting the functional behaviour of
the service. We obtain the classification shown in Table 1.3: [KR04, DGP05, JKB03,
TVN+03, RWW09, ZL08, SF07, ZZL10] all belong to the Service-Side level, while
the remainder are Network and System faults. Note that most papers belong to the
third category. This is probably a drawback of the simplicity of the classification
scheme, which only provides a very coarse granularity.

1.3.3 Time-Phase Classification

We now consider the scheme proposed by [BWM07a, BWM07b]. While the scheme
in [GMKR07] only considers the architectural dimension, the taxonomy proposed in
[BWM07a, BWM07b] may be seen as focussing solely on the time-phases dimension
of [CFR03]. The taxonomy in [BWM07a, BWM07b] is similar to that in [CFR03], in
that the authors identify five time-phases a service-oriented system has to traverse in
order for the service to be provided. Faults are classified according to the phases, as
follows: The Publishing phase comprises faults originating during service-registration
by the service provider. Faults occurring when the client discovers the service affect
the Discovery phase. The Composition and Binding phases describe faults during
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service composition and binding to the required service; and the Execution phase
contains all faults during execution of the service request. Each of the phases can
be broken down further, and faults may be connected by the ‘is-a’ and ‘causes a’
relationships, thus allowing further refinement of the scheme.

In attempting to classify the fault models surveyed in Section 1.2 to the five
time-phases described in [BWM07a, BWM07b] we first note that, due to the ab-
sence of an architectural dimension in the scheme, we cannot provide a mapping
between the categories we used in our classification scheme and the time-phases of
[BWM07a, BWM07b]. Second, we observe that most of the faults considered in the
refinements of the time-phases only affect the functional behaviour of the service.
In fact, with the exception of the ‘Timed Out’ fault, all faults in the Publishing,
Discovery, Composition, and Binding phases relate to functional behaviour. In the
fifth phase (Execution), both the ‘Timed Out’ and ‘Service Crashed’ faults describe
non-functional behaviour, while the ‘Incorrect Result’ fault again relates to func-
tional behaviour. Furthermore, all faults defined for the Publishing phase relate to
functional behaviour. With this in mind, we cannot assign any of the papers we
surveyed to the first phase, while the remainder of the phases can be affected by
any of the faults studied in the papers we considered, since each of these faults may
result in ‘Timed Out’ faults. Therefore, we do not provide a table for the time-phase
classification scheme. Furthermore, we note that it appears likely that the concept
of architectural levels is necessary in order to be able to meaningfully classify fault
models.

1.3.4 Multi-dimensional Classification

A multi-dimensional classification scheme is presented in [CBS+07]. The scheme is
an application of the general concepts described in [ALRL04] to the field of service-
oriented systems. [CBS+07] distinguish three broad categories of faults, and, or-
thogonal to these, three dimensions. The broad fault-categories are Physical, Devel-
opment and Interaction faults, while the dimensions describe the phase of occurrence
(during development/maintenance or during operation), the location where the fault
occurs (internal or external to the system), and the architectural level (hardware or
software).

Unfortunately, the authors recur to examples where rigid definitions of the cate-
gories might have resulted in more clarity. Nonetheless, based on the given examples,
we may attempt the following mapping between the categories in our classification
scheme and those in [CBS+07]: The Physical category comprises all levels below the
Service and WS Stack. Development faults are faults on the Service level that affect
functional behaviour, while non-functional behaviour is contained in the Interaction
category. Then, we interpret the dimensions as follows: In the Phase dimension,
all faults not directly and exclusively attributable to development or maintenance
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Physical Deve-
lopment

Interaction

Development [VM03] — —
Operation [TKDT04, SMS06, KC07, MP02, SG06,

OGP03, LMG95, CRM00, VM03, VM02,
RBD+09, PHA+04, PXL+04, LAJ99,
DCGN03a, NA04, RvMW04, RvMW06b,
ZDPS01, PAB+05, CWA+05, HH08,
HNA02, BS03, BS04, HS08]

— [KR04, GKT+08,
DGP05, JKB03,
TVN+03,
RWW09, RW08b,
ZL08, SF07,
ZZL10]

Internal — — [KR04, GKT+08,
DGP05, JKB03,
TVN+03,
RWW09, RW08b,
ZL08, SF07,
ZZL10]

External [TKDT04, SMS06, KC07, MP02, SG06,
OGP03, LMG95, CRM00, VM03, VM02,
RBD+09, PHA+04, PXL+04, LAJ99,
DCGN03a, NA04, RvMW04, RvMW06b,
ZDPS01, PAB+05, CWA+05, HH08,
HNA02, BS03, BS04, HS08]

— —

Hardware [SG06, CRM00, DCGN03a, NA04,
RvMW04, RvMW06b, ZDPS01, PAB+05,
CWA+05, HH08, HNA02, BS03, BS04,
HS08, RBD+09]

— [RW08b]

Software [TKDT04, SMS06, KC07, MP02, SG06,
OGP03, LMG95, CRM00, VM03, VM02,
PHA+04, PXL+04, LAJ99, DCGN03a,
NA04, RvMW04, RvMW06b, ZDPS01,
PAB+05, CWA+05, HH08, HNA02, BS03,
BS04, HS08]

— [RW08b]

Table 1.4: Multi-dimensional Classification based on [CBS+07]

actions belong to the operational phase. The Internal category of the Boundary
dimension contains all faults in our Service and WS Stack levels, while all faults
below these levels are considered external. The Hardware/Software dimension does
not directly map to any of our levels. We apply it by assigning fault models that
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Physical Faults [SG06, VM02, RBD+09]
Software Faults —
Resource Management Faults —
Communication Faults [RW08b, PXL+04, LAJ99, DCGN03a, NA04,

RvMW04, RvMW06b, ZDPS01, PAB+05, CWA+05,
HH08, HNA02, BS03, BS04, HS08]

Lifecycle Faults [CRM00, VM03, VM02, RBD+09]

Table 1.5: An Application of the Fault-Model Ontology from [LXM07].

exclusively describe hardware faults to the former category, while all others belong
to Software.

Table 1.4 displays the result of assigning fault models from the surveyed papers
to the categories of the multi-dimensional classification scheme of [CBS+07]. Note
that the scheme (at least in our interpretation) is too coarse-grained to distinguish
between most of the faults, as evidenced by the large number of papers that fall
into the Physical category. Furthermore, the Development category is empty, since
the fault models we consider only affect non-functional behaviour. Finally, note
that (with our interpretation) the Internal/External categories of the Boundary
dimension is equivalent to the Physical/Interaction categories.

1.3.5 Fault-Model Ontology

The last approach we consider was proposed in [LXM07]. This approach differs
from the previous ones in that it provides a methodology, rather than a classification
scheme. The methodology allows one to derive detailed descriptions of faults, with
the ultimate goal of implementing test cases for these faults in a fault-injection
testbed. In this approach, one starts with a coarse classification of faults, which is
then successively refined until the faults of interest can be described sufficiently well
for implementation in a test-bed. Thus the approach is similar to our concept of a
fault model, albeit with a focus on test-bed models.

The initial classification consists of five elements: Physical faults, Software faults,
Resource Management faults, Communication faults and Lifecycle faults. Unfortu-
nately, with the exception of Software faults (for which an example is given), the
categories are not described in detail. Still, we will try to apply them to our sur-
vey. In doing so, we assume that the Physical faults category corresponds to faults
that can be uniquely identified as originating in hardware, and Lifecycle faults re-
fer to operator faults. Table 1.5 presents the resulting classification. Note that
the Software and Resource Management categories are empty; furthermore, many
of the reviewed papers are missing from the table, since we could not identify an
appropriate category.
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1.3.6 Major Observations on Fault Classification Schemes

Several fault-classification schemes for service-oriented systems have been proposed
in the literature. The phase-level scheme in [CFR03] considers both a time- and
an architecture-dimension, thereby accounting for the fact that the effects of faults
may differ, depending which phase they affect. The three-level scheme in [GMKR07]
focusses solely on the architecture dimension, while the taxonomy in [BWM07a,
BWM07b] instead considers only the time-dimension. The multi-dimensional scheme
in [CBS+07] also considers architectural and time dimensions, splitting the former by
referring to the system boundary and the difference between hardware and software
faults. Furthermore, the scheme in [CBS+07] adds a distinction between functional
and non-functional behaviour. Finally, the ontology in [LXM07] provides a mixture
of an architectural dimension and an abstract concept of faults. Note, however, that
neither [CBS+07] nor [LXM07] give sufficiently strict definitions of the respective
categories, and thus our discussion of these approaches is based on our interpretation.

A number of observations can be made from our application of these approaches
to the classification of the fault models surveyed in Section 1.2. First, it appears that
a purely time-phase-based taxonomy may not be sufficient to distinguish real-world
faults. This implies that some notion of system architecture is required. Second,
one should be careful to choose the right granularity for the classification of faults.
When categories are too fine-grained, as in [CFR03], many categories might not
relate to observable faults. On the other hand, if the categories are too coarse (as in
[GMKR07] and [CBS+07]), distinction between faults becomes difficult, since many
faults are lumped into the same category. Third, strict and correct definition of
fault categories is important. This is highlighted by the approaches in [CBS+07]
and [LXM07], which required a large amount of interpretation before they could be
applied to the surveyed studies.

We conclude this section by remarking that for the purposes of fault model
classification the recursive approach we applied in Section 1.2 appears the most
promising, even though it does not consider the time-dimension. If a time-dimension
is required, the scheme in [CFR03], or a combination of this scheme with our scheme,
may be most applicable. In cases where a coarser and purely architectural taxonomy
suffices, one may apply the one from [GMKR07]. The schemes proposed in [CBS+07]
and [BWM07a, BWM07b], however, do not appear well-suited to the classification
of real-world faults.
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1.4 Application: Fault Models in the Study of
Service-Oriented and Massively Virtualised
Systems

We now illustrate the use of our survey in two application scenarios. First, we will
show how the fault models considered in the first part of the survey can be used in
studying the effectiveness of restart strategies in service-oriented systems. Second,
we address the application of these fault models beyond the SOA scenario. To this
end, we consider massively virtualised systems typical for the emerging field of Cloud
Computing.

1.4.1 Example: Restart in Service-Oriented Systems

Consider again our running example from the Introduction. We want to develop an
algorithm for computing the request timeout in a service-oriented system. In service-
oriented systems, transient faults can be due to common influences such as IP packet
loss and temporary server overload [RvMW04, RvMW06a, RW08b, RWW09]. Here,
response-times may be reduced by restarting at an appropriate time. Restarting too
soon, or too often, however, increases load and may thus exacerbate the problem,
increasing response-times even further. Therefore, the client should base the restart
timeout on its operating conditions.

In order to evaluate the quality of restart algorithms at different abstraction
levels, we may start by measuring performance in a test-bed with fault-injection,
as was done for a Web Services Reliable Messaging (WSRM, [BIMT05]) implemen-
tation in [RvMW06a, RW08a]. WSRM is a protocol that provides reliable SOAP
message transmissions over possibly unreliable transports, by retransmitting mes-
sages that have not been acknowledged by the recipient. In [RvMW06a, RW08a]
we studied the effects of IP packet loss on the message transmission times experi-
enced by an application employing WSRM. In order to do this, we needed models
for IP packet loss. In [RvMW06a] we applied a Bernoulli model to generate uni-
form IP packet loss, while in [RW08a] we used a Gilbert model to model packet-loss
correlations. Gilbert models are Stochastic-Process fault models according to our
classification in Section 1.1.1. We pointed out that observations differed with these
models in [RW08a].

Another way of studying optimal timeout-selection is the analytical approach
presented in [vMW06]. With this approach, one considers the response-times of
the service-oriented system as seen by the client. Response-times are modelled as
a random variable. Therefore, in this approach we need a Random-Variable model
of response-times at the Service level, such as the phase-type models presented
in [RW08b, RWW09]. Note that these models differ in where they may be applied:
As was already pointed out in Section 1.1.1, the models from [RW08b] can only be
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used to study restart on the connection to the service. The models in [RWW09], on
the other hand, are for response-times of the SUN Java Adventure Builder with IP
packet loss and at various load levels. These models can be used to study optimal
timeout-strategies for restart of requests to a service.

The studies above focussed on IP faults. However, using our survey, one may
easily study the application of restart to address the effects of other faults, such as
in the DNS, in the Service, or in routing. In order to do so, one would first define
the fault of interest, and then, using Table 1.1, identify a layer and a publication
where this fault has been modelled in an appropriate way.

1.4.2 Example: Performance Evaluations in Cloud Computing

Currently, Cloud Computing is one of the major trends in distributed systems.
Following the definition of Buyya et al. in [BYV+09], Computing Clouds are char-
acterised by the extensive use of virtual machines, flexible assignment of resources to
users, utility pricing (e.g. pay per used CPU hour), use of Web Services standards,
and central ownership and administration of the underlying hardware and software
resources. Furthermore, physical machines within a Cloud are typically intercon-
nected by dedicated high-capacity networks, while the connection to the user as well
as between clouds (cf. [BLS+09]) and between clouds and external services relies on
the public Internet. [BLS+09] additionally point out that virtualisation may go as
far as representing physical resources only as abstract metaphors.

With the growing importance of Cloud Computing, performance and depend-
ability issues in these systems also come into focus (cf. [KRB+12]). Various research
questions may be defined, depending on the particular application area.

One interesting use for the flexible infrastructure provided by Cloud services is
scientific computing, for which [OIY+09] pose the research problem of tuning scien-
tific applications for efficient execution in a Cloud Computing environment. In their
work, Osterman et al. show that computing performance may not be optimal with
Cloud services, while, depending on the workload, I/O performance may be even
better than with physical hardware (due to extensive caching). Communication-
intensive applications may suffer from high latency between virtual machines. Fur-
thermore, they find that virtualisation may lead to reproducible reliability issues.

[OIY+09] use a measurement-approach in a real Cloud service. Alternatively,
one might want to use experimentation in a test-bed. However, as pointed out by
[WBPG09], the complexity and costs of a Cloud environment are prohibitively large.
Instead, they implement a simulation framework for studying Cloud performance.
Their focus is on the MapReduce programming paradigm, which is popular for dis-
tributing parallelisable tasks onto nodes of massively virtualised systems. Wang
et al. instrument the NS-2 network simulator to model different characteristics of
a MapReduce setup. In particular, their approach allows to study the effects of
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task, node, and link failures on the performance of the system. While their cur-
rent implementation only supports simple failures, the fault models gathered in our
survey may be used to gain deeper insights into performance characteristics. For
instance, we might be interested in the average performance of a setup completing
several MapReduce tasks over an extended period of time. Then, we would look up
models for the appropriate task, node, and link failures in Table 1.1, e.g. using the
stochastic-process model from [DCGN03a] to include the temporal behaviour of link
failures in the study.

Another simulation approach is presented by [BRC09]. The CloudSim Toolkit
models, among other aspects, virtual machines and VM scheduling, storage, net-
work, and computing resources. The CloudSim Toolkit currently does not support
the injection of faults, however, apparently it would only require a few modifications
in order to apply the fault models gathered in our study. The separation of a Cloud
system into components employed by Buyya et al. is similar to our architectural
classification scheme, and consequently it is easy to choose appropriate fault mod-
els for the different components. For example, faults due to the network may be
introduced by e.g. using the response-time distributions from [RW08b, RWW09] to
delay communication. Similarly, the findings in [KC07] may be applied to simulate
delays caused by the virtualisation infrastructure.

An analytical approach for computing the response-time in a Cloud-Computing
environment was proposed by [XP09]. This approach uses random variables with
exponential distribution to model service-times distributions. Choosing random-
variable models from the first row of Table 1.1 (e.g. the PH models we proposed
in [RWW09]) instead, we might obtain more realistic results.

1.5 Concluding Remarks

In this chapter we discussed the application of stochastic fault models in system
evaluation. We introduced the concepts of system models that are parameterised by
fault models, we surveyed fault models for use in system models of service-oriented
systems and presented an overview of fault-classification schemes for faults in SOA
systems. In the first part we have observed that the description and understanding of
faults in many components of typical SOA systems are lacking, both in the number
of studies and in the detail of the available fault models, since many authors just
analyse statistical properties of the data and do not provide explicit fault models.
The second part showed that fault-classification schemes often show weaknesses in
their actual application. Such shortcomings manifest as both overlapping and empty
categories.

Nonetheless, we strongly believe that both parts of the survey will help to im-
prove the understanding of faults in service-oriented systems and their effects on
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quality of service. We anticipate three major applications. First, based on our sur-
vey of both fault models and fault classification schemes, researchers can build and
evaluate system models that reflect general properties of SOA systems. By replac-
ing the common approach of modelling specific systems for specific studies, such
system models will foster analyses and experiments that yield general, comparable
results for whole classes of systems. Second, we expect that the gaps we identified in
our survey will direct research efforts towards a better understanding of important
components of service-oriented systems, such as the SOA infrastructure. Third, as
illustrated in Section 1.4.2 using Cloud Computing as an example, the fault models
we surveyed will help to evaluate and improve quality-of-service attributes of a wide
spectrum of emerging parallel and distributed computer systems.
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Chapter Two

Background on Phase-type
Distributions

In this chapter we give an introduction to phase-type (PH) distributions. We define
the notation that will be used throughout this work and summarise important results
on their properties. The goal of this introduction is two-fold: First, we want to
provide a concise summary of existing work on the theory behind PH distributions
to the reader not familiar with the area. Our focus in this will be on concepts that
are relevant in system evaluation, and especially on those that are required in the
later chapters of this work. Second, we need to define the terms and notation we
will use to refer to these concepts, which have often been described using different
terms, or different notation, by different researchers.

The chapter is structured as follows: We first define phase-type distributions
and summarise several important properties. We then describe sub-classes of PH
distributions that are of particular relevance in system evaluation due to certain
desirable characteristics. In Section 2.3 we discuss important representations of PH
distributions and the transformations between these representations. Section 2.4
introduces canonical representations for PH distributions.

2.1 Notation, Formal Definition and Properties

We start with an intuitive definition of a PH distribution: Given a Continuous-Time
Markov Chain (CTMC) with one absorbing state, as shown in Figure 2.1, we may
enter this chain at some state i with probability αi. Now, as time progresses, state-
changes will occur and different states will be visited, before the chain finally enters
the absorbing state (state 7 in Figure 2.1). For each state that is visited, the time
before going to the next state follows an exponential distribution. Thus, the time
required to reach the absorbing state from an initial state i is a sum of samples
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Figure 2.1: A continuous-time Markov chain with one absorbing state.

from exponential distributions. For a given CTMC, a phase-type distribution, is the
distribution of the times to absorption that can be observed along the paths through
the CTMC. This is summarised in the following definition:

Definition 2.1.1 (Phase-type distribution [Neu81]). A continuous-time phase-type
(PH) distribution is defined as the distribution of the time to absorption in a Continu-
ous-Time Markov Chain (CTMC) with one absorbing state.1

Definition 2.1.1 gives an intuitive definition of PH distributions. This definition
serves to define the class, and will in fact be used repeatedly. However, we also
need a formal description. In order to give this formal definition, we first need
to introduce some notation: Let 1I be the column vector of ones, let 1Ii be the
column vector whose ith entry is 1 and whose remaining entries are 0, and let ei be
the corresponding row vector. Furthermore, let 0 refer to the column vector, row
vector, or matrix with all entries equal to zero. In order to avoid excessive notation,
we do not specify the size of objects such as 1I or 0 explicitly, unless there may
be ambiguities from the context. For the same reason, zero entries in matrices are
usually left blank.

Following the definition as the distribution of absorption times in a CTMC,
PH distributions are commonly represented by a vector-matrix tuple (α,Q) that
describes the transient part of the CTMC. The row vector α gives the initial prob-
abilities of the states in the transient part and the square matrix Q describes state-
transitions prior to absorption. In this representation, α is a non-negative row vector

1An equivalent definition using a Discrete-Time Markov Chain (DTMC) will yield the class of
discrete-time phase-type distributions, which is not considered in this work.
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whose entries sum to one, and Q is a sub-generator matrix for the transient states of
a CTMC. We refer to a tuple with these properties as a Markovian representation.

Definition 2.1.2 (Markovian Representation). The vector-matrix tuple (α,Q) is a
Markovian representation of a PH distribution iff

α = (α1, . . . , αn) ∈ R
n (2.1)

α1I = 1 (2.2)

α ≥ 0, (2.3)

and

Q =







−λ11 · · · λ1n

...
. . .

...
λn1 · · · −λnn






∈ R

n×n (2.4)

is a non-singular matrix with

λii > 0 (2.5)

λij ≥ 0 where i 6= j (2.6)

for i, j = 1, . . . , n and

Q1I ≤el 0 (2.7)

Q1I 6= 0., (2.8)

where ≤el denotes the element-wise relation. With a Markovian representation, α is
the initialisation vector and Q is the sub-generator matrix of the associated CTMC
with generator matrix

Q̂ =

(

Q −Q1I
0 0

)

. (2.9)

Definition 2.1.2 necessitates several remarks. First, note that we assume that
with a sub-generator matrix of size n the absorbing state is the (n + 1)th state.
Other authors (e.g. [HT02]) assume that the absorbing state is at index 0. However,
the definitions are completely equivalent.

Second, by allocating all probability mass to the transient states, our definition
follows common practice in the area. This means that the absorbing state cannot be
entered directly, i.e. the distribution does not have mass at zero. This convention
does not pose a limitation, as mass can be assigned to zero by a simple rescaling of
α such that α1I < 1.
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Third, as our use of the term ‘representation’ implies, there are usually several
ways of representing a phase-type distribution. From Definition 2.1.1 it follows
that all PH distributions have a Markovian representation, but this representation
is usually neither unique, nor are all representations guaranteed to be Markovian.
That is, a PH distribution may be defined by a tuple (α′,Q′) where α′ has negative
entries or Q′ is not a sub-generator matrix. Illustration of these statements must
be deferred to Example 2.3.1 in Section 2.3, where we discuss the background for
these examples.

Taking into account the last remark, we now give a definition of various charac-
teristics of PH distributions that does not depend on the interpretation as a CTMC.

Definition 2.1.3 (Characteristics of phase-type distributions). Let (α,Q) be a (not
necessarily Markovian) representation of a phase-type distribution with α ∈ R

n,
α1I = 1 and Q ∈ R

n×n. The size of the representation is the length of the vector
α ∈ R

n, which is equal to the size of the matrix Q.
The probability density function (PDF), cumulative distribution function (CDF),

Laplace-Stieltjes Transform (LST) of the CDF and kth moment, respectively, of the
distribution given by (α,Q) are defined as follows [Neu81, O’C90, HT02, TH02a]:

f(t) = αeQt(−Q1I), (2.10)

F (t) = 1 − αeQt1I, (2.11)

F̃ (s) = α(sI − Q)−1(−Q1I), (2.12)

E
[

Xk
]

= k!α(−Q)−k1I. (2.13)

Phase-type distributions have been studied for a long time, and several important
properties have been identified, often by different authors using different approaches.
Many of these properties affect the application of PH distributions. In the following
we list a few of these properties that pertain to the work presented here. The
discussion is intentionally kept brief, as our goal is to provide the reader with a
general understanding of these properties. We only give the statement and a short
summary of the argument behind it, and refer the reader to the referenced literature
for a much more complete treatment, including the formal proofs.

Theorem 2.1.1 (Positivity of PH distributions). The density f(t) of a PH distri-
bution is strictly positive for t > 0, i.e.

f(t) > 0 for t > 0. (2.14)

The statement follows from the requirement that every PH distribution has a
Markovian representation (α,Q), as follows. First, note that the matrix exponential
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in the density function (Equation (2.10)) can be written as a linear combination of
exponential functions with positive coefficients (cf. [Ber09], Sec. 11.2, p. 711f for the
details on the structure of the matrix exponential). For a Markovian representation
(α,Q) the coefficients of the elements of this linear combination in the density are the
non-negative entries of the initialisation vector α and the strictly positive entries
of the column vector −Q1I (at least one element of −Q1I is greater than zero).
Furthermore, since α1I = 1, at least one entry of α is larger than zero. Finally,
every exponential function in t is strictly positive for t > 0, and consequently f(t)
must be strictly positive for t > 0.

By relaxing the requirement that a Markovian representation exists and only
requiring that (2.10) defines a proper density (i.e. f(t) ≥ 0 for all t), one enters
the class of Matrix-Exponential (ME) distributions. The same definitions as given
in Definition 2.1.3 apply to this class, of which the PH distributions are only a
sub-class.

Theorem 2.1.2. Every PH distribution has rational Laplace-Stieltjes Transform
(LST) of the form

F̃ (s) =
P (s)

Q(s)
. (2.15)

If Q(ρ) = 0 for ρ ∈ C (i.e. ρ is a root of Q), we refer to ρ as a pole of F . The poles
of F are the eigenvalues of the sub-generator matrix Q.

The observation follows immediately from the expression given for the LST
in (2.12). A more detailed discussion is available in [O’C90].

Theorem 2.1.3 (Closure Properties [Neu81]). If, for N ∈ N
+, f1(t), . . . , fN (t) are

densities of PH distributions and a1, . . . , aN ∈ [0, 1] with
∑N

i=1 ai = 1, then

fMixture(t) =
N
∑

i=1

aifi(t) (2.16)

fSum(t) = f1(t) ∗ f2(t) ∗ · · · ∗ fN (t) (2.17)

are also densities of PH distributions.

The above theorem states that the class of PH distributions is closed with respect
to mixture and convolution of a finite number of distributions. Both can be easily
shown by considering that, given the Markovian representations (α1,Q1), . . . , (αN ,QN ),
the respective Markovian representations for the mixture or convolution can be con-
structed by building the appropriate sub-generators [Neu81].
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Theorem 2.1.4 (Lower bound on the squared coefficient of variation [AS87]). The
lower bound for the squared coefficient of variation (SCV) cv2 of a PH distribution
of size n is

cv2 ≤
1

n
, (2.18)

where the equality holds for the Erlang distribution of length n.

In their aptly named paper [AS87], Aldous and Shepp show that the phase-type
distribution with least variability is the Erlang distribution, which has cv2 = 1/n.
Any other PH distribution of the same size must then have an SCV of at least 1/n.
The lower bound on the SCV is the most general result for the moments of a PH
distribution. Although there are several results for special cases (e.g. the moment
bounds of the PH distributions of size n = 2 and n = 3 presented in [TH02b]
and [HT07], respectively), similarly general bounds for higher moments are not
known. In [HT08], Horváth and Telek provide numerical results for the moment
bounds.

2.2 Classes of Phase-type Distributions

Several sub-classes of phase-type distributions have been defined over the years.
The concept of PH classes is closely intertwined with the concept of PH representa-
tions. On the one hand, PH classes can often be conveniently defined as being the
phase-type distributions of a certain structure. On the other hand, certain repre-
sentations are only available for certain classes. We first discuss two important PH
classes. Section 2.3 then introduces representations for these classes and sub-classes,
and Section 2.4 discusses canonical representations.

Definition 2.1.1 defines the class of phase-type distributions. According to this
definition, every CTMC with an absorbing state describes a PH distribution. A very
useful subclass of PH distributions can be defined by only considering CTMCs with-
out loops. This class is called the class of Acyclic Phase-type (APH) distributions,
with the following formal definition:

Definition 2.2.1 (Acyclic Phase-type Distribution). A phase-type distribution is
called acyclic if it has a Markovian representation (α,Q) where Q is upper-triangular:

Q =











−λ11 λ12 . . . λ1n

−λ22 . . . λ2n

. . .
...

−λnn











. (2.19)
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(a) Phase-type distribution with cycles.
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(b) Acyclic phase-type distribution.

Figure 2.2: CTMC representations for general and acyclic phase-type distributions.

Definition 2.2.1 is equivalent to requiring that an acyclic phase-type distribution
has at least one underlying CTMC that is cycle-free. This restriction does not
apply to the general PH class, where the underlying CTMCs of all representations
may have any structure, as long as it contains an absorbing state. The difference
is illustrated in Figure 2.2: The CTMC on the left contains a cycle, that is, a
backward transition from state 3 to state 1. The CTMC on the right does not
contain this transition and therefore there are no cycles and the CTMC describes
an APH distribution.

One easily sees that the APH class is a true subclass of the PH class: The
eigenvalues of an upper-triangular matrix Q as given in Definition 2.2.1 are the
entries of the diagonal, −λ11, . . . ,−λnn. Since (α,Q) is Markovian, all entries of
the matrix must be real, and consequently the sub-generator of an acyclic phase-
type distribution cannot have complex eigenvalues. In Section 2.1 we remarked
that the eigenvalues of the sub-generator give the poles of the Laplace-Stieltjes
Transform (LST) of the distribution. Since the eigenvalues of the sub-generator of
an APH distribution cannot be complex, the LST of this distribution cannot have
complex poles. This restriction on the eigenvalues of the sub-generator does not
exist for general PH distributions, whose sub-generator matrices may have complex
eigenvalues, or, equivalently, whose LSTs may have complex poles. Consequently,
the APH class is a true sub-class of the PH class.

A second important sub-class is the class of Hyper-Erlang distributions. As the
name suggests, this class is defined as containing all distributions that are mixtures
of Erlang distributions. Since Erlang distributions are PH distributions, mixtures
of these distributions are again PH distributions. We give a formal definition of
the Hyper-Erlang class based on representations in the next section. Here we only
illustrate that, just as the APH class is a true sub-class of the PH class, the Hyper-
Erlang class is a true sub-class of the APH class. In [TBT06], Thümmler et al.
prove this statement using the squared coefficient of variation of the classes. Equiv-
alently, we can apply the following argument: The Erlang distribution is certainly
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a Hyper-Erlang distribution. Furthermore, it is also a member of the APH class,
since it is a phase-type distribution without cycles. The Erlang distribution has
identical rates in all transitions. On the other hand, the Hypo-Exponential distribu-
tion (or generalised Erlang) may have different rates on the transitions. Although
a Hypo-Exponential distribution with differing rates is an APH, it is not an Erlang
distribution, and thus also not a Hyper-Erlang distribution Consequently, the APH
class contains at least one element that is not Hyper-Erlang, and thus is truly larger
than the Hyper-Erlang class.

2.3 Transformations and PH Representations

A phase-type distribution is defined by a tuple (α,Q). We remarked before that this
representation is not unique, that is, one can find another tuple (α′,Q′) that defines
the same distribution. (α′,Q′) may be of the same size or it may have a different
size. We will now describe transformations between representations and illustrate
the non-uniqueness of phase-type representations. With two representations that are
of the same size, one may be computed from the other by a similarity transformation.
The concept can be generalised to representations of different sizes.

We note that, while for every PH distribution there is a representation of larger
size, representations with smaller size may only be found if the representation is
non-minimal [Neu81] or if it is not PH-simple [O’C91]. Both concepts relate to the
fact that a representation may contain redundant elements, e.g. states that are not
visited or can be lumped (non-minimality) or unnecessary poles (non-PH-simplicity).
In these cases the size of the representation may be reduced, by e.g. applying the
methods from [Neu81, HZ06] or the pole-reducing method from [Pul09].

2.3.1 Transformations between representations

Similarity transformations between PH representations are based on the concept of
similarity transformations between matrices, which are defined as follows:

Definition 2.3.1 (Similarity Transformation, Definition 3.4.4 in [Ber09], p. 188).
Two matrices Q,Q′ are similar if there exists an invertible (i.e. non-singular) matrix
S of the same size such that Q′ = S−1QS. In this case, S is called a similarity
transformation matrix.

The following Lemma recalls two important properties of similarity transforma-
tions between matrices that will be used in the following. The proof is straightfor-
ward and uses the series expansion of eQ. It is given in Appendix A.
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Lemma 2.3.1. Let Q ∈ R
n×n and S be a similarity transformation matrix. Then

(S−1QS)k = S−1QkS (2.20)

eS
−1QS = S−1 eQ S (2.21)

Similarity transformations between PH representations additionally require that the
row-sums of S are equal to one: S1I = 1I. We can then compute the new initialisation
vector α′ using the similarity transformation, as follows:

α′ := αS. (2.22)

As summarised in the following lemma, (α,Q) and (α′,Q′) are two representations
for the same distribution :

Lemma 2.3.2 (Similarity transformation for PH distributions). Let (α,Q) be a
representation of a PH distribution with distribution function F (t) = 1 − α eQt 1I.
Given a non-singular matrix S with S1I = 1I, the tuple (αS,S−1QS) defines the
same distribution.

Similarity transformations are only applicable to representations of the same size. If
the two representations are of a different size, we need a generalisation of the concept,
which we obtain by using a non-square matrix Ŵ instead of the square matrix S
for the similarity transformation. The generalised similarity transformation is then
described by the following lemma:

Lemma 2.3.3. Let (α,Q) be a representation of size n of a PH distribution with
distribution function F (t) = 1−α eQt 1I. Let Q′ ∈ R

m×m be a sub-generator matrix
and let Ŵ ∈ R

n×m such that Ŵ1I = 1I and ŴQ′ = QŴ. Then, (αŴ,Q′) defines
the same distribution as (α,Q).

Proofs for both lemmata can be found in Appendix A. Note that for n = m
similarity transformations and generalised similarity transformations are equivalent.

The following example illustrates the use of these transformations:

Example 2.3.1 (Transformations and Representations). Consider the PH distribu-
tion defined by (α,Q) with

α = (
1

3
,
1

3
,
1

3
) and Q =





−1 0 0
0 −2 0
0 0 −3



 (2.23)
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and the similarity transformation matrix

S1 =





1
3

1
3

1
3

0 1
3

2
3

0 0 1



 . (2.24)

Application of S1 to (α,Q) yields the Markovian representation

αS1 = (
1

9
,
2

9
,
2

3
) and S−1

1 QS1 =





−1 1 0
0 −2 2
0 0 −3



 . (2.25)

If we apply the similarity transformation matrix

S2 =





1 0 0
2 −1 0
0 0 1



 (2.26)

instead, we obtain

αS2 = (1,−
1

3
,
1

3
) and S−1

2 QS2 =





−1 0 0
2 −2 0
0 0 −3



 , (2.27)

which is non-Markovian, due to the negative second entry of the vector αS2, but still
represents the same distribution. Application of the generalised similarity transfor-
mation matrix

Ŵ =





1 0 0 0
0 1 0 0
0 0 0.7 0.3



 (2.28)

to (α,Q) results in the larger representation

α′ = αŴ = (
1

3
,
1

3
,

7

30
,

1

10
) and Q′ =









−1 0 0 0
0 −2 0 0
0 0 −3 3
0 0 0 −10









. (2.29)

Throughout this work we use these transformations to compute a new initialisation
vector after we have changed the sub-generator matrix. Typically, we first construct
a new sub-generator matrix and build a matrix Ŵ that transforms the old matrix
into the new matrix. The transformation matrix Ŵ can always be obtained by
solving the system of linear equations that defines it. In some cases where the
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2.3. Transformations and PH Representations

structure of the sub-generators is known, the required matrix can also be constructed
in a straightforward way. After the transformation matrix has been built, we then
compute the new initialisation vector using the above lemmata as α′ := αŴ.

Similarity transformations are applied extensively in Chapter 4. A generalised
similarity transformation provides the underlying argument for the proof of Theo-
rem 2.4.2 sketched in Section 2.4.2.

2.3.2 Important Representations

Based on the structure of the Markov chain, different types of representations can
be distinguished. These representations often help to reduce the number of free
parameters in the representation and will form the basis of efficient random-variate
generation and efficient PH fitting in later chapters of this work. In this section we
describe several important structures. Our discussion follows the distinction into
chain structures and branch structures, defined in the following:

Definition 2.3.2 (Chain and Branch Structures). Let (α,Q) be a representation
of size n of a phase-type distribution. The representation has chain structure if

Q =



















Q1 −Q11Ie1

Q2 −Q21Ie1

. . .
. . .

−Qm−11Ie1

Qm



















(2.30)

for matrices Qj ∈ R
bj×bj , i = 1, . . . , m and

∑m
j=1 bj = n. On the other hand, if

Q =















Q1 0
Q2 0

. . .
. . .

0
Qm















, (2.31)

then the representation is said to have branch structure.

The general structures just defined do not need to be Markovian. However, if (α,Q)
is a Markovian representation, they admit the following intuitive interpretation in
terms of the CTMC: A representation in chain structure consists of subsequent
blocks of states. Once the Markov chain has been entered at any of these blocks Qj ,
the absorbing state can only be reached by traversing all of the remaining blocks,
Qj+1, . . . ,Qm. With a representation in branch structure, the blocks are in parallel
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1 2

zλ

λ (1 − z)λλ λ
b

Figure 2.3: Structure of a Feedback-Erlang block with length b, rate λ, and feedback
probability z.

and are not connected. Therefore, after entering block Qk, k = 1, . . . , m, none of
the other blocks can be visited.

Throughout this work we are particularly concerned with two special chain struc-
tures and two special branch structures where all block matrices Qi have the same
structure. For these representations, the blocks describe exponential, Feedback-
Erlang, Erlang, or chains of Feedback-Erlang distributions. The Feedback-Erlang
distribution is the most general block in these cases. This distribution was intro-
duced by Mocanu and Commault in [MC99]. We first recall the definition of a
Feedback-Erlang block and some of its important properties from [MC99], before
discussing the special structures.

Definition 2.3.3 (Feedback-Erlang block [MC99]). A Feedback-Erlang (FE) block
is defined by the tuple (b, λ, z), where b ≥ 1 is the length, λ > 0 is the rate, and
z ∈ [0, 1) is the feedback probability of the block. The associated matrix F ∈ R

b×b

has the following structure:

F =















−λ λ
−λ λ

. . .
. . .

λ
zλ −λ















. (2.32)

Feedback-Erlang blocks with feedback probability z = 0 or length b = 1 are often
called degenerate FE blocks.

Figure 2.3 illustrates the structure of a Feedback-Erlang block (b, λ, z) as defined
by Definition 2.3.3 and the relation between FE blocks, Erlang and exponential
distributions:. For z = 0, the Feedback-Erlang is simply the sub-generator matrix
of an Erlang distribution of order b. An FE block with b = 1 is the sub-generator
of an exponential distribution.

The importance of this structure lies in the fact that for z > 0 and b > 2 the block
has at least one conjugate-complex pair of eigenvalues with non-zero imaginary part
and that for every pair of conjugate complex eigenvalues an appropriate FE block
can be constructed [MC99]. The following lemma summarises the results in [MC99]:
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α1 α4

λ1 λ2 λ3

α2 α3

λ4

(a) Bi-diagonal representation.

z2λ2

α
(1)
1

λ1 λ2 λ2

(1 − z2)λ2

α
(2)
1 α

(2)
2 α

(2)
3

Block 2Block 1

(b) FE-diagonal representation.

Figure 2.4: Chain structures.

Lemma 2.3.4 (Eigenvalues of an FE block [MC99]). The eigenvalues ρ1, . . . , ρb of
the Feedback-Erlang block defined by (b, λ, z) are

ρk = −

(

1 − z
1
b cos

2(k − 1)π

b

)

+

(

z
1
b sin

2(k − 1)π

b

)

i, k = 1, . . . , b. (2.33)

We now describe important chain and branch structures.

2.3.2.1 Chain Structures

We first define the bi-diagonal form and its natural extension, the FE-diagonal form.
These chain structures play an important role as canonical representations and in
the optimisation approaches we present in Chapter 4.

Definition 2.3.4 (Bi-diagonal representation). Let (α,Q) be a representation in
chain structure. The representation is bi-diagonal if m = n and, for i = 1, . . . , m,

Qi ∈ R
1×1, and (2.34)

Qi =
(

−λii

)

(2.35)

with λii > 0. An alternative notation is (α,Λ), where

Λ = (λ1, . . . , λn) ∈ R
n (2.36)

is a row-vector of length n and λi = λii give the entries of the diagonal of Q.

Figure 2.4(a) shows the CTMC for a Markovian bi-diagonal representation. Note
that the CTMC can be entered at any state, but that the absorbing state can only be
reached by passing through the remaining states. Familiar examples for distributions
in bi-diagonal representation are the Erlang distribution, where α = (1, 0, . . . , 0) and
λi = λi+1 for i = 1, . . . , n− 1 and the hypoexponential distribution, where the rates
may be arbitrary.
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2. Background on Phase-type Distributions

The bi-diagonal representation is generalised by allowing the block matrices to
be in Feedback-Erlang (FE) form. This generalisation results in the FE-diagonal
form, defined below. Representations of this type have been first used in [MC99],
where they are referred to as Monocyclic representations. The definition of a Mono-
cyclic representation in [MC99] requires that the FE blocks are ordered according to
their dominant eigenvalues (the dominant eigenvalue of an FE block is the largest
eigenvalue of the corresponding matrix). We distinguish between the Monocyclic
form and the FE-diagonal form, which does not require this ordering.

Definition 2.3.5 (FE-diagonal form). Let (α,Q) be a representation in chain struc-
ture. The representation is in FE-diagonal form if all blocks Q1, . . . ,Qm are in
Feedback-Erlang form. An alternative notation for an FE-diagonal representation is
(α,Υ), where

Υ = {(b1, λ1, z1), . . . , (bm, λm, zm)} (2.37)

describes the chain of FE blocks. Where appropriate, we apply the notation α(j) to
refer to the initial probability vector of the jth Feedback-Erlang block, i.e.

α = (α(1), . . . ,α(m)). (2.38)

Formally, α(j) is a row vector of size bj with the following definition:

α(j) = (αPj−1
l=1 bl+1

, αPj−1
l=1 bl+2

, . . . , αPj−1
l=1 bl+bj

). (2.39)

Figure 2.4(b) shows an example of the CTMC of a general PH distribution in FE-
diagonal form. In this representation there are two Feedback-Erlang blocks, one of
length b1 = 1 with rate λ1, and one of length b2 = 3 with rate λ2 and feedback
probability z2. The CTMC may be entered at any state, and therefore at any block,
but can only reach absorption by passing through the remaining blocks. Further-
more, the CTMC may go back to previous states, however, it cannot go back to
previous FE blocks. The importance of FE-diagonal structures lies in the fact that
the sub-generator of such a structure can have complex eigenvalues, which is not
the case with the bi-diagonal form, which is a special case of the FE-diagonal form,
with lengths bj = 1 and feedback probabilities zj = 0.

2.3.2.2 Branch Structures

In this section we describe three important branch structures. The first definition
describes the structure of the CTMC for Hyper-Erlang distributions, while the sec-
ond extends the concept to mixtures of Feedback-Erlang distributions. The third
definition generalises the second definition even further, by allowing chains of FE
distributions in the blocks.
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(a) Hyper-Erlang distribution
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(b) Hyper-Feedback-Erlang distribution

Figure 2.5: CTMCs of Hyper-Erlang and Hyper-Feedback-Erlang distributions with two
branches.

Definition 2.3.6 (Hyper-Erlang representation [TBT06]). Let (α,Q) be a Marko-
vian representation in branch structure. The representation is in Hyper-Erlang
(HErD) form if, for k = 1, . . . , m:

αi > 0 for i ∈

{

1, 1 + b1, . . . , 1 +
m−1
∑

k=0

bk

}

, (2.40)

αi = 0 else (2.41)

and

Qk ∈ R
bk×bk (2.42)

Qk =















−λk λk

. . .
. . .

−λk λk

−λk















, (2.43)

with λk > 0. That is, the representation consists of m Erlang branches with ini-
tial probabilities α1, α1+b1 , . . . , α1+

Pm−1
k=1 bk

, lengths b1, . . . , bm and rates λ1, . . . , λm.

Equivalently, we can use the notation

H = (β, (b1, λ1), . . . , (bm, λm)), (2.44)
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2. Background on Phase-type Distributions

where β = (β1, . . . , βm) ∈ R
m gives the initial probabilities of the branches:

β1 = α1, β2 = α1+b1 , . . . , βm = α1+
Pm−1

k=1 bk
, (2.45)

and the branches are defined by the tuples (bk, λk), k = 1, . . . , m, where bk gives the
length and λk is the rate of the kth branch.

An example of the general structure of the CTMC of a Hyper-Erlang distribution is
shown in Figure 2.5(a). The distribution shown here has m = 2 branches of length
b1 = 4 and b2 = 3, respectively. The initial probabilities and the transition rates are
given by β = (β1, β2) and λ1, λ2. The size of this representation is n = b1 + b2 = 7.
Each branch can only be entered at its first state and then has to be traversed
completely before absorption. Furthermore, the CTMC cannot change to a state
that belongs to another branch. Common examples for Hyper-Erlang distributions
are the Erlang distribution, which has one branch and initial probability vector
β = (1, 0, . . . , 0)), and the Hyper-Exponential distribution, where all branches have
length 1.

As with the bi-diagonal representations, the Hyper-Erlang structures can be
generalised by using the FE-diagonal structure for the block matrices.

Definition 2.3.7 (Hyper-Feedback-Erlang representation). Let (α,Q) be a Marko-
vian representation in branch structure. The representation is in Hyper-Feedback-
Erlang (HFED) form if all Qk, k = 1, . . . , m are in Feedback-Erlang form. We will
use the notation (α,Υ), where

Υ = ((b1, λ1, z1), . . . , (bm, λm, zm)). (2.46)

We use the notation α̂(k) to refer to the initial probability vector of the kth Feedback-
Erlang block:

α̂(k) = (αik , αik+1, . . . , αik+bk
) ∈ R

bk , (2.47)

where

ik =
k−1
∑

l=1

bl + 1 (2.48)

is the index of the first state of the branch.

Figure 2.5(b) shows the CTMC of a distribution in Hyper-Feedback-Erlang form.
Observe that in each branch there is a Feedback-Erlang loop (with feedback proba-
bilities z1, z2), and that the branches can be entered at any state.
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In [HT11] Horváth and Telek give a different definition for the Hyper-Feedback-
Erlang distribution. Instead of only allowing a single FE block in each branch, this
definition allows chains of multiple identical FE blocks. In order to keep the analogy
between the Hyper-Erlang and Hyper-Feedback-Erlang distributions as mixtures of
the respective distributions, throughout this work we use the term Hyper-FE dis-
tribution only for distributions fulfilling Definition 2.3.7, and refer to the definition
in [HT11] by the name Extended Hyper-Feedback-Erlang (eHFED) distribution:

Definition 2.3.8 (Extended Hyper-Feedback-Erlang representation [HT11]). Let
(α,Q) be a Markovian representation in branch structure. The representation is in
Extended Hyper-Feedback-Erlang (eHFED) form if all Qk, k = 1, . . . , m in Defini-
tion 2.3.2 are of the form

Qk =











Fk Fk1Ie1

. . .
. . .

Fk1Ie1

Fk











∈ R
mkbk×mkbk , (2.49)

where Fk ∈ R
bk×bk is the subgenerator matrix of the kth FE block with size bk, and

mk ≥ 1 denotes the multiplicity of this FE block. We denote the kth branch of an
eHFED distribution by the vector

(mk, bk, λk, zk), (2.50)

where bk, λk, and zk define an FE block. An extended Hyper-FE representation with
m branches is then given by (α,Υ), where

Υ = ((m1, b1, λ1, z1), . . . , (mm, bm, λm, zm)) (2.51)

denotes the FE-diagonal branches. The initial probability vector of the kth branch is
given by

α̂(k) = (αik , αik+1, . . . , αik+bk
) ∈ R

mkbk , (2.52)

where

ik =
k−1
∑

l=1

bl + 1 (2.53)

is the index of the first state of the branch. Augmenting our definition for FE-
diagonal representations, we use the notation α̂(k,j) to refer to the initial probabilities
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Figure 2.6: Extended Hyper-Feedback-Erlang distribution.

of the jth FE block in the kth branch:

α̂(k) =
(

α̂(k,1), . . . , α̂(k,mk)
)

, (2.54)

with

α̂(k,j) =
(

αik+(j−1)bk
, αik+(j−1)bk+1, . . . , αik+jbk−1

)

. (2.55)

The CTMC of a distribution in extended Hyper-Feedback-Erlang form with two
branches is shown in Figure 2.6. In contrast to the Hyper-Feedback-Erlang form,
each branch may contain multiple FE blocks in chain structure. All FE blocks within
a branch have the same length, rate, and feedback probability.

Note that the Hyper-FE and Extended-Hyper-FE representations differ with
respect to the phase-type distributions that they can represent. The Hyper-FE
distribution can only represent distributions where all poles of the Laplace-Stieltjes
Transform of the distribution function have multiplicity one. In contrast, the eHFED
representation exists for all PH distributions, as shown in [HT11]: First, a sub-
generator matrix in eHFED form that expresses all eigenvalues of the original repre-
sentation by chains of identical FE blocks (with chain lengths corresponding to the
multiplicity of the eigenvalues) is constructed. The initial vector is then computed
by a generalised similarity transformation between the two representations. While
this representation does exist for every PH distribution, it is not guaranteed to be
Markovian.
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2.4 Canonical Representations

While in general representations for phase-type distributions are not unique, several
canonical representations have been proposed. In order for a representation of the
PH class or one of its sub-classes to be canonical it must be possible to transform
every distribution within that class to this representation in a unique way. That
is, there must not be another canonical representation of the same distribution of
the same size, but with different parameters. This characteristic enables the use of
canonical representations to determine whether two representations (α,Q), (α′,Q′)
define the same distribution. Second, canonical representations aim to reduce the
number of parameters and to simplify the structure of the representation, thus al-
lowing more efficient fitting, analysis, and simulation methods. In the following
we discuss Cumani’s Canonical Form 1 (CF-1) [Cum82] and the Monocyclic form
introduced in [MC99], as these are the most common ones.

2.4.1 The Canonical Form 1 (CF-1) for Acyclic Phase-type
Distributions

In [Cum82] Cumani proposed the following bi-diagonal representation as a canonical
form for all acyclic phase-type distributions:

Definition 2.4.1 (CF-1 form [Cum82]). The Canonical Form 1 (CF-1 form) is
a Markovian bi-diagonal representation (α,Λ) where the elements of the diagonal,
given in the vector Λ, are in increasing order:

λ1 ≤ λ2 ≤ · · · ≤ λn.

According to the following theorem, the CF-1 form is indeed a canonical represen-
tation:

Theorem 2.4.1 (Canonicity of the CF-1 form, [Cum82, O’C91]). Let F (t) be
an acyclic phase-type distribution with Markovian representation (α,Q) of size n.
Then, there exists a unique CF-1 representation (α′,Q′) of the same size that defines
the same distribution.

Proofs for Theorem 2.4.1 may be found in [Cum82] and in [O’C91]. Cumani’s
proof is based on the observation that in an acyclic CTMC there is only a finite
number of paths to absorption, and that each of these paths is of finite length less
than or equal to the size of the distribution. With adjustments to the initialisa-
tion vector, the distribution can be expressed as a weighted sum of these paths.
O’Cinneide, on the other hand, applies a geometric approach that uses the concept
of invariant polytopes.
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The CF-1 form for an APH given as (α,Q) can be obtained by a similarity
transformation. A procedure for constructing the similarity transformation matrix
is given in [HZ06]. Theorem 2.4.1 guarantees the existence of a CF-1 representation
of the same size. Smaller CF-1 representations may exist if there is redundancy in
the original representation [Neu81, HZ06, Pul09].

An important property of the CF-1 form is that the transformation of an APH to
CF-1 considerably reduces the number of parameters: A general APH representation
has n initial probabilities α1, . . . , αn and n2 entries in the subgenerator matrix Q,
i.e. the number of parameters is n + n2. Even with the upper-triangular form the
number of parameters is still n + 1/2(n + 1)n. In the CF-1 form Q is an upper
bi-diagonal matrix with n entries λ1,1, . . . , λn,n and λi,i = −λi+1,i. The CF-1 form
therefore has 2n parameters.

2.4.2 The Monocyclic Form for General PH Distributions

General PH distributions may have complex poles, and the poles of a PH distribution
are given by the eigenvalues of the subgenerator matrix Q. As the eigenvalues of
a bi-diagonal representation (α,Λ) are equal to the entries of the diagonal, and
Q ∈ R

n×n, it is easy to see that a bi-diagonal structure like the CF-1 form cannot
represent phase-type distributions with complex poles.

For this reason, [MC99] proposed the Monocyclic form and the Markovian Mono-
cyclic form. We re-state the definition here in terms of the FE-diagonal form intro-
duced before:

Definition 2.4.2 (Monocyclic and Markovian Monocyclic form [MC99]). The Mono-
cyclic form is a Feedback-Erlang-diagonal representation (α,Υ) where the Feedback-
Erlang blocks are positioned along the diagonal in increasing order of the absolute
value of the dominant eigenvalues ρi, i = 1, . . . , m of the matrices Fi corresponding
to the FE blocks:

|ρ1| ≤ |ρ2| ≤ · · · ≤ |ρm|

The representation is said to be in Markovian Monocyclic form if the vector α is
Markovian, i.e. α ≥ 0 and α1I = 1.

As summarised in Lemma 2.3.4, a Feedback-Erlang block of order b > 2 and with
feedback probability z > 0 has at least one conjugate-complex pair of eigenval-
ues [MC99]. Therefore, a chain of FE blocks can be used to represent the complex
eigenvalue pairs of a general phase-type distribution. Note that if zi = 0 for all FE
blocks i = 1, . . . , b the Monocyclic form is equivalent to the CF-1 form. That is, the
CF-1 form is a special case of the Monocyclic form.

The following theorem combines Proposition 2 and Theorem 2 of [MC99]:
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Theorem 2.4.2 (Markovian Monocyclic form, [MC99]). Let F (t) be a phase-type
distribution with representation (α,Q). Then, there exists a Markovian Monocyclic
representation (β,M) of the same distribution.

Proposition 2 in [MC99] shows that every PH distribution F (t) has a Monocyclic
representation, and gives the following method for its construction: Let (α,Q) be a
representation of F (t) of size n, let ρ1, . . . , ρn be the eigenvalues of Q, ordered such
that the elements of complex-conjugate pairs are immediately adjacent, i.e.

Im(ρi) > 0 ⇔ Im(ρi+1) = −Im(ρi),

and let m be the number of eigenvalues with distinct real part. Then, a Monocyclic
representation (α′,Q′) can be obtained by constructing Feedback-Erlang blocks
F1, . . . ,Fm such that each FE block represents either a real eigenvalue ρi or a com-
plex conjugate pair of eigenvalues ρi, ρi+1. The sub-generator Q′ is then defined
as

Q′ =











F1 −F11Ie1

. . .
. . .

Fm−1 −Fm−11Ie1

Fm











∈ R
n′×n′

, (2.56)

where the FE blocks are ordered by the dominant eigenvalue of their matrices,
Fi, and n′ =

∑m
i=1 mi is the size of the representation. In a second step, a new

initialisation vector α′ is computed such that (α′,Q′) represents F (t). The new
vector can be computed as follows: As we have n′ unknowns α1, . . . , αn′ , we must
construct a system of n′ equations,

F(α′,Q′)(t1) = F(α,Q)(t1) (2.57)

... (2.58)

F(α′,Q′)(tn′) = F(α,Q)(tn′), (2.59)

and solve it for α′.
In general, the initialisation vector obtained by this method is not Markovian.

Theorem 2 in [MC99] then states that a Markovian initialisation vector can be found
by adding phases to the Monocyclic generator. The original proof given in [MC99]
relies on the invariant polytopes approach by [O’C91]. This method provides an
elegant way of proving the statement using a geometric argument. On the other
hand, this elegant approach comes at the cost of requiring a quite complex set of
non-standard mathematical tools.

A more accessible proof can be sketched as follows: Let (α,Q) be a non-
Markovian Monocyclic representation and let (β,M) be a representation where an
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Erlang distribution of length k with rate λ has been appended to the last state of
the original representation, i.e.

M :=

















Q −Q1Ie1

−λ λ
. . .

. . .

. . . λ
−λ

















∈ R
(n+k)×(n+k) (2.60)

and β ∈ R
n+k. The operation of adding k phases with rate λ is described by the

generalised similarity transformation matrix

Ŵ :=
(

Wk|Wk−1ω| . . . |W0ω
)

∈ R
n×(n+k) with (2.61)

W :=

(

I +
1

λ
Q

)

(2.62)

ω := 1I − W1I. (2.63)

Ŵ is an n×(n+k) matrix consisting of the square matrix Wk and k column vectors
Wk−1ω, . . . ,W0ω. It can be easily shown that

ŴM = QŴ (2.64)

Ŵ1I = 1I. (2.65)

Because Ŵ is a generalised similarity transformation matrix, (β,M) with β = αŴ
describes the same distribution as (α,Q). One can then show that by adding a
sufficiently high number of phases the entries of the initial vector that correspond to
the first n states of the distribution become non-negative, and that a suitable choice
of λ ensures that the k additional entries of the new initial vector are also non-
negative. Both insights follow by contradiction from the precondition that f(t) > 0
for t > 0. Therefore, there exist k, λ such that β = αŴ ≥ 0. The following example
illustrates the approach.

Example 2.4.1 (Markovian Monocyclic Representation). Consider the Monocyclic
representation (α,Q) with

α = (1.1,−0.3, 0.2, 0) and Q =









−1 1
−2 2

−2 2
0.1 −2









. (2.66)
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This representation is non-Markovian. We define λ := 5 and obtain

W := I +
Q

5
=









0.8 0.2
0.6 0.4

0.6 0.4
0.02 0.6









(2.67)

ω := 1I − W1I =









0
0
0

0.38









. (2.68)

For k = 1 we have the generalised similarity transformation matrix

Ŵ =
(

W |ω
)

=









0.8 0.2
0.6 0.4

0.6 0.4
0.02 0.6 0.38









(2.69)

(2.70)

By applying Ŵ to (α,Q) we obtain the Markovian Monocyclic representation

β = (0.88, 0.04, 0, 0.08, 0) and M =













−1 1
−2 2

−2 2
0.1 −2 1.9

−5













. (2.71)

Note that by different choice of λ and k we can obtain other Markovian Monocyclic
representations, e.g. for λ = 6 and k = 2 we get

β′ = (0.763889, 0.142778, 0.0166667, 0.0555556, 0.021111, 0) and

M′ =

















−1 1
−2 2

−2 2
0.1 −2 1.9

−6 6
−6

















. (2.72)

Example 2.4.1 illustrated the transformation of a non-Markovian Monocyclic rep-
resentation to a Markovian Monocyclic representation. The example also served to
show that this transformation is not unique, since different Markovian representa-
tions can be constructed depending on the choice of k and λ. While this means
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that the Markovian Monocyclic representation is not canonical in the strict sense of
the term, one might easily add additional criteria, such as minimal size or minimal
size of the added rate to enforce uniqueness, if this is required. Throughout this
work we will consider the Markovian Monocyclic representations canonical, in the
sense that every PH distribution has such a representation. As we do not consider
non-Markovian canonical representations, we will in general simplify terminology by
using the term Monocyclic form to refer to Markovian Monocyclic representations
only.

2.5 Concluding Remarks

In this chapter we summarised the theoretical background on phase-type distribu-
tions required for the remainder of this work. We introduced special representations
and sub-classes of PH distributions and discussed canonical representations for the
acyclic and general PH class. Special representations will play a major role in both
random-variate generation (Chapter 3) and in phase-type fitting (Chapter 5). We
also defined similarity transformation for switching between different representa-
tions of the same PH distribution. These operations are applied extensively in the
optimisation approaches studied in Chapter 4.
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Chapter Three

Algorithms for Random-Variate
Generation from Phase-type
Distributions

Random variates are required to represent stochastic behaviour in simulation and
testbeds. Although phase-type distributions are well-known for their desirable prop-
erties in fitting empirical data and in analytical approaches, their use for random-
variate generation is still a relatively unexplored area, both from a practical and
from a theoretical perspective. With the exception of simple sub-classes such as
the Erlang or hyper-exponential distributions, phase-type distributions are gener-
ally neither discussed in textbooks on simulation (see e.g. [Jai91, Law06]), nor sup-
ported in simulation environments. A few algorithms have been proposed in [NP81,
BPdL98, HT11], which use different approaches and in some cases support larger
classes of distributions that include the PH class. These algorithms address the cost
of random-variate generation to some extent, but do not fully exploit the structural
properties for optimisation of the computational costs. From a theoretical perspec-
tive, the existing body of work appears quite scattered, with little to no overview
of approaches or comparative discussion of the costs of random-variate generation.
Furthermore, existing algorithms are not amenable to reducing the cost by suitable
choice of a PH representation. In this chapter we provide a survey of algorithms
for random-variate generation from PH distributions, especially taking into account
the costs of the algorithms in terms of operations that we identify as atomic. Our
focus in this work is on methods that use the structure of the Markov chain. We
propose two new algorithms for random-variate generation that rely on canonical
forms. These algorithms are more efficient than generic algorithms; their primary
advantage, however, lies in the fact that they enable elegant expressions for the
cost metrics. Such expressions are required for optimisation of representations for
efficient random-variate generation.
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Distributions

This chapter is structured as follows: We first recall the classification scheme
for random-variate algorithms introduced in [Jai91], which we will use to provide
a structure to our discussion of the random-variate generation algorithms. In Sec-
tion 3.2 we describe atomic operations used in the algorithms and define cost metrics
based on these operations. We then describe existing algorithms and discuss their
costs. We introduce two new algorithms and derive elegant expressions for the costs
of these algorithms. Finally, we provide a measurement study on the computational
costs incurred by the atomic operations in typical implementations.

3.1 General Terminology and Structure of the Survey
of Algorithms

Throughout this work we follow [Jai91] in the distinction between random variates
and random numbers: Random variates may follow any distribution (or indeed any
stochastic process), while random numbers only refer to the uniform distribution on
(0, 1). We are concerned purely with the generation of random variates and assume
that random numbers are given.

We apply the following classification of algorithms for random-variate genera-
tion from [Jai91]: Inversion methods operate by inverting the distribution function.
Inversion methods can be very efficient, but require an explicit expression for the
inverse of the distribution function. Acceptance/Rejection methods draw random
variates from a distribution whose density majorises the target distribution and ac-
cept only those samples that belong to the target distribution. Composition methods
draw a random variate from a mixture of distributions by first randomly selecting
one of the distributions and then generating a random variate of that distribution.
These methods are applicable if there exist efficient methods for the component
distributions. Similarly, convolution methods generate random variates from a dis-
tribution which is a convolution of simpler distributions. Both composition and
convolution methods are special cases of characterisation methods. Characterisation
methods rely on a characterisation of the target distribution in terms of distributions
for which efficient methods exist. Finally, empirical methods draw random variates
from an empirical distribution represented by measurements.

Both the inversion and the acceptance/rejection method have been proposed
for PH-random-variate generation; the main focus, however, lies on algorithms that
can be subsumed under the label of characterisation methods, as they utilise the
structure of the Markov chain. Methods that draw from the empirical distribution
are not relevant with respect to generating PH-distributed random variates.
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3.2. Atomic Operations and Cost Metrics

3.2 Atomic Operations and Cost Metrics

The algorithms discussed in the following can be broken down to three atomic op-
erations, which allow us to define cost metrics that enable comparison between
the algorithms. These operations were chosen based on their common use in the
algorithms and their availability as basic operations in implementation. We first
describe common operations in random-variate generation. We then identify atomic
operations and introduce three cost metrics for PH-random-variate generation.

Generation of a uniform random number in (0, 1). Uniform random numbers
are required in all algorithms that generate random variates. In the context of PH
distributions, random numbers are used as samples in the inversion method, for
determining acceptance in the acceptance/rejection method, and for state selection
and sojourn-time computation in the characterisation methods.

There exists a large body of literature on random-number generation for simu-
lation (e.g. [Jai91, Law06]), and in the context where random variates are required,
e.g. in simulation environments and operating systems, routines for random-number
generation are typically provided. With simulation environments in particular, one
should use the random numbers they provide, as these are suited to simulation and
provide e.g. independent random-number streams. We do not explicitly distinguish
between true randomness and pseudo-randomness of the random numbers, as this
distinction has no bearing on the random-variate generation algorithms we discuss.
Whether these are truly random or pseudo-random largely depends on the nature of
the random numbers that are used. While in simulation one often prefers pseudo-
randomness due to repeatability of experiments (cf. [Jai91]), true random variates
may be useful in other contexts.

We consider the drawing of a sample from the uniform distribution on (0, 1) an
atomic operation with a given cost. We use U to denote a uniform random variable,
and u to describe a sample from this variable. If several samples are required, we
denote them by sub-scripts, e.g. ui, ui+1, . . . .

Generation of a random variate with exponential distribution. Character-
isation methods for phase-type distributions utilise the fact that every PH distribu-
tion can be represented by a Continuous-Time Markov Chain (CTMC) to generate
random variates by ‘playing’ this CTMC until the absorbing state is reached. Play-
ing the CTMC involves drawing state sojourn times for each traversed state. As state
sojourn-times are exponentially distributed, drawing a sample from the exponential
distribution is a common operation in these methods.
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Using the inversion method (see also Section 3.3), a sample from the exponential
distribution with rate λ can be computed as

Exp(λ) := −
1

λ
lnu, (3.1)

where u is a uniform random number [Jai91, Hav98]. Generation of an exponential
sample thus requires one logarithm and one uniform random number.

Generation of an Erlang-distributed random variate. In characterisation
methods, Erlang-distributed random variates can be used to describe the sojourn
times for chains of states with identical exponential distributions. Since the Erlang
distribution of length b with rate λ is defined as the sum of b independent exponential
random variates with rate λ, drawing a sample from the Erlang distribution is
equivalent to drawing and adding b samples from the exponential distribution with
rate λ. The importance of the Erlang distribution lies in the fact that an Erlang-
distributed sample Erl(λ) requires only one logarithm operation, as opposed to b
logarithm operations for the sum of exponentials [NP81, Hav98]:

Erl(λ, b) :=
b
∑

i=1

−
1

λ
ln(ui) (3.2)

= −
1

λ
ln

(

b
∏

i=1

ui

)

. (3.3)

An Erlang-distributed sample generated using (3.3) needs b uniform random num-
bers u1, . . . , ub and 1 logarithm operation.

We note in passing that (3.3) can incur serious numerical problems in actual
implementation: For large b, a long series of floating-point numbers u1, . . . , ub with
0 < ui < 1 is multiplied. Because this product approaches zero, it may exceed the
range of numbers that can be represented by a floating-point number. In this case,
the computed product is zero, for which the logarithm is not defined. The problem
could be addressed by e.g. splitting the sequence of random numbers into N − 1
segments of length b′ = ⌊ b

N
⌋ and one segment of length b′′ = b − Nb′ such that no

underflow occurs in the products corresponding to each segment, i.e.

Erl(λ, b) = −
1

λ





N−2
∑

j=0

ln





(j+1)b′
∏

i=jb′+1

ui



+ ln





b′′
∏

(N−1)b′+1

ui







 . (3.4)

Erlang-distributed random variates generated using (3.4) require N logarithm op-
erations. In the theoretical discussion of the algorithms we assume that (3.3) is
used.
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Generation of a geometric random variate. The geometric distribution de-
scribes the number of trials until an event occurs. In some characterisation methods,
this distribution is used to compute the number of times a loop in the Markov chain
is traversed. A sample
textGeo(p) from the geometric distribution (starting from 0) with success probabil-
ity p for the event can be drawn by the inversion method [Jai91, Law06]:

Geo(p) =

⌊

ln(u)

ln(1 − p)

⌋

, (3.5)

requiring 1 uniform random number and 2 logarithms. Note that if the denominator
in (3.5) is constant, it may be pre-computed (as suggested in [HT11]). However, the
routines that use the geometric distribution typically require random variates from
several different geometric distributions, and thus for each geometric random variate
a lookup for the appropriate constant term would be needed. This lookup operation
would replace the logarithm operation in (3.5) and also incur some computational
cost. In order to provide simple expressions, throughout the following we assume
that no such optimisation takes place.

Computation of the matrix exponential. Inversion methods for random-varia-
te generation from PH distributions require the computation of the matrix expo-
nential. There exists a large body of work on methods for computing the matrix
exponential (see [ML03]). As the costs of using these methods depend not only on
the method, but also on the size of the given matrix, the matrix exponential is not a
suitable operation for cost comparisons and a simpler operation. We use the scalar
exponential as another common operation. As described in [Ber09], p. 711f, the
exponential of a matrix of size n can be expressed using linear combinations of n
scalar exponentials, and thus the scalar exponential is an appropriate operation.

3.2.1 Atomic Operations

Random-variate generation from PH distributions requires uniform random num-
bers, samples from the exponential, Erlang, and geometric distributions, and com-
putation of the matrix exponential. For the purposes of this work, we treat the
generation of uniform random numbers, the computation of a logarithm, and the
computation of a scalar exponential as atomic operations. That is, we assume that
these operations are provided by the environment and incur some constant compu-
tational cost. While it may be possible to split them still further, this would be
of little value for discussing the efficiency of different algorithms for random-variate
generation in relation to each other, since the costs would then also depend on the
particular implementations of the operations.
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3.2.2 Cost Metrics

Given the above three atomic operations, the following three cost metrics appear
useful for our discussion of the costs of random-variate algorithms:

Definition 3.2.1 (Cost Metrics for PH-Random-Variate Generation). Let #uni be
the number of uniform random variates that need to be generated, let #ln be the
number of logarithm operations that must be performed, and let #exp be the num-
ber of scalar exponentials that must be computed for generating one PH-distributed
random variate from a given PH distribution with representation (α,Q) of size n.

Using these metrics, we can compare the costs that the algorithms incur when
generating random variates from a given PH distribution with a given representation.
We consider both worst-case and average costs. In general, these costs differ. The
former specifies the highest number of atomic operations performed, and thus the
largest amount of computation time required by the algorithm. The latter describes
the average number of operations and the average amount of computation time.

3.3 The Inversion Method for Phase-type
Random-Variate Generation

Inversion methods are based on the observation that the values u of the distribution
function F (t) follow a uniform distribution on [0, 1]. Consequently, given samples u
from the uniform distribution,

t = F−1(u) (3.6)

is distributed according to F (t) [Jai91]. If an efficient way for computing the inverse
of F (t) is known, inversion methods can be very efficient routines for random-variate
generation, since they require only a single uniform random number. For instance,
a random variate from the exponential distribution with rate λ and distribution
function F (t) = 1 − e−λt can be obtained by the expression given in (3.1).

The exponential distribution is the simplest non-trivial phase-type distribution,
and exponentially-distributed random variates play an important role in charac-
terisation methods. However, the analytical inversion approach does not generalise
to phase-type distributions with size n > 1, since the matrix and vector structures
in the distribution function,

F (t) = 1 − α eQt 1I

do not admit an explicit expression of F−1(t).
Brown et al. [BPdL98] propose application of inversion methods for random-

variate generation from matrix-exponential (ME) distributions based on numerical
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inversion of the distribution function. Since PH distributions are a subclass of ME
distributions, this approach is also applicable for PH distributions. The following
pseudo-code summarises the algorithm given in [BPdL98]:

Procedure NumericalInversion(α,Q):
Draw a sample u from the uniform distribution on (0, 1).
a := 0, b := tmax

t := a+b
2

while |F (t) − u| > ǫ do
if F (t) < u then

a := t
else

b := t
end if
t := a+b

2
end while
return c

The algorithm works as follows: First, a uniform random number is generated, and
then t such that F (t) ≈ u is identified by binary search. The binary search starts
with the interval [0, tmax] and iteratively shrinks the interval until the center of the
interval is sufficiently close to u. Each step of the search for t requires comput-
ing the value of F (t), which involves computing the matrix exponential eQt. The
upper limit tmax depends on the application and on the method used for compu-
tation of the matrix exponential. Brown et al. propose the scaling-and-squaring
method (cf. [ML03]) to compute eQt and note that this method is only accurate for
u < tmax < 1. Random numbers u close to 1 correspond to the tail of the distribu-
tion. For u ≥ tmax, Brown et al. use an exponential approximation for the tail. We
omit these steps here, as they are specific to the scaling-and-squaring method.

Costs of numerical inversion. Using our metrics, and assuming that the matrix
exponential is computed using scalar exponentials, costs for the NumericalInversion
method are measured by the number of uniform random numbers and by the num-
ber of scalar exponentials (no logarithm operations are performed). The algorithm
requires exactly one uniform random number. The worst case depends on how many
steps are taken by the binary search in the worst case, i.e. log(1/δ) steps for an ac-
curacy of δ. The number of steps depends on the accuracy δ. As each step involves
n scalar exponentials, worst-case costs can be expressed as

#expWC, NumericalInversion = n log(1/δ), (3.7)

e.g. #exp = 19n for an accuracy of δ = 10−6, as considered by Brown et al.
in [BPdL98]. For numerical inversion using binary search, worst case and average

67



3. Algorithms for Random-Variate Generation from Phase-type

Distributions

costs are equal.

3.4 The Acceptance-Rejection Method for
Random-Variate Generation

An acceptance/rejection method for generating random variates from matrix-expo-
nential distributions and phase-type distributions with non-Markovian initialisation
vector is presented in [HT11]. Given a representation (α,Q) for an ME distribution
where Q is a sub-generator matrix, but α may contain negative entries, the method
is based on an expression of the density as a combination of PH densities gi(t),

f(t) = α eQt(−Q1I) (3.8)

=
n
∑

i=1

αigi(t), (3.9)

where gi(t) is the density of the PH distribution with representation (ei,Q):

gi(t) = ei e
Qt(−Q1I). (3.10)

The sum in (3.9) is split into a part with positive coefficients αi, identified by the
index set A+ and a part with negative coefficients, with index set A−:

f(t) =
∑

i∈A+

αigi(t) +
∑

i∈A−

αigi(t) (3.11)

= f+(t) + f−(t), (3.12)

where f+(t) =
∑

i∈A+
αigi(t) is strictly positive and can be normalised to mass one,

such that f̂(t) is a proper density:

f̂(t) =
1

∑

i∈A+
αi

f+(t). (3.13)

The method proceeds by drawing a random variate x from f̂(t) (using any algorithm
for generating PH-distributed random variates). x is accepted with probability

p = 1 +
f−(x)

f+(x)
, (3.14)

and rejected with probability (note that f−(x)
f+(x) ≤ 0):

1 − p = −
f−(x)

f+(x)
. (3.15)
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In abbreviated form, the algorithm is given by:

Procedure AcceptanceRejection(α,Q):
while true do

Draw an f̂(t)-distributed sample x.

p := 1 − f−(t)
f+(t)

Draw a sample u from the uniform distribution on (0, 1).
if u < p then

break
end if

end while
return x

The full version of the algorithm, as presented in [HT11], avoids drawing the random
number u if A− = ∅ (i.e. if the acceptance probability is 1) and additionally checks
if f(t) is a proper density; this part is omitted here for brevity.

The method presented by Horváth and Telek offers two advantages. First, it
enables drawing random variates from PH distributions with non-Markovian rep-
resentation. As demonstrated in [HT11], this enables the following approach: The
PH distribution is transformed to a structure that allows efficient random-variate
generation, but may not have a Markovian initialisation vector. From this represen-
tation, random variates can then be drawn using the presented algorithm. Horváth
and Telek discuss the use of both branch structures (using the extended Hyper-
Feedback-Erlang representation, where several identical FE blocks are allowed per
branch) and chain structures (using the FE-diagonal representation).

A second advantage of this method lies in its applicability to a wider class of
distributions than those considered here, because the algorithm is also suited for
drawing random variates from matrix-exponential (ME) distributions. By reducing
the problem of drawing from ME distributions to that of drawing PH-distributed
random variates, Horváth and Telek make it possible to apply the efficient methods
available for the PH class to the ME class.

Costs of Acceptance/Rejection. Our discussion of the costs follows that given
in [HT11]. The costs for the AcceptanceRejection method depend on the method
that is used in the algorithm and on the representation. With respect to the accep-
tance probability p, we must distinguish two cases: If the representation is Marko-
vian, then p will be equal to 1, in wich case the method reduces to a single call to
the algorithm for drawing PH-distributed random variates. If the representation is
not Markovian, then p < 1, and the PH sampling algorithm will be called multiple
times.

If an FE-diagonal representation is used, the acceptance probability p = 1, since
every PH distribution has a Markovian FE-diagonal representation (Section 2.4.2).
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In this case, the method reduces to the FE-diagonal algorithm, described in Sec-
tion 3.5.1.3. Both worst-case costs and average costs are then equal to those of the
FE-diagonal method, which are given in Section 3.5.1.3.

If the extended Hyper-FE representation is used, it is possible that the repre-
sentation is not Markovian. In this case, the acceptance probability p is less than
1, i.e. several random variates may be required before the sample is accepted. The
costs for each trial are equal to the costs of the eHFED method (see Section 3.5.2.2).
Furthermore, the number of trials that are required follows a geometric distribution
with parameter p and support 1, 2, . . . . Since the geometric distribution has infinite
support, we cannot define the maximum number of trials, and therefore the worst-
case costs for this case are not defined. Average costs, on the other hand, can be
derived using the mean 1/p of the geometric distribution: On average,

#uniAvg, AR/eHFED =
1

p
#uniAvg, eHFED (3.16)

uniform random numbers are required and

#lnAvg, AR/eHFED =
1

p
#lnAvg, eHFED (3.17)

logarithms will be computed. Expressions for the eHFED-method are given in Sec-
tion 3.5.2.2.

3.5 Characterisation Methods for Random-Variate
Generation

According to the classification in [Jai91], characterisation methods for random-
variate generation are based on expressing the desired distribution using other distri-
butions for which efficient methods are known. The definition of phase-type distribu-
tions as the distribution of the time to absorption in a Markov chain [Neu81] provides
an intuitive characterisation of these distributions for the purposes of random-variate
generation: Each sample is generated by entering the Markov chain at some state
and traversing the chain, spending an exponentially-distributed time in each state,
until the absorbing state is reached. The sample is then the sum of the exponential
samples along the path to absorption. The methods discussed in this section are also
referred to as ‘Play’ methods, since the above approach is equivalent to ‘playing’ the
Markov chain till absorption. As these methods operate on the Markov chain, they
can only be applied if the distribution is given in a Markovian representation. In
this section we will show that sub-classes and special representations enable more
efficient random-variate generation. Note that these algorithms may also be used as
part of the acceptance-rejection method by [HT11].
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The costs of the characterisation methods described here often depend on the
number of state transitions. We therefore define ñ to denote the maximum number
of state transitions and n∗ to denote the average.

3.5.1 Algorithms for General Phase-type Distributions

We first describe three algorithms for generating random variates from general phase-
type distributions. We start with two algorithms that work directly on the state-
space representation and can thus be used with any phase-type distribution. We
then propose an algorithm that requires FE-diagonal representations and utilises
their special structure to simplify the process of random-variate generation.

3.5.1.1 The Generic Play Method

Recall from Chapter 2 that phase-type distributions are defined as the distribution of
time-to-absorption in a continuous-time Markov chain [Neu81]. Therefore, a sample
from a PH distribution is given by the time spent between entering the chain at some
state i and reaching the absorbing state n + 1. The most natural way to generate a
PH-distributed sample is then to ‘play’ the CTMC (hence the name of the method)
by entering the chain at one state, following the state-transitions and summing up
the state-sojourn times, until the absorbing state is reached. The PH sample is
then the sum of the state-sojourn times. It appears that this method has been first
mentioned in [NP81], although it was probably known before. The algorithm can
be stated as follows:

Procedure Play(α,Q):
x := 0
Draw an α-distributed discrete sample i for the initial state.
while i 6= n + 1 do

x := x + Exp(λii)

Draw a P
(i)

-distributed discrete sample i for the next state.
end while
return x

In the Play algorithm, first an initial state i is selected randomly, with distribution
according to the initial probability vector α. This is achieved by drawing an integer
sample from the distribution in α. The probabilities of state transitions within the
Markov chain are given by the entries of the transition matrix P of the embedded
Markov chain (EMC) of the generator matrix Q̂ (see Section B.2 for the derivation
of the EMC),

P = I − Diag(Q̂)−1Q̂,

where Diag(Q̂) is the matrix with the diagonal elements of Q̂ on the diagonal and

zero everywhere else. Let P
(i)

denote the ith row vector of P. Then, if the chain
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is in state i, the probability that j 6= i is the next state is given by the jth entry

of P
(i)

. Thus, in order to select the next state, the procedure draws an integer

sample with distribution P
(i)

(note that P
(i)
i = 0, i.e. the chain cannot stay in the

current state). The sojourn times for each state i follow an exponential distribution
with rate λii. Therefore, in each state i the procedure draws a sample from the
exponential distribution with rate λii. When the absorbing state is reached, the
procedure terminates and returns the sum of the exponential samples.

Costs of the generic Play method. Each traversed state requires one exponen-
tially-distributed random variate, and hence in each step one uniform and one log-
arithm are computed. Additionally, one uniform is required for the initial state
selection, and each successive state selection also requires a uniform random num-
ber. For this method, #uni and #ln are proportional to ñ. However, ñ is not
defined if there are cycles in the CTMC, since an arbitrary number of loops could
be performed before absorption. Therefore, worst-case costs are not defined for
Play.

The average number of state traversals, on the other hand, can be computed by
scaling the generator matrix such that the mean sojourn time in each state is 1, and
computing the mean of the resulting distribution:

n∗ = α(Diag(Q)−1Q)−11I. (3.18)

Since each step requires two random numbers and one logarithm, and an additional
random number is drawn for selection of the first state, average costs are

#uniAvg, Play = 2n∗ + 1 (3.19)

#lnAvg, Play = n∗. (3.20)

3.5.1.2 The Count Method

In [NP81], Neuts and Pagano observe that, when traversing a state more than once,
the Play method adds up multiple samples from the same exponential distribution,
computing one logarithm for each exponential random variate. They point out
that the sum of ki exponential distributions of the same rate λii is the Erlang
distribution with length ki and rate λii. As discussed above, drawing a sample
from the Erlang distribution of length ki requires only one logarithm operation, as
opposed to ki logarithms when drawing ki individual exponential samples. In order
to reduce the number of logarithms needed, Neuts and Pagano propose the following
algorithm, which we will refer to as the Count method, because it counts the number
of traversals for each state:
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Procedure Count(α,Q):
for i = 1, . . . , n do

ki := 0
end for
Draw an α-distributed discrete sample i for the initial state.
while i 6= n + 1 do

ki := ki + 1

Draw a P
(i)

-distributed discrete sample i for the next state.
end while
x := 0
for i = 1, . . . , n do

x := x + Erl(λii, ki)
end for
return x

The Count method is equivalent to the Play method in that it plays the Markov chain
by following state transitions as given by the embedded Markov chain. However,
instead of drawing a sojourn time for each state i, the method only counts the
number of visits to that state in a variable ki. After the chain has reached the
absorbing state, Count draws one Erl(λii, ki)-distributed sample for each state i =
1, . . . , n, and returns the sum of these samples.

Costs of the Count method. As with the Play method, the maximum number
of state traversals cannot be specified, and thus the worst-case number of uniforms
is not defined. On the other hand, Count requires only n Erlang-distributed samples
(one for each state). This allows us to bound the maximum number of logarithm
operations by the size of the representation (i.e. the number of states):

#lnWC, Count = n. (3.21)

Average costs for the Count methods are as follows: Since states are traversed as
in the Play method and one exponential sample is drawn for each state, the same
number of uniforms is required:

#uniAvg, Count = 2n∗ + 1. (3.22)

The average number of logarithms, on the other hand, is equal to that of the worst
case:

#lnAvg, Count = n. (3.23)
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3.5.1.3 The FE-Diagonal Method

Both Play and Count support general phase-type distributions in an arbitrary
Markovian representation. In order to play the Markov chain, the methods have
to draw one uniform random variate for selecting the next state in each step. We
now describe a method that uses the FE-diagonal representation introduced in Sec-
tion 2.3.2. Recall from Definition 2.3.5 that the FE-diagonal representation given
by

(α,Υ) = ((α1, . . . , αn), ((b1, λ1, z1), . . . , (bm, λm, zm)),

where bi, λi and zi denote the the length, rate, and feedback probability of the
ith block, respectively, has chain structure, i.e. if it has been entered at some FE
block i, i = 1, . . . , m, all remaining FE blocks j = i + 1, . . . , m have to be traversed
before the absorbing state is reached. Thus, the FE-diagonal structure eliminates
the need for randomly selecting the next block. On the other hand, since every
PH distribution can be transformed to the Monocyclic form, which is a special FE-
diagonal representation (Section 2.4), an algorithm that employs the FE-diagonal
form still supports the whole PH class.

The procedure shown in the following was first proposed by us in [RWBT09]
for use with Monocyclic representations. Since the algorithm only depends on the
FE-diagonal structure and not on the ordering of the eigenvalues, it is renamed to
FE-diagonal here.

Procedure FE-diagonal(α,Υ):
x := 0
Draw an α-distributed discrete sample i for the initial state.

j := argminj

{

j = 1, . . . , m | i ≤
∑j

h=1 bh

}

l := bj − (i − ij)
while j ≤ m do

c := Geo(1 − zj)
x := x + Erl(λi, cbj + l)
j := j + 1
l := bj

end while
return x

The algorithm works as follows: First, an initial state is chosen according to the
initial probability vector α. This state belongs to FE block j, whose first state is
denoted by ij . There are 1 ≤ l ≤ bj states to traverse before the chain could leave
this block: If the block was entered at the last state, only this state needs to be
traversed, i.e. l = 1; if the block was entered at its first state, i.e. i = ij , then the
whole block has to be traversed, and thus l = bj for this case. Since all rates in the
block are equal (λj), this first traversal corresponds to an Erlang(λj , l) distribution.
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When the last state of the block is reached, one may either enter the next block or
follow the feedback-loop to the first state of the current block. The number of loops
c = 0, 1, . . . within the jth block follows a geometric distribution with parameter
1−zj . The random variate corresponding to the loop is Erlang-(λj , cbj)-distributed.
Consequently, for the block entered upon initialisation the algorithm draws a random
variate from an Erlang-(λj , cbj + l) distribution. All the remaining blocks until
absorption are entered at the first state, and thus the respective random variates for
blocks j′ = j + 1, . . . , m are distributed according to (e1,Fj′) distributions, where
e1 is the row vector with 1 at position 1 and zero everywhere else and Fj′ is the
sub-generator corresponding to the j′th FE block. Following the argument for the
initial step, random variates from these distributions are generated from Erlang-
(λj′ , cj′bj′ + lj′) distributions, where cj′ is the number of loops and lj′ = bj′ (since
each block is entered at the beginning and has to be traversed at least once). By
summing up all these random variates, the final random variate is obtained.

Costs of the FE-diagonal method. Due to the possible presence of cycles in the
FE-diagonal representation, the maximum number of state traversals is not defined,
and thus we cannot define the worst-case for the number of uniforms. The maximal
number of block traversals, on the other hand, occurs if the chain is entered at the
first block. As each block requires one Erlang-distributed random variate and one
Geometric sample, three logarithms are computed for each block. For m blocks, the
worst-case costs for the number of logarithms are thus

#lnWC, FE-diagonal = 3m. (3.24)

In order to derive the average costs, we first introduce the following vectors:

ᾱ =
(

α(1)1I, . . . ,α(m)1I
)

∈ R
m, (3.25)

µ = (b1, b1 − 1, . . . , 1, b2, . . . , 1, bm, . . . , 1) ∈ R
n, (3.26)

ν = (m, m − 1, . . . , 1) ∈ R
m, (3.27)

ν(1) =

(

z1

1 − z1
b1, . . . ,

zm

1 − zm
bm

)

∈ R
m, (3.28)

ν(2) =





m
∑

j=2

1

1 − zj
bj , . . . ,

1

1 − zm−1
bm−1, 0



 ∈ R
m. (3.29)

The entry ᾱj of ᾱ denotes the initial probability of the jth Feedback-Erlang block.
The vector µ contains the number of phases that have to be traversed before the
next feedback-point is reached, i.e. if the chain is entered at state i belonging to
block j, µi gives the number of phases remaining until the end of the jth block.
Entry νj of ν describes the number of blocks that have to be traversed if the chain is
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entered at the jth block. The vectors ν(1) and ν(2) summarise the average number
of state transitions within blocks. ν(1) gives the average number of phases to be
traversed within each FE block due to loops, i.e. the average number of phases if
the block is entered at its last state. ν(2), on the other hand, specifies the average
number of state transitions in the remaining blocks j +1, . . . , m when the chain has
been entered at block j.

Using these vectors, we obtain the following expression for the average number
of state transitions with an FE-Diagonal representation:

n∗
FE-Diagonal = αµT + ᾱ

(

ν(1) + ν(2)
)T

. (3.30)

The first term in (3.30) describes the average number of state transitions until a
feedback loop is reached, i.e. with probability αi µi states have to be traversed.
ᾱ(ν(1))T gives the average number of states visited in the loop corresponding to the
initial FE block, and ᾱ(ν(2))T is the average number of states in the remaining FE
blocks.

The average number of FE blocks that are visited is determined by the initial
block probabilities. Due to the chain structure of the FE diagonal representation,
whenever a block j is entered, all blocks j, j + 1, . . . , m have to be traversed. Thus
the average number of FE blocks is

ℓ∗ = ᾱνT. (3.31)

As the FE-Diagonal method requires one uniform random number for the initial
block selection, one uniform for drawing the length of the Erlang in each traversed
block, and one uniform random number for each visited state, we obtain

#uniAvg, FE-Diagonal = 1 + ℓ∗ + n∗
FE-Diagonal. (3.32)

Furthermore, since each visited FE block requires three logarithm operations,

#lnAvg, FE-Diagonal = 3ℓ∗. (3.33)

Note that with slight modifications the FE-Diagonal algorithm could avoid drawing
a geometric sample for degenerate Feedback-Erlang blocks (i.e. blocks with feedback
probability z = 0). An algorithm with these modifications would result in a different
expression for the average number of logarithms, as given in [HRTW12]. However,
as in the case of partial pre-computation for geometric random variate generation,
we omit such optimisations here in order to obtain simple expressions.
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3.5.2 Algorithms for Sub-Classes

The three methods described in the previous section are applicable to general PH
distributions. We now present methods that exploit special structures available
for the Acyclic Phase-type (APH), Hyper-Erlang (HErD), and Hyper-Feedback-
Erlang (HFED) distributions. These sub-classes are well-supported by fitting-tools
(see Section 5.2), and their low number of parameters and special structure help to
reduce the number of atomic operations that are required.

3.5.2.1 The SimplePlay Method

We first consider the APH class. Recall from Section 2.4 that every APH distribu-
tion has a representation in CF-1 form, which is a special case of the bi-diagonal
representations discussed in Section 2.3.2, where we introduced the notation (Defi-
nition 2.3.4)

(α,Λ) = ((α1, . . . , αn), (λ1, . . . , λn)).

Bi-diagonal representations are a special class of FE-diagonal representations where
all FE blocks are of size 1, i.e. m = n. Following the argument we employed in the
discussion of the FE-diagonal method, no random numbers are required for deter-
mining the next state when playing the Markov chain, since each state has exactly
one successor state. Furthermore, in a bi-diagonal representation all FE blocks have
length 1 and feedback probability 0. Thus the state sojourn time for each block j
simply follows an exponential distribution with rate λj . Consequently, once an initial
state has been selected, the random variate is simply the sum of exponentially dis-
tributed samples from each of the successor states. In pseudo-code, the SimplePlay
method is described as follows [RWBT09]:

Procedure SimplePlay(α,Λ):
x := 0
Draw an α-distributed discrete sample iS for the initial state.
for i = iS , . . . , n do

x := x + Exp(λi)
end for
return x

The procedure first selects an initial state. It then draws Exp(λi)-distributed sojourn
times for each of the n − i + 1 states traversed until absorption and returns the
result. Note that the transition rates are not guaranteed to be identical, and hence
simplification to drawing an Erlang sample is, in general, not possible.

Costs of the SimplePlay method. In contrast to the representations discussed
before, the bi-diagonal structures cannot contain cycles. Therefore, the maximum
number of state transitions is defined. The worst case occurs if the chain is entered
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at the first state and all states have to be traversed. Therefore, the worst-case
number of state transitions is ñWC, SimplePlay = n, and the worst-case costs for the
number of uniforms and the number of logarithms are given by

#uniWC, SimplePlay = ñWC, SimplePlay + 1 = n + 1 and (3.34)

#lnWC, SimplePlay = ñWC, SimplePlay = n. (3.35)

The bi-diagonal form is a special case of the FE-diagonal form, and thus for the
average costs we can apply the same argument as the one we used for deriving the
costs of the FE-diagonal algorithm. Since the bi-diagonal form has m = n, bi = 1
and zi = 0 for i = 1, . . . , m, (3.30) reduces to

n∗
SimplePlay = αµT + α(ν(2))T = ανT. (3.36)

Since SimpleCount does not draw geometric random variates and thus only requires
one uniform random number and one logarithm for each traversed step, we obtain

#uniAvg, SimplePlay = n∗
SimpleCount + 1 = ανT + 1, (3.37)

#lnAvg, SimplePlay = n∗
SimpleCount = ανT, (3.38)

that is, apart from the constant offset 1 implied by the additional uniform random
number required for initial state selection, both metrics are equal for bi-diagonal
representations.

3.5.2.2 The HFED and eHFED Methods

Hyper-Feedback-Erlang representations, as defined in Definition 2.3.7, consist of
parallel Feedback-Erlang blocks in branch structure. Drawing a random variate
requires selecting a branch and then drawing a random variate from that branch.
Drawing a random variate from a branch involves the same operation as for the first
FE block in FE-diagonal. The algorithm is shown in the following:

Procedure HFED(α,Λ):
Draw an α-distributed discrete sample i for the initial state.

k := argmink

{

k = 1, . . . , m |
∑k

h=1 bk

}

l := bk − (i − ik)
c := Geo(1 − zk)
x := Erl(λk, cbk + l)
return x

Horváth and Telek give a more general version of this algorithm in [HT11] for the
generation of samples from extended Hyper-Feedback-Erlang representations:

78



3.5. Characterisation Methods for Random-Variate Generation

Procedure eHFED(α,Υ):
x := 0
Draw an α-distributed discrete sample for the initial state.

k := argmink

{

k = 1, . . . , m | i ≤
∑k

h=1 bh

}

j := argminj {j = 1, . . . , mk | i ≤ ik + jbk}
l := bk − (i − ik,j)
h := mk − j + 1
c := l + (h − 1)bk +

∑h
o=1 Geo(1 − zk)bk

x := Erl(λb, c)
return x

The eHFED algorithm can be derived as follows: First, note that each branch in
an eHFED representation is in FE-diagonal form. Consequently, drawing a random
variate requires choosing a branch k and then drawing a sample from the FE-diagonal
representation corresponding to this branch. Since all FE blocks of a branch are
identical, drawing an FE-diagonal sample simplifies to generating a single sample
from an Erlang distribution. Assuming that the FE-diagonal branch k has been
entered at FE block j and state i = 1, . . . , bk of that block, the number of states to
traverse until the first feedback is reached is

l = bk − (i − ik,j), (3.39)

where

ik,j =

k−1
∑

h=1

bk + (j − 1)bk + 1 (3.40)

denotes the first state of the jth block in the kth branch. The number of blocks
that have to be traversed before absorption (counting the initial block) is

h = mk − j + 1. (3.41)

As with the FE-diagonal algorithm, the number of loops in each block follows a
geometric distribution on 0, 1, . . . with parameter 1− zk, and each block except the
initial one has to be traversed fully at least once. Since all FE blocks in a branch
have the same feedback probability zk, the length of the Erlang distribution is

c = l + (h − 1)bk +
h
∑

o=1

Geo(1 − zk)bk. (3.42)

Costs of the HFED and eHFED methods. The worst-case number of state
traversals for the HFED and eHFED methods cannot be defined, as the FE blocks may
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contain loops. The worst-case number of block traversals, however, can be derived:
For the eHFED method, the worst case occurs if the branch i with the largest number
of blocks mi is chosen (for the HFED method, all branches have the same number
of blocks). As each block requires two logarithms for computation of the geometric
random variate, and one logarithm is needed for drawing the Erlang random variate,
worst-case logarithm costs are

#lnWC, HFED = 3 (3.43)

#lnWC, eHFED = 1 + 2 max
i=1,...,m

{mi}. (3.44)

In order to derive expressions for the average costs of the HFED algorithm, we apply
the following argument: Drawing a HFED-distributed random variate using HFED

is equivalent to selecting a state in a Feedback-Erlang block and drawing a random
variate from the initial block in an FE-diagonal representation using FE-Diagonal

and then immediately entering the absorbing state. Consequently, the number of
state traversals is equal to the sum of the average number of state traversals required
to reach the feedback point when starting from any state in the branch and the
average number of visits incurred by the feedback loop:

n∗
HFED = ᾱ

(

µ + ν(1)
)T

, (3.45)

while the number of visited blocks is constant:

ℓHFED = 1. (3.46)

Two uniform random numbers are required for the selection of the initial state and
for drawing the number of loops in the block. As only a single block is traversed,
the algorithm draws one geometric random variate and computes one logarithm for
the Erlang random variate. Therefore, average costs for the HFED method are:

#uniAvg, HFED = n∗
HFED + 2, (3.47)

#lnAvg, HFED = 3. (3.48)

Expressions for the average costs of the eHFED algorithm are given in [HT11]. In the
following we derive more compact expressions, but remark that these are equivalent
to those in [HT11]. Since the eHFED algorithm uses FE-diagonal representations in
the branches, we can employ 3.25–3.29 to obtain the average costs. Let nk = mkbk

be the length of the kth branch. For the kth branch, we modify the definitions
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of 3.25–3.29 as follows:

ᾱ(k) =
(

α̂(k,1)1I, . . . , α̂(k,mk)1I
)

∈ R
m
k , (3.49)

µ(k) = (bk, bk − 1, . . . , 1, bk, bk − 1, . . . , 1, bk, . . . , 1) ∈ R
nk , (3.50)

ν(k) = (mk, mk − 1, . . . , 1) ∈ R
mk , (3.51)

ν(1,k) =

(

zk

1 − zk
bk, . . . ,

zk

1 − zk
bk

)

∈ R
mk , (3.52)

ν(2,k) =

(

mk − 1

1 − zk
bk,

mk − 2

1 − zk
bk, . . . ,

1

1 − zk
bk, 0

)

∈ R
mk . (3.53)

The vector α(k) summarises the initial probabilities for each of the FE blocks of the
kth branch. The ith entry µ(k) gives the number of states to be traversed until the
next feedback-point can be reached if the kth branch is entered at the ith state.
The repetitive structure of this vector is due to the fact that all FE blocks in the
kth branch are identical. The jth entry of ν(k) describes the number of FE blocks
left before absorption if the kth branch is entered at FE block j. ν(1,k) gives the
expected number state traversals due to taking the feedback loop for each block.
Again, the repetitive structure reflects that the FE blocks are identical. Finally,
the jth entry of ν(2,k) defines the average number of state traversals in the blocks
j + 1, j + 2, . . . , mk which are traversed fully if the kth branch was entered at the
jth block.

Based on these definitions, we can express the average number of state traversals
in the kth branch as

n∗
k = α̂(k)

(

µ(k)
)T

+ ᾱ(k)
(

ν(1,k) + ν(2,k)
)

. (3.54)

The average number of state traversals is the weighted sum of the state traversals
for each branch:

n∗
eHFED =

m
∑

k=1

ᾱ(k)1In∗
k. (3.55)

Likewise,

ℓ∗k = ᾱ(k)(µ(k))T (3.56)

gives the expected number of block traversals in the kth branch, and

ℓ∗eHFED =
m
∑

k=1

ᾱ(k)1Iℓ∗k (3.57)
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is the overall average number of block traversals.
For the average number of random uniform numbers we then obtain

#uniAvg,eHFED = 1 + ℓ∗eHFED + n∗
eHFED (3.58)

while the number of logarithms is

#lnAvg,eHFED = 1 + 2ℓ∗eHFED, (3.59)

since each Geometric random variate requires two logarithms, and one logarithm is
needed for the single Erlang sample.

3.5.2.3 The SimpleCount Method

We conclude this section by describing an algorithm for drawing random variates
from a Hyper-Erlang distribution. Hyper-Erlang distributions can be represented in
branch structure, where every branch k ∈ {1, . . . , m} is an Erlang distribution with
length bk, rate λk, and the branch probability given by the entries βk of the vector
β. In Chapter 2 we denoted this representation by

(β,E) = ((β1, . . . , βm), ((b1, λ1), . . . , (bm, λm)) .

Generating a random variate from this representation is straightforward: After se-
lecting a branch k ∈ {1, . . . , m} by drawing a sample from the discrete distribution
defined by the probability vector β, an Erl(bk, λk)-distributed sample is drawn and
returned [RWBT09]:

Procedure SimpleCount(β,E):
Draw a β-distributed discrete sample k
return Erl(λk, bk)

Costs of the SimpleCount method. Hyper-Erlang distributions do not contain
cycles, and therefore worst-case costs can be easily computed: The worst case occurs
if the longest branch is entered, and therefore ñWC, SimpleCount = maxi=k,...,m{bk}.
Since each branch requires exactly one logarithm, worst-case costs are as follows:

#uniWC, SimpleCount = 1 + ñWC, SimpleCount and (3.60)

#lnWC, SimpleCount = 1. (3.61)

Average costs are also straightforward: Because a Hyper-Erlang distribution is a
special Hyper-Feedback-Erlang distribution with all feedback probabilities equal to
zero, and since blocks can only be entered at the first state, (3.45) simplifies to

n∗
SimpleCount = ᾱµ = βbT, (3.62)
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and we obtain

#uniAvg, SimpleCount = βbT + 1, (3.63)

#lnAvg, SimpleCount = 1. (3.64)

3.6 Example: Costs of Random-Variate Generation

In the previous sections we surveyed methods for random-variate generation and
proposed the FE-diagonal and SimplePlay methods, which use the FE-diagonal
and bi-diagonal forms, respectively. We derived expressions for the costs of the
algorithms, which vary between methods and depend on the representations. We will
now shed more light on the influences of representations and methods, by discussing
the costs for a concrete example. Consider the distribution with representation
(α,Q) where

α = (0.1, 0, 0.9, 0, 0, 0) and Q =













−1 1 0 0 0
0 −1 0 0 0
0 0 −2 2 0
0 0 0 −2 2
0 0 0 0 −2













. (3.65)

(α,Q) is a Hyper-Erlang distribution of size n = 5 with two branches of length
b1 = 2, b2 = 3, given in Hyper-Erlang form. We choose a Hyper-Erlang distribution
because it is supported by all of the algorithms we studied in this chapter. Usually,
we would employ the SimpleCount method to generate random variates from this
distribution. However, in order to illustrate the impact of the representations and
the methods on the cost of random-variate generation, in the following we assume
that we do not know the structure of the distribution and apply the methods as in
the most general case they support.

Some of the methods require special representations; in particular, SimpleCount,
HFED and eHFED need the Erlang, Hyper-FE, and extended Hyper-FE forms, respec-
tively, and SimplePlay and FE-diagonal require the bi-diagonal and FE-diagonal
representations. Since (α,Q) is a Hyper-Erlang distribution in Hyper-Erlang form,
(α,Q) is also in HFED and eHFED form. Furthermore, (α,Q) is an acyclic phase-
type distribution, and consequently it has a (bi-diagonal) CF-1 representation, which
is identical to the (FE-diagonal) Monocyclic representation for this distribution. The
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CF-1 form is

α′ = (0.0125, 0.0375, 0.925, 0.025, 0) and Q′ =













−1 1 0 0 0
0 −1 1 0 0
0 0 −2 2 0
0 0 0 −2 2
0 0 0 0 −2













.

(3.66)

The initial vector α′ := αS is obtained using the similarity transformation matrix
S that transforms Q to Q′ (see Section 2.3.1). For methods that support both
representations we will present the costs for both.

3.6.1 Worst-Case Costs

We start with the worst-case costs. Using the NumericalInversion method, we
need one uniform random number and 19n evaluations of the matrix exponential.
Assuming that the matrix exponential is computed using scalar exponentials, we
need n evaluations of the exponential function, i.e. #expWC, NumericalInversion =
19·5 = 95. This cost does not depend on the structure of the representation, because
computation of the matrix exponential does not take into account the structure of
the matrix.

For the generic Play method, worst-case costs are not defined in general. In our
example, however, we can compute them, as neither of the representations has cycles.
For (α,Q) the worst case occurs when the second branch is entered. The method
then draws one uniform random number to select the branch, one uniform random
number for the sojourn times in each state, and one uniform to select the successor
state. It thus requires #uniWC, Play = 1 + 6 uniforms. Furthermore, because in
each state an exponentially-distributed random sample is drawn, #lnWC, Play = 3
logarithms need to be computed. If we instead use the (α′,Q′) representation, the
worst case happens when the CTMC is entered at the first state, because then all
the remaining states have to be traversed. Worst-case costs are then #uni′WC, Play =
1 + 10 and #ln′

WC, Play = 5.
The Count method traverses the Markov chain in the same way as Play, but

draws exactly one logarithm for each state of the chain, irrespective of how often
that state was visited. Therefore, worst-case uniform costs for Count in our example
are the same as for Play, while the number of logarithms #lnWC, Count = 5 for both
representations. Note that for the (α,Q) representation Count actually computes
more logarithms than Play.

The FE-diagonal method only supports FE-diagonal representations. As with
the Play and Count methods, worst-case costs for the number of uniforms are in gen-
eral not defined for FE-diagonal, but can be computed for (α′,Q′), which contains
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no cycles. As before, the worst case occurs if the CTMC is entered at the first state
(i.e. the first FE-block). Then, one uniform is required for the choice of the initial
state, one uniform is required for each traversed state, and one uniform is needed for
drawing the length of the Erlang in each block (we assume that no optimisation for
zero feedback probability takes place). Note that no uniforms are drawn for selection
of the next state, since for each state its successor is encoded in the matrix Q′. Con-
sequently, the worst-case number of uniforms is #uniWC, FE-diagonal = 1+5+2 = 8.
Recall that with FE-diagonal three logarithms are computed for each Feedback-
Erlang block (no pre-computation of logarithms is applied). Worst-case logarithm
costs are thus #lnWC, FE-diagonal = 2 · 3.

Using the SimplePlay method on (α′,Q′), the longest path through the CTMC
is again taken if the chain is entered at the first block. As SimplePlay does not
consider FE blocks, no geometric random variate must be computed. We thus
require one uniform for the initial state and one uniform for each state traversal,
and therefore #uniWC, SimplePlay = 1 + 5 = 6. Because one logarithm is computed
for each state, the worst-case number of logarithms is #lnWC, SimplePlay = 5.

The HFED and eHFED methods can only be used with (extended) Hyper-Feedback
Erlang distributions. In our example, (α,Q) is an eHFED distribution with block
lengths b1 = 2, b2 = 3 and block multiplicity 1 in each branch; consequently, both
algorithms have the same costs. Furthermore, since the feedback probabilities are
zero in both blocks we can compute worst-case uniform costs, even though this is
not possible in the general case. The worst case is equivalent to entering the longest
branch. In this case, one uniform is required for state selection, three uniforms
are needed for the traversed states, and one uniform is drawn for the geometric
random variate. Worst-case uniform costs are thus #uniWC, (e)HFED = 1 + 3 + 1 =
5. As each branch implies three logarithms, and exactly one branch is entered,
#lnWC, (e)HFED = 3.

With SimpleCount, in the worst case we draw one uniform random number for
selection of the branch and three uniform random numbers for the states of the
branch, resulting in #uniWC, SimpleCount = 4. As only one logarithm is computed
for the whole branch, #lnWC, SimpleCount = 1.

Finally, we note that with either of the methods described here the acceptance
probability in the AcceptanceRejection algorithm is equal to one, since all of
the required representations are Markovian. Costs for the AcceptanceRejection

method are then equal to those of the respective method. The abbreviated version
of the method presented here requires an additional uniform for deciding whether
the sample is accepted.

3.6.2 Average Costs

Average costs for NumericalInversion are equal to the worst-case costs for both
representations: #uniWC, NumericalInversion = 1 and #expWC, NumericalInversion = 95.
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For the Play method, the average costs depend on the average number of state
traversals, n∗. With (α,Q), n∗ = 2.9, while with (α′,Q′), n∗′ = 3.0375. As each
state requires two uniforms (one for the exponential sample, one for the selection of
the next state), and an additional uniform is needed for initial state selection, (α,Q)
needs #uniAvg, Play = 1 + 2n∗ = 6.8 uniform random numbers, while (α′,Q′) needs
#uni′Avg, Play = 7.075. Likewise, the logarithm costs are #lnAvg, Play = n∗ = 2.9
and ln′

Avg, Play = 3.0375, respectively.
With the Count algorithm, the average number of uniforms is equal to that of

the Play algorithm. On the other hand, one logarithm is computed for each state,
and therefore #lnAvg, Play = #ln′

Avg, Play = n = 5.
FE-diagonal can only be applied to the (α′,Q′) representation. As this is a chain

structure without any feedbacks, n∗′ = α(5, 4, 3, 2, 1)T = 3.0375. FE-diagonal

draws one uniform random number for the initial state, one uniform for each tra-
versed state, and one uniform for the geometric random variate in each block. In
our example, the average number of traversed blocks is ℓ∗′ = (α1 + α2, α3 + α4 +
α5)(2, 1)T = 1.05. Consequently, #uni′Avg, FE-diagonal = 1+n∗′ + ℓ∗′ = 5.0875. Since

each block implies the computation of three logarithms, #ln′
Avg, FE-diagonal = 3ℓ∗′ =

3.15.
With the SimplePlay method, we traverse the same number of states as with

FE-diagonal, but only need one uniform random number for each state and no
uniforms for geometric samples. Therefore, #uniAvg, SimplePlay = 1 + n∗′ = 4.0375.
As we need one logarithm for each state, #ln′

Avg, SimplePlay = n∗′ = 3.0375.
As in the worst case, the HFED and eHFED methods have equal average costs

for (α,Q). Average costs for the uniform random numbers depend on the average
number of states, furthermore, two additional uniforms are required (one for initial
state selection, one for the geometric random variate). On average, (α1+α2, α3+α4+
α5)(2, 3)T = 2.9 states are traversed; consequently, #uniAvg, (e)HFED = 2.9+2 = 4.9.
The average number of logarithms is #lnAvg, (e)HFED = 3 (two for the geometric
random variate, one for the Erlang sample).

If we use the SimpleCount method instead, we do not need the random uniforms
and the logarithms for the geometric random variates. The cost metrics are therefore
#uniAvg, SimpleCount = 1 + 2.9 = 3.9 and #lnAvg, SimpleCount = 1.

For Acceptance/Rejection, we have the same observation as in the worst case:
The costs are again equal to the costs of the method used, and the abbreviated
version of the algorithm shown here uses one additional uniform random number.

3.6.3 Discussion

We summarise the costs in Table 3.1. As remarked in our discussion, costs for
AcceptanceRejection are equal to the costs of the algorithm used within the
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Method Worst Case Average Case
(α,Q) (α′,Q′) (α,Q) (α′,Q′)

#uni #exp #uni #exp #uni #exp #uni #exp

Numerical-

Inversion

1 95 1 95 1 95 1 95

#uni #ln #uni #ln #uni #ln #uni #ln

Play 7 3 11 5 6.8 2.9 7.075 3.0375
Count 7 5 11 5 6.8 5 7.075 5
FE-diagonal – – 8 6 – – 5.0875 3.15
SimplePlay – – 6 5 – – 4.0375 3.0375
(e)HFED 5 3 – – 4.9 3 – –
SimpleCount 4 1 – – 3.9 1 – –

Table 3.1: Example costs for a Hyper-Erlang distribution. (α,Q) is in Hyper-
Erlang form, while (α′,Q′) is in CF-1 form. The NumericalInversion method
only computes scalar exponentials, but no logarithms. All other methods do not
employ exponentials, but instead compute logarithms. Missing values (‘–’) denote
cases where the method does not support the representation.

method (depending on the implementation one additional uniform random num-
ber may be required), since all of the required representations are Markovian. We
therefore omit the method here.

Table 3.1 admits a number of observations. First, note that the costs for nu-
merical inversion are independent of the structure of the representation and depend
only on its size. In our example, this approach is by far the most efficient with
respect to how many uniform random numbers are needed, but on the other hand
requires 95 evaluations of the exponential function. Second, for characterisation
methods that support both representations, the costs depend on the representation.
With the Hyper-Erlang example, transformation to the CF-1 form increased both
the worst-case and the average costs of the Play and Count methods. Furthermore,
the Count method may actually be less efficient than generic Play, as the number
of logarithms is determined by the size of the representation and not by its struc-
ture. Third, specialised methods help to reduce the costs. Due to the specialisation
on chain structures, our FE-diagonal and SimplePlay methods are both more effi-
cient than the generic methods, since by exploiting the structure they avoid drawing
random numbers for the selection of successor states. SimplePlay is more efficient
than FE-diagonal because it also utilises the fact that in bi-diagonal representa-
tions such as (α′,Q′) the feedback probability is zero, and therefore no geometric
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Label Operating System libc/libm
version

Hardware

M1 Linux SUSE version 2.6.37.6-0.7-
desktop

2.11.3 2 Intel Xeon 3.06 GHz, 6 GB RAM

M2 Linux SUSE version 2.6.37.6-0.7-
desktop

2.11.3 8 Dual-Core-AMD 8218 2.4 GHz,
32 GB RAM

M3 Linux SUSE version 2.6.37.6-0.7-
desktop

2.11.3 8 Quad-Core-AMD 8384 2.7 GHz,
64 GB RAM

M4 Debian GNU/Linux 2.6.32-5-
amd64

2.11.2 4 Dual-Core AMD Opteron 2212,
2.0 GHz, 32 GB RAM

M5 Debian GNU/Linux 2.6.32-5-
amd64

2.11.2 16 Intel Xeon X5550 Quad-Core,
2.67 GHz, 48 GB RAM

M6 Debian GNU/Linux 2.6.37 2.7 1 Intel Pentium 4 Processor,
3.00 GHz, 2 GB RAM

Table 3.2: Machines used in the measurement study.

random variates are required. eHFED, HFED and SimpleCount reduce costs further
by taking into account the branch structure of the representation. Not surprisingly,
in this example the most efficient method is SimpleCount, which is also the most
specialised of the algorithms discussed here, since it only supports Hyper-Erlang
distributions.

3.7 Computational Costs of Atomic Operations

We augment our theoretical cost analysis by a study of the computational costs
of the atomic operations. We use the number of uniform random numbers, #uni,
and the number of logarithms, #ln, or the number of scalar exponentials, #exp,
respectively, as cost metrics for random-variate generation. This study is motivated
by the observation that the cost metrics are in general not identical, as most methods
require more uniform random numbers than logarithms. With these methods, it can
be advantageous to optimise such that the number of calls to the more expensive
operation is minimised.

In this section we present a measurement study of the costs of atomic operations
on typical systems to guide this optimisation. We use the following uniform number
generator, as defined in [Jai91], p. 452:

ui+1 =
(

75ui

)

mod
(

231 − 1
)

. (3.67)
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Equation (3.67) defines a typical random number generator, and, according to [Jai91],
this generator provides desirable randomness and a large period length. We use the
default log() and exp() operations of the C libraries on all systems. We performed
100 iterations, where in each step we called the respective operation 2 · 108 times,
immediately discarding the result, and took timestamps before and after the step.
The required time was then computed as the difference of both timestamps (the
average time for one operation may be computed by dividing the difference by the
number of operations). The code was optimised during compilation using the -O3

option to the platform’s C++ compiler (g++). Except for those applied by the com-
piler, no system-specific optimisations have been used. Each run was pinned to one
CPU, in order to prevent process migration. Hardware and software data for the
machines included in our measurement study are given in Table 3.2. Note that all of
these run the Linux operating system. We considered using machines with Solaris,
but due to the low clock resolution of 10 ms on these machines we could not obtain
useful results.

Current POSIX systems offer several clocks that differ in accuracy and reso-
lution. In order to determine the best clock for our experiments we ran the ex-
periments with all of the four clocks specified in the POSIX standard ([IEE08b],
basedefs/time.h.html). These clocks may differ not only in their resolution, but
also in the degree to which they are affected by other processes running on the
system. In the majority of our measurements, the REALTIME clock had the lowest
squared coefficient of variation, which indicates that the measurements with this
clock are not heavily influenced by other processes. As this clock is also supported
on all of our machines and provides a resolution of 1 ns, we base our discussion on
these results.

Results Figure 3.1 displays the minima of the run-times of 108 atomic operations,
out of the 100 runs performed on each machine. We display the minima because these
show the best-case run-times, and thus are least likely to have been affected by other
user processes on the systems.1 From these results we observe the following: First,
the computational costs of the atomic operations differ greatly. On all machines
logarithm operations take longer than the generation of a uniform random number;
for instance, on M4 log() is about four times slower than uniform(). With the
exception of machines M2 and M3, the uniform random number generator is also
faster than the exp() routine; on M2 and M4 exp() is slightly less expensive than
uniform(). Second, the computational costs and the relations of the costs differ also
between machines. In particular, on machines M1 and M6 exp() is approximately
six times slower than log(), which in turn is more expensive than uniform().

The differences in the measurement results may be caused by differences in the
processor architecture, but a detailed investigation of the causes is out of scope for

1Virtually the same results have been obtained for the maxima, means, and medians.
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Figure 3.1: Minimal times for performing 2 · 108 atomic operations.

this work. Here, we note that the computation of an exponential and a logarithm are
typically much more expensive than the generation of a uniform random number,
if the uniform random-number generator from (3.67) is used. This is due to the
fact that both the exponential and the logarithm are provided by complex software
implementations in the systems’ math libraries, while (3.67) can be implemented by
relatively few operations.

When using characterisation methods based on the uniform random number
generator from (3.67), we should aim to reduce the number of logarithms, both by
appropriate choice of the representation and by choice of the method we apply. For
instance, for our Hyper-Erlang example in Section 3.6, the SimpleCount method,
which only requires a single logarithm, can be expected to be the most efficient. If we
wanted to simulate general PH or acyclic PH distributions instead of Hyper-Erlang
distributions, the FE-diagonal and SimplePlay methods, respectively, would be
faster than the more generic Play and Count methods. In general, it appears that
the NumericalInversion method is less efficient than any of the other algorithms
considered here, at least if the scalar exponential is used to compute the matrix
exponential. Even though computation of the exponential function may be slightly
faster than generation of a uniform random number, the large number of exponen-
tials that need to be computed outweighs this possible advantage. This also explains
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the surprisingly bad performance observed in [HT11] for the inversion method using
scalar exponentials.

It should be noted that the relation between the costs for atomic operations
can be different for more complex random-number generators, for which uniform
random numbers can be almost as expensive as logarithm operations [HRTW13]. In
this case, the weighted cost metric defined in [HRTW13] can guide the choice of a
suitable algorithm.

3.8 Concluding Remarks

This chapter provided a survey of algorithms for random-variate generation along
with an analysis with respect to their computational costs. The main focus was
on characterisation methods, which utilise the CTMC representation of a PH dis-
tribution. We proposed two new characterisation methods that use the canonical
representations of the PH and APH distributions, respectively. The chapter gave
four key insights that will be important for the remainder of this work:

First, the computational costs of of characterisation methods depend both on
the representation and on the algorithm that is used. We saw that simpler repre-
sentations and specialised methods can reduce the required number of uniforms and
the number of logarithms.

Second, our measurement study shows that the costs for atomic operations differ
significantly. In particular, logarithms and exponentials can be much more expen-
sive than uniform random numbers, and therefore one should try to avoid these
operations, even if this means that more uniform random numbers must be gener-
ated.

Third, the algorithms proposed for chain structures result in elegant expressions
for the relationship between representations and cost metrics. With these expres-
sions, it becomes possible to develop methods that optimise representations such
that the costs are minimised. This will form the basis of the optimisation algo-
rithms in the next chapter.

Fourth, suitable branch structures reduce the number of logarithms considerably.
In particular, for Hyper-Erlang distributions the SimpleCount method requires only
a single logarithm for each random variate. As we will show in Chapter 5, Hyper-
Erlang distributions are also well-suited to fitting typical densities. Combined with
our observation that they can be simulated efficiently, this makes them attractive
for use in simulation studies.

We conclude this chapter by briefly touching upon the subject of accuracy. An
algorithm for generating random variates from a PH distribution is considered ac-
curate if the samples it generates follow the specified theoretical distribution. From
a theoretical perspective, all of the characterisation methods can be expected to
provide accurate results, because they draw random variates based directly on the
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definition of PH distributions. Likewise, the acceptance/rejection method by [HT11]
is also accurate, if it uses one of the characterisation methods. In practice, however,
inaccuracies will be introduced by the implementation. Such issues can be caused by
inaccuracies in the computation of the atomic operations as well as by inaccuracies
in basic arithmetic that are due to the use of floating-point numbers. For instance,
we already remarked in Section 3.2 that the product of a large set of small floating-
point numbers in (0, 1) (as required for the efficient generation of an Erlang sample)
can appear to be zero if it is too small to be expressed as a non-zero floating-point
number. The extent to which an implementation of one of the algorithms discussed
here is affected by these inaccuracies depends on two major factors. First, details
of the floating-point unit, the implementation of the atomic operations, and even
of the compiler may affect the results (see [Mon08]). Second, the distribution itself
and its representation will influence accuracy. In our example, simulation of Erlang
distributions will be accurate up to a certain implementation-dependent length of
the Erlang. Beyond this length, the product will be zero, and thus the logarithm
operation will fail. As we remarked in Section 3.2, this problem may be addressed
by splitting the product and computing several logarithms.

Due to the multitude of possible causes of inaccuracies, a formal comparison
between the algorithms with respect to accuracy still remains an open question.
However, our practical experience (see for instance the second case-study in Chap-
ter 7) indicates that, except for extreme cases like in our example, the accuracy of
random-variate generation using these algorithms is sufficiently high for practical
use.

92



Chapter Four

Optimisation of PH Generators
for Random-Variate Generation

The previous chapters introduced the basic formalism for phase-type (PH) distribu-
tions as well as algorithms for generating random variates from PH distributions.
In Chapter 3 we observed that the costs of random-variate generation methods
depend on the representation of the distribution. In this chapter we address the
following optimisation problem:

Starting from a Markovian representation of a PH distribution, find the
(not necessarily minimal) Markovian representation that minimises the
cost associated with generating random variates.

We first posed this research question in [RWBT09], but apart from the contributions
in our own work, little progress has been made since then. In fact, there is only
one other publication that touches upon the subject: In [HT11], Horváth and Telek
describe transformation of a general PH distribution to extended Hyper-Feedback-
Erlang (eHFED) form as part of the AcceptanceRejection method proposed in
the paper. As illustrated in Chapter 3, the extended Hyper-Feedback-Erlang form
may reduce the number of logarithms required. On the other hand, the eHFED
representation for a general PH distribution may not be Markovian [HT11]. The
Acceptance/Rejection method still allows drawing random variates from this rep-
resentation using the eHFED method. This approach enables transformation of PH
distributions to a representation that is known to be more efficient. On the other
hand, it does not guarantee optimality with respect to the costs.

In this chapter we address the optimisation problem stated above using canonical
forms for the acyclic phase-type (APH) and for the general PH classes. We use the
canonical forms because every APH or PH distribution can be expressed in the
respective form (see Section 2.4), and, therefore, our results then apply to the whole
of these classes.
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We proceed as follows: We first develop a general result for the optimum of APH
distributions and then consider its generalisation to the whole PH class. In both
parts we start with a representation in the respective canonical form (CF-1 for the
APH case, Monocyclic for the PH case). Our optimisation procedures maintain the
chain structure of the representations, i.e. the representation stays bi-diagonal in
the APH case and FE-diagonal in the general PH case. This means that we can still
apply the efficient methods for random-variate generation that we developed in the
previous chapter.

Both parts employ the following observation from Chapter 3: Once entered,
chain-structured representations have to be traversed completely, and thus the cost
of random-variate generation depends on where the chain is entered. Consequently,
by moving probability mass towards the absorbing state – ‘to the right’ –, the costs
of random variate generation may be reduced. Note that, although not considered
in the following, further optimisations may be possible if the number of states can be
reduced before our methods are applied, as with smaller representations the lengths
of paths through the CTMC may shrink. Reduction of the number of states may
be achieved by e.g. eliminating obsolete poles of an APH distribution, as described
in [Pul09].

4.1 Optimisation for Acyclic Phase-Type Distributions

In Chapter 3 we discussed algorithms for generating random variates from phase-
type distributions. We observed that random variates from an acyclic phase-type
(APH) distribution can be generated efficiently if the distribution is in a bi-diagonal
representation (such as the CF-1 form), since such a representation does not require
uniform random numbers for selection of successor states. With the SimplePlay

method we observed that the number of logarithms and the number of uniforms
both depend on the average number of state transitions up to absorption, for which
we derived expression (3.36):

n∗ = ανT

where ν = (n, n − 1, . . . , 1), or, equivalently

n∗ =
n
∑

i=1

αi(n − i + 1). (4.1)

Apart from a constant offset of 1 additional random number which is required for
initial state selection, the number of uniforms and the number of logarithms are
equal (Equations (3.37) and (3.38)):

#uni = n∗ + 1 and #ln = n∗.
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These expressions hold for any bi-diagonal Markovian representation, since they do
not rely on the ordering of the states. We try to solve the optimisation problem
by finding a bi-diagonal representation (α∗,Q∗) for which the average number of
traversed states,

n∗(α∗,Q∗) = α∗νT =
n
∑

i=1

α∗
i (n − i + 1). (4.2)

is minimal.
From the right side of (4.2) it is immediately obvious that, in order to achieve

a reduction in n∗, probability mass must be shifted to the higher indices of the
initial probability vector. At the same time, (α∗,Q∗) must represent the same
distribution as (α,Q). Informally, we apply the following idea: For (α,Q) and
(α′,Q′) to represent the same distribution, the Laplace-Stieltjes Transforms (LSTs)
of the distributions must be the same. In particular, both LSTs must have the same
poles. As the poles of the LST of a phase-type distribution are the eigenvalues of its
sub-generator matrix (Theorem 2.1.2), Q and Q′ must have the same eigenvalues.
In a bi-diagonal form the eigenvalues are the entries of the diagonal. An operation
that simply modifies the ordering of these entries without changing their values
does not affect the poles of the LST. Changing the ordering of the diagonal entries
requires modification of the initial vector as well. As discussed in Section 2.3.1, a
new initialisation vector can be computed using a similarity transformation. As we
will show, changes to the ordering of the entries of the diagonal can be expressed in
terms of a similarity transformation. We thus consider shifting probability mass to
the right by modifying the order of the rates along the diagonals.

We now give a formal description of the approach. We propose the following
operator:

Definition 4.1.1. The Swap(α,Q, i) operator exchanges the ith rate with the (i +
1)th rate (1 ≤ i ≤ n−1) on the diagonals in a bi-diagonal representation by swapping
the ith and (i + 1)th entry in the vector Λ.

Where appropriate, we also use the Swap(α,Λ, i) notation to denote the same
operator.

Lemma 4.1.1. The Swap operator is described by the similarity transformation
matrix S:

S =

















. . . 0 0 0 0
0 1 0 0 0
0 si+1,i si+1,i+1 0 0
0 0 0 1 0

0 0 0 0
. . .
















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where

si+1,i =
λi − λi+1

λi
, and si+1,i+1 =

λi+1

λi
for 1 ≤ i ≤ n − 1.

Proof. From the definition it follows immediately that S1I = 1I and that S is non-
singular. Therefore, S is a similarity transformation matrix. Direct computation
then shows that Q′ = S−1QS is the bi-diagonal matrix with the ith and (i + 1)th
entries of the diagonal exchanged.

Remark 4.1.1. Swap(α,Λ, i) only involves the ith and (i + 1)th entries of α and
Λ, which allows for the analytically tractable expressions employed in the following.
Operators that produce more complex permutations in a single step do not have this
property. Furthermore, repeated application of a pairwise exchange of adjacent en-
tries in a list, as performed by the Swap operator, is sufficiently powerful to generate
all permutations [Joh63].

Let (α′,Q′) denote the result of applying Swap(α,Q, i) on (α,Q). Because (α′,Q′)
is derived by applying a similarity transformation to (α,Q), both tuples represent
the same distribution. Recall from Lemma 2.3.2 that

α′ = αS.

Then, the following properties of the result of the Swap operation are immediately
obvious:

∀j 6= i, i + 1 : α′
j = αj (4.3)

α′
i = αi + αi+1

λi − λi+1

λi
= αi + αi+1

(

1 −
λi+1

λi

)

(4.4)

α′
i+1 = αi+1

λi+1

λi
(4.5)

n∗(α′,Q′) = n∗(α,Q) + αi+1

(

1 −
λi+1

λi

)

. (4.6)

Equations (4.3)–(4.5) are valid for Markovian (α ≥ 0) and non-Markovian (α ∈
R

n) bi-diagonal representations. However, non-Markovian representations cannot be
used in the SimplePlay method, since they do not admit the required state-space
interpretation. As the cost definition based on the average number of traversed
states is not valid for a non-Markovian representation, (4.6) is only applicable to
Markovian representations.

If we restrict our attention to Markovian representations (α,Q), (α′,Q′), we
observe the following: The Swap operation with adjacent rates λi < λi+1, results in

n∗(α′,Q′) ≤ n∗(α,Q) (4.7)
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according to (4.6), because from (4.4) and (4.5) we see that in this case

1 <
λi+1

λi
, (4.8)

and αi+1 is non-negative. Consequently, by repeatedly exchanging adjacent rates
λi < λi+1 such that the obtained representation is Markovian until no such opera-
tions are possible anymore, we can obtain a representation that has minimal costs
n∗.

On the other hand, we note that the Swap operator will result in a non-stochastic
vector α′ if

αi < αi+1

(

1 −
λi+1

λi

)

, (4.9)

since then the resulting α′
i < 0. In this case, (α′,Q′) is a non-Markovian represen-

tation. We must therefore avoid Swap operations that will result in non-stochastic
α′. Based on these observations we propose the following

Theorem 4.1.1. Given a Markovian representation (α,Q) in CF-1 form, the rep-
resentation (α∗,Q∗) that reverses the order of the rates is optimal with respect to n∗

if α∗ is a stochastic vector. In this case, all bi-diagonal representations constructed
by the Swap operator are Markovian.

Proof. The proof consists of two steps. We first show the second part of the theo-
rem, which states that all bi-diagonal representations are Markovian if (α∗,Q∗) is
Markovian. We then show by contradiction that (α∗,Q∗) is optimal with respect to
n∗.

According to property (4.4), a Swap operation applied to a Markovian repre-
sentation can result in a non-Markovian representation only if a larger rate λi+1 is
exchanged for a smaller rate λi. Starting from (α∗,Q∗), all representations can be
obtained by a series of Swap operations in which a smaller rate λi+1 is exchanged for
a larger rate λi. If (α∗,Q∗) is Markovian, none of these Swap operations can result
in a non-Markovian representation.

For the proof of the first part of the theorem, recall that the CF-1 form is defined
as a bi-diagonal form where the rates are in increasing order, i.e.

λ1 ≤ · · · ≤ λn. (4.10)

The reversed CF-1 form then has the rates in decreasing order. Let us assume that
(α′,Q′) with rates

λ′
1, . . . , λ

′
i, λ

′
i+1, . . . , λ

′
n (4.11)

97



4. Optimisation of PH Generators for Random-Variate Generation

2 31

3 21

1 32
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Swap(α,Λ, 1) Swap(α, Λ, 2) Swap(α,Λ, 1)

Swap(α, Λ, 1) Swap(α,Λ, 2)Swap(α,Λ, 2)

Figure 4.1: Search graph for optimisation on the bi-diagonal representation (α,Λ),
with rates 1, 2, 3.

ordered such that λ′
i < λ′

i+1 is optimal. Then from (4.6) it follows that by exchang-
ing λ′

i, λ
′
i+1 using the Swap operator we can obtain a representation (α′′,Q′′) =

Swap(α′,Q′, i) for which n∗(α′′,Q′′) < n∗(α′,Q′), i.e. we have a contradiction to
our assumption that (α′,Q′) is optimal.

4.1.1 Algorithms for Computing Optimal APH Representations

Theorem 4.1.1 states that if the reversed CF-1 form is Markovian, then this represen-
tation is optimal with respect to n∗. This optimal representation is easily computed
by applying a similarity transformation. On the other hand, it is not guaranteed
that the reversed CF-1 form is Markovian (see the examples in Section 4.1.2). In the
following we develop algorithms for finding a Markovian APH representation that is
close to optimal (with respect to n∗) when the reversed CF-1 form is non-Markovian.

The algorithms are best thought of as operating on a graph whose nodes are the
permutations of the rate vector Λ and whose edges are defined by Swap operations,
such that two nodes are connected if they can be transformed into each other by
a single exchange of two adjacent rates (see Figure 4.1). From each permutation
exactly n − 1 other permutations can be reached. If the reversed CF-1 is non-
Markovian, then some of the permutations have non-Markovian initial vectors.

The most obvious approach proceeds by exploring the complete graph. This is
equivalent to generating all permutations of Λ and minimising n∗ over the subset of
permutations whose initial vector is stochastic. The approach is easily implemented,
e.g. as a modification to the Steinhaus-Johnson-Trotter algorithm for enumerating
permutations [Joh63] and is guaranteed to find the optimum. Since this method
explores all n! permutations for an APH of size n, it is infeasible for larger APH.

Theorem 4.1.1 provides the basis for the two computationally less expensive
algorithms presented in this section. The algorithms are more efficient than a simple
enumeration because they avoid constructing non-Markovian representations. The
underlying intuition is as follows: The optimal representation with respect to n∗ is
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somewhere on the Markovian side of the boundary between the Markovian and the
non-Markovian representations. Theorem 4.1.1 implies that the Markovian optimum
is along one of the paths from the CF-1 to the reversed CF-1. We thus need to find
the (Markovian) point where the path between CF-1 and reversed CF-1 crosses the
boundary between the Markovian and non-Markovian representations.

Our first algorithm, BubbleSortOptimise starts with the CF-1 form (i.e. in-
side the Markovian representations, at the left-most node in Figure 4.1). We know
from (4.6) that each exchange of two adjacent rates such that after the exchange
the larger rate is moved to the left constructs a new element of the path that has
lower n∗, provided the new representation is Markovian. Properties (4.4) and (4.5)
thus define the direction along which to search for the optimal Markovian rep-
resentation without enumerating all permutations and without explicitly comput-
ing n∗ for the new representation. BubbleSortOptimise follows from this intu-
ition:

Algorithm BubbleSortOptimise(α,Λ):

for i = 1, . . . , n − 1 do
for j = 1, . . . , n − 1 do

(α′,Λ′) := Swap(α,Λ, i)
if Λ[j] < Λ[j + 1] ∧ α′ ≥ 0 then

(α,Λ) := (α′,Λ′)
else

break
end if

end for
end for
return (α,Λ)

The algorithm is a modified version of the popular Bubblesort algorithm [Knu97].
In general, the Bubblesort algorithm iterates repeatedly over a list and swaps all
pairs of adjacent entries that are not in the desired order. This results in a global
ordering after a finite number of iterations. The version presented here attempts to
re-order the vector Λ given in CF-1 form into the reversed CF-1 form.

Note that BubbleSortOptimise does not perform Swap operations whose result
would be non-Markovian, i.e. it does not cross the boundary between both types
of representations. The algorithm terminates once either the reversed CF-1 form
is reached or there are no re-orderings left that would result in a Markovian rep-
resentation with lower cost n∗. While this may mean that the algorithm does not
find Markovian representations hidden ‘behind’ non-Markovian ones, it is necessary
because n∗ has no meaning for non-Markovian representations.

Our second algorithm, FindMarkovian, starts from the reversed CF-1 form (the
right-most node in Figure 4.1) and searches for the point where the path towards
the CF-1 first crosses the border to the Markovian representations. The path is
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constructed by swapping pairs of rates such that in the result the higher rate is to
the right. That is, the algorithm attempts to re-order the reversed CF-1 form into
the CF-1 form. The algorithm stops when it encounters a Markovian representation.
Due to the fact that the CF-1 form is Markovian, the algorithm is guaranteed to
terminate:

Algorithm FindMarkovian(α,Λ):

Let (α′,Λ′) be the reversed CF-1 of (α,Λ)
while ¬(α′ ≥ 0) do

i := argmini {α
′
i < 0}

i := max {2, i}
while ¬(α′ ≥ 0) ∧ ∃k : Λ[k] ≥ Λ[k + 1] do

k := argminj {j | i − 1 ≤ j ≤ n − 1 ∧ Λ[j] ≥ Λ[j + 1]}
(α′,Λ′) := Swap(α′,Λ′, k)

end while
end while
return (α′,Λ′)

Note that both algorithms test whether the theoretical optimum, i.e. the reversed
CF-1 form (Theorem 4.1.1) is Markovian. This is guaranteed by the second part
of Theorem 4.1.1 for BubbleSortOptimise and explicit in FindMarkovian. Both
algorithms will therefore find the theoretical optimum from Theorem 4.1.1 if it is
Markovian. On the other hand, neither algorithm is guaranteed to find the optimum
if the reversed CF-1 form is not Markovian. BubbleSortOptimise might miss the
optimum if finding the optimum requires constructing a non-Markovian representa-
tion. FindMarkovian, on the other hand, might not find the optimum because it
stops when it reaches the first Markovian representation.

4.1.2 Illustrative Examples

A few examples will illustrate optimisation by re-ordering a bi-diagonal represen-
tation and the limits of this optimisation procedure. Furthermore, these examples
will serve to evaluate the amount of cost reduction that can be achieved using the
optimisation procedure proposed in this section. We first discuss three theoretical
distributions that highlight advantages and limitations of the approach. We then
study the approach on a distribution fitted to measurement data. In all examples
we assume that the SimplePlay method will be used to generate random variates.
The average costs are therefore given by n∗ = ανT (cf. (3.36)).

Distribution with generalised Erlang structure. Consider the generalised Er-
lang distribution with Λ = (1, 2, 3, 4) and α = (1, 0, 0, 0). For this distribution, every
order of rates in Λ has costs n∗ = 4, since no probability mass can be shifted to the
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right without changing the distribution. As expected, both BubblesortOptimise

and FindMarkovian identify ((1, 0, 0, 0), (4, 3, 2, 1)) as the optimal representation.

APH with Markovian reversed CF-1. Let Λ = (1, 2, 3, 4), as before, and the
initial probability vector α = (0.7, 0.15, 0.09, 0.06). Then, the average number of
visited states is

n∗(α,Λ) = 3.49.

Application of BubblesortOptimise results in the reversed CF-1 form with Λ′ =
(4, 3, 2, 1), α′ = (0.46, 0.12, 0.18, 0.24) and average costs

n∗(α′,Λ′) = 2.8.

Since the reversed CF-1 is Markovian, FindMarkovian gives the same result. We ob-
serve that probability mass in the initial probability vector has been shifted towards
higher indices. In this case, the cost has been reduced by 19.7%.

APH with non-Markovian reversed CF-1. We study (α,Λ) with Λ = (1, 2, 3, 4)
and α = (0.5, 0.4, 0.05, 0.05). This representation has costs

n∗(α,Λ) = 3.35.

The initial vector for the reversed CF-1 is (−0.6, 1.4, 0, 0.2), and hence the reversed
CF-1 form is non-Markovian. Applying the BubblesortOptimise algorithm to the
CF-1 form provides us with a representation (α′,Λ′) with Λ′ = (2, 4, 3, 1) and
α′ = (0.1, 0.7, 0, 0.2), for which

n∗(α′,Λ′) = 2.7.

FindMarkovian starts on the non-Markovian reversed CF-1 representation and gen-
erates the Markovian representation Λ′′ = (2, 3, 4, 1) and α′′ = (0.1, 0.7, 0, 0.2),
which has the same costs of 2.7. A complete enumeration of all permutations shows
that both orderings are optimal with respect to n∗. The cost reduction with both
algorithms is 19.4%.

APH fitted to empirical data. As the last example, we use an APH(8) fitted
to the loss1-50-opc-1 data-set from [RWW09] using the PhFit tool [HT02] (see
also Chapter 5). This data set contains response-time measurements from a SOA
system under high load and with network packet loss. The resulting APH has initial
probability vector α = (0.019, 0.006, 0.069, 0.104, 0.164, 0.371, 0.216, 0.051) and rate
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vector

Λ = (7.181 · 10−05, 2.4280 · 10−04, 5.854 · 10−04, 5.863 · 10−04,

5.956 · 10−04, 5.965 · 10−04, 6.178 · 10−04, 6.332 · 10−04).

For this representation,
n∗(α,Λ) = 3.38.

Again, the reversed CF-1 for this representation has negative entries in the initial
vector. Application of BubblesortOptimise results in (α′,Λ′) with initial proba-
bility vector α′ = (0.0047, 0.0203, 0.0614, 0.0929, 0.1327, 0.3911, 0.2417, 0.0552) and

Λ′ = (2.4280 · 10−04, 7.181 · 10−05, 6.332 · 10−04, 6.178 · 10−04,

5.965 · 10−04, 5.956 · 10−04, 5.863 · 10−04, 5.854 · 10−04),

which has n∗(α′,Λ′) = 3.256. According to a complete enumeration, this is also the
Markovian optimum. FindMarkovian returns

α′′ = (0.0047, 0.0203, 0.069, 0.104, 0.164, 0.371, 0.216, 0.051)

and

Λ′′ = (2.4280 · 10−04, 7.181 · 10−05, 5.854 · 10−04, 5.863 · 10−04,

5.956 · 10−04, 5.965 · 10−04, 6.178 · 10−04, 6.332 · 10−04),

for which n∗(α′′,Λ′′) = 3.366. With BubbleSortOptimise we thus achieve a cost
reduction of 3.6%, whereas the representation returned by FindMarkovian is only
0.4% more efficient.

4.1.3 Discussion

In our examples we observe that the cost reduction obtained by the algorithms
depends strongly on the given distribution. For distributions with (generalised) Er-
lang structure, optimisation by re-ordering of rates is not applicable. The same
holds within blocks of subsequent phases with zero initial probability. For distribu-
tions where the probability mass is already concentrated at the higher indices in the
CF-1, there is also little room for improvement.

In general, however, our examples indicate that re-ordering of rates can lead to
significant cost reductions. While the improvement in efficiency depends on both the
given distribution and on the algorithm, cost reductions can be as high as 19.7%.
Furthermore, our last example shows that even with a typical APH distribution
fitted to measurement data we can still achieve an improvement of 3.7%.
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4.2 Optimisation for General Phase-type Distributions

The Monocyclic representation of the PH class is the generalisation of the CF-1
form for the APH class. The obvious similarity between both forms raises the
question whether the result obtained in the previous section for the APH class can
be generalised to the PH class in Monocyclic representation. In order to address this
question, we first need to re-consider the underlying arguments of the discussion for
APH distributions.

Unlike in the APH case, for PH distributions the expressions for the costs differ.
The expression for the number of uniforms, #uni is rather complicated and does
not provide us with a simple way of optimisation. However, the expression for the
number of logarithms,

#ln = 3ℓ∗ = 3ᾱνT, (4.12)

where ᾱ is the vector of block probabilities and

ν = (m, m − 1, . . . , 1) (4.13)

is the number of blocks to be traversed is similar to that for the APH case, since
it depends only on the number of visited FE blocks. We can apply our optimisa-
tion approach to this metric and try to minimise the number of logarithms. As
logarithms are far more expensive than uniforms (as indicated in our measurement
study in Chapter 3), this approach appears promising for improving efficiency. In
the following, we therefore focus on optimisation for #ln.

Generalising the approach for APH, we base our argument on the similarity
transformation matrix S that swaps two adjacent FE blocks and produces the new
initial probability vector α′ = αS. We generalise the definition of the Swap operator
as follows:

Definition 4.2.1. The GSwap(α,Q, i) operator exchanges the ith FE block with
the (i + 1)th FE block (1 ≤ i ≤ m − 1) on the diagonal in a block-bi-diagonal repre-
sentation by swapping the ith and (i + 1)th entry in the vector Υ (or, equivalently,
by swapping the block matrices associated with the FE blocks in the sub-generator).
The associated similarity transformation matrix S has the form

S =





Iν×ν 0 0

0 Ŝ 0
0 0 Iµ×µ



 ,

where

ν =
i−1
∑

k=1

bk, µ =
m
∑

k=i+2

bk,
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are the number of states in front of and behind the two blocks, respectively, and
Ŝ ∈ R

(bi+bi+1)×(bi+bi+1) is the lower-triangular matrix that describes the effect of the
similarity transformation on the two Feedback-Erlang blocks. Ŝ is the solution of

(

Fi −Fi1Ie1

0 Fi+1

)

Ŝ = Ŝ

(

Fi+1 −Fi+11Ie1

0 Fi

)

(4.14)

Ŝ1I = 1I. (4.15)

Due to the block upper-triangular structure of the coefficient matrices in (4.14),
Ŝ is a block lower-triangular matrix. We use the GSwap(α,Υ, i) notation to denote
the swap operation of the ith and (i + 1)th FE blocks.

We summarise the properties of the GSwap operator in the following remarks.
While the GSwap operator is a generalisation of the Swap operator, the fact that the
FE-diagonal form is block-bi-diagonal with block matrices potentially having size
larger than 1 results in one important difference, described in Remark 4.2.2.

Remark 4.2.1. The structure of S, which describes the GSwap operator (i.e. Q′ =
S−1QS), ensures that GSwap has only local effects on the initial probability vector,
i.e. it only affects the entries of the initial probability vector that belong to the two
FE blocks being swapped. We denote the vector of these probabilities by α̂.

Remark 4.2.2. Given two Feedback-Erlang blocks (bi, λi, zi) and (bi+1, λi+1, zi+1)
with corresponding sub-generator matrix

Q =

































. . .
. . .

−λi λi

. . .
. . .

ziλi −λi (1−zi)λi

−λi+1 λi+1

. . .
. . .

zi+1λi+1 −λi+1 (1−zi+1)λi+1

. . .
. . .

































,

application of the GSwap operator exchanges the entire block matrices corresponding
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to the FE blocks instead of individual rates along the diagonal, resulting in

Q′ =

































. . .
. . .

−λi+1 λi+1

. . .
. . .

zi+1λi+1 −λi+1 (1−zi+1)λi+1

−λi λi

. . .
. . .

ziλi −λi (1−zi)λi

. . .
. . .

































.

This means that the GSwap operator maintains the proper exit rates. If zi > 0 or
zi+1 > 0, the operation cannot be broken down into exchanges of individual rates,
since any such exchange would modify the FE blocks, and thus alter the eigenvalues
of the matrix, producing a different phase-type distribution.

Remark 4.2.3. The Steinhaus-Johnson-Trotter theorem [Joh63] ensures that all
permutations of FE blocks can be obtained by repeated application of the GSwap op-
erator.

According to Theorem 4.1.1, for acyclic phase-type distributions in bi-diagonal form
any swap of transition rates that moves a phase with a higher rate away from the
absorbing state and maintains a Markovian initialisation vector results in a more
efficient representation for simulation. This means that for APH distributions the
direction of search for the optimal representation is known solely from the properties
of the sub-generator matrix and it is independent of the initial probability vector.
The corresponding statement for FE-diagonal forms would be straightforward, using
FE blocks and the reversed Monocyclic form. Unfortunately, this statement does
not hold for PH distributions in FE-diagonal form, as we demonstrate with the
following counterexample:

Example 4.2.1. Let Q denote the Monocyclic sub-generator matrix defined by Υ =
((1, 0.1, 0), (b1, λ1, z1), (b2, λ2, z2)), where

b1 = 3, λ1 = 1.5, z1 = 0.5 and b2 = 3, λ2 = 1, z2 = 0.

Exchanging the second and third block results in Υ′ = ((1, 0.1, 0), (b2, λ2, z2), (b1, λ1, z1))
and the associated sub-generator matrix Q′. Let

S =

(

1

Ŝ

)

such that Q′ = S−1QS (4.16)
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denote the similarity transformation that describes the GSwap operation for this case,
i.e. Ŝ is the solution of Equations 4.14 and 4.15:

Ŝ =

















1
0.3333 0.6667
0.1111 0.4444 0.4444

−0.925926 0.4444 0.8889 0.592593
0 −0.925926 0.4444 0.592593 0.8889
0 0 −0.925926 0.148148 0.4444 1.3333

















(4.17)

Now consider the two initial vectors

α1 = (0.09 | 0.1, 0.3, 0.31 | 0.1, 0.1, 0),

and
α2 = (0.09 | 0.1, 0.3, 0.31 | 0.2, 0, 0)

whose only difference is the distribution of the probability mass assigned to the third
FE block (block boundaries are indicated by |). The costs for random-variate gener-
ation from (α1,Q) and (α2,Q) are (Equation (3.33)):

#ln(α1,Q) = #ln(α2,Q) = 3 · (0.09 · 3 + 0.71 · 2 + 0.2) = 5.67.

After swapping the two blocks using S the resulting initial probability vectors are

α′
1 = α1S = (0.09 | 0.141852, 0.28963, 0.271111 | 0.118519, 0.0888889, 0)

and
α′

2 = α2S = (0.09 | 0.0492593, 0.426667, 0.315556 | 0.118519, 0, 0)

respectively. Note that in α′
1 the initial probability mass assigned to the third FE

block increased from 0.2 to 0.207407, while in α′
2 the probability mass for this block

decreased from 0.2 to 0.118519. The costs of random-variate generation changed as
follows:

#ln(α′

1,Q′) = 3 · 1.8825939 = 5.6477817,

#ln(α′

2,Q′) = 3 · 1.9714836 = 5.9144508.

That is, with α1 swapping the blocks resulted in a cost decrease, while with α2 costs
increased.

Complete enumeration of all orderings shows that α1, α
′
1 and α2, α

′
2 are the only

Markovian representations for this example. The example thus illustrates that with
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true FE-diagonal representations (i.e. those with non-degenerate FE blocks) the
effect of swapping two consecutive FE blocks may depend not only on the properties
of the sub-generator of the distribution, but also on the distribution of the mass in
the initial probability vector. Consequently, Theorem 4.1.1 cannot be generalised to
the whole PH class.

4.3 Algorithms for Monocyclic Optimisation

Example 4.2.1 shows that the reversed Monocyclic form of a general PH distribution
with non-degenerate FE-diagonal representation is not guaranteed to be optimal,
even if the initialisation vector is Markovian. Hence the efficient optimisation meth-
ods developed for the APH class cannot be applied to the PH class, since, first,
there is no general optimum that only needs to be checked for non-negativity of the
initialisation vector, and, second, the direction in which to search for the optimum
cannot be derived from the sub-generator alone. On the other hand, Example 4.2.1
is not just bad news, since it also shows that a cost reduction by swapping adjacent
FE blocks is indeed possible, even though the effects of swapping two blocks are not
predictable.

As with the CF-1 form, the optimum for the Monocyclic form can be found
by an optimisation of the costs over the set of all permutations of the Feedback-
Erlang blocks. This approach is guaranteed to find the optimum with respect to
all permutations, but involves generating and checking m! representations. The
approach may be feasible if neither the number of FE blocks m nor the block lengths
are too large, but running-times become prohibitive for large m or large FE blocks.
Large m require a large number of permutations to be checked, while large FE blocks
imply large Ŝ, and thus higher costs for computing the initial probability vector α̂′

resulting from each GSwap operation.
Therefore, we propose extensions of the algorithms for efficient APH optimisation

to the Monocyclic case by developing heuristics that replace the strict ordering crite-
rion available for the CF-1 case. In both algorithms, the comparison of two adjacent
rates must be replaced by a call to the generic routine ComparisonHeuristic, which
returns true or false, depending on whether the two Feedback-Erlang blocks given
as its arguments are in the order imposed by the heuristic. The extended version
GBubbleSortOptimise is as follows:

Algorithm GBubbleSortOptimise(α,Υ):

for i = 1, . . . , m − 1 do
for j = 1, . . . , m − 1 do

(α′,Υ′) :=Swap(α,Υ, i)
if ComparisonHeuristic(α,Υ, j) = true ∧ α′ ≥ 0 then

(α,Υ) := (α′,Υ′)
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else
break

end if
end for

end for
return (α,Υ)

The GBubbleSortOptimise algorithm is guaranteed to always find a Markovian
representation with any heuristic, since it does not leave the region of orderings
with Markovian initialisation vectors.

The GFindMarkovian algorithm, on the other hand, starts with a possibly non-
Markovian representation and is guaranteed to find a Markovian representation
only with the eigenvalues heuristic discussed below. The eigenvalues heuristic im-
poses decreasing order of the dominant eigenvalues of the Feedback-Erlang blocks.
With this heuristic, GFindMarkovian will in the worst case terminate with the
original Markovian Monocyclic representation. In order to guarantee termination
of the algorithm with other heuristics that do not have this property, we termi-
nate if all m! possible orderings have been evaluated. In this case, the algorithm
may return a non-Markovian representation. The algorithm is given in the follow-
ing:

Algorithm GFindMarkovian(α,Υ):

Let (α′,Υ′) be the reversed Monocyclic form of (α,Υ′)
r:=0
while ¬(α′ ≥ 0) do

i := argmini {α
′
i < 0}

i := max {2, i}
while ¬(α′ ≥ 0) ∧ ∃k : ComparisonHeuristic(Υ[k],Υ[k + 1]) = false do

k := argminj {j | i − 1 ≤ j ≤ m − 1 ∧ Υ[j] ≥ Υ[j + 1]}
(α′,Υ′) := Swap(α′,Υ′, k)
if (α′,Υ′) is a new representation then

r + +
end if
if r = m! then

goto END
end if

end while
end while
END:
return (α′,Υ′)
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4.3.1 Heuristics for Optimisation

In the following we present four heuristics that can be used as ComparisonHeuristic
in either algorithm. The heuristics presented here have been derived based on the
following argument: In Theorem 4.1.1 we showed that the optimal ordering for the
APH case is obtained if the ordering of the elements of the diagonal of the CF-1
form is reversed (provided that this ordering is Markovian). Due to the simplicity of
the CF-1 form, this re-ordering can be seen equivalently as a re-ordering of the dom-
inant eigenvalues, of the means, and of the exit rates. Furthermore, property (4.5)
corresponds to the determinant of the swap matrix being larger than 1. These four
criteria differ from each other if true Feedback-Erlang blocks are compared.

Eigenvalues Heuristic The eigenvalues heuristic relates to the CF-1 case most
directly. Recall that the Monocyclic representation is defined such that the Feed-
back Erlang blocks are ordered along the diagonal according to increasing absolute
value of their dominant eigenvalues. The eigenvalues heuristic directly applies the
observation from the CF-1 case that swapping two blocks may move probability
mass to the right iff the eigenvalue of the right phase is larger than that of the left
phase. Equivalently, in the FE-diagonal case probability mass may be moved to the
right if the dominant eigenvalue of the right FE block is larger than that of the left
FE block.

Definition 4.3.1 (Eigenvalues heuristic). Let (α,Υ) be a FE-diagonal represen-
tation and let ri, ri+1 be the dominant eigenvalues of the ith and (i + 1)th block,
respectively. Then, the eigenvalues heuristic is defined as

EigenvaluesHeuristic(α,Υ, i) :=

{

true |ri| < |ri+1| ,

false else,
(4.18)

that is, the heuristic returns true if the absolute value of the dominant eigenvalue of
the ith block is larger than that of the (i + 1)th block.

Mean Heuristic The mean heuristic stems from the following observation for the
bi-diagonal case: Re-ordering phases directly relates to re-ordering the means of the
associated distributions. I.e., swapping two phases such that the one with higher
rate is moved to the left is equivalent to swapping them such that the lower mean
moves to the left. This idea can be applied to the FE-diagonal case as follows. First,
we have to assign a mean to each FE block. While this is unambiguous in the bi-
diagonal case (where FE blocks are of length 1), in the Monocyclic case probability
mass may be assigned to all phases of a block, rendering the mean dependent on
the distribution of the mass. The most straightforward approach is then to assign
probability mass of 1 to the first entry of the block. The mean of a Feedback-Erlang
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block (bi, λi, zi) with sub-generator matrix Fi and probability mass 1 at the first
entry is

M̂i = e1(−Fi)
−11I. (4.19)

The mean of a Feedback-Erlang block (bi, λi, zi) with sub-generator matrix Fi and
initial probability vector αi is

Mi =
αi

αi1I
(−Fi)

−11I. (4.20)

Definition 4.3.2 (Mean heuristic). Let (α,Υ) be an FE-diagonal representation
and let M̂i, M̂i+1 be the mean of the ith and (i + 1)th Feedback-Erlang block, when
starting at the first entry of each block. Then,

MeanHeuristic(α,Υ, i) :=

{

true M̂i > M̂i+1

false else,
(4.21)

defines the mean heuristic. A different version of the heuristic can be defined by
using the means Mi, Mi+1 of the distributions defined by the FE blocks, as given
in (4.20).

Exit-Rates Heuristic The exit-rates heuristic is another generalisation of an
observation from the bi-diagonal case. Exit rates are an indicator for the time spent
in a Feedback-Erlang block or a phase, respectively. In the bi-diagonal case, the exit
rates are equal to the rates of the phases, and moving the larger rate to the left is
equivalent to moving the higher exit rate. For an FE-diagonal representation, the
exit rates of the ith and (i + 1)th block are given by (1 − zi)λi and (1 − zi+1)λi+1.
Based on the results for the bi-diagonal case, optimisation consists in re-ordering
blocks such that the highest exit rates (i.e. largest rates λi with a bi-diagonal
representation) move to the left.

Definition 4.3.3 (Exit-rates heuristic). Let (α,Υ) be an FE-diagonal representa-
tion with exit rates (1− zi)λi and (1− zi+1)λi+1. The exit-rates heuristic is defined
as

ExitRatesHeuristic(α,Υ, i) :=

{

true (1 − zi)λi < (1 − zi+1)λi+1,

false else.
(4.22)
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F1 F2

Dominant eigenvalue r1 = −0.3095 r2 = −1

Mean with mass 1 at first state M̂1 = 4 M̂2 = 3
Mean with normalised mass (α1) M1 = 4 M2 = 1.7042
Mean with normalised mass (α2) M1 = 2.5 M2 = 1.7042
Exit rate 0.75 1

Table 4.1: Properties of the FE blocks in Example 4.2.1.

Determinant Heuristic In Lemma 4.1.1 we showed that for the APH case the
similarity transformation matrix Ŝ has the following explicit structure:

Ŝ =

(

1 0
λi−λi+1

λi

λi+1

λi
,

)

(4.23)

with determinant det(Ŝ) = λi+1/λi. In this case, swapping two adjacent rates moves
probability mass to the right iff λi+1 > λi, or, equivalently, if det(Ŝ) > 1. The
determinant heuristic generalises this criterion to the general case.

Definition 4.3.4 (Determinant heuristic). Let (α,Υ) be an FE-diagonal represen-
tation and let Ŝ be the similarity transformation matrix that exchanges the ith and
(i + 1)th block. The determinant comparison heuristic is defined as

DeterminantHeuristic(α,Υ, i) :=

{

true det(Ŝ) > 1,

false else.
(4.24)

Discussion While these heuristics are exact for degenerate FE blocks, they may be
misleading with non-degenerate FE blocks, as can be illustrated using Example 4.2.1.
Table 4.1 shows the relevant properties considered by the eigenvalues, mean, and
exit rates heuristics. The determinant of the swap matrix Ŝ is |Ŝ| = 0.208. Observe
that the eigenvalues, mean, and exit rates heuristics would recommend to swap the
two blocks. As we saw in the counterexample, this is correct for α1, but incorrect
for α2. Likewise, the prediction by the determinant heuristic that swapping would
not move probability mass to the right is wrong for α1, but correct for α2.

4.3.2 Application

As noted in the above discussion, for FE-diagonal representations with non-degene-
rate FE blocks the heuristics can give a correct prediction of the effect of swap-
ping two blocks, but none of the heuristics are guaranteed to move probability

111



4. Optimisation of PH Generators for Random-Variate Generation

mass to the right. Therefore, the orderings returned by GBubbleSortOptimise and
GFindMarkovian are not guaranteed to be optimal with respect to random variate
generation. On the other hand, the counterexample only affects non-degenerate FE
blocks. If an FE-diagonal representation contains degenerate FE-blocks, we may
expect these to be returned in the optimal order for the APH case. One would
typically run the algorithms with several heuristics and pick the best result.

4.4 Evaluation

As we have observed throughout this chapter, the cost reduction obtainable by
optimisation through reordering depends on the distribution itself. In this section
we provide an empirical study on the applicability and effectiveness of optimisation
with arbitrary distributions.

Our experiment proceeds as follows: For size n and number of FE blocks m
we randomly generate N Monocyclic distributions F1, . . . , FN by creating a random
Markovian initialisation vector α and a random ordered FE-block list Υ of length
m such that the overall size of the representation is n. For each distribution Fi we
then compute all m! representations (αi,j ,Υi,j) where, for j = 1, . . . , m!, Υi,j is a
permutation of Υ and αi,j is the initial vector corresponding to this distribution
(obtained by a similarity transformation). From these, we choose the Markovian
initialisation vector α′

i that has the lowest number of traversed blocks, ℓ∗. We can
then compute the cost reduction for distribution Fi,

∆ℓ∗i = ℓ∗(αi,Υi) − ℓ∗(α′
i,Υ

′
i) (4.25)

In our experiment, we set N = 5001, n = 7, and let m run from 2, . . . , 7. Note
that m = n = 7 represents the case of APH distributions in bi-diagonal form. The
results of the experiment are shown in Table 4.2. The table shows the improvement
probability, defined as the ratio between the number of distributions for which an
improvement was observed and the number of distributions tried, and the mean,
variance and maximum improvement for the distributions where re-ordering yielded
a cost reduction. We first observe that successful optimisation becomes more likely
with higher numbers of blocks m (and consequently lower block lengths). One expla-
nation is that with long blocks many re-orderings give non-Markovian initialisation
vectors. Second, we note that the average savings in cases where optimisation was
possible are around 0.35 for all m, i.e. if an optimisation is possible, on average 0.35
block traversals (or, equivalently, about 1 logarithm) can be saved. Furthermore, we
observe that maximum absolute improvements vary between 1.72299 and 2.27931
block traversals.

While such an experiment must necessarily be incomplete, as it cannot provide
an exhaustive search of the complete set of phase-type distributions, our results
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m Improvement probability Mean(∆ℓ∗) Var(∆ℓ∗) Max(∆ℓ∗)

2 0 – – –
3 0.5957 0.361612 0.098564 1.72299
4 0.8776 0.357491 0.122194 2.26036
5 0.9732 0.354051 0.110254 2.27931
6 0.9988 0.344626 0.0694888 1.75109
7 1 0.355659 0.0555498 1.79303

Table 4.2: Average and maximum optimisation results for randomly-generated
Monocyclic generators.

illustrate that even with randomly chosen distributions optimisation by re-ordering
is possible and can save up to 2.27931 block traversals. This further supports our
earlier observation for the bi-diagonal case that significant cost improvements are
possible.

4.5 Concluding Remarks

In this chapter we studied optimisation of random-variate generation from phase-
type distributions using chain-structured representations. For the sub-class of acyclic
phase-type distributions in bi-diagonal representation we showed that the reverse
CF-1 form minimises the costs of random-variate generation, both in terms of loga-
rithms and in terms of uniform random numbers, if this representation is Markovian.
Even for distributions whose reversed CF-1 form is not Markovian, an optimal rep-
resentation can be found by starting from the CF-1 form and moving higher rates
towards the start of the distribution. This general optimisation criterion is com-
pletely independent of the initial probability vector.

A counterexample told us that there is no equivalent result for distributions
from the general PH class in FE-diagonal form. With FE-diagonal representations
containing true Feedback-Erlang blocks, the effect of moving the blocks depends
mainly on the initial vector, and therefore an optimality result based on the generator
cannot be provided.

Based on these insights, we developed two algorithms for optimisation of bi-
diagonal and FE-diagonal representations. The algorithms for the APH class search
for the optimal ordering based on the optimality result. The algorithms for the
general PH class extend the algorithms for the APH class by utilising one of four
proposed heuristics for predicting the effect of exchanging Feedback-Erlang blocks.
While these heuristics may be misleading for FE-diagonal representations with true
FE-blocks, they directly translate to the same exact criterion for re-ordering rates
in the bi-diagonal case if the distribution is a acyclic.
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An empirical study with random phase-type distributions complemented our
theoretical discussion by illustrating that cost improvements are indeed possible for
many distributions.
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Chapter Five

Efficient and User-Friendly PH
Fitting

The main advantage of using phase-type distributions instead of other statistical
distributions in system evaluation is their ability to capture important statistical
properties of empirical data sets, such as empirical moments or the shape of the
density. Fitting phase-type distributions to measurement data has received a lot of
attention in recent years, and several methods for fitting data have been developed,
along with tools that make the algorithms available in practice. Approaches for fit-
ting PH distributions to data include moment-matching, non-linear optimisation of
a distance function, and expectation-maximisation (EM) algorithms that maximise
likelihood.

In this chapter we first develop a new fitting approach based on partitioning
of the data set. Partitioning of the data set prior to fitting can improve fitting
quality. In particular, the family of segmentation-based approaches aims to capture
oscillations in the density as well as heavy-tailed behaviour by splitting the data
set into segments with low variability, which can be fitted by simple distributions
using the EM algorithm (see Section 5.2). We propose the use of clustering to detect
important features of the density and to partition the data set such that clusters
contain samples belonging to the same feature. Clusters are fitted by distributions
with a simple structure, which then form the branches of the overall PH model. This
approach yields results that fit the density well even with data sets that are difficult
to fit by a PH distribution. It produces mixtures of distributions, which enable effi-
cient algorithms for random-variate generation (see Chapter 3). Furthermore, with
clustering the user can control the quality of the fit by setting initial cluster centers
on a plot of the histogram, which is a very intuitive way of adjusting parameters of
the fitting algorithm.

Clustering constitutes the basis of the HyperStar tool. The tool has a graphical
user interface and supports various algorithms for fitting the clusters. It can easily
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be extended to provide a GUI for prototypes of new fitting algorithms. The name
of the tool follows from its general approach: HyperStar fits mixtures of phase-type
distributions, such as Hyper-exponential or Hyper-Erlang distributions.

In the second part of the chapter we describe an algorithm for fitting FE-diagonal
representations. Our evaluation of a prototype implementation of the algorithm
using HyperStar shows that the algorithm may provide good fitting results with few
parameters and little user interaction.

The chapter is structured as follows: We first describe our cluster-based approach
to PH fitting. Section 5.2 places the algorithm in the context of other methods, with
a particular focus on approaches that partition the data prior to fitting. Section 5.3
gives an overview of our implementation of cluster-based fitting in the extensible
HyperStar tool. We evaluate the method in Section 5.4 with three typical data sets,
employing standard quality measures for PH distributions, such as log-likelihood
values and moment errors to assess fitting quality. We provide a comparison to
previous partitioning approaches as well as to two standard tools for PH fitting.
In Section 5.5 we illustrate how HyperStar can aid the development of new fitting
algorithms, using a new algorithm for fitting FE-diagonal representations.

5.1 Cluster-based Fitting

Our cluster-based fitting approach consists of splitting the input data into M clusters
and fitting each cluster with a phase-type distribution. The distributions fitting the
individual clusters are then combined in a branch-structured phase-type distribution.
More formally, the complete sample set S = {s1, . . . , sN} is split into M clusters
C1, . . . , CM such that each sample belongs to exactly one cluster. The samples in
each cluster Ci are then fitted by a phase-type distribution (α(i),Q(i)). The class
and fitting method for this distribution may be chosen arbitrarily. After the fitting
process for the clusters is completed, the complete distribution (α,Q) is obtained as
a mixture of the cluster distributions by weighting the initial probabilities according
to relative cluster size:

α :=

(

|C1|

N
α(1), . . . ,

|CM |

N
α(M)

)

(5.1)

and constructing a branch-structured sub-generator matrix

Q :=











Q(1) 0
. . .

. . .

0

Q(M)











. (5.2)
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We propose two-step clustering: First, k-means clustering [Llo82] is used to
quickly identify clusters, and second, the initial clustering is refined by re-assigning
samples to clusters based on the distributions fitted to the clusters.

5.1.1 Initial Clustering

The initial clustering uses the simple k-means algorithm [Llo82]: Given M initial
cluster centers c1, . . . , cm, each sample si is first assigned to the closest cluster Cj :

si ∈ Cj ⇔ j = argmin
j

{|cj − si| : j = 1, . . . , M} . (5.3)

Then, each cluster center cj is updated to be the mean of the samples associated to
the cluster Cj :

cj :=
1

|Cj |

∑

i∈Ij

si, (5.4)

where Ij := {i : si ∈ Cj} denotes the indices of the samples assigned to the jth
cluster. Both steps are repeated alternatingly until the cluster centers stabilise. The
user specifies the number of the clusters and the position of the initial cluster centers
by marking important peaks of the density in the GUI.

5.1.2 Cluster Refinement

The cluster refinement step combines the fitting of PH distributions to the clusters
and the refinement of the sample assignments to clusters, as follows: In each iter-
ation, we first fit a PH distribution (α(j),Q(j)) to each cluster Cj using the fitting
module selected for that cluster. We then re-assign samples to clusters using one
of the two re-assignment strategies described below. Both steps are repeated until
either convergence occurs or a maximal number of iterations has been exceeded. We
check convergence by comparing the parameters of the branch distributions. Note
that this criterion is only guaranteed to detect convergence for canonical represen-
tations of the branch distributions.

The most obvious strategy for cluster refinement is to assign each sample to the
cluster whose density is highest for that sample:

si ∈ Cj ⇔ j = argmax
j

{

f̂j(si) : j = 1, . . . , M
}

, (5.5)

where f̂j(t) = α(j)eQ
(j)t(−Q(j)1I) denotes the density of the phase-type distribution

fitted to the jth cluster. While this strategy is efficient and often yields good fitting
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results, it tends to create clusters with low variance, particularly if the branch distri-
butions are of Erlang type. Such clusters then necessitate a large number of phases
to be represented well (cf. [AS87]). This issue may be addressed by the probabilistic
re-assignment strategy: For each sample we compute the vector

π :=
1

∑M
j=1 f̂j(si)

(

f̂1(si), . . . , f̂M (si)
)

(5.6)

which, for each cluster Cj , estimates the probability that the sample si is in this
cluster. We then draw a discrete random variate j′ from the distribution defined
by π and assign the sample si to cluster Cj′ . Unlike the default strategy, the
probabilistic strategy is not guaranteed to converge and requires the specification
of a maximum number of iterations after which the cluster assignment should be
accepted. Additionally, due to the additional computations, it is less efficient than
the default strategy. On the other hand, the probabilistic re-assignment strategy
increases the variance inside the clusters and thus allows the fitting of clusters with
smaller distributions.

5.2 Related Work

There exists a large number of approaches for fitting PH distributions to data.
Attempts at gaining a structured overview of the field have been presented in
e.g. [LA96] and [MZ09a, MZ09b], but, due to the diverse directions being followed
in ongoing research work, it appears that any general survey must necessarily be
incomplete and will quickly become outdated. Surveys of a sub-area, which are often
presented in the ‘Related Work’ sections of papers on specific approaches like the
ones discussed in the following, are usually more complete, but limited to that area.
In the following we provide a brief overview of existing approaches and then discuss
the relation between these and our cluster-based method.

Fitting approaches for PH distributions differ with respect to the methods they
apply. Moment-matching (e.g. [BPdL98, BHT05, TH02a, CZS08]) aims to fit the
moments of the empirical distribution, typically using explicit analytical expres-
sions for the moments of the PH distribution to derive the parameters of the dis-
tribution. Moment-matching fits the moments of the distribution well, but often
does not capture the shape of the density or the distribution function (see e.g.
observations in [FW98, RW08b, Dan10]). The quantile-matching approach of Feld-
mann and Whitt [FW98] uses an iterative procedure to obtain a hyper-exponential
distribution that fits the higher quantiles of the distribution well and is thus es-
pecially suited to fitting long-tailed distributions. As noted in [FW98], the ap-
proach cannot fit distributions with non-monotone densities. Optimisation methods
(e.g. [MR93, BT94, Fad98, HT02, IH05]) fit PH distributions iteratively by optimis-
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ing a distance function such as the density area distance, maximum likelihood, or
entropy. These methods are well-suited to obtaining good fits of the shape of the dis-
tribution, but may not fit the moments exactly. Several authors have used variants
of the expectation-maximisation (EM) algorithm to fit the whole PH class [ANO96]
or sub-classes [RDS02, SH08, WZXL05, TBT06, WLS08]. Depending on the sub-
class that is used, the EM algorithm can give good a fitting for the shape of the
distribution [TBT06] or of its higher quantiles [RDS02, SH08, WZXL05, WLS08].

Our focus in this chapter is on cluster-based fitting. Although partitioning of the
data set has been proposed before, the idea of a clustering algorithm for identification
of important features of the density has not been applied to PH distributions before.

The most similar approach is the family of segmentation-based EM approaches
described in [RDS02, SH08, WZXL05, WLS08]. These approaches divide the data
set into partitions with a specified maximum coefficient of variation and then fit
hyper-exponential [RDS02, SH08] or Hyper-Erlang [WZXL05, WLS08] distributions
to the partitions using the EM algorithm. We summarise the approach as given
in [WLS08]: The samples are first sorted in increasing order. Starting from the
lowes samples, the ordered data set is then successively split into segments with a
pre-specified maximum coefficient of variation cv. A Hyper-Erlang distribution is
fitted to each segment separately using the AEM and BEM algorithms. The BEM
algorithm performs a fixed number of iterations to fit a Hyper-Erlang distribution
of a given size to a set of samples. The size of the distribution is specified by the
number of branches. All branches have the same length, and the length depends
on the number of branches by a linear factor k. The AEM algorithm computes the
optimal size of a Hyper-Erlang distribution by repeatedly calling the BEM algorithm
with increasing numbers of branches until the rates for the two most similar branches
differ by less than a given threshold ǫ. We will refer to the combination of splitting
and fitting by AEM and BEM by the acronym SEM. We are not aware of any tools
implementing the SEM algorithm.

With this family of segmentation-based algorithms, the goal of partitioning is
to reduce variability in the individual partitions, in order to be able to capture
heavy-tailed behaviour of the data set [RDS02]. The extension to Hyper-Erlang
distributions in [WZXL05, WLS08] aims to also fit peaks in the density [WZXL05,
WLS08], which is not possible with hyper-exponential distributions [FW98]. With
cluster-based fitting, on the other hand, our primary goal is to detect and fit peaks
and other important features of the density. Such peaks can often be approximated
well by simple distributions like the Erlang distribution. As we will illustrate in
the evaluation, the approach of partitioning the data based on a constant maximal
coefficient of variation may yield good results with suitable data sets and a good
threshold. On the other hand, the fitting quality is very sensitive to the choice of
the threshold, and threshold selection such that important features are fitted well is
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difficult. In contrast, our cluster-based fitting approach is more flexible in detecting
similar values, as it determines the size of clusters automatically.

k-means clustering has been proposed as a method for MMPP (Markov-Modulated
Poisson Process) fitting by [GHH03]. This approach uses clustering only to obtain
initial values for an EM algorithm. Another idea similar to clustering is followed
in G-FIT [TBT06], which fits Hyper-Erlang distributions using the Expectation-
Maximisation (EM) algorithm. G-FIT alternates between assigning samples to
branches and adjusting the Erlang parameters to fit the assigned samples. Sam-
ple assignments in G-FIT are ‘soft’, in that each sample has a certain probability of
belonging to every branch. That is, samples do not belong to one branch exclusively.
In contrast, in the cluster-based approach we develop here, sample assignments are
‘hard’: Each sample belongs to exactly one cluster and is fitted by exactly one
branch. This promises several advantages: First, as clusters are independent data
sets, cluster fitting may be performed independently and the data sets belonging
to each cluster are smaller than the whole data set. This offers performance ben-
efits. Second, with independent clusters, each cluster may be fitted by different
distributions and different fitting methods. This allows easy integration of exist-
ing methods, as well as new methods. Note that hard sample-assignment as used
in our algorithm has the disadvantage that it may yield distributions with a very
large number of phases, in particular if there are many clusters or if the variance
within clusters is very low. Large distributions may have only limited applicability in
further evaluation. In particular, analytical approaches typically suffer state-space
explosion if the distribution is too large. On the other hand, in simulation even
large distributions may still be acceptable, if they have a simple structure.

The PhFit tool [HT02] fits APH distributions in CF-1 form. The tool can fit
the body and tail part of the distributions with different algorithms, if the user
specifies the start of the tail. Although we had limited success in body/tail fitting, we
observed that even without explicit tail fitting PhFit often yields good results. Body
fitting with PhFit uses a variant of the Frank/Wolfe method [FW56] for optimisation
of a non-linear goal function. In this application, the goal function is a distance
measure between the empirical and the fitted distribution. It is minimised by local
linearisation and a search in the direction of steepest descent. PhFit supports the
density distance, CDF distance, and entropy as distance functions.

5.3 Implementation

Cluster-based fitting forms the core of the HyperStar tool. HyperStar was devel-
oped to be user-friendly and provide good-fitting results, with a particular emphasis
on using the fitted distributions in simulation. In order to provide good fitting
results and enable fast random-variate generation, the tool supports branch struc-
tures, where each branch is fitted to a cluster of the input data. We have im-
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plemented Hyper-Erlang, Hyper-Exponential-Erlang, and Hyper-Feedback-Erlang
fitting for the branches, as these distributions enable efficient fitting and efficient
use in simulation. The tool also supports the use of other fitting methods, including
PhFit [HT02], for fitting the branches. The tool was designed around a graphical
user interface that allows the selection of important features of the empirical data,
such that the fitting algorithms can focus on representing these features in the phase-
type distribution. Furthermore, HyperStar provides immediate graphical feedback
of the fitting results. Due to its generic graphical user interface and extendability,
HyperStar may also be used to quickly provide a GUI to experimental fitting meth-
ods implemented in e.g. Mathematica. We provide an overview of HyperStar here;
implementation details are available in [Kra12].

There are several other approaches that address usability and interfacing to ex-
isting fitting tools in different ways. The jphase tool [PR06] implements algorithms
from existing tools such as G-FIT and PhFit and augments them with a unified
graphical user interface. Similarly, the ProFiDo tool [BBK10] integrates existing
fitting tools for PH distributions and stochastic processes into workflows using a
graphical user interface and an XML exchange format. The KPC-Toolbox [CZS08]
offers a set of Matlab routines for automatically fitting Markovian Arrival Processes
and PH distributions, matching a user-specified set of moments with a PH distribu-
tion. With respect to usability, HyperStar extends the facilities provided by these
tools by allowing the user to optimise fitting results by intuitive selection of im-
portant features of the distribution. Unlike ProFiDo, HyperStar does not support
workflows, but provides a graphical user interface especially suited for prototype
implementations.

5.3.1 Architecture of the HyperStar Tool

The general architecture of HyperStar is shown in Figure 5.1. The HyperStar kernel
calls the other modules, provides communication between them, and implements the
graphical user interface. The GUI shows a histogram and the empirical cumulative
density function of the data. The user may explore the data by e.g. zooming
into the plot, selecting histogram bar widths, or truncating the data set. After
interesting features of the data (such as peaks in the density) have been identified,
they can be marked. The clustering algorithms use these marks as initial cluster
centers. Each cluster is fitted by one branch of the distribution. With some fitting
modules, the user may additionally indicate important features by adding weights
to intervals. Fitting modules can be selected and parameterised through the GUI.
In the following, we give a short summary of the modules:

Import modules read data from a data source (e.g. a file) and convert it to
HyperStar’s internal format. Currently, only data files are supported, but e.g. SQL
modules may give access to data that is stored in a database.
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Figure 5.1: Architecture of the HyperStar tool.

Clustering Modules k-Means Clustering; Distribution-based cluster refinement;
Probabilistic distribution-based cluster refinement; Data seg-
mentation [WLS08]

Internal Fitting Modules Erlang fitting (uses moment-matching); Exponential-
Erlang/Erlang-Exponential Fitting [BHT05]; Exponential
(uses moment-matching); AEM/BEM Hyper-Erlang fit-
ting [WLS08]

External Fitting Modules PhFit [HT02]; G-FIT [TBT06]; Mathematica Interface

Import Modules Text files with one sample per line (PhFit input format); Text
files with one sample per line, starting with the number of
samples (G-FIT input format)

Export Modules Mathematica script; R[R D06] script; XML; Libphprng for-
mat [BBH+11]

Table 5.1: HyperStar Modules

Clustering Modules are parameterised by the initial cluster center selections of
the user. Clustering modules directly call the assigned fitting module and use the
results for refinement. The clustering modules return a fitted distribution to the
HyperStar kernel.

Fitting Modules implement the fitting of distributions to data. Internal fitting
modules implement fitting algorithms directly as Java classes, while external fitting
modules provide an interface to established tools, such as G-FIT or PhFit, and to
prototype implementations in Mathematica. Internal fitting modules (see Table 5.1)
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have been selected such that they produce simple branch distributions. The Mathe-
matica interface enables the user to quickly add HyperStar’s graphical user interface
to new fitting algorithms. Each fitting module returns a distribution fitted to the
input data.

Export Modules export the fitted distribution in a variety of data formats that
can then be read by e.g. libraries for random-variate generation (see Chapter 7
and [RH12, BBH+11]).

5.3.2 Special Features

HyperStar can be parameterised in several ways to fulfil the requirements of different
application scenarios. While not exhaustive, the following list summarises a few of
the supported features.

Manual Mode. The user may set the number of initial clustering steps and the
number of refinement steps to 1. In this mode, the cluster centers are not adjusted,
and no refinement is performed. This mode allows the greatest control over the
fitting process.

Pure k-Means Clustering. When the number of initial clustering steps is larger
than 1 and the number of refinement steps is 1, HyperStar applies k-means clustering
but does not refine the clusters based on the fitted distributions.

Pure Distribution-based Clustering. In contrast, by setting the number of initial
clustering steps to 1 and the number of refinement steps above 1, HyperStar can be
used to only perform clustering according to the distribution-based re-assignment
strategies described in the previous section.

Default Mode: Clustering and Refinement. In the default mode, both the number
of initial clustering steps and the number of refinement steps are larger than 1. In
general, this mode produces good results without requiring much user interaction.

GUI Mode. By setting the number of clusters to 1 and requesting only 1 initial
clustering and cluster refinement step, the whole data set is passed into the fitting
module. HyperStar then acts as a GUI to the fitting module.

5.4 Evaluation

We evaluate the quality of cluster-based fitting using the HyperStar tool by studying
three data sets whose densities and distributions exhibit typical properties of real-
world phenomena. We first give an overview of the data sets. We then evaluate
fitting quality with cluster-based fitting and compare it to G-FIT and PhFit, before
providing a comparison of our algorithm and the segmentation based approach.

Our first data set, S1, consists of 106 samples from a 20-phase APH distribution
fitted to measurements in a SOA testbed with fault injection (cf. [RW10]). We use
this distribution for two reasons. First, the shape of the density of this distribution
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Size Mean Variance c2

S1 9505 3.521 14.197 1.1452
S2 1864 0.59465 0.145145 0.410465
S3 99946 4896.70 16014128 0.667878

Table 5.2: Statistical properties of the data sets used in the evaluation.

(Figure 5.2), with its pronounced peak at 3 s, is typical for response-times with TCP
connections over unreliable links. Second, we use an APH fitted to the data rather
than the data itself in order to judge the fitting quality in a case where it is known
that a PH distribution does exist.

The second data set, S2, contains samples of the packet delivery ratios in the
DES-Testbed [BGJ+11], a testbed that implements a wireless mesh network. Each
sample gives the average packet delivery ratio of a different link in this network. This
data set is particularly interesting because the range of samples is limited to [0, 1],
with density equal to zero beyond 1. As PH distributions have density f(t) > 0
for t > 0, such a density cannot be fitted exactly. Still, a good fit of the particular
shape of the density on [0, 1] is required, and no standard statistical distribution
with limited support provides such a fit. A PH distribution may be fitted in an
automated way to reflect the density well on [0, 1]. A typical way of using this
distribution in simulation would then be truncation at 1. We use this density here
to evaluate how well the fitting approaches fit non-PH densities.

Our last data set, S3, contains samples for the packet transmission delay of PTP
packets in a highly-detailed simulation of a network router (cf. [WRM11] and the
application example in Section 7.3). The most important aspect of this data set
is that the low quantiles must be fitted well, while the higher quantiles are not as
important. Furthermore, the data set may be difficult to fit, as it consists of a large
set of samples equal to zero and a set of nearly uniformly-distributed samples above
zero. Statistical properties of the data sets are summarised in Table 5.2.

We evaluate fitting quality using plots of the density or distribution function.
This visual assessment is complemented by the common quantitative measures for
PH fitting quality given in [LA96] and summarised in Table 5.3. These measures
describe how well the fitted distribution captures the moments, the distribution and
the density of the data. Additionally, we compute the log-likelihood of the fitted
PH distribution, and the absolute error in the 1% quantile for one of our data sets.
In general, the choice of a fitting result based on these quality criteria will depend
on the further use of the distribution. For instance, for an analysis using queueing
theory, good fitting of the first three moments is sufficient. On the other hand,
simulation may require other criteria, such as a good fit of the density. Our S3 data
set provides an instance where the further use of the model in simulation requires
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Quality Measure Definition

Area difference between distribution functions ∆F =
∫∞
0 |F̂ (t) − F (t)|dt

Area difference between densities ∆f =
∫∞
0 |f̂(t) − f(t)|dt

Log-likelihood L =
∑N

i=1 ln f̂(xi)

Relative error in the first moment e1 = |ĉ1−c1|
c1

Relative error in the second central moment e2 = |ĉ2−c2|
c1

Relative error in the third central moment e3 = |ĉ3−c3|
c3

Absolute error in the 1% quantile eq = F̂−1(0.01) − F−1(0.01)

Table 5.3: PH-fitting quality measures, partly based on [LA96].

Method n ∆f ∆F L e1 e2 e3

k-Means 21 9.5 6.6 -19381.83 0.007 0.031 0.034
100 Iterations 21 7.4 4.8 -19239.85 5 × 10−15 0.0198 0.0109
Prob. Assignment 20 6.2 2.0 -19186.92 0.002 0.007 0.0227

G-FIT 20 3.5 1.4 -19035.68 9 × 10−15 0.006 0.003
PhFit 20 5.0 8.1 -19146.52 0.048 0.0127 0.239

SEM (cv = 0.1) 56 22.03 39.7 -20534.84 0.0005 0.4737 1.820
SEM (cv = 0.5) 52 14.36 12.4 -19635.71 0.0005 0.0506 0.170
SEM (cv = 0.6) 16 18.22 10.9 -20840.48 0.0005 0.0448 0.126
SEM (cv = 1.01) 18 18.82 6.74 -22630.55 0.0005 0.0082 0.053

Table 5.4: Quality measures for the S1 data set.

a good fit of the 1% quantile. Definitions for the quantitative measures are shown
in Table 5.3. Except for the log-likelihood, all of these measures have an optimum at
zero, i.e. for a fitted distribution that fits the empirical distribution perfectly, these
measures would be zero. For the log-likelihood, higher values indicate better fitting
quality. We compute the density-area difference measure by building a histogram of
1000 equi-spaced buckets and sampling the fitted density at the bucket boundaries.

5.4.1 Comparison of Cluster-based Fitting to PhFit and G-FIT

We apply cluster-based Hyper-Erlang fitting using HyperStar and vary the clustering
parameters: We use pure k-means clustering, k-means clustering with 100 refinement
steps, and k-means clustering with 100 refinement steps and probabilistic cluster
assignments. We first compare the fitting results to those of G-FIT and of PhFit.
We parameterise branch lengths for G-FIT similarly to the branch lengths obtained
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Figure 5.2: Histogram of the S1 data set and densities of fitted distributions.

with our tool. For PhFit we set the size of the APH distribution such that it is
similar to our tool, but still provides good results.

Figure 5.2 shows the histogram of the S1 data set and the densities of the distri-
butions fitted with HyperStar, G-FIT and PhFit. As this data set is from an APH
distribution, we expect the fitting tools to be able to approximate it well.

Visually, both G-FIT and PhFit give good results. Hyper-Erlang fitting using
simple k-means clustering without cluster refinement misplaces the first peak and
neglects the first dent. Cluster-refinement using either the density-based or the
probabilistic strategy captures the dent well and places the first peak correctly, but
still overestimates this peak slightly. The visual results are corroborated by the
quantitative measures, shown in Table 5.4: All fitting tools give distributions of
similar size and with similar quality measures. The table also illustrates that G-FIT
gave the best match for the first three moments and the highest log-likelihood for
this data set.

Fitting results for the second data set are shown in Figure 5.3. As this data set
has limited support, we know that it cannot be fitted accurately by a PH distribu-
tion. However, from the application where it was obtained we know that the peaks
closte to 0, 0.75 and 1 are important characteristics of the data set that must be
reflected in an approximating distribution.
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Figure 5.3: Histogram of the S2 data set and densities of fitted distributions.

Neither G-FIT nor PhFit provided a good fit for these features. G-FIT places
an additional peak around 0.75 and does not represent the peaks at higher values.
Furthermore, it exaggerates the valley between 0.1 and 0.75. PhFit fits the start
of the empirical density well, but also neglects the other two peaks. In contrast,
our cluster-based algorithm gave good fittings for this density, irrespective of the
parameterisation. The quantitative evaluation results in Table 5.5 show that all tools
fitted the first three moments well, but that clustering gave lower area distance errors
and higher log-likelihood values. Note, however, that clustering also used a much
higher number of phases than either G-FIT or PhFit. While more phases might have
improved results especially with G-FIT, we were not able to test this assumption,
since G-FIT did not return valid results with branch lengths above 200 (possibly
due to numerical errors). Branch fitting using our approach did not suffer from such
scalability issues. The results in Table 5.5 also illustrate that probabilistic cluster-
assignments may reduce the number of phases without sacrificing fitting quality. In
fact, according to the quantitative measures, probabilistic assignment gave the best
result, although visual inspection indicates that k-means and density-based cluster
refinement capture the second peak better.

The last data set, S3, contains a large amount of samples equal to zero and may
therefore be difficult to fit by an algorithm that assumes that no mass is present at
zero. One way to obtain a PH distribution for such a data set is to fit a distribution
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Method n ∆f ∆F L e1 e2 e3

k-Means 1215 576 14.4 854.74 0.007 0.0136 0.024
100 Iterations 1233 587 11.9 975.90 2 × 10−15 0.008 0.017
Prob. Assignment 1121 542 5.7 1034.28 0.004 0.005 0.004

G-FIT 433 631 48.1 113.06 1 × 10−14 0.033 0.124
PhFit 20 464 31.4 469.20 0.012 0.004 0.049

SEM (cv = 0.1) 36 733.9 125.6 -344.50 0.0004 0.4636 1.802
SEM (cv = 0.5) 18 1612.8 584.3 -7232.33 0.9806 0.9920 0.987
SEM (cv = 0.6) 16 941.1 116.5 -1201.56 0.0004 0.0168 0.105
SEM (cv = 1.01) 8 840.5 118.5 -4510.97 0.2822 0.4624 0.9101

Table 5.5: Quality measures for the S2 data set.

to the non-zero portion and then rescale the entries of the initial vector such that
the resulting distribution has an appropriate point mass at zero. While some tools
might give better results when used in this way, it requires manual intervention and
is not particularly intuitive. We therefore only consider fitting of the complete data
set. The non-zero portion of S3 follows a uniform distribution and thus has limited
support. While it is well-known that such a distribution cannot be fitted exactly by
a PH distribution because PH distributions have f(t) > 0 for all t > 0, in the case of
S3 our main focus is on the start of the distribution. This data set was obtained in
a scenario where fitting the low quantiles (e.g. the 1% quantile) is important, while
the higher quantiles may be ignored. We are thus especially interested in the lower
part of the cumulative density function (CDF).

From Figure 5.4 we observe that G-FIT did not provide a good fit for the CDF of
this distribution, as it does not fit the step at 0 at all. PhFit, on the other hand, was
able to capture this feature well, and starts to diverge only at sample values above
6000. Simple k-means clustering gave slightly better results than G-FIT at the start
of the distribution. Cluster refinement improved results significantly, irrespective of
the refinement strategy. However, while clustering with refinement fitted the start of
the distribution well, PhFit gave less oscillations at higher values. This may be due
to the lower number of phases used by PhFit. Table 5.6 also shows that moment
errors are comparable across all approaches, while log-likelihood values are much
higher for clustering with refinement. Furthermore, the absolute error in the 1%
quantile varies between approaches and is negligible when we use cluster refinement.
Note that the density distance measures for clustering with refinement exhibit an
interesting peculiarity, as these values are very high. This can be explained by the
fact that in both cases one of the branches was a single exponential distribution
with rate in the order of 10307, resulting in a similar value for the density close to

128



5.4. Evaluation

2000 4000 6000 8000 10 000 12 000 14 000
PTDHnsL0.0

0.2

0.4

0.6

0.8

1.0
CDF

ph-Fit
G-Fit
Hyper-* prob
Hyper-* 100
Hyper-* 1
data

Figure 5.4: Empirical cumulative distribution function of the S3 data set and CDFs
of fitted distributions.

zero. The histogram used for computation of ∆f , however, did not contain buckets
with this height. This observation illustrates that under certain circumstances the
density distance measure may be inappropriate for judging fitting quality.

5.4.2 Comparison of Cluster-based Fitting and
Segmentation-based Fitting

We compare cluster-based fitting to our implementation of the segmentation-based
approach SEM (see Section 5.2). Where available, we use the parameters found
in [WLS08]. Wang et al. do not specify the initial values of the BEM algorithm,
nor the number of iterations. With respect to initial value selection, we use the
simple method proposed in [ESH03], which Wang et al. refer to. Also according
to [ESH03], good results usually require as little as 5–10 iterations. Based on this
statement, we set the number of iterations to 20.

We first compare the results obtained with our implementation to those published
in [WLS08]. Like [WLS08], we use the NASA HTTP access log trace for July
1995 [ITA95].1 From the trace different properties can be derived, e.g. the time
between requests, time between requests from individual hosts, request sizes, etc.

1The Wireless trace also used in [WLS08] was not accessible anymore.
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Method n ∆f ∆F L e1 e2 e3 eq

k-Means 227 0.042 20.8 -908834.82 0.030 0.066 0.127 9.716
100 Iterations 132 4 × 10307 13.7 1.352 × 107 2 × 10−16 0.019 0.044 0.
Probabilistic 24 4 × 10307 15.0 1.351 × 107 0.001 0.003 0.019 0.
Assignment

G-FIT 20 0.055 73.8 -949118.80 7 × 10−15 0.199 0.919 49.213
PhFit 15 0.0210 14.9 -885020.51 0.026 0.092 0.236 2.4134

Table 5.6: Quality measures for the S3 data set.

k 1 2 3 4 5

rMoments(k) 1 0.97 0.93 0.87 0.68
rMoments(k)[WLS08] 1 0.98 0.98 1.0 0.97

p 0.99 0.999 0.9999 0.99999 0.999999 0.9999999

rQuantile(p) 0.89 0.89 0.79 0.34 0.32 0.15
rQuantile(p)[WLS08] 0.90 0.93 1.15 0.89 1.15 0.92

Table 5.7: Comparison of quantitative measures for SEM implementations.

Although not explicitly specified by Wang et al., based on the mean and coefficient
of variation it appears most likely that the data set used in [WLS08] consists of the
non-zero request sizes, and thus we also use this data set.

Wang et al. evaluate fitting quality using the ratio between the fitted and em-
pirical kth moment and the ratio between the p quantiles, defined as

rMoments(k) :=
E[X̂k]

E[Xk]
and rQuantile(p) :=

F̂−1(p)

F−1(p)
, (5.7)

respectively. Table 5.7 shows our results and those from [WLS08] for the first five
moments and the higher quantiles starting at 0.99. Note that while we obtain similar
values up to the fourth moment and the 99.99% quantile, with higher moments and
larger quantiles our implementation of the algorithm gives worse results than those
reported by Wang et al. This discrepancy may be a consequence of different choices
for the parameter values that were not explicitly stated in [WLS08]. Nonetheless,
the results are sufficiently similar to assume that our implementation reflects the
behaviour of SEM.

We now consider fitting our data sets S1, S2, and S3 using coefficient of variation
thresholds cv = 0.1, 0.5, 0.6 and 1.01. The values 0.5 and 1.01 are used in [WLS08];
we use 0.1 and 0.6 to evaluate the sensitivity of the algorithm to the threshold value.
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Figure 5.5: SEM fitting for S1 with different thresholds cv for the coefficient of
variation.

Figure 5.5 shows the histogram of S1 and the densities returned by the segmen-
tation approach. For a threshold of 0.5 the segmentation-based approach fits the
density quite well, while for other thresholds the fit is worse; in particular, the dent
in the density is not captured well. According to the quantitative results in Ta-
ble 5.4, the SEM algorithm performs worse than either of the other tools, even when
the size of the fitted distribution is larger.

As discussed before, the S2 data is more difficult to fit than S1. From visual
inspection of the fitting results (Figure 5.6) we observe that, irrespective of the cv
threshold, SEM failed to fit the important properties of the data set. While difficult
to see in the plot, low cv values helped to capture the first peak. The remaining
peaks are not represented with any threshold. Furthermore, for cv = 1.01 only a
single segment was found, which does not reflect any of the features of the density.
This data set illustrates that SEM fails to fit peaks in the right part of the density.
The quantitative measures (Table 5.6) underline this observation. However, note
that SEM may fit the first three moments quite well, especially with a cv threshold
of 0.1.

In our experiments the SEM algorithm did not return feasible results for the S3

data set. The reason for this is that the implementation of the EM algorithm in
BEM only returns valid values for samples that are strictly larger than zero. We
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Figure 5.6: SEM fitting for S2 with different thresholds cv for the coefficient of
variation.

tried to fit this data set by manually removing the zeros and fitting the remaining
uniform distribution. However, as we could not obtain good fitting results for the
uniform distribution either, we omit evaluation using the S3 data set.

As expected, the segmentation approach is sensitive to the threshold: Low
threshold values result in many small segments that can capture many oscillations,
while large values give fewer segments. If the threshold value is chosen appropriately,
the algorithm may provide a good fit of the density; however, the optimal choice of
threshold depends on the distribution. The bad fit for peaks in the right part of
the density can be explained from the observation that the segmentation algorithm
tends to produce more and smaller segments for lower sample values than for higher
sample values. This behaviour follows directly from the use of the coefficient of
variation as a measure for the size of the segment: With low values, segments have
low means, and thus only small variation can be tolerated before the threshold is
reached. With segments containing higher values, means are larger, and the thresh-
old is only reached for large variation. While this might be addressed to some extent
by choosing a smaller threshold, a smaller threshold also increases the number of
peaks in the fitted density at the beginning of the data set, and may significantly
decrease fitting quality, as with S1.

We add that we also considered a combination of the segmentation-based algo-
rithm and G-FIT for fitting of the partitions. With this implementation we run
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G-FIT on the partitions obtained by the segmentation algorithm. We specify a
maximum number of phases and let G-FIT automatically select the optimal number
of branches and the optimal assignment of phases to branches. While the results for
the NASA trace differed, in the evaluation with our data sets this implementation
gave very similar results. Since G-FIT employs a different variant of the EM algo-
rithm, this observation indicates that the low fitting quality of SEM is a result of
segmentation rather than of the fitting of the segments.

5.4.3 Discussion

Our evaluation results are two-fold. First, we observe that our clustering-based
fitting approach performs well for the data sets considered here, as it is especially
suited for fitting several sharp peaks of the density. Second, we note that for these
data sets results from our approach are generally much better than those of the
segmentation-based approach by [WLS08], and that our approach may also cap-
ture the empirical density much better than G-FIT or PhFit. Both tools, on the
other hand, typically give distributions with lower moment errors. Third, the good
fitting quality of the clustering-based approach is at least partly due to the fact
that the approach may use long branches, and thus give large distributions. On the
other hand, the probabilistic assignment strategy may reduce the number of phases
without decreasing fitting quality.

5.5 Case-Study: Application of HyperStar in
Algorithm Development

We have already pointed out that one of the design goals of HyperStar was to en-
able users who are not experts in the area of PH distributions to obtain good fits
to empirical data. This particular use is greatly facilitated by the fact that Hy-
perStar uses a clustering algorithm which can be parameterised in an intuitive way
by marking important sections of the histogram. In this section we illustrate the
advantages of using HyperStar as a graphical user interface to prototype implemen-
tations of new fitting approaches. We do so by providing a case-study where we use
HyperStar to evaluate a new approach for general PH fitting. We first introduce the
MonoFit algorithm for fitting general PH distributions in FE-diagonal form to data
sets. We then show the evaluation of a prototype implementation of the algorithm
using HyperStar.
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5.5.1 The MonoFit Algorithm for Fitting FE-Diagonal
Representations to Data

Most approaches for fitting phase-type distributions focus on the APH sub-class,
or even sub-classes thereof, e.g. the Hyper-Erlang distributions, because with the
reduced number of free parameters required by these sub-classes fitting efficiency and
fitting quality can be improved (see e.g. [ANO96, LA96, HT02, TBT06, Dan10]).
One of the few tools that support the whole PH class is EMpht [ANO96], but even
the authors of the tool suggest limiting the structure of the resulting distribution
to improve fitting results. Such limitations can imply limitations to the class of the
distributions that are fitted.

We propose the use of the FE-diagonal form (see Chapter 2) in general PH
fitting. Due to the special structure as a chain of Feedback-Erlang blocks, FE-
diagonal forms require a lower number of parameters than general representations.
Furthermore, the FE-diagonal form is a generalisation of the Monocyclic form and
can therefore express general PH distributions. The algorithm we develop in the
following is an application of the well-known Nelder/Mead algorithm for direct op-
timisation [NM65, JS03, SN09]. The Nelder/Mead algorithm explores the surface of
a function (e.g. the density distance) by constructing a series of simplices (i.e. poly-
topes with n + 1 vertices in an n-dimensional space). Starting with random initial
vertices, the simplex moves towards lower values and avoids higher values of the dis-
tance function by changing its size and shape accordingly, finally contracting around
a local optimum. While it is known that the algorithm may converge slowly, or fail
to converge to an optimum at all [JS03, SN09], it has the advantage that it does
not require the computation of derivatives of the distance function and thus involves
only a small number of function evaluations [NM65, SN09].

The Nelder/Mead algorithm has been considered for PH fitting before in [Fad98,
IH05, MR93]. These approaches are limited with respect to the class they support.
Both Faddy [Fad98] and Isensee and Horton [IH05] consider the APH class in one
of the canonical forms proposed in [Cum82]. Faddy [Fad98] uses the canonical form
CF-A, where the first state is the initial state, and all states can be entered from this
state (cf. [Cum82]). Iseensee and Horton [IH05] employ the CF-1 form, described
in Section 2.4. Malhotra and Reibman [MR93] propose the use of the Nelder/Mead
algorithm to fit Erlang and Hyper-Erlang distributions to analytical distributions,
e.g. the Lognormal distribution. Observations by these authors indicate that the
Nelder/Mead algorithm may perform quite well for fitting sub-classes of PH distribu-
tions to data sets or analytical distributions. The MonoFit algorithm, described in
the following, applies the Nelder/Mead approach for fitting general PH distributions
in FE-diagonal form to data sets.
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5.5.1.1 The Fitting Problem for FE-Diagonal Representations

We first formalise the fitting problem for FE-diagonal representations. We start by
considering that, in addition to providing a good fit, we also want the algorithm to
be user-friendly. We therefore we want the algorithm to require only a minimum
of parameters to be specified by the user. The requirement that the representation
be FE-diagonal already imposes constraints on the structure of the sub-generator
matrix. This leaves three parameters to be specified: The size of the distribution,
the number of Feedback-Erlang blocks, and the lengths of blocks, i.e. the allocation
of phases to blocks. Each vertex of the simplex is then expressed by the following
parameter vector

θ = (α, ((b1, λ1, z1), . . . , (bm, λm, zm)) ∈ R
n+3m. (5.8)

The Nelder/Mead algorithm searches the (n + 3m)-dimensional space of parameter
vectors θ for an optimum. One implicit prerequisite for the algorithm is that all
vertices are in the same space, i.e. that all parameter vectors have the same length.
Note that if we ensure that the overall size of the distribution,

n =

m
∑

i=1

bi (5.9)

and the number of blocks, m, stay constant, we may permit changes to the lengths
of the blocks b1, . . . , bm without changing the length of the parameter vector θ.
Consequently, the search for an optimal allocation of phases to FE blocks can be
incorporated in the optimisation process.

Then, two parameters are left: The number of phases, n, and the number of
blocks, m. We cannot apply the previous argument to eliminate the necessity of
specification of these parameters, since any adjustments to them change the length
of the vertices. Repeated execution of a given fitting algorithm with different values
for these parameters and selection of the best fit (as implemented in G-FIT) may
help to find a better fitting in cases where the required representation size or number
of blocks are not known.

Note that the number of phases and number of blocks are useful in choosing a
distribution suitable for efficient random-variate generation. In particular, the num-
ber of blocks immediately translates to the maximal number of logarithm operations
that may be required, and thus gives a measure for worst-case costs.

The fitting problem for FE-diagonal representations can now be stated as follows:
Let n̄ = n + 3m be the number of parameters of an FE-diagonal representation.
Given the parameter vector

θ = (α, ((b1, λ1, z1), . . . , (bm, λm, zm)) ∈ R
n̄, (5.10)
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minimise a distance function D(Fθ, F ) between the approximating distribution Fθ

defined by θ and the empirical distribution F , subject to the following constraints:

α1I = 1, (5.11)

αi ≥ 0, (5.12)

λj > 0, (5.13)

zj ≥ 0, (5.14)

zj < 1, (5.15)

bj ∈ N\{0}, (5.16)
m
∑

l=1

bl = n, (5.17)

for i = 1, . . . , n and j = 1, . . . , m. Constraints (5.11) through (5.15) ensure that the
result is a phase-type distribution. Equation (5.16) and (5.17) guarantee that the
number of blocks and the size of the distribution stay constant. We note in passing
that (5.16) and (5.17) imply that the feasible region is not convex, and thus the
Frank/Wolfe method used in PhFit cannot be applied to this problem.

The algorithm may be extended to fit only Monocyclic representations by adding
the following constraint, which enforces FE-block ordering according to the absolute
value of the dominant eigenvalue:

λi

(

1 − z
1
bi

i

)

≤ λi+1

(

1 − z
1

bi+1

i+1

)

. (5.18)

However, as our initial experiments indicated that this additional constraint did not
improve fitting results we do not use it in the following.

5.5.1.2 Application of the Nelder/Mead Algorithm in FE-diagonal
Fitting

The original Nelder/Mead algorithm is only suited for unconstrained optimisation,
but there exist several approaches that extend it to support constraints. In con-
strained optimisation, both penalties and projection are applied. Penalties assign a
large cost value to points outside the feasible region [JS03], and have been proposed
in the original paper [NM65]. Projection moves points outside the feasible region
into the interior of the region or onto its borders, but may lead to linearly dependent
vertices (a ‘collapse’ of the simplex into fewer than n dimensions), which may result
in convergence to a bad local optimum [Box65, LLRG03].

Both extensions have disadvantages when the algorithm is applied in PH fitting.
First, note that constraints (5.16) and (5.17) require that the sizes of all blocks are
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natural numbers larger than zero and that the size of the distribution stays constant.
Both constraints are very likely to be violated by a new parameter vector constructed
in either of the steps. Consequently, assigning a penalty to these constraints results
in many rejections of parameter vectors. We therefore apply the projection approach
to move points that violate (5.16) and (5.17) back onto the boundaries of the feasible
region. We also use projection to ensure (5.11), (5.12) and (5.14). Appendix D gives
details on the projection methods used.

Constraints (5.13) and (5.15) are difficult to ensure by projection, since the
boundary is only defined by a strict inequality. We therefore apply penalties to
enforce these constraints.

We note that in Monocyclic fitting (using the additional constraint (5.18)), pro-
jection would be an expensive method for ensuring the eigenvalues ordering, because
it requires re-ordering the Feedback-Erlang chain and computing a new initial vector.
A penalty may thus be more appropriate for ensuring the eigenvalues ordering.

Pseudo-code for our Nelder/Mead-based fitting algorithm for FE-diagonal rep-
resentations is shown in the following:

Procedure MonoFit(D):
Create N ∗ (n̄ + 1) random vertices V := {θ1, . . . ,θN(n̄+1)}.
Sort V such that D(Fθi

, F ) ≤ D(Fθi+1
, F ) for i = 1, . . . , N(n̄ + 1) and select the

first n̄ + 1 vertices: V := {θ1, . . . ,θn̄+1}.
R := 1
while no convergence ∧ R < Rmax do

θc := 1
n̄

∑n̄
i=1 θi

θr := θc + w1(θc − θn̄+1)
if D(Fθ1 , F ) ≤ D(Fθr

, F ) ≤ D(Fθn̄
, F ) then

θn̄+1 := θr

Sort V .
else

if D(Fθr
, F ) < D(Fθ1 , F ) then

θe := θc + w2(θr − θc)
if D(Fθe

, F ) < D(Fθr
, F ) then

θr := θe

end if
θn̄+1 := θr

Sort V .
else

if D(Fθr
, F ) > D(Fθn̄

, F ) then

θs :=

{

θc + w3(θr − θc) D(Fθr
, F ) < D(Fθn̄+1 , F )

θc + w3(θn̄+1 − θc) D(Fθr
, F ) ≥ D(Fθn̄+1 , F )

.

if D(Fθs
, F ) < min(D(Fθr

, F ),D(Fθn̄+1 , F )) then
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θn̄+1 := θs

else
θi := 1

2(θ1 + θi) for i = 2, . . . , n̄ + 1
end if
Sort V .

end if
end if

end if
R := R + 1

end while
return θ1.

The algorithm first generates a large set of random, but feasible vertices, from which
the n̄ + 1 vertices with the lowest distance function values are selected to form the
initial simplex. In order to reduce computational cost, we do not explicitly check
whether the vertices are linearly independent. While linearly dependent vertices (i.e.
a collapse of the Simplex [SN09]) might result in bad convergence behaviour and
bad fitting [SN09], this case appears unlikely with randomly selected vertices. The
algorithm moves and modifies the simplex according to the Nelder/Mead algorithm
(we follow [SN09] throughout the following discussion): The list of vertices is always
kept ordered such that D(θ1) ≤ . . .D(θn̄).2 Furthermore, throughout the algorithm
vertices that do not represent a Markovian FE-diagonal representation of a phase-
type distribution and are thus located outside the feasible region are projected onto
the borders, if possible, or penalised if projection is not possible for this constraint
(see above).

The vertex θc is the center of the ‘best side’, which is formed by the n̄ best
vertices. θr is the point that results from reflecting the worst point (θn̄+1) through
θc. If the new vertex θr is lower than the current worst point (i.e. it has a lower
distance function value), but not better than the current best vertex, θ1, θr replaces
the current worst point and the algorithm enters the next iteration. Graphically,
this can be seen as the simplex being reflected along its best side. If θr is better
than the current best vertex, θ1, the algorithm checks if further improvement is
possible in this direction, by computing an additional point θe that lies on the line
through θc. If θe is better than θr, the worst point is replaced by θe, which amounts
to an expansion of the simplex towards a better area. If θe is worse than θr, the
simplex is only reflected. In both cases, a new iteration starts after the modification
of the simplex. If θr is worse than the current second-worst vertex, θn̄, the simplex
contracts to avoid this point. Contraction occurs by computing a new point θs. If θr

is still better than the worst point, θs is between θc and θr (i.e. outside the simplex),

2Note that, although the description of the algorithm given above uses explicit Sort operations,
our implementation applies insertion into a sorted list and avoids explicit sorting, wherever possible
(cf. [SN09]).
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Figure 5.7: MonoFit fitting results for the S1 data set with n = 10.

otherwise, θs lies between θc and θn̄+1 (inside the simplex). θs replaces the worst
point only if it entails an improvement, otherwise, the whole simplex shrinks by
moving all vertices close to the current best point, θ1.

The algorithm terminates if the vertices are sufficiently similar (according to
the variance criterion proposed by [SN09]) or if a maximum number of iterations
Rmax has been exceeded. The vertex with the lowest value for the distance function
is returned. As the Nelder/Mead algorithm is sensitive to variations of the initial
parameters [SN09], the above procedure is encapsulated in a routine that allows us
to run it multiple times with different random seeds and selects the best fit. This
also helps to counteract convergence to bad local optima.

5.5.2 MonoFit Evaluation Using HyperStar

We evaluate a prototype implementation of MonoFit. The prototype is written in
Mathematica. With the Mathematica interface of HyperStar, we pass the histogram
of the data set and the weighting function as Piecewise[] functions into Mathe-
matica and call our Mathematica function MonoFit that implements the algorithm.
Our implementation then returns the fitted distribution as an (α,Q) tuple.

We use both the S1 and S2 data sets in our evaluation. For the S1 data set we
know that it can be fitted well by an APH distribution with 20 phases. For the S2

data set our results in Section 5.4 indicate that it can be fitted well by Hyper-Erlang
distributions, but is in general difficult to fit by a PH distribution. We omit the S3

data set because our MonoFit prototype does not support fitting this distribution.
We start by a discussion of the fitting results using MonoFit. MonoFit has three

important parameters: The number of phases n, the number of FE blocks m and the
number of repeated invocations of the algorithm, T . In our evaluation we use two
different settings for each parameter, as follows: We consider n = 10 and n = 20,
setting m = 3 and m = n and the number of trials to T = 1 or T = 20, resulting
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Figure 5.8: MonoFit fitting results for the S1 data set with n = 20.

n m T ∆f ∆F L e1 e2 e3

10 3 1 14.1865 16.5462 -19673.145 0.036787 0.0250188 0.138162
10 3 20 7.20281 14.9384 -19404.429 0.069995 0.1996175 0.356007
10 10 1 20.6257 30.4309 -20470.566 0.172711 0.3153657 0.475116
10 10 20 14.4712 24.9562 -19897.344 0.141650 0.2748038 0.434301
20 3 1 6.33659 16.5362 -19435.324 0.080979 0.2189639 0.380749
20 3 20 4.63531 12.4760 -19121.035 0.069347 0.1459737 0.231443
20 20 1 10.5135 14.4013 -19452.872 0.080661 0.1718633 0.292308
20 20 20 14.0634 11.9797 -19747.157 0.003726 0.2177268 0.848227

Table 5.8: Quality measures for MonoFit with the S1 data set.

in 8 different parameter settings. All runs start with the same random seed of 1,
which is set before the first trial of the run. This ensures that evaluation results are
repeatable and that the results are only influenced by the choice of parameters. The
other paramaters of the algorithm are set as follows: The number of initial simplices
is N = 1000, the maximal number of iterations is R = 10000, the convergence
threshold is 10−9, and the Nelder/Mead parameters are w1 = 1, w2 = 2, w3 = 0.5.

Figures 5.7 and 5.8 show the fitting results for S1 with n = 10 and n = 20,
respectively. The figures again display the histogram of the data set and the densities
of the fitted distributions. In Figure 5.7(a) we observe that increasing the number
of trials from 1 to 20 improves the fitting of the density if the distribution consists of
m = 3 FE blocks. Figure 5.7(b) shows results for m = 10, i.e. an APH distribution
in bi-diagonal form. In this case, the fit of the density is worse than for m = 3 and
does not improve with an increased number of trials. This can also be observed
from the quantitative measures, shown in Table 5.8. In Figure 5.8 we increased the
number of phases to n = 20. With m = 3 FE blocks and 20 trials (Figure 5.8(a)) the
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Figure 5.9: MonoFit fitting results for the S2 data set with n = 10.
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Figure 5.10: MonoFit fitting results for the S2 data set with n = 20.

algorithm yields a very good fit of the density, whereas with only 1 trial the valley
in the density is not captured well. By increasing the number of blocks to m = 20
(resulting in an APH with 20 phases in bi-diagonal form), we obtain a fitting of the
density that is better than for n = 10, but worse than that for n = 20, m = 3. In this
case, increasing the number of trials actually decreases the fitting quality slightly,
which may be due to the discrete computation of the density distance measure in
the algorithm. The quantitative results again corroborate the observations of our
visual inspection. For this data set, n = 20, m = 3, T = 20 appears to result in
the best fit, although most configurations gave acceptable results. Note that this
configuration requires only 9 parameters for the sub-generator matrix, compared to
20 with an APH distribution.

In Figures 5.9 and 5.10 we show the fitted densities for the S2 data set with n = 10
and n = 20 phases. None of the fitted distributions represent the two distinct peaks
around 0.8 and 1 well. The distributions differ with respect to the first peak around
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n m T ∆f ∆F L e1 e2 e3

10 3 1 501.92852 136.6637 -296.456 0.41320 0.841243 1.58995
10 3 20 482.71067 68.36005 -122.538 0.32265 0.811984 1.72801
10 10 1 500.47813 39.14751 -16.8046 0.21463 0.537903 1.11993
10 10 20 482.21270 54.16396 -11.6291 0.24505 0.584384 1.18636
20 3 1 520.49516 34.00178 208.5858 0.02816 0.1279956 0.30473
20 3 20 478.35617 19.75485 246.1847 0.10031 0.234295 0.44290
20 20 1 453.65508 34.34955 281.5916 0.11835 0.229114 0.40170
20 20 20 449.36469 41.15216 279.9134 0.13145 0.246642 0.42344

Table 5.9: Quality measures for MonoFit with the S2 data set.

0 and the low plateau between 0.1 and 0.7. With 10 phases and 3 FE blocks the
result of fitting with only one trial fails to capture the peak at the beginning of the
density completely, but reflects the plateau rather well (Figure 5.9(a)). With 20
trials, the first peak is represented very well, but the height of the peaks at the end
is lower than with 1 trial. For fitting 10 FE blocks instead of 3 (Figure 5.9(b)) the
fitting quality is not influenced by the number of trials. With 20 phases (Figure 5.10)
we obtain a better fit of the plateau, and all configurations represent the first peak
well. With 20 phases, the results with m = 20 blocks appear to capture the general
shape of the density best. This is also visible in the quantitative results, shown
in Table 5.9.

5.5.3 Comparison to EMpht

We compare the results of MonoFit to those of the EMpht tool by Asmussen et
al. [ANO96]. In contrast to MonoFit, EMpht uses the expectation-maximisation
algorithm. EMpht is the only tool available that uses general phase-type distri-
butions. EMpht is particularly interesting for our comparison because it can be
parameterised to only fit PH representations with a specified structure. The user
can specify which entries of the resulting initial vector and generator matrix shall
be equal to zero. We use this option to define a structure that is similar to a chain
of Feedback-Erlang blocks, as follows: All entries of the initial vector are allowed to
be non-zero. In each row of the sub-generator matrix, the elements of the diagonal
and the upper diagonal are non-zero and equal. The only other elements in each
row that can be non-zero are at the feedback points. For instance, for a single block
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of size b with one feedback we define the following matrix:

Q =



















−λ1 λ1

−λ2 λ2

. . .
. . .

−λ(b−1) λ(b−1)

λFB −λb



















. (5.19)

Note that we cannot specify equality of all rates in a block, i.e. λ11 = λ22 = · · · = λbb

cannot be guaranteed by the algorithm. The results of EMpht thus resemble a chain
of FE blocks, but do not share the sparse representation available for chains of FE
blocks, since in each block all rates have to be specified explicitly. In order to define
the block shown in (5.19), the length b, the feedback rate λFB and the b rates on
the diagonal have to be specified. A single block thus requires b + 2 parameters. A
chain of m blocks can be defined by the following tuple:

((

b1, λ
(1)
1 , . . . , λ

(1)
b1

, λ
(1)
FB

)

, . . . ,
(

bm, λ
(m)
1 , . . . , λ

(m)
bm

, λ
(m)
FB

))

, (5.20)

where b1, . . . , bm give the lengths of blocks, λ
(i)
1 , . . . , λ

(i)
bm

are the rates on the diagonal,

and λ
(i)
FB is the feedback rate of the ith block. The definition of a chain of such blocks

therefore requires 2m +
∑m

i=1 bi parameters. In contrast, an FE block requires
specification of the length, rate, and feedback probability, and can therefore be
given by 3 parameters. The number of parameters for specifying the structure of an
FE-diagonal sub-generator matrix with m blocks is then

3m ≤ 2m +
m
∑

i=1

bi, (5.21)

where the left and right side are equal for b1 = · · · = bm = 1.
The fact that all rates have to be specified explicitly also implies that the re-

sults of EMpht cannot be used in efficient random-variate generation using the
FE-diagonal method.

We use the size of the distribution and the structure of the sub-generator matrix
to reflect the different parameter combinations chosen for MonoFit with EMpht. We
study distributions of size n = 10 and n = 20. For each size, we set the number of
blocks to m = 3 and m = n. Since EMpht does not support automatic block size
selection, we specify the sizes of blocks explicitly, by defining an appropriate matrix.
For n = 10 and m = 3 the matrix consists of 3 blocks of size 1, 3, and 6 along the
diagonal (in this order). For n = 20 and m = 3, the blocks have sizes 1, 3, and 16.
For n = m block sizes are 1. Although other block sizes might have been chosen,
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Figure 5.11: EMpht fitting results for the S1 and S2 data sets.

n m ∆f ∆F L e1 e2 e3

10 3 6.15625 6.31308 -19114.38 5.771 × 10−7 0.01222 0.04553
10 10 6.02399 6.17034 -19109.85 2.321 × 10−7 0.01278 0.04661
20 3 3.89285 2.47231 -19049.26 9.798 × 10−8 0.00455 0.00517
20 20 4.40730 3.60805 -19060.39 7.678 × 10−7 0.01054 0.02947

Table 5.10: Quality measures for EMpht with the S1 data set.

n m ∆f ∆F L e1 e2 e3

10 3 502.6733 39.33616 271.3386 3.273 × 10−7 0.05702 0.19081
10 10 502.7624 39.33086 271.3038 7.192 × 10−7 0.05702 0.19079
20 3 458.0315 23.52119 467.2090 1.519 × 10−7 0.02257 0.07478
20 20 458.4278 23.55124 466.2455 1.655 × 10−7 0.02266 0.07504

Table 5.11: Quality measures for EMpht with the S2 data set.

these already provided sufficiently good results. We set the random seed to 42 and
the number of iterations in the EM algorithm to 500. All other parameters were left
at their default values. We consider only one trial for each configuration, because in
contrast to MonoFit EMpht requires manual configuration of individual trials, and
because even with one trial we obtained good results.

Figure 5.11 shows histograms and fitted densities returned by the EMpht tool
for both data sets. For the S1 data set (Figure 5.11(a)), we observe that both n = 10
and n = 20 provide a good fit, and that with n = 20 the fitted distributions capture
the empirical density perfectly. The number of blocks does not appear to have any
effect on the fitting quality. Similar observations can be made for S2 (Figure 5.11(b)):
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Again, with a higher number of phases the fitting quality improves. In this case, 20
phases enabled a good fit of the first peak and the plateau, and an approximation for
the second peaks. Note that in Figure 5.11(b) the densities overlap for n = 10, m = 3
and n = m = 10, and the same holds for n = 20. Closer investigation of the
fitted distributions shows that for this data set EMpht produced almost identical
representations irrespective of the number of blocks, i.e. the feedback rate was zero
even for the configurations with m = 3, or, equivalently, EMpht always fitted an
APH distribution. As with MonoFit, none of the configurations captured the two
peaks at the end as distinctive features. The visual results are corroborated by the
quantitative measures shown in Table 5.11.

5.5.4 Discussion

In our evaluation of MonoFit using HyperStar as a graphical user-interface we ob-
serve that MonoFit is capable of providing good fitting results for the S1 and S2

data sets. Comparing the results of EMpht to those of MonoFit we note that EM-
pht’s fitting quality is equal or better than that of MonoFit. In particular, EMpht
consistently provides higher likelihood values and lower moment errors.

On the other hand, the distributions returned by MonoFit tend to require less
parameters, and enable efficient random-variate generation using the FE-diagonal

method described in Chapter 3. EMpht’s results do not lend themselves to sparse
representations. With n = 10, m = 3, EMpht requires 6+(1+3+6) = 16 parameters
for the sub-generator matrix (compared to 3 · 3 = 9 parameters for the FE-diagonal
representation given by MonoFit). With n = 20, m = 3, the number of parameters
for the matrix rises to 6 + 1 + 3 + 16 = 26, while an FE-diagonal matrix can still be
given by 9 parameters. For n = m, on the other hand, both EMpht and MonoFit
require the same number of parameters to store the representation.

We can thus summarise that the MonoFit algorithm is especially suited for ap-
plications where sparse representations or FE-diagonal representations are required.
However, improvements should still be explored. For instance, different distance
measures might improve fitting results,

5.6 Concluding Remarks

This chapter discussed methods and tools for fitting phase-type distributions to
data. We presented an overview of existing fitting methods, taking into account
both differences in the underlying approach and in usability.

We described a cluster-based fitting approach for phase-type distributions and
showed that the algorithm performs well for identifying and fitting characteristics of
the density of typical empirical distributions. Our algorithm is particularly suited
to fitting sharp peaks of the density and performs better than algorithms that use
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a fixed threshold for partitioning of the data. We discussed our implementation of
the algorithm in the HyperStar tool. HyperStar enables an intuitive approach to
phase-type fitting and can be easily extended by new fitting methods.

In a case-study we illustrated the use of HyperStar in prototyping new fitting
algorithms. We developed an algorithm for fitting FE-diagonal representations to
data. Using HyperStar, we then evaluated the algorithm. The algorithm shows
promising results with little user interaction and returns compact representations.
In comparing the algorithm to the EMpht tool we observed that the latter may
return better fittings, but at the cost of less compact representations.
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Applications
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Chapter Six

On Stochastic Fault-Injection
for IP-Packet Loss Emulation

In Part I we discussed stochastic fault models for system evaluation and provided a
survey of existing fault models. In this chapter we focus on the network and illustrate
the importance of choosing appropriate fault models. Such models are required in
the testbed-driven performance and dependability evaluation of distributed systems.
In such systems, common disturbances such as packet loss may have an adverse effect
on both dependability and performance of the network, and thus on the system itself.
As illustrated in e.g. [RvMW06b, RW08b], packet loss may have an impact on the
dependability of higher networking and system layers even with the TCP protocol,
which guarantees reliable data transmission. Consequently, methods for reproducing
disturbances are required in order to study the dependability and performance of
distributed systems in testbeds.

Injection of IP packet loss is an indispensible tool when evaluating fault-tolerant
network protocols. However, fault injection at the IP level also provides a conve-
nient way for assessing performance and reliability of distributed systems in which
the network stack is considered just an off-the-shelf component. As the injected
faults force the network stack to apply the same fault-handling procedures that are
executed under real-world operating conditions (such as e.g. packet retransmissions
in TCP), the same operational patterns of the network stack that are present in a
real network can be expected to emerge in the testbed [RW08c].

As we have observed in Chapter 1, IP packet loss patterns have been the focus
of intense study in the past decades. While in the simplest case packet loss may be
described by a Bernoulli model, packet loss is often comprised of bursts of elevated
loss probability, which can be modelled more closely with Gilbert-Elliot (GE) mod-
els [ZPS00, ZDPS01, HGHl08]. A Gilbert-Elliot model describes the loss process as
a Markov Chain with different loss probabilities for each state.
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Our focus in this chapter is on the application of fault-models in fault-injection
driven performance and dependability studies of distributed systems. Considering
three examples of typical scenarios that differ with respect to their communication
patterns, we investigate the impact of the choice of fault-model on the results we
obtain. The chapter is structured as follows: In Section 6.1 we describe common
methods to measure and inject packet loss and introduce the three fault-injectors
we compare. In Section 6.2 we evaluate the impact of faults injected with each of
the three fault-injection methods on different types of arrival streams.

6.1 Measurement, Modelling, and Injection of IP
Packet Loss

In order to inject realistic loss patterns, an understanding of loss patterns in real-
world networks is required. Such an understanding can be gained by measurements
on real networks. There are a number of methods for obtaining packet-loss traces:
Measurements may be performed using monitoring approaches [CWA+05, HS08,
HNA02], router measurements [BS03], and probes [ZPS00, ZDPS01]. Since moni-
toring and router measurements require a dedicated infrastructure, probes are often
the preferred approach to gather large, representative data sets. Probe-based ap-
proaches typically consist of one host sending numbered probe messages to another
host. The receiver either records their arrival or replies with an acknowledgment to
the sender. Insight into the characteristics of the loss process is then obtained by an
analysis of the recorded traces of sent and received packets. While implementation
details may vary (e.g. one could use the Ping utility or the Zing utility [ZPS00] for
different arrival processes), measurement studies using this methodology share the
common property that the arrival process is independent of the loss process. That
is, the frequency of probe packets is not influenced by packet loss.

6.1.1 Packet-Loss Models for Stochastic Fault-Injection

The result of a measurement study is typically a trace of the observed loss process.
While such traces may be used for fault-injection by simply replaying them [KBF09],
this method suffers from a number of shortcomings [RW08c]. In particular, sharing
of traces is difficult due to their size and privacy issues, and traces can be nei-
ther generalised nor parameterised. Consequently, one typically derives models that
describe important characteristics of the traces and uses these models in further
evaluation steps. As we have seen in our survey in Chapter 1 (see Section 1.2.2.4
and Table 1.1), the literature provides two common models for the IP packet loss
process, viz. Bernoulli loss models and Markovian loss models.

Bernoulli loss models describe the packet loss process as a sequence of Bernoulli
trials with identical loss probability l. For each packet, a Bernoulli trial is performed,
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Machine A Machine C

Module
FI

Machine B

Figure 6.1: General approach to packet-level fault-injection.

and the packet is dropped according to the outcome of the trial. Since traces often
show burstiness in the loss process, that is, interchanging periods of different loss
rates [ZPS00, ZDPS01], Markovian models have been proposed as an alternative to
the simple Bernoulli model. With Markovian models, the loss process is described by
a Markov chain of length n whose states s1, . . . , sn correspond to Bernoulli trials with
different loss probabilities l1, . . . , ln. Packet traces are modelled by parameterising
the model such that if reflects the distribution of the length of times for which loss
levels have been stationary. In the simplest case, one can model lossy and loss-
free periods [ZPS00] individually by a two-state Markov chain, i.e. assume loss
probabilities l1 = 0 and l2 = 1 for the two states. However, larger models may
capture the loss process better [ZDPS01]. By convention, Markovian loss models
are often called (extended) Gilbert or Gilbert-Elliot models. A good overview of
such models is given in [HGHl08].

The most straightforward way of injecting packet loss according to a loss process
described by a loss model is depicted in Figure 6.1: One computer is set up to act as
a router between two or more hosts or networks. On this machine, the TCP/IP stack
is augmented by a fault-injection (FI) module. For each arriving outside packet the
FI module determines whether to forward the packet to its destination or to discard
it. With a Bernoulli model, for each packet one trial is performed and the packet
is dropped according to the outcome of this trial. With a Markovian model, the
dropping probability for the Bernoulli trial is selected according to the current state
of the model when the packet arrives.

6.1.2 The Problem with Markovian Models in Fault-Injection

Note that in the above we have omitted describing when state-changes occur in the
fault-injector’s Gilbert-Elliot model. In fact, so far we have intentionally refrained
from mentioning the time domain for Markovian models at all.

In the literature (e.g. [HGHl08]), Gilbert models are defined as embedded Discrete-
Time Markov Chains (DTMCs). The left part of Figure 6.2 shows an example of a
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Figure 6.2: Gilbert model as a DTMC (left) and CTMC (right).

two-state discrete-time Markovian loss model with loss probabilities l1 and l2 and
state transition probabilities p12 and p21. In a DTMC loss model, state changes
occur at discrete time intervals. Certainly, this view is appropriate for modelling
the loss process as described by a packet trace: Each packet constitutes a time in-
stant at which a state-change may occur. Implementation of fault-injection using a
discrete-time model is straightforward as well: With each arriving packet the next
state is selected randomly from the possible successor states (including the same
state) of the current state.

An alternative definition of the Gilbert-Elliot model views the model as a Con-
tinuous-Time Markov Chain (CTMC). In this view, state sojourn times are described
by exponentially distributed random variables. The right-hand side of Figure 6.2
illustrates a two-state continuous-time Markovian loss model, again with loss rates
l1, l2. The transition rates in the CTMC model are given by λ12 and λ21. Packet-loss
injection according to a continuous-time Gilbert model is implemented by playing
the CTMC, as follows: Upon entering a state, the state sojourn time is drawn from
an exponential distribution with rate equal to the sum of outgoing rates. When this
time has passed, the next state is chosen based on the embedded Markov chain.

Let us now consider the relation of these different formulations of the loss model.
With respect to describing packet-loss traces, the CTMC model is obviously equiv-
alent to the embedded DTMC model, since both can capture interchanging periods
of different loss levels. With respect to generating packet loss, however, we note
a difference: In the embedded DTMC model, state-changes in the model can only
occur upon arrival of packets, i.e., the packet-loss process is dependent on the arrival
process. This is in contrast to the CTMC model, where state-changes occur indepen-
dently, and requires a closer look at the arrival process. As described above, packet-
loss measurements are typically obtained using an arrival process whose packet in-
terarrival times are independent of packet transmissions. While there exist network
protocols where this is the case, most protocols adapt their sending rate based on the
success of previous packet transmissions. In particular, the Transmission Control
Protocol (TCP) employs various mechanisms to reduce the sending rate if packet
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loss occurs. These reductions can be quite drastic, especially during the connection-
setup phase, where the retransmission interval, starting at 3 s, is doubled for each
timeout (i.e. packet loss) [KR01]. If such a reactive protocol is studied using fault-
injection with a DTMC Gilbert model, the protocol’s sending rate is affected by the
loss process, while at the same time the loss process depends on the sending rate.
This observation raises the question whether the obtained results are sound.

6.2 Experiments with IP-Packet-Loss Models

We now investigate the question in an experimental study of different fault models in
three example scenarios. All scenarios use fault-injection to assess the performance of
a distributed system with two hosts communicating over a lossy link. The scenarios
differ in the characteristics of the arrival process of the network traffic. We consider
three arrival processes:

Independent Arrival Stream First, we consider a scenario where one host sends
messages at a constant rate, thereby generating an arrival stream that is independent
of the loss process. Examples for this type of traffic pattern may be heartbeats,
periodic log messages, or clock frequency synchronisation as used in PTP [IEE08a].
Note that, while such a protocol might employ acknowledgments and retransmissions
of lost packets to ensure data transmission, retransmissions are assumed to take place
at the time a normal packet transmission would have happened. That is, in this
scenario retransmissions due to packet loss do not affect the arrival process observed
by the network.

Long TCP Arrival Stream Second, we study the performance of a large data
upload over a single long-lived TCP connection. Since TCP adapts its sending rate
dynamically based on the available bandwidth, using, among others, packet loss
events as indicators of network overload [KR01], in this scenario the arrival process
is not independent of the loss process.

Short TCP Arrival Stream In our third scenario we consider the performance
of HTTP when using TCP connections over a lossy link. This scenario differs from
the previous one with respect to the length of the connections and the amount
of data to be transmitted. Here, we assume short connections, such as may be
observed when downloading small web pages or in client-server communication in
Web Services scenarios.

Packet loss was injected according to the Bernoulli, discrete-time Markovian
and continuous-time Markovian models. We employ the following fault-injector
implementations:
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Netem (Bernoulli Packet Loss) The Linux operating system supplies the kernel
module Netem for injecting various disturbances at the IP level. In particular, this
module supports the Bernoulli loss model, which can be parameterised by providing
the desired loss rate.

Netem CLG (Discrete-Time Markovian) The NetEm-CLG (Correlated Loss
Generator) module [SLO10] extends the default NetEm implementation by a discrete-
time extended Gilbert-Elliot model. The module supports up to four states with
fixed transition structure. In the following we use it to implement a two-state Gilbert
model.

Netem CG (Continuous-Time Markovian) We developed the Netem-Con-
tinuous-Gilbert (NetemCG) module that implements continuous-time Markovian
loss models as an extension to the default Netem module of the Linux kernel. The
module support continuous-time Gilbert models with an arbitrary number of states
and an arbitrary structure and is parameterised by a text file. Furthere Details
on the implementation of the module are available in [Drä11, RDW11]. As with
the NetEm-CLG module, we configure NetEm-CG such that it provides a two-state
Gilbert model.

6.2.1 Experiment Setup

We use three Linux machines to set up the experiment environment shown in Fig-
ure 6.1. Machines A and C run Linux kernel 2.6.26, while machine B runs 2.6.37.
We routed packets from A to C over B, while packets from C to A were transmitted
directly, in order to ensure that the chosen packet-loss rate is achieved.

The arrival streams required by our scenarios are generated as follows: For the
independent arrival stream, we use the Ping utility to send packets with a constant
interarrival time of 200 ms. Since Ping does not retransmit lost packets, this reflects
the scenario where the packet arrival process is independent of the loss process. Ping
sends a stream of ICMP packets. For each packet, the recipient replies with another
ICMP packet. Upon receipt, the original sender prints out the sequence number
of each received packet. We run the Ping test for 30 min and record the sequence
numbers.

We emulate a long TCP connection using the TCP STREAM test of Netperf
2.4.5 [Jon09]. In our experiments, Netperf generates a unidirectional TCP stream
from machine A to machine C and measures overall throughput as well as averages
taken over time-windows of approximatel 10 s length. The test duration was origi-
nally set to 5 min. Due to our observation that for higher loss rates the test failed
to transmit a sufficient amount of data within 5 min to get a measurement of the
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Figure 6.3: Measurement results for the independent Ping arrival stream and the TCP arrival
stream.

throughput, we also ran experiments where we set the test duration by specifying a
limit on the amount of data to be transmitted instead (100 MB).

Performance of short HTTP connections was studied using the Apache JMeter
tool [The08] and the DHTTPD/1.02a web server [Klo11]. We set up the web server
on machine C and configured JMeter to repeatedly download the server’s default
homepage without any embedded content. In our setup, the default homepage is a
single static HTML file of 5258 bytes length; consequently, we expect the processing
overhead of the web server to be negligible. We configured JMeter such that the
KeepAlive feature of HTTP was not used. Combined with the small file size this
results in very short TCP connections, consisting almost entirely of connection setup
and connection teardown. We originally ran the test for 10 min, but increased the
time to 30 min for higher loss rates with the discrete-time loss model, in order to
obtain at least 500 samples for each loss rate.

The loss-injector modules are loaded in machine B. We parameterise the models
such that they produce packet-loss rates of l = 0.01, 0.05, 0.1, 0.2, and 0.3. For the
Bernoulli model, parameterisation consists in setting the loss rate to the desired
value. For the NetEm-CLG module we specify the desired loss rate l of the model.
The model is then parameterised such that p12 = l, p21 = 1− p12, l1 = 0 and l2 = 1.
With the NetEm-CG module we use the same loss rates l1, l2, set λ12 = 1, and
choose λ21 such that the loss rate l is achieved. Sojourn times were scaled to give a
mean sojourn time for the loss-free state of 100 ms.
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Figure 6.4: Measurement results for short TCP connections.

6.2.2 Results

Figures 6.3(a) through 6.4(a) show the average loss rate, average throughput, and
mean HTTP download times obtained using Ping, Netperf and JMeter, respectively.
Considering first the loss rate (Figure 6.3(a)), we observe that all fault injectors gen-
erated the desired loss rates. This demonstrates that, with respect to the loss rate,
the fault model implementations are equivalent when an independent arrival process
is used. Turning towards throughput measurements (Figure 6.3(b)), however, we
note that with the Bernoulli model and with the DTMC model performance drops
much faster than with the CTMC model. Finally, consider the mean HTTP down-
load times shown in Figure 6.4(a). Here, a similar tendency can be observed: Packet
loss generated using the CTMC model has a much lower impact on download times
than Bernoulli and DTMC Gilbert-model loss.

The last scenario is especially useful for explaining the difference in the results,
as the short duration of individual HTTP transmissions implies that each connection
consists almost entirely of the TCP three-way handshake in the connection setup
phase. In this phase, TCP detects packet loss by the RTO timeout, which starts at
3 s. That is, if the initial SYN packet is lost, the first retransmission happens after
3 s. For each timeout event, the RTO is doubled, i.e. the next retransmission occurs
at 6 s, and so on [KR01]. Since the delay in our network is negligible, it is reasonable
to assume that samples larger than or equal to 6 s have been affected by at least
two packet losses in the connection-setup phase. From Figure 6.4(b) we see that the
probability of such samples grows with the loss rate for all models. More important,
however, is that the discrete-time Gilbert model results in a much higher probability
of two-packet losses during TCP connection setup than the continuous-time model.
This can be attributed directly to the discrete-time loss process: The model can
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only leave the loss state upon packet arrivals. That is, if the model is in the loss
state after dropping one packet, it will still be in the loss state when the next packet
arrives, irrespective of the interarrival time between both packets. In contrast, the
continuous-time model changes its state independently of packet arrivals and may
thus be in another state when the next packet (or retransmission) arrives.

6.3 Concluding Discussion

In this chapter we have investigated the impact of the interaction between the arrival
stream and the fault model used in fault-injection studies. We observed that with
dependent arrival streams as generated by TCP the results obtained using discrete-
time and continuous-time Markovian loss models differ significantly, with discrete-
time models resulting in much lower performance. When used in a performance
study, the two models may lead to different conclusions. With a discrete-time model,
where changes occur only at packet arrivals, very short retransmission timeouts may
improve performance significantly, as they increase the rate of state transitions, and
thus allow the model to reach the loss-free state earlier. With a continuous-time
model, shorter timeouts might still improve performance marginally (due to the
fact that the loss-free period is detected earlier), but will not have as big an impact,
since the loss model changes state independently of packet arrivals. On the other
hand, the increase in packet transmissions will increase the load and the effective
packet loss rate.

The goal of this chapter was to highlight the importance of choosing the right
fault model, and thus we cannot conclude the chapter with a clear recommendation
which model one should use to reflect reality in a fault-injection experiment. Such a
recommendation needs to be based on knowledge of whether the packet-loss process
is independent of the arrival process. Currently available measurement studies of
packet loss only provide traces which can be described equally well by both models,
and give no indication with respect to dependence or independence of the loss pro-
cess. Investigating this question is an important open question. However, except
for special situations (e.g. where the arrival process saturates the link entirely) it
appears unlikely that the loss process should be governed by the arrival process
alone, so we do provide a tentative recommendation to use CTMC models.
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Chapter Seven

Phase-type Distributions in
System Evaluation

In Part II we focussed on phase-type distributions as a valuable tool for describ-
ing real-world phenomena for system evaluation using test-beds, simulation, and
analysis. We gave algorithms for efficient random-variate generation, developed op-
timisation methods that reduce the cost of random-variate generation, and described
approaches for fitting phase-type distributions to empirical data.

In this chapter we demonstrate the application of phase-type distributions in
accurate and efficient system evaluation. Starting with the first publications on
the topic, PH distributions have been well-established in analytical approaches
(e.g. [Neu81]) to system evaluation, while simulation-based approaches are relatively
un-explored to this day. Our main focus in this chapter is therefore on simulation-
based applications. We first introduce the libphprng library for efficient random-
variate generation from PH distributions. We then present two case-studies where
the library is used. The case-studies are selected to illustrate the application of
phase-type models and the improvements that can be obtained in terms of accuracy
of the results and efficiency of the evaluation.

Our case studies cover quite different fields. The first case study illustrates the
use of PH distributions in the simulation-based evaluation of restart algorithms.
Here, response-times are considered i.i.d. random variables for which a distribution
is given. The second case-study illustrates how PH distributions may help to improve
model scalability when we study frequency synchronisation in mobile-backhaul-
networks. We show that by applying phase-type distributions in component-wise
abstraction we can substantially reduce simulation times for large models.
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Figure 7.1: Architecture of the libphprng library

7.1 The libphprng Library

Chapter 3 introduced several algorithms for efficient random-variate generation from
phase-type distributions. In order to enable the application of these algorithms by
non-expert users, we developed the libphprng library. Design goals for the library
were ease of use and good integration with a variety of discrete-event simulators.
Libphprng is part of the Butools package [BBH+11], which provides easy-to-use
implementations of various methods for Markovian and non-Markovian distributions
and processes.

Libphprng is a shared library that implements a C++ class for random-variate
generation from phase-type distributions and provides a generic interface for con-
necting the library to arbitrary simulation tools. Figure 7.1 shows the basic archi-
tecture of libphprng: The library core provides the functionality for generating PH-
distributed random variates. This code is accessible through the BuToolsGenerator
class. The user creates an object of this class for each required PH-distributed
random-variate source, specifying a file that contains the parameters of the distri-
bution. Upon creation, a BuToolsGenerator object reads the PH distribution from
the file and parameterises itself such that it generates random variates from this dis-
tribution. Then, each call to the method BuToolsGenerator::getVariate() yields
one random variate.

The code for generating random variates requires uniform random numbers.
OMNeT++ and other discrete-event simulators provide elaborate uniform random
number generators. In particular, OMNeT++ offers several user-configurable in-
dependent random-number streams. These facilities are supported by libphprng
through the use of a thin, simulator-specific wrapper module for the simulator’s na-
tive random number generator. The user needs to instantiate an object of a suitable
UniformRandomWrapper class and register this object with the BuToolsGenerator

object. The BuToolsGenerator object will then use the specified uniform ran-
dom number generator, supporting simulator-specific features such as independent
streams. We provide wrapper code for both OMNeT++ and ns-2; other wrappers
can easily be built following these examples.
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Figure 7.2: System Model for Restart

7.1.1 Related Work

The only other tool that that supports phase-type distributions in discrete-event
simulators is the ArrivalProcess module by Kriege et al. [KB11]. The module
provides stochastic processes for OMNeT++. In particular, ArrivalProcess sup-
ports Markovian Arrival Processes (MAPs), of which phase-type distributions are
a sub-class. With proper input, ArrivalProcess can be used to generate phase-
type distributed random variates. ArrivalProcess generates random variates from
Markovian arrival processes and PH distributions by ‘playing’ the Markov chain.

ArrivalProcess is capable of generating random variates from more elaborate
stochastic processes than libphprng. For instance, ArrivalProcess can be used to
generate correlated random variates, which is not possible with libphprng. On the
other hand, the limitation of libphprng to phase-type distributions enables much
more efficient algorithms, as structural properties, sub-classes, and optimisation can
be used. Such methods are not known for more general stochastic processes. We
will illustrate the performance advantage of libphprng in Section 7.2.4. Furthermore,
from an application point of view, libphprng is more general, in that it is completely
independent of the simulator. Since it is implemented as a library, libphprng can
be linked dynamically and seamlessly to any simulator (or other application requir-
ing PH random variates), thus enabling efficient random-variate generation without
changes to the library and with minimal changes to simulation code.

7.2 Case-Study I: Accurate Evaluation of Restart
Strategies

The first case-study applies the libphprng library in an evaluation of restart using
the discrete-event simulator OMNeT++ [Var01]. This case-study was selected to
illustrate the application of the library in a simulation and the increase in accuracy
of the simulation results that can be obtained by using a phase-type model. This
case-study is similar to that in [RW10], however, since the goal here is to illustrate
the use of libphprng, we simplify the study considerably and focus on methodological
and implementation details.
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7.2.1 Background

Consider the problem of developing an algorithm for computing the request time-
out in a service-oriented system. When this timeout elapses, the client assumes
that the request failed or will take very long to complete. In this case, the client
aborts and restarts its request. If failures and long completion-times are caused
by transient faults, the restarted request may yield a response that arrives sooner
than if the client had waited for the response to the original request. In service-
oriented systems, such transient faults can be due to common influences such as IP
packet loss and temporary server overload [RvMW04, RWW09]. In these situations,
response-times may often be reduced by restart. Restarting too soon, or too often,
however, increases load and may thus exacerbate the problem, increasing response-
times even further. Therefore, the optimal restart interval must be computed based
on operating conditions.

While there exist analytical approaches for computing the optimal timeout in
simple scenarios [vMW06], more complex service strategies or job semantics as well
as scenarios with multiple clients competing for the same resources require simula-
tion.

In our example we consider the following scenario (Figure 7.2): Clients generate
jobs according to a Poisson process. Each client has an internal FIFO queue from
which it removes jobs one-by-one and submits them to the server for processing.
If the job is not finished before the restart timeout, the client aborts the job and
immediately re-submits it to the server. The next job is taken from the queue only
after the current job has been completed. In the server, incoming jobs are stored
in one single FIFO queue and processed on a first-come, first-served basis. After
the server completes a job, it sends back a response to the client. The time for
job processing is governed by the service-time distribution FS . We are interested in
whether restart may help in this scenario as well as in the optimal restart timeout.
For simplicity, in the following we assume that there is only a single client. In this
case, no queueing occurs in the server.

7.2.2 Application of libphprng

We implemented this scenario as a simple simulation in OMNeT++. In order to
use the libphprng library within a simulation, two steps are required:

1. The simulation source code needs to be modified such that the BuTools

Generator object from the libphprng library is used.

2. The simulation must be linked with the libphprng.so.1 and libOMNet

RandomSourceWrapper.so.1 libraries.
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class WorkServer : public cSimpleModule {
/∗ . . . ∗/
OMNetRandomSourceWrapper ∗ orsw ;
PhGen ∗ phgen ;

private void i n i tSe rv i c eT ime
(char∗ f i l ename ) ;

private double getServ iceTime ( ) ;
}

void WorkServer : : i n i tSe rv i c eT ime
(char∗ f i l ename ) {

phgen = new BuToolsGenerator ( f i l ename )
orsw = new

OMNetRandomSourceWrapper ( 2 ) ;
phgen−>setUniformRandomSource ( orsw ) ;

}

double WorkServer : : getServ iceTime ( ) {
return phgen−>getVar ia te ( ) ;

}

/∗ . . . ∗/

Figure 7.3: Source code for the inclusion of libphprng in a simple OMNeT++ server
class.

Figure 7.3 illustrates the modifications required for using the libphprng library
in our example. The figure shows the relevant parts of the WorkServer class. In
our simulation, the WorkServer class implements the simple server. The method
initServiceTime() is called during initialisation of a WorkServer instance to ini-
tialise the service time distribution. During operation, every time a job from the
queue enters service or is restarted, a service-time sample is required to parameterise
the delay. For each service-time sample, WorkServer calls its getServiceTime()

method.
The first modification affects initServiceTime(): The server class uses a single

BuToolsGenerator object to store the service-time distribution. This object is
initialised in the method initServiceTime(), as follows: First, the new object
is instantiated. Upon instantiation, it reads the distribution from the given filen.
Second, a wrapper object for the uniform random number stream with index 2 is
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Figure 7.4: Histogram of empirical service-times and approximated service-time
densities (truncated at 7 s).

created, and, third, the wrapper object is registered with the BuToolsGenerator

object.
During operation, calls to getServiceTime() must return service times from

the service-time distribution. With each call, getServiceTime() draws a PH-
distributed random variate from the PH distribution stored in phgen, by calling
the getVariate() method.

7.2.3 Evaluation

We will now illustrate the advantage of using phase-type distributions in a simulation-
based evaluation of the impact of the restart interval on the response-time. We con-
sider one client and vary the restart interval from 0.025 s to 60 s. For each restart
interval, we observe response-times and compute the mean. We are interested in
whether there is an optimal restart timeout, and in its value.

We use a job interarrival time of 10 s and base the service-time distribution FS on
response-time measurements that were obtained in a test-bed with injected packet
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Figure 7.5: Empirical distribution functions of the empirical and approximated
service-time distributions (truncated at 7 s).

loss. We compare the results obtained using four different models for the service-
times: First, we use the empirical distribution of the samples to generate random
variates. In the following, this model is called cPSquare Model. Second, for the
Exponential Model we use an exponential distribution, parameterised such that the
mean is equal to the mean of the data set. Third, we use a Lognormal distribution
that we fitted to the data set using the R statistical tool [R D06] such that it reflects
the mean and the variance well. Finally, the APH Model is an acyclic phase-type
distribution of size 50 fitted using the PhFit tool [HT02].

The cPSquare model is implemented using the random() method of OMNeT++’s
cPSquare class. In the initialisation routine of the server module we create an
object of this class and import our data set into the object. The Exponential and
Lognormal models use the respective functions of OMNeT++’s library of continuous
distribution. The APH model employs the libphprng library, as described above.

First, we consider how well the models represent the measurement data. Using
our simulation, we computed 106 response-time samples from each model. Figure 7.4
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Figure 7.6: Mean response-times for different timeouts, using different service-time
distributions.

shows the densities of the empirical data and of the models. Note that the empirical
density has two clusters of data, one close to 1 s, and the other close to 4 s. From
our experiment setup we know that the first cluster corresponds to requests where
no IP packet loss occurred, while requests in the second cluster have been delayed
by 3 s by the TCP RTO (cf. [KR01, RvMW04]). Observe that only the APH model
shows both of these spikes, while the other models do not fit the empirical density
well. In particular, the cPSquare model underestimates service-times, while the
Exponential and Lognormal models do not represent the clusters at all. However,
the Lognormal model captures the variance of the distribution. The differences
become more evident in Figure 7.5, where we show the cumulative distribution
functions (CDFs) of the data sets: The only model that reflects the steps in the
empirical distribution is the acyclic phase-type distribution.

Figure 7.6 shows mean response-times observed for different timeout intervals
using these service-time models. Note that there are large differences between the
response-time curves: For the cPSquare model, mean response-times grow mono-
tonously with increasing timeout. This implies that the optimal timeout is at zero.
Immediate restart, however, is certainly not feasible, and thus results with the cP-
Square model imply that restart should not be applied. A similar conclusion can
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be drawn from the Exponential model, where restart does not change the mean
response-time at all. With the Lognormal model, we observe that very low restart
intervals increase the mean response time drastically, and that the mean response
time first drops and then grows slowly as the timeout value increases. While results
with this model do not clearly indicate the existence and location of an optimum,
they do show that the timeout should not be below 1 s. Finally, with the APH
model we clearly observe that there is an optimum around 1.25 s. This observation
is corroborated by the result of computing the optimal timeout using the algorithm
from [vMW06].

Our observations highlight the need for accurate models. In our case study
we wanted to obtain insights into the applicability of restart in a scenario where
service-times are distributed as in our measurements. The cPSquare model implies
that restart should not be applied. Taking into account the bad fit between the
empirical distribution and the cPSquare model, we should not trust this result.
The Exponential model implies that restart neither helps nor hurts. However, this
result has no bearing on the scenario at hand at all: As shown in [Wol10], the
memoryless property of the exponential distribution means that restart has no effect
on an exponential distribution. Consequently, irrespective of the parameterisation,
any exponential distribution would have yielded the same result. In contrast, the
simulations with the Lognormal model point towards the existence of an optimal
timeout. Since the applicability of restart strongly depends on the variance of the
distribution [Wol10], and the Lognormal model captures the variance well, we may
trust this result more than those from the first two models. Finally, the experiments
with the APH model, which captures the shapes of the density and distribution well,
show both the existence of an optimal timeout and its location.

7.2.4 Performance of the libphprng Library

In this section we consider the computational demands of generating random vari-
ates. We demonstrate that the generation of random variates can take a significant
portion of the total simulation time. Since drawing PH distributed random variates
requires more effort than drawing basic random variates (like exponential, normal,
etc.), it is necessary to put emphasis on the efficiency of these methods to reduce
the simulation time. As mentioned earlier, libphprng is able to exploit the special
structural properties of the input in order to achieve better performance, but we
also show that our implementation is efficient with arbitrary input (exhibiting no
supported structure) as well.

We compare our results to the ArrivalProcess object proposed by Kriege and
Buchholz in [KB11]. The ArrivalProcess object can generate random variates
from Markovian Arrival Processes (MAPs), which are a superclass of phase-type
distributions, and thus our comparison is not entirely fair, since ArrivalProcess
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Figure 7.7: Queueing-Model used in the Performance Evaluation

supports a much larger set of stochastic processes than libphprng. It will be ob-
vious, however, that in situations where PH distributions are sufficient to capture
the properties of the phenomenon, a much more efficient implementation can be
produced.

In our performance evaluation we use the simple model depicted in Figure 7.7.
It consists of a source that generates messages with a deterministic interarrival time.
The messages enter an infinite queue that serves them according to a FIFO discipline.
The service times are PH-distributed random variables. After service, messages are
transferred to the sink, where they are destroyed. To make the queue busy the
deterministic interarrival time of the queue has been set to obtain a utilisation of
96%.

In the first experiment the input PH distribution has no supported special struc-
ture and a dense sub-generator matrix Q. The distribution in this experiment con-
sists of 20 states. We picked the entries of both the generator matrix and the initial
vector randomly, ensuring that (α,Q) is a phase-type distribution. The simulation
ends after 30 sec of CPU time. We consider both the simulation speed, as reported
by OMNeT++, and the portion of CPU time that was spent in the random-variate
generator, according to callgrind from the Valgrind package [NS07].

We summarise our results in Table 7.1. Note that both simulations spend a
significant amount of time in the random-variate generation routines. This result
makes it obvious that it is definitely worth to develop and use efficient random-
variate generation methods, since these methods can dominate the execution time
when there are lots of random events in the model. Second, Table 7.1 shows that
our library is almost 50% faster than the general ArrivalProcess module.
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Method Simulation speed Portion of sim. time

libphprng 359,364 events/sec 93%
ArrivalProcess [KB11] 247,159 events/sec 95%

Table 7.1: Simulation performance with random PH-distribution.

Method Simulation speed Portion of sim. time

Exponential 5,473,758 events/sec 7.5%
Lognormal 4,907,375 events/sec 12.5%
libphprng 1,598,788 events/sec 70%
ArrivalProcess [KB11] 397,440 events/sec 93%

Table 7.2: Simulation performance for models from Section 7.2.3.

In our second experiment we compare the speed of random-variate generation
from the different models considered in Section 7.2.3. We employ the Exponen-
tial, Lognormal, and APH models. The APH model is simulated using both the
ArrivalProcess module and libphprng. In contrast to ArrivalProcess, libph-
prng can make use of the fact that the model is an APH distribution in bi-diagonal
form and thus has a special structure that allows both optimisation and efficient
random-variate generation using the algorithms described in Chapters 3 and 4.

The results of the second experiment are shown in Table 7.2. First, observe that
the two phase-type generators are much slower than random-variate generation from
an exponential or lognormal distribution. Thus, better representation of the phe-
nomenon under study (cf. Section 7.2.3) is bought at the cost of increased simulation
time. This highlights the importance of efficient methods for PH-random-variate
generation. Second, note that in this experiment our libphprng library is roughly
four times as fast as ArrivalProcess. This result highlights the improvement in ef-
ficiency that is made possible by the fact that libphprng can make use of the special
structures available for APH distributions.

7.3 Case-Study II: Evaluation of PTP Performance in
Tree-Structured Networks

The second case-study shows the use of the libphprng library in hybrid models
for scalable discrete event simulation, as proposed in [BCH+12]. Hybrid models
aim to improve the efficiency and scalability of discrete-event simulation through
replacement of detailed, inefficient components of the simulation model by abstract
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Figure 7.8: Network using synchronisation of base station with ToP using PTP. The
master clock (in the upper right corner) sends PTP Sync messages to the slaves.
Note that in this application domain, network traffic is usually shown as flowing
from right to left.

stochastic models of the components. The case-study we describe here uses phase-
type approximations for detailed model components. Phase-type random variates
are generated using the libphprng library.

We start with an overview of the technical background and discuss the impor-
tance of highly-detailed models for reproducing the phenomenon under study. We
then show how the scalability issues of highly-detailed models can be overcome using
PH distributions.

7.3.1 Technical Background

Backhaul networks for GSM, WCDMA and LTE have very strict requirements for
the frequency on the air interface of the base stations. If these requirements are vio-
lated, seamless handover between neighbouring base stations cannot be guaranteed
anymore. As local oscillators cannot guarantee the required accuracy, frequency
synchronisation (also referred to as syntonisation) of base-station clocks (called
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slave clocks) to a high-quality primary reference clock (master clock) is mandatory.1

Whereas current synchronous TDM-based networks can convey the frequency of the
master clock to the slaves via the bit clock of the network itself, this becomes impos-
sible with the migration of backhaul networks to asynchronous packet-switching net-
works (e.g. Carrier Ethernet, CE). In such networks, timing-over-packet (ToP) using
the precision time protocol (PTP) according to IEEE standard 1588-2008 [IEE08a]
is the preferred syntonisation method.

The accuracy attainable by PTP is limited by variation in packet transmission
delays, which in turn depends on a variety of factors, including the networking com-
ponents, network topology and background traffic. Whether a network design will
be able to sustain syntonisation using PTP is an important question in engineering
backhaul networks. Black-box measurements on real hardware (e.g. [Cos08, Cos09,
HSXX, AWGG04, ZHB10, Job09], see also [ITU08]) provide some insight into the
behaviour of specific set-ups, but are expensive and cannot be generalised to large-
scale systems.

The operation of PTP can be illustrated using the scenario shown in Figure 7.8:
A PTP master clock syntonises PTP slave clocks in a single-ended way. The network
has one PTP master clock on the right-hand side and several PTP slave clocks. At
constant time intervals, the PTP master clock sends Sync messages to the slaves.
The slaves use the interarrival time of consecutive Sync messages to synchronise
their local clock frequency to that of the master clock. Network connections in this
scenario can be either optical fiber Gigabit Ethernet (GE) links connecting carrier-
ethernet (CE) switches, or microwave radio (MWR) links with radio antennas on
either end. The last link to the mobile base station (BS) is usually a fast ethernet
(FE) connection. Some PTP slaves are only a few links away from the master clock,
but others can be at a distance of up to 20 links.

The Packet Transfer Delay (PTD) of the ith Sync message is defined as the
difference between the time the message was received and the time the message was
sent:

PTDi = treceived
i − tsent

i .

In the following, let PTD denote the packet transfer delay distribution, defined on
R

+ ∪ {0}. Ignoring packet loss, the PTD of a network is bounded to an interval
[PTDmin, PTDmax] of the best and worst case transmission delay. In practice,
PTDmin is the time required by a Sync message when there is no background traffic.
PTDmin thus depends solely on the networking hardware, and PTDmin > 0. If there
is background traffic, Sync messages may be delayed by processing of background
packets. Then, PTDmax > PTDmin.

Syntonisation accuracy depends only on the variation in PTD samples, but not
on the constant offset PTDmin. The variation is described by the Packet Delay Vari-

1In contrast, time and phase synchronisation are less important.

171



7. Phase-type Distributions in System Evaluation

ation (PDV), defined as the shifted PTD distribution (section 6.2.4.1 in [ITU02])2:

PDV := PTD − PTDmin.

In the following we consider two ways of characterising PDV. A simple measure
is given by the peak-to-peak PDV (p2pPDV),

p2pPDV := PTDmax − PTDmin = PDVmax,

which gives the maximum PDV value. In practice, slave clocks typically filter out
samples from slow PTP packets, as slow packets are likely to increase PDV. Slow
packets are easily identified by computing the difference between timestamps set by
the sender and receiver. The slave clock then uses only the fastest packets, with
typical thresholds set at the 1% quantile of the PDV distribution or below. The
quantiles of the PDV distribution thus provide a practical measure for PDV. Note
that this measure is equal to the p2pPDV of the PDV distribution truncated at the
respective quantile.

The upper PDV bound tolerable by a PTP slave clock depends on the PTP
implementation and the accuracy of the local oscillators. These properties vary
between vendors and are often considered proprietary information. However, a 1%
quantile PDV between master and slave of 216µs can be considered a reasonable
target. Although we cannot embark on a detailed discussion of the implementation
of a slave clock here, we note that slave clocks average PTD values over a certain
time period and that the upper bound of 216µs corresponds to a maximum deviation
of 15 ppb with integration window size 4 hours.

7.3.2 PDV Characteristics

The characteristics of the packet delay variation encountered in a network depend on
the networking hardware, the path length, and the background traffic load. As evi-
denced by measurement studies [Job09, Cos08, Cos09, HSXX, DHK+01, AWGG04,
ZHB10, BGNV09], these parameters may result in a wide variety of phenomena. In
order to be useful, our simulation models must be able to reproduce these effects.
In the following we focus on the PDV of a single switch, as this will give us the basic
building block of models for networks with longer paths (i.e. multiple switches)
between master and slave clock. We assume that the switch is configured such that
PTP packets have highest priority, because this configuration is common practice
when engineering backhaul networks for syntonisation using PTP.

With these prerequisites we find two patterns in PDV measurements. Abstract-
ing from device-specific constant offsets or scaling factors, these patterns can be

2Note that there exist different terminologies and definitions for the variation in transmission
delays (sometimes also referred to as jitter), e.g. the instantaneous PDV, as defined by [DC02].
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Figure 7.9: Functional model of a single-stage Carrier Ethernet switch.

identified in most measurement studies. We base our discussion on the data shown
in Figure 22 of [Job09]. The upper part of the figure shows PTD samples obtained
with a step-wise change in background load every two hours, with the following load
levels: 10%, 40%, 70%, 100%, 70%, 40%, 10%, 100%, 10%, 70%, 0%, corresponding
to an average load of about 47% (Figure 19 in [Job09]).

The data of [Job09] clearly demonstrates that a background load above 0% re-
sults in increased p2pPDV, even though PTP packets have highest priority. This
effect is caused by the non-preemptive operation mode of switches: If a PTP packet
arrives while the switch is transmitting a background packet, processing of the PTP
packet is delayed until the background packet has been sent. The delay experienced
by the PTP packet is bounded from above by the maximum time required for trans-
mitting a background packet.3 With a constant data rate, this time depends only on
the size of the largest possible background packet. The PDV is then a mixture of the
point mass at zero (no background packet was being processed) and the distribution
of background packet transmission times. In practice, these interactions result in a
characteristic, load-dependent shape for the density of the PDV distribution. The
effect of load is visible in Figure 12 of [Cos08], and in Figure 8 of [BGNV09] where
the density of the PTD distribution is shown: For low load levels, the density of the
PDV distribution is close to the point mass at zero (recall that the PDV distribution
is the shifted PTD distribution, i.e. any constant offset in the PTD distribution can
be ignored). The higher the load, the more likely it becomes that PTP packets must
wait for a background packet, and therefore the distribution of background packet

3Cf. [BDL09], where this is referred to as the ‘jumbo packet phenomenon’.
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Figure 7.10: Delay model of a CE switch.

transmission times becomes more dominant. Note that the shape of the PDV den-
sity at 50% in [Cos08] is very similar to those in Figure 5 of [HSXX] (50% load)
and Figure 22 of [Job09] (about 47% load). There is a peak at low values, and a
drawn-out block reminiscient of the density of the uniform distribution. The first
requirement on simulation models is thus to be able to reproduce this characteristic,
load-dependent shape of the PDV density.

Considering again the PTD data shown in Figure 22 of [Job09], we observe that
at a background load of 100% both PTDmin and PTDmax increase drastically, giving
the plot the appearence of being ‘shifted up’. The same ‘delay step’ at 100% load can
be observed in Figures 5 and 7 of [DHK+01], Figures 11, 14, and 15 of [AWGG04],
and in [ZHB10]. This delay step is due to the internal layout of typical switches. As
discussed in the next section, packets leaving the switch must pass a transmit FIFO
buffer before being transmitted. This buffer, however, does not support priorities.
If the transmit FIFO buffer runs into overload, it throttles the egress scheduler in
order to reduce the load. The additional delay affects all packets, including the
high-priority PTP packets. Our second requirement on simulation models is thus
that they are able to represent the delay step at overload.

Note that the increased delay in overload situations does not constitute a prob-
lem in itself, since a constant delay offset can be ignored by the slave clocks. How-
ever, overload situations occur only intermittently. Then, the resulting delay steps
increase overall PDV, and thus affect PTP syntonisation accuracy.

7.3.3 Simulation Models for PDV Evaluation

The need for simulation models is dictated by the limited coverage of measurement
studies on practical networking equipment. Even though there exist guidelines for
conducting measurement studies [ITU08], cost and time constraints render exhaus-
tive tests infeasible. Due to this restriction, network operators cannot evaluate and
compare different backhaul network design choices with respect to their suitability
for PTP. Discrete-event simulation allows evaluation in a much more efficient way
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than black-box testing. However, the high accuracy requirements of PTP demand
very precise models, because the delay variation experienced by the fastest pack-
ets when passing through a node must be quantifiable with microsecond precision
under a wide range of load and other conditions. As these requirements are far
beyond those of typical applications, and product documentation does not provide
the necessary detail, sufficiently accurate models for networking equipment are not
available in state-of-the-art network simulators. In particular, current models do
not include many of the internal structures that have an effect on the PDV.

In [WRM11] we showed that the PDV behaviour described in the previous section
requires highly-detailed models of the switching hardware. In turn, such detailed
models require detailed insight into the internal structure of the switch. In fact, the
level of detail needed is usually not reflected in manufacturer’s data sheets. Based
on a careful investigation of the functional structure of a typical single-stage Carrier
Ethernet switch we arrived at the detailed model shown in Figure 7.10 The model
contains a transmit FIFO buffer and an arbitrary delay element, neither of which
are documented in typical manufacturer data sheets. A simulation model of the
switch that only took into account the documented features of the switch would fail
to represent their effects, as we showed in [WRM11].

Given a detailed model, the PDV of a backhaul network can be evaluated by
connecting several copies of the detailed switch model to form a chain between
the master and slave clocks. We then need to generate background traffic on the
intermediate switches and transmit PTP packets through this chain, measuring the
delay for the PTP packets. We use the state-of-the art discrete-event simulator ns-
2 [ns2] for the simulation. In order to generate background load, traffic consisting
of individual packets was generated in addition to the PTP traffic used for the
measurements. Due to the high data rates in state-of-the-art backhaul networks,
discrete-event simulation of high loads and long network paths entails a large number
of background packets, and thus a very large number of events, which in turn increase
simulation times. Consequently, the detailed simulation approach does not scale well
to situations where PTP packets must traverse long paths.

7.3.4 Hybrid Simulation for PDV Evaluation

For scenarios where background packets can enter and leave the path at any inter-
mediate switch, the problem of long simulation times can be addressed by a hybrid
approach to simulation where phase-type distributions are used: First, PDV is mea-
sured on a highly-detailed model of a single switch. These measurements are then
approximated by a PH distribution. Since we are interested in the 1% quantile of the
PDV of the simulated system, fitting the 1% quantile well was particularly impor-
tant. We used the PhFit tool [HT02] to fit the data set with an acyclic phase-type
distribution of size 20. The detailed switch model and the detailed background-
packet simulation were then replaced by a simple server that draws delays for PTP
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Figure 7.11: CDF of PTD at 80% background load with detailed simulation and PH
approximation using 1 switch.

packets from the fitted PH distribution, using the libphprng library. In this simpler
model only PTP packets and their delays need to be simulated, and thus only a very
small number of events has to be processed.

As discussed in [WRM11], the detailed simulation models capture the behaviour
of typical networking hardware well. In order to illustrate the validity of the PH
approximations we simulated scenarios with 1 link and with 20 links, using both
the PH approximation and the detailed models. The Cumulative Density Functions
(CDFs) of the resulting PDV distributions are shown in Figures 7.11 and 7.12.
Note that the CDFs from the simulations using the approximations fit the lower
quantiles of the CDFs from the detailed simulations well, but tend to diverge on
the higher quantiles. This is due to the fact that PH distributions have infinite
support, in contrast to the limited support of the PDV distribution. However, as
PTP slave clocks only use data from the lower quantiles of the PDV distribution,
this inaccuracy is negligible in PTP simulations. We investigate the error of the 1%
quantile of the PDV in more detail in Figure 7.13(a). Note that both the relative
and the absolute error stay well below 1µs, even for a large number of links.
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Figure 7.12: CDF of PTD at 80% background load with detailed simulation and PH
approximation, using 20 switches.

The advantage of using PH approximations is illustrated in Figure 7.13(b), where
we show the simulation times for increasing numbers of links. Observe that the time
required for the detailed simulation rises quickly, while the time for the approximated
simulations stays in the order of minutes.

7.4 Concluding Remarks

In this chapter we introduced the libphprng library for random-variate generation
from phase-type distributions and presented two case-studies illustrating the use of
phase-type distributions in system evaluation.

The first case-study demonstrated the advantage in accuracy that phase-type
models provide over less flexible methods of fitting data. The case-study was com-
plemented by a performance evaluation of the costs of random-variate generation
in simulation models, which showed that random variates from PH distributions re-
quire significantly more CPU time than more basic models, like the exponential and
lognormal distributions. However, methods that exploit special structures reduce
the computational overhead to a reasonable level.
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Figure 7.13: Comparison of detailed simulation and PH approximation.

The second case-study illustrated how phase-type distributions can be used in a
hybrid approach to system evaluation using discrete-event simulation. By approxi-
mating the behaviour of components of our simulation model using PH distributions
we could drastically reduce simulation run-times and thus improve scalability enor-
mously. The performance gain by complexity reduction is indeed impressive, as
detailed simulation requires several days, while the simulation with PH distribution
finishes within minutes. At the same time, we could show that the abstraction did
not sacrifice accuracy of the results.
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Conclusion

In this work we studied methods for efficient and accurate system evaluation. In
the first part of the thesis we took a broad perspective on important requirements
for system-evaluation studies. We considered stochastic fault-models as tools to
describe and reproduce faults in system evaluation. Such models are a prerequisite
of studying quality-of-service impairments caused by faults as well as methods to
counteract these effects. The survey of existing stochastic fault-models we presented
here employs a hierarchical approach to sub-divide complex service-oriented systems
such that relevant fault-models may be identified. With its broad overview of fault-
models, this survey enables researchers to parameterise their evaluation studies using
real-world fault-models. While the survey itself focusses on service-oriented systems,
the collected fault-models can benefit a wide range of complex distributed systems.
In a case-study we considered the effects of a specific class of fault-models for IP
packet loss emulation and illustrated that fault-models that represent the behaviour
of a fault well are not necessarily suited for reproducing the fault in an evaluation
study. We showed that our implementation of a more appropriate model gives
realistic results.

We then investigated phase-type distributions as one important class of fault-
models. Starting with a discussion of the theoretical basics, we focussed on the
application of these distributions in simulation-based and experimental approaches.
The algorithms for random-variate generation and the optimisation methods for re-
ducing the computational costs of random-variate generation developed here enable
an efficient way of using highly-accurate representations of real-world distributions in
system evaluation. A user-friendly cluster-based fitting approach and an easy-to-use
dynamic library for random-variate generation from PH distributions complement
these results and enable non-experts to benefit from accurate and efficient models.
Two case-studies highlight the advantages of using PH distributions in simulation-
based evaluation.

The work presented here opens several interesting directions for further research.
First, we may consider extension of the theoretical work on optimal representations
of PH distributions for random-variate generation. Our results hold for the most
important canonical representations for the APH and the general PH class, and
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are thus valid for the whole of the APH and PH classes, respectively. As we have
observed in our discussion of the costs of the algorithms, sub-classes can give rep-
resentations and algorithms that reduce costs further. The search for optimality
results for these sub-classes might be difficult, but appears potentially rewarding.

A second important area of future work is the application of our results for phase-
type distributions in random-variate generation from Markovian arrival processes.
As we have noted in our evaluation study, existing algorithms for MAP random-
variate generation are generally much slower than algorithms limited to PH. Since
MAPs are a generalisation of PH distributions, it may be possible to improve effi-
ciency by applying the methods and results for the PH class.

Third, as we illustrated in the case-study on PTP evaluation, phase-type distri-
butions can help to improve scalability of complex simulation models tremendously.
In this case-study we modelled complex parts of a simulation model by fitting PH
distributions, and, using our efficient algorithms, we could then simulate the model
in a fraction of the original time. Generalising and automating this approach is
certainly an enticing avenue for further research.

Finally, the survey in the first part of the thesis identified several areas that
are not yet well represented by fault-models based on empirical studies. Detailed
measurement studies and rigorous fitting of stochastic models to the results will
provide models that may help future researchers understand the nature of QoS
impairments in real systems. This understanding will facilitate the development of
methods to address these issues in an effective manner.
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Appendix A

Small Proofs

Proof for Lemma 2.3.1.

(

S−1QS
)k

=
(

S−1QS
) (

S−1QS
) (

S−1QS
)k−2

(A.1)

=
(

S−1Q2S
) (

S−1QS
)k−2

(A.2)

= · · · = S−1QkS, (A.3)

and, using the series expansion of eQ and (2.20):

eS
−1QS =

∞
∑

l=0

1

l!

(

S−1QS
)l

(A.4)

=
∞
∑

l=0

1

l!
S−1QlS (A.5)

= S−1

(

∞
∑

l=0

1

l!
Ql

)

S (A.6)

= S−1 eQ S (A.7)

Proof for Lemma 2.3.2.
(

αS,S−1QS
)

defines the distribution

G(t) = 1 − αS eS
−1QSt 1I = 1 − αSS−1 eQt S1I = 1 − α eQt 1I (A.8)

= F (t). (A.9)
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Proof for Lemma 2.3.3. Consider the distribution defined by (αŴ,Q′):

G(t) = 1 − αŴ eQ
′t 1I = 1 − αŴ

(

∞
∑

l=0

1

l!
(Q′t)l

)

1I (A.10)

= 1 − αŴ
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2
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1I (A.11)

= 1 − α
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2
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)
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= 1 − α eQt 1I = F (t). (A.16)
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Appendix B

Stochastic Modelling Miscellany

B.1 Probability Distributions

Several probability distributions are used in the context of this work. We summarise
their properties here.

The Exponential Distribution The exponential distribution is the simplest
phase-type distribution. It has length n = 1 and the rate λ > 0 as its only pa-
rameter. The probability density function (PDF), cumulative distribution function
(CDF), mean, variance, and squared coefficient of variation cv2 are, respectively:

f(t) = λ e−λt (B.1)

F (t) = 1 − e−λt (B.2)

Mean =
1

λ
(B.3)

V ariance = λ2 (B.4)

cv2 =
λ2

λ2
= 1. (B.5)

Using the inversion method, a random variate t from the exponential distribution
with rate λ can be drawn using a uniform random number u as [Jai91]:

u = F (t) = 1 − e−λt (B.6)

1 − u = e−λt (B.7)

ln(1 − u) = −λt (B.8)

t = −
ln(1 − u)

λt
(B.9)

∼ −
lnu

λt
. (B.10)
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The simplification from 1 − u to u in the last step is possible because 1 − u and u
are both uniform random numbers on (0, 1) [Hav98].

The Erlang Distribution The Erlang distribution with rate λ > 0 and length
k ∈ N

+ is the sum of k independent random variables with exponential distribution
with rate λ. It has probability density function (PDF), cumulative distribution
function (CDF), mean, variance, and squared coefficient of variation cv2 as follows:

f(t) =
λktk−1 e−λt

(k − 1)!
(B.11)

F (t) = 1 − e−λt (B.12)

Mean =
k

λ
(B.13)

V ariance =
k

λ2
(B.14)

cv2 =
k

λ2

λ2

k2
=

1

k
. (B.15)

The Geometric Distribution The geometric distribution with parameter p ∈
[0, 1] can be defined in two different ways. It can describe the number of Bernoulli
trials with success probability p required to get one success or the number of failures
of successive Bernoulli trials before the first success. If the geometric distribution
describes the number of trials required to get one success, its support is N

+ =
{1, 2, . . . } and it has the following probability mass function (PMF), cumulative
distribution function, and mean:

Pr(X = n) = (1 − p)n−1p (B.16)

Pr(X ≤ n) = 1 − (1 − p)n (B.17)

Mean =
1

p
. (B.18)

A geometric distribution that describes the number of failures before the first success
has support N = {0, 1, 2, . . . } and PMF, CDF, and mean as follows:

Pr(X = n) = (1 − p)np (B.19)

Pr(X ≤ n) = 1 − (1 − p)n+1 (B.20)

Mean =
1 − p

p
. (B.21)

Given a uniform random number on (0, 1), a random variate from the geometric
distribution with success probability p and support N

+ can be obtained using the
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inversion method [Jai91, Law06]:

u = 1 − (1 − p)n (B.22)

1 − u = (1 − p)n (B.23)

n =

⌈

ln(1 − u)

ln(1 − p)

⌉

(B.24)

∼

⌈

ln(u)

ln(1 − p)

⌉

(B.25)

(B.26)

Likewise, a random variate from the geometric distribution with support N can be
generated by

n =

⌊

ln(u)

ln(1 − p)

⌋

. (B.27)

B.2 The Embedded Markov Chain (EMC)

Every Markovian representation (α,Q) of a phase-type distribution can be inter-
preted as a continuous-time Markov chain that is entered at some state i and then
traversed until the absorbing state is reached. The PH distribution is then the dis-
tribution of the sum of sojourn times for all the paths taken through the CTMC.
The matrix Q describes both the sojourn times and the possible state transitions
in the transient part. The tuple ((α, 0), Q̂) is the complete CTMC, including the
absorbing state.

The Embedded Markov Chain (EMC) comes in handy if we are only interested
in the state transitions. The EMC has the same initialisation vector (α, 0), but
is a discrete-time Markov chain (DTMC) and therefore has a matrix of transition
probabilities, rather than rates. The following derivation roughly follows [Ste09],
p. 20: In each row i of Q̂ the entries λij , j = 1, . . . , n + 1; j 6= i give the rates of
exponential distributions that describe the time until transition to the jth state,
while λii is the rate of the exponential distribution for the sojourn time of the ith
state. The probability of entering the jth state depends on the rate with which j
is entered, i.e. states with a high rate have a higher probability of being the next
state than states with a low rate. Thus, for j 6= i,

pij =
λij

λii
(B.28)

gives the probability of entering state j from state i. Furthermore, the CTMC
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cannot immediately enter the same state again, i.e.

pii = 0. (B.29)

The transition matrix for the EMC is therefore

P = I − Diag(Q̂)−1Q̂, (B.30)

where Diag(Q̂) is the diagonal of the matrix Q̂.
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Appendix C

Moment-Matching for Erlang
Distributions

We use the following efficient method for fitting the first two moments of an Erlang
distribution to a data set. The method has been described in [Kra12].

Let m and cv2 denote the mean and squared coefficient of variation (SCV) of
the data set, respectively. We first estimate the length of the Erlang distribution
based on the SCV. Recall that for the Erlang distribution

cv2 =
1

k
,

and thus

k =
1

cv2
(C.1)

gives the number of phases required. The mean of the Erlang distribution with
length k and rate λ is

m =
k

λ
,

and therefore

λ =
k

m
(C.2)

can be used to compute the rate parameter λ.
If k in (C.1) is a positive natural number, then we use (C.2) to compute the rate
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λ. The final parameter set is then (k̂, λ̂) with

k̂ =
1

cv2
(C.3)

λ̂ =
k

m
. (C.4)

If k 6∈ N
+, we compute the two closest k that fulfill this constraint:

k1 := min

{

1,

⌊

1

cv2

⌋}

(C.5)

k2 := k1 + 1. (C.6)

Using (C.2), we obtain two distributions Fk1,λ1 , Fk2,λ2 that match the mean of the
data set:

λ1 :=
k1

m
(C.7)

λ2 :=
k2

m
. (C.8)

We then select the parameter set (k̂, λ̂) such that the log-likelihood of the fitted
distribution is maximised:

(k̂, λ̂) :=

{

(k1, λ1) : L(Fk1,λ1) > L(Fk2,λ2)

(k2, λ2) : else
. (C.9)
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Appendix D

Projection Methods

The MonoFit algorithm employs projection into the feasible region or onto its bound-
aries to ensure that the constraints of the optimisation problem are fulfiflled. In this
appendix we give details on the projection methods we used in the algorithm.

Constraint (5.11) requires that the sum of the entries of the initial vector must
be 1. This is ensured by setting the initial vector to

α :=
α

α1I
, (D.1)

i.e. projecting the vector onto the region defined by α1I = 1.
Constraints (5.12) and (5.14) state that initial probabilities and feedback prob-

abilities must not be negative. We ensure this by mapping negative values onto 0,
which is the smallest value that satisfies the constraints:

αi := max(0, αi) for i = 1, . . . , n, (D.2)

zi := max(0, zi) for i = 1, . . . , m. (D.3)

Constraint (5.16) requires that all block lengths bi are natural numbers greater
than zero. This constraint is ensured by rounding all values to the nearest integer
larger than or equal to one:

bi := max(1, Round(bi)) for i = 1, . . . , m. (D.4)

Finally, (5.17) demands that the size of the distribution stays constant and equal
to n. This constraint may be violated not only by computations of new vertices
during the course of the algorithm, but also by projection to ensure (5.16). Although
the following approach lacks a strong theoretical foundation, it has proved to yield
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good results in our experiments: Let n′ be the sum of the block lengths:

n′ :=
m
∑

i=1

bi. (D.5)

If n′ < n, we add the missing phases to the first block:

b1 := b1 + n − n′. (D.6)

If n′ > n, then we remove as many phases as possible from each block (while ensuring
that the block size is at least 1), starting with the first, until both lengths are equal.
The following pseudo-code illustrates the method:

n′ :=
∑m

i=1 bi

δ := n′ − n
for i = 1, . . . , m do

b′i := bi

bi := max(1, b′i − δ)
δ := δ − (bi − b′i)

end for

192



Zusammenfassung

Die Evaluation komplexer Systeme erfordert effiziente und genaue Unter-
suchungsmethoden. Abhängig vom Abstraktionsniveau existieren unter-
schiedliche Verfahren, die Messungen in Testbetten ebenso umfassen wie
Simulationen und analytische Ansätze. Die Verfahren unterscheiden sich
hinsichlich ihrer Effizienz und der Genauigkeit der erzielbaren Ergebnis-
se. Für realistische Aussagen sollten in einer Evaluation immer Methoden
aller Abstraktionsebenen kombiniert werden. Überdies sollten auf allen
Ebenen Phänomene der echten Welt in die Untersuchung einfließen. Dies
erfordert den Einsatz stochastischer Modelle für die Fehler, die das Sy-
stem beeinträchtigen können. In dieser Arbeit werden wichtige Aspekte
der Systemevaluation mit stochastischen Fehlermodellen untersucht.

Im ersten Teil der Arbeit wird eine Übersicht über stochastische Feh-
lermodelle erarbeitet und ein neues Klassifikationsschema für Fehler in
Service-Orientierten Systemen vorgestellt.

Der zweite Teil der Arbeit konzentriert sich auf den Einsatz von
Phasentypverteilungen als Fehlermodelle. Es werden Algorithmen zur
Zufallszahlenerzeugung aus Phasentypverteilungen und ihre Kosten un-
tersucht. Anschließend wird ein Verfahren vorgestellt, das Phasentypver-
teilungen so umformt, daß die Kosten der Zufallszahlenerzeugung mini-
miert werden. Für diesen Ansatz wird ein Optimalitätsresultat für die
Unterklasse der azyklischen Phasentypverteilungen hergeleitet. Des wei-
teren wird ein auf Clustering basierender Algorithmus zur effizienten und
nutzerfreundlichen Anpassung von Phasentypverteilungen an Datensätze
entwickelt. Der Algorithmus wurde im Programm HyperStar implemen-
tiert. HyperStar kann überdies als graphische Benutzeroberfläche für die
Entwicklung von Fitting-Algorithmen dienen. Diese Verwendungsweise
wird anhand eines neuen Algorithmus’ zur Anpassung allgemeiner Pha-
sentypverteilungen demonstriert.

Im dritten Teil werden die Ergebnisse des ersten und zweiten Teils
in der Anwendung illustriert. Es wird zunächst die Anwendung stocha-
stischer Fehlermodelle für IP-Paketverluste in der Fehlerinjektion unter-
sucht. Der Schwerpunkt liegt hierbei auf der Wechselwirkung zwischen
Fehlermodellen und Verkehrsankunftsströmen und ihrem Einfluß auf die
Evaluationsergebnisse. Anschließend wird eine Bibliothek zur effizienten
Zufallszahlenerzeugung in Simulationen vorgestellt und in einer Fallstu-
die evaluiert. Eine zweite Fallstudie demonstriert die mögliche Effizienz-
steigerung durch den Einsatz von Phasentypverteilungen in Simulatio-
nen.

193





Ich versichere, daß ich alle Quellen und Hilfsmittel angegeben und auf deren Grund-
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[BWM07b] Stefan Brüning, Stephan Weißleder, and Miroslaw Malek. A Fault
Taxonomy for Service-Oriented Architecture. In IEEE International
Symposium on High-Assurance Systems Engineering, pages 367–368,
Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James
Broberg, and Ivona Brandic. Cloud computing and emerging IT plat-
forms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Gener. Comput. Syst., 25(6):599–616, 2009.

199



Bibliography

[CBS+07] K. S. May Chan, Judith Bishop, Johan Steyn, Luciano Baresi, and
Sam Guinea. A Fault Taxonomy for Web Service Composition. In
Proceedings of the 3rd International Workshop on Engineering Service
Oriented Applications (WESOA’07), Springer LNCS, 2007.

[CFR03] D. Cotroneo, C.Di Flora, and S. Russo. Improving Dependability of
Service Oriented Architectures for Pervasive Computing. In Proceed-
ings of the Eighth International Workshop on Object-Oriented Real-
Time Dependable Systems, 2003 (WORDS 2003)., pages 74–81, Los
Alamitos, CA, USA, January 2003. IEEE Computer Society.

[Cos08] Lee Cosart. Studying network timing with precision packet delay mea-
surements. In Proc. 40th Annual Precise and Time Interval (PTTI)
Meeting, 2008.

[Cos09] Lee Cosart. Packet network timing measurement and analysis using an
ieee 1588 probe and new metrics. In Precision Clock Synchronization
for Measurement, Control and Communication, 2009. ISPCS 2009.
International Symposium on, pages 1 –6, October 2009.

[Cri91] Flaviu Cristian. Understanding Fault-Tolerant Distributed Systems.
Communications of the ACM, 34:56–78, 1991.

[CRM00] D. Costa, T. Rilho, and H. Madeira. Joint Evaluation of Performance
and Robustness of a COTS DBMS Through Fault-Injection. In Pro-
ceedings of the International Conference on Dependable Systems and
Networks (DSN) 2000, pages 251–260, 2000.

[Cum82] A. Cumani. On the Canonical Representation of Homogeneous Markov
Processes Modelling Failure-time Distributions. Microelectronics and
Reliability, 22:583–602, 1982.

[CWA+05] Seung-Hwa Chung, Y. J. Won, D. Agrawal, Seong-Cheol Hong, Hong-
Taek Ju, and Kihong Park. Detection and Analysis of Packet Loss on
Underutilized Enterprise Network Links. In E2EMON ’05: Proceedings
of the Workshop on End-to-End Monitoring Techniques and Services
2005, pages 164–176, Washington, DC, USA, 2005. IEEE Computer
Society.

[CZS08] Giuliano Casale, Eddy Z. Zhang, and Evgenia Smirni. Kpc-toolbox:
Simple yet effective trace fitting using markovian arrival processes. In
Proceedings of the 2008 Fifth International Conference on Quantita-
tive Evaluation of Systems, pages 83–92, Washington, DC, USA, 2008.
IEEE Computer Society.

200



Bibliography

[Dan10] Alexandra Danilkina. Empirischer Vergleich von Tools zur Approxima-
tion mit Phasentypverteilungen. Studienarbeit, Humboldt-Universität
zu Berlin, May 2010. (in German).

[DC02] C. Demichelis and P. Chimento. IP Packet Delay Variation Metric
for IP Performance Metrics (IPPM). RFC 3393 (Proposed Standard),
November 2002.

[DCC+02] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. G. Webster. The Möbius Frame-
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erten Gilbert-Modells. Bachelor thesis, Freie Universität Berlin, 2011.
(in German).

[ESH03] Rachid El Abdouni Khayari, Ramin Sadre, and Boudewijn R.
Haverkort. Fitting world-wide web request traces with the em-
algorithm. Performance Evaluation, 52(2-3):175–191, April 2003.

[Fad98] M.J Faddy. On inferring the number of phases in a coxian phase-type
distribution. Communications in Stochastic Models, 14(1-2):407–417,
1998.

201



Bibliography

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic pro-
gramming. Naval Research Logistics Quarterly, 3(1-2):95–110, 1956.

[FW98] Anja Feldmann and Ward Whitt. Fitting mixtures of exponentials
to long-tail distributions to analyze network. Perform. Eval., 31(3-
4):245–279, 1998.

[GHH03] Haifang Ge, Uli Harder, and Peter Harrison. Parameter Estimation
for MMPPs using the EM Algorithm. In UKPEW 2003, 2003.

[GKT+08] A. Gorbenko, V. Kharchenko, O. Tarasyuk, Y. Chen, and A. Ro-
manovsky. The Threat of Uncertainty in Service-Oriented Architec-
ture. Technical Report 1122, Newcastle University, School of Comput-
ing Science, Oct 2008.

[GMKR07] A. Gorbenko, A. Mikhaylichenko, V. Kharchenko, and A. Romanovsky.
Experimenting With Exception Handling Mechanisms Of Web Ser-
vices Implemented Using Different Development Kits. Technical Re-
port 1010, Newcastle University, School of Computing Science, March
2007.

[Hav98] B. R. Haverkort. Performance of Computer Communication Systems:
A Model-Based Approach. John Wiley & Sons, Chichester, UK, 1998.
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[PR06] Juan F. Pérez and Germán Riaño. jPhase: An Object-Oriented Tool
for Modeling Phase-Type Distributions. In Proceeding from the 2006
workshop on Tools for solving structured Markov chains, SMCtools ’06,
New York, NY, USA, 2006. ACM.

[Pul09] Reza Pulungan. Reduction of Acyclic Phase-Type Representations.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2009.

[PXL+04] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel Massey, Andreas
Terzis, and Lixia Zhang. Impact of Configuration Errors on DNS Ro-
bustness. In SIGCOMM ’04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 319–330, New York, NY, USA, 2004. ACM.

[R D06] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2006. ISBN 3-900051-07-0.

208



Bibliography

[RBD+09] Eric Rozier, Wendy Belluomini, Veera Deenadhayalan, Jim Hafner,
K. K. Rao, and Pin Zhou. Evaluating the Impact of Undetected Disk
Errors in RAID Systems. In Proceedings of the 2009 IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2009,
Estoril, Lisbon, Portugal, June 29 - July 2, 2009, pages 83–92. IEEE,
June/July 2009.

[RBD12] Philipp Reinecke, Levente Bodrog, and Alexandra Danilkina. Phase-
type Distributions. In Katinka Wolter, Alberto Avritzer, Marco Vieira,
and Aad van Moorsel, editors, Resilience Assessment and Evaluation
of Computing Systems, chapter 5, pages 85–113. Springer, 2012.

[RDS02] Alma Riska, Vesselin Diev, and Evgenia Smirni. Efficient fitting of
long-tailed data sets into phase-type distributions. SIGMETRICS Per-
form. Eval. Rev., 30:6–8, December 2002.

[RDW11] Philipp Reinecke, Matthias Dräger, and Katinka Wolter. NetemCG
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