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ZUSAMMENFASSUNG

Trotz zahlreicher Hinweise darawudass die zerebraieAktivierungsmustan der funktionellen
Magnetresonanztomographie (fMRI)n Reaktion auf krankheissoziierte Stimuli zur
Diagnostik und Prognose verwendet werden konmrd das fMRI zur Bestimmungon
Biomarkern der Akoholabhangigkeitin der Praxis bisher nicht angewendPas Ziel dieser
Dissertation war die Entwicklung von Voraussetzungen, die dientifizierung von
Alkoholabhéngigkeitund auchdie Vorhersagedes Riickfallrisikas in der klinischen Praxis
mittels fMRI ermoglicht Diese Arbeit beinhaltet (1) dieentifizierungwichtiger Hirnregionen
(ROI; region of interest)m Prozess der diagnostischen und prognostischen Klassifikation von
fMRI; (2) die Anwendung der Bildgebung ungl) die Validierungder Methode

Die erste Analyse in dies@®issertation fokussiert auf die Identifizierbarkeit von Hirnregionen
(ROIs), die fur die Klassifikation bedeutsam si2iese Studie wurde an 50 alkoholkranken
Patienten und 57 gesumd&ontrollen durchgfiihrt Die Ergebnisse zeigten digberlegenheit
der Gute derdiagnostischen Klassifikatio(Patienten vs Gesunde) mittdlsnktionelle ROls
z.B. fur das ventrale Striatum (VS, 836 Genauigke)t das vorderer Cingulum (ACC, @&
Genauigkeit)im Vergleidh zu Klassifikationsgenauigkeit mittels der Gesamthirndatend¢61
Genauigkeit oder des préafrontalen Cortex (PFC, B4.&enauigkeit) Diese Daten legen die
praktische Anwendbarkeit von funktionellen ROI Analysen auf das fMRI mit Hili&ivariaten

Methodenwie Support VectoMachine/erfahren(SVM) nahe

Die zweite Analysebezieht sich auf die Anwendbarkeit der Methode auf die Vorhersage eine
Trinkrickfalls Diese Studie wurdéobei 40 Patienten aufgeteilt in 20 abstinenteund 20
rickfallige Patientendurchgefiihrt Die Patienten wurdemufallig aus den 50 alkoholkranken
Patientenin der ersten Studiausgewahlund nach der Entgiftung Uber einen sechs monatigen
Verlauf nachuntersuchDie Klassifikationsergebnisse zeigten, dass die Aktivitat des dés

ACC undder Insula einehohe Genauigkeiin der RuckfalWorhersagamit 63.7%6, 58.1%und
71.5% besitzen. Hier beizeigtettas rechte/S und das recht&CC hoherepradiktive Werteals
dieselben Strukturen in der linken Hemisphare (75.9% und®&®Vergleich zu 531% und
58.9%). Eine Kombinationaus dem rechten VS, derachten ACC undler bilateralen Insula
ergab eine bessere Vorhersage (76.9% Genauigk€i001).



Die dritte Analysefokussiert auf die Anwendung der Bildgebungsverfahren und veeteathe
Datenausder zweiten StudieDie Methode basiert auf einem Rankimglex dem Grad der
Aktivierungsunterschiede zwischen den zu trenneidassen. Die Ergebnisse zeigteine gute
Reliabilitat und Genauigkeitles Indexwelche durch hohe Konvergenzund deren hoher
Korrelationmit den Ergebnissen der SVM Klassifikatoren charakterisieriNgiterhin erreicht
die Ruckfalivorhersagefiur den Patientegine Genauigkeit von 80%, B und 70%
(p=0.00002, p=0.0011 undp=0.0033, wenn die Vorhersagauf den Rankingindizes der
Aktivierungsmuster deschenVs, rechten ACCQoder delbilateralen Insuldasiert

Zur Uberpriifung und Validierung des Klassifikationsansatzes auch in der klinischen Praxis
wurden zweiPilot-Analysendurchgefiihrt Basis dieser Analysen waren die Daten detten
Studie.Basis dieser Analysen waren die Datendtéten Studie. Die erste Pilotanalysefasste
das Monitoring des Krankheitsverlaufes nach Entzug mittelssgektrale Darstellung der
zerebralen AktivierungerEs zeige sich einsignifikante Unterschiedn den $ektren des VS
beim Vergleich der Patienten mit und ohne Trinkriickfale zweite PilotAnalysezielte auf das
Erfassen on korrelativen Zusammenhéangen zwis&ilelgebung und klinischen Parametern ab
mit dem Zieleiner Validierung an den Verhaltensdaten der Patief&nErgebnisse zeigten
eine mittelgradigeKorrelation zwischen denRankingindex und dem durch einevisuelle
Analogskala gemessenen Gradvon Durst und Hunger (VASTH) auf der Basis
Aktivierungsdaten desechten VS,desrechten ACC undler bilateralennsula(z. B. fur die
Insula, R=0.674,p=0.003).

Trotz einiger methodischer Limitationen zeigen die vorgestellten Daten die Relevanz bestimmter
Hirnregonen fir die Diagnostik und die Vorhersage des Verlaufes bei Alkoholabhangigkeit mit
Hilfe des fMRL Die Daten sind eine erste Grundlage fir die weitere Forschung zur Frage
inwieweit fMRI basierte Biomarker bei der Diagnostik und Prognoseuropsychiatrischie

Storungen eine klinische Bedeutung erlangen kann.

Keywords: Alkoholabhangigkeit, Ruckfallvorhersage, fMRI, SVM, ROI, -R@hbination,
BayeslInferenz, Erkennbarkeit Ebene.
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ABSTRACT

Although there is much evidence indicatintbat cerebral activation patterns in response to
diseaseaelated stimuli measured byunctional Magnetic Resonancenaging (fMRI) may be
used as criteridor diagnosis as well as prognosthe application of fMRI adiomarkes in
alcohol dependence remai challenging.The aim of this dissertation was to develop a
framework which enables the identification ai€ohol dependence as well as the prediction of
relapse riskin clinical practice using fMRInamely(1) Specifying important brainegionsin

fMRI classificationy(2) Approaching imaging(3) Validating the approach.

The first analysis in this dissertatiémcusedon theidentifiability of important brainregionsfor

the classification.This studywas conducted obB0 alcohaic patients and 57 healthy controls.

The results showed the outperformance of diagnostic classification (patient vs. healthy) on the
activation images of functional regions of interest (ROIs) collected from important brain
structures in alcohol dependenceg.efrom the ventral striatum (VS, 63.9% accuracy); the
anterior cingulate cortex (AGC(62.8%6 accuracy) compared to those from the whole brain
(61.8%, accuracy); therefrontal cortex (PFC51.8% accuracy)The evidencesuggests the
practicality offunctional ROI analyses ifMRI classificationusing multivariate methods such as

support vector machine (SVM).

The second analysieferred tothe applicability of such an approatth the relapseprediction
This study was conducted on 40 patientscluding 20 relapsers and 20 abstainers drawn
randomly from the 50 alcoholic patients used in the first study and followstk uponths after
detoxification. The results showed thdhe prediction using the activation imagesus, ACC
and insulaachieved high accucges 63.7%, 58.1% and 71.5%respectively. In addition, the
activation images of VS anfiCC recordedin the right hemisphere were more predictiventha
those in the left hemisphere (75.9% &8d2%vs.53.1% andb8.9%accuracyrespectively)and

a combination othe individualpredictions from these ROIs including the right VS, right ACC
and bilateral insula g& a better prediction (7@®accuracyp<0.0001).

The third analysis offeredn imaging approacihis study was conductagsingthe dah of the
second studyThe method wasenteredon the ranking indexcharacterizingthe degree of

separation of activation images betwete two classes investigatedhe results showed
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reliability and certainty of the index through the characteristics of convergence and the strong
and positive correlation between it and outputs of the SVM classifiers. Further, based on the
ranking indices of theactivation image of the right VS, right £C andbilateral insula the
relapse prediction for the patients achievedoB8(r2.9%6 and 70% accuragyrespectively
(p=0.000@, p=0.0011 ang=0.0032).

In order to examine applicability of the approach in clinical practice, the two pilot analyses were
corducted on the data of the third studiyhe first pilot analysis involved themonitoring of
disease progression after withdrawaing spectral representation of the cerebral activaftidres
resultsshoweda significant difference in the spectrum of activation images of thevikién
comparing the patients with and without drinking relafi$e second pilot analysis was captured

on correlative relationships between imaging and clinical variables with thef aiatidating the

data on the behawwo of patients, which can make an inference of the analyzed brain disorder
more reliable. The resuldiscloseda moderate correlation between the ranking indextaed
visual analog rating scale of thirst and hun@¢AS-TH) on the basis of activation data of the
right VS, the right ACC and bilateral insula (e.g. for the insulapE74;p=0.003).

Despiteseveral methodologicdimitations, the presented data shotke relevancef specific
brain regionsto the diagnois and predictionof the progression of alcohaependenceising
fMRI. The data are the first badr further research on the question of whether fNdR$ed
biomarkerscan attaina clinical significancein the diagnosis andrognosisof neuropsychiatric

disorders

Keywords: Alcohol dependence, relapse prediction, fMRI, SVM, ROI, ROl combination,

Bayesian inference, discernibility level
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CHAPTER |

INTRODUCTION

Sinceits discoveryby ancient Egypt and Greece"(Before Christ), alcohol hdseen seen as a
Adri nk omasdirbesstssance, a bednretenred tods a bodyeasdssouh sicleness
(William et al., 200} Along the time line, together with the advancement of science and
technology many mysteries of alcohol addiction have begeadually uncoveredNowadays,
alcohol addiction or alcohol dependence, originated from -teng alcohol drinking, is
recognized as a common neurobiological brain disorder, whiteatable lelga, 2011) The
source of its pathogenesis comes not dnbtyn alcohol but also from many factors such as
genetics, environment, stress, personality, comorbidity, drug histoy so on. leventually
leads taneuroadaptation to the effects of alcohol (Koob & Le M@8D8) The structural change

of the brain inadaping to environmental factors is a natural characteristanés and Bonci,
2005, and he characteristics of brain activity at a given time can reflect ¢meliton of
alcoholdependent patient at that time (De Witte, 2004; KooW@kow, 2010). Hovever, at
present the evaluation of suchcandition is based mostly on clinical manifestations through
direct physical examination. Although there are significant improvements in clinical
consultation, the accuracy of diagnosis is much dependent on subjeetasures of physicians
and patients. Therefore, a more objective and accurate method is a practical need in the treatment
and followrup of alcoholdependent patien\Vith the aid offunctional magnetic resonance
imaging (MRI) and the methods of datenaysis, this has gradually become achige. A
specific question posed here wahether fMRI canprovide useful biomarkes in clinical
practice fordiagnosisas well as predictionf the relapseisk after detoxification and this was

also the problem #t we aimedo address.

BACKGROUND

ALCOHOL DEPENDENCE

Alcohol abuse and alcohol dependence are significant public health problems all over the world.

With the serious medical, economic and social consequences, the World Health Organization
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(WHO) has viewed them as one of the leading risk factors for premature death and disabilities in

the world, which is in the same order as tobacco and hypertension (Helga, 2011).

Alcohol is a toxic substance in all aspects of its direct and indirect £ffeca wide range of
body organs ah systems (Rehm et al., 2009yhe effects of alcohol cause medical,
psychological and social damades the toxic effects of alcohol damage all organs of the body,
excessive alcohol use has serious health consequenttes italividual and may lead to liver
cirrhosis, gastritis, ulcer, pancreatitis, gastrointestingdnces, neuropsychiatric diseases
cardiovascular diseasestc.(Room et al., 2005Mack et al., 201D With chronic drinking and
repeated intoxication, a cluster of interrelated behavioural, physical and cognitive symptoms

develops which is referred to as alcohol depend€rftnemas et al., 2001).

What is alcohol dependence?

Alcohol dependence, also known as alcohol addiction, is a chronically relapsing disorder
characterizedby criteria such as tolerance developmenthdrawal symptoms, drug craving and
reduced control of drug intakBVHO, 1992; Diagnostic and Statséi Manual of Mental
Disorders 4" edition (DSMIV; (American Psychiatric AssociatighPA), 1994 and its Text
Revision (DSMIV-TR; APA, 2000) Tale 1.1).

Table 1.1DSMIV-TR diagnstic criteria for alcohol dependence

A maladaptative pattern of alcohol use, leading to clinically significant impairment or distress, as n
(or more) of the following, occurring at any time in thmeathepg&Bod:

(1) Tolerancas defined by either of the following:
(a) A need for markedly increased amounts of the alcohol to achieve intoxication or desi
(b) Markedly diminished effect with continued use of the same amount of the alcohol
(2) Withdrawal, as ifested by either of the following:
(a) The characteristic withdrawal syndrome for the alcohol
(b) Alcohol is taken to relieve or avoid withdrawal symptoms
(3) Alcohol is often taken in larger amounts or over a longer period than was intended
(4) There is persistent desire or unsuccessful efforts to cut down or control alcohol use

(5) A great deal of time is spent in activities necessary to obtain the alcohol (e.g. driving lor
alcohol or recover from its effects

(6) Importantaal, occupational, or recreational activities are given up or reduced because o

(7) The alcohol use is continued despite knowledge of having a persistent or recurre
psychological problem that is likely to have been causedbatedxay the substance (e.g. con
drinking despite that an ulcer was made worse by alcohol consumption).
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ACriteria (1), (2) may describe the physical dependence.

ACriteria (3), ( 4) may describe the state of

consume alcohol, as well as loss of control.

A Criteria (5), (6), (7) refer to the compulsive state and reflect the social and medical

consequences of alcohol consumption.

Although the clinical criteria werestablishedn DSM-IV or in several questionnaire protocols
such as Alcohol Dependence Sc&hDS), Michigan Alcoholism Screening Test (MART
Alcohol Urge Questionnaire (AUQbsessive Compulsive Drinking Scale (OCD&. with

the aim of supporting the diagnosis of alcohol dependent condition more accurately, clinicians
of t en don baunddrieswoediagndse definitely the condition of the dis@daek et al.,

201Q Helga, 2011)This suggests a need to develop better support tools in the future.

Stages of addiction

Drug addiction including alcoholaddiction is today seen as a chronic relapsing condition
characterized by (a) compulsion to seek and take the drug, (b) loss of control in limiting intake,

and (c) emergence of a negative emotional state (e.g. dysphoria, anxiety, irritability) when access

to the dug is prevented (Koob & Le Moal, 2005). The chronic effects of alcohol cause
neuroadaptation in brain structure, plasticity and altered gene expression, leading to persistent
changes in brain functions and transition from controlled to compulsive alocskdHelga,

2011). Such an addiction cycl e i s composed of

owithdrawal / negative affect 6, (KaabdVolkgwy2816)c cup a't
The stage of 0 NAamg¥Sincludingonyciews adcumbensd

This stage is characterized lay positively reinforcing effect, primarily mediated by the
mesolimbic dopamine system, and is an important starting point for the transition to addiction
(Koob & Volkow, 201Q. The mesolimbic dopaine system plays a core role in reward, and the
initial action of alcohol reward has been hypothesized to be dependent on dopamine release in
this system Kleinz et al., 2009). Alcohol, via endorphin release in the ventral tegmental area
(VTA), stimulatesinhibitory opioid receptors located on GABAergic interneurons in the VTA

and thereby indirectly disinhibits dopamine neurons (Fig. 1.1) (Steven et al., 2006). On the other
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hand, the nucleus accumbens is located strategically (Fig. 1.4) to receive imipdoranmation

of the limbic system from the amygdala, frontal cortex, and hippocampus which can be
converted to motivational action through its connections with the extrapyramidal motor system.
Thus, the nucleus accumbens plays a critical role in the aeurtforcing effects of drugs,
together with the supporting role for the central nucleus of the amygdala (CeA) and ventral
pallidum (Fig. 1.4) Koob & Volkow, 2010Q.

Figure 1.1. Actions of opiates,
nicotine, alcohol, and phencyate
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to the nucleus accumbens (NAc) (b
right). Different interneurons interac
VTA neurons and NAc neurons. Al
acting on GABAeceptors ithe VTA,
can cause dopamine release (So
Steven et al., 2006).

affect 6:

The stage of acute withdrawal is characterized by changes of the-gytem changes reflected

by a decrease of dopaminergic activity in the mesolimbic dopamine system and by the -between
system recruitment of neurotransmitter systems that convey str@smaietylike effects such

as corticotropirreleasing factor (CRF) and dynorpltkoob & Le Moal, 2008).

Within-system neuroadaptations

A within-system neuroadaptation in addiction is a molecular or cellular change within the reward
circuit in order to dapt to overactivity of hedonic processing associated with addiction, which
results in a decrease in reward functigmg@b & Volkow, 2010. Decreases in activity of the
mesolimbic dopamine system and decreases in serotonergic neurotransmission in tiee nucle
accumbens was recorded during alcohol withdrawal in a study sr(\kégiss et al, 1996):
Awithdrawal from the chronic ethanol diet produces a progressive suppression in the release of

dopamine andserotonergicneurotransmitters inthe nucleus accumbensver the &our
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withdrawal period. Seladministration of ethanol reinstates and maintains brain dopamine

release at previthdr a wa | | evel s. 0 studiesofandudochemicals as wellaas y
imaging have shownthat longlasting reduction in the numets of dopamine D2 receptors
reflecting a hypodopaminergic state and the hypoactivity of the orbitofrmfitalimbic cortex

system in drug abusers compared with controls during this(tfmigow et al., 2003).

Betweersystem neuroadagtions: mutual chages between reward system and antireward system

In addiction abetweersystem neuroadaptation is a circuitry change where the antireward circuit

(brain stress circuit) is activated by excessive activity of the reward circuit. This activation

generates opposing actions to limit the reward funcfboob & Le Moal, 2003. Both the
hypothalami€pituitaryi adrenal axis (HPA) and the brain stress/aversive system mediatieel by

corticotropinreleasing factor (CRF) are activated during acute withdrawal from chronic

administration of all addictive drugs with a common respafsacreasing adrenocorticotropic
hormone, corticosterone and CRIkoob & Kreek, 2007). Simultaneously, a hyperfunctional
glutamatergic site is also recruited

during thistime (De Witte, 2004. :

Typically, this stage is characterized Ve
,“" Extended \_

/ e ~—>
~. [ @mygdala

by a dysfunctional hypodopaminergic

¢ N
, Prefrontal

™~ ! syslems
N,
N

’ ~
¢+ Nucleus ~ _

-

state and the recruitment of

antireward mechanisms, which it

Compulsivity - loss of control

may be the source producing ik
Mesolimbic DA

— -

negative emotions by engaging Neuroplasticity with increasing use

~

activity in the extended amygdala, Ty o S
primarily via the corticotropin Figure 1.2Neuroplasticity with increasing use of drug.

releasing factor, norepinephrine i The schematic figure describes the sequential and cumulativi
neuroadaptive changes hypothesized to contribute to the net

the hypothalamigituitary-adrenal that promotes compulsive-skaling (Sourdepob & Volkow, 2010

axis and dynorphifHelga, 2011).
The stage of &pr eoccupawidely distributed rietevorkp at i on 6

The preoccupation/craving stage has been hypothesizbd & key element of relapse which

involves a widely distributed netwoduch aghe orbitofrontal cortex, dorsal striatum, prefrontal
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cortex, basolateralmygdala, hippocampwsd nsula relating to drug cravirend the cingulate
gyrus, dorsolateral prefntal and inferior frontal cortices relating to disrupted inhibitory control
(Koob & Volkow, 201Q. Generally, the transition to addiction involves neuroplasticity in all of
these structures that appears to begin with changes in the mesolimbic dopastene(Eig.

1.2). The neuroadaptations then gradually relocate from the ventral to dorsal striatum and
orbitofrontal cortex, and eventually the process may lead to the dysregulation in a widely
distributed network involving the prefrontal cortex, cingulagrus, extended amygdala,
hippocampus and insul&i@. 1.2, 1.3Koob & Volkow, 2010).

Preoccupation/anticipation
‘craving”

Sensory

Hypothaamcs & branstem
SIS (AASNOME
SOTALC, NLrOencorne

Withdrawa
negative affect Binge/intoxication

{Source, Koob & Volkow, 2010)
Figure 1.3Neural circuits involvasliththe three stages of the addiction cycle

Green/blue arrqugdutamatergic projecti@nange arrows, dopaminergic projeBtrdnarrows, GABAergic project
Acb, nucleus accumbens; BLA, basolateral amygdala; VTA, ventral tegmental area; SNc, substantia ni
VGP, ventral globus pallidus; DGP, dorsal globus palljcueg BMS&us of the stria terminalis; CeA, central n
the amygdala; NE, norepinephrine; CRF, coHieasjig factor (8oe Koob & VolkoR010).

Pathophysiology of alcohol dependence

The mechanism of alcohol dependence still consnode studied, but there has been a growing
body of evidence from various studies indicatitigat the mesolimbic dopamine systamthe
core structure for reward and positive reinforcemg@telga, 2011;Koob & Volkow, 2010;
Heinz et al., 2000
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Mesolimbicdopamine system

The chief components dhe mesolimbic system arine ventral tegmental area (VTA), ventral
striatum including nucleus accumbens (NAc) and their afferent and efferent cons€€tgpn
1.4)(Koob & Volkow, 2010.

Figure 1.4Dopamine projections ti
the forebrain.

Projections from the ventral tegm
area to the nucleus accumbens,
prefrontal cerebral cortex, and proje
from the substantia nigra to the d
Ll striatum (caudate and meta and
related structurgSpurce, Steven et ¢
2006).

The VTA is situated in the ventral midbrain medial to the substantia nigra and consists of
dopamine neurons that project via the medial forebrain bundle to the limbic structures: the NAc,
amygdala and hippocampus (called thesolimbic pathway) and to the medial prefrontal cortex
(called the mesocortical pathway) (Fig. 1.4). The NAc, a major component of ventral striatum,
consists of two subegionswhich have different morphologiemd functions, the shell and the

core regionThe NAc shell, as part of the extended amygdala, is considered as a limbic structure
and engages in drug reinforcement, white NAc core is a motor region which is more
associated with the dorsal striatikelley, 1999).The NAc represents an interfabetween the

limbic neural and motor networks, and may be the important bridge between motivational
processes and behavioural action (Doyon et al., 2003), and it is hypothesized that tNAYTA

is the core region of Abctalipleasydobaaevard gimutueast r e 0
well as reinforcement and motivation for rewantented behaviou(Helga, 2011). The source

of dopamine to the NAc as well as to the amygdala, hippocampus, and prefrontal cortex (PFC)
originates from the VTA of the mbrain (Fig. 1.1& 1.4) (Steven et al., 2006). In contraat,
significant number ofthe outward projecting neurons from the NAc are medium spiny
GABAergic neurons, and the GABAergic neurons largely connect with the VTA, thalamus,

prefrontal cortex and striatu(Kalivas et al., 1993).

17



The VTA-NAc pathway is regulated by various neurotraiter systems including the GABA,
glutamate, seronin and acetylcholine systemas well as endogenous opioids and
endocannabinoids. All of them influence the reinforcing effects of drugs of abuse, either by
acting directly inthe NAc or by indirect acbns in the VTA(Fig. 1.1; Steven et al., 2006), in
which the glutamatergic system, known as an essential excitatory systethedfiTA-NAc
pathway, plays an crucial role in drug reinforcement and addiction through the continel of
mesolimbic dopaminergipathway The glutamatergic afferents the VTA originate fromthe
prefrortal cortex, bed nucleus of the stria terminalis (BNST), laterodorsal tegmental nucleus
(LDTg) and lateral hypothalamus. Similarly, the NAc is also innervated by glutamatergic
neurons Most afferents to the NAc core come from the prefrontal cortex and thalamus while the
NAc shell receives glutamatergic innervation from the amygdala and hippocampus and
prefrontal corteXKoob & Volkow, 201Q. In contrast to the excitatory glutamatergystem, the
negative GABAergic feedback system to the VTA regulates the activity of the VTA neurons by
providing a modulatory inhibitory tone onto the VTA dopaminergic cell bodies via disinhibition
of GABAergic interneurongeading toan inhibition of dopmine release in the NAEalivas et

al., 1993. In addition, some other systems such as serotonin, acetylcholine sgstéso forth

play smaller rolesn the VTANAcC pathway e.g. the cholinergic afferents that project from
LDTg and pedunculopontine tegmtal nucleus (PPTQ) activate primarily phasic firing of the
VTA dopamine neurons via the NAc receptors. Serotonergic projections from raphe nuclei also
modulate the mesolimbic dopamine pathways in both the VTA and NAc, and the neuropeptide
ghrelin increass dopamine release in the NAc, possibly via a cholinergic mechanism in the VTA
(Helga,2011)

The VTA dopamine neurons can be activated by reinforcers which may be primary stimuli (the
actual rewarde.g. addictive substances) as well as conditioned stimuli (e.g. visual or auditory
stimuli) (Schultz, 1998 and almosall of them increase leveld synaptic dopamine within the

NAc through direct or indirect mechanismd@/iée, 1998) The study results foDoyon and
colleagueq2003) on rats showed thatdapamineincrease recorded in the NAeas not solely
provoked by alcoho(nonconditioned pharmacological eff¢dbut also probably bwlcohot
associated cue presentati@onditioned effegt Taken togditer, this appears to indicate thiwe
VTA-NAc pathway plays a core role in addiction, and stimulation of dopamine release in the
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NAc, a core region othe brain reward system, is a crucial property of addictive substances
(Wise, 1998; Koob & Volkow, 2010

Imbalance between reward system and antireward system
Decreasedunction of brain reward system

Addiction is hypothesized as a cycle of decreased functiotiheobrain reward system and
recruitment ofthe antirewardsystem Koob & Le Moal, 2008 The taking of acute alcohol
results in not only the shetter m amel i orati on of the reward d
antireward systenKob & Le Moal, 2008Heinz et al., 2009). However, when using ldegn
administration, the effects of alcohmh thereward systenfead to neuroadaptatiggossibly with
synapse plasticity e.g. loftgrm potentiation (LTP) and loAgrm depression (LTD) (Anna,
2009), which begins by positive effects dhe reward systemStudies on rats shad that

alcohol produce a dosedependent release of dopamine in the NAc, preferentially ilNfke

shell when it wasgiven systemically as well as injected locally in the N@&u chiara &
Imperato, 1998)During this time, ahypodopaminergic state is taken shapeahyncrea® of

brain reward threshold and decreasein the number ofdopamine D2 receptors, as a
compensatory response with the hyperdopaminergic effects of alcohbleaaward system

(Koob & Le Moal, 2008. Imaging studies in drugddicted humans have consistgrghown
long-lasting decreases in the numbers of dopamine D2 receptors in drug abusers compared with
controls (Volkow et al., 2003Heinz et al., 2004

Recruitment of antireward system

Simultaneously, an opponent systerkpown as antireward systemalso causes the
neuroadaptatignbut in the opposite directigrsuch as upegulation of NMDA receptors (N
methytD-aspartate receptoryvhich may originatefrom the effects of alcohol on the
glutamatergic neurotransmissighicohol stimulateSSABA recepiors and inhibits the function

of glutamatergic NMDAreceptorgKalivas & Volkow, 2005; Beck et al., 20115ucheffectsin

the longterm lead to the reduction of effects of glutamate on NMDA receptors and thereby
result in compensatory tqggulation of NMDA receptors (Heinz et al., 2009). The antagonistic
adjustment of thentireward system trie® achieve a balance between the two systems, also

known as allostatic statéhe dlostasisi s deyned as stability throug
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more complex than homeostasis and has several special characteristics that differ from
homeostasis (Sterling & Eyet988 cited by Koob & Le MoaR008).Allostasis involves a feed
forward mechanism which is rather different from the negative feedback mechanfsm
homeostasis. For instance, when an increased need produces a skgimakostasis, negative
feedback mechanism is started to correct the need to keep it at a constant level. In contrast, in
allostasis, there is continuous-aealuation of need and wtnuous readjustment of all
parameters toward new set poi(ioob & Le Moal, 2008) Also, when an alcohetiependent
paient abstains from alcohol, a new imbalance turnslug to the loss of effects of alcohol on

the system. At that time, this conditiodiscloses the hypodopaminergic as well as
hyperglutamatergic state which originefeom its effects on the systeover a long period of

time (Fig. 1.5). Microdialysis studies on rats show that ethanol withdrawal is associated with
increases in glutamata the striatum, nucleus accumbearsd hippocampus approximateliyd

hours after cessation of ethanol inhalation, with a maximal value atditsi{Rossetti &
Carboni, 1995; Dahchour & De Witte, 1998hen, the body can kan impulse for a change to
achiee a new balance, a neallostasis although it is likely that the new balance may not be
healthy, butit i s f a p p r enginorimantaklemantdstKoob & Le Moal, 2008).Alcohol
dependence thus can be viewed as a dynamic phenomenon representadnsitian from
neuroadaftion to pathophysiologyGlapp et al., 2008; Koob & Le Moal, 2008)

Motivation of compulsive alcohol seeking

Based on the fadhat the brain is a network of systems working in equilibrium (De Witte, ;2004
Becker, 2008 the imb#&ance may be justvhat motivatesalcohotdependent patients after
abstinence to compulsilyeseekalcohol with the goal of restoring the balandeich the patients
had stabilized and adaptetw during a long periodof alcohol consumptionbefore abstinence
(Koob & Le Moal, 2008. The requirement of restoring the balance lasshort or long time,
dependhg on the timdt takesto re-establish a new balance which is contingent on many factors
e.g. addictive level of patient, environmental factors, willpoafgratient, genetic variables, etc
(Christopher, 2006Koob & Le Moal, 2008. Evidence refleahg indirectly the progression can

be found in a followup study of alcohol dependence of Heinz e{2096 indicating that down
regulation of dopamine D2 rem®r in the ventral striatum igalmost prominent just after

detoxification and recovers during abstinence. This result appears to suggest that there is
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Equilibrium Acute alcohol | | Chronic alcohol
Alcohol
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Alcohol Nﬂumadllptatiun

Excitation Inhibition Excitation Inhibition Excitation Inhibition

L Withdrawal | Pseudo-withdrawal . Conditioned tolerance

Conditioned
Neurcadaptation  Altghiol Conditioned stimulus stimulus Alcohel
¥ ¥

Excitation Inhibition Excitation Inhibition Excitation Inhibition
(Source, De Wiee, 2004)

Figure 1.5This figure illustrates the brain (triangle) that is cdedrddy different excitation and inhibiti
processes to maintain the brain in a regularliequin. Acute alcohol disrupts the equilibrium by enhan
inhibitory processes (mainly GABA and taurine) that indirectly increase dopamine release yiatitmeitiog:
in the VTAIAc. Chronic alcohol consumption causes neuroadagtgidatitup of glutamate) to countera
inhibitory actiorfi alcoholWithdrawal of alcolebults iran overexcitation stafethe braidue to the excess
neuroadaptative excitatory processes. Conditioned stimulus alone may lead the brain to a state similar
called minvithdrawal. Coratited tolerance may also occur through the presence of alcohol together wi
stimulus (Soce De Witte, 2004).

neuroadaptation in the reward system after alcohol withdrawal in order-dstatglish the
balance, andthe process moves towards complementing the hypodopaminergic state. Therefore,
the slow or fast recovery of central dopaminergic neurotransmission can be a sign to predict the
probability of either relapse or recovery among detoxified alcoholics (Healz @996, 2004).

Role of alcoholassociated cues in alcohol dependence
Alcoholassociated wes as conditioned stimuli

One ofthe characteristics formed durirgjcohol dependencevhich plays an important role in
relapse mentioneth a series opreviousstudies, is cugelated responses¢hultz, 1998Wise,

1998 Drummond,2000;Doyon et al., 2003)The cues can serve as conditioned stimuli that can
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encourage al cohol et aln %908 mpobds,02002) Alcb6oB and e@ther

addictive substancesct as Oi nstrument al reinfor esehats 6, wh
produce them, ledolg todrug selfa d mi ni strati on or O6drug taking:¢
as time, space, pictureand so on that are closely associated with the effects edclihistered

drugs obtain incentive salience through the process of Pavlovian condit{&vtt & Robins,

2005) The underlying activation of neural structures involved in maintaining the incentive
salience state makes addicts vulnerable to-teny relapse. The way of response to these

stimuli is presumably stored as alterations in syinapeights and, eventually, after a long time,

by physical remodé&hg of synapticconnections (Berke & Hyman, 2000h previousimaging
studies(Braus et al., 2001; Wrase et al., 2003rk et al. 2007; Beck et al., 2009; Heinz et al.,

2009) such alterations appear to be evidencea Isygnificantly difference imctivation inbrain

regions involving the mesolimbic system, especitiilyventral striatum includinghe NAg in
alcoholdependent patients compared whtdalthy controls wherelicited by alcohotassociated

cues
Enhanced sensitivity to the cues

A hypodopaminergic state exposed duringarly detoxificationand abstinencpossibly due to

the lack of effects of alcohol on the reward syst&udies on rat following alcohol self
administrationtraining showed that whemhey self-adminisered alcohola concurrent rise in
dopamine levelsvas producedn the NAc, whereas a ithdrawal from alcohol decreased
dopamine release in the NA®iana et al. 1993Weiss et al., 1993; Rostti et al., 1992)
Concurrentlya hyperantireward state also breaks out due to the loss of the factor inhibiting the
antireward systemrThis phenomenon is illustrated the Fig. 1.5 where the dss of alcohal
associated inhibition on the glutamatergisstem(especially NMDA receptors) may result in
hyperexcitation and clinically manifest as withdrawal symptd®ganagel, 2003De Witte,
2004). Hence, it seems that the imbalance betweentwioesystems ighe source leading to
enhanced sensitivity to the conditioned stimuli with the goal of compensating deficiency of
alcohol or addictive substances in order to balance the syéitenb and Volkow, 2010)For
instance, a studgf McClernon et al.(2009 on the effects of withdrawal on cue reactivity
indicatedthatabstinence from smoking can dramatically potentiate neural responses to smoking

related cue# the brain regions which are in charge of visual sensory processing, attention and
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action planningBesides withdrawabtherfactorse.g. acute intoxication, family history, gender,
expectancy or drug availabilitgerotype also show theirinfluences on response sensitivity to
the cues (Filbey et al., 20114.small, primingdose of alcohglfor exampleenhancd the effect

of olfactory cues in th&lAc, medial frontal, orbitofrontal and posterior cingulate cortex recorded
in a study byBragulat et al(2008.

Transition in response to the cues

As addiction progresses from initial drug use to a dependgmzome, the neurocircuitry and
neurochemistry shift from a behavioral system based on dopael@@sean the NAc with acute
administration (signaling initial reward and beginning the process of conditioned learning) to a
behavioral system predominantly based on glutam@téiating the process of drug
reinstatement or relapselR@ss & Peselow, 2000haefore, he imbalance after withdrawal
accompaniedvith the excessive activity of glutamatelicatesthat the glutamatergic pathways
from the prefrontal cortex, amygdala and hippocampus tdl&eeandVTA play a major role in
triggering relapséFig. 1.3)(Kalivas et al., 2005; Heinz et al., 2009; Koob and Volkow, 2010).
Furthermore, in thevay of response to alcohak®ciated cues, cumduced activation of the
anterior cingulate and adjacent medial prefrontal cortex involving the ventiaiustr may
mediate an attentionespnse to alcohehssociated cueshile cueinduced dopamine release in

the dorsal striatum can trigger relapse into elalgng behaviar (Ito et al., 2002; Heinet al.,

2004). Robbins and Everitt (2005) have proposed that thel irgtrdorcing effects of drugs of
abuse may activate the ventral striatum, but when the drug taking transitions into habitual drug
seeking behavios, activation of the more dorsal striatal regions predonsndtke dorsal
striatum does not appear to havenajor role in the acute reinforcing effects of drugs of abuse
but appears to be recruited during the development of compulsive drug seeking (Everitt &
Robbins, 2005)This impliesthat the dorsal striatum is crucial for habit learning, e.g. for the
learnng of automated responses, and may thus contribute to the compcitsivacter of
dependent behaviouln other words, in addicted individuals, eeigcited craving tends to
preferentially elicit dopamine release in more dossatalstructures, whicls thought to reflect

a transition from a ventral striatal rewatdven phenomenon to a dorsal striatal stimulus
response habit formatigiBerke & Hyman, 2000)in which reward plays a lesser role. Rbis

reason, it is likely that habit expressed bysdbistriatum activation can play an important role in
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forming a fast, easy and automatic response relating to alashotiated cues. In other words,

the characteristics of activation of this structure to specific stimuli can be referoederto

predict the addictie level of a patient. The hypothess supportedby the study result of
VollstadtKlein and colleagues2010 indicating that the dorsal striatum of heavy drinkers was
activated more strongly thanattof light drinkers whereas light social drinkers showed stronger
cueinduced fMRI activations in the ventral striatum and prefrontal areas than those of heavy

social drinkers.

In summary, it appeatbat alcohol dependence is a dynamic process in which there is transition
to-andfro between the stages of addiction. Furthermore, the response features to- alcohol
associated cues can refldtie stages of the disordevhereby we can predict the alcohol
dependentstatusof a patient. In other words, the reactivity of the braincaits to alcohot
associated stimutnay serve as a biomarker to help predict relapse as well as treatment efficacy
(Koob anaVolkow, 2010).

fMRI AND CLASSIFICATION TECHNIQUES
fMRI data

Functional magnetic resonance imag(filgiRIl) is an advanced neinvasive medical imaging
technique that cagive high quality visualization of brain activatienrough changes in blood

flow or oxygenationresulting from sensory stimulation or cognitive function (Ogawa et al.,
1990). It therefore halseen often used in studies lafain function e.g.to investigate how the
healthy brain functions, how it is affected by different diseases, how it attempts to recover after

damage and how drugs can modulate activity or-gastage recovery, etc.
fMRI experiment

During the coursef an fMRI experiment, a series of thrdénensioml images ofa s ubj ect 0 ¢
brain activity are recorded while lneperforminga set of tasks, known as fMRI paradigm. Then,

the images from different subjects are analyzed to detect differences of brain activation in the
brain regions of interest between the investigated groups of sabjdutrefore, dsignng an

appropriate paradigns ione of the most importansks for an fMRI experimentCurrently, there
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are two commonly used approachéshb | ock desi gned ada ed Edawe gn o (
Gareth, 2006).

The block design is the simplest approach. The diffeegperimental conditions are separated
into extended time intervals, or blocks. The cycles of periods of task and rest (cohditens
arranged alternate This design allows maximization signatlnoise ratio (SNR) but also has
some disadvantageRepeating thesame task may lead to the subject anticipating the task and

sometimes even the response. This may considerably confound the results.

Theevenrr el ated design is a more pexible and com
often randomized a@heventhe time between stimulus presentasi@tso varies(interstimulus

interval) to prevent anticipation of the task. However, the disadvantage of this design is the low

SNR This is due to the fact that the task state is not sustained for long pkyamtisg to a less

intense vascular responded§on & Gareth, 2006; Graeme et. al., 2008

Apart from the taskdriven fMRI just described, recentiyteresthas beengrowing in the
applicationof the technique at rest, termeestingstate fMRI (RSfMRI). The RSfMRI is
applied toevaluatesynchronous activations between brain regitias take placén the absence

of an explicit taslor stimulus Although this is a relatively new method, it has shown promise in

providing diagnostic and prognostic infortiwa for neurgsychiatric disorderf_ee et al., 2012).
fMRI scanner

The MRI scanner creates a3T)pwhwle caisegomenmmacigin et i ¢
(predominantlyhydrogennuclei or protons in the water) in our bottyalign parallel orant

parallel to the applied magnetic fieltcording to their spirPulses of radio frequency (Rffjen

are applied texcite theprotons(90° excitation RFpulsgnd systematically pir
aligned protonsSincethe application of RFpulsedisturbs the spin system in the strong static
magnetic field, there isubsequently @rocess to returto equilibrium (pre-excited stable state)

when the RF is turned offlhis relates toexchange of energy between the spin sysaea its
surroundingsand & theprotonsreturn to the lower energy state, radio waves are emitted. They

are thenrecorded and processéal construct an image dhe scanned aredhe protons can

return to the stable state only by dissipating their excess energy to their durgsuithe

processs called spidattice relaxation T1 relaxation. e rateof restoring theequilibrium is
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characteried by the spifattice or longitudinal relaxation time, TNonetheless,hie spins
exchange energy not onlyith the surroundindpttice but also amonthemselvesThe process is
known as spirspin relaxation orransverse relaxatioff 2 relaxation. In this relaxatiothe spins
do not dissipate energy to their surroundings but inst&atlange energy with each other. The
procesgenerally takes placéaster tharthe spinlattice relaxationIn order to improve recorded
image quality,a technique ofspin echosequencess used by the application of an 180°
refocusing pulsdo eliminate the effects o$tatic field inhomogeneitiesThe tradeoff of this
techniques a fairly long scaime. The T2* imaging used in fMRI does not use this refocusing
technique, so the resolutiah the imagess reduced (to approximatelyrBm), but the sensitivity
to the relaxation processes is increas8esides with the system equipped with echo planar
options, the imagacquisition intervals veryshort typically every 0.54 seconds for each scan
(Clare, 1997Mathews, 2001Weishaupt et al., 2008

Image contrasbetween gray mattewhite matter and cerebrospinal fluein be optimized by
appropriatelyweighting the relaxation times$:or example,T1-weighted images provide clear
contrast betweegray matter and white matter, so they are often usedette higkresolution
(approximaely 1 mm) 3D structuralimages taken in slices at a single point in tiltnecontrast,
thanks tothe advantage of very short acquisition tjrii@*-weightedimagesare employed to
analyzebrain activty under impact of specific stimulatiofMathews, 2001 Weishaupt et al.,
2008 Yang et al., 2011).

fMRI signal (BOLD signal)

Brain activity is indirectly recorded via the blood oxyg#an level dependent (BOLD) signal.
The application idased orthe paramagnetic property of deoxygenated haemoglobin. Normal
blood can beseersimply as a concentrated solution of haemoglobirl®@m haemoglobin/ID

cm®). When feemoglobin is attached to oxygen (oxygenated haemoglobin), it becomes
diamagneticwhile deoxygenated haemoglobgnparamagnetic (Pauling and Cory&®36 cited

by Mathews, 200l Paramagnetic materials are attracted by the applied magneticifielthey
strengthen the magnetic field. Thinereforeincreasehe T2* relaxation rategi.e. decreaseT2

time). Thisattenuates the T2* magnetic resonasigmal. In contrast, diamagnetic materiais
repelled by the applied magnetic fiekbthey increase the signdh other wordsa change in

haemoglobin oxygenation inducascorrespondinghange irthe recordedignal intensity This
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characteristic isexploited in the investigation of taskduced neuronal activitglue to the
coupling of hemodynamic respons® neuronal activation. A locally increased blood fland
volume in the brain region whiclbecoms active appears to be a consequence of increased
energy utilization at the synap®eg. a local increase in glucose and oxygen consumption
(Mathews, 2001;Logothetis & Pfeuffer, 2004 However, the increase inthe blood supply
exceeds the metabolic needshich leads toincreased blood oxygen concentration the
activated regiorfFox & Raichle, 198 As a resultthe increase of blood oxygenation increases
the T2* signal recorded in the region. This is the basigherBOLD fMRI. Thus, he BOLD
signal is a secondaryeffect of neuronal activation, and there the time delay inthe
hemodynamic response, the peak of whichuokc46 seconds after the neuronattivity
(Mathews, 2001). In other words, the recorded fMRI is the image inginedtecting neuronal
activation through hemodynamic respangecordingly in fMRI analysis ahemodynamic
response functioHRF) or impulse response functios often incorporated ithe computational
models of neuronal activation by convolving witte neuronal response evoked tine stimulus

that has beedesigned in fMRI paradignfstimulus function) in ordeto give a hemodynamic
response (Friston et al., 2007).

fMRI image

A typical 20minute fMRI experiment produces a series of 3D brain imagg#ames or scans),
each of which contains approximately 170,000 voxelg. for an image matrix of 6464 x 42).

First, data areollected from an fMRI scanner otine subjectundergoing an experiment
designed to activate the neuronal resgsnin the brain regions of interest. The recorded
intensity valueof BOLD signal areprocessed and thenormalized to range between zero
and a fixed constant e.g. betwdeand 190. The time taken to acquire a single fMRI image
(volume) isof the order of several seconds. Thus, each 2D plane (slide) of the 3D fMRI image
(volume) records brain activity from different points in time (Burge, 2007); and each volume is
stored in a chronological record in a thidimensiomal matrix [x, y, z], the éements of which
store image resolutio(pixel or picture elementjepresenting the intensity of ta@ation. For
instance, in a 3D braimage matrixwith dimensions of 64 64 x 42, there are 42 slideBach

slide is a tw-dimensional matrix of 64 colummsnd 64 rows comprising 64 64 elements,

known as voxelsthat store image resolution valige(voxel attributepetween0 and 500 and
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Figure 1.8llustration for a volume of 3D brain imagke dimensions of 6464x42.

that representcubes of tissue about-2 millimeters (volumetric pixels)depending orslice
thicknessfield of view (FOV)and size of image matrix (Fig. 1.6)

Pre-processing raw fMRI data before analysis

fMRI data aresuscetible to a large number of ddcts which can roughly be divided into
scannefinducedartifactse.g.radio frequency, gradient ddct, etc. and physiological afdicts
e.g. motionrespiration heartbegtcontamination from large veins and arteries in the betin
(Graeme et. al.2008 Lindquist 200§. Consequently,a minimize nortaskrelated variability
in the recorded image data witksnbject as well as betwesnbject for validity of statistical
assumptions before the data are analyzed, they need to -peopessed. The giprocessing

comprises series of steps that charoughly divided into anatomical and functional steps.

The functional steps includerhporal and spatial processing. For temporal procesemued
slice timing correctioneach slice in each volume asquired at slightly differeroints intime.
Therefore,it is necessary to adjust the data so that it apmeaikall voxels within one volume
had been acquired at exactly the same tpatial processings designedo remove movement
effects termeanotion correction or spatial realignmeBesidesspatial and temporal smoothing
with a Gaussian kernel is often performed to imprtheSNR of imaging dataandto reduce

differences between the activation patterns of subjects (Etzel et al., 2009).

The anatomicaktepsinclude spatial coregistration and normalizatimce fMRI is typically of

low spatial resolution and provides relatively little anatomical deth&, ®registration is
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designedo eliminatedifferencesetweerstructural and functionamages in order to be able to
map the results obtained from functional data onto a structural MR imidgdigh resolution
for presentation purpose®/hen performinggroup analysito make population inferences, all
individual brain images recorded fdt subjects are assumed to be registered soethet voxel
is located in the same anatomical regibar this, spatial normalization is appliedrémisterall

of the fMRI images into the samstandard space e.glontreal Neurological InstituteNI) or
Talairach spaceWithout the preprocessing prioto analysisthe result ofstatistical analysis
would be invalid(Lindquist, 2009.

fMRI analysis

SincefMRI was inventedin the early 90s, it has become one of the widely used ingasive
techniques for investigating human brain activity. Along with its developnikat analysis
methods of fMRI data have appeared. Today, fMRI analysis has been used for three main
applicatons including localization of brain activation, connectivity and classification/prediction
(Fig. 17).

Localization of brain activation

Individualvoxetbasedapproach [ Croermental Do J
xperimen esign
A few years after fMRI was | | |
— —— TR
invented the traditional analysis | pata ‘“‘““'5'“““] (" Preprocessing R
method of approach tofMRI | Slice-timing Localizing

; : . LRacnnstruntlnn — Comection Brain Activity
came into sight and put into l —

Mation Correction,

appication. This approach has Co-registration & Connectivity
o Data Mormalization
focused on characterizing the Processin |
. . . . . g Spatial Classification
relationship between cognitive Pipeline Smoothing Prediction
variables and individual brain ~— —

voxels In other words, the fMRI (Source, Lindaist, 2005)

analysis to indicate the activate Figure 1.7The fMRI data processing pipeline illustrates the diffs

) ) - _ steps involved in a standard fMRI experif&mtce L indquist, 2008).
brain regions by specific tasks i

performedseparately at each voxéihassunivariate approachjThe analysis uses statistical

regression and hypothesis testing based nugbe general linear modéGLM) or
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discriminant analysis techniques such as multivariate regression to test hypotheses about
regionally specit effects. These techniques commonly make linearity and Gaussian noise
assumptions and eliminatke time factor in inference (Friston et al., 20Q4ndquist 2008.

Due tolimitations ofthe statistical approach, about ten years later, an alternatim®agh has
appeared. The new approaeimergedfrom the Bayesian theoryln contrast to statistical
inferences about the data, given the effect is zero, Bayesian inferences are based on conditional

inferences about an effect, given the data (Friston €&207).
Multivariate approach

Although individwal-voxetbased methods ardill being used widely due to thesimplicity

(Friston et al., 2007), they have exposeellimits of what can be learned about cognitive states

by analyzing voxels individually Normand et al.,, 2006). The limits haygomoted the
development of new approaches where the fMRI analysis congiarrigs of voxels rather than

a single voxel.The analyses range frothe isear chl i ght 6 approach w
examina the information in small groups of voxels centered on each voxel in the brain
(Kriegeskorte et al., 2006) to multivoxel pattern analysis which can detect patterns across voxels

in fMRI data (MouraeMiranda et al., 2005; Normand et al., 2006; Etzel et241Q9) The

primary advantage of these methods over individoaklbased methods is increased sensitivity
(Normand et al., 2006).

Connectivity

The brain is the center of theervous systenand is madeup of nerve cells (neurons). Its
function is toexert centralized control over the other organs of the body. To take on this
responsibility, single neurons do not work independently but rather function in large aggregates
(neuroral groups), known agunctionally specialized brainegions e.g. motor areas, sensory
areas, visual cortical areas, ef®lathews, 200;1Bear et al., 2007 Furthermore, between the
differentfunctionalregions thez are als@onnectionsr interactions, anavhen responding to a
specific stimulus, severalrelevant brain regions would be activateteractively (Bear et al.,
2007) In other words, neurongithin the brainregionsas well as between theregions thaare

in charge ofthis response have higinteractions (correlations). Due to the coupling of neural

activation and local haemodynamic response characterized by voxel at{BQit® signal)
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there exist correspondingly high correlations amoglgvantvoxels. For examples, théne-

seriesof BOLD signalrecorded orone voxellooks correlativelylike the timeseries of BOLD

signal onanother voxel. If theare located adjacent to each otfeg. in the sambrain areg,

they are called as a cluster.tifey are located far awdyom eachothere.g. one is irparietal

cortex and the other is in frontal cortéikey are thought to be connected to each otherlsmme
However, correlation doesnot i mply direction

different approaches favestigatingconnectivity in functional neuroimaging.
Functional connectivity

The first approach is defined &sctional connectivity This approach is focused on pairwise
interactions often in terms of correlations or covariances betwerels or brainregions of
interest. It does noprovide any direct insight into how these correlations are mediated
(undirected associatiofffrriston 1994 Lindquist, 2008. The simplest method of the approach is

to compare correlations betwebrainregions of interest or bet ween athefseed?o
other regions orvoxels throughout the brain (regional correlation). However, it becomes
problematic when the number of correlations grows because it needs to correct for multiple
compari®ng andit is difficult to summarize the patterns obrrelation.Alternative appoaches

use multivariate methods egyincipal components analygBCA) and ind@endent components
analysis (ICA) etc. to detediaskrelated patterns of brain activation withouaking any a priori
assumptions about itaodel(Lindquist, 2008.

Effective connectivity

The second approach is defined Hsative connectivitythat showghe directed n p u efpne e

brain region onthe others The approachincorporates additionahformation e.g. anatomical
connections into the analysis. In additiansimultaneous interaction of several neural elements

is also consideretb explicitly measurehe effectof one element on thether (Friston 1994
Lindquist, 2008. In regard tomeasurement methods of effective connectivity, Buchel &
Friston (1997)ntroduced structural equation modeling (SEM), also known as path analysis,
which is used to investigate significant changes in the relationship between neural systems in
the dbrsal visual stream caused by shifts of attention. H@mensen, Hansen, & Rasmussen

(2000) used another approach based on Bayesian network theory such as Hidden Markov Models
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(HMMs) to learn a model of activity within the visual cortex from visual slinfRecently,
dynamic causal models (DCMs) have been introduced byFRr&std colleague2003 with the

goal of modeling effective neural connectivity (Friston et al., 2007). The technique is also a
branch of dynamic Bayesian networks, and it is apfbecharacterize brain activity at the level

of neuralnetworks and their dynamics. Today, the technique has become an important tool of
neuroimaging analysis and has an important impact on the development of theoretical

neurobiology and clinical biomarkefSeghier, 2010
Classification/prediction

Another application direction relating to our research is classification of fMRI, also known as
pattern recognitionfMRI classification isa technique of separatiff®ylRI data into different
classes, i.eproviding a criterion for determining whether the BOLD response of a subject at a
particular time during the experiment characterizes a specific cognitive state, a neuropsychiatric
disorder or not Ye Yang 2010). The specific tasks for a study of fMRI classifica is to
construct patterns from fMRI images, to build up a classifier from the labelled patterns of
training data and then to test the classifier on the unlabeled and unseen patterns of testing data

(i.e. to use the classifier to label the unseen pettef testing datgPereira et al., 2009).
Construcing patterrs from fMRk

This is the step of constructing features for a pattern from an {féBture construction)f all

voxels of an fMRI image are used as features of the pattern, the pattern contains very large
number of features (e.g. approximately 170,000 features for a 3D image matrix 64 642).

For a set of patterns with such very large size of featlassification performance of the
patterns can be reduced significanfBereira et al., 2009)-urther, for a brain response to a
given specific stimulus, not all of the voxels are activated significgBtizel et al., 2009)This

implies that there malge uninformative voxels in a classification. Hence, methods to reduce the
number of features for a pattern extracted from an fMRI have been developed. They are divided

into two main approaches.

The first approach is to select informative voxels (feajuiesn an fMRI (feature selection).
There are two methods for this approasboi ng/ yl t eri ng and wrapper

involves ranking the features basedaogiven criteriorand selecting the best in the rankifbe
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latter involves performance of @dassifier.For this, firstly,all the featuresre considered and

then they are removed gradually while the performance increases. The method is known as
recursive featurelienination, and it can be accomplishég repeatedly training and applying the
classifierin crossvalidation within the training s€Pereira et al., 2009)

The second approach is to reduce the number of features of an analyzed pattern (feature
reduction or dnensionality reduction The approach focuses on correlation between fiestu

The commonly used methods in this approach may be namedsingular value
decomposition/principalcomponent analysis (SVD/PCA)ndependent components analysis
(ICA), etc. The general nature of these methods is that they transform the original Sgstaee

into a new, lowdimensional feature space. This yields a new dataset matrix with a reduced
number of featuresn addition, another weknown approach is to use a combination of the two
approacheglindquist, 2008 Pereira et al., 2009)

Previous verks of fMRI classification

A classifier is a function that takes features of a pattern to prigglitdbel The classifier is
formed from learning characteristics of labelled patterns of a training dataset. Such an approach
is known as machine learninglong thetime line, the development of technology and solutions

of pattern recognition applied in fMRI classificatias still progressing.Several prominent
milestones of the development mayrbentionedIn 1936, Fisher introduced linear discriminant
amalysis (LDA) that computes lyperplanen the input spacso thatit maximizes the ratio of
betweenclass variance to withinlass variancéFisher, 1936). The method camork well with

linear data (Ratsch, 2005). Howevdr,is not sufficient for fMRI cassification where data
sometimes are not linearbgparableln the late 60s, Cover and Hart (1967) introducételarest

nei ghbour c | as spoiypntsa trainiogdata dibsest e testtpbirg arekidentified,

and a label is assigned to ttest point by a majority vote between the k points. This method is
simple, but it requires expensive computation and a large memory to store the training data.
Turing (1992) first proposed artificial neural network for classification. Afterwaths,
techhique has becomane of the commonly used approaches for classificafitso.in the 90s,a
statistical learning theory appeared (Boser et al., 1992; Vapnik, 1998; Va0@@), which
provided conditions and guarantees for good generalization of learning algorithms. Recently,

large margin classification techniques have emerged as a practical result of the theory of

33



generalization. T he tfrequently mmengjomed ara suppom veadr a s S i

machines (SVMs) (Boser et al., 1992ortes and Vapnik, 1995) anddsting (Valiant, 1984).
Thesemethod have demonstrated highly competitive performance in many studies of fMRI
classification reported (Etzel et al., 2009).2003, Mitchell et al. (2004) introduced a Gaussian
naive Bayesian network which was used to classify instantaneous cognitive states of a subject
while reading a book or looking at a picture. Burger et al. (2007) applied dynamic Bayesian
network, a datariven modeling technique, to identify functional correlations among regions of
interest with the goal of classifying healthy and dementia fMRI data.

Researclproblems

Although encouraging achievemeritave beerreported in the studies of fMRI classificati
with predictive accuracies between 70 and 9@Hinkareva et al., 2006; Demirci et al., 2008a;
Demirci et al., 2008b; Takayanagi et al., 2011), they are usually difficult to be genereailized
larger data sets (Demirci et al., 2008t8everal reasongave been mentioned such as limited
number of subjectgvestigated, bias in classificatiomariability between operators, scanning
equipment and parameterand variability between subjects and between different times of
measurmentevenwithin the samesubject(Demirci et al., 2008b). This indicates the complexity
of fMRI data as well as the unstable reliability of classification deciaamnevedrom machine
inference whereas a classification decision for each individpatient requires very high
acasracy and reliability.

For these reasonwhile waiting for the technological solutions meetour demands in clinical
practice it is necessary to find an alternative solutafifMRI classificationwhich can help us
avoid complete dependence on machine inference. This can be realized if we catheheck
compatibility between the classification decision for a pattshtainedfrom machine and its
activation image. In other words, a thorough undedstanof the classified patterand ofthe
classification decision for the pattern obtained from machinebriayg the solution to lightand

it may be a feasible approach tealizing diagnostidunctional imaging ofneuropsychiatric

disorders in clinical practice.

For alcohol dependence, several linégvidence hae shown significant differences in response

to alcohofassociated cudsetweerdetoxified alcoholics antealthy controlsBraus et al., 2001;
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Myrick et al., 2004;Wrase et al., 200Park et al. 2007; Beck etl., 2009; Heinz et al., 2004,
2009) andbetween relapsers and abstain@shacht et al., 201Beck et al, 2012 based on
fMRI measurment This indicatesthat thefMRIs hold important information of differences
among the investigated groups or in other wotliisfMRIs can be used as useful biomarkier
diagnosis as well gsrognosis in alcohol dependené®wever,the results of these studies have
obtained froma statistical analysis between the different grosch an analysis @esignedo
identify the brain regions showing significant differences in response to the given stimuli
between the two westigated groups (difference betwegmoups) rather than to qvide
observations of the differences between individual subjects of the two grounes usedfor
classification (difference of individuals) (Demirci et al., 2008mdquist, 2008 Van Horn&
Poldrack 2009; Farah & Gillihan, 2012)These problems haveativated us to conduct the
dissertation

AIMS

The overall objective of thiglissertationis to develop a framework which enables the
identification ofalcohol dependence as well as prediction of relapsénriginical practice using

fMRI. The pecific objectives weréocusedas follows:

(1) To design and validata classification algorithm for diagnosis and relapse prediction using
fMRI in such a way that the classification results are interpretable

(2) To approach imaging based on the findimgsnedfrom the classification algorithrfor the
investigated fMRI data

(3) To validate the approach

METHODOLOGY

Outline of the whole approach

The approach was designed as a means of convertingfittimgs of machinéased
classificationinto our understanding oflassification rules on functional imaging. For this,
firstly, classifierswere formed from given classification algorithiand used asintermediate
exploratory instruments, instead of ssekng the rulesof recognizing thenvestigatedpatterrs

(charactestics for recognition) Then, based on thiendings as well as working rules of the
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Based on the idea, weartitioned the
whole approachinto smaller approach

\ Clinicians ] Rules_ of [.'_na_tlem recq_ngtlon
in clinical practice

Figure 1.8The framework for the approach.

steps starting from  classification
algorithmto imaging approachFrom this
point, the first studies were formed basea
on classification algorithms. Then, theseachinebased classificatioralgorithms would be
replaced witha diagnostiémaging approacin thenext studiesCorrespondingly, thalgorithms

for the studies have been changed continuously and appropriately to expose the whole approach
that can lead sito realizediagnosticfunctional imaging in practiceHence, the algorithm for the

whole idea is not a single algorithm rather than it is just a synthesis of the whole approach.
other words, we would like to build a framework for this appro@ib. 18). For this reason,

each study was conducted using a different methodology for its specific objective. To facilitate
the presentation, we arrartjéhe methodologies, results and discussions of the studies in

separatehapters.

Specifically, the first study wat® demonstrate feasibility of splittingbservation orthe whole
bran into multiple observations omultiple relevantbrain regions involvedin alcohol
dependence using fMR(chapter I). The second study waso demonstrie the validity of
predictive inferencdased on multipléines ofevidence collected from several braggionsof
interest in relapse prediction using fMRhapter Il). These two studies served for specifying
the algorithm and important brain regionsalved in alcohol dependence in fMRI classification.
The third study wasto offer an imaging approach based on finelings of the first and second
studies(chapter I\). Finally, we introduced two feasible applicatiasfshe approach in clinical

practice(chapter V.
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CHAPTER I
FORMATION OF FUNCTIONAL ROIs IN fMRI CLASSIFICATION

Introduction

To makean imaging diagnosisin clinical practice we cannot obseraad analyzehe whole

brain but rather we should focus this observation on several relevant brain regions bétause w
such an approach the observed results are eassertofy and interpret. However, whether

not and how the approach is feasible for fMRI clfisation in alcohol dependenaemainsthe
guestionthat we would like to clear up in the first study. Specificalys studywasto look for

the clueswith which we could identify the appropriateay of featureselection for each brain
region ofinterestthat canyield ahigh performance of classificatiam alcohol dependence.

Materials and Methods

Materials
Participants

Fifty alcohol dependent patients diagnosed according to1CR@nd DSMIV criteria and 57
healthy subjects wenecruited forthe study. All participants were righanded volunteers who
accepted participation after the research procedures hadubgezxplained to them. The study
wasapproved byhe Ethics Committee of Chariténiversitatsmedizi Berlin, Campus Mitte in

Berlin in Germany. All the participants were ove8 years of age, ranging from 82 69 years

(mean = 41.8; standard deviation = 12.1; 81 males arferd@les).In addition, the subjects had

no other psychiatric axis | disorders, no past history of dependancyrrent abuse of other
drugs, which was verified by random urine drug testing and interviBe®re the fMRI
experiment, the patients had to be abstinent from alcohol for at least 7 days in an inpatient

detoxification treatment program
Data acquisiton

The data were acquired with a 3 Tesla scanner (Siemens, Erlangen, Germany). The imaging

sequence was an ascending -i&ighted echo planar sequence with 42 axial slices (repetition
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time (TR) = 2.41s, echo time (TE) = 25 ms, flip angle =°8€leld of view (FOV) = 192« 192

mn?, slice thickness = 2 mm, gap between slices = 3 mm, acquisition matrix 646dnd voxel

size = 3x 3 x 3 mnT). In each run, 305 functional volumes were acquired. For anatomical
reference in each subject, a 19ke Ttweighted3D Magnetization Prepared Rapid Gradient
Echo (MPRAGE) structural image was acquired in the same orientation as the Echo Planar
Imaging (EPI) sequence (TR = 2.3 s, TE = 3.03 ms, flip angfe E®V = 256x 256 mnd, slice
thickness = 1 mm, acquisition miat= 256x 256, voxel size = ¥ 1 x 1 mn?).

Stimuli and tasks

How would you rate your craving
for alcohol at the moment?

+ 50 0 |5 + s |Thank you!
Nocraving Seire
atal CFVIRL
20s 1ls 10s 4s 1ls

Figure 2.1Cue reactivity paradigm

An established cueeactivity paradigm (VollstaeKlein et al., 2010) was conducted. In the
block-designed fMRI task, 60 standized alcohctelated picturesincluding 20 beer, 20
schnapps and 20 wine pictures, and 45 neutral pictures derived from the International Affective
Picture System (IAPS) (Lang et al., 1999) were presented in aofo2dl pseudaandomized
blocks includng 12 blocks displaying ald¢wl-associated stimuli and OBlocks presenting
neutral stimuli. Each block consisted of 5 randomized pictuieish were displayed for 4
seconds each, resulting in a total duration of 20 seconds for a block. After every block,
participants were asked to rate their desire to drink, i.e. craving for alcohol, on a visual analogue
rating scal e. Ratings ranged from O (feno <cr a
recordedby pressing &utton within a maximal time frame &b seconds. Subsequly, a black
fixation cr oss aeacahdsowbahshowik befpre ainew piciu Wdagstarted
(Fig. 2.1). The total taskluration was 12 minutes (refer Mationales Genomforschungsnetz
(NGFN)-Plusproject)
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Data preprocessing

The first 4 volumes of each run were discarded to remove the initial T1 magnetic transients in
the data. After that, the remaining data weregozessed using SPM8 (Vi@me Department

of Imaging Neuroscience, London, United Kingdduttp://www.fil.ion.ucl.ac.uk/spm First, all

remaining scansvere corrected for the timing differences between each sliceeatigned to
remove residual motion effects. The anatomical scan wasgisteredo a mean reliced image
obtained fromthe realign analysis. Next, the images were spatially normalizetheéosame
standard space (MNI space) with voxel size 3x 3 mnt. Finally, the data were smoothed in
space using a-tm full-width-at-half-maximumGaussian filter (FWHM) to optimize the signal
to-noise ratio in small subcortical structures of interest as wet asduce differences between

activationimagesof subjects (Etzel et al., 2009).
Methods

In this study, each brairegionwas considered individually. The investigation for eaegion
was conductedh the followingtwo steps: (1)onstructing anaollecting response patterns of
theregion from fMRI dataecordedor the subjets (feature construction); (2)l&sifying these

patterns.
Stepl: Feature construction
1.1 Constructing and collecting response pattefos individual ROIs

Since ourtarget wasto find a feasible approach tothe application of diagnostitunctional
imagingin clinical practice, the classification of a disorder or condition of the disorder for a
subject (subject classificatiomjasonly the final consequence of theaginginference process.
Therefore, the response patterns of the brain whenever cues are exposedrai@ object of
interest.In the study, each blockd was viewed as an independent observation of the brain
response tahe given stimulis The response feature of the brain for each blatk was
expressed through its representative vecgialume) created by averaging over all scans
measured within it (Fig. 2.2). As a result, for 12 bloekish alcohotassociated cuesach

subject comprised 12 feature vectors, also considered as the response patterns of the brain to

alcohol cues. Then, the resporfsature of a ROQto alcohol cue for the blockd was

39


http://www.fil.ion.ucl.ac.uk/spm

Constructing a response pattern for a ROI & from a cue block
Blocks of subjects

1 alcohol block i I

4

T-test analysis

PickAtlas toolbox [ EEITEED the.m c!a§seson
the respective training set

Response |patterm
The whole brain Brain region of interest

\’ =

Alcohol cue

1
1
1
1
1
1
1
1
1
1
1
1
A

£ :.; Po. response patterns of ROI,
MRI l i Mask of structural ROl Mask of functional ROl et
W Pre-processing = [voxel coordinates) [woxe| coordinates) SVM classifiers
LU ” 1 - o T
Averaging e Feature selection Attribute

Block 1 [~ response patternofROL| =0 norma lization
e
Bl attributes of RO, (dvoxels;d < Dy)

(D voxels)

5

e
3

B
4
£

Anaverage fMRI

Figure 2.2Feature construction and collectionh&fresponse patterns farRO

manifested by a feature vectay extracted from the feature vector of the brain for that block
using the mask of that ROI (Fig. 2.2). Similarly, from each subject for each ROI we collected 12
feature vectors, also considered as the response patterns of that ROI to alcohol cues. &he featur
vectors of the ROIs or the brawere interpreted amdependent observations tife response
patterngalso termed activation patternsf)the ROIs or the brain to alcohol cues avete used

as input data for classifiers.
1.2 Normalizing the feature attributes of the response patterns

In the preprocessingtep described earlieall fMRI images measured for all the subjects were
normalized spatia}l to the samestandard space in order to minimize morphological variability
between different subjects (normalization of voxel coordinate). In this step, before providing for
classifiers as input, the data were normalized in the aspect of feature a{BOuE® signal) to
reduce the effect of large signal changes dominating those of smaller signal amplitude
(normalization of voxel attributejPereira et al., 2009)n this study, the method of scaling
normalization was applied. For this, all input feature vedtars of the training set for each
classifier {Q of each ROI'Qwere arranged in rows and colum(i&g. 2.2)in which each
column was an input veatdeach pattern)r ® N6 pB N: size of theROI AGthe

block where the pattenp was measured; Fig. 4,3and each row was an attribute of the vector

(& NQ pB RO nNo : number oblocks(corresponding tthe number opattern3

reservedfor the training. The parameters of min and max value of each attribiate were

calculated only on the training s@then,these parameters were used to scale all the attributes of
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the vectors)  in boththetraining setandthetesting set to the rangel[+1] ((i & & @Q'Q

G2 p;n O O @dMAQI OOIIQUE 1h0 é ;

= 1,0 é, ; O dthe number ofthe patterns foboth training and
testing. This scaling normalization was applied to normalize each attributg (Fig. 2.2. In

the study, the blocks witheutral stimuli were not considered.
1.3 Creating the mask of individual ROI

A ROI in fMRI analysis can be defined in terms of structural or functional propegtiestural
ROls are defined on the basis of anatomical structueegyri, sulci, whilefunctional ROIs are
defined on the basis of data analysis migd from experiments. Henctor investigatng brain
activation, functional ROIs are our maibjectsof interest to ensure that the ROI only contains

voxels that are truly activated under gjivstimulation [Etzel et al., 2000

To focus observation on relevant brain regions with the aim that observasaoits are
interpretable in clinical practice, for each brain regit® functional ROIs in th8 study were
formed within its correspondingnatomical structureS.he brain regionsvere chosen for the
investigation based othe neurocircuitry of addiin proposed by Koob and Volko{2010)
including the VTA, VS, DS, thalamus, pallidum, amygdalippocampus, insula and PFC
including ACC, orbital frontal cortex (OFC) and medial prefrontal cortex (mPFC) (Fig. 1.3).

1.3.1Masks of structural ROls Table 2.1Size of structural ROIs
with voxel size 3 x 3 x 3 fim
Structural ROIs were built with the Wake Forest RIOL Number of voxels
VTA 44
University (WFU) PickAtlas toolbowersion2.4: VSDS 176
http://fmri.wfubmc.edu/cms/softwar@Maldjian et VS 88
. DS 88
al., 2003; TzourieMazoyer et al., 2002) anthen Pallidum 161
normalized to a standard space as same as the Thalamus 570
standard space of the smoothed data to create their PFC 3136
ACC 987
corresponding structural ROl masks. The masks mPFEC 1499
for the ACC, pallidum, thalamus, amygdala, OFC 1496
] _ ) _ Amygdala 132
hippocampus and insula were available in the el 1215
toolbox. The othersvere built as follows: The Hippocampus 563
Whole brain 60588
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PFC, OFC and mPFC were defined by Brodmann aRfeS: (8, 9, 10, 11, 44, 45, 487); OFC

(10, 11, 47) and mPFC (9, 10p4vid & Mark, 2009;Goldstein & Volkow, 2011 Lee et al.,

2006. TheVS-DS, VS, DS and VTA were constructed based on small Rath of whichwas

defined by a sphere withrém radius centered on the following MNI coordinatgght VS, [12,

15, 16]; l eft VS, [T 12, 15, 1 6]Schachtietgalh 20)1D S , [ 1
and VTA [0,-20,-12] (Eva et al., 201Q)Table 2.1)

1.3.2Masks of functional ROrmedwithin their corresponding structural ROIs

For each braimegion its functional RQd were formed within its corresponding structural ROI
(Fig. 2.2). For this, the scoring/filtering method was applied. The voxelsedétthctural ROI
were rankedaccording toa given criterion (scoring), and then the-tapked ones were chosen

to form its corresponding functional ROI mask (filtering).
a. Scoring with massinivariate approach

For a preliminary study, mnassunivariate appyach was selected to score each individual voxel

(a univariate test for a voxel). For thisfveo-sided ttest analysis was conducted on a training
dataset to specify the statisticatlifferent activation level of each voxieétween the two groups

of alcdholic patients and healthy contralbaracterized by awvalue. The underlying hypothesis

for the ttest analysis is thahere may be a different response to alcatsslociated cues and
neutral cues in alcoholic patients whereas such a response may not occur in healthy subjects
(Braus et al., 2001; Wrase et al., 2007; Park et al., 2007; Beck et al., 2009; Heinz et al., 2009)
The analysis was done based on a general linear model which was implemented with SPM

software version 8http://www.fil.ion.ucl.ac.uk/spm/software/spm3/

First, a firstlevel analysis waperformed withineach subject (withisubject) In this studythe

beer, schnapps and wine pictures used in the experiment countetblastadsociated cues
indiscriminatingly Each cue block was modelled as a boxcar function convolved with a
canonical hemodynamic response function that began at the onset of the first cue of the block
and ended at the end of the last cue. A {pgbs filter (1/128 Hz) was applied to remove slow
signal drift. A contrast image measuring the response difference betweenl-alssbdated
stimuli and neutral stimuli was generated from the general linear nigeet, a twesamplet-

test at the second level between the two groups was conducted using random effect analysis
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(betweensubject). Here, each contrast image of the-fegél was considered as a representative
sample for its group. From this, an activation nfafatistical map)or the whole brain was
created, which dribed theifferentactivationlevel of voxels between the two groups through

a tdistribution; and an activation map for each structural ROl was also formed based on the

activation map for the whole brairsing its structural ROI mask.
b. Filtering

After ranking one might still have taecide on how mangf the topranked voxels should be
chosen tdorm afunctional ROI because the sizeadiunctional ROI, i.e. the number of selected
voxels, can have an impact on the classification performance (O'Toole et al. E20€l7et al.,
2009) One commonly used method is to threshold the statistical andpthen to select the
surviving voxels on the threshold withthe observedrain structure (structural RQIFor a
structure with size oD voxels, we observe simultaneously Drypothesis testing results the
statistical map(one for each voxel)lt is thus necessaryo correctthe threshold for multiple
comparisns. For this, Bonferroni correction ofalsediscovery ate controlcan be applied to
define the threshold in ordéy ensurehatthe functional RObnly contains the voxelsith thar
features deemed significant at a given level (Pereira et al., 200@ver, this approach can be
guite sensitive to the specific threshold (Etzel et al., 2009). Especiaiyafi gructural ROIs
the approach may be problematic if no or few voxels are surviving.

For thisreasonand owing tothe size difference of the investigated structural ROIs, in this
preliminary study, we focused on a simple method in which the size of fualcR@i was fixed

at three different levels: 200, 100 and 50 vox&lsunctional ROl with a given sizd was
defined as thal-voxels with the largestvalues identified within the corresponding structural
ROI (d ¢ D) using its activation map after ranked.dase the selected size to form the functional
ROI was greater than the actual sizetlué correspondingtructural ROI(d 2 D), the entire
structural ROI was include = D), as was for instance the casetfoeVTA, VS-DS, VS, DS,
amygdalaand pallidum at éunctionalROI size of 200 voxeléTable 2.1)

c. Sampleor the ttest analysis

A classification task usually involves separating data into training and testing détaget2.5

& 2.6). Each pattern ithe training set covers attributes of the pattgrn (i.e. voxel attributes
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and a class label®y assigned to it(} o . Based on the training dataset, a given
classification algorithnyields a corresponding modaedldssifie) to predict the class labels for

the unlabeledpatterns of the testing dataset only based orattidutes of the patterns (voxel
attributes).Hence, to avoid overestimates of classification performance derived from peeking
information of the testing daf@ereira et al., 2009), for each different loop of tfaéntng and
testing, a separatetest analysis at the secelevel was conducted only on its corresponding
training datasetf the loop The creation ofhese loops will be presented in the nextisacof

theevaluation.
Step 2:Classifying the response patterns of individual ROI

For each ROIa separate SVM classifi®@was used as an instrument to classify its response
patterng(ry  into either class 1 (alcoholic clags; "Qn p) or class 2 (control class;
W Qn p) ® N ph p ;N dihe response pattern of the RQiecorded for block

‘R The training and testing for the SVM classifier was conducted as follow.
Training to obtain a model (SVM classifier) from labelled data

For a given labelled trainingdataset
‘*"‘—u Suppartvectors

n ho , there may exist many

hyperplanes that separate the input vect

of this dataet € ) into the two classes

“-_Optimalhvperplane

(Fig. 2.32). Among the hypetanes, there {a) {b)

exists the optimal margihyperplane with Figure 2.3llustration for SVM classification.

the largest margin of separation betwe For linear SVNR 1) i 'Q@en  w; For nonlinear SVI
Qn i QQEr f @; Q1R : decision function; :

the two classes. The vectors closest t0 ' weight vectar; function mgipgi into a higher dimensional spi

&1 offset] : response patteenpssesthe patterns of classiftles

optimal margin hyperplane are calle
p 9 Yperp the patterns of class 2.

support vectors, and the distance betwe

Data are separab
+ P

Data are not inthis new space

them and the hyperplane is called tl ey sl Ce o st apace + .
margin of SVM classifier (Fig2.3b). In : : +. T 2=¢p) o

the casesvhere the input vectors are nc % e o

linearly separable they can be mappec 1! N

into a(usuallyhighe)) dimensional feature Figure 2.4lllustration for mappindata into a feature spac
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spacen © n n in order that they become linearly separable in the projected gpace

2.4). However, omputation m the feature space can be costly because wery high
dimensional (typically infinite-dimensiongl. To solve this, the socalled kernel trick

(O 1 m nrf " ) is appliedto avoid carrying out the mappingexplicitly.
Additionally, to improve to handle the data that avet fully linearly separableone allows

A e rsrgqolu 1) in classification by relaxing slightlthe constrairg to identify the optimal

margin hyperplane i.ec 0 M R @ p U instead of® O N A @ p. The

Aer rwoarsed known as o0f$haolp andgovdash ippen bound on the
number of trainingerrors A SVM c¢l assi fier using such a met
SVM classifier;and a clas i y er t lgeméralizesr walldn dinseen data is then found by

controlling botht h e c Iflexibilgyi (Vapnik-Chervonenkiglimensionvia 0 ) and thesum of
the slacks B v MO d,the number of patterns for trainingyith the target of
minimizing both of these two quantitiel the soft margin SVM, data pointsn the incorrect

side of the margirboundary have a penalty that increases with the distance froifo it

harmonize this issue, @gularizationparameter(0) is used tocontrol the tradeoff between

margin maximization(i A @ E I—E-(AT ET E i-E)&A and training error minimization

(i ET EIBEUA v . Specifically, the SVMs require the solution for the following

optimization problem (a):

0

i ETEIEOA 6 v
hh~ C
subjectto @ 0 N 1 ® p U
s mQ po 0 : the number of patterns for training

When desiging a SVM classifier the first taskis to select kernel (0 /| and
regularizatiorparameterd), and br a given kernel, teetthe parameterthatthe kernel function
may dependn e.g. width ofa Gaussian kernétorresponding to Radial Basis Function (RBF))
(o m Q9 fy m or degree of a polynomiakernel (d; 0 n m

o N i ). These parameters are called hyparameters and have considerable effects on
the classifier flexibility and training error. Based on training dataset together withetimed
kernel/hypefparametersthe values of parameters for specifying the optimal margin hyperplane
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i.,e. b ando or| (Lagrange multipliers for dual formulation (substitutidgal optimization

problemfor the objective problem (a)iy B w "Nl TC points on the margin
(support vectors)) are estimated to produce a model for classification (SVM clasSiiineg.
different datasets can be compatible with different ker(iééss GW, Chang CC & Lin C-J,
2010) one might try all kinds of kernels/hypparameters, and choose the kernel with the best
performance. Nonetheless, this may cause overfitBeg-Hur & Weston, 2010).

In this study, 14 different brain structures (structural ROI; Table 2.1) with three different sizes of
the functional ROIs (200100 and 50 voxels) corresponding to each structure were observed
Thus, significant differences among the datasets of the response patterns collected for the
observationsre likely. This implies that for some observations the datasets are compatible with
a given kerel, however for the others, there may be no compatiblhitgrder to take advantage

of the compatibility ofeach kernel (e.geither linear omonlinear kernel) withdifferent training
datasetsboth of he linear and radial basis functiternel were applied interchangeabljhe
selection of the kernkdyperparameterso form a particularclassifier "Qfrom a given training
setwas done as follows. First, for each RQIthe valus of the hyperparameters for the

linear kernel andC, g for the RBF kernel¥or the classifier'Q were specified via grid search
usi nigd .Amgy 6 mo-fld ¢rassvaldatiom andthe exponentially growing sequences of
grid parametersC =2°, 23, % g=2"° 21 & (HswGW, Chang GC & Lin C-J, 2010).

After that, for each loop of training and testirfg ), the classifiers withdifferent pairs of the
specifiedkernelshyperparameters wergained andestedin turnonthe 45 nested loops created
within its corresponding trainindataset(t Qi ¢0'd@f@1 - 45; Fig. 2.5 & 2.6;see thenext
section orcreating examplesBased on the result of this testing, the classifier that has yielded
the highest average accuracy was selected for the(lbpprhe Matlab implementatio of the
LibSVM version 3.1(http://www.csie.ntu.edu.tw/~cjlin/libsvihAvas used in this study. For a
more detailed description of the SVM formalisrafer to the machine learning literaty@oser

et al., 1992; Vapnik 1998; Schoélkopf & Smola, 2000; Vapnik, 2000; Wang, 2005)

Testing a SVM classifi€model) on unseen data

Fortestingon an unlabeled patterry  of testing datset the distance of thgattern r}  from

the hyperplane was aallatedusing the classifiefQwhich has been specified from the training
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Thedecision to classify the patterry into either class 1 or class 2 was determined by its sign

(@ i Qah @ . This meanghat if "Q 1 T, thepatternis classified into class 1
(® p hand converselyif "Q mthit is classified into class 2 D .
Evaluation

Creating examples

Crossvalidation (CV) is a statisticahethod used to evaluate or compare learning algorithms by
repeatedly dividing data into two different datasets: one used to train a model and the other to
measure its classification performance (Payam et al., 2009). Here, the 107 subjects who were

includedin the study were randomly divided into an-@fbject croswvalidation (CV) sample

107 subjects
50 alcoholics and 57 healthy controls
|

80-subject sample for cross validation (CV) External 27-subject sample

40 alcoholics 40 controls 10alcoholics & 17 controls

and testing (LY)

1 fold out for testing

1 foop of trainin

5 folds for training |

1 nested loop

2 folds for training

(nested Lt}

1 foid out for testing

gt 1 LAt
| | ]
1 ford

{4 alcohalics and4 cantrals)

. [ )
i _:l -:l =1 a5 10 times repeated
P =1 10 fold-CV
_ Nestedcross-validation (S times repeated 3 fold-cv) t=t, ... 100
Figure 5. Creatingexampledor the evaluation l
32 Alcoholics 32 Controls
(including 40 alcoholics and 40 et |
training b
controls) and a 2-6ubject sampl€10 SN cassfiers
Trar'nfng with different kernels/hyperparameters
alcohollcs and 17 Controls) for phﬂSE‘ EeszmgA\Alcnhn\ics "l'dtnntm\s 25 tod | Analyzing results
Lfold nested loops ing :A:curac.v
external validation B Betind
4 -valug
Selecting kernel/hyper-parameters ——
On the 86subject sample, atratified )
. . SVMcIassiﬂerf
10-fold crossvalidation procedure g
- - T i h col ﬂ\ti‘ ontrols
repeated 10 timeswas applied to =7 e 1:
. 1001 L7
create 10 rounds for the evaluation. oops (L]

Firstly, the 80subject sample was

10 repeated 10-fold CV

Loops of training and testifg theevaluation

on the 8&ubject sample
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partitioned randomly into 10 equal foldsach of which included 8 subjects (4 alcoholics and 4
controls, corresponding to $6sporse patterns of the brain ROI collected from thejn Based

on the 10 folds, each round created 10 loops of training and testing such that within each loop
(0; 60=1- 10) a different fold of the data containingsBibjects(d ) was heldout for testing

while the remaining 9 folds including the 72 otlsembjects(0 ) were used for trainingTo
eliminate sampling bias, this procedure was repeated 10 times amrandssvalidation splits

of the 80subject sampl¢0d No= 1- 10 x 10). Moreover, within theraining segment0 of
eachloop (0 ), a 9-fold crossvalidationprocedure repeated 5 times to create 45 nested loops of
training and testingg('Qi QW= 1- 5 x 9) was applied for adjusting theernelshyper

parameters of the SVM classifietescribed in the previous sectigfig. 25).
Evaluating classifiers

As mentioned earlier, for eachbrain region with a defined size of functional ROI, a
corresponding classifier would be formed. Wsed the 8&ubject sample with the cress
validation procedure to evaluate their classification performance in teratsfacy, sensitivity
andspecificity. Accuracysensitivity and specificity were averaged over the testing results of the
100 test datasets created from thefdl@ crossvalidation repeated10 times Each test
comprisedthe 96 patterns collected from the 8 subjectfsthe corresponding testing dataset
Accuracywas defined as the relative number of total samples (or patterns) classified correctly.
Sensitivity was defined as the percentage of correctly classified patterns into alcoholic class.

Speciycity was defi ned afiedpatemsimecontrddassage o f
Result significance for a classifier

The statistical significance of the classification result for a classifier was analyzed based on
rejectingthe null hypothesis. The null hypothesis assstat there is no differendeetween the
samples of the two classes. Thegiue to reject this hypothesis was estimated by cumulative
probability function (v al ue = P( X O k)) where X is a
distribution with N trials corresponding to the number of dfaesk samples, k successful trials

and the probability of a successful trial=p0.5 for the two classes. Each test san{pkgch
pattern)was regarded as an independent Bernoulli {{fdreira et al., 2008)lo avoid the

optimistic evaluation in multipletesting, the pralue was adjusted using the Bonferroni
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correction with 1% significant leveB(and & Altman, 1995; Pereira et al., 200&)nder the
Bonferroni correctionthe accuracies of classifiers were said to be significant with 1% level
(1 <0.01) if their uncorrected-palues were smaller than the corrected al@eD(01/(Nkm);

N: number of trials (samples or classified pattermsypumber of observations).
Comparison of two different classifiers

The comparison of two different classifiers on the same dataseiQeand "Qin terms of
statistical signiycance waDBiettariehy 1998eRbggm et l., usi n
2003; Jaber et al., 2010)his test was based on the-sijuare ditribution %) with one degree

of freedom. Accordingly, the critical value with 5 % significance level is 3.8415, . The

null hypothesisassumeshat the two classifierf2 and"Qwould have no difference of error rate.
Then the null hypothesis is rejected if McNemar's valoie is greater than 3.8415, and these

two classifiers are said to be significantly different (p<0.05). In this studyNM mar 6 s val ue

calculated usinghe following formula:

I sp

A, ABBAI éiT |

Wherel was the number of samples incorrectly classified(biut correctly classified biQ

andl  was the number of samples correctly classifiedhbyut incorrectly classified biQ

To get a more robust analysis, the prediction models (or classifibish have been tested on
the 80subject sample were again evaluated on the external dataset including the 27 subjects.
Since his dataset was up tben never used in the previous design process, the results on this

dataset were not subject to any model selection bias.
Evaluating correlation between thevélue and performance of classifier

In order to assess validity of using thealuesat the seondlevel statistical analysifor the
formation of functimal ROIs withintheir corresponding structural ROis¢ investigated effest

of the tvalues on the classification performance of classifiers or in other words, whether the
performance of classifiers for the functional ROIs with the higalties is better than those with

the lower tvalues.For this, a second leveltést analys that shows difference of activation

between alcoholics and controls on thes8ject sample was conducted to create a map of the t
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value distribution for the whole brain and correspondingly, a map of the skn@id-value
distribution for each struatal ROI using itstructuralmask. As described earlier, a map of the t
value distribution for each functional ROl was specified based on a ranked map -ofathe t
distribution of the corresponding structural ROl and given diz€hen, the comparisonf ¢-

value distribution between the two different functional ROIs was analyzed usitegtaanalysis

for difference between two means of these two functional ROIs in the case of independent
samples Zikmund et al., 2018 In combination with this compans, the comparison of
classification performance between their two corresponding classifiers was also analyzed to

provide answers for the assessment.

Results

1. Performance on the 86subject crossvalidation sample

The results were summarized from testimg100 sample sets that were created from 1€atep
10-fold crossvalidations(8 subjects foreach testl2 response patterns of the brain or ROIs
collected from 12 cue blocKsr each subject)As a result, the total of the classified patterns for
eachobservation on each functional ROI was 9600<18 x 12 x 100). For evaluation of the
significance of classifiers in the observations, tlaecuracies were said to be significance with
1% level under the Bonferroni correctiaip ( <0.01)if their uncorrected pvalues were smaller
than 0.248 107 (0.01/(Nkm); N: number of fials (classified patterns); N €600;m: number of
observed classifiers in the same contemtz 42; Tables 2.2, 2.3 and 2.4). According to the
cumulative probability function on a binomial distribution, this also means that the accuracy of a
classifier is significant withy  <0.01 if it is greater than 52.8% (uncorrectedv@ue =
0.24810"; N = 9600; p= 0.5; p:probability of succesi onetrial).

a. Functional ROI with the size of 200 voxels

In the secondevel analysis, the futional ROIs such as theFC were formed by the voxels
with moresignificantly different activation {talue =1.79 + 0.3% thanthose ofACC (t-value=
1.45 + 0.4)and VS (tvalue =0.3 £ 0.54) £ = 5.55 and 22.34)<0.01). In contrast to this, the
ACC and VSyielded the classification gogerformance §2.8% and 60.3% vs. BP6 accuracy
respectivelyc 23.61 and 9.371<0.0% Table 2.2.
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Table 2.Zheperformance of pattern classification for functional ROIs with the size of 200 voxels

ROI t-value distributionat the 2" level analysis Classification performance (%)
N=9600 max min mean sd Accuracy Sensitivity Specificity
VTA 1.69 0 0.45 0.5 55.7 57.9 53.6
VSDS 2.39 0 0.51 0.58 58.8 61.1 56.4
VS 1.77 0 0.3 0.54 60.3 61.4 59.2
DS 2.39 0 0.73 0.53 50.7 46.9 54.6
Pallidum 2.37 0 0.35 0.6 59.8 61.9 57.7
Thalamus 2.58 0.74 1.11 0.31 56.7 55.2 58.2
PFC 3.12 14 1.79 0.35 51.8 54.3 49.3
ACC 2.45 0.87 1.45 0.4 62.8 64.9 60.7
mPFC 3.01 1.08 1.54 0.36 45.9 43.3 48.5
OFC 3.12 0.37 1.01 0.55 45.0 45.5 44.6
Amygdala 0.21 0 0.05 0.04 53.7 58.0 49.4
Insula 2.98 1.19 1.66 0.39 48.2 50.8 45.5
Hippocampus 2.3 0.27 0.98 0.5 51.9 54.7 49.1
Whole brain 4.21 2.56 2.83 0.26 61.8 66.3 57.3

b. Functional ROI with the size of 100 and 50 voxels

The reduction ofdefinedsize for the functional ROIdrom 200voxelsto 100 and 50 voxels
increased the distribution of the higharaluescorrespondingly e.g. for the ACC with the size of
200, 100 and 50:v¢alue=1.45+ 0.4, 1.76+ 0.3 and 2.0 0.19 respectivetyz = 4.18 and 6.02;
p<0.01 However, the increasedid not yield acorrespondingly better performan¢é2.8%,
60.6% and 5%% accuracy respectivejyfables2.2& 2.3).

Table 2.3 heperformance of patteatassificatiorfor functional ROIs with the size of 100 and 50 voxels

Functional ROI size of 100 voxels Functional ROI size of 50 vosel

ROI t-value Classification performance t-value Classification performance

N=9600 distribution (%) distribution (%)
mean sd Accuracy | Sensitivity Specificity ~ mean sd Accuracy = Sensitivity = Specificity

VTA 0.45 0.5 55.7 57.9 53.6 0.45 0.5 55.7 57.9 53.6

VSDS 0.9 0.5 57.0 55.7 58.4 1.3 0.33 59.2 56.6 61.8

VS 0.3 0.54 60.3 61.4 59.2 0.53 0.64 63.9 65.0 62.9

DS 0.73 | 053 50.7 46.9 54.6 11 0.39 54.9 48.9 60.9

Pallidum 0.56 @ 0.67 63.7 65.3 62.1 1.11 0.55 60.8 63.4 58.1
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Thalamus 1.35 | 0.27 52.6 53.8 51.4 1.55 0.25 50.4 52.2 48.6
PFC 2.05 0.32 47.8 50.6 45.1 2.28 0.29 50.5 50.4 50.6
ACC 1.76 0.3 60.6 61.3 60.0 2.02 0.19 59.5 58.9 60.1

mPFC 1.81  0.32 47.9 47.7 48.1 2.05 0.29 49.5 48.4 50.7
OFC 1.41 0.5 47.0 49.8 44.1 1.78 0.47 48.2 46.9 49.4
Amygdala 0.06 @ 0.03 58.0 61.7 54.4 0.08 0.03 56.7 61.5 51.9
Insula 1.96 @ 0.32 49.5 52.5 46.6 2.2 0.29 53.6 569 50.2
Hippocampus 1.4 0.36 45.8 48.2 43.5 1.7 0.24 44.2 45.6 42.8
Whole brain  3.17 | 0.28 58.6 61.2 56.0 3.17 0.28 55.2 57.5 52.9

2. Performance on the external 2#ubject sample

For testing the classifiers for the ROIs dme external 2-8ubject sample, we trained the
classifierson the 80-subjectcrossvalidation sampland then tested them on the external sample,
and only focused on the functional ROI size of 200 voxéie results showed that the VS, ACC
still kept the significantly high performance tire external 2-8ubject sampl€62.3% and 8.6%
accuracy respectivelyy  <0.000%1 N = 27x 12; m= 14).

Table 2.&he performance of patth classificatioon the external 2ZUbject sample

. Classification performance (%)
N = 2941 For functional ROI size of 200 voxels
Accuracy Sensitivity Soecificity
VTA 52.5 48.3 54.9
VSDS 58.3 68.3 52.5
VS 62.3 59.2 64.2
DS 72.8 63.3 78.4
Pallidum 54.9 49.2 58.3
Thalamus 60.5 24.2 81.9
PFC 57.4 65.8 52.5
ACC 67.6 51.7 77.0
mPFC 71.6 80.0 66.7
OFC 67.6 71.7 65.2
Amygdala 34.9 20.8 43.1
Insula 65.7 52.5 73.5
Hippocampus 29.6 33.3 27.5
Whole brain 58.6 443 67
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Discussion

Massunivariate approachfor the formation of a functional ROI from its structural ROI

The investigation on individual ROIls indicated that tirain regionsof ACC andVS play a
prominent role in theliagnosticclassification of alcohol dependengsing fMRI, which can be
seen by the goodlassificationperformance achieved on thmegions(ACC, 62.8% accuracy
(Table 2.2);VS, 63.9% accuracy(Table 2.3) i  <0.000). This result is compatible with
previous studies on cue reactivity in alcohol dependence, in whidhSteand ACC hagxposed
significant activation undempact ofalcohotassociated stimuin alcoholic patients compared
to those of control¢Braus et al., 2001; Heinz et al., 20@009 Wrase et al., 2007; Park et al.,
2007; Beck et al. 2009; Schacht et al., 2011). However, the investigation on the-lesebrid
value distribution of theseegiors with thefunctional ROIlsize of 200 voxelsACC, t-value=
1.45 + 0.4 and VSt-value =0.3 + 0.54)showed no corresponding prominence compared to
those with the significantly lower performanaieclassificatiorsuch aghe PFC(t-value = 1.79 +
0.35 (62.8% and 60.3% vs. BPb6 accuracy respectively 281.42, 154.37p<0.000]). The

differences of4value distribution between the functional ROIs e.g. between the VS and PFC (z =
22.34;p<0.00001) can be derived from the significant differences of analyzed structural ROI
size e.g. the VS, 88 voxetnd the PFC, 3136 voxels (Table 2.1). Nonetheldéss etidence
indicates that the functional ROIs formed from a set of voxels théhbettett-values may not
yield acorrespondingly betteslassification performance using SVM classifier. The infereace i

in line with the previous results of fMRI classification showitlgat the classification
performance with feature selection usithg univariate approach wdswer than thatusing a
multivariate approach such as SVM, Gaussian Naive Bayes or Linearnibismi Analysis
(Pereira et al., 2009). These resuhsreforeappear to confirm that using thevdlue as an
indicator to rank voxels for the formation of functional ROIls within their corresponding
structural ROIs is not an optimal method of feature ctle for the classification using

multivariate methods such as SVM.
How to form a functional ROI from its corresponding structural R@ippropriately?

To find clues in answer to this question, | et

decisian and the nature of classifiddta
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Decisionmaking of a SVM classifier

With a multivariate approach, the decisimraking of a SVM classifier for a classified pattern is
influenced by individual variables (e.g. voxel attributeé the pattern(f] ) and their
corresponding weightsu() and correlation between them characterized by a mathernatic
formula connecting the variables together (€@ i "QQEn ®; Fig. 2.3) This
means that the SVM classifies appropriate forecognizng informative patternsather than
contrast differences in individual voxdNorman et al., 20Q@ereira & Botvinick, 2011 Apart
from the evidence of loose correlation between the performancevahaet for the investigated
ROls discussed above, the argument is supported by the result of a stdduridp-Miranda et

al. (2005 indicatingthatthere wasa difference in the dected voxel set over a defined threshold
between a univariate and raultivariate approaclwhen analyzing difference of activation
between tasksThis suggests that the formation of a functional ROI to gain a high classification
performance using a SVM adsifier shouldbe basecdhot only on the characteristics of each
individual voxel (voxel attribute) but alsan those of correlation between the voxels within the

observed structure
Nature of classifiedata

For this reasonin order to answethe questiorabove | et 6s try to theconsi ¢
information that weare working on. As mentioned in the literature review, the nature of our
classifieddatais vascular changes representedBYLD signalsand transformed into voxel
attributes (mage resolution valyerig. 1.6§. The vascularchanges indirectly reflect activity of
the brain under impact of given stimulatididthews, 2001l ogothetis et al., 2001 ogothetis
& Pfeuffer, 2004) The neurovascularotipling mechanisms are thougbtrelate to on@r more
vasoactive mediatorsuch as nitric oxle, adenosine and changes ihd¢ hydrogen ions (i.e.,
pH) which are released fromct i ve nerve locdime saldol insendi aartde bl
(Yang et al.,2011). Furthermoresingle neurons do not work independently but rather function
in large aggregatedfathews, 200l Consequentlythe BOLD signals or the data on which we
are working appear to beperated by a mechanism involving thedtional specialization of
eachbrainregionaccording to which the greater the homogeneity of structure and function, the
stronger the correlation between the components within that rediois. mechanismis
evidenced by the resuif the study of brain complexity measurement that indicstiehger and
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more complex local connections between neurons of similar specificity forming neuronal groups
than thosebetween neuronsf the different functional groups (Tononi, 1994). Hence, the
correlation between voxels within an investigabedin regon can be considered as degree of
effective connectivity between these voxelsr@spose to given stimulationwhich complies
with this operating mechanisrthe interpretation is supported by the classification results of
PFC and ACCThe anatomical sticture of PFC is formed from th&ubstructures including the
ACC, mPFC and OFC, sabviously forthe same sizef selected voxelghe functional ROlIs of
PFC possesses the sets of voxels withdhger tvalues than those fats substructures such as
the ACC (e.g. for the size of 200 voxelke PFC, tvalue= 1.79 + 0.35 vsthe ACC, t-value =
1.45 £+ 0.4; z = 5.55p<0.0001; Table 2.3). Nevertheless, in contrast to this, the classification
performance on the functional R@F PFC was significantly lower than those on the functional
ROI of ACC (51.8% vs. 62.8% accuracy respectively; 2361, p<0.0001; Table 22).

Similar evidence was also found on the strudguoé VSDS and VS, where the VBS was
formed by combining th VS and DS. Tis combination did not yield aetter classification

performance for the \V®S than thatfor the VS 68.8% vs. 603% accuracy respectively
9.12; p=0.0025;Table2.2).

Furtherevidence to support this argumesain be observed in thealysis of correlation between
classification performance and ROI size. The results indicate hieareduction in size of
functional ROI to filter out more voxels with no different activatcam yield better performance

for several brain regions e.g. tpallidum, 59.8% vs. 63.7% accuracy for the sizes of 200 and
100 voxels respectively. However, this was not recofdedhe othes e.g. the ACC62.8%,
60.6% and 5%% accuracyfor the size of 200, 100 and 50 voxels respectively (Tal2e3 &

2.4). These results suggesthat the size of a functional ROl may not be a critical factor
influencing itsperformanceof classification but rather the performance may essentially depend
on its characteristics of structure and functional specialization as well asletsn the
investigated disorder. The inference is evidenced by the classification mdghksbrain regions

of interestin the case oanalyzedfunctional ROI size with 200 voxels (Table 2.2) showitige
significantly higher performance of classificdion for the core brain regions in the
pathophysiologic mechanism of alcohol dependence e.g. the VS (88 voxels) than those for the
others e.g. the amygdald32voxels)(60.3% vs. 53.%; ¢ 94.74 p<0.000L Table 22).
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The above interpretationisamc cor dance with t he cdvighdmc eapph ow
which is operated on correlation between neighbor voxels pnowved sensitive thathe mass

univariate approach in identifyinigrain regions containing category information between tasks
(Kriegeskorte et al., 2006Further, theoutperformance for the VS and ACC compared with that

for the VSDS and PFC recordenh the external sampl@as consistentwith that onthe cross

validation tes{the VS, 62.3% vs. V®S, 58.3% accuracy; 2.72;p=0.0992 andthe ACC,

67.6% vs. PFC, 57.4% accuraay; 6.36;p=0.0117;Table 2.5). Since the external sample

had never been previously used in the process of model building, this shows that these findings

are not a result of model selection bias
Observation on the whole brain

As just discussed, the formation of the PiR€ludingthe ACC, mPFC and OFC or the \[35
combining the VS and DS did not yield the functional ROIs with the better classification
performancethan that of some of their correspnding substructures. Thus, for a broader
interpretationwhere the whole brain is considered as a single structure, it is reasthvashlee
observation on the whole brain can be appropriately separated into multiple observations on
relevant brain region® get bettebenefitsof performance and interpretation of classification
result(e.g.the whole brain, 61.8% vs. tHeCC, 62.8%; theVS, 63.9% accuracyc 2.39 11;

p=0.1219 0.0009respectively; Tables 2.2 & 2.3In other words, it assists thpracticality of

deeper focus othe characteristics adtructure and function ahe investigated brain regions
using multivariate methods such as SVM on fMRI dd&arther, in a context where the
combination of different brain structures into a single ustiure may not yield a better
performance thathat of some of its individual substructures, the questionsasedwhether

and how to combine multiple observation results on several relevant brain regions is valid for a

fMRI classification.These issuewill be elucidated in the next chapter.
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CHAPTER Il
fMRI CLASSIFICATION
BASED ON MULTIPLE LINES OF EVIDENCE

Introduction

The result of the first study indicates the inefficiency of using taute to form the functional
ROIs from their correspondingstructural ROIls. Also, it suggests th#ie classification
performance for the ROIs may depend on their role in the pathiopdgisal mechanism of
investigated disorder much more than on the different activation level of individual voxels. From
this basis,the question ariseghat if a functional ROIlis just its corresponding anatomical
structure whether itcan givean expecté result. If this is validity, it can ge a very important
advantage in looking for way to apply diagnostidunctional imaging in practice because the
voxel set of each functional ROI is then the same in all the tests and in all the subjects.

Additionally, for an imaging diagnosis in practice, a decision of image recognition is usually
more confident if it is based on a synthesismultiple observation results on multiple brain
regions than if it is only focused on a single brain region. Hewewhether thisapproachis
feasible inrelapse prediction in alcohol dependence udididRl remains a questionThe
clarification of the issues was the objective of our second sg&uicificdly, this study was to
determinethe validity of deeper focusrothe anatomical structures of brain regiohiterest in
relapse predictioms well aghe validity of prediction combiningndividual observation results

on relevant brain regionssing fMRI
Material sand methods

Materials

Participants

The study was conducted on 40 patients (including 20 relapsers and 20 abstagrarsd
randomly from theb0 alcoholic patients who were included in the first study. Apart from those

described in thesection on thematerials in the first study, befof®RI experiment, all the
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patients were assessetith regard to theseverity oftheir alcohol dependenagsingthe Alcohol
Dependent Score (ADS) (Skinner & Horn, 1983@verity of alcohol craving was measured with
the Alcohol Urge Questionnaire (AUQ) (Bolet al., 1995) and the Obsessive Compulsive
Drinking Scale (OCDS) (Anton et al., 1995). After discharge, the patients interiewed
about their alcohol consumption over a follewp period ofanothersix months, and were
classified as abstainers (no diocd consumption; n= 20) and relapsers (any alcohol

consumption; rr 20).

Table 3.1Clinical data of the two groups of relapsers and abstainers

Relapsers Abstainers
Characteristics n=20 n=20 p value
mean sd mean sd

Age (Y) 441 119 44.4 10.9 0.76
Age at onset (y) 364 8.8 36.2 9.6 0.48
Sex (male : female) 14:6 155 0.49
ADS 154 6.7 161 6.8 0.53
OCDS 165 5.6 152 57 0.87
AUQ score 215 7.8 269 228 0.09
Number of cigarettes per day 19 146 187 114 0.20
Number of abstinent dayisefore fMRI 12.3 48 11.6 5.5 0.88
Number of abstinent days until relapse 61 47.0

Alcohol intake during followap period (g)) 6494 8204

Data preprocessing
The preprocessing in the second study was sintdahatin the first study.

Methods

The classification algorithm was designeda way that emulated the way clinicians usually use

to diagnose imaging in practice. First, to classify a subject, they observe and recognize the
features of severahdividual brain regions of interest. Secorldey infer the feature dhe brain

from these observation results. Finally, based on such multiple observations they make a
diagnosis of disorder or condition of the disorder for the subject who has produced the images.
the study, for the first stefhe observation and recognition of the response patteindieidual

brain regions were done by SVM classifiestep A lincluding A 11 and A 1.2 Fig. 3.7. For

the second step, the inference based on these observation results was done using Bayesian
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A Classification of pattern B. Classification of subject
A I
Step A 1 StepA 2 [ Step B

!
’ StepA 1.1 : StepA 1.2
Feature wectar Festurs vector SN classifier Bayesian Synthesis of
=Fthe mrain =fthe 20l b inference observartions on blocks
L = Response of RO, (+1)
= RO Response of the brain
e raging RO - \ -
= HemrmEns === .1 } >  forblock1 (+1)
% = = f Il A\
= Reshaping L3 . \
= Block 1 DRI}I( - Response of ROl (+1) |
— | TP, = +1
fo i — | R
g = Wi ¥ observation:
T Eig fa : \
= — IR5|._ > Response of RO (+1) Response of the brain |
= o ) > forblock 2 (+1)
ol RO masks Y,
= -0
= ® \
= Block 2 = Response of RO g (-1} \
o RO | - s
- H |:| = Subjecty(+1)
= = X =
E= = If Reisees 20.5
= =
=} —
= =
= =
= —
- — l S » Response of ROIy (-1) #
E RO Response ofthe brain
-2 RO s ks . |:| > forblock3(-1)
= - Fr a RO (-1) O instruction
> Response o e (- L
w = Block 3 D,DI = P ® B newtral cus
o — B jcohol cue
= —
= —]
Lt —
=T —] i observations on f blocks

t = 1.0, Q=12 alcohol blocks for each subject
Figure 3.1llustrationof general classification algorithor fa particular subjedt+1: relapse clask; abstagr clasg

inference $tep A2). The prior experience for the inference was learned from the traseing
Thes two steps were seen as the step of pattissification $tep A. The final step, the step of
subjectclassificationwas considered as the synthesis stepariousobservatiorresults ofthe
response patterns of the brain whenever cues are exposedrinoonieke a predictiofor the
subject who has produced these pattestep(B.

A. Classification of pattern

A 1: Observation on individual ROls

A 1.1: Feature construction [

- 1 alcohl:l block ¢ i
The method of constructing the response s i
patterns ofinvestigated brain regions was . &
appliedin a manner similato that usedin - L R
the firg study.As a result, for a particular ||I|‘f|kur | I HH H —
ROI "Q each subject provided 12 response e
patternsny ; and for20 relapsers and 20 f *’

snsversge i (4

abstainers, 480 response patterns were

Figure 3.ZFeature construction for a fWithoutthe ttest
analysis at the second level between the tlassesA
observations of response images of the R functional ROI was d@gespondirgiructural ROI.

collected and interpreted as 4i@dependent
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"Oto alcohol cues. Thewere used as input data of a classifierHowever, in this study there

were the two following important differences compared to those in thestirdy.

(1). Formation of functional ROI Table32.Size of structural ROIs
with voxel size 3 x 3 xu8r?
The investigation was focused more deeply RO Number of voxels
anatomical structures of the ROIls. The anatomi Left  Right Bilateral
truct f h brain iieg in the left, right and both VIA 12 | 16 4
structures of each brain iieg in the left, right and bo e A ah R
hemispheres were investigated separaf@lgble 3.2) DS 44 44 88

While in the first study, functional ROIs were forme Pallidum 79 79 161
the Thalamus 282 288 570
ACC 498 489 987

mPFC 681 818 1499
from the statistical analysiat the secondevel on the OFC 704 792 1496

within  their own structural ROIs using

scoring/filtering methodbased on the-talue obtained

training dataset, in this studize functioral ROIs were Amygdala @63 69 132

just their corresponding structural ROIs (Fig. 3.2). Insula 612 603 1215
Hippocampus 281 282 563

(2). Normalization of the feature attributes of patterns

Besides theaaling normalization for the response pattementioned in the section deature
construction in the first study (rtieod 1), we investigated the second method combining both of
the scaling normalization andszore normalization (method 2) to reduce variability of the
patterns between blocks as well as subjects in situations vheaenot be done using the
scaling nomalizationalone For this method, before applying the scaling normalization, each
input vector § was additionally zscore normalizetb have mean 0 and standard deviation 1
Foreach vectorr{ , the average of all the attributes of this vestais subtracted from each of

its attributes, andthenthe resultof the subtractionwas divided by the standard deviation of its
attributes (@i @€ O QO———N N W O di WENQQAI wéE AR
phB8 FuI: size of theROI ‘WFig. 4.3. This zscore normalization was applied to normalize each

individual pattern or each vectécolumn;Fig. 3.2.
A 1.2: Classifying the response patterns of individual ROI

A SVM classifier was used am instrument tolassify the response patternsasfindividual

ROI in the same mannexs those in the first study. Hence, for each Rl separate SVM
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classifierQwas used to classify its response pattdrms into either class 1 (relapserask;

Qn p) or class 2 (abstainer clasg; ) p) (Fig. 3.1).
A 2: Combination of the observation results on multiple ROIs

Step A 1 was seen as the step to observeidaditify individually the response patterog$ brain

regions of interesto the given stimulation recorded within blockgith the design described in

the first study, for each bloc& a response pattern of the whole braorresponding to the

average volume over all the scans recorded for that b@slconstructedFrom this pattern of

the brain, a pattern of each ROI for blo6k was extracted using its ROl mask. Thtise

response patterof the brain for each block can be consideredrasverall picturavhich is put

together by the pieces of the responseepadt of brain regions extracted from it. The
combinaton of the observation results timese pieces can help us infer the response pattern of

the brain for that block (alsermedo bl ock c¢cl assi ficationd) (Fig. 2

Instrument for the combination

Bayesianinference was used as an instrument for this combination.iffeience derived from
Bayesd6 rule has been applied to solve uncert:
conditional probabilities that can infer each other (Hall, 2012). Consglerihypothesi¥) its

alternative hypothesi®, and the observatiod, the posterior probability of a hypothe&®after

observingOis given by

0 00 I O.
0 O '

b a0

whered "O is the prior probability ofO before observing, 0 ‘OsO is the probability of a the

”

observation given that the hypothe€ss true,andd O 0 GO0 D 0 0 00 D O

Inthisi nf er enc e, afpleyte gpdatére probability estimate for a hypothesis after
evidence has been observed (Tipping, 20Bpecifically, in thisstudy, the inference was
designed based on multiple observatiesultscorresponding to the classification resultsthe

different brain regionsising ther correspondingSVM classifiers.The result of this inference

was to classify the response pattern of the brain into either class 1 (relapser class) or class 2

(abstainer class).
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For instance, we classify the response pattern of the brainpfantiaularunlabeled blockQo
of an unseenest subject after the response patterns dfifferent individual ROIs i§ Q
p8&x) extracted from the feature vector of the brain for the bléitave been classified as
Qn w NQ p8U;w ~ ph p usingtheir corresponding SVM classifiers (Fig. 3.1

& 3.3). The inference process is conducted as follows.

Initially, when no observation has been provided, an initial classification probability of the
response pattern of the brain for bl6@d is setto 0.5i.e) 6 p 00O p ™ (no

difference to classify the pattern into either class 1 or @pss

After observationc from the first ROI'Q ©@ NQ p) has been provided,
applied to calculatéhe posterior probability that the pattern of the brain for blébk was

classified into class 1 (relapser class)

o 0 OH p WO p

c
o)
e

in which, 0 6 p 06 p ™, 0Q WD p ATARQ wD p are the

priors learned on the training data.

Now, theclassification probability of the response pattern of the brain for Méxkpdated and

used for the next inferena:6 p 06 pw ;06 p p 06 0.

Then, when the observation from the second ROI'Q & NQ ¢) has beerprovided as
evidence, theposterior probability of the response pattern of the brain for bldck can be

calculated as

s A
OH p DO p

wY p
6 p O

S| &

W]

0
0Q 0D P

As before, theclassification probability of the response pattern of the brain for Bock is

now updated:d & p 06 p NO 6 P p 0B P .
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The inference process continues until all relevant RE&UV have provided their observation
results (Fig. 3.3); and finally the response pattern of the brain for Klo@k is classified into
either class 1 (relapse class; p) or class 2 (abstainer class; p; wdclassification
result of the response pattern of the brain for bi@according to the following decision rule:
p QW6 R g TO
p QW6 p W ® ™
(0 : number of observed brain regions (ROI)

"Q phB HO nNno : number of the unlabeled patterns collected for the testing)

Observation

Hl  svm dlassifier Bayes’ rule "
on ROI, Response Y Brain Response (+1)
& of ROI, 2 A
- ture construc > =0.5
Brain response to cue / Featu s I (+1) Po with p,
or RO,
recorded for a particular
block £
Observation "
il SVM classifier Bayes’ rule
on RO, ) Response .
3 rainR nse (+
o - of ROL, Bra fespo se (+1)
Feature construction € (+1) Py with Pi.2
forROI;
Volume of an fMRI
[average vector over all
the scans measured 1
within block 1) \ v
Observation
jl SVM classifier Bayes’ rule g
on ROl Response & Brain Response (+1)
* of ROI, s .
Feature construction fx Pi.. k.1 with ps.. .

(-1)

forROI,

Figure 3.3lllustration forthe inference to classifg response pattern ttfie brain recordetbr a particulablock ‘Q

|| z combiningmultiple observatioresults onmultiple ROI@: theprobability to classify the pattermclass &nd it
is updat after eacbbsrvation result on the RIbhs been providéﬁ E 06 P W g Nw :
the observation resultthe response pattern of@&dorded for blogk

This inference model was built on the basis oftiedel of indepenlent relevant symptoms in
which a disorder only involves some relevant symptoms, and the symptoms or the response
features of ROIs are considered conditionally independent of each other. The priors used for the
inference for each RCQwere estimated othe training set using anner crosssalidation loop

(9-fold crossvalidation procedureepeated five timgsrom the test results of the classification

of response patterns of the R@with its correspondingSVM classifier 'Qin step A 1.

Specifically, the priors 0 Q pPH p p 0Q pD p N and
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0°Q PP p p 0Q pD p 1 were estimated for each RAR The

parameterr)  corresponds tdhe sensitivity of the classifiefQfor the ROI'Q while 1

corresponds to the specificity of thiassifier. Consequently, the priors can be considered as
previously learned experience tbie role of the ROIQin fMRI classificationin the investigated

di sorder , and the inference based on such ex|

way b emulate the wagf decisioamaking in clinical practicéKasper et. al., 2008).

Predictiveinference of the response pattern of the brain

A predictiveinferencefor aresponse pattern of the braigcorded for a blocKzan rely on either

a singleobservation result (single evidenae = 1) or a synthesis from multiple observation
resultson multiple ROIs (multiple evidences) > 1). In order to evaluate the validity of the
inference based on multiplmes ofevidence in fMRI classification, the classification result of
the response pattern of the brain based on a single observation on a single ROl were evaluated
and compared with those based on multiple RG&s. this, we applied the methodology just
describd. However, in this case, Bayesian inference foesponse pattern of the brain far
particular unlabeledlock Q6 was only based on a single observation corresponding to the
classification result of an SVM classifieiQ for an observegartiaular ROI'Q As a resultthe
posteriors) 6 p andD 6 p used to infeblock™ Q6 after the observation result on
the ROI'Chas been providedere calculated as follows:

56 58 & b2 o o
P P 0 WD P 00 WD P

0O p p 0O p
f 0@ pMB hNOdnumber of observed brain regions
B. Classification of subject

Althoughtheresponseatternsof the brain or brain regions the main object that weould like
to analyzen orderto apply diagnostiemaging in practicethe finaltargetis to predict disorder
or condition of the disorder which subjsduffer from. In oucontet, thistarget is toclassify
subjects into given classes. For this, the classificatiom oh&beledsubject Y canrely on a

synthesis of multiple observations on the various response patterns of the brain measured in

64



different blocks for the subjectY 8In the study, for each subjectY , this synthesis was
represented by the ratio of theamber of respongeatterns of the brain that wectassified into

class 1 (relapser class) to the total number of the pattagasured for the subjectY

(Y R ;B @ p:the number of observations whehe responsegattern of

the brain for blocld wasclassified into class 1j: the total number afbserved patterns of the

brain (or number obbserved blocksfor the subjectY). If this ratio wasequal or greater than

0.5 (Y T® , the subject™Y was classified as a relapsand by contrast, if the ratio was
smaller than 0.5Y T® , the subject™Y was classified as an abstainer.
Evaluation

Creating examples for evaluation and learning

The creatn of examples forevaluatingand learning the hypgrarameters for SVM classifiers
together withthe priors for Bayesian inference in this study wase in ananner similar to that
applied in the firsbne As a result, atratified 16fold crossvalidation gocedurerepeated 10
times (10repeatedlO-fold crossvalidation procedunewas applied to create 10 rounds for the
evaluation. In each round, the sampteluding 40 alcoholic patientsin the study was
partitioned randomly into 10 equal folds, each ofohincludes 4 alcoholic patients (2 relapsers
and 2 abstainersorresponding to 48sponse patterns of the brain collected from th&aged
on the 10 folds, each round created 10 loops of training and testifj@rl- 10)in sucha way
that within each loop(() a different fold of the dateontaining 4 patients() was helgout for
testing while the remaining 9 foldmcluding the 36 other patient$ (), were used for training.
This procedure was repeated 10 times on randosseadidation splits of the 48ubject sample
(bN6=1- 10x 10). Moreover, within thetraining datase{6 ) of each loop(0 ), a 9-fold
crossvalidationprocedure repeated five timess appliedo create 45 nested loops of training
and testind¢ Qi 00'QCx 5x9) for adjusting the hypeparameters of the SVMlassifiersused

in stepA 1.2and for learning the priofer Bayesian inference usedstepA 2 (Fig. 3.1).

Evaluation

The evaluation and comparison déassificationperformance for each individual classifier for

each ROI and between different classifiers were appliadany to thatusedin the firststudy.
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Results

A. Classification performance of the pattern of the brain

The results were summarized from testing $@éhple sets that were created from 10 repeated
10-fold crossvalidations. Each set included 4 subjects for testing. Each subject comfised
response patterns of the brain or R@dlected froml2 cue blocks. As a result, the total of the
classified patrns for each observation on each ROI was 4808 4\ 12 x 100; Tabls 3.3, 3.4

and 3.5). The indices of performance were the average values over all the sets reported (in %).
Similarly, for evaluation of the significance of classifiers in the obsemstitheiraccur&ies
were said to be significantith 1% level under the Bonferroni correctiofp ( <0.01)if their
uncorrected fvalues were smaller than 0.42307 (0.01/(Nkm); N: number of trials (classified
patterns); N=4800m: number of observed classifiers in the same coniext; 49; Table 3.3,

3.4 and 3.5). According to the cumulative probability function on a binomial distribution, this
also means that the accuracy of a classifier is significant fvith<0.01if it is greater than
53.9% (uncorrected-palue= 0.306x 107; N = 4800; p= 0.5; p: probability of a success).

A.1 Classification gerformance based oa single evidence from amdividual ROI
1.1.1 Bilateral ROIs*

The results obtained from the d#gation of the response patterns recordediratividual
bilateral ROIs are shown inable 3.3 for the two different methods of normalizing featwife

the patterngvoxel attribute)oeforethe classification (scaling normalization vs. the combination

of z-score and scaling normalization). The classifiers on the VS and insula yielded the best
pefformance with accuracies of 6%67and 71.5% respectively ( <0.0001) Forseveral ROls

the performance combininthe z-score and scalingormalization wa poorer than usinghe

scalng normalization alone e.g. the VS, 52.7% vs. @3accuracyespectively,c = 146.78,
p<0.0001. In contrast, on treher ROIsthe combination of -8core andcaling normalization

outperformedhe scaling normalization ahe such as the insula, 71.5% v&%Gaccuracy,c =
260.47,p<0.0001 the thalamus, 5998 vs. 54.8% accuracy respectively; = 61.23,p<0.0001
(Table 33).
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Table 3.3Theperformance of pattenfassification (%pr bilateraROls

ROI Scaling normalization Z-score and Scaling normalization
N = 4800 Code Accuracy Sensitivity Specificity Code Accuracy Sensitivity Specificity
VTA 1 55 52.1 57.9 12 33.3 46.6 20
VS 2 63.7 68.6 58.8 13 52.7 52.1 53.3
DS 3 38.8 44.4 33.2 14 40.7 28.2 53.2
Pallidum 4 37.5 335 415 15 39.8 36.6 43
Thalamus 5 54.8 55.3 54.3 16 59.7 62.9 56.4
ACC 6 49.9 46 53.8 17 54.8 55.8 53.8
mPFC 7 41.7 44.9 38.4 18 43.9 18.9 69
OFC 8 49.6 47.9 51.3 19 47.3 39.3 55.3
Amygdala 9 55.8 57.7 53.8 20 60.8 65.7 55.8
Insula 10 61 60.4 61.6 21 71.5 74.4 68.6
Hippocampus 11 47.1 47.5 46.7 22 49.4 50.8 48

*Note: bilateral ROl waseabated to name of the RObidageral insula was abbreviated to insula.
1.1.2 Seprate ROIs for left and right hemisphere

In order to check for possible lateralization effects, we repeated the analysis conducted on the
bilatemal ROIs in section 1.1.1 on septe ROIs of the left and right hemispherd-or
simplification, we applied theombination ofz-score and scaling normalization in the feature
constructiorof all the ROIs, except théTA and VS. The results are reported Tiable 3.4. This
analysis showed that there existed an asymmetithdrciassification performance on several
ROIs. Especially, the performance on the right structure of VS and ACC was significantly higher
than the performanaen the left of VS and ACC: VS (798vs. 53.1% accuracyc = 603.09)

and ACC(68.2%vs.58.90; ¢ =145.94);p<0.0001;Table 3.4).

Table 3.4Theperformance of patteahassification (%6pr the left and right ROIs

ROI Left Hemisphere RightHemisphere
N =4800 @ code Accuracy Sensitivity Specificity Code  Accuracy  Sensitivity  Specificity
VTA 23 54.4 47 61.7 34 51.1 47.2 55
VS 24 53.1 48.4 57.8 35 75.9 73 78.9
DS 25 51.8 56 47.5 36 59.2 53.4 65
Pallidum 26 44.6 65.2 24 37 38.7 20 57.8
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Thalamus 27 52.7 56.3 49.2 38 54.5 59.3 49.7
ACC 28 58.9 59.6 58.2 39 68.2 67.9 68.5
mPFC 29 52.2 51.8 52.6 40 42 49.9 34.1
OFC 30 45.5 34.4 56.5 41 57.5 58.8 56.1
Amygdala 31 52.5 48.5 56.5 42 53.3 34 72.5
Insula 32 50.8 48.8 52.8 43 44.1 39.7 48.5
Hippocampus 33 56.6 48.2 65 44 34.5 46.5 22.6

A.2 Classification performanceombining multiple observation resulisn multiple ROIs

We used Bayesian inference to combine the predictions thierlassifiers on individual ROIs.

We constructed a predictor that included the three best performing individual ROIs (right VS,
right ACC, and insula). Also, we investigated the inclusion of other-pezforming regions
(right DS, right OFC, amygdala, thatais). The results are shownTable 3.5. The combination

of theright VS, right ACC and bilateral insulgelded a significantly higher accuracy than the
individual ROIs (76.9%vs. the VS, 75.9% accuracyc = 3.94 p=0.0472); the ACC, 68.2%

(¢ =14191,; p<0.0001)andtheinsulg 71.5%(c = 69.91, p<0.0001) respectivelylowever,

the additional inclusion of another R@.g. either theright DS orright OFC or amygdalejid

not further improvethe performance (76.9% vs. 73874.4%, 72.2% accuracyc = 96.57,
110.25 211 .46respectivelyp<0.0001)

Table 3.5Theperformance of patteafassificatiorby combining predictions enultipleROIs

ROI Classification performance (%)
ROI code o e
N = 4800 Accuracy Sensitivity  Specificity
right VS- right ACG insula 35¢39-21 76.9 76.3 77.5
right VS right ACG insula- right DS 35¢39-21-36 73.8 74.3 73.3
right VS right ACC; insulag right OFC 35¢39-21¢c41 74.4 74 74.8
right VS right ACG insula- amygdala 35¢39-21-20 72.2 72.5 71.8
right VS right ACG insula- thalamus 35¢39-21-17 73.9 73.6 74.2

B. Classification of subject

As mentioned in the section omethodology, the classification ofsabject as either a relapser or

an abstainewas designed to relgn the synthesis abbservation results on the respopsgterns
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of the brain measured in various blocks for that supgeati the classification result€an be
obtainedfrom the synthesis of various observations eithea @ingle ROI oon multiple ROIs

The results of the two methodse shown inTable3.6. Theaccuracies of subject classification
that were said to be significawith 1% level under the Bonferroni correction were the ones
whose pvalues were smaller than 0.28810° (0.01/(\km); N: number of trials (classified
subjects); N= 400; m: number of observed classifiers in the same context;12; Table 3.6).
This also means th#tte accuracy of a classifier is significant wijh  <0.01 if it isgreater than
61.4% (uncorrecteg-value= 0.15x 10> N = 400; p= 0.5 p: probability of succesin one
trial).

The results showed that there was no significant difference between the classificatien of
responsegatternof t he br ai n ( 60bl odassificatiom afsshjett ip>0.8%).1 on 6)
The classification performance of a combinatiothefright VS, right ACC and insula was better

than trat of the respective individual ROIs (7796. theright VS, 76.5% accuracyd = 0.02;
p=0.8853; the right ACC, 68% (¢ = 12.01, p=0.00%3); the insula 713% (¢ = 5.69

p=0.017. In the other combinations dieright VS, right ACC, insula and eithéme right DS or

right OFC or amygdala, the overall performangas not better than the performance @f
combination otheright VS, right ACC and insula (78%, 74.5%, 72%s. 77% accuracyr =

7.58 8.1, 18.05; p=0.0009, 0.00440.00M2 respectively; Table 3)6

Table 3.6The performanaaf subject classification

ROI Classification performance (%)
N =400 ROl code Accuracy Sensitivity Specificity

right VS 35 76.5 73 80
right DS 36 57.5 54 61
right ACC 39 68 68 68
right OFC 41 57.8 59.5 56
Insula 21 71.3 73.5 69
Thalamus 17 60.5 64.5 56.5
Amygdala 20 61 68 54
right VS-right ACG insula 35¢39-21 77 76 78
right VS right ACG insula- right DS 35¢39¢21-36 73.8 74.5 73
right VS right ACG insula- right OFC 35¢39¢21-41 74.5 73.5 75.5
right VS right ACG insula- amygdala 35¢39¢21-20 72 72.5 715
right VS right ACG insula- thalamus 35¢39¢21-17 74 73.5 74.5
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C. Classification of the response pattern of the brain in the cases whetee patterns of

combined ROIs have been classified into the same class (either class 1 or class 2)

As mentioned abovehe classification of responseoatternof the brainwas designed to be
based orthe combination obbservation results dhe responspatternsof several relevant ROIs
extracted fromits feature vector (Fig..B). As a result, there may b& number of samples
(response pattes of the brain)qolumn N of Table3.7) in which the classification results of the
responsepatterns of combined ROIs were in the sameclass e.gQ w Q w

Q w por' Q w Q Q w pIp 8 U: combined ROIs;Qthe block
from which the feature vectors of ROfs8 O were extractedBy contrast, therenay bealso
species of sample@esponse patterns of the brai@plumn N of Table 3.7) in which the
classification results of the responpatternsof combined ROIs disagreed e.gQ

P "Q w p (orright VS [& +1) and right ACC(x=-1)).

E]

The investigation on all the samples whéhe classification results of response patterois
combinedROlIs extracted from the same feature vector of the brain imetee sameclass
showedthat if the responsegatternsof 2 ROIs €.g. right VSright ACC or right VSinsula or
right ACC-insula)wereclassified into the same clasise classification accurgcrecorded on the
focusedsample setvas up to 86% (Table B); and ifthe responspatternsof these 3 ROlsvere
classified into the same clagbe classification accuracy was over 96% (Table 3.7). Especially,
once the investigation was focused on the samplhesethe responseatternsof 4 ROIs ofthe
right VS, right ACC, insula and right DS were classified into the same thesslassification
accuracy achieved 98.9%.

Table 3.7Classification performance of the response patterns of the brain in the/lersglse response

patterns of combined ROIs have been classified into the sam@:atasisiumber of samples or response patterns of
thebrain created from 10 repeatdédldl@rossalidation procedure on 40 subjectd§DD); N number of samples (or the response

patterns of the brain) which have the agreement classification results oé mespfarmalpatd ROIs extractedtfrosame feature

vector of the whole hisinnumber of samples (or the response patterns of the brain) which have the disagreement classification results
response patts of combined ROIs extracted from the same feature vector of the whole brain)

Classification performance on
N = 4800
Ny (%)
ROI Percentage of Percentage of
excluded samples analyzed samples Accuracy Sensitivity Specificity
NZ/N N1/N
right VS 0 100 75.9 73 78.9
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right ACC 0 100 68.2 67.9 68.5
Insula 0 100 71.5 74.4 68.6
right VS right ACC 36 64 86.7 84.4 88.8
right VS-insula 37.75 62.25 86 84.4 87.6
Insula - right ACC 43.25 56.75 86.8 89.1 84.6
right VS right ACC insula 58.65 41.35 96.2 97.9 94.6
right VS right ACG insulag right DS 76.56 23.44 98.9 97.6 99.8
right VS right ACQ; insulag right OFC 74.92 25.08 95.9 99.6 92.7
right VS right ACC insulag amygdala 78.56 21.44 98.7 98.8 98.6
right VS right ACG insulag thalamus 71.1 28.9 95.8 97.9 94.2
Discussion

The results in this study providarther evidencehat fMRI can identify biomarkerto predict
relapse after detoxification in alcohol dependelideinz et al., 2009; Beck et al., 2012)
Besidesour approachvhere he activation ofrelevantbrain regionds observedseparately and
thenthe observation resultwe combined appropriatelycan have benefits in the investigation of

the role of the brain regions of interest as well as the method of predictive inference based on
multiple lines of evidencén the analyzed disorde©n the other &nd, the results showea n
significant difference between the classificati@sultsof the responseatternof the brain and

the classificatiornresultsof subject (>0.05 Tables 3.3 &3.6). The data can be taken as evidence
for the validity of predictive inference of a neuropsychiatric disorder or its condition using a
synthesis of multiple observations of activation feature of the brain measured by fMRI whenever
the brain is stimulate Such an approach is compatible with diagnostic imaging and leaves open
the opportunity to analyze temporal characteristics of activation data in further studies.

Investigation on individual ROIs
Insula in relapse prediction

With a high accuracy of 78% ( <0.0001 Table 3.3), the insula has demonstrated its
important role in the underlying mechanism mediating relapse. The result is consistent with
recent evidence indicating that the insula plays a crucial part in conscious urges to take drugs,
which can precipitate relapse (Crakf)09; Naqvi &Bechara,2009;Vincentet al., 2012). The

insula has been known as a region that integrates interoceptive states into conscious feelings and
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into decisioamaking processes involving uncertain risk and rewalaqi & Bechara, 2009
Researchresults on smokers who sustained damage in the insula showed that these patients quit
smoking and remained abstinentich more easily and immediately than smokers who sustained
damage in other brain areas (Naqvial., 2007J. In addition, a number of futional imaging

studies have shown that the insular cortex is activated when drug abusers are exdosgd to
cues that trigger cravin@ apertet al., 2004; Filbey et al., 2009; Vincent et al., 2012). A study of
response to conditioned alcohol taste cudlewing experience with the drug in rats indicated

that ethanol intake and preference were formed during the chronic exposure phase, and
inactivation of the insula eliminated this preference (Castro, 20h®. evidencesuggestghat
theinsulamay playan important role inhe mechanism leading to relapse and may be one of the

major targets fothetreatment of drug addiction.
Lateralization

The investigation results of lateralization indicate that the structures of VS and ACC in the right
hemispherecontain much more relevant information distinguishing relapsers from abstainers
than those in the letine In other words, a functional asymmetry appears to exist in response to
alcoholassociated cues between the two hemisphertée striatum and ACCThis result is in

line with results of previous studies indicating that the right hemisphere is more vulnerable to the
effects of alcohol than the left (OseéBerman, 2003). The effects can be characterized by a
decreased volume of structures involving aesvsystem, which occur in the right hemisphere
more pronouncedly than those in the left (Makris et al., 2008), and by the response feature to
alcoholassociated cues showing that activation is more stable in the right VS than the left
(Schacht et al., 2@). On the other handhé observations of Makris et #2008 showed that

the volume of VS increased with length of abstinence in aledépéndent patientsonfirming

that brain atrophy can be partly reversible, and the recovery of such damage margdietar

for abstinenceRuhler & Mann, 201} Taken together, the results of the study provide evidence
for the existence of lateralization for relapse prediction inbttaén regionsof VS and ACC in
response to alcohol cues. However, the source f@ragymmetry still needs further study
because there is a paucity of data on functional lateralization in relapse prediction. Recently, a
study of Becket al. 012 showed an increased brain response of abstainers to cues in both of

the left and right VS @ampared with the response of relapsers. The resgplbortsfor our result
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indicating that both of the left and right VS contain valuable information for the classification
However, weherefound that there was a lateralizati@or relapse prediction irhts structure
where the response patterns of VS recoridetthe right hemisphere were more predictiventha
those in the left hemisphe(the left VS, 8.1% vs. theright VS, 75.9%accuracy; ¢ = 603.09;

p<00001). The method of anadys in the study oBeck et al.(2012 was to identify significant
activation voxels irthe VS distinguishing relapsers from abstainenstainedfrom a statistical
analysisusing aunivariateapproach This approach is different from our approach which is to
classifythe individual activation patternmto the two groups using multivariate method based

on all the voxels of thenvestigated structurévioreover, previous studies of fMRI classification
showthat there exista difference in feature selection betwette univariate and multivariate
approacks (MourdoMiranda et al., 2005)and themultivariate approach fared better thizue
univariate approachn identifying category information in investigated structufi€segeskorte

et al., 2006 Normand et al., 2006 eréra et al., 2009). In any case, the evidence indicates that
the response feature of the VS to alcedsdociated cues is an important indicator for

prognosticatingelapse, which was confirmed in our study.
Validity of deeper focus on structural ROIs

The classification performance of bilateral insula with a size of 1215 voxels was significantly
higher than the performance of both the left insula wisize of 612 voxels and the right insula

with a size of 603 voxels (71.5%s. 50.8% and 441% accuracy;c> = 537.83 and 790.81
respectively;p<0.0001, Tables 3.3 & 3.4). In contrast, the permance of the right VS with a

size of 44 voxels and the right ACC widlsize of 489 voxels were significantly higher than the
performance of the bilateral VS with @ze of 88 voxls and the bilateral ACC withsaze of 987

voxels (75.9%vs. 63.7% accuracy € = 383.7) and 68.2% vs. 549 (¢> = 337.34)

respectively p<0.0001; Tables 3.3 & 3.4). The resultseinforce the assumption thahe
performance of a ROI imelapse prediction mawpot depend on itsize but onits specific
characteristicen response to given stimulation. On the other hasdliscussed in the first study,
since the nature of multivariate metlsosuch as SVM is to exploit attributes of all utp
variables (voxel attribute) to categorize (Wang, 2005; Vapnik, 2000), a classification decision for
a pattern of a RQdising thismethod relies not only on individual voxels but also on correlations
between the voxels within that ROI. The presence @htany voxels which are insignificant for

73



classification or do not correlate closely with the other significant voxels within the investigated
ROI can deflect the dominant classification direction of the significant voxels and cause
misclassification (Pema et al., 2009). Isucha situation, homogeneous attributes of anatomical
structure and function can bring advantages for multivariate anasysce local connections
between neurons of similar specificity famg neuronal groupsirestronge and morecomplex

than those between neurons of the variounetional groups (Tononi, 1994) an other words,

the features of individual voxels or input variableghin the investigated structur@re then
placed in close correlatiolAs a result the low performance ofthe other structures e.g. the
bilateral OFC @9.8% accuracypchievedn this study may originate from our method of feature
selection, which can be improved if their investigated region is localized more homoggneousl
and exactly in terms dhe gructure and functione(g. thebilateral OFC49.68% vs theright OFC
57.%% accuracy,c? = 106.06 p<0.0001; Tables 3.3 & 3.4).0n the other handjue to difference

of location, structure and function thean impact on fMRI measurements (Mathews et al.,
2001), each ROI can require compatible methods of analysis such that it can expose its
distinguishableresponse features in thestpossible wayThis is evidenced by the significant
differencesof classificaton performance on several ROIs between ugheg combination
method ofz-score and scaling normalizatiandthe singlemethod of scaling normalization such

as the VSh2.7% vs. 63.% accuracy respectively; = 14678, p<0.000% the insula, 71.5% vs.

61% accuracy respectively, =260.47 p<0.0001(Table 3.3).

Validity of combining multiple observation results on multiple ROIs

Giventhe situation that there is no R@laying a deisive role in predictionasiag ol d st andar
the prediction can be based on an extensh®ervation on multiple relevant ROIs to obtain

higher accuracy compared witinedictionsonly based oma singleobservation on a single ROI.

The assumption is supported by the better performance combining leoligervation results

on the VS, ACC and insula than thosesinga single observation result @m individual ROI

(76.9% vs.the right VS, 73%, the ACC, 68.2% and the insula, 7R&accuracyrespectively

p<0.05; Tables 3.3 & 3.5). Theesult provides adence that specific response features of the

brain to specific stimuli caspreadacross severatlevant brairregions Barry et al., 1999), and

that they can be identified and integrated into an ovpretiireused for predictive inferenazf

brain di®rder This also suggests that the response patternglifiérent brain regionswith
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different structures and functioean be observed independently, and the more the brain regions
manifest the response featsithat areclassified into the same class, the higher the classification
probability into that class (Table7d. Such arapproach camnable us to prognosticatelapse

risk via functional imaging with an estimable confiden&dditionally, our study was conducted

on the sample with no significant difference in clinical data between the two groups of
subsequent relapsers and abstainers after detoxification (Table 3.1), and fMRI measurements
were carried outabout 2 weeks after detoxification, before participantsewidentified as
relapsers or abstainers 6 months later (Table 3.1). These data provide evidence demonstrating

that fMRI can identify biomarkeifor relapse prediction in alcohol dependence.

An addition of ROIs such as eith#re right DS with 59.2% accurag or the right OFC with

57.8% accuracyor theamygdala with 6.8% accuracy) to the combination thie right VS, right

ACC and insula did not yield better performan@8.8%, 74.4%, 72% vs. 76.9 accuracy
respectively;p<0.0001; Tables 3.3-3.5). However, ifthe observation was only focused on the
samplesvherethe response patterns of all the combined ROIls extracted from the same feature
vector of the brain were classified into the same class, the classification acmuiticy sample
setincreased linearly with the number of combined ROIs from appropriately 86% accuracy for
the combination of two of the three ROIs: right VS, right ACC and insula to 98.9% accuracy for
the combination of four ROIs: right V&ght ACC-insularight DS (Table 3.7)Unfortunately

unlike theaccurag increase, the number of agreemsarnplegdiminishedcorrespondingly from
appropriately 60% to 23.44% (Table 3.7). This shows that there existed greater differences of
classification results of the response patternandfvidual ROIs when the number of the
combined ROIs was increased, and misclassification of the added ROIs (e.g. right DS) can
deflect the correct inference direction of the other ROIs in some analyzed samaiag/esian
inference Htefan & Lionel, 201)land lower the overall performance. Despite this, in a positive
aspect, the results reinforce the potential for increasing classification accuracy by methods of
controlling the combination of the evidence collected from the ROIs in the inference process.
One of the commonly used methods in clinical practice is to eliminate from the inference process
ambiguous signs or symptoms that in this context are the indistinguishable response patterns of
ROIs which can cause misclassification. How to identify thestmdjuishable response patterns
reliably and whether it may be a feasible approach to diagnostic functional imaging in practice

are the issues which will be addressed in the next chapter.
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CHAPTER IV
IMAGING APPROACH IN f MRI CLASSIFICATION

Introduction

In the first and second studjebe classification of response patterndhaf investigated ROIs
was implemented automatically by machiheorderto realize diagnostic functional imaging in
clinical practice, our thirétudy was designed for the initistep of imaging gmoach based on

the indication of machinbased image recognition. Specifically, it offersvay to allow ugo

have insights intoindividual response patterns accompanied with their corresponding
classification decisiongbtainedfrom machine by which meanswe can graduallyearn and find

out rules ofthe classificaton for the response patterns of thgestigated brain region3his
would open an important window intdifferencesof individual functional images identified by
machine mference between the two investigated classes, which would alloving beyond

groupbased analysis artd theimportant clinical realm ofliagnostic imaging.
Materials and Methods

Materials

This study was a continuation of the second stwdyjch delvesieepelinto theinvestigation of
machinebasedclassification decisions and discernibility level of classified patterns between the
two classesi.e. relapses and abstainer Thus, the materis and data prerocessing in this

study were those used in thecond study.
Methods
Outline of the method

The response patterns of each brain region collected from relapsers and abstainers were
consideredas experience of response imaging of that region to given stimulation for the two
classes. To learn the experience better, these patterns $leotdehked according to different

level oftheresponse feature between the two classes. The ranking would fdbaia bank of the

ranked response patterns for each brain region for relapse risk which cém d¢igipin an insight
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into the response imagesf this brain regiormore easilyand to facilitateclassification. The
method was designed in three steptepl: constructing and collecting the response patterns of

ROls; Step 2ranking the collected patterrStep 3:validating the ranking.
Step 1:Constructing and collecting the response patterns

The featire selection for individual ROIs wappliedin a maner similar to thatusedin the
second study. Consequently, for a particular RQleach subject provided 12 response
patternsf) N'Q p© p ¢; and for20 relapsers and 20 abstainers, 480 response patterns were
collected and interpreted as 4B@lependent observations of response images of the RO

alcohol cues. Thewere used as input data of the correspondiasgsifier'Q.

Based on the findings in the previous studies of relapse in alcohol dependence as well as the
results in the secwl study (Makris et al., 2008; Schacht et al., 2011; Beck et al., 2012), the brain
regiors, which play an important role in relapse predictimere selected for the investigation in

this study including the right VS, right ACC and insuks those in thesecond studythe

functional ROIs for these brain regions were also just toenesponding structural ROIs.

Step 2:Ranking the response patterns of individual ROIs
Defining index of the ranking & algorithm of the ranking

As mentionedabove the set of the 480 response patterns for each @@by be viewed as
experience or data bank of response imaging of that ROI of alcoholic patietiis doven
stimulation accumulated from thea investigated groups comprisi2@ relapsergclass 1)and

20 abstainerfclass 2) The ranking was carried out based on the assumption that in the collected
patterns there may be the patterns shovamgominent difference between the two classes
while the otherpatternsmanifest the confused or indistinguibla difference and that the
different levelcan be detectethrough classification. From thassumption, the classification
result of a patternn can be used to measure the differerlegel of that pattern. This
differencelevel was also defined as the discernibility level showiredegree of separation of
the pattern between the two classes (Voulgaris & Mirkin, 2008). Moreover, from validity
standpoint, it is logical that the measurement obtained from a single classificay be less

reliable than those obtained from a synthesis on multiple classificaokar(& Kononenko,
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2002 Voulgaris & Mirkin, 2008), and the degree of agreement of the classification decisions

over the various classifidahs would give an indation ofconsistency of the discernibility level

of that pattern (Douglas, 2007).

On this basis, for each R@Mhthe ranking index of a response pattein for a class @ was

defined a4 h e

ratio of the number of tests in whithe pattern)

number of tests. In the study, a pattemn

6cl assifiedni imddassdo which wasestimptedtbyhe r n

is classified into the classy to the total

was classified into one of the two classes, so the

classification value of the pattern

for class 1 is the complement diss 2. Likewise, the

ranking index of the patterm)

for class 1 is the complement déss 2. For this reason, we

only considered the ranking inde¥ [Qof the patterni)

from 1 to Qwi t h | evel 616 i

ndi

for class 1 (relapser clas#) ranged

cating the most

indicating the lowest discernible response pattermelapser classr inreverse orderindicating

the mostdiscernble patternfor abstainer class (class
(Y Yof the patternn

Ziven thisdesign, the ranking index

can be seen ake index of relapse risk for that pattemp . Onthis

basis, we hope that for each R@lranked scale of the response pastevith the ranking index

of relapse risk would be formed which dailitate imaging approacand whichcan be used in

classification.
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Creating examples andalculating ranking index

The 10repeated 1@old crossvalidation procedure waapplied similarly to thausedin the
second studyHowever, in this studyfor each loopof training and testing(Y), instead of a
single training setd ), each training segment Qi 'Q ©f eachnested loogé Qi H'@TQ

5 x 9) within the training set® created fromthe stratified 9old crossvalidation procedure
repeated 5 timewas used as separateraining dataset for the loop({ ), and thecorresponding
testingset O ) was thedataset including the 4 patientssedfor the testing otheloop © ) (Fig.
4.2)

A0-alcoholic

sample g -Eﬂ testing _ Fold for testing (&%)
e || [
Loop 1 | ’ J: | Classification cycle for the 17 loop (L) .
4 - -
2 = .
a S_ = [ ».em.f 3!] :[ ] i
a =1 L] | I — HE i
= = | i i
= | . || T | .
————— training [ [ | S-repeated 9-fold CV
45 nested loops T
10 times
repeated
1 10-fold CW
] E ((pmi| test
| H @ = g i =
z 2 f—
= S
g 8| |E
= i
= 1 | i
I 1 B
8] O Loop 100 |
] | B
— =1
— = |
— = |
= ) raining

Figure 4. 2Creatingexamples focalculaing the ranking index of relapse r{€i/: crosgalidation)

With this design, eaclof the responsepatterrs 1 recorded forthe 4 patientsof the testing
datase{0 ) was classified 45 times for each loap)( Based on these classification results, the
ranking index for thepattern )  was estimated. d avoid an optimisticesult (Pereira et al.,
2008) the ranking index foeach patternry  was estimated only for the classifications where
this patterrhas been partitioned into the testing(®e). With thecrossvalidationprocedure, for
each round, a different fold of tliata was used in turn for testing. This also means that for each
round, a particular subject or the pattern)s recorded for that subject appeared only once in a
testing segment. As a result, for 10 rounds of theep@ated 1@old crossvalidation procedure,

each patternr)  was classified 450 timg$ = 45x 10).
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Classifying the response patterns of ROI
a. Smilarity and dissimilarity between the response patterns

With the method of feature construction  coordinete Atribute

of voxel of voxel

described earlier, a response pattefn  of Y.z [, Al | e Yizi]
% . [Xz Y2 Z2] a, '-'1.:( [X2 Y2 Z5]
each ROI'Qwas afeature vectorholding the a, ot

Dissimilarity

attributes of all the voxels of the ROR

recorded within a block (Fig. 4.3). Therefore, : Distance

the similarity and dissimilarity between the two

different patterns may be characterized by the %" & %] vz
distance between them with the rule that the pattemn (i) pattem (i)

larger the ditance, the larger the dissimilarit Figure4.3 Attribute oftheresponse pattern

between the two patterns and vice versa (Duda et al., 2001). Theevaraldistance measures
one of which is estimated by the Euclidean distance (McCune & Grace, db@2jormula of

the Euclidean distance is ajgal as follows:

Whera) I are two different response pat®msfty andQr [ are the Euclidean distance between the two
patternspf fo ), ¢ hd ) , & hd, ) are the pairs of corresponding variables (or attributes of voxels) af the patterns
andn ; [XY,Z] are the correspondingdinates of voxels in the MNI standard space of investigatedlRDIqthé

size of the ROI) (Fig. 4.3).

Onthis basis, a pattern can be simply classified into a classif the dissimilarity of the pattern

to that class @ is the smallest, or in other words, the distance from the pattern to the
representative pattern of the class is the closest. The representative pattern of a class may be
defined by the mean vector of that class (Scholkopf & Smola 2000; Balakrish@am
Ganapathiraju, 2013). This simple method of pattern classification maygdvepriataf data for

the clasdication are spread evenly all directions, and the feature space is isotropic (Duda et
al., 2001) However, this is the problem for originfMRI data because they are often very high
dimensions in the feature space (Song et al., 2009). The obstapl®imgrtedhe formation and

development of algorithms of pattern classification for such data.
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b. Classifiers

The algorithm was applied fmatternclassification in this studiy the same way &an the second
study. Likewise, for each RAba separate SVM classifid@was also used to classify its
response patterfy  into either class 1 (relapse class) or class 2 (abstainey. dtasge\er, in
this study, lsides the class classification for the response pdtiern(into either class 1 or
class 2) we considerethe confidence level of the classification decisids mentioned in the
methodology in the first studyhe classclassification for goattern )  relies onsign of the
distance of the classified pattern  from the optimal margin hyperplane of the classifier
"Qn i QQer n o I'Fig. 2.3)while the confidence level of this decision depends o

the absolute value of this distance) % Moo @ since this value shows the degree of

separation of the patterm, between the two classes. Specifically, this implies tinatiarger

the absolute decision value, the higher the confidence ofléissification decision\lachos,
2004) Thus, this value can be used to measure the discernibility level of the response pattern.
Nonetheless, it is anncalibrated valuenapped in R (Platt, 200&apnik, 2000. Moreover, the
calculation of this decisionalue depends strictly on the support vectdemtified during the
training. Accordinglythe decision values produced by SVM classifiers with different kernels or
with different training datasets cannot be used to compare each\édparik, 2000. In order to

get the estimate more standardized, the decision values are mapped into prob&uatfitees
detailed descriptigrreference is mad® Platt, 2000T.F. Wuet al., 2004In the study, both of

the two estimates were evaluated and compared withatiiéng index. Moreover, to evaluate
outperformance of classification with SVIvihe classification results of inddual ROIs with

this method wereompared to thosebtainedwith the method in which data were classified in
their original input space witthe simple decision rule based on the difference of the Euclidean

distance from the mean vectors of the two classes.

The normalization of data as well as the selection of kernel and-pgp@meters for SVM
classifiers was appliedh a way similar to tha usedin the second studyBased on the
classification performance of the ROIs in the second study both the scaling-soulez
normalization were applied to the right ACC and insula while only the scaling normalization was
applied to the right VS.
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Step3: Validating the ranking
Ranking index,decision valueand probability estimate

The ranking index of a patterm;  was designed as an indicator of the discernibility level of
the pattern between the two investigated classes and was estimatedybthesis of class
decisions for the pattern from various classifications. Thus, the ranking index of a pattern was
seen as the result of measurement for its nature. With such a design, the key to idgtérein
validation of the ranking is validity ancklrability of the measurement. Fortunately, for SVM
classifiers the discernibility level of response patterns between the two investigated classes can
be characterized by their outputs such as the decision values or probability esttadtte2000;

T.F. Wu et al., 2004Vlachos, 2004; Voulgaris & Mirkin, 2008from this basis, to investigate

the validity of the ranking index corresponding to what it is supposed to me@Suorberlin &
Winterstein 2009, the ranking index of the response pattern for each'®@ds compared with

the corresponding decision value and probability estimate through correlation between them, and
for evaluation of the reliabilitywe investigated stability and consistency through convergence of
the index(Kimberlin & Winterstein 2008.

For investigationof the correlation, the ranking index of each pattern obtained after
classifications was calculated according to the definition described earlier while the decision
value and probability of that pattern was the average value of all the corresponcigignde

values and probabilities over theclassifications§ = 450).

For the convergence, we investigated variation of the ranking index of the response patterns
during classifications. For each RQbthere were the collecte4B0 patternseach ofwhich

was classified 450 times. Consequently, a representative index for theatd&M set at the

Q classification was estimated by an average valu® [Qver the 480 ranking indices of the

480 patterns obtained aft&classifications @p© 0 N0 = 450; Fig. 4.4). Together withthe

observation of the variation of this representative index duringclassifications, its
corresponding expectation value O @'Y O BO—FTQ pO 0P 1 v mand error rate
(Oi) compared with the eegoted ranking index at the last classification

(0i *——3rfQ po 0P =450) were taken into account as well.
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Figure 4.4 Investigation
of convergence of the
ranking indeXN =480 for
each ROI) =450;Y0
the ranking index of tt
pattern 'Q at the Q

classification;® 'Y *O the
averaging ranking ind
ower all the patterns %N

480) at the Q
classification).

Ranking index andclassification
a. Classification of the response patternsrafividual ROIs

After ranking the 480@pattern set for each RODcan be viewed as the scale of the unlabeled
response patterns of that RG] for relapse risk accumulated from 20 relapsers (class 1) and
20 abstainers (class 2). The ranking index of a pattgrn was considereds the indexhowing

the position of that patternnothe scale. Hence, the ranking index is only an indicatoreof th
discernibility level of the response pattdon relapse risk rather thanlabel of the patternn

in either class 1 or class Blowever, thanks to this indication, it can be used to classify the
pattern ) with the rule that if the rankintndex of the patternry is equal or greater than
0.5 RI20.5), the pattern iglassified into class 1nd by contrast, if the index @naller than 0.5
(RI<0.5), the pattern islassified into class 2. In the study, the application of the ranking index in
classification was carried out at the last classification ¥ 450), and for each RQthe
performance was evaluated thre classification results of all the response pattefriat ROI

(N = 480)

To compare the ranking based on the decision value and probability estimate, the classification
results of the response patterns based on the average decisioricvaligednd the average
probability estimaté 0 i }ésdmmaized from thed classifications were considered as wall (

= 450) The decision rule for these classifications was similar to those made by SVM classifiers.
For the decision value, if the average decision valLi@ Qdf a patternt) is equal or greater

than 0(cy O'Q it , the patterns classified into class, &andby contrast, ity O 'Q di, the patern is

classified into class.2For the probability estimate, if the average decision valu@ i( }éofa
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