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ZUSAMMENFASSUNG 

Trotz zahlreicher Hinweise darauf, dass die zerebralen Aktivierungsmusterin der funktionellen 

Magnetresonanztomographie (fMRI) in Reaktion auf krankheitsassoziierte Stimuli zur 

Diagnostik und Prognose verwendet werden könnten, wird das fMRI zur Bestimmung von 

Biomarkern der Alkoholabhängigkeit in der Praxis bisher nicht angewendet. Das Ziel dieser 

Dissertation war die Entwicklung von Voraussetzungen, die die Identifizierung von 

Alkoholabhängigkeit und auch die Vorhersage des Rückfallrisikos in der klinischen Praxis 

mittels fMRI ermöglicht. Diese Arbeit beinhaltet (1) die Identifizierung wichtiger Hirnregionen 

(ROI; region of interest) im Prozess der diagnostischen und prognostischen Klassifikation von 

fMRI; (2) die Anwendung der Bildgebung und (3) die Validierung der Methode. 

Die erste Analyse in dieser Dissertation fokussiert auf die Identifizierbarkeit von Hirnregionen 

(ROIs), die für die Klassifikation bedeutsam sind. Diese Studie wurde an 50 alkoholkranken 

Patienten und 57 gesunden Kontrollen durchgeführt. Die Ergebnisse zeigten die Überlegenheit 

der Güte der diagnostischen Klassifikation (Patienten vs Gesunde) mittels funktioneller ROIs 

z.B. für das ventrale Striatum (VS, 63.9% Genauigkeit), das vorderer Cingulum (ACC, 62.8% 

Genauigkeit) im Vergleich zur Klassifikationsgenauigkeit mittels der Gesamthirndaten (61.8% 

Genauigkeit) oder des präfrontalen Cortex (PFC, 51.8% Genauigkeit). Diese Daten legen die 

praktische Anwendbarkeit von funktionellen ROI Analysen auf das fMRI mit Hilfe multivariaten 

Methoden wie Support Vector MachineVerfahren (SVM) nahe. 

Die zweite Analyse bezieht sich auf die Anwendbarkeit der Methode auf die Vorhersage eine 

Trinkrückfalls. Diese Studie wurde bei 40 Patienten, aufgeteilt in 20 abstinente und 20 

rückfällige Patienten durchgeführt. Die Patienten wurden zufällig aus den 50 alkoholkranken 

Patienten in der ersten Studie ausgewählt und nach der Entgiftung über einen sechs monatigen 

Verlauf nachuntersucht. Die Klassifikationsergebnisse zeigten, dass die Aktivität des VS, des 

ACC und der Insula eine hohe Genauigkeit in der Rückfallvorhersage mit 63.7%, 58.1% und 

71.5% besitzen. Hier beizeigten das rechte VS und das rechte ACC höhere prädiktive Werte als 

dieselben Strukturen in der linken Hemisphäre (75.9% und 68.2% im Vergleich zu 53.1% und 

58.9%). Eine Kombination aus dem rechten VS, dem rechten ACC und der bilateralen Insula 

ergab eine bessere Vorhersage (76.9% Genauigkeit, p<0.0001). 
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Die dritte Analyse fokussiert auf die Anwendung der Bildgebungsverfahren und verwendet die 

Daten aus der zweiten Studie. Die Methode basiert auf einem Ranking-Index, dem Grad der 

Aktivierungsunterschiede zwischen den zu trennenden Klassen. Die Ergebnisse zeigten eine gute 

Reliabilität und Genauigkeit des Index welche durch hohe Konvergenz und deren hoher 

Korrelation mit den Ergebnissen der SVM Klassifikatoren charakterisiert ist. Weiterhin erreicht 

die Rückfallvorhersage für den Patienteneine Genauigkeit von 80%, 72.5% und 70% 

(p=0.00002, p=0.0011 und p=0.0032), wenn die Vorhersage auf den Ranking-Indizes der 

Aktivierungsmuster des rechten VS, rechten ACC oder der bilateralen Insula basiert. 

Zur Überprüfung und Validierung des Klassifikationsansatzes auch in der klinischen Praxis 

wurden zwei Pilot-Analysen durchgeführt. Basis dieser Analysen waren die Daten der dritten 

Studie. Basis dieser Analysen waren die Daten der dritten Studie. Die erste Pilotanalyse umfasste 

das Monitoring des Krankheitsverlaufes nach Entzug mittels der spektralen Darstellung der 

zerebralen Aktivierungen. Es zeigte sich ein signifikanter Unterschied in den Spektren des VS 

beim Vergleich der Patienten mit und ohne Trinkrückfall. Die zweite Pilot-Analyse zielte auf das 

Erfassen on korrelativen Zusammenhängen zwischen Bildgebung und klinischen Parametern ab 

mit dem Ziel einer Validierung an den Verhaltensdaten der Patienten. Die Ergebnisse zeigten 

eine mittelgradige Korrelation zwischen dem Ranking-Index und dem durch eine visuelle 

Analogskala gemessenen Grad von Durst und Hunger (VAS-TH) auf der Basis 

Aktivierungsdaten des rechten VS, des rechten ACC und der bilateralen Insula (z. B. für die 

Insula, R=-0.674, p=0.003). 

Trotz einiger methodischer Limitationen zeigen die vorgestellten Daten die Relevanz bestimmter 

Hirnregionen für die Diagnostik und die Vorhersage des Verlaufes bei Alkoholabhängigkeit mit 

Hilfe des fMRI. Die Daten sind eine erste Grundlage für die weitere Forschung zur Frage 

inwieweit fMRI basierte Biomarker bei der Diagnostik und Prognose neuropsychiatrischer 

Störungen eine klinische Bedeutung erlangen kann.  

Keywords: Alkoholabhängigkeit, Rückfallvorhersage, fMRI, SVM, ROI, ROI-Kombination, 

Bayes-Inferenz, Erkennbarkeit Ebene. 
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ABSTRACT 

Although there is much evidence indicating that cerebral activation patterns in response to 

disease-related stimuli measured by functional Magnetic Resonance Imaging (fMRI) may be 

used as criteria for diagnosis as well as prognosis, the application of fMRI as biomarkers in 

alcohol dependence remains challenging. The aim of this dissertation was to develop a 

framework which enables the identification of alcohol dependence as well as the prediction of 

relapse risk in clinical practice using fMRI, namely (1) Specifying important brain regions in 

fMRI classification; (2) Approaching imaging; (3) Validating the approach.  

The first analysis in this dissertation focused on the identifiability of important brain regions for 

the classification. This study was conducted on 50 alcoholic patients and 57 healthy controls. 

The results showed the outperformance of diagnostic classification (patient vs. healthy) on the 

activation images of functional regions of interest (ROIs) collected from important brain 

structures in alcohol dependence, e.g. from the ventral striatum (VS, 63.9% accuracy); the 

anterior cingulate cortex (ACC, 62.8% accuracy) compared to those from the whole brain 

(61.8%, accuracy); the prefrontal cortex (PFC, 51.8% accuracy). The evidence suggests the 

practicality of functional ROI analyses in fMRI classification using multivariate methods such as 

support vector machine (SVM).  

The second analysis referred to the applicability of such an approach to the relapse prediction. 

This study was conducted on 40 patients including 20 relapsers and 20 abstainers drawn 

randomly from the 50 alcoholic patients used in the first study and followed up six months after 

detoxification. The results showed that the prediction using the activation images of VS, ACC 

and insula achieved high accuracies (63.7%, 58.1% and 71.5%, respectively). In addition, the 

activation images of VS and ACC recorded in the right hemisphere were more predictive than 

those in the left hemisphere (75.9% and 68.2% vs. 53.1% and 58.9% accuracy, respectively); and 

a combination of the individual predictions from these ROIs including the right VS, right ACC 

and bilateral insula gave a better prediction (76.9% accuracy; p<0.0001).  

The third analysis offered an imaging approach. This study was conducted using the data of the 

second study. The method was centered on the ranking index characterizing the degree of 

separation of activation images between the two classes investigated. The results showed 



7 

 

reliability and certainty of the index through the characteristics of convergence and the strong 

and positive correlation between it and outputs of the SVM classifiers. Further, based on the 

ranking indices of the activation images of the right VS, right ACC and bilateral insula, the 

relapse prediction for the patients achieved 80%, 72.5% and 70% accuracy, respectively 

(p=0.00002, p=0.0011 and p=0.0032).  

In order to examine applicability of the approach in clinical practice, the two pilot analyses were 

conducted on the data of the third study. The first pilot analysis involved the monitoring of 

disease progression after withdrawal using spectral representation of the cerebral activations. The 

results showed a significant difference in the spectrum of activation images of the VS when 

comparing the patients with and without drinking relapse. The second pilot analysis was captured 

on correlative relationships between imaging and clinical variables with the aim of validating the 

data on the behaviour of patients, which can make an inference of the analyzed brain disorder 

more reliable. The results disclosed a moderate correlation between the ranking index and the 

visual analog rating scale of thirst and hunger (VAS-TH) on the basis of activation data of the 

right VS, the right ACC and bilateral insula (e.g. for the insula, R=-0.674; p=0.003).  

Despite several methodological limitations, the presented data show the relevance of specific 

brain regions to the diagnosis and prediction of the progression of alcohol dependence using 

fMRI. The data are the first basis for further research on the question of whether fMRI-based 

biomarkers can attain a clinical significance in the diagnosis and prognosis of neuropsychiatric 

disorders. 

Keywords: Alcohol dependence, relapse prediction, fMRI, SVM, ROI, ROI combination, 

Bayesian inference, discernibility level. 
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CHAPTER I  

INTRODUCTION  

Since its discovery by ancient Egypt and Greece (5
th
 Before Christ), alcohol has been seen as a 

ñdrink madnessò substance, and drunkenness has been referred to as a body and soul sickness 

(William et al., 2001). Along the time line, together with the advancement of science and 

technology, many mysteries of alcohol addiction have been gradually uncovered. Nowadays, 

alcohol addiction or alcohol dependence, originated from long-term alcohol drinking, is 

recognized as a common neurobiological brain disorder, which is treatable (Helga, 2011). The 

source of its pathogenesis comes not only from alcohol but also from many factors such as 

genetics, environment, stress, personality, comorbidity, drug history, and so on. It eventually 

leads to neuroadaptation to the effects of alcohol (Koob & Le Moal, 2008). The structural change 

of the brain in adapting to environmental factors is a natural characteristic (Jones and Bonci, 

2005), and the characteristics of brain activity at a given time can reflect the condition of 

alcohol-dependent patient at that time (De Witte, 2004; Koob & Volkow, 2010). However, at 

present the evaluation of such a condition is based mostly on clinical manifestations through 

direct physical examination. Although there are significant improvements in clinical 

consultation, the accuracy of diagnosis is much dependent on subjective measures of physicians 

and patients. Therefore, a more objective and accurate method is a practical need in the treatment 

and follow-up of alcohol-dependent patient. With the aid of functional magnetic resonance 

imaging (fMRI) and the methods of data analysis, this has gradually become achievable. A 

specific question posed here was whether fMRI can provide useful biomarkers in clinical 

practice for diagnosis as well as prediction of the relapse risk after detoxification, and this was 

also the problem that we aimed to address. 

BACKGROUND   

ALCOHOL DEPENDENCE  

Alcohol abuse and alcohol dependence are significant public health problems all over the world. 

With the serious medical, economic and social consequences, the World Health Organization 
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Table 1.1. DSM-IV-TR diagnostic criteria for alcohol dependence 

 A maladaptative pattern of alcohol use, leading to clinically significant impairment or distress, as manifested by three 

(or more) of the following, occurring at any time in the same 12-month period: 

(1) Tolerance, as defined by either of the following: 

      (a) A need for markedly increased amounts of the alcohol to achieve intoxication or desired effect 

      (b) Markedly diminished effect with continued use of the same amount of the alcohol 

(2) Withdrawal, as manifested by either of the following: 

      (a) The characteristic withdrawal syndrome for the alcohol 

      (b) Alcohol is taken to relieve or avoid withdrawal symptoms 

(3) Alcohol is often taken in larger amounts or over a longer period than was intended 

(4) There is persistent desire or unsuccessful efforts to cut down or control alcohol use 

(5) A great deal of time is spent in activities necessary to obtain the alcohol (e.g. driving long distances), use 

alcohol or recover from its effects 

(6) Important social, occupational, or recreational activities are given up or reduced because of alcohol use 

(7) The alcohol use is continued despite knowledge of having a persistent or recurrent physical or 

psychological problem that is likely to have been caused or exacerbated by the substance (e.g. continued 

drinking despite that an ulcer was made worse by alcohol consumption). 

(WHO) has viewed them as one of the leading risk factors for premature death and disabilities in 

the world, which is in the same order as tobacco and hypertension (Helga, 2011).  

Alcohol is a toxic substance in all aspects of its direct and indirect effects on a wide range of 

body organs and systems (Rehm et al., 2009). The effects of alcohol cause medical, 

psychological and social damage. As the toxic effects of alcohol damage all organs of the body, 

excessive alcohol use has serious health consequences to the individual and may lead to liver 

cirrhosis, gastritis, ulcer, pancreatitis, gastrointestinal cancers, neuropsychiatric diseases, 

cardiovascular diseases, etc. (Room et al., 2005; Mack et al., 2010). With chronic drinking and 

repeated intoxication, a cluster of interrelated behavioural, physical and cognitive symptoms 

develops which is referred to as alcohol dependence (Thomas et al., 2001).  

What is alcohol dependence? 

Alcohol dependence, also known as alcohol addiction, is a chronically relapsing disorder 

characterized by criteria such as tolerance development, withdrawal symptoms, drug craving and 

reduced control of drug intake (WHO, 1992; Diagnostic and Statistical Manual of Mental 

Disorders, 4
th
 edition (DSM-IV; (American Psychiatric Association (APA), 1994) and its Text 

Revision (DSM-IV-TR; APA, 2000); Table 1.1). 
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Á Criteria (1), (2) may describe the physical dependence.  

Á Criteria (3), (4) may describe the state of ócravingô, which is a strong desire and urge to 

consume alcohol, as well as loss of control.  

Á Criteria (5), (6), (7) refer to the compulsive state and reflect the social and medical 

consequences of alcohol consumption.  

Although the clinical criteria were established in DSM-IV or in several questionnaire protocols 

such as Alcohol Dependence Scale (ADS), Michigan Alcoholism Screening Test (MAST), 

Alcohol Urge Questionnaire (AUQ), Obsessive Compulsive Drinking Scale (OCDS), etc. with 

the aim of supporting the diagnosis of alcohol dependent condition more accurately, clinicians 

often donôt have clear boundaries to diagnose definitely the condition of the disease (Mack et al., 

2010; Helga, 2011). This suggests a need to develop better support tools in the future.  

Stages of addiction 

Drug addiction, including alcohol addiction, is today seen as a chronic relapsing condition 

characterized by (a) compulsion to seek and take the drug, (b) loss of control in limiting intake, 

and (c) emergence of a negative emotional state (e.g. dysphoria, anxiety, irritability) when access 

to the drug is prevented (Koob & Le Moal, 2005). The chronic effects of alcohol cause 

neuroadaptation in brain structure, plasticity and altered gene expression, leading to persistent 

changes in brain functions and transition from controlled to compulsive alcohol use (Helga, 

2011). Such an addiction cycle is composed of three stages: óbinge/intoxicationô, 

ówithdrawal/negative affectô, and ópreoccupation/anticipationô (craving) (Koob & Volkow, 2010). 

The stage of óbinge/intoxicationô: VTA and VS including nucleus accumbens 

This stage is characterized by a positively reinforcing effect, primarily mediated by the 

mesolimbic dopamine system, and is an important starting point for the transition to addiction 

(Koob & Volkow, 2010). The mesolimbic dopamine system plays a core role in reward, and the 

initial action of alcohol reward has been hypothesized to be dependent on dopamine release in 

this system (Heinz et al., 2009). Alcohol, via endorphin release in the ventral tegmental area 

(VTA), stimulates inhibitory opioid receptors located on GABAergic interneurons in the VTA 

and thereby indirectly disinhibits dopamine neurons (Fig. 1.1) (Steven et al., 2006). On the other 
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hand, the nucleus accumbens is located strategically (Fig. 1.4) to receive important information 

of the limbic system from the amygdala, frontal cortex, and hippocampus which can be 

converted to motivational action through its connections with the extrapyramidal motor system. 

Thus, the nucleus accumbens plays a critical role in the acute reinforcing effects of drugs, 

together with the supporting role for the central nucleus of the amygdala (CeA) and ventral 

pallidum (Fig. 1.4) (Koob & Volkow, 2010). 

 

 

 

 

 

 

 

 

The stage of ówithdrawal/negative affectô: the extended amygdala 

The stage of acute withdrawal is characterized by changes of the within-system changes reflected 

by a decrease of dopaminergic activity in the mesolimbic dopamine system and by the between-

system recruitment of neurotransmitter systems that convey stress and anxiety-like effects such 

as corticotropin-releasing factor (CRF) and dynorphin (Koob & Le Moal, 2008). 

Within-system neuroadaptations 

A within-system neuroadaptation in addiction is a molecular or cellular change within the reward 

circuit in order to adapt to overactivity of hedonic processing associated with addiction, which 

results in a decrease in reward function (Koob & Volkow, 2010). Decreases in activity of the 

mesolimbic dopamine system and decreases in serotonergic neurotransmission in the nucleus 

accumbens was recorded during alcohol withdrawal in a study on rats (Weiss et al, 1996): 

ñWithdrawal from the chronic ethanol diet produces a progressive suppression in the release of 

dopamine and serotonergic neurotransmitters in the nucleus accumbens over the 8 hour 

 

Figure 1.1.  Actions of opiates, 

nicotine, alcohol, and phencyclidine 

(PCP) in reward circuits.  

The dopamine neurons in ventral 

tegmental area (VTA) (bottom left) project 

to the nucleus accumbens (NAc) (bottom 

right). Different interneurons interact with 

VTA neurons and NAc neurons. Alcohol, 

acting on GABAA receptors in the VTA, 

can cause dopamine release (Source, 

Steven et al., 2006). 
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withdrawal period. Self-administration of ethanol reinstates and maintains brain dopamine 

release at pre-withdrawal levels.ò In addition, many studies of neurochemicals as well as 

imaging have shown that long-lasting reduction in the numbers of dopamine D2 receptors 

reflecting a hypodopaminergic state and the hypoactivity of the orbitofrontal-infralimbic cortex 

system in drug abusers compared with controls during this time (Volkow et al., 2003).  

Between-system neuroadaptations: mutual changes between reward system and antireward system 

In addiction, a between-system neuroadaptation is a circuitry change where the antireward circuit 

(brain stress circuit) is activated by excessive activity of the reward circuit. This activation 

generates opposing actions to limit the reward function (Koob & Le Moal, 2008). Both the 

hypothalamicïpituitaryïadrenal axis (HPA) and the brain stress/aversive system mediated by the 

corticotropin-releasing factor (CRF) are activated during acute withdrawal from chronic 

administration of all addictive drugs with a common response of increasing adrenocorticotropic 

hormone, corticosterone and CRF (Koob & Kreek, 2007).  Simultaneously, a hyperfunctional 

glutamatergic state is also recruited 

during this time (De Witte, 2004).  

Typically, this stage is characterized 

by a dysfunctional hypodopaminergic 

state and the recruitment of 

antireward mechanisms, which it 

may be the source producing 

negative emotions by engaging 

activity in the extended amygdala, 

primarily via the corticotropin-

releasing factor, norepinephrine in 

the hypothalamic-pituitary-adrenal 

axis and dynorphin (Helga, 2011). 

The stage of ópreoccupation/anticipationô (Craving): a widely distributed network 

The preoccupation/craving stage has been hypothesized to be a key element of relapse which 

involves a widely distributed network such as the orbitofrontal cortex, dorsal striatum, prefrontal 

Figure 1.2. Neuroplasticity with increasing use of drug. 

The schematic figure describes the sequential and cumulative effects of 

neuroadaptive changes hypothesized to contribute to the neuroplasticity 

that promotes compulsive drug-seeking (Source, Koob & Volkow, 2010) .  
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cortex, basolateral amygdala, hippocampus and insula relating to drug craving and the cingulate 

gyrus, dorsolateral prefrontal and inferior frontal cortices relating to disrupted inhibitory control 

(Koob & Volkow, 2010). Generally, the transition to addiction involves neuroplasticity in all of 

these structures that appears to begin with changes in the mesolimbic dopamine system (Fig. 

1.2). The neuroadaptations then gradually relocate from the ventral to dorsal striatum and 

orbitofrontal cortex, and eventually the process may lead to the dysregulation in a widely 

distributed network involving the prefrontal cortex, cingulate gyrus, extended amygdala, 

hippocampus and insula (Fig. 1.2, 1.3; Koob & Volkow, 2010). 

 

 

 

 

 

 

Pathophysiology of alcohol dependence  

The mechanism of alcohol dependence still continues to be studied, but there has been a growing 

body of evidence from various studies indicating that the mesolimbic dopamine system is the 

core structure for reward and positive reinforcement (Helga, 2011; Koob & Volkow, 2010; 

Heinz et al., 2009). 

 

Figure 1.3. Neural circuits involved with the three stages of the addiction cycle. 

Green/blue arrows, glutamatergic projections; Orange arrows, dopaminergic projections; Pink arrows, GABAergic projections; 

Acb, nucleus accumbens; BLA, basolateral amygdala; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; 

VGP, ventral globus pallidus; DGP, dorsal globus pallidus; BNST, bed nucleus of the stria terminalis; CeA, central nucleus of 

the amygdala; NE, norepinephrine; CRF, corticotropin-releasing factor (Source, Koob & Volkow, 2010). 
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Mesolimbic dopamine system 

The chief components of the mesolimbic system are the ventral tegmental area (VTA), ventral 

striatum including nucleus accumbens (NAc) and their afferent and efferent connections (Fig. 

1.4) (Koob & Volkow, 2010).  

 

 

 

 

 

 

 

The VTA is situated in the ventral midbrain medial to the substantia nigra and consists of 

dopamine neurons that project via the medial forebrain bundle to the limbic structures: the NAc, 

amygdala and hippocampus (called the mesolimbic  pathway) and to the medial prefrontal cortex 

(called the mesocortical pathway) (Fig. 1.4). The NAc, a major component of ventral striatum, 

consists of two sub-regions which have different morphologies and functions, the shell and the 

core region. The NAc shell, as part of the extended amygdala, is considered as a limbic structure 

and engages in drug reinforcement, while the NAc core is a motor region which is more 

associated with the dorsal striatum (Kelley, 1999). The NAc represents an interface between the 

limbic neural and motor networks, and may be the important bridge between motivational 

processes and behavioural action (Doyon et al., 2003), and it is hypothesized that the VTA-NAc 

is the core region of ñbrain pleasure centreò mediating the actual pleasure of a reward stimulus as 

well as reinforcement and motivation for reward-oriented behaviour (Helga, 2011). The source 

of dopamine to the NAc as well as to the amygdala, hippocampus, and prefrontal cortex (PFC) 

originates from the VTA of the midbrain (Fig. 1.1 & 1.4) (Steven et al., 2006). In contrast, a 

significant number of the outward projecting neurons from the NAc are medium spiny 

GABAergic neurons, and the GABAergic neurons largely connect with the VTA, thalamus, 

prefrontal cortex and striatum (Kalivas et al., 1993).  

 

Figure 1.4. Dopamine projections to 

the forebrain.  

Projections from the ventral tegmental 

area to the nucleus accumbens, and 

prefrontal cerebral cortex, and projections 

from the substantia nigra to the dorsal 

striatum (caudate and putamen and 

related structures) (Source, Steven et al., 

2006). 
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The VTA-NAc pathway is regulated by various neurotransmitter systems including the GABA, 

glutamate, serotonin and acetylcholine systems as well as endogenous opioids and 

endocannabinoids.  All of them influence the reinforcing effects of drugs of abuse, either by 

acting directly in the NAc or by indirect actions in the VTA (Fig. 1.1; Steven et al., 2006), in 

which the glutamatergic system, known as an essential excitatory system on the VTA-NAc 

pathway, plays an crucial role in drug reinforcement and addiction through the control of the 

mesolimbic dopaminergic pathway. The glutamatergic afferents to the VTA originate from the 

prefrontal cortex, bed nucleus of the stria terminalis (BNST), laterodorsal tegmental nucleus 

(LDTg) and lateral hypothalamus. Similarly, the NAc is also innervated by glutamatergic 

neurons. Most afferents to the NAc core come from the prefrontal cortex and thalamus while the 

NAc shell receives glutamatergic innervation from the amygdala and hippocampus and 

prefrontal cortex (Koob & Volkow, 2010). In contrast to the excitatory glutamatergic system, the 

negative GABAergic feedback system to the VTA regulates the activity of the VTA neurons by 

providing a modulatory inhibitory tone onto the VTA dopaminergic cell bodies via disinhibition 

of GABAergic interneurons leading to an inhibition of dopamine release in the NAc (Kalivas et 

al., 1993). In addition, some other systems such as serotonin, acetylcholine system, and so forth 

play smaller roles in the VTA-NAc pathway, e.g. the cholinergic afferents that project from 

LDTg and pedunculopontine tegmental nucleus (PPTg) activate primarily phasic firing of the 

VTA dopamine neurons via the NAc receptors. Serotonergic projections from raphe nuclei also 

modulate the mesolimbic dopamine pathways in both the VTA and NAc, and the neuropeptide 

ghrelin increases dopamine release in the NAc, possibly via a cholinergic mechanism in the VTA 

(Helga, 2011). 

The VTA dopamine neurons can be activated by reinforcers which may be primary stimuli (the 

actual reward, e.g. addictive substances) as well as conditioned stimuli (e.g. visual or auditory 

stimuli) (Schultz, 1998), and almost all of them increase levels of synaptic dopamine within the 

NAc through direct or indirect mechanisms (Wise, 1998). The study results of Doyon and 

colleagues (2003) on rats showed that a dopamine increase recorded in the NAc was not solely 

provoked by alcohol (non-conditioned pharmacological effect) but also probably by alcohol-

associated cue presentation (conditioned effect). Taken together, this appears to indicate that the 

VTA-NAc pathway plays a core role in addiction, and stimulation of dopamine release in the 
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NAc, a core region of the brain reward system, is a crucial property of addictive substances 

(Wise, 1998; Koob & Volkow, 2010).  

Imbalance between reward system and antireward system 

Decreased function of brain reward system 

Addiction is hypothesized as a cycle of decreased function of the brain reward system and 

recruitment of the antireward system (Koob & Le Moal, 2008). The taking of acute alcohol 

results in not only the short-term amelioration of the reward deýcit but also suppression of the 

antireward system (Koob & Le Moal, 2008; Heinz et al., 2009). However, when using long-term 

administration, the effects of alcohol on the reward system lead to neuroadaptation possibly with 

synapse plasticity e.g. long-term potentiation (LTP) and long-term depression (LTD) (Anna, 

2009), which begins by positive effects on the reward system. Studies on rats showed that 

alcohol produced a dose-dependent release of dopamine in the NAc, preferentially in the NAc 

shell when it was given systemically as well as injected locally in the NAc (Di chiara & 

Imperato, 1998). During this time, a hypodopaminergic state is taken shape by an increase of 

brain reward threshold and a decrease in the number of dopamine D2 receptors, as a 

compensatory response with the hyperdopaminergic effects of alcohol on the reward system 

(Koob & Le Moal, 2008).   Imaging studies in drug-addicted humans have consistently shown 

long-lasting decreases in the numbers of dopamine D2 receptors in drug abusers compared with 

controls (Volkow et al., 2003; Heinz et al., 2004).  

Recruitment of antireward system 

Simultaneously, an opponent system, known as antireward system, also causes the 

neuroadaptation, but in the opposite direction, such as up-regulation of NMDA receptors (N-

methyl-D-aspartate receptor) which may originate from the effects of alcohol on the 

glutamatergic neurotransmission. Alcohol stimulates GABAA receptors and inhibits the function 

of glutamatergic NMDA-receptors (Kalivas & Volkow, 2005; Beck et al., 2011). Such effects in 

the long-term lead to the reduction of effects of glutamate on NMDA receptors and thereby 

result in compensatory up-regulation of NMDA receptors (Heinz et al., 2009). The antagonistic 

adjustment of the antireward system tries to achieve a balance between the two systems, also 

known as allostatic state. The allostasis is deýned as stability through change. Allostasis is quite 
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more complex than homeostasis and has several special characteristics that differ from 

homeostasis (Sterling & Eyer, 1988 cited by Koob & Le Moal, 2008). Allostasis involves a feed-

forward mechanism which is rather different from the negative feedback mechanisms of 

homeostasis. For instance, when an increased need produces a signal in homeostasis, negative 

feedback mechanism is started to correct the need to keep it at a constant level. In contrast, in 

allostasis, there is continuous re-evaluation of need and continuous readjustment of all 

parameters toward new set points (Koob & Le Moal, 2008). Also, when an alcohol-dependent 

patient abstains from alcohol, a new imbalance turns up due to the loss of effects of alcohol on 

the system. At that time, this condition discloses the hypodopaminergic as well as 

hyperglutamatergic state which originates from its effects on the system over a long period of 

time (Fig. 1.5). Microdialysis studies on rats show that ethanol withdrawal is associated with 

increases in glutamate in the striatum, nucleus accumbens and hippocampus approximately 5ï8 

hours after cessation of ethanol inhalation, with a maximal value at 12 hours (Rossetti & 

Carboni, 1995; Dahchour & De Witte, 1998). Then, the body can be on impulse for a change to 

achieve a new balance, a new allostasis, although it is likely that the new balance may not be 

healthy, but it is ñappropriateò to environmental demands (Koob & Le Moal, 2008). Alcohol 

dependence thus can be viewed as a dynamic phenomenon represented by a transition from 

neuroadaptation to pathophysiology (Clapp et al., 2008; Koob & Le Moal, 2008). 

Motivation of compulsive alcohol seeking 

Based on the fact that the brain is a network of systems working in equilibrium (De Witte, 2004; 

Becker, 2008), the imbalance may be just what motivates alcohol-dependent patients after 

abstinence to compulsively seek alcohol with the goal of restoring the balance which the patients 

had stabilized and adapted to during a long period of alcohol consumption before abstinence 

(Koob & Le Moal, 2008). The requirement of restoring the balance lasts a short or long time, 

depending on the time it takes to re-establish a new balance which is contingent on many factors 

e.g. addictive level of patient, environmental factors, willpower of patient, genetic variables, etc. 

(Christopher, 2006; Koob & Le Moal, 2008). Evidence reflecting indirectly the progression can 

be found in a follow-up study of alcohol dependence of Heinz et al. (1996) indicating that down-

regulation of dopamine D2 receptor in the ventral striatum is almost prominent just after 

detoxification and recovers during abstinence. This result appears to suggest that there is 
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neuroadaptation in the reward system after alcohol withdrawal in order to re-establish the 

balance, and the process moves towards complementing the hypodopaminergic state. Therefore, 

the slow or fast recovery of central dopaminergic neurotransmission can be a sign to predict the 

probability of either relapse or recovery among detoxified alcoholics (Heinz et al., 1996, 2004).  

Role of alcohol-associated cues in alcohol dependence 

Alcohol-associated cues as conditioned stimuli 

One of the characteristics formed during alcohol dependence, which plays an important role in 

relapse mentioned in a series of previous studies, is cue-related response (Schultz, 1998; Wise, 

1998; Drummond, 2000; Doyon et al., 2003). The cues can serve as conditioned stimuli that can 

Figure 1.5. This figure illustrates the brain (triangle) that is controlled by different excitation and inhibition 

processes to maintain the brain in a regular equilibrium. Acute alcohol disrupts the equilibrium by enhancing the 

inhibitory processes (mainly GABA and taurine) that indirectly increase dopamine release via inhibiting GABAA interneurons 

in the VTA-NAc. Chronic alcohol consumption causes neuroadaptation (up-regulation of glutamate) to counteract the 

inhibitory action of alcohol. Withdrawal of alcohol results in an overexcitation state of the brain due to the excess of 

neuroadaptative excitatory processes. Conditioned stimulus alone may lead the brain to a state similar to withdrawal state 

called mini-withdrawal. Conditioned tolerance may also occur through the presence of alcohol together with conditioned 

stimulus (Source, De Witte, 2004). 
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encourage alcohol consumption (OôBrien et al., 1998; Drobes, 2002). Alcohol and other 

addictive substances act as óinstrumental reinforcersô, which increase the power of responses that 

produce them, leading to drug self-administration or ódrug takingô. Environmental stimuli such 

as time, space, pictures, and so on that are closely associated with the effects of self-administered 

drugs obtain incentive salience through the process of Pavlovian conditioning (Everitt & Robins, 

2005). The underlying activation of neural structures involved in maintaining the incentive 

salience state makes addicts vulnerable to long-term relapse. The way of response to these 

stimuli is presumably stored as alterations in synaptic weights and, eventually, after a long time, 

by physical remodelling of synaptic connections (Berke & Hyman, 2000). In previous imaging 

studies (Braus et al., 2001; Wrase et al., 2007; Park et al., 2007; Beck et al., 2009; Heinz et al., 

2009), such alterations appear to be evidenced by a significantly difference in activation in brain 

regions involving the mesolimbic system, especially the ventral striatum including the NAc, in 

alcohol-dependent patients compared with healthy controls when elicited by alcohol-associated 

cues. 

Enhanced sensitivity to the cues 

A hypodopaminergic state is exposed during early detoxification and abstinence possibly due to 

the lack of effects of alcohol on the reward system. Studies on rats following alcohol self-

administration training showed that when they self-administered alcohol, a concurrent rise in 

dopamine levels was produced in the NAc, whereas a withdrawal from alcohol decreased 

dopamine release in the NAc (Diana et al. 1993; Weiss et al., 1993; Rossetti et al., 1992). 

Concurrently, a hyper-antireward state also breaks out due to the loss of the factor inhibiting the 

antireward system. This phenomenon is illustrated in the Fig. 1.5, where the loss of alcohol-

associated inhibition on the glutamatergic system (especially NMDA receptors) may result in 

hyperexcitation and clinically manifest as withdrawal symptoms (Spanagel, 2003; De Witte, 

2004). Hence, it seems that the imbalance between the two systems is the source leading to 

enhanced sensitivity to the conditioned stimuli with the goal of compensating deficiency of 

alcohol or addictive substances in order to balance the systems (Koob and Volkow, 2010). For 

instance, a study of McClernon et al. (2009) on the effects of withdrawal on cue reactivity 

indicated that abstinence from smoking can dramatically potentiate neural responses to smoking-

related cues in the brain regions which are in charge of visual sensory processing, attention and 
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action planning. Besides withdrawal, other factors e.g. acute intoxication, family history, gender, 

expectancy or drug availability, genotype also show their influences on response sensitivity to 

the cues (Filbey et al., 2011). A small, priming dose of alcohol, for example, enhanced the effect 

of olfactory cues in the NAc, medial frontal, orbitofrontal and posterior cingulate cortex recorded 

in a study by Bragulat et al. (2008). 

Transition in response to the cues 

As addiction progresses from initial drug use to a dependence syndrome, the neurocircuitry and 

neurochemistry shift from a behavioral system based on dopamine release in the NAc with acute 

administration (signaling initial reward and beginning the process of conditioned learning) to a 

behavioral system predominantly based on glutamate (initiating the process of drug 

reinstatement or relapse) (Ross & Peselow, 2000). Therefore, the imbalance after withdrawal 

accompanied with the excessive activity of glutamate indicates that the glutamatergic pathways 

from the prefrontal cortex, amygdala and hippocampus to the NAc and VTA play a major role in 

triggering relapse (Fig. 1.3) (Kalivas et al., 2005; Heinz et al., 2009; Koob and Volkow, 2010). 

Furthermore, in the way of response to alcohol-associated cues, cue-induced activation of the 

anterior cingulate and adjacent medial prefrontal cortex involving the ventral striatum may 

mediate an attention response to alcohol-associated cues while cue-induced dopamine release in 

the dorsal striatum can trigger relapse into drug-taking behaviour (Ito et al., 2002; Heinz et al., 

2004). Robbins and Everitt (2005) have proposed that the initial reinforcing effects of drugs of 

abuse may activate the ventral striatum, but when the drug taking transitions into habitual drug-

seeking behaviours, activation of the more dorsal striatal regions predominates. The dorsal 

striatum does not appear to have a major role in the acute reinforcing effects of drugs of abuse 

but appears to be recruited during the development of compulsive drug seeking (Everitt & 

Robbins, 2005). This implies that the dorsal striatum is crucial for habit learning, e.g. for the 

learning of automated responses, and may thus contribute to the compulsive character of 

dependent behaviour. In other words, in addicted individuals, cue-elicited craving tends to 

preferentially elicit dopamine release in more dorsal striatal structures, which is thought to reflect 

a transition from a ventral striatal reward-driven phenomenon to a dorsal striatal stimulus-

response habit formation (Berke & Hyman, 2000), in which reward plays a lesser role. For this 

reason, it is likely that habit expressed by dorsal striatum activation can play an important role in 
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forming a fast, easy and automatic response relating to alcohol-associated cues. In other words, 

the characteristics of activation of this structure to specific stimuli can be referred in order to 

predict the addictive level of a patient. The hypothesis is supported by the study result of 

Vollstädt-Klein and colleagues (2010) indicating that the dorsal striatum of heavy drinkers was 

activated more strongly than that of light drinkers, whereas light social drinkers showed stronger 

cue-induced fMRI activations in the ventral striatum and prefrontal areas than those of heavy 

social drinkers. 

In summary, it appears that alcohol dependence is a dynamic process in which there is transition 

to-and-fro between the stages of addiction. Furthermore, the response features to alcohol-

associated cues can reflect the stages of the disorder whereby we can predict the alcohol 

dependent status of a patient. In other words, the reactivity of the brain circuits to alcohol-

associated stimuli may serve as a biomarker to help predict relapse as well as treatment efficacy 

(Koob and Volkow, 2010).  

fMRI AND CLASSIFICATION TECHNIQUES  

fMRI data  

Functional magnetic resonance imaging (fMRI)  is an advanced non-invasive medical imaging 

technique that can give high quality visualization of brain activation through changes in blood 

flow or oxygenation resulting from sensory stimulation or cognitive function (Ogawa et al., 

1990). It therefore has been often used in studies of brain function e.g. to investigate how the 

healthy brain functions, how it is affected by different diseases, how it attempts to recover after 

damage and how drugs can modulate activity or post-damage recovery, etc. 

fMRI experiment 

During the course of an fMRI experiment, a series of three-dimensional images of a subjectôs 

brain activity are recorded while he is performing a set of tasks, known as fMRI paradigm. Then, 

the images from different subjects are analyzed to detect differences of brain activation in the 

brain regions of interest between the investigated groups of subjects. Therefore, designing an 

appropriate paradigm is one of the most important tasks for an fMRI experiment. Currently, there 
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are two commonly used approaches, ñblock designò and ñevent-related designò (Edson & 

Gareth, 2006).  

The block design is the simplest approach. The different experimental conditions are separated 

into extended time intervals, or blocks. The cycles of periods of task and rest (conditions) are 

arranged alternately. This design allows maximization of signal-noise ratio (SNR) but also has 

some disadvantages. Repeating the same task may lead to the subject anticipating the task and 

sometimes even the response. This may considerably confound the results. 

The event-related design is a more þexible and complex approach. The order of the stimuli is 

often randomized and even the time between stimulus presentations also varies (interstimulus 

interval) to prevent anticipation of the task. However, the disadvantage of this design is the low 

SNR. This is due to the fact that the task state is not sustained for long periods, leading to a less 

intense vascular response (Edson & Gareth, 2006; Graeme et. al., 2008).  

Apart from the task-driven fMRI just described, recently interest has been growing in the 

application of the technique at rest, termed resting-state fMRI (RS-fMRI) . The RS-fMRI is 

applied to evaluate synchronous activations between brain regions that take place in the absence 

of an explicit task or stimulus. Although this is a relatively new method, it has shown promise in 

providing diagnostic and prognostic information for neuropsychiatric disorders (Lee et al., 2012). 

fMRI scanner  

The MRI scanner creates a powerful magnetic ýeld (0.2 - 3T), which causes some nuclei 

(predominantly hydrogen nuclei or protons in the water) in our body to align parallel or anti-

parallel to the applied magnetic field, according to their spin. Pulses of radio frequency (RF) then 

are applied to excite the protons (90° excitation RF pulse) and systematically þip the spins of the 

aligned protons. Since the application of RF pulse disturbs the spin system in the strong static 

magnetic field, there is subsequently a process to return to equilibrium (pre-excited stable state) 

when the RF is turned off. This relates to exchange of energy between the spin system and its 

surroundings, and as the protons return to the lower energy state, radio waves are emitted. They 

are then recorded and processed to construct an image of the scanned area. The protons can 

return to the stable state only by dissipating their excess energy to their surroundings. The 

process is called spin-lattice relaxation, T1 relaxation. The rate of restoring the equilibrium is 
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characterized by the spin-lattice or longitudinal relaxation time, T1. Nonetheless, the spins 

exchange energy not only with the surrounding lattice but also among themselves. The process is 

known as spin-spin relaxation or transverse relaxation, T2 relaxation. In this relaxation, the spins 

do not dissipate energy to their surroundings but instead exchange energy with each other. The 

process generally takes place faster than the spin-lattice relaxation. In order to improve recorded 

image quality, a technique of spin echo sequences is used by the application of an 180° 

refocusing pulse to eliminate the effects of static field inhomogeneities. The tradeoff of this 

technique is a fairly long scan time. The T2* imaging used in fMRI does not use this refocusing 

technique, so the resolution of the images is reduced (to approximately 3 mm), but the sensitivity 

to the relaxation processes is increased. Besides, with the system equipped with echo planar 

options, the image acquisition interval is very short, typically every 0.5-4 seconds for each scan 

(Clare, 1997; Mathews, 2001; Weishaupt et al., 2008). 

Image contrast between gray matter, white matter and cerebrospinal fluid can be optimized by 

appropriately weighting the relaxation times. For example, T1-weighted images provide clear 

contrast between gray matter and white matter, so they are often used to create high-resolution 

(approximately 1 mm) 3D structural images taken in slices at a single point in time. In contrast, 

thanks to the advantage of very short acquisition time, T2*-weighted images are employed to 

analyze brain activity under impact of specific stimulation (Mathews, 2001; Weishaupt et al., 

2008; Yang et al., 2011). 

fMRI signal (BOLD signal) 

Brain activity is indirectly recorded via the blood oxygenation level dependent (BOLD) signal. 

The application is based on the paramagnetic property of deoxygenated haemoglobin. Normal 

blood can be seen simply as a concentrated solution of haemoglobin (10-15 gm haemoglobin/100 

cm
3
). When haemoglobin is attached to oxygen (oxygenated haemoglobin), it becomes 

diamagnetic, while deoxygenated haemoglobin is paramagnetic (Pauling and Coryell, 1936 cited 

by Mathews, 2001). Paramagnetic materials are attracted by the applied magnetic field, i.e. they 

strengthen the magnetic field. They therefore increase the T2* relaxation rates (i.e. decreases T2 

time). This attenuates the T2* magnetic resonance signal. In contrast, diamagnetic materials are 

repelled by the applied magnetic field, so they increase the signal. In other words, a change in 

haemoglobin oxygenation induces a corresponding change in the recorded signal intensity. This 
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characteristic is exploited in the investigation of task-induced neuronal activity due to the 

coupling of hemodynamic response to neuronal activation. A locally increased blood flow and 

volume in the brain region which becomes active appears to be a consequence of increased 

energy utilization at the synapse e.g. a local increase in glucose and oxygen consumption 

(Mathews, 2001; Logothetis & Pfeuffer, 2004). However, the increase in the blood supply 

exceeds the metabolic needs, which leads to increased blood oxygen concentration in the 

activated region (Fox & Raichle, 1986). As a result, the increase of blood oxygenation increases 

the T2* signal recorded in the region. This is the basis for the BOLD fMRI.  Thus, the BOLD 

signal is a secondary effect of neuronal activation, and there is the time delay in the 

hemodynamic response, the peak of which occurs 4-6 seconds after the neuronal activity 

(Mathews, 2001). In other words, the recorded fMRI is the image indirectly reflecting neuronal 

activation through hemodynamic response. Accordingly, in fMRI analysis a hemodynamic 

response function (HRF) or impulse response function is often incorporated in the computational 

models of neuronal activation by convolving with the neuronal response evoked by the stimulus 

that has been designed in fMRI paradigm (stimulus function) in order to give a hemodynamic 

response (Friston et al., 2007).  

fMRI image  

A typical 20-minute fMRI experiment produces a series of 3D brain images (volumes or scans), 

each of which contains approximately 170,000 voxels (e.g. for an image matrix of 64 x 64 x 42). 

First, data are collected  from  an  fMRI  scanner  on  the subject  undergoing  an  experiment  

designed  to activate  the neuronal  responses in the brain regions of interest. The  recorded 

intensity  values of BOLD signal  are processed and then  normalized  to  range  between  zero  

and  a  fixed  constant e.g. between 0 and 1500. The time taken to acquire a single fMRI image 

(volume) is of the order of several seconds. Thus, each 2D plane (slide) of the 3D fMRI image 

(volume) records brain activity from different points in time (Burge, 2007); and each volume is 

stored in a chronological record in a three-dimensional matrix [x, y, z], the elements of which 

store image resolution (pixel or picture element) representing the intensity of activation. For 

instance, in a 3D brain image matrix with dimensions of 64 x 64 x 42, there are 42 slides. Each 

slide is a two-dimensional matrix of 64 columns and 64 rows comprising 64 x 64 elements, 

known as voxels, that store image resolution values (voxel attribute) between 0 and 1500 and 
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that represent cubes of tissue about 2-4 millimeters (volumetric pixels) depending on slice 

thickness, field of view (FOV) and size of image matrix (Fig. 1.6).  

Pre-processing raw fMRI data before analysis 

fMRI data are susceptible to a large number of artifacts which can roughly be divided into 

scanner-induced artifacts e.g. radio frequency, gradient artifact, etc. and physiological artifacts 

e.g. motion, respiration, heartbeat, contamination from large veins and arteries in the brain, etc. 

(Graeme et. al., 2008; Lindquist, 2008). Consequently, to minimize non-task-related variability 

in the recorded image data within-subject as well as between-subject for validity of statistical 

assumptions before the data are analyzed, they need to be pre-processed. The pre-processing 

comprises a series of steps that can be roughly divided into anatomical and functional steps.  

The functional steps include temporal and spatial processing. For temporal processing termed 

slice timing correction, each slice in each volume is acquired at slightly different points in time. 

Therefore, it is necessary to adjust the data so that it appears as if all voxels within one volume 

had been acquired at exactly the same time. Spatial processing is designed to remove movement 

effects termed motion correction or spatial realignment. Besides, spatial and temporal smoothing 

with a Gaussian kernel is often performed to improve the SNR of imaging data and to reduce 

differences between the activation patterns of subjects (Etzel et al., 2009).  

The anatomical steps include spatial coregistration and normalization. Since fMRI is typically of 

low spatial resolution and provides relatively little anatomical detail, the coregistration is 

 

Figure 1.6. Illustration for a volume of 3D brain image with dimensions of 64 x 64 x 42. 
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designed to eliminate differences between structural and functional images in order to be able to 

map the results obtained from functional data onto a structural MR image with high resolution 

for presentation purposes. When performing group analysis to make population inferences, all 

individual brain images recorded for all subjects are assumed to be registered so that each voxel 

is located in the same anatomical region. For this, spatial normalization is applied to register all 

of the fMRI images into the same standard space e.g. Montreal Neurological Institute (MNI) or 

Talairach space. Without the preprocessing prior to analysis, the result of statistical analysis 

would be invalid (Lindquist, 2008). 

fMRI analysis 

Since fMRI was invented in the early 90s, it has become one of the widely used non- invasive 

techniques for investigating human brain activity. Along with its development, the analysis 

methods of fMRI data have appeared. Today, fMRI analysis has been used for three main 

applications including localization of brain activation, connectivity and classification/prediction 

(Fig. 1.7). 

Localization of brain activation 

Individual-voxel-based approach 

A few years after fMRI was 

invented, the traditional analysis 

methods of approach to fMRI 

came into sight and put into 

application. This approach has 

focused on characterizing the 

relationship between cognitive 

variables and individual brain 

voxels. In other words, the fMRI 

analysis to indicate the activated 

brain regions by specific tasks is 

performed separately at each voxel (mass-univariate approach). The analysis uses  statistical  

regression  and  hypothesis testing  based  upon  the  general  linear  model (GLM) or  

Figure 1.7. The fMRI data processing pipeline illustrates the different 

steps involved in a standard fMRI experiment (Source, Lindquist, 2008). 
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discriminant analysis techniques such as multivariate regression to test hypotheses about 

regionally specific effects. These techniques commonly make linearity and Gaussian noise 

assumptions and eliminate the time factor in inference (Friston et al., 2007; Lindquist, 2008). 

Due to limitations of the statistical approach, about ten years later, an alternative approach has 

appeared. The new approach emerged from the Bayesian theory. In contrast to statistical 

inferences about the data, given the effect is zero, Bayesian inferences are based on conditional 

inferences about an effect, given the data (Friston et al., 2007).  

Multivariate approach 

Although individual-voxel-based methods are still being used widely due to their simplicity 

(Friston et al., 2007), they have exposed the limits of what can be learned about cognitive states 

by analyzing voxels individually (Normand et al., 2006). The limits have promoted the 

development of new approaches where the fMRI analysis considers groups of voxels rather than 

a single voxel. The analyses range from the ñsearchlightò approach which multivariately 

examines the information in small groups of voxels centered on each voxel in the brain 

(Kriegeskorte et al., 2006) to multivoxel pattern analysis which can detect patterns across voxels 

in fMRI data (Mourao-Miranda et al., 2005; Normand et al., 2006; Etzel et al., 2009). The 

primary advantage of these methods over individual-voxel-based methods is increased sensitivity 

(Normand et al., 2006). 

Connectivity 

The brain is the center of the nervous system and is made up of nerve cells (neurons). Its 

function is to exert centralized control over the other organs of the body. To take on this 

responsibility, single neurons do not work independently but rather function in large aggregates 

(neuronal groups), known as functionally specialized brain regions e.g. motor areas, sensory 

areas, visual cortical areas, etc. (Mathews, 2001; Bear et al., 2007). Furthermore, between the 

different functional regions there are also connections or interactions, and when responding to a 

specific stimulus, several relevant brain regions would be activated interactively (Bear et al., 

2007). In other words, neurons within the brain regions as well as between these regions that are 

in charge of this response have high interactions (correlations). Due to the coupling of neural 

activation and local haemodynamic response characterized by voxel attribute (BOLD signal), 

http://en.wikipedia.org/wiki/Nervous_system
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there exist correspondingly high correlations among relevant voxels. For examples, the time-

series of BOLD signal recorded on one voxel looks correlatively like the time-series of BOLD 

signal on another voxel. If they are located adjacent to each other (e.g. in the same brain area), 

they are called as a cluster. If they are located far away from each other e.g. one is in parietal 

cortex and the other is in frontal cortex, they are thought to be connected to each other somehow. 

However, correlation doesnôt imply direction. Hence, in 1993, Friston introduced the two 

different approaches to investigating connectivity in functional neuroimaging. 

Functional connectivity 

The first approach is defined as functional connectivity. This approach is focused on pairwise 

interactions often in terms of correlations or covariances between voxels or brain regions of 

interest. It does not provide any direct insight into how these correlations are mediated 

(undirected association) (Friston, 1994; Lindquist, 2008). The simplest method of the approach is 

to compare correlations between brain regions of interest, or between a ñseedò region and the 

other regions or voxels throughout the brain (regional correlation). However, it becomes 

problematic when the number of correlations grows because it needs to correct for multiple 

comparisons, and it is difficult to summarize the patterns of correlation. Alternative approaches 

use multivariate methods e.g. principal components analysis (PCA) and independent components 

analysis (ICA), etc. to detect task-related patterns of brain activation without making any a priori 

assumptions about its model (Lindquist, 2008). 

Effective connectivity 

The second approach is defined as effective connectivity that shows the directed inþuence of one 

brain region on the others. The approach incorporates additional information e.g. anatomical 

connections into the analysis. In addition, a simultaneous interaction of several neural elements 

is also considered to explicitly measure the effect of one element on the other (Friston, 1994; 

Lindquist, 2008). In regard to measurement methods of effective connectivity, Büchel  &  

Friston  (1997) introduced structural  equation modeling  (SEM), also known as path analysis, 

which is used to investigate significant  changes  in  the  relationship between neural systems in 

the dorsal visual stream caused by shifts of attention. Hojen-Sorensen, Hansen, & Rasmussen 

(2000) used another approach based on Bayesian network theory such as Hidden Markov Models 
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(HMMs) to learn a model of activity within the visual cortex from visual stimuli. Recently, 

dynamic causal models (DCMs) have been introduced by Friston and colleagues (2003) with the 

goal of modeling effective neural connectivity (Friston et al., 2007). The technique is also a 

branch of dynamic Bayesian networks, and it is applied to characterize brain activity at the level 

of neural networks and their dynamics. Today, the technique has become an important tool of 

neuroimaging analysis and has an important impact on the development of theoretical 

neurobiology and clinical biomarkers (Seghier, 2010). 

Classification/prediction 

Another application direction relating to our research is classification of fMRI, also known as 

pattern recognition. fMRI classification is a technique of separating fMRI data into different 

classes, i.e. providing a criterion for determining whether the BOLD response of a subject at a 

particular time during the experiment characterizes a specific cognitive state, a neuropsychiatric 

disorder or not (Ye Yang, 2010). The specific tasks for a study of fMRI classification is to 

construct patterns from fMRI images, to build up a classifier from the labelled patterns of 

training data and then to test the classifier on the unlabeled and unseen patterns of testing data 

(i.e. to use the classifier to label the unseen patterns of testing data) (Pereira et al., 2009).  

Constructing patterns from fMRIs  

This is the step of constructing features for a pattern from an fMRI (feature construction). If all 

voxels of an fMRI image are used as features of the pattern, the pattern contains very large 

number of features (e.g. approximately 170,000 features for a 3D image matrix of 64 x 64 x 42). 

For a set of patterns with such very large size of feature, classification performance of the 

patterns can be reduced significantly (Pereira et al., 2009). Further, for a brain response to a 

given specific stimulus, not all of the voxels are activated significantly (Etzel et al., 2009). This 

implies that there may be uninformative voxels in a classification. Hence, methods to reduce the 

number of features for a pattern extracted from an fMRI have been developed. They are divided 

into two main approaches.  

The first approach is to select informative voxels (features) from an fMRI (feature selection). 

There are two methods for this approach: scoring/ýltering and wrapper method. The first 

involves ranking the features based on a given criterion and selecting the best in the ranking. The 
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latter involves performance of a classifier. For this, firstly, all the features are considered and 

then they are removed gradually while the performance increases. The method is known as 

recursive feature elimination, and it can be accomplished by repeatedly training and applying the 

classifier in cross-validation within the training set (Pereira et al., 2009). 

The second approach is to reduce the number of features of an analyzed pattern (feature 

reduction or dimensionality reduction). The approach focuses on correlation between features. 

The commonly used methods in this approach may be named as singular value 

decomposition/principal component analysis (SVD/PCA), independent components analysis 

(ICA), etc. The general nature of these methods is that they transform the original feature space 

into a new, low-dimensional feature space. This yields a new dataset matrix with a reduced 

number of features. In addition, another well-known approach is to use a combination of the two 

approaches (Lindquist, 2008; Pereira et al., 2009). 

Previous works of fMRI classification 

A classifier is a function that takes features of a pattern to predict its label. The classifier is 

formed from learning characteristics of labelled patterns of a training dataset. Such an approach 

is known as machine learning. Along the time line, the development of technology and solutions 

of pattern recognition applied in fMRI classification is still progressing. Several prominent 

milestones of the development may be mentioned. In 1936, Fisher introduced linear discriminant 

analysis (LDA) that computes a hyperplane in the input space so that it maximizes the ratio of 

between-class variance to within-class variance (Fisher, 1936). The method can work well with 

linear data (Rätsch, 2005). However, it is not sufficient for fMRI classification, where data 

sometimes are not linearly separable. In the late 60s, Cover and Hart (1967) introduced k-Nearest 

neighbour classiýcation. Here, the k points of training data closest to the test point are identified, 

and a label is assigned to the test point by a majority vote between the k points. This method is 

simple, but it requires expensive computation and a large memory to store the training data. 

Turing (1992) first proposed artificial neural network for classification. Afterwards, the 

technique has become one of the commonly used approaches for classification. Also in the 90s, a 

statistical learning theory appeared (Boser et al., 1992; Vapnik, 1998; Vapnik, 2000), which 

provided conditions and guarantees for good generalization of learning algorithms. Recently, 

large margin classification techniques have emerged as a practical result of the theory of 
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generalization. The two large margin classiýers frequently mentioned are support vector 

machines (SVMs) (Boser et al., 1992, Cortes and Vapnik, 1995) and boosting (Valiant, 1984). 

These methods have demonstrated highly competitive performance in many studies of fMRI 

classification reported (Etzel et al., 2009). In 2003, Mitchell et al. (2004) introduced a Gaussian 

naïve Bayesian network which was used to classify instantaneous cognitive states of a subject 

while reading a book or looking at a picture. Burger et al. (2007) applied dynamic Bayesian 

network, a data-driven modeling technique, to identify functional correlations among regions of 

interest with the goal of classifying healthy and dementia fMRI data.  

Research problems  

Although encouraging achievements have been reported in the studies of fMRI classification 

with predictive accuracies between 70 and 90% (Shinkareva et al., 2006; Demirci et al., 2008a; 

Demirci et al., 2008b; Takayanagi et al., 2011), they are usually difficult to be generalized with 

larger data sets (Demirci et al., 2008b).  Several reasons have been mentioned such as limited 

number of subjects investigated, bias in classification, variability between operators, scanning 

equipment and parameters, and variability between subjects and between different times of 

measurement even within the same subject (Demirci et al., 2008b). This indicates the complexity 

of fMRI data as well as the unstable reliability of classification decision achieved from machine 

inference, whereas a classification decision for each individual patient requires very high 

accuracy and reliability.  

For these reasons, while waiting for the technological solutions to meet our demands in clinical 

practice, it is necessary to find an alternative solution of fMRI classification which can help us 

avoid complete dependence on machine inference. This can be realized if we can check the 

compatibility between the classification decision for a pattern obtained from machine and its 

activation image. In other words, a thorough understanding of the classified pattern and of the 

classification decision for the pattern obtained from machine may bring the solution to light, and 

it may be a feasible approach to realizing diagnostic functional imaging of neuropsychiatric 

disorders in clinical practice.  

For alcohol dependence, several lines of evidence have shown significant differences in response 

to alcohol-associated cues between detoxified alcoholics and healthy controls (Braus et al., 2001; 
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Myrick et al., 2004; Wrase et al., 2007; Park et al., 2007; Beck et al., 2009; Heinz et al., 2004, 

2009) and between relapsers and abstainers (Schacht et al., 2011; Beck et al., 2012) based on 

fMRI measurement. This indicates that the fMRIs hold important information of differences 

among the investigated groups or in other words, the fMRIs can be used as useful biomarkers for 

diagnosis as well as prognosis in alcohol dependence. However, the results of these studies have 

obtained from a statistical analysis between the different groups. Such an analysis is designed to 

identify the brain regions showing significant differences in response to the given stimuli 

between the two investigated groups (difference between groups) rather than to provide 

observations of the differences between individual subjects of the two groups to be used for 

classification (difference of individuals) (Demirci et al., 2008b; Lindquist, 2008; Van Horn & 

Poldrack, 2009; Farah & Gillihan, 2012). These problems have motivated us to conduct the 

dissertation. 

AIMS   

The overall objective of this dissertation is to develop a framework which enables the 

identification of alcohol dependence as well as prediction of relapse risk in clinical practice using 

fMRI. The specific objectives were focused as follows:  

(1) To design and validate a classification algorithm for diagnosis and relapse prediction using 

fMRI in such a way that the classification results are interpretable 

(2) To approach imaging based on the findings gained from the classification algorithm for the 

investigated fMRI data 

(3) To validate the approach 

METHODOLOGY  

Outline of the whole approach 

The approach was designed as a means of converting the findings of machine-based 

classification into our understanding of classification rules on functional imaging. For this, 

firstly, classifiers were formed from given classification algorithm and used as intermediate 

exploratory instruments, instead of us seeking the rules of recognizing the investigated patterns 

(characteristics for recognition). Then, based on the findings as well as working rules of the 
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classifiers, the rules for diagnostic 

functional imaging in clinical practice can 

be uncovered (Fig. 1.8).  

Based on the idea, we partitioned the 

whole approach into smaller approach 

steps starting from classification 

algorithm to imaging approach. From this 

point, the first studies were formed based 

on classification algorithms. Then, these machine-based classification algorithms would be 

replaced with a diagnostic imaging approach in the next studies. Correspondingly, the algorithms 

for the studies have been changed continuously and appropriately to expose the whole approach 

that can lead us to realize diagnostic functional imaging in practice. Hence, the algorithm for the 

whole idea is not a single algorithm rather than it is just a synthesis of the whole approach. In 

other words, we would like to build a framework for this approach (Fig. 1.8). For this reason, 

each study was conducted using a different methodology for its specific objective. To facilitate 

the presentation, we arranged the methodologies, results and discussions of the studies in 

separate chapters. 

Specifically, the first study was to demonstrate feasibility of splitting observation on the whole 

brain into multiple observations on multiple relevant brain regions involved in alcohol 

dependence using fMRI (chapter II). The second study was to demonstrate the validity of 

predictive inference based on multiple lines of evidence collected from several brain regions of 

interest in relapse prediction using fMRI (chapter III). These two studies served for specifying 

the algorithm and important brain regions involved in alcohol dependence in fMRI classification. 

The third study was to offer an imaging approach based on the findings of the first and second 

studies (chapter IV). Finally, we introduced two feasible applications of the approach in clinical 

practice (chapter V). 

 

 

 

 

 
Figure 1.8. The framework for the approach. 



37 

 

CHAPTER II  

FORMATION OF FUNCTIONAL ROIs IN fMRI CLASSIFICATION  

Introduction  

To make an imaging diagnosis in clinical practice we cannot observe and analyze the whole 

brain but rather we should focus this observation on several relevant brain regions because with 

such an approach the observed results are easier to identify and interpret. However, whether or 

not and how the approach is feasible for fMRI classification in alcohol dependence remains the 

question that we would like to clear up in the first study. Specifically, this study was to look for 

the clues with which we could identify the appropriate way of feature selection for each brain 

region of interest that can yield a high performance of classification in alcohol dependence. 

Materials and Methods 

Materials 

Participants 

Fifty alcohol dependent patients diagnosed according to ICD-10 and DSM-IV criteria and 57 

healthy subjects were recruited for the study. All participants were right-handed volunteers who 

accepted participation after the research procedures had been fully explained to them. The study 

was approved by the Ethics Committee of Charité Universitätsmedizin Berlin, Campus Mitte in 

Berlin in Germany. All the participants were over 18 years of age, ranging from 22 to 69 years 

(mean = 41.8; standard deviation = 12.1; 81 males and 26 females). In addition, the subjects had 

no other psychiatric axis I disorders, no past history of dependency or current abuse of other 

drugs, which was verified by random urine drug testing and interviews. Before the fMRI 

experiment, the patients had to be abstinent from alcohol for at least 7 days in an inpatient 

detoxification treatment program.  

Data acquisition 

The data were acquired with a 3 Tesla scanner (Siemens, Erlangen, Germany). The imaging 

sequence was an ascending T2*-weighted echo planar sequence with 42 axial slices (repetition 
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time (TR) = 2.41 s, echo time (TE) = 25 ms, flip angle = 80
0
, field of view (FOV) = 192 x 192 

mm
2
, slice thickness = 2 mm, gap between slices = 3 mm, acquisition matrix = 64 x 64 and voxel 

size = 3 x 3 x 3 mm
3
). In each run, 305 functional volumes were acquired. For anatomical 

reference in each subject, a 192-slice T1-weighted 3D Magnetization Prepared Rapid Gradient 

Echo (MPRAGE) structural image was acquired in the same orientation as the Echo Planar 

Imaging (EPI) sequence (TR = 2.3 s, TE = 3.03 ms, flip angle = 9
0
, FOV = 256 x 256 mm

2
, slice 

thickness = 1 mm, acquisition matrix = 256 x 256, voxel size = 1 x 1 x 1 mm
3
). 

Stimuli and tasks 

An established cue-reactivity paradigm (Vollstädt-Klein et al., 2010) was conducted. In the 

block-designed fMRI task, 60 standardized alcohol-related pictures including 20 beer, 20 

schnapps and 20 wine pictures, and 45 neutral pictures derived from the International Affective 

Picture System (IAPS) (Lang et al., 1999) were presented in a total of 20 pseudo-randomized 

blocks including 12 blocks displaying alcohol-associated stimuli and 08 blocks presenting 

neutral stimuli. Each block consisted of 5 randomized pictures which were displayed for 4 

seconds each, resulting in a total duration of 20 seconds for a block. After every block, 

participants were asked to rate their desire to drink, i.e. craving for alcohol, on a visual analogue 

rating scale. Ratings ranged from 0 (ñno craving at allò) to 100 (ñsevere cravingò) and were 

recorded by pressing a button within a maximal time frame of 10 seconds. Subsequently, a black 

fixation cross and óThank you!ô (4+1 seconds) was shown before a new picture block was started 

(Fig. 2.1). The total task duration was 12 minutes (refer to Nationales Genomforschungsnetz 

(NGFN)-Plus project). 

 

Figure 2.1. Cue reactivity paradigm. 
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Data pre-processing 

The first 4 volumes of each run were discarded to remove the initial T1 magnetic transients in 

the data. After that, the remaining data were pre-processed using SPM8 (Wellcome Department 

of Imaging Neuroscience, London, United Kingdom: http://www.fil.ion.ucl.ac.uk/spm). First, all 

remaining scans were corrected for the timing differences between each slice and realigned to 

remove residual motion effects. The anatomical scan was co-registered to a mean re-sliced image 

obtained from the realign analysis. Next, the images were spatially normalized to the same 

standard space (MNI space) with voxel size 3 x 3 x 3 mm
3
. Finally, the data were smoothed in 

space using a 6-mm full-width-at-half-maximum Gaussian filter (FWHM) to optimize the signal-

to-noise ratio in small subcortical structures of interest as well as to reduce differences between 

activation images of subjects (Etzel et al., 2009). 

Methods 

In this study, each brain region was considered individually. The investigation for each region 

was conducted in the following two steps: (1) Constructing and collecting response patterns of 

the region from fMRI data recorded for the subjects (feature construction); (2) Classifying these 

patterns. 

Step 1: Feature construction 

1.1 Constructing and collecting response patterns for individual ROIs 

Since our target was to find a feasible approach to the application of diagnostic functional 

imaging in clinical practice, the classification of a disorder or condition of the disorder for a 

subject (subject classification) was only the final consequence of the imaging inference process. 

Therefore, the response patterns of the brain whenever cues are exposed are our main object of 

interest. In the study, each block ὄ  was viewed as an independent observation of the brain 

response to the given stimulus. The response feature of the brain for each block ὄ  was 

expressed through its representative vector (volume) created by averaging over all scans 

measured within it (Fig. 2.2). As a result, for 12 blocks with alcohol-associated cues, each 

subject comprised 12 feature vectors, also considered as the response patterns of the brain to 

alcohol cues. Then, the response feature of a ROI Ὧ to alcohol cue for the block ὄ  was 

http://www.fil.ion.ucl.ac.uk/spm
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manifested by a feature vector ὴ  extracted from the feature vector of the brain for that block 

using the mask of that ROI (Fig. 2.2). Similarly, from each subject for each ROI we collected 12 

feature vectors, also considered as the response patterns of that ROI to alcohol cues. The feature 

vectors of the ROIs or the brain were interpreted as independent observations of the response 

patterns (also termed activation patterns) of the ROIs or the brain to alcohol cues and were used 

as input data for classifiers.  

1.2 Normalizing the feature attributes of the response patterns 

In the pre-processing step described earlier, all fMRI images measured for all the subjects were 

normalized spatially to the same standard space in order to minimize morphological variability 

between different subjects (normalization of voxel coordinate). In this step, before providing for 

classifiers as input, the data were normalized in the aspect of feature attribute (BOLD signal) to 

reduce the effect of large signal changes dominating those of smaller signal amplitude 

(normalization of voxel attribute) (Pereira et al., 2009). In this study, the method of scaling 

normalization was applied. For this, all input feature vectors ( ὴ  of the training set for each 

classifier (Ὢ  of each ROI Ὧ were arranged in rows and columns (Fig. 2.2) in which each 

column was an input vector (each pattern) (ὴ ὥ Ƞ ὸ ρȟȣȟὺȠὺ: size of the ROI ὯȠ Ὥȡ the 

block where the pattern ὴ  was measured;  Fig. 4.3), and each row was an attribute of the vector 

( ὥ Ƞ Ὥ ρȟȣȟὍ Ƞ Ὅ : number of blocks (corresponding to the number of patterns) 

reserved for the training). The parameters of min and max value of each attribute ὥ  were 

calculated only on the training set. Then, these parameters were used to scale all the attributes of 

 

Figure 2.2. Feature construction and collection of the response patterns for a ROI ▓. 
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Table 2.1. Size of structural ROIs  

with voxel size 3 x 3 x 3 mm3 

ROI Number of voxels 

VTA 44 

VS-DS 176 

VS 88 

DS 88 

Pallidum 161 

Thalamus 570 

PFC 3136 

ACC 987 

mPFC 1499 

OFC 1496 

Amygdala 132 

Insula 1215 

Hippocampus 563 

Whole brain 60588 

 

the vectors ὴ  in both the training set and the testing set to the range [-1 +1] ((ίὧὥὰὩὨᾥ

ςz ρ; ὴ ὥ  O  ίὧὥὰὩὨῂ ίὧὥὰὩὨᾥ ; Ὥ = 1, éȟὍ ; 

Ὦ = 1, é, Ὅ ; Ὅ ȡ the number of the patterns for both training and 

testing . This scaling normalization was applied to normalize each attribute (row) (Fig. 2.2). In 

the study, the blocks with neutral stimuli were not considered. 

1.3 Creating the mask of individual ROI  

A ROI in fMRI analysis can be defined in terms of structural or functional properties. Structural 

ROIs are defined on the basis of anatomical structures, i.e. gyri, sulci, while functional ROIs are 

defined on the basis of data analysis obtained from experiments. Hence, for investigating brain 

activation, functional ROIs are our main objects of interest to ensure that the ROI only contains 

voxels that are truly activated under given stimulation (Etzel et al., 2009).  

To focus observation on relevant brain regions with the aim that observation results are 

interpretable in clinical practice, for each brain region, its functional ROIs in this study were 

formed within its corresponding anatomical structures. The brain regions were chosen for the 

investigation based on the neurocircuitry of addiction proposed by Koob and Volkow (2010) 

including the VTA, VS, DS, thalamus, pallidum, amygdala, hippocampus, insula and PFC 

including ACC, orbital frontal cortex (OFC) and medial prefrontal cortex (mPFC) (Fig. 1.3). 

 1.3.1 Masks of structural ROIs 

Structural ROIs were built with the Wake Forest 

University (WFU) PickAtlas toolbox version 2.4: 

http://fmri.wfubmc.edu/cms/software (Maldjian et 

al., 2003; Tzourio-Mazoyer et al., 2002) and then 

normalized to a standard space as same as the 

standard space of the smoothed data to create their 

corresponding structural ROI masks. The masks 

for the ACC, pallidum, thalamus, amygdala, 

hippocampus and insula were available in the 

toolbox. The others were built as follows: The 

http://fmri.wfubmc.edu/cms/software
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PFC, OFC and mPFC were defined by Brodmann areas: PFC (8, 9, 10, 11, 44, 45, 46, 47); OFC 

(10, 11, 47) and mPFC (9, 10) (David & Mark, 2009; Goldstein & Volkow, 2011; Lee et al., 

2006). The VS-DS, VS, DS and VTA were constructed based on small ROIs, each of which  was 

defined by a sphere with 6 mm radius centered on the following MNI coordinates: right VS, [12, 

15, ī6]; left VS, [ī12, 15, ī6]; right DS, [12, 15, 6]; left DS, [ī12, 15, 6] (Schacht et al., 2011); 

and VTA [0, -20, -12] (Eva et al., 2010) (Table 2.1). 

1.3.2 Masks of functional ROIs formed within their corresponding structural ROIs 

For each brain region, its functional ROIs were formed within its corresponding structural ROI 

(Fig. 2.2). For this, the scoring/filtering method was applied. The voxels of the structural ROI 

were ranked according to a given criterion (scoring), and then the top-ranked ones were chosen 

to form its corresponding functional ROI mask (filtering). 

a. Scoring with mass-univariate approach 

For a preliminary study, a mass-univariate approach was selected to score each individual voxel 

(a univariate test for a voxel). For this, a two-sided t-test analysis was conducted on a training 

dataset to specify the statistically different activation level of each voxel between the two groups 

of alcoholic patients and healthy controls characterized by a t-value. The underlying hypothesis 

for the t-test analysis is that there may be a different response to alcohol-associated cues and 

neutral cues in alcoholic patients whereas such a response may not occur in healthy subjects 

(Braus et al., 2001; Wrase et al., 2007; Park et al., 2007; Beck et al., 2009; Heinz et al., 2009). 

The analysis was done based on a general linear model which was implemented with SPM 

software version 8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).  

First, a first-level analysis was performed within each subject (within-subject). In this study, the 

beer, schnapps and wine pictures used in the experiment counted as alcohol-associated cues 

indiscriminatingly. Each cue block was modelled as a boxcar function convolved with a 

canonical hemodynamic response function that began at the onset of the first cue of the block 

and ended at the end of the last cue. A high-pass filter (1/128 Hz) was applied to remove slow 

signal drift. A contrast image measuring the response difference between alcohol-associated 

stimuli and neutral stimuli was generated from the general linear model. Next, a two-sample t-

test at the second level between the two groups was conducted using random effect analysis 

http://dionysus.psych.wisc.edu/coursewebsites/PSY741/Articles/ExecutiveControl/GoldsteinR2011a.pdf
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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(between-subject). Here, each contrast image of the first-level was considered as a representative 

sample for its group. From this, an activation map (statistical map) for the whole brain was 

created, which described the different activation level of voxels between the two groups through 

a t-distribution; and an activation map for each structural ROI was also formed based on the 

activation map for the whole brain using its structural ROI mask. 

b. Filtering 

After ranking, one might still have to decide on how many of the top-ranked voxels should be 

chosen to form a functional ROI because the size of a functional ROI, i.e. the number of selected 

voxels, can have an impact on the classification performance (O'Toole et al., 2007; Etzel et al., 

2009). One commonly used method is to threshold the statistical map and then to select the 

surviving voxels on the threshold within the observed brain structure (structural ROI). For a 

structure with size of D voxels, we observe simultaneously on D hypothesis testing results of the 

statistical map (one for each voxel). It is thus necessary to correct the threshold for multiple 

comparisons. For this, Bonferroni correction or false discovery rate control can be applied to 

define the threshold in order to ensure that the functional ROI only contains the voxels with their 

features deemed significant at a given level (Pereira et al., 2009). However, this approach can be 

quite sensitive to the specific threshold (Etzel et al., 2009).  Especially in small structural ROIs, 

the approach may be problematic if no or few voxels are surviving.  

For this reason and owing to the size difference of the investigated structural ROIs, in this 

preliminary study, we focused on a simple method in which the size of functional ROI was fixed 

at three different levels: 200, 100 and 50 voxels. A functional ROI with a given size d was 

defined as the d-voxels with the largest t-values identified within the corresponding structural 

ROI (d ¢ D) using its activation map after ranked. In case the selected size to form the functional 

ROI was greater than the actual size of the corresponding structural ROI (d ² D), the entire 

structural ROI was included (d = D), as was for instance the case for the VTA, VS-DS, VS, DS, 

amygdala and pallidum at a functional ROI size of 200 voxels (Table 2.1).  

c. Sample for the t-test analysis 

A classification task usually involves separating data into training and testing datasets (Figs. 2.5 

& 2.6). Each pattern in the training set covers attributes of the pattern ὴ   (i.e. voxel attributes) 
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and a class label ώ  assigned to it (ὴȟώ . Based on the training dataset, a given 

classification algorithm yields a corresponding model (classifier) to predict the class labels for 

the unlabeled patterns of the testing dataset only based on the attributes of the patterns (voxel 

attributes). Hence, to avoid overestimates of classification performance derived from peeking 

information of the testing data (Pereira et al., 2009), for each different loop of the training and 

testing, a separate t-test analysis at the second-level was conducted only on its corresponding 

training dataset of the loop. The creation of these loops will be presented in the next section of 

the evaluation. 

Step 2: Classifying the response patterns of individual ROI 

For each ROI Ὧ a separate SVM classifier Ὢ was used as an instrument to classify its response 

patterns (ὴ   into either class 1 (alcoholic class; ώ Ὢ ὴ ρ) or class 2 (control class; 

ώ Ὢ ὴ ρ) ώ  ɴ ρȟρ ; ὴȡ the response pattern of the ROI Ὧ recorded for block 

Ὥ). The training and testing for the SVM classifier was conducted as follow.  

Training to obtain a model (SVM classifier) from labelled data 

For a given labelled training dataset 

ὴȟώ , there may exist many 

hyperplanes that separate the input vectors 

of this dataset (ὴ ) into the two classes 

(Fig. 2.3a). Among the hyperplanes, there 

exists the optimal margin hyperplane with 

the largest margin of separation between 

the two classes. The vectors closest to the 

optimal margin hyperplane are called 

support vectors, and the distance between 

them and the hyperplane is called the 

margin of SVM classifier (Fig. 2.3b). In 

the cases where the input vectors are not 

linearly separable, they can be mapped 

into a (usually higher) dimensional feature 

 

Figure 2.3. Illustration for SVM classification.  

For linear SVM: Ὢ ὴ ίὭὫὲύ ὴ ὦ; For nonlinear SVM: 

Ὢ ὴ ίὭὫὲύ ᶮὴ ὦ; Ὢ ὴ : decision function; ύ : 

weight vector; ɲ: function mapping ὴ  into a higher dimensional space;  

ὦ: offset; ὴ : response pattern; crosses: the patterns of class 1; circles: 

the patterns of class 2. 

 

 

 

 
Figure 2.4. Illustration for mapping data into a feature space.  
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space ὴ  O ᶮὴ  in order that they become linearly separable in the projected space (Fig. 

2.4). However, computation in the feature space can be costly because it is very high 

dimensional (typically infinite-dimensional). To solve this, the so-called kernel trick 

(ὑὴȟὴ ᶮὴ ᶮὴ ) is applied to avoid carrying out the mapping explicitly. 

Additionally, to improve to handle the data that are not fully linearly separable, one allows 

ñerrorsò (ʊȠ ʊ π) in classification by relaxing slightly the constraints to identify the optimal 

margin hyperplane i.e. ώύᶮὴ ὦ ρ  ʊ instead of ώύᶮὴ ὦ ρ. The 

ñerrorsò ʊ are known as ñslack variablesò in optimization and provide an upper bound on the 

number of training errors. A SVM classifier using such a method is known as the ñsoft marginò 

SVM classifier; and a classiýer that would generalize well on unseen data is then found by 

controlling both the classiýer flexibility (Vapnik-Chervonenkis dimension via ύ) and the sum of 

the slacks В ʊȠὍ ȡ the number of patterns for training) with the target of 

minimizing both of these two quantities. In the soft margin SVM, data points on the incorrect 

side of the margin boundary have a penalty that increases with the distance from it. To 

harmonize this issue, a regularization parameter (ὅ) is used to control the trade-off between 

margin maximization (ÍÁØÉÍÉÚÅ
ᴁ ᴁ
 έὶ ÍÉÎÉÍÉÚÅ ᴁύᴁ) and training error minimization 

(ÍÉÎÉÍÉÚÅ В ʊ . Specifically, the SVMs require the solution for the following 

optimization problem (a): 

ÍÉÎÉÍÉÚÅ  
ȟȟ

ρ

ς
ᴁύᴁ ὅ ʊ 

subject to    ώύᶮὴ ὦ ρ  ʊ  

 ᶅʊ π; Ὥ ρO Ὅ : the number of patterns for training 

When designing a SVM classifier, the first task is to select kernel (ὑὴȟὴ  and 

regularization parameter (ὅ), and for a given kernel, to set the parameters that the kernel function 

may depend on e.g. width of a Gaussian kernel (corresponding to Radial Basis Function (RBF)) 

(g; ὑὴȟὴ Ὡg ȟg π  or degree of a polynomial kernel (d; ὑὴȟὴ

gὴὴ  ὶ ). These parameters are called hyper-parameters and have considerable effects on 

the classifier flexibility and training error. Based on training dataset together with the defined 

kernel/hyper-parameters, the values of parameters for specifying the optimal margin hyperplane 
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i.e. b and ύ or ‌ (Lagrange multipliers for dual formulation (substituting dual optimization 

problem for the objective problem (a)); ύ В ώ‌ᶮὴ ; ‌ π: points on the margin 

(support vectors)) are estimated to produce a model for classification (SVM classifier). Since 

different datasets can be compatible with different kernels (Hsu C-W, Chang C-C & Lin C-J, 

2010), one might try all kinds of kernels/hyper-parameters, and choose the kernel with the best 

performance. Nonetheless, this may cause overfitting (Ben-Hur & Weston, 2010). 

In this study, 14 different brain structures (structural ROI; Table 2.1) with three different sizes of 

the functional ROIs (200, 100 and 50 voxels) corresponding to each structure were observed. 

Thus, significant differences among the datasets of the response patterns collected for the 

observations are likely. This implies that for some observations the datasets are compatible with 

a given kernel, however for the others, there may be no compatibility. In order to take advantage 

of the compatibility of each kernel (e.g. either linear or nonlinear kernel) with different training 

datasets, both of the linear and radial basis function kernel were applied interchangeably. The 

selection of the kernel/hyper-parameters to form a particular classifier  Ὢ from a given training 

set was done as follows. First, for each ROI Ὧ, the values of the hyper-parameters (C for the 

linear kernel and C, g  for the RBF kernel) for the classifier Ὢ were specified via grid search 

using ñgrid.pyò module with 5-fold cross-validation and the exponentially growing sequences of 

grid parameters: C =2
-5

, 2
-3
, é, 2

15
; g = 2

-15
, 2

-13
, é, 2

3
 (Hsu C-W, Chang C-C & Lin C-J, 2010). 

After that, for each loop of training and testing (ὒ), the classifiers with different pairs of the 

specified kernels/hyper-parameters were trained and tested in turn on the 45 nested loops created 

within its corresponding training dataset (ὲὩίὸὩὨὒͅȠὮ=1 ­ 45; Fig. 2.5 & 2.6; see the next 

section on creating examples). Based on the result of this testing, the classifier that has yielded 

the highest average accuracy was selected for the loop (ὒ). The Matlab implementation of the 

LibSVM version 3.1 (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used in this study. For a 

more detailed description of the SVM formalism, refer to the machine learning literature (Boser 

et al., 1992; Vapnik 1998; Schölkopf & Smola, 2000; Vapnik, 2000; Wang, 2005). 

Testing a SVM classifier (model) on unseen data 

For testing on an unlabeled pattern ὴ  of testing dataset, the distance of the pattern ὴ  from 

the hyperplane was calculated using the classifier  Ὢ which has been specified from the training. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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The decision to classify the pattern ὴ  into either class 1 or class 2 was determined by its sign 

(ώ ίὭὫὲύὝᶮὴ ὦ . This means that if Ὢ ὴ π, the pattern is classified into class 1 

(ώ ρȟ and conversely, if Ὢ ὴ πȟ it is classified into class 2 (ώ ρ. 

Evaluation 

Creating examples 

Cross-validation (CV) is a statistical method used to evaluate or compare learning algorithms by 

repeatedly dividing data into two different datasets: one used to train a model and the other to 

measure its classification performance (Payam et al., 2009). Here, the 107 subjects who were 

included in the study were randomly divided into an 80-subject cross-validation (CV) sample 

(including 40 alcoholics and 40 

controls) and a 27-subject sample (10 

alcoholics and 17 controls) for 

external validation. 

On the 80-subject sample, a stratified 

10-fold cross-validation procedure 

repeated 10 times was applied to 

create 10 rounds for the evaluation. 

Firstly, the 80-subject sample was 

 

Figure 2.5. Creating examples for the evaluation 

Loops of training and testing for the evaluation  

on the 80-subject sample 
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partitioned randomly into 10 equal folds, each of which included 8 subjects (4 alcoholics and 4 

controls, corresponding to 96 response patterns of the brain or ROI collected from them). Based 

on the 10 folds, each round created 10 loops of training and testing such that within each loop 

(ὒ; ὸ =1­10) a different fold of the data containing 8 subjects (ὃ) was held-out for testing 

while the remaining 9 folds including the 72 other subjects (ὄ) were used for training. To 

eliminate sampling bias, this procedure was repeated 10 times on random cross-validation splits 

of the 80-subject sample (ὒȠ ὸ = 1 ­ 10 x 10). Moreover, within the training segment ὄ  of 

each loop (ὒ), a 9-fold cross-validation procedure repeated 5 times to create 45 nested loops of 

training and testing (ὲὩίὸὩὨὒͅ; Ὦ = 1 ­ 5 x 9) was applied for adjusting the kernels/hyper-

parameters of the SVM classifiers described in the previous section (Fig. 2.5). 

Evaluating classifiers 

As mentioned earlier, for each brain region with a defined size of functional ROI, a 

corresponding classifier would be formed. We used the 80-subject sample with the cross-

validation procedure to evaluate their classification performance in terms of accuracy, sensitivity 

and specificity. Accuracy, sensitivity and specificity were averaged over the testing results of the 

100 test datasets created from the 10-fold cross-validation repeated 10 times. Each test 

comprised the 96 patterns collected from the 8 subjects of the corresponding testing dataset. 

Accuracy was defined as the relative number of total samples (or patterns) classified correctly. 

Sensitivity was defined as the percentage of correctly classified patterns into alcoholic class. 

Speciýcity was defined as the percentage of correctly classified patterns into control class.  

Result significance for a classifier 

The statistical significance of the classification result for a classifier was analyzed based on 

rejecting the null hypothesis. The null hypothesis assumes that there is no difference between the 

samples of the two classes. The p-value to reject this hypothesis was estimated by cumulative 

probability function (p-value = P(X Ó k)) where X is a random variable with a binomial 

distribution with N trials corresponding to the number of classified samples, k successful trials 

and the probability of a successful trial p = 0.5 for the two classes. Each test sample (each 

pattern) was regarded as an independent Bernoulli trial (Pereira et al., 2008). To avoid the 

optimistic evaluation in multiple testing, the p-value was adjusted using the Bonferroni 
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correction with 1% significant level (Bland & Altman, 1995; Pereira et al., 2008). Under the 

Bonferroni correction, the accuracies of classifiers were said to be significant with 1% level 

(ὴ <0.01) if their uncorrected p-values were smaller than the corrected alpha (a=0.01/(Nxm); 

N: number of trials (samples or classified patterns); m: number of observations). 

Comparison of two different classifiers  

The comparison of two different classifiers on the same dataset e.g. Ὢ and Ὢ in terms of 

statistical signiýcance was carried out using McNemarôs test (Dietterich, 1998; Roggo et al., 

2003; Jaber et al., 2010). This test was based on the chi-square distribution (c2
) with one degree 

of freedom. Accordingly, the critical value with 5 % significance level is 3.8415 c
ȟȢ

. The 

null hypothesis assumes that the two classifiers Ὢ and Ὢ would have no difference of error rate. 

Then the null hypothesis is rejected if McNemar's value c  is greater than 3.8415, and these 

two classifiers are said to be significantly different (p<0.05). In this study, McNemarôs value was 

calculated using the following formula:  

-Ã.ÅÍÁÒȭÓ ÖÁÌÕÅ
ȿÎ  Î  ȿρ

Î   Î  
 

Where Î  was the number of samples incorrectly classified by Ὢ but correctly classified by Ὢ, 

and Î   was the number of samples correctly classified by Ὢ but incorrectly classified by Ὢ. 

To get a more robust analysis, the prediction models (or classifiers) which have been tested on 

the 80-subject sample were again evaluated on the external dataset including the 27 subjects. 

Since this dataset was up to then never used in the previous design process, the results on this 

dataset were not subject to any model selection bias. 

Evaluating correlation between the t-value and performance of classifier  

In order to assess validity of using the t-values at the second-level statistical analysis for the 

formation of functional ROIs within their corresponding structural ROIs, we investigated effects 

of the t-values on the classification performance of classifiers or in other words, whether the 

performance of classifiers for the functional ROIs with the high t-values is better than those with 

the lower t-values. For this, a second level t-test analysis that shows difference of activation 

between alcoholics and controls on the 80-subject sample was conducted to create a map of the t-
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value distribution for the whole brain and correspondingly, a map of the second-level t-value 

distribution for each structural ROI using its structural mask. As described earlier, a map of the t-

value distribution for each functional ROI was specified based on a ranked map of the t-value 

distribution of the corresponding structural ROI and given size d. Then, the comparison of t-

value distribution between the two different functional ROIs was analyzed using a t-test analysis 

for difference between two means of these two functional ROIs in the case of independent 

samples (Zikmund et al., 2013). In combination with this comparison, the comparison of 

classification performance between their two corresponding classifiers was also analyzed to 

provide answers for the assessment.  

Results  

1. Performance on the 80-subject cross-validation sample 

The results were summarized from testing on 100 sample sets that were created from 10 repeated 

10-fold cross-validations (8 subjects for each test; 12 response patterns of the brain or ROIs 

collected from 12 cue blocks for each subject). As a result, the total of the classified patterns for 

each observation on each functional ROI was 9600 (N = 8 x 12 x 100). For evaluation of the 

significance of classifiers in the observations, their accuracies were said to be significance with 

1% level under the Bonferroni correction (ὴ <0.01) if their uncorrected p-values were smaller 

than 0.248 x 10
-7

 (0.01/(Nxm); N: number of trials (classified patterns); N = 9600; m: number of 

observed classifiers in the same context; m = 42; Tables 2.2, 2.3 and 2.4). According to the 

cumulative probability function on a binomial distribution, this also means that the accuracy of a 

classifier is significant with ὴ <0.01 if it is greater than 52.8% (uncorrected p-value = 

0.248x10
-7

; N = 9600; p = 0.5; p: probability of success in one trial). 

a. Functional ROI with the size of 200 voxels  

In the second-level analysis, the functional ROIs such as the PFC were formed by the voxels 

with more significantly different activation (t-value = 1.79 ± 0.35) than those of ACC (t-value = 

1.45 ± 0.4) and VS (t-value = 0.3 ± 0.54) (z = 5.55 and 22.34; p<0.01). In contrast to this, the 

ACC and VS yielded the classification outperformance (62.8% and 60.3% vs. 51.8% accuracy 

respectively; c  23.61 and 9.37; p<0.01; Table 2.2).  
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Table 2.2 The performance of pattern classification for functional ROIs with the size of 200 voxels 

ROI 

N=9600 

t-value distribution at the 2
nd

 level analysis Classification performance (%) 

max min mean sd Accuracy Sensitivity Specificity 

VTA 1.69 0 0.45 0.5 55.7 57.9 53.6 

VS-DS 2.39 0 0.51 0.58 58.8 61.1 56.4 

VS 1.77 0 0.3 0.54 60.3 61.4 59.2 

DS 2.39 0 0.73 0.53 50.7 46.9 54.6 

Pallidum 2.37 0 0.35 0.6 59.8 61.9 57.7 

Thalamus 2.58 0.74 1.11 0.31 56.7 55.2 58.2 

PFC 3.12 1.4 1.79 0.35 51.8 54.3 49.3 

ACC 2.45 0.87 1.45 0.4 62.8 64.9 60.7 

mPFC 3.01 1.08 1.54 0.36 45.9 43.3 48.5 

OFC 3.12 0.37 1.01 0.55 45.0 45.5 44.6 

Amygdala 0.21 0 0.05 0.04 53.7 58.0 49.4 

Insula 2.98 1.19 1.66 0.39 48.2 50.8 45.5 

Hippocampus 2.3 0.27 0.98 0.5 51.9 54.7 49.1 

Whole brain 4.21 2.56 2.83 0.26 61.8 66.3 57.3 

b. Functional ROI with the size of 100 and 50 voxels  

The reduction of defined size for the functional ROIs from 200 voxels to 100 and 50 voxels 

increased the distribution of the higher t-values correspondingly e.g. for the ACC with the size of 

200, 100 and 50: t-value = 1.45 ± 0.4, 1.76 ± 0.3 and 2.02 ± 0.19 respectively; z = 4.18 and 6.02; 

p<0.01. However, the increases did not yield a correspondingly better performance (62.8%, 

60.6% and 59.5% accuracy respectively; Tables 2.2 & 2.3).  

Table 2.3 The performance of pattern classification for functional ROIs with the size of 100 and 50 voxels 

ROI 

N=9600 

Functional ROI size of 100 voxels  Functional ROI size of 50 voxels 

t-value 
distribution 

Classification performance 
(%) 

t-value 
distribution 

Classification performance  

(%) 

mean sd Accuracy Sensitivity Specificity mean sd Accuracy Sensitivity Specificity 

VTA 0.45 0.5 55.7 57.9 53.6 0.45 0.5 55.7 57.9 53.6 

VS-DS 0.9 0.5 57.0 55.7 58.4 1.3 0.33 59.2 56.6 61.8 

VS 0.3 0.54 60.3 61.4 59.2 0.53 0.64 63.9 65.0 62.9 

DS 0.73 0.53 50.7 46.9 54.6 1.1 0.39 54.9 48.9 60.9 

Pallidum 0.56 0.67 63.7 65.3 62.1 1.11 0.55 60.8 63.4 58.1 
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Thalamus 1.35 0.27 52.6 53.8 51.4 1.55 0.25 50.4 52.2 48.6 

PFC 2.05 0.32 47.8 50.6 45.1 2.28 0.29 50.5 50.4 50.6 

ACC 1.76 0.3 60.6 61.3 60.0 2.02 0.19 59.5 58.9 60.1 

mPFC 1.81 0.32 47.9 47.7 48.1 2.05 0.29 49.5 48.4 50.7 

OFC 1.41 0.5 47.0 49.8 44.1 1.78 0.47 48.2 46.9 49.4 

Amygdala 0.06 0.03 58.0 61.7 54.4 0.08 0.03 56.7 61.5 51.9 

Insula 1.96 0.32 49.5 52.5 46.6 2.2 0.29 53.6 56.9 50.2 

Hippocampus 1.4 0.36 45.8 48.2 43.5 1.7 0.24 44.2 45.6 42.8 

Whole brain 3.17 0.28 58.6 61.2 56.0 3.17 0.28 55.2 57.5 52.9 

2. Performance on the external 27-subject sample 

For testing the classifiers for the ROIs on the external 27-subject sample, we trained the 

classifiers on the 80-subject cross-validation sample and then tested them on the external sample, 

and only focused on the functional ROI size of 200 voxels. The results showed that the VS, ACC 

still kept the significantly high performance on the external 27-subject sample (62.3% and 67.6% 

accuracy respectively; ὴ <0.0001; N = 27 x 12; m = 14).  

Table 2.4 The performance of pattern classification on the external 27-subject sample 

ROI 

N = 324 

Classification performance (%) 

For functional ROI size of 200 voxels 

Accuracy Sensitivity Specificity 

VTA 52.5 48.3 54.9 

VS-DS 58.3 68.3 52.5 

VS 62.3 59.2 64.2 

DS 72.8 63.3 78.4 

Pallidum 54.9 49.2 58.3 

Thalamus 60.5 24.2 81.9 

PFC 57.4 65.8 52.5 

ACC 67.6 51.7 77.0 

mPFC 71.6 80.0 66.7 

OFC 67.6 71.7 65.2 

Amygdala 34.9 20.8 43.1 

Insula 65.7 52.5 73.5 

Hippocampus 29.6 33.3 27.5 

Whole brain 58.6 44.3 67 
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Discussion 

Mass-univariate approach for the formation of a functional ROI from its structural ROI  

The investigation on individual ROIs indicated that the brain regions of ACC and VS play a 

prominent role in the diagnostic classification of alcohol dependence using fMRI, which can be 

seen by the good classification performance achieved on the regions (ACC, 62.8% accuracy 

(Table 2.2); VS, 63.9% accuracy (Table 2.3); ὴ <0.0001). This result is compatible with 

previous studies on cue reactivity in alcohol dependence, in which the VS and ACC has exposed 

significant activation under impact of alcohol-associated stimuli in alcoholic patients compared 

to those of controls (Braus et al., 2001; Heinz et al., 2004, 2009; Wrase et al., 2007; Park et al., 

2007; Beck et al. 2009; Schacht et al., 2011). However, the investigation on the second-level t-

value distribution of these regions with the functional ROI size of 200 voxels (ACC, t-value = 

1.45 ± 0.4 and VS, t-value = 0.3 ± 0.54) showed no corresponding prominence compared to 

those with the significantly lower performance of classification such as the PFC (t-value = 1.79 ± 

0.35) (62.8% and 60.3% vs. 51.8% accuracy respectively; c  281.42, 154.37; p<0.0001). The 

differences of t-value distribution between the functional ROIs e.g. between the VS and PFC (z = 

22.34; p<0.00001) can be derived from the significant differences of analyzed structural ROI 

size e.g. the VS, 88 voxels and the PFC, 3136 voxels (Table 2.1). Nonetheless, the evidence 

indicates that the functional ROIs formed from a set of voxels with the better t-values may not 

yield a correspondingly better classification performance using SVM classifier. The inference is 

in line with the previous results of fMRI classification showing that the classification 

performance with feature selection using the univariate approach was lower than that using a 

multivariate approach such as SVM, Gaussian Naive Bayes or Linear Discriminant Analysis 

(Pereira et al., 2009). These results therefore appear to confirm that using the t-value as an 

indicator to rank voxels for the formation of functional ROIs within their corresponding 

structural ROIs is not an optimal method of feature selection for the classification using 

multivariate methods such as SVM.  

How to form a functional ROI from its corresponding structural ROI appropriately? 

To find clues in answer to this question, letôs reconsider the way that a SVM classifier makes a 

decision and the nature of classified data. 
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Decision-making of a SVM classifier 

With a multivariate approach, the decision-making of a SVM classifier for a classified pattern is 

influenced by individual variables (e.g. voxel attributes of the pattern (ὴ ) and their 

corresponding weights (ύ)) and correlation between them characterized by a mathematical 

formula connecting the variables together (e.g. Ὢὴ ίὭὫὲύὴ ὦ; Fig. 2.3). This 

means that the SVM classifier is appropriate for recognizing informative patterns rather than 

contrast differences in individual voxels (Norman et al., 2006; Pereira & Botvinick, 2011). Apart 

from the evidence of loose correlation between the performance and t-value for the investigated 

ROIs discussed above, the argument is supported by the result of a study by Mourão-Miranda et 

al. (2005) indicating that there was a difference in the selected voxel set over  a defined threshold 

between a univariate and a multivariate approach when analyzing difference of activation 

between tasks. This suggests that the formation of a functional ROI to gain a high classification 

performance using a SVM classifier should be based not only on the characteristics of each 

individual voxel (voxel attribute) but also on those of correlation between the voxels within the 

observed structure.  

Nature of classified data  

For this reason, in order to answer the question above, letôs try to reconsider the nature of the 

information that we are working on. As mentioned in the literature review, the nature of our 

classified data is vascular changes represented by BOLD signals and transformed into voxel 

attributes (image resolution value; Fig. 1.6). The vascular changes indirectly reflect activity of 

the brain under impact of given stimulation (Mathews, 2001; Logothetis et al., 2001; Logothetis 

& Pfeuffer, 2004). The neurovascular coupling mechanisms are thought to relate to one or more 

vasoactive mediators such as nitric oxide, adenosine and changes in K
+
 or hydrogen ions (i.e., 

pH) which are released from active nerve ýbers to mediate local metabolism and blood þow 

(Yang et al., 2011). Furthermore, single neurons do not work independently but rather function 

in large aggregates (Mathews, 2001). Consequently, the BOLD signals or the data on which we 

are working appear to be operated by a mechanism involving the functional specialization of 

each brain region according to which the greater the homogeneity of structure and function, the 

stronger the correlation between the components within that region. This mechanism is 

evidenced by the result of the study of brain complexity measurement that indicated stronger and 
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more complex local connections between neurons of similar specificity forming neuronal groups 

than those between neurons of the different functional groups (Tononi, 1994). Hence, the 

correlation between voxels within an investigated brain region can be considered as degree of 

effective connectivity between these voxels in response to given stimulation which complies 

with this operating mechanism. The interpretation is supported by the classification results of 

PFC and ACC. The anatomical structure of PFC is formed from the substructures including the 

ACC, mPFC and OFC, so obviously for the same size of selected voxels, the functional ROIs of 

PFC possesses the sets of voxels with the larger t-values than those for its substructures such as 

the ACC (e.g. for the size of 200 voxels, the PFC, t-value = 1.79 ± 0.35 vs. the ACC, t-value = 

1.45 ± 0.4; z = 5.55; p<0.0001; Table 2.3). Nevertheless, in contrast to this, the classification 

performance on the functional ROI of PFC was significantly lower than those on the functional 

ROI of ACC (51.8% vs. 62.8% accuracy respectively; c  23.61; p<0.0001; Table 2.2). 

Similar evidence was also found on the structures of VS-DS and VS, where the VS-DS was 

formed by combining the VS and DS. This combination did not yield a better classification 

performance for the VS-DS than that for the VS (58.8% vs. 60.3% accuracy respectively; c  

9.12; p=0.0025; Table 2.2).  

Further evidence to support this argument can be observed in the analysis of correlation between 

classification performance and ROI size. The results indicate that the reduction in size of 

functional ROI to filter out more voxels with no different activation can yield better performance 

for several brain regions e.g. the pallidum, 59.8% vs. 63.7% accuracy for the sizes of 200 and 

100 voxels respectively. However, this was not recorded for the others e.g. the ACC, 62.8%, 

60.6% and 59.5% accuracy for the sizes of 200, 100 and 50 voxels respectively (Tables 2.3 & 

2.4). These results suggest that the size of a functional ROI may not be a critical factor 

influencing its performance of classification but rather the performance may essentially depend 

on its characteristics of structure and functional specialization as well as its role in the 

investigated disorder. The inference is evidenced by the classification results of the brain regions 

of interest in the case of analyzed functional ROI size with 200 voxels (Table 2.2) showing the 

significantly higher performance of classification for the core brain regions in the 

pathophysiologic mechanism of alcohol dependence e.g. the VS (88 voxels) than those for the 

others e.g. the amygdala (132 voxels) (60.3% vs. 53.7%; c  94.74; p<0.0001; Table 2.2).  
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The above interpretation is in accordance with the evidence showing the ñsearchlightò approach 

which is operated on correlation between neighbor voxels proved more sensitive than the mass-

univariate approach in identifying brain regions containing category information between tasks 

(Kriegeskorte et al., 2006). Further, the outperformance for the VS and ACC compared with that 

for the VS-DS and PFC recorded on the external sample was consistent with that on the cross-

validation test (the VS, 62.3% vs. VS-DS, 58.3% accuracy; c  2.72; p=0.0992; and the ACC, 

67.6% vs. PFC, 57.4% accuracy; c  6.36; p=0.0117; Table 2.5). Since the external sample 

had never been previously used in the process of model building, this shows that these findings 

are not a result of model selection bias. 

Observation on the whole brain  

As just discussed, the formation of the PFC including the ACC, mPFC and OFC or the VS-DS 

combining the VS and DS did not yield the functional ROIs with the better classification 

performance than that of some of their corresponding substructures. Thus, for a broader 

interpretation where the whole brain is considered as a single structure, it is reasonable that the 

observation on the whole brain can be appropriately separated into multiple observations on 

relevant brain regions to get better benefits of performance and interpretation of classification 

result (e.g. the whole brain, 61.8% vs. the ACC, 62.8%; the VS, 63.9% accuracy; c  2.39, 11; 

p=0.1219, 0.0009 respectively; Tables 2.2 & 2.3). In other words, it assists the practicality of 

deeper focus on the characteristics of structure and function of the investigated brain regions 

using multivariate methods such as SVM on fMRI data. Further, in a context where the 

combination of different brain structures into a single structure may not yield a better 

performance than that of some of its individual substructures, the questions are raised whether 

and how to combine multiple observation results on several relevant brain regions is valid for a 

fMRI classification. These issues will  be elucidated in the next chapter. 
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CHAPTER III  

fMRI CLASSIFICATION                                                                    

BASED ON MULTIPLE LINES OF EVIDENCE   

Introduction  

The result of the first study indicates the inefficiency of using the t-value to form the functional 

ROIs from their corresponding structural ROIs. Also, it suggests that the classification 

performance for the ROIs may depend on their role in the pathophysiological mechanism of 

investigated disorder much more than on the different activation level of individual voxels. From 

this basis, the question arises that if a functional ROI is just its corresponding anatomical 

structure, whether it can give an expected result. If this is validity, it can give a very important 

advantage in looking for a way to apply diagnostic functional imaging in practice because the 

voxel set of each functional ROI is then the same in all the tests and in all the subjects.  

Additionally, for an imaging diagnosis in practice, a decision of image recognition is usually 

more confident if it is based on a synthesis of multiple observation results on multiple brain 

regions than if it is only focused on a single brain region. However, whether this approach is 

feasible in relapse prediction in alcohol dependence using fMRI remains a question. The 

clarification of the issues was the objective of our second study. Specifically, this study was to 

determine the validity of deeper focus on the anatomical structures of brain regions of interest in 

relapse prediction as well as the validity of prediction combining individual observation results 

on relevant brain regions using fMRI. 

Material s and methods 

Materials 

Participants 

The study was conducted on 40 patients (including 20 relapsers and 20 abstainers) recruited 

randomly from the 50 alcoholic patients who were included in the first study. Apart from those 

described in the section on the materials in the first study, before fMRI experiment, all the 
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patients were assessed with regard to the severity of their alcohol dependence using the Alcohol 

Dependent Score (ADS) (Skinner & Horn, 1984). Severity of alcohol craving was measured with 

the Alcohol Urge Questionnaire (AUQ) (Bohn et al., 1995) and the Obsessive Compulsive 

Drinking Scale (OCDS) (Anton et al., 1995). After discharge, the patients were interviewed 

about their alcohol consumption over a follow-up period of another six months, and were 

classified as abstainers (no alcohol consumption; n = 20) and relapsers (any alcohol 

consumption; n = 20).  

Table 3.1. Clinical data of the two groups of relapsers and abstainers 

Characteristics 
Relapsers 

n = 20 
Abstainers 

n = 20 p value 
mean sd mean sd 

Age (y) 44.1 11.9 44.4 10.9 0.76 

Age at onset (y) 36.4 8.8 36.2 9.6 0.48 

Sex (male : female) 14:6 15:5 0.49 

ADS 15.4 6.7 16.1 6.8 0.53 

OCDS 16.5 5.6 15.2 5.7 0.87 

AUQ score 21.5 7.8 26.9 22.8 0.09 

Number of cigarettes per day 19 14.6 18.7 11.4 0.20 

Number of abstinent days before fMRI 12.3 4.8 11.6 5.5 0.88 

Number of abstinent days until relapse 61 47.0   

Alcohol intake during follow-up period (g) 6494 8204   

Data pre-processing 

The pre-processing in the second study was similar to that in the first study. 

Methods 

The classification algorithm was designed in a way that emulated the way clinicians usually use 

to diagnose imaging in practice. First, to classify a subject, they observe and recognize the 

features of several individual brain regions of interest. Second, they infer the feature of the brain 

from these observation results. Finally, based on such multiple observations they make a 

diagnosis of disorder or condition of the disorder for the subject who has produced the images. In 

the study, for the first step, the observation and recognition of the response patterns of individual 

brain regions were done by SVM classifiers (step A 1 including A 1.1 and A 1.2; Fig. 3.1). For 

the second step, the inference based on these observation results was done using Bayesian 
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inference (step A 2). The prior experience for the inference was learned from the training set. 

These two steps were seen as the step of pattern classification (step A). The final step, the step of 

subject classification, was considered as the synthesis step of various observation results of the 

response patterns of the brain whenever cues are exposed in order to make a prediction for the 

subject who has produced these patterns (step B).   

A. Classification of pattern 

A 1: Observation on individual ROIs 

A 1.1: Feature construction  

The method of constructing the response 

patterns of investigated brain regions was 

applied in a manner similar to that used in 

the first study. As a result, for a particular 

ROI Ὧ, each subject provided 12 response 

patterns ὴ ; and for 20 relapsers and 20 

abstainers, 480 response patterns were 

collected and interpreted as 480 independent 

observations of response images of the ROI 

 

Figure 3.1. Illustration of general classification algorithm for a particular subjecta (+1: relapse class; -1: abstainer class). 

Figure 3.2. Feature construction for a ROI ▓ without the t-test 

analysis at the second level between the two classes. A 

functional ROI was its corresponding structural ROI. 
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Ὧ to alcohol cues. They were used as input data of a classifier Ὢ. However, in this study there 

were the two following important differences compared to those in the first study. 

(1). Formation of functional ROI:  

The investigation was focused more deeply on 

anatomical structures of the ROIs. The anatomical 

structures of each brain region in the left, right and both 

hemispheres were investigated separately (Table 3.2).  

While in the first study, functional ROIs were formed 

within their own structural ROIs using the 

scoring/filtering method based on the t-value obtained 

from the statistical analysis at the second-level on the 

training dataset, in this study the functional ROIs were 

just their corresponding structural ROIs (Fig. 3.2). 

(2). Normalization of the feature attributes of patterns:  

Besides the scaling normalization for the response patterns mentioned in the section on feature 

construction in the first study (method 1), we investigated the second method combining both of 

the scaling normalization and z-score normalization (method 2) to reduce variability of the 

patterns between blocks as well as subjects in situations where it cannot be done using the 

scaling normalization alone. For this method, before applying the scaling normalization, each 

input vector (ὴ  was additionally z-score normalized to have mean 0 and standard deviation 1. 

For each vector (ὴ , the average of all the attributes of this vector was subtracted from each of 

its attributes, and then the result of the subtraction was divided by the standard deviation of its 

attributes (ᾀίὧέὶὩὨᾥ Ƞ ὴ ὥ  O  ᾀίὧέὶὩὨῂ ᾀίὧέὶὩὨᾥ Ƞ ὸ

ρȟȣȟὺȠὺ: size of the ROI ὯȠ Fig. 4.3). This z-score normalization was applied to normalize each 

individual pattern or each vector (column; Fig. 3.2).  

A 1.2: Classifying the response patterns of individual ROI  

A SVM classifier was used as an instrument to classify the response patterns of an individual 

ROI in the same manner as those in the first study. Hence, for each ROI Ὧȟ a separate SVM 

Table 3.2. Size of structural ROIs  

with voxel size 3 x 3 x 3 mm3 

ROI 
Number of voxels 

Left Right Bilateral 

VTA 12 16 44 

VS 44 44 88 

DS 44 44 88 

Pallidum 79 79 161 

Thalamus 282 288 570 

ACC 498 489 987 

mPFC 681 818 1499 

OFC 704 792 1496 

Amygdala 63 69 132 

Insula 612 603 1215 

Hippocampus 281 282 563 
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classifier Ὢ was used to classify its response patterns (ὴ   into either class 1 (relapser class; 

Ὢὴ ρ) or class 2 (abstainer class; Ὢὴ ρ) (Fig. 3.1).  

A 2: Combination of the observation results on multiple ROIs  

Step A 1 was seen as the step to observe and identify individually the response patterns of brain 

regions of interest to the given stimulation recorded within blocks. With the design described in 

the first study, for each block ὄ a response pattern of the whole brain corresponding to the 

average volume over all the scans recorded for that block was constructed. From this pattern of 

the brain, a pattern of each ROI for block ὄ was extracted using its ROI mask. Thus, the 

response pattern of the brain for each block can be considered as an overall picture which is put 

together by the pieces of the response patterns of brain regions extracted from it. The 

combination of the observation results on these pieces can help us infer the response pattern of 

the brain for that block (also termed óblock classificationô) (Fig. 3.1).  

Instrument for the combination 

Bayesian inference was used as an instrument for this combination. This inference derived from 

Bayesô rule has been applied to solve uncertainty. Bayes' rule shows the relation between two 

conditional probabilities that can infer each other (Hall, 2012). Considering a hypothesis Ὄ, its 

alternative hypothesis Ὄ, and the observation Ὁ, the posterior probability of a hypothesis Ὄ after 

observing  Ὁ is given by 

ὖὌȿὉ
ὖὉȿὌ ϽὖὌ

ὖὉ
ȟ 

where ὖὌ is the prior probability of Ὄ before observing Ὁ, ὖὉȿὌ  is the probability of a the 

observation given that the hypothesis Ὄ is true, and ὖὉ ὖὉȿὌ ϽὖὌ ὖὉὌ ϽὖὌ .  

In this inference, Bayesô rule is applied to update the probability estimate for a hypothesis after 

evidence has been observed (Tipping, 2010). Specifically, in this study, the inference was 

designed based on multiple observation results corresponding to the classification results on the 

different brain regions using their corresponding SVM classifiers. The result of this inference 

was to classify the response pattern of the brain into either class 1 (relapser class) or class 2 

(abstainer class). 
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For instance, we classify the response pattern of the brain for a particular unlabeled block Ὥ ὄ  

of an unseen test subject after the response patterns of ὑ different individual ROIs (ὴȠὯ

ρȢȢȢὑ  extracted from the feature vector of the brain for the block Ὥ have been classified as 

Ὢὴ ώȠ Ὧ ρȣὑ; ώ  ɴ ρȟρ  using their corresponding SVM classifiers (Fig. 3.1 

& 3.3). The inference process is conducted as follows. 

Initially, when no observation has been provided, an initial classification probability of the 

response pattern of the brain for block Ὥ ὄ  is set to 0.5 i.e. ὖὄ ρ ὖὄ ρ πȢυ (no 

difference to classify the pattern into either class 1 or class 2). 

After observation  ώ  from the first ROI Ὢ ώȠ Ὧ ρ) has been provided, Bayesô rule was 

applied to calculate the posterior probability that the pattern of the brain for block Ὥ ὄ  was 

classified into class 1 (relapser class): 

ὖὄ ρὪ ώ
ὖὪ ώȿὄ ρϽὖὄ ρ

ὖὪ ώ
 

ὖὪ ώȿὄ ρϽὖὄ ρ

ὖὪ ώȿὄ ρϽὖὄ ρ ὖὪ ώȿὄ ρϽὖὄ ρ
 

in which, ὖὄ ρ ὖὄ ρ πȢυ; ὖὪ ώȿὄ ρ ÁÎÄ ὖὪ ώȿὄ ρ are the 

priors learned on the training data. 

Now, the classification probability of the response pattern of the brain for block Ὥ is updated and 

used for the next inference: ὖὄ ρ ὖὄ ρώ ; ὖὄ ρ ρ  ὖὄ ρ. 

Then, when the observation ώ  from the second ROI Ὢ ώȠ Ὧ ς) has been provided as 

evidence, the posterior probability of the response pattern of the brain for block Ὥ ὄ  can be 

calculated as 

ὖὄ ρὪ ώ
ὖὪ ώȿὄ ρϽὖὄ ρ

ὖὪ ώȿὄ ρϽὖὄ ρ ὖὪ ώȿὄ ρϽὖὄ ρ
 

As before, the classification probability of the response pattern of the brain for block Ὥ ὄ  is 

now updated:  ὖὄ ρ ὖὄ ρώ Ƞ ὖὄ ρ ρ  ὖὄ ρ. 
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The inference process continues until all relevant ROIs ρȣὑ  have provided their observation 

results (Fig. 3.3); and finally the response pattern of the brain for block Ὥ ὄ  is classified into 

either class 1 (relapse class; ώ ρ) or class 2 (abstainer class; ώ ρ; ώȡ classification 

result of the response pattern of the brain for block Ὥ) according to the following decision rule: 

ώ
ρ ὭὪ ὖὄ ρώ ȢȢ πȢυ

ρ ὭὪ ὖὄ ρώ ȢȢ πȢυ
 

(ὑ: number of observed brain regions (ROI) 

Ὥ ρȟȣȟὍ ȠὍ : number of the unlabeled patterns collected for the testing) 

This inference model was built on the basis of the model of independent relevant symptoms in 

which a disorder only involves some relevant symptoms, and the symptoms or the response 

features of ROIs are considered conditionally independent of each other. The priors used for the 

inference for each ROI Ὧ were estimated on the training set using an inner cross-validation loop 

(9-fold cross-validation procedure repeated five times) from the test results of the classification 

of response patterns of the ROI Ὧ with its corresponding SVM classifier Ὢ in step A 1. 

Specifically, the priors ὖὪ ρȿὄ ρ ρ ὖὪ ρȿὄ ρ ὴ  and 

 

Figure 3.3. Illustration for the inference to classify a response pattern of the brain recorded for a particular block Ὥ 

║░ combining multiple observation results on multiple ROIs (ὖ: the probability to classify the pattern into class 1; and it 

is updated after each observation result on the ROI Ὧ has been provided (ὖ Ễ ὖὄ ρώ ȢȢ Ƞ ώ : 

the observation result on the response pattern of ROI Ὧ recorded for block Ὥ). 
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ὖὪ ρȿὄ ρ ρ ὖὪ ρȿὄ ρ ὴ  were estimated for each ROI Ὧ. The 

parameter ὴ  corresponds to the sensitivity of the classifier Ὢ for the ROI Ὧ, while ὴ  

corresponds to the specificity of this classifier. Consequently, the priors can be considered as 

previously learned experience of the role of the ROI Ὧ in fMRI classification in the investigated 

disorder, and the inference based on such experiences and Bayesô rule can be considered as a 

way to emulate the way of decision-making in clinical practice (Kasper et. al., 2008).  

Predictive inference of the response pattern of the brain 

A predictive inference for a response pattern of the brain recorded for a block Ὥ can rely on either 

a single observation result (single evidence; ὑ = 1) or a synthesis from multiple observation 

results on multiple ROIs (multiple evidences; ὑ > 1). In order to evaluate the validity of the 

inference based on multiple lines of evidence in fMRI classification, the classification result of 

the response pattern of the brain based on a single observation on a single ROI were evaluated 

and compared with those based on multiple ROIs. For this, we applied the methodology just 

described. However, in this case, Bayesian inference for a response pattern of the brain for a 

particular unlabeled block Ὥ ὄ  was only based on a single observation corresponding to the 

classification result of an SVM classifier Ὢ  for an observed particular ROI Ὧ. As a result, the 

posteriors ὖὄ ρ and ὖὄ ρ used to infer block Ὥ ὄ  after the observation result on 

the ROI Ὧ has been provided were calculated as follows: 

ὖὄ ρ ὖὄ ρώ
ὖὪ ώȿὄ ρ

ὖὪ ώȿὄ ρ ὖὪ ώȿὄ ρ
 

ὖὄ ρ  ρ  ὖὄ ρ 

for Ὧ ρȟȣȟὑȠ ὑȡ number of observed brain regions 

B. Classification of subject  

Although the response patterns of the brain or brain regions is the main object that we would like 

to analyze in order to apply diagnostic imaging in practice, the final target is to predict disorder 

or condition of the disorder which subjects suffer from. In our context, this target is to classify 

subjects into given classes. For this, the classification of an unlabeled subject Ὓ   can rely on a 

synthesis of multiple observations on the various response patterns of the brain measured in 
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different blocks for the subject Ὓ Ȣ In the study, for each subject Ὓ , this synthesis was 

represented by the ratio of the number of response patterns of the brain that were classified into 

class 1 (relapser class) to the total number of the patterns measured for the subject Ὓ  

(Ὑ  
В

 
 ; В ώ ρ: the number of observations where the response pattern of 

the brain for block ὄ was classified into class 1; ὕ: the total number of observed patterns of the 

brain (or number of observed blocks) for the subject Ὓ). If this ratio was equal or greater than 

0.5 (Ὑ  πȢυ, the subject Ὓ  was classified as a relapser, and by contrast, if the ratio was 

smaller than 0.5 (Ὑ  πȢυ, the subject Ὓ   was classified as an abstainer.  

Evaluation 

Creating examples for evaluation and learning 

The creation of examples for evaluating and learning the hyper-parameters for SVM classifiers 

together with the priors for Bayesian inference in this study was done in a manner similar to that 

applied in the first one. As a result, a stratified 10-fold cross-validation procedure repeated 10 

times (10-repeated 10-fold cross-validation procedure) was applied to create 10 rounds for the 

evaluation.  In each round, the sample including 40 alcoholic patients in the study was 

partitioned randomly into 10 equal folds, each of which includes 4 alcoholic patients (2 relapsers 

and 2 abstainers, corresponding to 48 response patterns of the brain collected from them). Based 

on the 10 folds, each round created 10 loops of training and testing (ὒȠ ὸ=1­10) in such a way 

that within each loop (ὒ) a different fold of the data containing 4 patients (ὃ) was held-out for 

testing while the remaining 9 folds, including the 36 other patients (ὄ), were used for training. 

This procedure was repeated 10 times on random cross-validation splits of the 40-subject sample 

(ὒȠ ὸ = 1 ­ 10 x 10). Moreover, within the training dataset (ὄ) of each loop (ὒ), a 9-fold 

cross-validation procedure repeated five times was applied to create 45 nested loops of training 

and testing (ὲὩίὸὩὨὒͅ; Ὦ = 5 x 9) for adjusting the hyper-parameters of the SVM classifiers used 

in step A 1.2 and for learning the priors for Bayesian inference used in step A 2 (Fig. 3.1). 

Evaluation  

The evaluation and comparison of classification performance for each individual classifier for 

each ROI and between different classifiers were applied similarly to that used in the first study. 
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Results 

A. Classification performance of the pattern of the brain  

The results were summarized from testing 100 sample sets that were created from 10 repeated 

10-fold cross-validations. Each set included 4 subjects for testing. Each subject comprised 12 

response patterns of the brain or ROIs collected from 12 cue blocks. As a result, the total of the 

classified patterns for each observation on each ROI was 4800 (N = 4 x 12 x 100; Tables 3.3, 3.4 

and 3.5). The indices of performance were the average values over all the sets reported (in %). 

Similarly, for evaluation of the significance of classifiers in the observations, their accuracies 

were said to be significant with 1% level under the Bonferroni correction (ὴ <0.01) if their 

uncorrected p-values were smaller than 0.425 x 10
-7

 (0.01/(Nxm); N: number of trials (classified 

patterns); N=4800; m: number of observed classifiers in the same context; m =  49; Tables 3.3, 

3.4 and 3.5). According to the cumulative probability function on a binomial distribution, this 

also means that the accuracy of a classifier is significant with ὴ <0.01 if it is greater than 

53.9% (uncorrected p-value = 0.306 x 10
-7

; N = 4800; p = 0.5; p: probability of a success). 

A.1 Classification performance based on a single evidence from an individual ROI 

1.1.1 Bilateral ROIs* 

The results obtained from the classification of the response patterns recorded on individual 

bilateral ROIs are shown in Table 3.3 for the two different methods of normalizing features of 

the patterns (voxel attribute) before the classification (scaling normalization vs. the combination 

of z-score and scaling normalization). The classifiers on the VS and insula yielded the best 

performance with accuracies of 63.7% and 71.5% respectively (ὴ <0.0001). For several ROIs, 

the performance combining the z-score and scaling normalization was poorer than using the 

scaling normalization alone e.g. the VS, 52.7% vs. 63.7% accuracy respectively, c = 146.78, 

p<0.0001. In contrast, on the other ROIs, the combination of z-score and scaling normalization 

outperformed the scaling normalization alone such as the insula, 71.5% vs. 61% accuracy, c = 

260.47, p<0.0001; the thalamus, 59.7% vs. 54.8% accuracy respectively, c = 61.23, p<0.0001 

(Table 3.3).  
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Table 3.3. The performance of pattern classification (%) for bilateral ROIs 

ROI 

N = 4800 

Scaling normalization Z-score and Scaling normalization 

Code Accuracy Sensitivity Specificity Code Accuracy Sensitivity Specificity 

VTA 1 55 52.1 57.9 12 33.3 46.6 20 

VS 2 63.7 68.6 58.8 13 52.7 52.1 53.3 

DS 3 38.8 44.4 33.2 14 40.7 28.2 53.2 

Pallidum 4 37.5 33.5 41.5 15 39.8 36.6 43 

Thalamus 5 54.8 55.3 54.3 16 59.7 62.9 56.4 

ACC 6 49.9 46 53.8 17 54.8 55.8 53.8 

mPFC 7 41.7 44.9 38.4 18 43.9 18.9 69 

OFC 8 49.6 47.9 51.3 19 47.3 39.3 55.3 

Amygdala 9 55.8 57.7 53.8 20 60.8 65.7 55.8 

Insula 10 61 60.4 61.6 21 71.5 74.4 68.6 

Hippocampus 11 47.1 47.5 46.7 22 49.4 50.8 48 

*Note: bilateral ROI was abbreviated to name of the ROI e.g. bilateral insula was abbreviated to insula. 

1.1.2 Separate ROIs for left and right hemisphere  

In order to check for possible lateralization effects, we repeated the analysis conducted on the 

bilateral ROIs in section 1.1.1 on separate ROIs of the left and right hemispheres. For 

simplification, we applied the combination of z-score and scaling normalization in the feature 

construction of all the ROIs, except the VTA and VS. The results are reported in Table 3.4. This 

analysis showed that there existed an asymmetry in the classification performance on several 

ROIs. Especially, the performance on the right structure of VS and ACC was significantly higher 

than the performance on the left of VS and ACC: VS (75.9% vs. 53.1% accuracy; c = 603.09) 

and ACC (68.2% vs. 58.9%; c  = 145.94); p<0.0001; Table 3.4).  

Table 3.4. The performance of pattern classification (%) for the left and right ROIs 

ROI 

N = 4800 

Left Hemisphere Right Hemisphere 

Code Accuracy Sensitivity Specificity Code Accuracy Sensitivity Specificity 

VTA 23 54.4 47 61.7 34 51.1 47.2 55 

VS 24 53.1 48.4 57.8 35 75.9 73 78.9 

DS 25 51.8 56 47.5 36 59.2 53.4 65 

Pallidum 26 44.6 65.2 24 37 38.7 20 57.8 
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Thalamus 27 52.7 56.3 49.2 38 54.5 59.3 49.7 

ACC 28 58.9 59.6 58.2 39 68.2 67.9 68.5 

mPFC 29 52.2 51.8 52.6 40 42 49.9 34.1 

OFC 30 45.5 34.4 56.5 41 57.5 58.8 56.1 

Amygdala 31 52.5 48.5 56.5 42 53.3 34 72.5 

Insula 32 50.8 48.8 52.8 43 44.1 39.7 48.5 

Hippocampus 33 56.6 48.2 65 44 34.5 46.5 22.6 

A.2 Classification performance combining multiple observation results on multiple ROIs 

We used Bayesian inference to combine the predictions from the classifiers on individual ROIs. 

We constructed a predictor that included the three best performing individual ROIs (right VS, 

right ACC, and insula). Also, we investigated the inclusion of other well-performing regions 

(right DS, right OFC, amygdala, thalamus). The results are shown in Table 3.5. The combination 

of the right VS, right ACC and bilateral insula yielded a significantly higher accuracy than the 

individual ROIs (76.9% vs. the VS, 75.9% accuracy (c  = 3.94; p=0.0472); the ACC, 68.2% 

(c =141.91; p<0.0001) and the insula, 71.5% (c = 69.91; p<0.0001) respectively). However, 

the additional inclusion of another ROI, e.g. either the right DS or right OFC or amygdale, did 

not further improve the performance (76.9% vs. 73.8%, 74.4%, 72.2% accuracy; c = 96.57, 

110.25, 211.46 respectively; p<0.0001).   

Table 3.5. The performance of pattern classification by combining predictions on multiple ROIs 

ROI 

N = 4800 
ROI code 

Classification performance (%) 

Accuracy Sensitivity Specificity 

right VS - right ACC - insula 35 ς 39 -21 76.9 76.3 77.5 

right VS - right ACC - insula - right DS 35 ς 39 -21 - 36 73.8 74.3 73.3 

right VS - right ACC ς insula ς right OFC 35 ς 39 -21 ς 41 74.4 74 74.8 

right VS - right ACC - insula - amygdala 35 ς 39 -21 - 20 72.2 72.5 71.8 

right VS - right ACC - insula - thalamus 35 ς 39 -21 - 17 73.9 73.6 74.2 

B. Classification of subject  

As mentioned in the section on methodology, the classification of a subject as either a relapser or 

an abstainer was designed to rely on the synthesis of observation results on the response patterns 
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of the brain measured in various blocks for that subject, and the classification results can be 

obtained from the synthesis of various observations either on a single ROI or on multiple ROIs. 

The results of the two methods are shown in Table 3.6. The accuracies of subject classification 

that were said to be significant with 1% level under the Bonferroni correction were the ones 

whose p-values were smaller than 0.208 x 10
-5

 (0.01/(Nxm); N: number of trials (classified 

subjects); N = 400; m: number of observed classifiers in the same context; m = 12; Table 3.6). 

This also means that the accuracy of a classifier is significant with ὴ <0.01 if it is greater than 

61.4% (uncorrected p-value = 0.15 x 10
-5

; N = 400; p = 0.5; p: probability of success in one 

trial). 

The results showed that there was no significant difference between the classification of the 

response pattern of the brain (óblock classificationô) and the classification of subject (p>0.05). 

The classification performance of a combination of the right VS, right ACC and insula was better 

than that of the respective individual ROIs (77% vs. the right VS, 76.5% accuracy (c  = 0.02; 

p=0.8852); the right ACC, 68% (c = 12.01; p=0.00053); the insula, 71.3% (c = 5.69; 

p=0.017). In the other combinations of the right VS, right ACC, insula and either the right DS or 

right OFC or amygdala, the overall performance was not better than the performance of a 

combination of the right VS, right ACC and insula (73.8%, 74.5%, 72% vs. 77% accuracy; c = 

7.58, 8.1, 18.05; p=0.0059, 0.0044, 0.00002 respectively; Table 3.6).  

Table 3.6. The performance of subject classification 

ROI 

N = 400 
ROI code 

Classification performance (%) 

Accuracy Sensitivity Specificity 

right VS 35 76.5 73 80 

right DS 36 57.5 54 61 

right ACC 39 68 68 68 

right OFC 41 57.8 59.5 56 

Insula 21 71.3 73.5 69 

Thalamus 17 60.5 64.5 56.5 

Amygdala 20 61 68 54 

right VS - right ACC - insula 35 ς 39 -21 77 76 78 

right VS - right ACC - insula - right DS 35 ς 39 ς 21 - 36 73.8 74.5 73 

right VS - right ACC - insula - right OFC 35 ς 39 ς 21 - 41 74.5 73.5 75.5 

right VS - right ACC - insula - amygdala 35 ς 39 ς 21 - 20 72 72.5 71.5 

right VS - right ACC - insula - thalamus 35 ς 39 ς 21 - 17 74 73.5 74.5 
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C. Classification of the response pattern of the brain in the cases where the patterns of 

combined ROIs have been classified into the same class (either class 1 or class 2) 

As mentioned above, the classification of a response pattern of the brain was designed to be 

based on the combination of observation results on the response patterns of several relevant ROIs 

extracted from its feature vector (Fig. 3.1). As a result, there may be a number of samples 

(response patterns of the brain) (column N1 of Table 3.7) in which the classification results of the 

response patterns of combined ROIs were in the same class e.g. Ὢ ὼ  Ὢ ὼ

 Ὢ ὼ ρ or Ὢ ὼ  Ὢ ὼ  Ὢ ὼ ρȠρȣὑ: combined ROIs; Ὥ: the block 

from which the feature vectors of ROIs ρȣὑ were extracted. By contrast, there may be also 

species of samples (response patterns of the brain) (column N2 of Table 3.7) in which the 

classification results of the response patterns of combined ROIs disagreed e.g.Ὢ ὼ

 ρ  ̧ Ὢ ὼ  ρ (or right VS (Ὢ= +1) and right ACC (Ὢ = -1)).  

The investigation on all the samples where the classification results of response patterns of 

combined ROIs extracted from the same feature vector of the brain were in the same class 

showed that if the response patterns of 2 ROIs (e.g. right VS-right ACC or right VS-insula or 

right ACC-insula) were classified into the same class, the classification accuracy recorded on the 

focused sample set was up to 86% (Table 3.7); and if the response patterns of these 3 ROIs were 

classified into the same class, the classification accuracy was over 96% (Table 3.7). Especially, 

once the investigation was focused on the samples where the response patterns of 4 ROIs of the 

right VS, right ACC, insula and right DS were classified into the same class, the classification 

accuracy achieved 98.9%. 

Table 3.7. Classification performance of the response patterns of the brain in the cases where the response 

patterns of combined ROIs have been classified into the same class (N: total number of samples or response patterns of 

the brain created from 10 repeated 10-fold cross-validation procedure on 40 subjects (N = 4800); N1: number of samples (or the response 

patterns of the brain) which have the agreement classification results of response patterns of combined ROIs extracted from the same feature 

vector of the whole brain; N2: number of samples (or the response patterns of the brain) which have the disagreement classification results of 

response patterns of combined ROIs extracted from the same feature vector of the whole brain). 

ROI 

N = 4800 
Classification performance on 

N1 (%) 

Percentage of 

excluded samples 

N2/N 

Percentage of 

analyzed samples 

N1/N 

Accuracy Sensitivity Specificity 

right VS 0 100 75.9 73 78.9 
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right ACC 0 100 68.2 67.9 68.5 

Insula 0 100 71.5 74.4 68.6 

right VS - right ACC 36 64 86.7 84.4 88.8 

right VS - insula 37.75 62.25 86 84.4 87.6 

Insula  - right ACC 43.25 56.75 86.8 89.1 84.6 

right VS - right ACC - insula 58.65 41.35 96.2 97.9 94.6 

right VS - right ACC - insula ς right DS 76.56 23.44 98.9 97.6 99.8 

right VS - right ACC ς insula ς right OFC 74.92 25.08 95.9 99.6 92.7 

right VS - right ACC - insula ς amygdala 78.56 21.44 98.7 98.8 98.6 

right VS - right ACC - insula ς thalamus 71.1 28.9 95.8 97.9 94.2 

Discussion  

The results in this study provide further evidence that fMRI can identify biomarkers to predict 

relapse after detoxification in alcohol dependence (Heinz et al., 2009; Beck et al., 2012). 

Besides, our approach where the activation of relevant brain regions is observed separately and 

then the observation results are combined appropriately can have benefits in the investigation of 

the role of the brain regions of interest as well as the method of predictive inference based on 

multiple lines of evidence in the analyzed disorder. On the other hand, the results showed no 

significant difference between the classification results of the response pattern of the brain and 

the classification results of subject (p>0.05; Tables 3.3 & 3.6). The data can be taken as evidence 

for the validity of predictive inference of a neuropsychiatric disorder or its condition using a 

synthesis of multiple observations of activation feature of the brain measured by fMRI whenever 

the brain is stimulated. Such an approach is compatible with diagnostic imaging and leaves open 

the opportunity to analyze temporal characteristics of activation data in further studies.  

Investigation on individual ROIs  

Insula in relapse prediction 

With a high accuracy of 71.5% (ὴ <0.0001; Table 3.3), the insula has demonstrated its 

important role in the underlying mechanism mediating relapse. The result is consistent with 

recent evidence indicating that the insula plays a crucial part in conscious urges to take drugs, 

which can precipitate relapse (Craig, 2009; Naqvi & Bechara, 2009; Vincent et al., 2012). The 

insula has been known as a region that integrates interoceptive states into conscious feelings and 
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into decision-making processes involving uncertain risk and reward (Naqvi & Bechara, 2009). 

Research results on smokers who sustained damage in the insula showed that these patients quit 

smoking and remained abstinent much more easily and immediately than smokers who sustained 

damage in other brain areas (Naqvi et al., 2007). In addition, a number of functional imaging 

studies have shown that the insular cortex is activated when drug abusers are exposed to drug 

cues that trigger craving (Tapert et al., 2004; Filbey et al., 2009; Vincent et al., 2012). A study of 

response to conditioned alcohol taste cues following experience with the drug in rats indicated 

that ethanol intake and preference were formed during the chronic exposure phase, and 

inactivation of the insula eliminated this preference (Castro, 2012). This evidence suggests that 

the insula may play an important role in the mechanism leading to relapse and may be one of the 

major targets for the treatment of drug addiction. 

Lateralization 

The investigation results of lateralization indicate that the structures of VS and ACC in the right 

hemisphere contain much more relevant information distinguishing relapsers from abstainers 

than those in the left one. In other words, a functional asymmetry appears to exist in response to 

alcohol-associated cues between the two hemispheres in the striatum and ACC. This result is in 

line with results of previous studies indicating that the right hemisphere is more vulnerable to the 

effects of alcohol than the left (Oscar-Berman, 2003). The effects can be characterized by a 

decreased volume of structures involving reward system, which occur in the right hemisphere 

more pronouncedly than those in the left (Makris et al., 2008), and by the response feature to 

alcohol-associated cues showing that activation is more stable in the right VS than the left 

(Schacht et al., 2011). On the other hand, the observations of Makris et al. (2008) showed that 

the volume of VS increased with length of abstinence in alcohol-dependent patients, confirming 

that brain atrophy can be partly reversible, and the recovery of such damage may be a predictor 

for abstinence (Bühler & Mann, 2011). Taken together, the results of the study provide evidence 

for the existence of lateralization for relapse prediction in the brain regions of VS and ACC in 

response to alcohol cues. However, the source for the asymmetry still needs further study 

because there is a paucity of data on functional lateralization in relapse prediction. Recently, a 

study of Beck et al. (2012) showed an increased brain response of abstainers to cues in both of 

the left and right VS compared with the response of relapsers. The result supports for our result 
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indicating that both of the left and right VS contain valuable information for the classification. 

However, we here found that there was a lateralization for relapse prediction in this structure 

where the response patterns of VS recorded in the right hemisphere were more predictive than 

those in the left hemisphere (the left VS, 53.1% vs. the right VS, 75.9% accuracy;  c  = 603.09; 

p<00001). The method of analysis in the study of Beck et al. (2012) was to identify significant 

activation voxels in the VS distinguishing relapsers from abstainers, obtained from a statistical 

analysis using a univariate approach. This approach is different from our approach which is to 

classify the individual activation patterns into the two groups using a multivariate method based 

on all the voxels of the investigated structure. Moreover, previous studies of fMRI classification 

show that there exists a difference in feature selection between the univariate and multivariate 

approaches (Mourão-Miranda et al., 2005), and the multivariate approach fared better than the 

univariate approach in identifying category information in investigated structures (Kriegeskorte 

et al., 2006; Normand et al., 2006; Pereira et al., 2009).  In any case, the evidence indicates that 

the response feature of the VS to alcohol-associated cues is an important indicator for 

prognosticating relapse, which was confirmed in our study.  

Validity of deeper focus on structural ROIs 

The classification performance of bilateral insula with a size of 1215 voxels was significantly 

higher than the performance of both the left insula with a size of 612 voxels and the right insula 

with a size of 603 voxels (71.5% vs. 50.8% and 44.1% accuracy; c2 = 537.83 and 790.81 

respectively; p<0.0001; Tables 3.3 & 3.4). In contrast, the performance of the right VS with a 

size of 44 voxels and the right ACC with a size of 489 voxels were significantly higher than the 

performance of the bilateral VS with a size of 88 voxels and the bilateral ACC with a size of 987 

voxels (75.9% vs. 63.7% accuracy (c2 = 383.71) and 68.2% vs. 54.8% (c2 = 337.34) 

respectively; p<0.0001; Tables 3.3 & 3.4). The results reinforce the assumption that the 

performance of a ROI in relapse prediction may not depend on its size but on its specific 

characteristics in response to given stimulation. On the other hand, as discussed in the first study, 

since the nature of multivariate methods such as SVM is to exploit attributes of all input 

variables (voxel attribute) to categorize (Wang, 2005; Vapnik, 2000), a classification decision for 

a pattern of a ROI using this method relies not only on individual voxels but also on correlations 

between the voxels within that ROI. The presence of too many voxels which are insignificant for 



74 

 

classification or do not correlate closely with the other significant voxels within the investigated 

ROI can deflect the dominant classification direction of the significant voxels and cause 

misclassification (Pereira et al., 2009). In such a situation, homogeneous attributes of anatomical 

structure and function can bring advantages for multivariate analysis, since local connections 

between neurons of similar specificity forming neuronal groups are stronger and more complex 

than those between neurons of the various functional groups (Tononi, 1994) or in other words, 

the features of individual voxels or input variables within the investigated structure are then 

placed in close correlation. As a result, the low performance of the other structures e.g. the 

bilateral OFC (49.6% accuracy) achieved in this study may originate from our method of feature 

selection, which can be improved if their investigated region is localized more homogeneously 

and exactly in terms of the structure and function (e.g. the bilateral OFC 49.6% vs. the right OFC 

57.5% accuracy; c2 = 106.06; p<0.0001; Tables 3.3 & 3.4). On the other hand, due to difference 

of location, structure and function that can impact on fMRI measurements (Mathews et al., 

2001), each ROI can require compatible methods of analysis such that it can expose its 

distinguishable response features in the best possible way. This is evidenced by the significant 

differences of classification performance on several ROIs between using the combination 

method of z-score and scaling normalization and the single method of scaling normalization such 

as the VS, 52.7% vs. 63.7% accuracy respectively, c = 146.78, p<0.0001; the insula, 71.5% vs. 

61% accuracy respectively, c = 260.47; p<0.0001 (Table 3.3). 

Validity of combining multiple observation results on multiple ROIs 

Given the situation that there is no ROI playing a decisive role in prediction as a ñgold standardò, 

the prediction can be based on an extensive observation on multiple relevant ROIs to obtain 

higher accuracy compared with predictions only based on a single observation on a single ROI. 

The assumption is supported by the better performance combining multiple observation results 

on the VS, ACC and insula than those using a single observation result on an individual ROI 

(76.9% vs. the right VS, 75.9%, the ACC, 68.2% and the insula, 71.5% accuracy respectively; 

p<0.05; Tables 3.3 & 3.5). The result provides evidence that specific response features of the 

brain to specific stimuli can spread across several relevant brain regions (Barry et al., 1999), and 

that they can be identified and integrated into an overall picture used for predictive inference of 

brain disorder. This also suggests that the response patterns of different brain regions with 
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different structures and functions can be observed independently, and the more the brain regions 

manifest the response features that are classified into the same class, the higher the classification 

probability into that class (Table 3.7). Such an approach can enable us to prognosticate relapse 

risk via functional imaging with an estimable confidence. Additionally, our study was conducted 

on the sample with no significant difference in clinical data between the two groups of 

subsequent relapsers and abstainers after detoxification (Table 3.1), and fMRI measurements 

were carried out about 2 weeks after detoxification, before participants were identified as 

relapsers or abstainers 6 months later (Table 3.1). These data provide evidence demonstrating 

that fMRI can identify biomarkers for relapse prediction in alcohol dependence. 

An addition of ROIs such as either the right DS with 59.2% accuracy or the right OFC with 

57.5% accuracy (or the amygdala with 60.8% accuracy) to the combination of the right VS, right 

ACC and insula did not yield better performance (73.8%, 74.4%, 72.2% vs. 76.9% accuracy 

respectively; p<0.0001; Tables 3.3-3.5). However, if the observation was only focused on the 

samples where the response patterns of all the combined ROIs extracted from the same feature 

vector of the brain were classified into the same class, the classification accuracy on this sample 

set increased linearly with the number of combined ROIs from appropriately 86% accuracy for 

the combination of two of the three ROIs: right VS, right ACC and insula to 98.9% accuracy for 

the combination of four ROIs: right VS-right ACC-insula-right DS (Table 3.7). Unfortunately, 

unlike the accuracy increase, the number of agreement samples diminished correspondingly from 

appropriately 60% to 23.44% (Table 3.7). This  shows that there existed greater differences of 

classification results of the response patterns of individual ROIs when the number of the 

combined ROIs was increased, and misclassification of the added ROIs (e.g. right DS) can 

deflect the correct inference direction of the other ROIs in some analyzed samples via Bayesian 

inference (Stefan & Lionel, 2011) and lower the overall performance. Despite this, in a positive 

aspect, the results reinforce the potential for increasing classification accuracy by methods of 

controlling the combination of the evidence collected from the ROIs in the inference process. 

One of the commonly used methods in clinical practice is to eliminate from the inference process 

ambiguous signs or symptoms that in this context are the indistinguishable response patterns of 

ROIs which can cause misclassification. How to identify the indistinguishable response patterns 

reliably and whether it may be a feasible approach to diagnostic functional imaging in practice 

are the issues which will be addressed in the next chapter.   
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CHAPTER IV  

IMAGING APPROACH IN f MRI CLASSIFICATION  

Introduction  

In the first and second studies, the classification of response patterns of the investigated ROIs 

was implemented automatically by machine. In order to realize diagnostic functional imaging in 

clinical practice, our third study was designed for the initial step of imaging approach based on 

the indication of machine-based image recognition. Specifically, it offers a way to allow us to 

have insights into individual response patterns accompanied with their corresponding 

classification decisions obtained from machine, by which means we can gradually learn and find 

out rules of the classification for the response patterns of the investigated brain regions. This 

would open an important window into differences of individual functional images identified by 

machine inference between the two investigated classes, which would allow moving beyond 

group-based analysis and to the important clinical realm of diagnostic imaging. 

Materials and Methods 

Materials 

This study was a continuation of the second study, which delves deeper into the investigation of 

machine-based classification decisions and discernibility level of classified patterns between the 

two classes, i.e. relapsers and abstainers. Thus, the materials and data pre-processing in this 

study were those used in the second study. 

Methods 

Outline of the method 

The response patterns of each brain region collected from relapsers and abstainers were 

considered as experience of response imaging of that region to given stimulation for the two 

classes. To learn the experience better, these patterns should be ranked according to different 

level of the response feature between the two classes. The ranking would form a data bank of the 

ranked response patterns for each brain region for relapse risk which can help to obtain an insight 
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into the response images of this brain region more easily and to facilitate classification. The 

method was designed in three steps: Step 1: constructing and collecting the response patterns of 

ROIs; Step 2: ranking the collected patterns; Step 3: validating the ranking. 

Step 1: Constructing and collecting the response patterns 

The feature selection for individual ROIs was applied in a manner similar to that used in the 

second study. Consequently, for a particular ROI Ὧ, each subject provided 12 response 

patterns ὴȠ Ὥ ρO ρς; and for 20 relapsers and 20 abstainers, 480 response patterns were 

collected and interpreted as 480 independent observations of response images of the ROI Ὧ to 

alcohol cues. They were used as input data of the corresponding classifier Ὢ.  

Based on the findings in the previous studies of relapse in alcohol dependence as well as the 

results in the second study (Makris et al., 2008; Schacht et al., 2011; Beck et al., 2012), the brain 

regions, which play an important role in relapse prediction, were selected for the investigation in 

this study including the right VS, right ACC and insula. As those in the second study, the 

functional ROIs for these brain regions were also just their corresponding structural ROIs. 

Step 2: Ranking the response patterns of individual ROIs 

Defining index of the ranking & algorithm of the ranking 

As mentioned above, the set of the 480 response patterns for each ROI Ὧ may be viewed as 

experience or data bank of response imaging of that ROI of alcoholic patients to the given 

stimulation accumulated from the two investigated groups comprising 20 relapsers (class 1) and 

20 abstainers (class 2). The ranking was carried out based on the assumption that in the collected 

patterns there may be the patterns showing a prominent difference between the two classes, 

while the other patterns manifest the confused or indistinguishable difference and that the 

different level can be detected through classification. From this assumption, the classification 

result of a pattern ὴ   can be used to measure the difference level of that pattern. This 

difference level was also defined as the discernibility level showing the degree of separation of 

the pattern between the two classes (Voulgaris & Mirkin, 2008). Moreover, from validity 

standpoint, it is logical that the measurement obtained from a single classification may be less 

reliable than those obtained from a synthesis on multiple classifications (Kukar & Kononenko, 
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Figure 4.1. Illustration for the ranking algorithm. The ranking of a particular pattern ὴ  is designed to 

translate the machine-based decisions of class classification for the pattern ὴ  obtained from ὓ classifications 

into the ranking index of relapse risk for that pattern. 

2002; Voulgaris & Mirkin, 2008), and the degree of agreement of the classification decisions 

over the various classifications would give an indication of consistency of the discernibility level 

of that pattern (Douglas, 2007).  

On this basis, for each ROI Ὧȟ the ranking index of a response pattern ὴ  for a class ὧ  was 

defined as the óclassified indexô of the pattern ὴ  into class ὧ  which was estimated by the 

ratio of the number of tests in which the pattern ὴ  is classified into the class ὧ  to the total 

number of tests. In the study, a pattern ὴ  was classified into one of the two classes, so the 

classification value of the pattern ὴ  for class 1 is the complement of class 2. Likewise, the 

ranking index of the pattern ὴ  for class 1 is the complement of class 2. For this reason, we 

only considered the ranking index (ὙὍ) of the pattern ὴ  for class 1 (relapser class); it ranged 

from 1 to 0, with level ó1ô indicating the most discernible response pattern and level ó0ô 

indicating the lowest discernible response pattern for relapser class or in reverse order, indicating 

the most discernible pattern for abstainer class (class 2). Given this design, the ranking index 

(ὙὍ) of the pattern ὴ  can be seen as the index of relapse risk for that pattern ὴ . On this 

basis, we hope that for each ROI, a ranked scale of the response patterns with the ranking index 

of relapse risk would be formed which can facilitate imaging approach and which can be used in 

classification.  
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Creating examples and calculating ranking index 

The 10-repeated 10-fold cross-validation procedure was applied similarly to that used in the 

second study. However, in this study, for each loop of training and testing (ὒ), instead of a 

single training set (ὄ), each training segment ὲὩίὸὩὨὄͅ  of each nested loop (ὲὩίὸὩὨὒͅȠὮ  

5 x 9) within the training set ὄ created from the stratified 9-fold cross-validation procedure 

repeated 5 times was used as a separate training dataset for the loop (ὒ), and the corresponding 

testing set (ὃ) was the dataset including the 4 patients used for the testing of the loop (ὒ) (Fig. 

4.2).  

With this design, each of the response patterns ὴ  recorded for the 4 patients of the testing 

dataset (ὃ) was classified 45 times for each loop (ὒ). Based on these classification results, the 

ranking index for the pattern ὴ  was estimated. To avoid an optimistic result (Pereira et al., 

2008), the ranking index for each pattern ὴ  was estimated only for the classifications where 

this pattern has been partitioned into the testing set (ὃ). With the cross-validation procedure, for 

each round, a different fold of the data was used in turn for testing. This also means that for each 

round, a particular subject or the patterns ὴ  recorded for that subject appeared only once in a 

testing segment. As a result, for 10 rounds of the 10-repeated 10-fold cross-validation procedure, 

each pattern ὴ  was classified 450 times (ὓ = 45 x 10).  

Figure 4.2. Creating examples for calculating the ranking index of relapse risk (CV: cross-validation). 
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Classifying the response patterns of ROI  

a. Similarity and dissimilarity between the response patterns 

With the method of feature construction 

described earlier, a response pattern ὴ  of 

each ROI Ὧ was a feature vector holding the 

attributes of all the voxels of the ROI Ὧ 

recorded within a block (Fig. 4.3). Therefore, 

the similarity and dissimilarity between the two 

different patterns may be characterized by the 

distance between them with the rule that the 

larger the distance, the larger the dissimilarity 

between the two patterns and vice versa (Duda et al., 2001). There are several distance measures, 

one of which is estimated by the Euclidean distance (McCune & Grace, 2002). The formula of 

the Euclidean distance is applied as follows:  

Ὠὴȟὴ  Ὠὴ ȟὴ ὥ ὥ ὥ ὥ  ȣ ὥ ὥ ὥ ὥ  

Where ὴȟὴ  are two different response patterns; Ὠὴȟὴ  and Ὠὴ ȟὴ  are the Euclidean distance between the two 

patterns; (ὥ ȟὥ ), (ὥ ȟὥ), é , (ὥ ȟὥ ) are the pairs of corresponding variables (or attributes of voxels) of the patterns ὴ  

and ὴ ; [Xt Yt Zt] are the corresponding coordinates of voxels in the MNI standard space of investigated ROI (t=1­ ὺ; ὺ is the 

size of the ROI) (Fig. 4.3). 

On this basis, a pattern can be simply classified into a class ὧ  if the dissimilarity of the pattern 

to that class ὧ  is the smallest, or in other words, the distance from the pattern to the 

representative pattern of the class ὧ  is the closest. The representative pattern of a class may be 

defined by the mean vector of that class (Schölkopf & Smola 2000; Balakrishnama & 

Ganapathiraju, 2013). This simple method of pattern classification may be appropriate if data for 

the classification are spread evenly in all directions, and the feature space is isotropic (Duda et 

al., 2001). However, this is the problem for original fMRI data because they are often very high 

dimensions in the feature space (Song et al., 2009). The obstacle has prompted the formation and 

development of algorithms of pattern classification for such data. 

Figure 4.3. Attribute of the response pattern 
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b. Classifiers 

The algorithm was applied to pattern classification in this study in the same way as in the second 

study. Likewise, for each ROI Ὧȟ a separate SVM classifier Ὢ was also used to classify its 

response pattern (ὴ   into either class 1 (relapse class) or class 2 (abstainer class). However, in 

this study, besides the class classification for the response pattern (ὴ  (into either class 1 or 

class 2), we considered the confidence level of the classification decision. As mentioned in the 

methodology in the first study, the class classification for a pattern ὴ  relies on sign of the 

distance of the classified pattern ὴ  from the optimal margin hyperplane of the classifier 

Ὢ ὴ ίὭὫὲύ ᶮὴ ὦȠ Fig. 2.3) while the confidence level of this decision depends on 

the absolute value of this distance ύὝᶮὴ
ὯὭ

ὦ  since this value shows the degree of 

separation of the pattern ὴ  between the two classes. Specifically, this implies that the larger 

the absolute decision value, the higher the confidence of the classification decision (Vlachos, 

2004). Thus, this value can be used to measure the discernibility level of the response pattern. 

Nonetheless, it is an uncalibrated value mapped in R (Platt, 2000; Vapnik, 2000). Moreover, the 

calculation of this decision value depends strictly on the support vectors identified during the 

training. Accordingly, the decision values produced by SVM classifiers with different kernels or 

with different training datasets cannot be used to compare each other (Vapnik, 2000). In order to 

get the estimate more standardized, the decision values are mapped into probabilities. For a 

detailed description, reference is made to Platt, 2000; T.F. Wu et al., 2004. In the study, both of 

the two estimates were evaluated and compared with the ranking index. Moreover, to evaluate 

outperformance of classification with SVMs, the classification results of individual ROIs with 

this method were compared to those obtained with the method in which data were classified in 

their original input space with the simple decision rule based on the difference of the Euclidean 

distance from the mean vectors of the two classes.  

The normalization of data as well as the selection of kernel and hyper-parameters for SVM 

classifiers was applied in a way similar to that used in the second study. Based on the 

classification performance of the ROIs in the second study both the scaling and z-score 

normalization were applied to the right ACC and insula while only the scaling normalization was 

applied to the right VS.   
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Step 3: Validating the ranking 

Ranking index, decision value, and probability estimate 

The ranking index of a pattern ὴ  was designed as an indicator of the discernibility level of 

the pattern between the two investigated classes and was estimated by a synthesis of class 

decisions for the pattern from various classifications. Thus, the ranking index of a pattern was 

seen as the result of measurement for its nature. With such a design, the key to determining the 

validation of the ranking is validity and reliability of the measurement. Fortunately, for SVM 

classifiers, the discernibility level of response patterns between the two investigated classes can 

be characterized by their outputs such as the decision values or probability estimates (Platt, 2000; 

T.F. Wu et al., 2004; Vlachos, 2004; Voulgaris & Mirkin, 2008). From this basis, to investigate 

the validity of the ranking index corresponding to what it is supposed to measure (Kimberlin & 

Winterstein, 2008), the ranking index of the response pattern for each ROI Ὧ was compared with 

the corresponding decision value and probability estimate through correlation between them, and 

for evaluation of the reliability, we investigated stability and consistency through convergence of 

the index (Kimberlin & Winterstein, 2008).  

For investigation of the correlation, the ranking index of each pattern obtained after ὓ 

classifications was calculated according to the definition described earlier while the decision 

value and probability of that pattern was the average value of all the corresponding decision 

values and probabilities over the ὓ classifications (ὓ = 450).  

For the convergence, we investigated variation of the ranking index of the response patterns 

during ὓ classifications. For each ROI Ὧ there were the collected 480 patterns, each of which 

was classified 450 times. Consequently, a representative index for the 480-pattern set at the 

Ὦ classification was estimated by an average value (ὥὙὍ) over the 480 ranking indices of the 

480 patterns obtained after Ὦ classifications (Ὦ=ρO ὓȠ ὓ = 450; Fig. 4.4). Together with the 

observation of the variation of this representative index during ὓ classifications, its 

corresponding expectation value  ὉὥὙὍ
В ᴼ ȠὮ ρO ὓȠὓ τυπ and error rate 

(Ὁὶ) compared with the expected ranking index at the last classification 

(Ὁὶ
ȿ  ȿ

ȠὮ ρO ὓȠὓ = 450) were taken into account as well.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Kimberlin%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=19020196
http://www.ncbi.nlm.nih.gov/pubmed?term=Winterstein%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=19020196
http://www.ncbi.nlm.nih.gov/pubmed?term=Kimberlin%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=19020196
http://www.ncbi.nlm.nih.gov/pubmed?term=Winterstein%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=19020196
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Ranking index and classification  

a. Classification of the response patterns of individual ROIs 

After ranking, the 480-pattern set for each ROI Ὧ can be viewed as the scale of the unlabeled 

response patterns of that ROI ὴ  for relapse risk accumulated from 20 relapsers (class 1) and 

20 abstainers (class 2). The ranking index of a pattern ὴ  was considered as the index showing 

the position of that pattern on the scale. Hence, the ranking index is only an indicator of the 

discernibility level of the response pattern for relapse risk rather than a label of the pattern ὴ  

in either class 1 or class 2. However, thanks to this indication, it can be used to classify the 

pattern ὴ  with the rule that if the ranking index of the pattern ὴ  is equal or greater than 

0.5 (RI²0.5), the pattern is classified into class 1, and by contrast, if the index is smaller than 0.5 

(RI<0.5), the pattern is classified into class 2. In the study, the application of the ranking index in 

classification was carried out at the last classification (ὓ = 450), and for each ROI, the 

performance was evaluated on the classification results of all the response patterns of that ROI 

(N = 480).  

To compare the ranking based on the decision value and probability estimate, the classification 

results of the response patterns based on the average decision value (ὥὈὩὧ and the average 

probability estimate (ὥὖὶέὦ) summarized from the ὓ classifications were considered as well (ὓ 

= 450). The decision rule for these classifications was similar to those made by SVM classifiers. 

For the decision value, if the average decision value (ὥὈὩὧ of a pattern ὴ  is equal or greater 

than 0 (ὥὈὩὧπ, the pattern is classified into class 1, and by contrast, if ὥὈὩὧπ, the pattern is 

classified into class 2. For the probability estimate, if the average decision value (ὥὖὶέὦ) of a 

 

Figure 4.4. Investigation 

of convergence of the 

ranking index (N = 480 for 

each ROI; ὓ = 450; ὙὍ: 

the ranking index of the 

pattern Ὥ at the Ὦ  

classification; ὥὙὍ: the 

averaging ranking index 

over all the patterns  (N = 

480) at the Ὦ  

classification). 

 


