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ZUSAMMENFASSUNG

Trotz zahlreicher Hinweise darauf, dass die zerebralen Aktivierungsmusterin der funktionellen
Magnetresonanztomographie (fMRI) in Reaktion auf krankheitsassoziierte Stimuli zur
Diagnostik und Prognose verwendet werden konnten, wird das fMRI zur Bestimmung von
Biomarkern der Alkoholabhdngigkeit in der Praxis bisher nicht angewendet. Das Ziel dieser
Dissertation war die Entwicklung von Voraussetzungen, die die Identifizierung von
Alkoholabhangigkeit und auch die Vorhersage des Riickfallrisikos in der klinischen Praxis
mittels fMRI ermdglicht. Diese Arbeit beinhaltet (1) die Identifizierung wichtiger Hirnregionen
(ROI; region of interest) im Prozess der diagnostischen und prognostischen Klassifikation von
fMRI; (2) die Anwendung der Bildgebung und (3) die Validierung der Methode.

Die erste Analyse in dieser Dissertation fokussiert auf die Identifizierbarkeit von Hirnregionen
(ROIs), die fiir die Klassifikation bedeutsam sind. Diese Studie wurde an 50 alkoholkranken
Patienten und 57 gesunden Kontrollen durchgefiihrt. Die Ergebnisse zeigten die Uberlegenheit
der Gite der diagnostischen Klassifikation (Patienten vs Gesunde) mittels funktioneller ROIs
z.B. flr das ventrale Striatum (VS, 63.9% Genauigkeit), das vorderer Cingulum (ACC, 62.8%
Genauigkeit) im Vergleich zur Klassifikationsgenauigkeit mittels der Gesamthirndaten (61.8%
Genauigkeit) oder des préfrontalen Cortex (PFC, 51.8% Genauigkeit). Diese Daten legen die
praktische Anwendbarkeit von funktionellen ROl Analysen auf das fMRI mit Hilfe multivariaten

Methoden wie Support Vector MachineVerfahren (SVM) nahe.

Die zweite Analyse bezieht sich auf die Anwendbarkeit der Methode auf die VVorhersage eine
Trinkrlckfalls. Diese Studie wurde bei 40 Patienten, aufgeteilt in 20 abstinente und 20
rickfallige Patienten durchgefuhrt. Die Patienten wurden zufallig aus den 50 alkoholkranken
Patienten in der ersten Studie ausgewéhlt und nach der Entgiftung Gber einen sechs monatigen
Verlauf nachuntersucht. Die Klassifikationsergebnisse zeigten, dass die Aktivitat des VS, des
ACC und der Insula eine hohe Genauigkeit in der Ruckfallvorhersage mit 63.7%, 58.1% und
71.5% besitzen. Hier beizeigten das rechte VS und das rechte ACC héhere préadiktive Werte als
dieselben Strukturen in der linken Hemisphére (75.9% und 68.2% im Vergleich zu 53.1% und
58.9%). Eine Kombination aus dem rechten VS, dem rechten ACC und der bilateralen Insula
ergab eine bessere Vorhersage (76.9% Genauigkeit, p<0.0001).



Die dritte Analyse fokussiert auf die Anwendung der Bildgebungsverfahren und verwendet die
Daten aus der zweiten Studie. Die Methode basiert auf einem Ranking-Index, dem Grad der
Aktivierungsunterschiede zwischen den zu trennenden Klassen. Die Ergebnisse zeigten eine gute
Reliabilitdt und Genauigkeit des Index welche durch hohe Konvergenz und deren hoher
Korrelation mit den Ergebnissen der SVM Kilassifikatoren charakterisiert ist. Weiterhin erreicht
die Ruckfallvorhersage fir den Patienteneine Genauigkeit von 80%, 72.5% und 70%
(p=0.00002, p=0.0011 und p=0.0032), wenn die Vorhersage auf den Ranking-Indizes der
Aktivierungsmuster des rechten VS, rechten ACC oder der bilateralen Insula basiert.

Zur Uberpriifung und Validierung des Klassifikationsansatzes auch in der klinischen Praxis
wurden zwei Pilot-Analysen durchgefihrt. Basis dieser Analysen waren die Daten der dritten
Studie. Basis dieser Analysen waren die Daten der dritten Studie. Die erste Pilotanalyse umfasste
das Monitoring des Krankheitsverlaufes nach Entzug mittels der spektralen Darstellung der
zerebralen Aktivierungen. Es zeigte sich ein signifikanter Unterschied in den Spektren des VS
beim Vergleich der Patienten mit und ohne Trinkrickfall. Die zweite Pilot-Analyse zielte auf das
Erfassen on korrelativen Zusammenhangen zwischen Bildgebung und klinischen Parametern ab
mit dem Ziel einer Validierung an den Verhaltensdaten der Patienten. Die Ergebnisse zeigten
eine mittelgradige Korrelation zwischen dem Ranking-Index und dem durch eine visuelle
Analogskala gemessenen Grad von Durst und Hunger (VAS-TH) auf der Basis
Aktivierungsdaten des rechten VS, des rechten ACC und der bilateralen Insula (z. B. fiir die
Insula, R=-0.674, p=0.003).

Trotz einiger methodischer Limitationen zeigen die vorgestellten Daten die Relevanz bestimmter
Hirnregionen fur die Diagnostik und die Vorhersage des Verlaufes bei Alkoholabh&ngigkeit mit
Hilfe des fMRI. Die Daten sind eine erste Grundlage fir die weitere Forschung zur Frage
inwieweit fMRI basierte Biomarker bei der Diagnostik und Prognose neuropsychiatrischer

Storungen eine klinische Bedeutung erlangen kann.

Keywords: Alkoholabhangigkeit, Rickfallvorhersage, fMRI, SVM, ROI, ROI-Kombination,

Bayes-Inferenz, Erkennbarkeit Ebene.
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ABSTRACT

Although there is much evidence indicating that cerebral activation patterns in response to
disease-related stimuli measured by functional Magnetic Resonance Imaging (fMRI) may be
used as criteria for diagnosis as well as prognosis, the application of fMRI as biomarkers in
alcohol dependence remains challenging. The aim of this dissertation was to develop a
framework which enables the identification of alcohol dependence as well as the prediction of
relapse risk in clinical practice using fMRI, namely (1) Specifying important brain regions in

fMRI classification; (2) Approaching imaging; (3) Validating the approach.

The first analysis in this dissertation focused on the identifiability of important brain regions for
the classification. This study was conducted on 50 alcoholic patients and 57 healthy controls.
The results showed the outperformance of diagnostic classification (patient vs. healthy) on the
activation images of functional regions of interest (ROIs) collected from important brain
structures in alcohol dependence, e.g. from the ventral striatum (VS, 63.9% accuracy); the
anterior cingulate cortex (ACC, 62.8% accuracy) compared to those from the whole brain
(61.8%, accuracy); the prefrontal cortex (PFC, 51.8% accuracy). The evidence suggests the
practicality of functional ROI analyses in fMRI classification using multivariate methods such as

support vector machine (SVM).

The second analysis referred to the applicability of such an approach to the relapse prediction.
This study was conducted on 40 patients including 20 relapsers and 20 abstainers drawn
randomly from the 50 alcoholic patients used in the first study and followed up six months after
detoxification. The results showed that the prediction using the activation images of VS, ACC
and insula achieved high accuracies (63.7%, 58.1% and 71.5%, respectively). In addition, the
activation images of VS and ACC recorded in the right hemisphere were more predictive than
those in the left hemisphere (75.9% and 68.2% vs. 53.1% and 58.9% accuracy, respectively); and
a combination of the individual predictions from these ROIs including the right VS, right ACC

and bilateral insula gave a better prediction (76.9% accuracy; p<0.0001).

The third analysis offered an imaging approach. This study was conducted using the data of the
second study. The method was centered on the ranking index characterizing the degree of

separation of activation images between the two classes investigated. The results showed
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reliability and certainty of the index through the characteristics of convergence and the strong
and positive correlation between it and outputs of the SVM classifiers. Further, based on the
ranking indices of the activation images of the right VS, right ACC and bilateral insula, the
relapse prediction for the patients achieved 80%, 72.5% and 70% accuracy, respectively
(p=0.00002, p=0.0011 and p=0.0032).

In order to examine applicability of the approach in clinical practice, the two pilot analyses were
conducted on the data of the third study. The first pilot analysis involved the monitoring of
disease progression after withdrawal using spectral representation of the cerebral activations. The
results showed a significant difference in the spectrum of activation images of the VS when
comparing the patients with and without drinking relapse. The second pilot analysis was captured
on correlative relationships between imaging and clinical variables with the aim of validating the
data on the behaviour of patients, which can make an inference of the analyzed brain disorder
more reliable. The results disclosed a moderate correlation between the ranking index and the
visual analog rating scale of thirst and hunger (VAS-TH) on the basis of activation data of the
right VS, the right ACC and bilateral insula (e.g. for the insula, R=-0.674; p=0.003).

Despite several methodological limitations, the presented data show the relevance of specific
brain regions to the diagnosis and prediction of the progression of alcohol dependence using
fMRI. The data are the first basis for further research on the question of whether fMRI-based
biomarkers can attain a clinical significance in the diagnosis and prognosis of neuropsychiatric

disorders.

Keywords: Alcohol dependence, relapse prediction, fMRI, SVM, ROI, ROl combination,

Bayesian inference, discernibility level.
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CHAPTER I

INTRODUCTION

Since its discovery by ancient Egypt and Greece (5™ Before Christ), alcohol has been seen as a
“drink madness” substance, and drunkenness has been referred to as a body and soul sickness
(William et al., 2001). Along the time line, together with the advancement of science and
technology, many mysteries of alcohol addiction have been gradually uncovered. Nowadays,
alcohol addiction or alcohol dependence, originated from long-term alcohol drinking, is
recognized as a common neurobiological brain disorder, which is treatable (Helga, 2011). The
source of its pathogenesis comes not only from alcohol but also from many factors such as
genetics, environment, stress, personality, comorbidity, drug history, and so on. It eventually
leads to neuroadaptation to the effects of alcohol (Koob & Le Moal, 2008). The structural change
of the brain in adapting to environmental factors is a natural characteristic (Jones and Bonci,
2005), and the characteristics of brain activity at a given time can reflect the condition of
alcohol-dependent patient at that time (De Witte, 2004; Koob & Volkow, 2010). However, at
present the evaluation of such a condition is based mostly on clinical manifestations through
direct physical examination. Although there are significant improvements in clinical
consultation, the accuracy of diagnosis is much dependent on subjective measures of physicians
and patients. Therefore, a more objective and accurate method is a practical need in the treatment
and follow-up of alcohol-dependent patient. With the aid of functional magnetic resonance
imaging (fMRI) and the methods of data analysis, this has gradually become achievable. A
specific question posed here was whether fMRI can provide useful biomarkers in clinical
practice for diagnosis as well as prediction of the relapse risk after detoxification, and this was
also the problem that we aimed to address.

BACKGROUND

ALCOHOL DEPENDENCE

Alcohol abuse and alcohol dependence are significant public health problems all over the world.

With the serious medical, economic and social consequences, the World Health Organization
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(WHO) has viewed them as one of the leading risk factors for premature death and disabilities in

the world, which is in the same order as tobacco and hypertension (Helga, 2011).

Alcohol is a toxic substance in all aspects of its direct and indirect effects on a wide range of
body organs and systems (Rehm et al.,, 2009). The effects of alcohol cause medical,
psychological and social damage. As the toxic effects of alcohol damage all organs of the body,
excessive alcohol use has serious health consequences to the individual and may lead to liver
cirrhosis, gastritis, ulcer, pancreatitis, gastrointestinal cancers, neuropsychiatric diseases,
cardiovascular diseases, etc. (Room et al., 2005; Mack et al., 2010). With chronic drinking and
repeated intoxication, a cluster of interrelated behavioural, physical and cognitive symptoms

develops which is referred to as alcohol dependence (Thomas et al., 2001).

What is alcohol dependence?

Alcohol dependence, also known as alcohol addiction, is a chronically relapsing disorder
characterized by criteria such as tolerance development, withdrawal symptoms, drug craving and
reduced control of drug intake (WHO, 1992; Diagnostic and Statistical Manual of Mental
Disorders, 4" edition (DSM-IV; (American Psychiatric Association (APA), 1994) and its Text
Revision (DSM-1V-TR; APA, 2000); Table 1.1).

Table 1.1. DSM-IV-TR diagnostic criteria for alcohol dependence

A maladaptative pattern of alcohol use, leading to clinically significant impairment or distress, as manifested by three
(or more) of the following, occurring at any time in the same 12-month period:

(1) Tolerance, as defined by either of the following:
(@) A need for markedly increased amounts of the alcohol to achieve intoxication or desired effect
(b) Markedly diminished effect with continued use of the same amount of the alcohol
(2) Withdrawal, as manifested by either of the following:
(@) The characteristic withdrawal syndrome for the alcohol
(b) Alcohol is taken to relieve or avoid withdrawal symptoms
(3) Alcohol is often taken in larger amounts or over a longer period than was intended
(4) There is persistent desire or unsuccessful efforts to cut down or control alcohol use

(5) A great deal of time is spent in activities necessary to obtain the alcohol (e.g. driving long distances), use
alcohol or recover from its effects

(6) Important social, occupational, or recreational activities are given up or reduced because of alcohol use

(7) The alcohol use is continued despite knowledge of having a persistent or recurrent physical or
psychological problem that is likely to have been caused or exacerbated by the substance (e.g. continued
drinking despite that an ulcer was made worse by alcohol consumption).
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= Criteria (1), (2) may describe the physical dependence.

= Criteria (3), (4) may describe the state of ‘craving’, which is a strong desire and urge to

consume alcohol, as well as loss of control.

= Criteria (5), (6), (7) refer to the compulsive state and reflect the social and medical

consequences of alcohol consumption.

Although the clinical criteria were established in DSM-1V or in several questionnaire protocols
such as Alcohol Dependence Scale (ADS), Michigan Alcoholism Screening Test (MAST),
Alcohol Urge Questionnaire (AUQ), Obsessive Compulsive Drinking Scale (OCDS), etc. with
the aim of supporting the diagnosis of alcohol dependent condition more accurately, clinicians
often don’t have clear boundaries to diagnose definitely the condition of the disease (Mack et al.,

2010; Helga, 2011). This suggests a need to develop better support tools in the future.
Stages of addiction

Drug addiction, including alcohol addiction, is today seen as a chronic relapsing condition
characterized by (a) compulsion to seek and take the drug, (b) loss of control in limiting intake,
and (c) emergence of a negative emotional state (e.g. dysphoria, anxiety, irritability) when access
to the drug is prevented (Koob & Le Moal, 2005). The chronic effects of alcohol cause
neuroadaptation in brain structure, plasticity and altered gene expression, leading to persistent
changes in brain functions and transition from controlled to compulsive alcohol use (Helga,
2011). Such an addiction cycle is composed of three stages: ‘binge/intoxication’,

‘withdrawal/negative affect’, and ‘preoccupation/anticipation’ (craving) (Koob & Volkow, 2010).
The stage of ‘binge/intoxication’: VTA and VS including nucleus accumbens

This stage is characterized by a positively reinforcing effect, primarily mediated by the
mesolimbic dopamine system, and is an important starting point for the transition to addiction
(Koob & Volkow, 2010). The mesolimbic dopamine system plays a core role in reward, and the
initial action of alcohol reward has been hypothesized to be dependent on dopamine release in
this system (Heinz et al., 2009). Alcohol, via endorphin release in the ventral tegmental area
(VTA), stimulates inhibitory opioid receptors located on GABAergic interneurons in the VTA
and thereby indirectly disinhibits dopamine neurons (Fig. 1.1) (Steven et al., 2006). On the other
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hand, the nucleus accumbens is located strategically (Fig. 1.4) to receive important information
of the limbic system from the amygdala, frontal cortex, and hippocampus which can be
converted to motivational action through its connections with the extrapyramidal motor system.
Thus, the nucleus accumbens plays a critical role in the acute reinforcing effects of drugs,
together with the supporting role for the central nucleus of the amygdala (CeA) and ventral
pallidum (Fig. 1.4) (Koob & Volkow, 2010).

Figure 1.1.  Actions of opiates,

nicotine, alcohol, and phencyclidine
(PCP) in reward circuits.

Opaiod \ Glutamate inputs
- eg from cortex)
= A\ The dopamine neurons in ventral
i 3-\))\% ¢ " Alcoho tegmental area (VTA) (bottom left) project
Aterneuron X \, S ‘y PCP to the nucleus accumbens (NAc) (bottom
Alcohol =~ ﬁﬁ(’\f gy ( 04_—/ right). Different interneurons interact with
i )\Jf' \ VTA neurons and NAc neurons. Alcohol,
5 pd DA r acting on GABA, receptors in the VTA,
""‘“’”‘“\;z\w“'" S 2.0, /l can cause dopamine release (Source,
N ng\ C;n-m.\hn‘.:-~::u‘z'./ — "#_,.--"\.\E‘] Steven et al., 2006).
A \

(e.g. from
amygdala)

VIA NAC (Source, Sweven &t 31, 2006)

The stage of ‘withdrawal/negative affect’: the extended amygdala

The stage of acute withdrawal is characterized by changes of the within-system changes reflected
by a decrease of dopaminergic activity in the mesolimbic dopamine system and by the between-
system recruitment of neurotransmitter systems that convey stress and anxiety-like effects such
as corticotropin-releasing factor (CRF) and dynorphin (Koob & Le Moal, 2008).

Within-system neuroadaptations

A within-system neuroadaptation in addiction is a molecular or cellular change within the reward
circuit in order to adapt to overactivity of hedonic processing associated with addiction, which
results in a decrease in reward function (Koob & Volkow, 2010). Decreases in activity of the
mesolimbic dopamine system and decreases in serotonergic neurotransmission in the nucleus
accumbens was recorded during alcohol withdrawal in a study on rats (Weiss et al, 1996):
“Withdrawal from the chronic ethanol diet produces a progressive suppression in the release of

dopamine and serotonergic neurotransmitters in the nucleus accumbens over the 8 hour
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withdrawal period. Self-administration of ethanol reinstates and maintains brain dopamine
release at pre-withdrawal levels.” In addition, many studies of neurochemicals as well as
imaging have shown that long-lasting reduction in the numbers of dopamine D2 receptors
reflecting a hypodopaminergic state and the hypoactivity of the orbitofrontal-infralimbic cortex

system in drug abusers compared with controls during this time (Volkow et al., 2003).
Between-system neuroadaptations: mutual changes between reward system and antireward system

In addiction, a between-system neuroadaptation is a circuitry change where the antireward circuit
(brain stress circuit) is activated by excessive activity of the reward circuit. This activation
generates opposing actions to limit the reward function (Koob & Le Moal, 2008). Both the
hypothalamic—pituitary—adrenal axis (HPA) and the brain stress/aversive system mediated by the
corticotropin-releasing factor (CRF) are activated during acute withdrawal from chronic
administration of all addictive drugs with a common response of increasing adrenocorticotropic
hormone, corticosterone and CRF (Koob & Kreek, 2007). Simultaneously, a hyperfunctional
glutamatergic state is also recruited

during this time (De Witte, 2004). :

-
Typically, this stage is characterized E -\\
by a dysfunctional hypodopaminergic Z e S
state and the recruitment of = /—\\.’/ Lo
antireward mechanisms, which it é ’Nl X \;/ S~
may be the source producing S / — oo =

Mesolimbic DA
negative emOtionS by engaging Neuroplasticity with increasing use -
activity in the extended amygdala, (Source, Koob & Volkow, 2010)
primarily via the corticotropin- Figure 1.2. Neuroplasticity with increasing use of drug.

releasing factor, norepinephrine in The schematic figure describes the sequential and cumulative effects of
neuroadaptive changes hypothesized to contribute to the neuroplasticity

the hypothalamic-pituitary-adrenal that promotes compulsive drug-seeking (Source, Koob & Volkow, 2010) .

axis and dynorphin (Helga, 2011).
The stage of ‘preoccupation/anticipation’ (Craving): a widely distributed network

The preoccupation/craving stage has been hypothesized to be a key element of relapse which

involves a widely distributed network such as the orbitofrontal cortex, dorsal striatum, prefrontal
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cortex, basolateral amygdala, hippocampus and insula relating to drug craving and the cingulate
gyrus, dorsolateral prefrontal and inferior frontal cortices relating to disrupted inhibitory control
(Koob & Volkow, 2010). Generally, the transition to addiction involves neuroplasticity in all of
these structures that appears to begin with changes in the mesolimbic dopamine system (Fig.
1.2). The neuroadaptations then gradually relocate from the ventral to dorsal striatum and
orbitofrontal cortex, and eventually the process may lead to the dysregulation in a widely
distributed network involving the prefrontal cortex, cingulate gyrus, extended amygdala,
hippocampus and insula (Fig. 1.2, 1.3; Koob & Volkow, 2010).

Preoccupation/anticipation

negative affect Binge/intoxication

{Source, Koob & Volkow, 2010)

Figure 1.3. Neural circuits involved with the three stages of the addiction cycle.

Green/blue arrows, glutamatergic projections; Orange arrows, dopaminergic projections; Pink arrows, GABAergic projections;
Acb, nucleus accumbens; BLA, basolateral amygdala; VTA, ventral tegmental area; SNc, substantia nigra pars compacta;
VGP, ventral globus pallidus; DGP, dorsal globus pallidus; BNST, bed nucleus of the stria terminalis; CeA, central nucleus of
the amygdala; NE, norepinephrine; CRF, corticotropin-releasing factor (Source, Koob & Volkow, 2010).

Pathophysiology of alcohol dependence

The mechanism of alcohol dependence still continues to be studied, but there has been a growing
body of evidence from various studies indicating that the mesolimbic dopamine system is the
core structure for reward and positive reinforcement (Helga, 2011; Koob & Volkow, 2010;
Heinz et al., 2009).
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Mesolimbic dopamine system

The chief components of the mesolimbic system are the ventral tegmental area (VTA), ventral
striatum including nucleus accumbens (NAc) and their afferent and efferent connections (Fig.
1.4) (Koob & Volkow, 2010).

Cinooietd s Figure 1.4. Dopamine projections to
the forebrain.

Projections from the ventral tegmental
area to the nucleus accumbens, and
prefrontal cerebral cortex, and projections
from the substantia nigra to the dorsal
e striatum (caudate and putamen and
related structures) (Source, Steven et al.,
2006).

The VTA s situated in the ventral midbrain medial to the substantia nigra and consists of
dopamine neurons that project via the medial forebrain bundle to the limbic structures: the NAc,
amygdala and hippocampus (called the mesolimbic pathway) and to the medial prefrontal cortex
(called the mesocortical pathway) (Fig. 1.4). The NAc, a major component of ventral striatum,
consists of two sub-regions which have different morphologies and functions, the shell and the
core region. The NAc shell, as part of the extended amygdala, is considered as a limbic structure
and engages in drug reinforcement, while the NAc core is a motor region which is more
associated with the dorsal striatum (Kelley, 1999). The NAc represents an interface between the
limbic neural and motor networks, and may be the important bridge between motivational
processes and behavioural action (Doyon et al., 2003), and it is hypothesized that the VTA-NAc
is the core region of “brain pleasure centre” mediating the actual pleasure of a reward stimulus as
well as reinforcement and motivation for reward-oriented behaviour (Helga, 2011). The source
of dopamine to the NAc as well as to the amygdala, hippocampus, and prefrontal cortex (PFC)
originates from the VTA of the midbrain (Fig. 1.1 & 1.4) (Steven et al., 2006). In contrast, a
significant number of the outward projecting neurons from the NAc are medium spiny
GABAergic neurons, and the GABAergic neurons largely connect with the VTA, thalamus,

prefrontal cortex and striatum (Kalivas et al., 1993).

17



The VTA-NACc pathway is regulated by various neurotransmitter systems including the GABA,
glutamate, serotonin and acetylcholine systems as well as endogenous opioids and
endocannabinoids. All of them influence the reinforcing effects of drugs of abuse, either by
acting directly in the NAc or by indirect actions in the VTA (Fig. 1.1; Steven et al., 2006), in
which the glutamatergic system, known as an essential excitatory system on the VTA-NAc
pathway, plays an crucial role in drug reinforcement and addiction through the control of the
mesolimbic dopaminergic pathway. The glutamatergic afferents to the VTA originate from the
prefrontal cortex, bed nucleus of the stria terminalis (BNST), laterodorsal tegmental nucleus
(LDTg) and lateral hypothalamus. Similarly, the NAc is also innervated by glutamatergic
neurons. Most afferents to the NAc core come from the prefrontal cortex and thalamus while the
NAc shell receives glutamatergic innervation from the amygdala and hippocampus and
prefrontal cortex (Koob & Volkow, 2010). In contrast to the excitatory glutamatergic system, the
negative GABAergic feedback system to the VTA regulates the activity of the VTA neurons by
providing a modulatory inhibitory tone onto the VTA dopaminergic cell bodies via disinhibition
of GABAergic interneurons leading to an inhibition of dopamine release in the NAc (Kalivas et
al., 1993). In addition, some other systems such as serotonin, acetylcholine system, and so forth
play smaller roles in the VTA-NAc pathway, e.g. the cholinergic afferents that project from
LDTg and pedunculopontine tegmental nucleus (PPTg) activate primarily phasic firing of the
VTA dopamine neurons via the NAc receptors. Serotonergic projections from raphe nuclei also
modulate the mesolimbic dopamine pathways in both the VTA and NAc, and the neuropeptide
ghrelin increases dopamine release in the NAc, possibly via a cholinergic mechanism in the VTA
(Helga, 2011).

The VTA dopamine neurons can be activated by reinforcers which may be primary stimuli (the
actual reward, e.g. addictive substances) as well as conditioned stimuli (e.g. visual or auditory
stimuli) (Schultz, 1998), and almost all of them increase levels of synaptic dopamine within the
NAc through direct or indirect mechanisms (Wise, 1998). The study results of Doyon and
colleagues (2003) on rats showed that a dopamine increase recorded in the NAc was not solely
provoked by alcohol (non-conditioned pharmacological effect) but also probably by alcohol-
associated cue presentation (conditioned effect). Taken together, this appears to indicate that the
VTA-NACc pathway plays a core role in addiction, and stimulation of dopamine release in the
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NAc, a core region of the brain reward system, is a crucial property of addictive substances
(Wise, 1998; Koob & Volkow, 2010).

Imbalance between reward system and antireward system
Decreased function of brain reward system

Addiction is hypothesized as a cycle of decreased function of the brain reward system and
recruitment of the antireward system (Koob & Le Moal, 2008). The taking of acute alcohol
results in not only the short-term amelioration of the reward deficit but also suppression of the
antireward system (Koob & Le Moal, 2008; Heinz et al., 2009). However, when using long-term
administration, the effects of alcohol on the reward system lead to neuroadaptation possibly with
synapse plasticity e.g. long-term potentiation (LTP) and long-term depression (LTD) (Anna,
2009), which begins by positive effects on the reward system. Studies on rats showed that
alcohol produced a dose-dependent release of dopamine in the NAc, preferentially in the NAc
shell when it was given systemically as well as injected locally in the NAc (Di chiara &
Imperato, 1998). During this time, a hypodopaminergic state is taken shape by an increase of
brain reward threshold and a decrease in the number of dopamine D2 receptors, as a
compensatory response with the hyperdopaminergic effects of alcohol on the reward system
(Koob & Le Moal, 2008). Imaging studies in drug-addicted humans have consistently shown
long-lasting decreases in the numbers of dopamine D2 receptors in drug abusers compared with
controls (Volkow et al., 2003; Heinz et al., 2004).

Recruitment of antireward system

Simultaneously, an opponent system, known as antireward system, also causes the
neuroadaptation, but in the opposite direction, such as up-regulation of NMDA receptors (N-
methyl-D-aspartate receptor) which may originate from the effects of alcohol on the
glutamatergic neurotransmission. Alcohol stimulates GABAA receptors and inhibits the function
of glutamatergic NMDA-receptors (Kalivas & Volkow, 2005; Beck et al., 2011). Such effects in
the long-term lead to the reduction of effects of glutamate on NMDA receptors and thereby
result in compensatory up-regulation of NMDA receptors (Heinz et al., 2009). The antagonistic
adjustment of the antireward system tries to achieve a balance between the two systems, also

known as allostatic state. The allostasis is defined as stability through change. Allostasis is quite
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more complex than homeostasis and has several special characteristics that differ from
homeostasis (Sterling & Eyer, 1988 cited by Koob & Le Moal, 2008). Allostasis involves a feed-
forward mechanism which is rather different from the negative feedback mechanisms of
homeostasis. For instance, when an increased need produces a signal in homeostasis, negative
feedback mechanism is started to correct the need to keep it at a constant level. In contrast, in
allostasis, there is continuous re-evaluation of need and continuous readjustment of all
parameters toward new set points (Koob & Le Moal, 2008). Also, when an alcohol-dependent
patient abstains from alcohol, a new imbalance turns up due to the loss of effects of alcohol on
the system. At that time, this condition discloses the hypodopaminergic as well as
hyperglutamatergic state which originates from its effects on the system over a long period of
time (Fig. 1.5). Microdialysis studies on rats show that ethanol withdrawal is associated with
increases in glutamate in the striatum, nucleus accumbens and hippocampus approximately 5-8
hours after cessation of ethanol inhalation, with a maximal value at 12 hours (Rossetti &
Carboni, 1995; Dahchour & De Witte, 1998). Then, the body can be on impulse for a change to
achieve a new balance, a new allostasis, although it is likely that the new balance may not be
healthy, but it is “appropriate” to environmental demands (Koob & Le Moal, 2008). Alcohol
dependence thus can be viewed as a dynamic phenomenon represented by a transition from

neuroadaptation to pathophysiology (Clapp et al., 2008; Koob & Le Moal, 2008).
Motivation of compulsive alcohol seeking

Based on the fact that the brain is a network of systems working in equilibrium (De Witte, 2004;
Becker, 2008), the imbalance may be just what motivates alcohol-dependent patients after
abstinence to compulsively seek alcohol with the goal of restoring the balance which the patients
had stabilized and adapted to during a long period of alcohol consumption before abstinence
(Koob & Le Moal, 2008). The requirement of restoring the balance lasts a short or long time,
depending on the time it takes to re-establish a new balance which is contingent on many factors
e.g. addictive level of patient, environmental factors, willpower of patient, genetic variables, etc.
(Christopher, 2006; Koob & Le Moal, 2008). Evidence reflecting indirectly the progression can
be found in a follow-up study of alcohol dependence of Heinz et al. (1996) indicating that down-
regulation of dopamine D2 receptor in the ventral striatum is almost prominent just after

detoxification and recovers during abstinence. This result appears to suggest that there is
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Figure 1.5. This figure illustrates the brain (triangle) that is controlled by different excitation and inhibition
processes to maintain the brain in a regular equilibrium. Acute alcohol disrupts the equilibrium by enhancing the
inhibitory processes (mainly GABA and taurine) that indirectly increase dopamine release via inhibiting GABA,, interneurons
in the VTA-NAc. Chronic alcohol consumption causes neuroadaptation (up-regulation of glutamate) to counteract the
inhibitory action of alcohol. Withdrawal of alcohol results in an overexcitation state of the brain due to the excess of
neuroadaptative excitatory processes. Conditioned stimulus alone may lead the brain to a state similar to withdrawal state
called mini-withdrawal. Conditioned tolerance may also occur through the presence of alcohol together with conditioned
stimulus (Source, De Witte, 2004).

neuroadaptation in the reward system after alcohol withdrawal in order to re-establish the
balance, and the process moves towards complementing the hypodopaminergic state. Therefore,
the slow or fast recovery of central dopaminergic neurotransmission can be a sign to predict the

probability of either relapse or recovery among detoxified alcoholics (Heinz et al., 1996, 2004).
Role of alcohol-associated cues in alcohol dependence
Alcohol-associated cues as conditioned stimuli

One of the characteristics formed during alcohol dependence, which plays an important role in
relapse mentioned in a series of previous studies, is cue-related response (Schultz, 1998; Wise,

1998; Drummond, 2000; Doyon et al., 2003). The cues can serve as conditioned stimuli that can
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encourage alcohol consumption (O’Brien et al., 1998; Drobes, 2002). Alcohol and other
addictive substances act as ‘instrumental reinforcers’, which increase the power of responses that
produce them, leading to drug self-administration or ‘drug taking’. Environmental stimuli such
as time, space, pictures, and so on that are closely associated with the effects of self-administered
drugs obtain incentive salience through the process of Pavlovian conditioning (Everitt & Robins,
2005). The underlying activation of neural structures involved in maintaining the incentive
salience state makes addicts vulnerable to long-term relapse. The way of response to these
stimuli is presumably stored as alterations in synaptic weights and, eventually, after a long time,
by physical remodelling of synaptic connections (Berke & Hyman, 2000). In previous imaging
studies (Braus et al., 2001; Wrase et al., 2007; Park et al., 2007; Beck et al., 2009; Heinz et al.,
2009), such alterations appear to be evidenced by a significantly difference in activation in brain
regions involving the mesolimbic system, especially the ventral striatum including the NAc, in
alcohol-dependent patients compared with healthy controls when elicited by alcohol-associated

Cues.
Enhanced sensitivity to the cues

A hypodopaminergic state is exposed during early detoxification and abstinence possibly due to
the lack of effects of alcohol on the reward system. Studies on rats following alcohol self-
administration training showed that when they self-administered alcohol, a concurrent rise in
dopamine levels was produced in the NAc, whereas a withdrawal from alcohol decreased
dopamine release in the NAc (Diana et al. 1993; Weiss et al., 1993; Rossetti et al., 1992).
Concurrently, a hyper-antireward state also breaks out due to the loss of the factor inhibiting the
antireward system. This phenomenon is illustrated in the Fig. 1.5, where the loss of alcohol-
associated inhibition on the glutamatergic system (especially NMDA receptors) may result in
hyperexcitation and clinically manifest as withdrawal symptoms (Spanagel, 2003; De Witte,
2004). Hence, it seems that the imbalance between the two systems is the source leading to
enhanced sensitivity to the conditioned stimuli with the goal of compensating deficiency of
alcohol or addictive substances in order to balance the systems (Koob and Volkow, 2010). For
instance, a study of McClernon et al. (2009) on the effects of withdrawal on cue reactivity
indicated that abstinence from smoking can dramatically potentiate neural responses to smoking-

related cues in the brain regions which are in charge of visual sensory processing, attention and
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action planning. Besides withdrawal, other factors e.g. acute intoxication, family history, gender,
expectancy or drug availability, genotype also show their influences on response sensitivity to
the cues (Filbey et al., 2011). A small, priming dose of alcohol, for example, enhanced the effect
of olfactory cues in the NAc, medial frontal, orbitofrontal and posterior cingulate cortex recorded
in a study by Bragulat et al. (2008).

Transition in response to the cues

As addiction progresses from initial drug use to a dependence syndrome, the neurocircuitry and
neurochemistry shift from a behavioral system based on dopamine release in the NAc with acute
administration (signaling initial reward and beginning the process of conditioned learning) to a
behavioral system predominantly based on glutamate (initiating the process of drug
reinstatement or relapse) (Ross & Peselow, 2000). Therefore, the imbalance after withdrawal
accompanied with the excessive activity of glutamate indicates that the glutamatergic pathways
from the prefrontal cortex, amygdala and hippocampus to the NAc and VTA play a major role in
triggering relapse (Fig. 1.3) (Kalivas et al., 2005; Heinz et al., 2009; Koob and Volkow, 2010).
Furthermore, in the way of response to alcohol-associated cues, cue-induced activation of the
anterior cingulate and adjacent medial prefrontal cortex involving the ventral striatum may
mediate an attention response to alcohol-associated cues while cue-induced dopamine release in
the dorsal striatum can trigger relapse into drug-taking behaviour (Ito et al., 2002; Heinz et al.,
2004). Robbins and Everitt (2005) have proposed that the initial reinforcing effects of drugs of
abuse may activate the ventral striatum, but when the drug taking transitions into habitual drug-
seeking behaviours, activation of the more dorsal striatal regions predominates. The dorsal
striatum does not appear to have a major role in the acute reinforcing effects of drugs of abuse
but appears to be recruited during the development of compulsive drug seeking (Everitt &
Robbins, 2005). This implies that the dorsal striatum is crucial for habit learning, e.g. for the
learning of automated responses, and may thus contribute to the compulsive character of
dependent behaviour. In other words, in addicted individuals, cue-elicited craving tends to
preferentially elicit dopamine release in more dorsal striatal structures, which is thought to reflect
a transition from a ventral striatal reward-driven phenomenon to a dorsal striatal stimulus-
response habit formation (Berke & Hyman, 2000), in which reward plays a lesser role. For this

reason, it is likely that habit expressed by dorsal striatum activation can play an important role in
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forming a fast, easy and automatic response relating to alcohol-associated cues. In other words,
the characteristics of activation of this structure to specific stimuli can be referred in order to
predict the addictive level of a patient. The hypothesis is supported by the study result of
Vollstadt-Klein and colleagues (2010) indicating that the dorsal striatum of heavy drinkers was
activated more strongly than that of light drinkers, whereas light social drinkers showed stronger
cue-induced fMRI activations in the ventral striatum and prefrontal areas than those of heavy

social drinkers.

In summary, it appears that alcohol dependence is a dynamic process in which there is transition
to-and-fro between the stages of addiction. Furthermore, the response features to alcohol-
associated cues can reflect the stages of the disorder whereby we can predict the alcohol
dependent status of a patient. In other words, the reactivity of the brain circuits to alcohol-
associated stimuli may serve as a biomarker to help predict relapse as well as treatment efficacy
(Koob and Volkow, 2010).

fMRI AND CLASSIFICATION TECHNIQUES
fMRI data

Functional magnetic resonance imaging (fMRI) is an advanced non-invasive medical imaging
technique that can give high quality visualization of brain activation through changes in blood
flow or oxygenation resulting from sensory stimulation or cognitive function (Ogawa et al.,
1990). It therefore has been often used in studies of brain function e.g. to investigate how the
healthy brain functions, how it is affected by different diseases, how it attempts to recover after

damage and how drugs can modulate activity or post-damage recovery, etc.
fMRI experiment

During the course of an fMRI experiment, a series of three-dimensional images of a subject’s
brain activity are recorded while he is performing a set of tasks, known as fMRI paradigm. Then,
the images from different subjects are analyzed to detect differences of brain activation in the
brain regions of interest between the investigated groups of subjects. Therefore, designing an

appropriate paradigm is one of the most important tasks for an fMRI experiment. Currently, there
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are two commonly used approaches, “block design” and “event-related design” (Edson &
Gareth, 2006).

The block design is the simplest approach. The different experimental conditions are separated
into extended time intervals, or blocks. The cycles of periods of task and rest (conditions) are
arranged alternately. This design allows maximization of signal-noise ratio (SNR) but also has
some disadvantages. Repeating the same task may lead to the subject anticipating the task and

sometimes even the response. This may considerably confound the results.

The event-related design is a more flexible and complex approach. The order of the stimuli is
often randomized and even the time between stimulus presentations also varies (interstimulus
interval) to prevent anticipation of the task. However, the disadvantage of this design is the low
SNR. This is due to the fact that the task state is not sustained for long periods, leading to a less

intense vascular response (Edson & Gareth, 2006; Graeme et. al., 2008).

Apart from the task-driven fMRI just described, recently interest has been growing in the
application of the technique at rest, termed resting-state fMRI (RS-fMRI). The RS-fMRI is
applied to evaluate synchronous activations between brain regions that take place in the absence
of an explicit task or stimulus. Although this is a relatively new method, it has shown promise in

providing diagnostic and prognostic information for neuropsychiatric disorders (Lee et al., 2012).
fMRI scanner

The MRI scanner creates a powerful magnetic field (0.2 - 3T), which causes some nuclei
(predominantly hydrogen nuclei or protons in the water) in our body to align parallel or anti-
parallel to the applied magnetic field, according to their spin. Pulses of radio frequency (RF) then
are applied to excite the protons (90° excitation RF pulse) and systematically flip the spins of the
aligned protons. Since the application of RF pulse disturbs the spin system in the strong static
magnetic field, there is subsequently a process to return to equilibrium (pre-excited stable state)
when the RF is turned off. This relates to exchange of energy between the spin system and its
surroundings, and as the protons return to the lower energy state, radio waves are emitted. They
are then recorded and processed to construct an image of the scanned area. The protons can
return to the stable state only by dissipating their excess energy to their surroundings. The

process is called spin-lattice relaxation, T1 relaxation. The rate of restoring the equilibrium is
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characterized by the spin-lattice or longitudinal relaxation time, T1. Nonetheless, the spins
exchange energy not only with the surrounding lattice but also among themselves. The process is
known as spin-spin relaxation or transverse relaxation, T2 relaxation. In this relaxation, the spins
do not dissipate energy to their surroundings but instead exchange energy with each other. The
process generally takes place faster than the spin-lattice relaxation. In order to improve recorded
image quality, a technique of spin echo sequences is used by the application of an 180°
refocusing pulse to eliminate the effects of static field inhomogeneities. The tradeoff of this
technique is a fairly long scan time. The T2* imaging used in fMRI does not use this refocusing
technique, so the resolution of the images is reduced (to approximately 3 mm), but the sensitivity
to the relaxation processes is increased. Besides, with the system equipped with echo planar
options, the image acquisition interval is very short, typically every 0.5-4 seconds for each scan
(Clare, 1997; Mathews, 2001; Weishaupt et al., 2008).

Image contrast between gray matter, white matter and cerebrospinal fluid can be optimized by
appropriately weighting the relaxation times. For example, T1-weighted images provide clear
contrast between gray matter and white matter, so they are often used to create high-resolution
(approximately 1 mm) 3D structural images taken in slices at a single point in time. In contrast,
thanks to the advantage of very short acquisition time, T2*-weighted images are employed to
analyze brain activity under impact of specific stimulation (Mathews, 2001; Weishaupt et al.,
2008; Yang et al., 2011).

fMRI signal (BOLD signal)

Brain activity is indirectly recorded via the blood oxygenation level dependent (BOLD) signal.
The application is based on the paramagnetic property of deoxygenated haemoglobin. Normal
blood can be seen simply as a concentrated solution of haemoglobin (10-15 gm haemoglobin/100
cm®). When haemoglobin is attached to oxygen (oxygenated haemoglobin), it becomes
diamagnetic, while deoxygenated haemoglobin is paramagnetic (Pauling and Coryell, 1936 cited
by Mathews, 2001). Paramagnetic materials are attracted by the applied magnetic field, i.e. they
strengthen the magnetic field. They therefore increase the T2* relaxation rates (i.e. decreases T2
time). This attenuates the T2* magnetic resonance signal. In contrast, diamagnetic materials are
repelled by the applied magnetic field, so they increase the signal. In other words, a change in

haemoglobin oxygenation induces a corresponding change in the recorded signal intensity. This
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characteristic is exploited in the investigation of task-induced neuronal activity due to the
coupling of hemodynamic response to neuronal activation. A locally increased blood flow and
volume in the brain region which becomes active appears to be a consequence of increased
energy utilization at the synapse e.g. a local increase in glucose and oxygen consumption
(Mathews, 2001; Logothetis & Pfeuffer, 2004). However, the increase in the blood supply
exceeds the metabolic needs, which leads to increased blood oxygen concentration in the
activated region (Fox & Raichle, 1986). As a result, the increase of blood oxygenation increases
the T2* signal recorded in the region. This is the basis for the BOLD fMRI. Thus, the BOLD
signal is a secondary effect of neuronal activation, and there is the time delay in the
hemodynamic response, the peak of which occurs 4-6 seconds after the neuronal activity
(Mathews, 2001). In other words, the recorded fMRI is the image indirectly reflecting neuronal
activation through hemodynamic response. Accordingly, in fMRI analysis a hemodynamic
response function (HRF) or impulse response function is often incorporated in the computational
models of neuronal activation by convolving with the neuronal response evoked by the stimulus
that has been designed in fMRI paradigm (stimulus function) in order to give a hemodynamic
response (Friston et al., 2007).

fMRI image

A typical 20-minute fMRI experiment produces a series of 3D brain images (volumes or scans),
each of which contains approximately 170,000 voxels (e.g. for an image matrix of 64 x 64 x 42).
First, data are collected from an fMRI scanner on the subject undergoing an experiment
designed to activate the neuronal responses in the brain regions of interest. The recorded
intensity values of BOLD signal are processed and then normalized to range between zero
and a fixed constant e.g. between 0 and 1500. The time taken to acquire a single fMRI image
(volume) is of the order of several seconds. Thus, each 2D plane (slide) of the 3D fMRI image
(volume) records brain activity from different points in time (Burge, 2007); and each volume is
stored in a chronological record in a three-dimensional matrix [X, y, z], the elements of which
store image resolution (pixel or picture element) representing the intensity of activation. For
instance, in a 3D brain image matrix with dimensions of 64 x 64 x 42, there are 42 slides. Each
slide is a two-dimensional matrix of 64 columns and 64 rows comprising 64 x 64 elements,

known as voxels, that store image resolution values (voxel attribute) between 0 and 1500 and
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Figure 1.6. lllustration for a volume of 3D brain image with dimensions of 64 x 64 x 42.

that represent cubes of tissue about 2-4 millimeters (volumetric pixels) depending on slice

thickness, field of view (FOV) and size of image matrix (Fig. 1.6).

Pre-processing raw fMRI data before analysis

fMRI data are susceptible to a large number of artifacts which can roughly be divided into
scanner-induced artifacts e.g. radio frequency, gradient artifact, etc. and physiological artifacts
e.g. motion, respiration, heartbeat, contamination from large veins and arteries in the brain, etc.
(Graeme et. al., 2008; Lindquist, 2008). Consequently, to minimize non-task-related variability
in the recorded image data within-subject as well as between-subject for validity of statistical
assumptions before the data are analyzed, they need to be pre-processed. The pre-processing

comprises a series of steps that can be roughly divided into anatomical and functional steps.

The functional steps include temporal and spatial processing. For temporal processing termed
slice timing correction, each slice in each volume is acquired at slightly different points in time.
Therefore, it is necessary to adjust the data so that it appears as if all voxels within one volume
had been acquired at exactly the same time. Spatial processing is designed to remove movement
effects termed motion correction or spatial realignment. Besides, spatial and temporal smoothing
with a Gaussian kernel is often performed to improve the SNR of imaging data and to reduce

differences between the activation patterns of subjects (Etzel et al., 2009).

The anatomical steps include spatial coregistration and normalization. Since fMRI is typically of

low spatial resolution and provides relatively little anatomical detail, the coregistration is
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designed to eliminate differences between structural and functional images in order to be able to
map the results obtained from functional data onto a structural MR image with high resolution
for presentation purposes. When performing group analysis to make population inferences, all
individual brain images recorded for all subjects are assumed to be registered so that each voxel
is located in the same anatomical region. For this, spatial normalization is applied to register all
of the fMRI images into the same standard space e.g. Montreal Neurological Institute (MNI) or
Talairach space. Without the preprocessing prior to analysis, the result of statistical analysis
would be invalid (Lindquist, 2008).

fMRI analysis

Since fMRI was invented in the early 90s, it has become one of the widely used non- invasive
techniques for investigating human brain activity. Along with its development, the analysis
methods of fMRI data have appeared. Today, fMRI analysis has been used for three main
applications including localization of brain activation, connectivity and classification/prediction
(Fig. 1.7).

Localization of brain activation
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brain regions by specific tasks is

performed separately at each voxel (mass-univariate approach). The analysis uses statistical

regression and hypothesis testing based upon the general linear model (GLM) or
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discriminant analysis techniques such as multivariate regression to test hypotheses about
regionally specific effects. These techniques commonly make linearity and Gaussian noise
assumptions and eliminate the time factor in inference (Friston et al., 2007; Lindquist, 2008).
Due to limitations of the statistical approach, about ten years later, an alternative approach has
appeared. The new approach emerged from the Bayesian theory. In contrast to statistical
inferences about the data, given the effect is zero, Bayesian inferences are based on conditional

inferences about an effect, given the data (Friston et al., 2007).
Multivariate approach

Although individual-voxel-based methods are still being used widely due to their simplicity
(Friston et al., 2007), they have exposed the limits of what can be learned about cognitive states
by analyzing voxels individually (Normand et al., 2006). The limits have promoted the
development of new approaches where the fMRI analysis considers groups of voxels rather than
a single voxel. The analyses range from the “searchlight” approach which multivariately
examines the information in small groups of voxels centered on each voxel in the brain
(Kriegeskorte et al., 2006) to multivoxel pattern analysis which can detect patterns across voxels
in fMRI data (Mourao-Miranda et al., 2005; Normand et al., 2006; Etzel et al., 2009). The
primary advantage of these methods over individual-voxel-based methods is increased sensitivity
(Normand et al., 2006).

Connectivity

The brain is the center of the nervous system and is made up of nerve cells (neurons). Its
function is to exert centralized control over the other organs of the body. To take on this
responsibility, single neurons do not work independently but rather function in large aggregates
(neuronal groups), known as functionally specialized brain regions e.g. motor areas, sensory
areas, visual cortical areas, etc. (Mathews, 2001; Bear et al., 2007). Furthermore, between the
different functional regions there are also connections or interactions, and when responding to a
specific stimulus, several relevant brain regions would be activated interactively (Bear et al.,
2007). In other words, neurons within the brain regions as well as between these regions that are
in charge of this response have high interactions (correlations). Due to the coupling of neural

activation and local haemodynamic response characterized by voxel attribute (BOLD signal),
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there exist correspondingly high correlations among relevant voxels. For examples, the time-
series of BOLD signal recorded on one voxel looks correlatively like the time-series of BOLD
signal on another voxel. If they are located adjacent to each other (e.g. in the same brain area),
they are called as a cluster. If they are located far away from each other e.g. one is in parietal
cortex and the other is in frontal cortex, they are thought to be connected to each other somehow.
However, correlation doesn’t imply direction. Hence, in 1993, Friston introduced the two

different approaches to investigating connectivity in functional neuroimaging.
Functional connectivity

The first approach is defined as functional connectivity. This approach is focused on pairwise
interactions often in terms of correlations or covariances between voxels or brain regions of
interest. It does not provide any direct insight into how these correlations are mediated
(undirected association) (Friston, 1994; Lindquist, 2008). The simplest method of the approach is
to compare correlations between brain regions of interest, or between a “seed” region and the
other regions or voxels throughout the brain (regional correlation). However, it becomes
problematic when the number of correlations grows because it needs to correct for multiple
comparisons, and it is difficult to summarize the patterns of correlation. Alternative approaches
use multivariate methods e.g. principal components analysis (PCA) and independent components
analysis (ICA), etc. to detect task-related patterns of brain activation without making any a priori
assumptions about its model (Lindquist, 2008).

Effective connectivity

The second approach is defined as effective connectivity that shows the directed influence of one
brain region on the others. The approach incorporates additional information e.g. anatomical
connections into the analysis. In addition, a simultaneous interaction of several neural elements
is also considered to explicitly measure the effect of one element on the other (Friston, 1994;
Lindquist, 2008). In regard to measurement methods of effective connectivity, Biichel &
Friston (1997) introduced structural equation modeling (SEM), also known as path analysis,
which is used to investigate significant changes in the relationship between neural systems in
the dorsal visual stream caused by shifts of attention. Hojen-Sorensen, Hansen, & Rasmussen

(2000) used another approach based on Bayesian network theory such as Hidden Markov Models
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(HMMs) to learn a model of activity within the visual cortex from visual stimuli. Recently,
dynamic causal models (DCMs) have been introduced by Friston and colleagues (2003) with the
goal of modeling effective neural connectivity (Friston et al., 2007). The technique is also a
branch of dynamic Bayesian networks, and it is applied to characterize brain activity at the level
of neural networks and their dynamics. Today, the technique has become an important tool of
neuroimaging analysis and has an important impact on the development of theoretical

neurobiology and clinical biomarkers (Seghier, 2010).
Classification/prediction

Another application direction relating to our research is classification of fMRI, also known as
pattern recognition. fMRI classification is a technique of separating fMRI data into different
classes, i.e. providing a criterion for determining whether the BOLD response of a subject at a
particular time during the experiment characterizes a specific cognitive state, a neuropsychiatric
disorder or not (Ye Yang, 2010). The specific tasks for a study of fMRI classification is to
construct patterns from fMRI images, to build up a classifier from the labelled patterns of
training data and then to test the classifier on the unlabeled and unseen patterns of testing data

(i.e. to use the classifier to label the unseen patterns of testing data) (Pereira et al., 2009).
Constructing patterns from fMRIs

This is the step of constructing features for a pattern from an fMRI (feature construction). If all
voxels of an fMRI image are used as features of the pattern, the pattern contains very large
number of features (e.g. approximately 170,000 features for a 3D image matrix of 64 x 64 x 42).
For a set of patterns with such very large size of feature, classification performance of the
patterns can be reduced significantly (Pereira et al., 2009). Further, for a brain response to a
given specific stimulus, not all of the voxels are activated significantly (Etzel et al., 2009). This
implies that there may be uninformative voxels in a classification. Hence, methods to reduce the
number of features for a pattern extracted from an fMRI have been developed. They are divided
into two main approaches.

The first approach is to select informative voxels (features) from an fMRI (feature selection).
There are two methods for this approach: scoring/filtering and wrapper method. The first

involves ranking the features based on a given criterion and selecting the best in the ranking. The
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latter involves performance of a classifier. For this, firstly, all the features are considered and
then they are removed gradually while the performance increases. The method is known as
recursive feature elimination, and it can be accomplished by repeatedly training and applying the
classifier in cross-validation within the training set (Pereira et al., 2009).

The second approach is to reduce the number of features of an analyzed pattern (feature
reduction or dimensionality reduction). The approach focuses on correlation between features.
The commonly used methods in this approach may be named as singular value
decomposition/principal component analysis (SVD/PCA), independent components analysis
(ICA), etc. The general nature of these methods is that they transform the original feature space
into a new, low-dimensional feature space. This yields a new dataset matrix with a reduced
number of features. In addition, another well-known approach is to use a combination of the two

approaches (Lindquist, 2008; Pereira et al., 2009).
Previous works of fMRI classification

A classifier is a function that takes features of a pattern to predict its label. The classifier is
formed from learning characteristics of labelled patterns of a training dataset. Such an approach
is known as machine learning. Along the time line, the development of technology and solutions
of pattern recognition applied in fMRI classification is still progressing. Several prominent
milestones of the development may be mentioned. In 1936, Fisher introduced linear discriminant
analysis (LDA) that computes a hyperplane in the input space so that it maximizes the ratio of
between-class variance to within-class variance (Fisher, 1936). The method can work well with
linear data (Réatsch, 2005). However, it is not sufficient for fMRI classification, where data
sometimes are not linearly separable. In the late 60s, Cover and Hart (1967) introduced k-Nearest
neighbour classification. Here, the k points of training data closest to the test point are identified,
and a label is assigned to the test point by a majority vote between the k points. This method is
simple, but it requires expensive computation and a large memory to store the training data.
Turing (1992) first proposed artificial neural network for classification. Afterwards, the
technique has become one of the commonly used approaches for classification. Also in the 90s, a
statistical learning theory appeared (Boser et al., 1992; Vapnik, 1998; Vapnik, 2000), which
provided conditions and guarantees for good generalization of learning algorithms. Recently,

large margin classification techniques have emerged as a practical result of the theory of
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generalization. The two large margin classifiers frequently mentioned are support vector
machines (SVMs) (Boser et al., 1992, Cortes and Vapnik, 1995) and boosting (Valiant, 1984).
These methods have demonstrated highly competitive performance in many studies of fMRI
classification reported (Etzel et al., 2009). In 2003, Mitchell et al. (2004) introduced a Gaussian
naive Bayesian network which was used to classify instantaneous cognitive states of a subject
while reading a book or looking at a picture. Burger et al. (2007) applied dynamic Bayesian
network, a data-driven modeling technique, to identify functional correlations among regions of
interest with the goal of classifying healthy and dementia fMRI data.

Research problems

Although encouraging achievements have been reported in the studies of fMRI classification
with predictive accuracies between 70 and 90% (Shinkareva et al., 2006; Demirci et al., 2008a;
Demirci et al., 2008b; Takayanagi et al., 2011), they are usually difficult to be generalized with
larger data sets (Demirci et al., 2008b). Several reasons have been mentioned such as limited
number of subjects investigated, bias in classification, variability between operators, scanning
equipment and parameters, and variability between subjects and between different times of
measurement even within the same subject (Demirci et al., 2008b). This indicates the complexity
of fMRI data as well as the unstable reliability of classification decision achieved from machine
inference, whereas a classification decision for each individual patient requires very high
accuracy and reliability.

For these reasons, while waiting for the technological solutions to meet our demands in clinical
practice, it is necessary to find an alternative solution of fMRI classification which can help us
avoid complete dependence on machine inference. This can be realized if we can check the
compatibility between the classification decision for a pattern obtained from machine and its
activation image. In other words, a thorough understanding of the classified pattern and of the
classification decision for the pattern obtained from machine may bring the solution to light, and
it may be a feasible approach to realizing diagnostic functional imaging of neuropsychiatric

disorders in clinical practice.

For alcohol dependence, several lines of evidence have shown significant differences in response

to alcohol-associated cues between detoxified alcoholics and healthy controls (Braus et al., 2001,
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Myrick et al., 2004; Wrase et al., 2007; Park et al., 2007; Beck et al., 2009; Heinz et al., 2004,
2009) and between relapsers and abstainers (Schacht et al., 2011; Beck et al., 2012) based on
fMRI measurement. This indicates that the fMRIs hold important information of differences
among the investigated groups or in other words, the fMRIs can be used as useful biomarkers for
diagnosis as well as prognosis in alcohol dependence. However, the results of these studies have
obtained from a statistical analysis between the different groups. Such an analysis is designed to
identify the brain regions showing significant differences in response to the given stimuli
between the two investigated groups (difference between groups) rather than to provide
observations of the differences between individual subjects of the two groups to be used for
classification (difference of individuals) (Demirci et al., 2008b; Lindquist, 2008; Van Horn &
Poldrack, 2009; Farah & Gillihan, 2012). These problems have motivated us to conduct the
dissertation.

AIMS

The overall objective of this dissertation is to develop a framework which enables the
identification of alcohol dependence as well as prediction of relapse risk in clinical practice using

fMRI. The specific objectives were focused as follows:

(1) To design and validate a classification algorithm for diagnosis and relapse prediction using
fMRI in such a way that the classification results are interpretable

(2) To approach imaging based on the findings gained from the classification algorithm for the
investigated fMRI data

(3) To validate the approach

METHODOLOGY

Outline of the whole approach

The approach was designed as a means of converting the findings of machine-based
classification into our understanding of classification rules on functional imaging. For this,
firstly, classifiers were formed from given classification algorithm and used as intermediate
exploratory instruments, instead of us seeking the rules of recognizing the investigated patterns

(characteristics for recognition). Then, based on the findings as well as working rules of the
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classifiers, the rules for diagnostic

Findings of the classifiers

Iy Classifiers . "
in pattern recognition

functional imaging in clinical practice can

be uncovered (Fig. 1.8).

Based on the idea, we partitioned the
whole approach into smaller approach

\ Clinicians ] Rules_ of [.'_na_tlem recq_ngtlon
in clinical practice

Figure 1.8. The framework for the approach.

steps  starting  from  classification

algorithm to imaging approach. From this
point, the first studies were formed based
on classification algorithms. Then, these machine-based classification algorithms would be
replaced with a diagnostic imaging approach in the next studies. Correspondingly, the algorithms
for the studies have been changed continuously and appropriately to expose the whole approach
that can lead us to realize diagnostic functional imaging in practice. Hence, the algorithm for the
whole idea is not a single algorithm rather than it is just a synthesis of the whole approach. In
other words, we would like to build a framework for this approach (Fig. 1.8). For this reason,
each study was conducted using a different methodology for its specific objective. To facilitate
the presentation, we arranged the methodologies, results and discussions of the studies in

separate chapters.

Specifically, the first study was to demonstrate feasibility of splitting observation on the whole
brain into multiple observations on multiple relevant brain regions involved in alcohol
dependence using fMRI (chapter I1). The second study was to demonstrate the validity of
predictive inference based on multiple lines of evidence collected from several brain regions of
interest in relapse prediction using fMRI (chapter 111). These two studies served for specifying
the algorithm and important brain regions involved in alcohol dependence in fMRI classification.
The third study was to offer an imaging approach based on the findings of the first and second
studies (chapter IV). Finally, we introduced two feasible applications of the approach in clinical

practice (chapter V).
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CHAPTER 11
FORMATION OF FUNCTIONAL ROIs IN fMRI CLASSIFICATION

Introduction

To make an imaging diagnosis in clinical practice we cannot observe and analyze the whole
brain but rather we should focus this observation on several relevant brain regions because with
such an approach the observed results are easier to identify and interpret. However, whether or
not and how the approach is feasible for fMRI classification in alcohol dependence remains the
question that we would like to clear up in the first study. Specifically, this study was to look for
the clues with which we could identify the appropriate way of feature selection for each brain
region of interest that can yield a high performance of classification in alcohol dependence.

Materials and Methods

Materials
Participants

Fifty alcohol dependent patients diagnosed according to ICD-10 and DSM-IV criteria and 57
healthy subjects were recruited for the study. All participants were right-handed volunteers who
accepted participation after the research procedures had been fully explained to them. The study
was approved by the Ethics Committee of Charité Universitatsmedizin Berlin, Campus Mitte in
Berlin in Germany. All the participants were over 18 years of age, ranging from 22 to 69 years
(mean = 41.8; standard deviation = 12.1; 81 males and 26 females). In addition, the subjects had
no other psychiatric axis | disorders, no past history of dependency or current abuse of other
drugs, which was verified by random urine drug testing and interviews. Before the fMRI
experiment, the patients had to be abstinent from alcohol for at least 7 days in an inpatient

detoxification treatment program.
Data acquisition

The data were acquired with a 3 Tesla scanner (Siemens, Erlangen, Germany). The imaging

sequence was an ascending T2*-weighted echo planar sequence with 42 axial slices (repetition
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time (TR) = 2.41 s, echo time (TE) = 25 ms, flip angle = 80°, field of view (FOV) = 192 x 192
mm?, slice thickness = 2 mm, gap between slices = 3 mm, acquisition matrix = 64 x 64 and voxel
size = 3 x 3 x 3 mm°). In each run, 305 functional volumes were acquired. For anatomical
reference in each subject, a 192-slice T1-weighted 3D Magnetization Prepared Rapid Gradient
Echo (MPRAGE) structural image was acquired in the same orientation as the Echo Planar
Imaging (EPI) sequence (TR = 2.3 s, TE = 3.03 ms, flip angle = 9°, FOV = 256 x 256 mm?, slice

thickness = 1 mm, acquisition matrix = 256 x 256, voxel size =1 x 1 x 1 mm?).

Stimuli and tasks

How would you rate your craving
for alcohol at the moment?

+ 50 0 |5 + s |Thank you!
Nocraving Seire
atal CFVIRL
20s 1ls 10s 4s 1ls

Figure 2.1. Cue reactivity paradigm.

An established cue-reactivity paradigm (Vollstadt-Klein et al., 2010) was conducted. In the
block-designed fMRI task, 60 standardized alcohol-related pictures including 20 beer, 20
schnapps and 20 wine pictures, and 45 neutral pictures derived from the International Affective
Picture System (IAPS) (Lang et al., 1999) were presented in a total of 20 pseudo-randomized
blocks including 12 blocks displaying alcohol-associated stimuli and 08 blocks presenting
neutral stimuli. Each block consisted of 5 randomized pictures which were displayed for 4
seconds each, resulting in a total duration of 20 seconds for a block. After every block,
participants were asked to rate their desire to drink, i.e. craving for alcohol, on a visual analogue
rating scale. Ratings ranged from 0 (“no craving at all”) to 100 (“severe craving”) and were
recorded by pressing a button within a maximal time frame of 10 seconds. Subsequently, a black
fixation cross and ‘Thank you!” (4+1 seconds) was shown before a new picture block was started
(Fig. 2.1). The total task duration was 12 minutes (refer to Nationales Genomforschungsnetz
(NGFN)-Plus project).
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Data pre-processing

The first 4 volumes of each run were discarded to remove the initial T1 magnetic transients in

the data. After that, the remaining data were pre-processed using SPM8 (Wellcome Department

of Imaging Neuroscience, London, United Kingdom: http://www.fil.ion.ucl.ac.uk/spm). First, all
remaining scans were corrected for the timing differences between each slice and realigned to
remove residual motion effects. The anatomical scan was co-registered to a mean re-sliced image
obtained from the realign analysis. Next, the images were spatially normalized to the same
standard space (MNI space) with voxel size 3 x 3 x 3 mm?®. Finally, the data were smoothed in
space using a 6-mm full-width-at-half-maximum Gaussian filter (FWHM) to optimize the signal-
to-noise ratio in small subcortical structures of interest as well as to reduce differences between

activation images of subjects (Etzel et al., 2009).
Methods

In this study, each brain region was considered individually. The investigation for each region
was conducted in the following two steps: (1) Constructing and collecting response patterns of
the region from fMRI data recorded for the subjects (feature construction); (2) Classifying these

patterns.
Step 1: Feature construction
1.1 Constructing and collecting response patterns for individual ROIs

Since our target was to find a feasible approach to the application of diagnostic functional
imaging in clinical practice, the classification of a disorder or condition of the disorder for a
subject (subject classification) was only the final consequence of the imaging inference process.
Therefore, the response patterns of the brain whenever cues are exposed are our main object of
interest. In the study, each block (B;) was viewed as an independent observation of the brain
response to the given stimulus. The response feature of the brain for each block (B;) was
expressed through its representative vector (volume) created by averaging over all scans
measured within it (Fig. 2.2). As a result, for 12 blocks with alcohol-associated cues, each
subject comprised 12 feature vectors, also considered as the response patterns of the brain to
alcohol cues. Then, the response feature of a ROI k to alcohol cue for the block (B;) was
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Figure 2.2. Feature construction and collection of the response patterns for a ROI k.

manifested by a feature vector (py;) extracted from the feature vector of the brain for that block
using the mask of that ROI (Fig. 2.2). Similarly, from each subject for each ROl we collected 12
feature vectors, also considered as the response patterns of that ROI to alcohol cues. The feature
vectors of the ROIs or the brain were interpreted as independent observations of the response
patterns (also termed activation patterns) of the ROIs or the brain to alcohol cues and were used

as input data for classifiers.
1.2 Normalizing the feature attributes of the response patterns

In the pre-processing step described earlier, all fMRI images measured for all the subjects were
normalized spatially to the same standard space in order to minimize morphological variability
between different subjects (normalization of voxel coordinate). In this step, before providing for
classifiers as input, the data were normalized in the aspect of feature attribute (BOLD signal) to
reduce the effect of large signal changes dominating those of smaller signal amplitude
(normalization of voxel attribute) (Pereira et al., 2009). In this study, the method of scaling
normalization was applied. For this, all input feature vectors ({p,;}) of the training set for each
classifier (f;) of each ROI k were arranged in rows and columns (Fig. 2.2) in which each
column was an input vector (each pattern) (py; = {aj;}; t = 1, ..., v; v: size of the ROI k; i: the
block where the pattern p,; was measured; Fig. 4.3), and each row was an attribute of the vector

({at}; i =1, wor Itrainings Itraining: NUMber of blocks (corresponding to the number of patterns)

reserved for the training). The parameters of min and max value of each attribute (af;) were

calculated only on the training set. Then, these parameters were used to scale all the attributes of
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the vectors (py;) in both the training set and the testing set to the range [-1 +1] ((scaled_a,ij =

(akj—min({aj:})
(max({af})-min({ai; )

J = 1, ..., Itraining+testing: ltraining+testing: the number of the patterns for both training and

2%

1—=1); ;= {a,tc]-} — scaled_py; = {scaled_a,’:{j}; i=1, ..., Lyaining:

testing). This scaling normalization was applied to normalize each attribute (row) (Fig. 2.2). In

the study, the blocks with neutral stimuli were not considered.
1.3 Creating the mask of individual ROI

A ROl in fMRI analysis can be defined in terms of structural or functional properties. Structural
ROls are defined on the basis of anatomical structures, i.e. gyri, sulci, while functional ROIs are
defined on the basis of data analysis obtained from experiments. Hence, for investigating brain
activation, functional ROIs are our main objects of interest to ensure that the ROl only contains

voxels that are truly activated under given stimulation (Etzel et al., 2009).

To focus observation on relevant brain regions with the aim that observation results are
interpretable in clinical practice, for each brain region, its functional ROIs in this study were
formed within its corresponding anatomical structures. The brain regions were chosen for the
investigation based on the neurocircuitry of addiction proposed by Koob and Volkow (2010)
including the VTA, VS, DS, thalamus, pallidum, amygdala, hippocampus, insula and PFC
including ACC, orbital frontal cortex (OFC) and medial prefrontal cortex (mPFC) (Fig. 1.3).

1.3.1 Masks of structural ROIs Table 2.1. Size of structural ROls
with voxel size 3 x 3 x 3 mm?
Structural ROIs were built with the Wake Forest el LU G el
VTA 44
University (WFU) PickAtlas toolbox version 2.4: VS-DS 176
http://fmri.wfubmc.edu/cms/software (Maldjian et Vs 88
: DS 88
al., 2003; Tzourio-Mazoyer et al., 2002) and then EaTT— G
normalized to a standard space as same as the Thalamus 570
standard space of the smoothed data to create their EEE 3918376
corresponding structural ROl masks. The masks mPFC 1499
for the ACC, pallidum, thalamus, amygdala, QIFG el
. . . ) Amygdala 132
hippocampus and insula were available in the Insula 1215
toolbox. The others were built as follows: The Hippocampus 563
Whole brain 60588
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PFC, OFC and mPFC were defined by Brodmann areas: PFC (8, 9, 10, 11, 44, 45, 46, 47); OFC
(10, 11, 47) and mPFC (9, 10) (David & Mark, 2009; Goldstein & Volkow, 2011; Lee et al.,
2006). The VS-DS, VS, DS and VTA were constructed based on small ROIs, each of which was
defined by a sphere with 6 mm radius centered on the following MNI coordinates: right VS, [12,
15, —6]; left VS, [-12, 15, —6]; right DS, [12, 15, 6]; left DS, [—12, 15, 6] (Schacht et al., 2011);
and VTA [0, -20, -12] (Eva et al., 2010) (Table 2.1).

1.3.2 Masks of functional ROIs formed within their corresponding structural ROIls

For each brain region, its functional ROIs were formed within its corresponding structural ROI
(Fig. 2.2). For this, the scoring/filtering method was applied. The voxels of the structural ROI
were ranked according to a given criterion (scoring), and then the top-ranked ones were chosen

to form its corresponding functional ROl mask (filtering).
a. Scoring with mass-univariate approach

For a preliminary study, a mass-univariate approach was selected to score each individual voxel
(a univariate test for a voxel). For this, a two-sided t-test analysis was conducted on a training
dataset to specify the statistically different activation level of each voxel between the two groups
of alcoholic patients and healthy controls characterized by a t-value. The underlying hypothesis
for the t-test analysis is that there may be a different response to alcohol-associated cues and
neutral cues in alcoholic patients whereas such a response may not occur in healthy subjects
(Braus et al., 2001; Wrase et al., 2007; Park et al., 2007; Beck et al., 2009; Heinz et al., 2009).
The analysis was done based on a general linear model which was implemented with SPM

software version 8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

First, a first-level analysis was performed within each subject (within-subject). In this study, the
beer, schnapps and wine pictures used in the experiment counted as alcohol-associated cues
indiscriminatingly. Each cue block was modelled as a boxcar function convolved with a
canonical hemodynamic response function that began at the onset of the first cue of the block
and ended at the end of the last cue. A high-pass filter (1/128 Hz) was applied to remove slow
signal drift. A contrast image measuring the response difference between alcohol-associated
stimuli and neutral stimuli was generated from the general linear model. Next, a two-sample t-

test at the second level between the two groups was conducted using random effect analysis
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(between-subject). Here, each contrast image of the first-level was considered as a representative
sample for its group. From this, an activation map (statistical map) for the whole brain was
created, which described the different activation level of voxels between the two groups through
a t-distribution; and an activation map for each structural ROl was also formed based on the

activation map for the whole brain using its structural ROl mask.
b. Filtering

After ranking, one might still have to decide on how many of the top-ranked voxels should be
chosen to form a functional ROI because the size of a functional ROI, i.e. the number of selected
voxels, can have an impact on the classification performance (O'Toole et al., 2007; Etzel et al.,
2009). One commonly used method is to threshold the statistical map and then to select the
surviving voxels on the threshold within the observed brain structure (structural ROI). For a
structure with size of D voxels, we observe simultaneously on D hypothesis testing results of the
statistical map (one for each voxel). It is thus necessary to correct the threshold for multiple
comparisons. For this, Bonferroni correction or false discovery rate control can be applied to
define the threshold in order to ensure that the functional ROI only contains the voxels with their
features deemed significant at a given level (Pereira et al., 2009). However, this approach can be
quite sensitive to the specific threshold (Etzel et al., 2009). Especially in small structural ROls,

the approach may be problematic if no or few voxels are surviving.

For this reason and owing to the size difference of the investigated structural ROIs, in this
preliminary study, we focused on a simple method in which the size of functional ROI was fixed
at three different levels: 200, 100 and 50 voxels. A functional ROl with a given size d was
defined as the d-voxels with the largest t-values identified within the corresponding structural
ROI (d <D) using its activation map after ranked. In case the selected size to form the functional
ROI was greater than the actual size of the corresponding structural ROI (d > D), the entire
structural ROI was included (d = D), as was for instance the case for the VTA, VS-DS, VS, DS,
amygdala and pallidum at a functional ROI size of 200 voxels (Table 2.1).

c. Sample for the t-test analysis

A classification task usually involves separating data into training and testing datasets (Figs. 2.5

& 2.6). Each pattern in the training set covers attributes of the pattern (py;) (i.e. voxel attributes)
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and a class label (yy;) assigned to it (py;, vr;)- Based on the training dataset, a given
classification algorithm yields a corresponding model (classifier) to predict the class labels for
the unlabeled patterns of the testing dataset only based on the attributes of the patterns (voxel
attributes). Hence, to avoid overestimates of classification performance derived from peeking
information of the testing data (Pereira et al., 2009), for each different loop of the training and
testing, a separate t-test analysis at the second-level was conducted only on its corresponding
training dataset of the loop. The creation of these loops will be presented in the next section of

the evaluation.
Step 2: Classifying the response patterns of individual ROI

For each ROI k a separate SVM classifier f;, was used as an instrument to classify its response
patterns (py;) into either class 1 (alcoholic class; yi; = fi (pxi) = +1) or class 2 (control class;
Vi = [k i) = —1) ki € {=1,+1}; pyi: the response pattern of the ROI k recorded for block

i). The training and testing for the SVM classifier was conducted as follow.
Training to obtain a model (SVM classifier) from labelled data

For a given labelled training dataset
‘*"‘—u Suppartvectors

(Pri»Yxi),» there may exist many

hyperplanes that separate the input vectors

of this dataset (py;) into the two classes

“-_Optimalhvperplane

(Fig. 2.3a). Among the hyperplanes, there {a) (b)

exists the optimal margin hyperplane with Figure 2.3. lllustration for SVM classification.

the largest margin of separation between  For linear SVM: fi () = sign(w”py; + b); For nonlinear SVM:
fi 1) = signwWT@(pyi) + b); fi(pyi): decision function; wT:

the two classes. The vectors closest to the  weight vector; @: function mapping py; into a higher dimensional space;

b: offset; py;: response pattern; crosses: the patterns of class 1; circles:

optimal margin hyperplane are called
P 9 yperp the patterns of class 2.

support vectors, and the distance between

Data are separab
+ P

Data are not inthis new space

them and the hyperplane is called the ﬁneurfrseTmbg Ce o st apace +
i . . + _— Class 1
margin of SVM classifier (Fig. 2.3b). In : e = 2=fr) o °
+

:IU.

the cases where the input vectors are not

linearly separable, they can be mapped
(a) (b)

into a (usually higher) dimensional feature Figure 2.4. lllustration for mapping data into a feature space.
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space (pr; — D(px;)) in order that they become linearly separable in the projected space (Fig.
2.4). However, computation in the feature space can be costly because it is very high
dimensional (typically infinite-dimensional). To solve this, the so-called kernel trick
(K (pri» Prj) = D(pri )"O(py;)) is applied to avoid carrying out the mapping explicitly.
Additionally, to improve to handle the data that are not fully linearly separable, one allows
“errors” (§;; &; = 0) in classification by relaxing slightly the constraints to identify the optimal
margin hyperplane i.e. y;(wT@(py;) +b) =1— & instead of y;(wT@(py;) +b) = 1. The
“errors” &; are known as “slack variables” in optimization and provide an upper bound on the
number of training errors. A SVM classifier using such a method is known as the “soft margin”
SVM classifier; and a classifier that would generalize well on unseen data is then found by

controlling both the classifier flexibility (Vapnik-Chervonenkis dimension via w) and the sum of
the slacks (Ziffi"""g & 5 Itraining: the number of patterns for training) with the target of
minimizing both of these two quantities. In the soft margin SVM, data points on the incorrect

side of the margin boundary have a penalty that increases with the distance from it. To

harmonize this issue, a regularization parameter (C) is used to control the trade-off between

margin maximization (maximize or minimize E”WHZ) and training error minimization

llwl|?

training

.1 ). Specifically, the SVMs require the solution for the following

I
(minimize Y

optimization problem (a):
I
inimize ~wl*+C )
mmv}}'rgl’éze > lIw ' 1§i
l:

subjectto  y;(wT@(py) +b) =1 —§;

V& =0;i=1> Iygining: the number of patterns for training

When designing a SVM classifier, the first task is to select kernel (K(pxi px;))and
regularization parameter (C), and for a given kernel, to set the parameters that the kernel function
may depend on e.g. width of a Gaussian kernel (corresponding to Radial Basis Function (RBF))
; K (pris pij) = eIl > 0) or degree of a polynomial kernel (d; K(pripij) =
(vpeiPk; + 1)%). These parameters are called hyper-parameters and have considerable effects on
the classifier flexibility and training error. Based on training dataset together with the defined
kernel/hyper-parameters, the values of parameters for specifying the optimal margin hyperplane
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i.e. b and w or «; (Lagrange multipliers for dual formulation (substituting dual optimization

training

problem for the objective problem (a)); w = Z:=1

yia;D(pri); a; > 0: points on the margin
(support vectors)) are estimated to produce a model for classification (SVM classifier). Since
different datasets can be compatible with different kernels (Hsu C-W, Chang C-C & Lin C-J,
2010), one might try all kinds of kernels/hyper-parameters, and choose the kernel with the best

performance. Nonetheless, this may cause overfitting (Ben-Hur & Weston, 2010).

In this study, 14 different brain structures (structural ROI; Table 2.1) with three different sizes of
the functional ROIs (200, 100 and 50 voxels) corresponding to each structure were observed.
Thus, significant differences among the datasets of the response patterns collected for the
observations are likely. This implies that for some observations the datasets are compatible with
a given kernel, however for the others, there may be no compatibility. In order to take advantage
of the compatibility of each kernel (e.g. either linear or nonlinear kernel) with different training
datasets, both of the linear and radial basis function kernel were applied interchangeably. The
selection of the kernel/hyper-parameters to form a particular classifier f, from a given training
set was done as follows. First, for each ROI k, the values of the hyper-parameters (C for the
linear kernel and C, y for the RBF kernel) for the classifier f;, were specified via grid search
using “grid.py” module with 5-fold cross-validation and the exponentially growing sequences of
grid parameters: C =27, 273, ..., 2% y =21 213 .. 23 (Hsu C-W, Chang C-C & Lin C-J, 2010).
After that, for each loop of training and testing (Lf), the classifiers with different pairs of the
specified kernels/hyper-parameters were trained and tested in turn on the 45 nested loops created

_L%;j=1 — 45; Fig. 2.5 & 2.6; see the next

within its corresponding training dataset (nested
section on creating examples). Based on the result of this testing, the classifier that has yielded
the highest average accuracy was selected for the loop (L!). The Matlab implementation of the
LibSVM version 3.1 (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used in this study. For a
more detailed description of the SVM formalism, refer to the machine learning literature (Boser

etal., 1992; Vapnik 1998; Scholkopf & Smola, 2000; Vapnik, 2000; Wang, 2005).
Testing a SVM classifier (model) on unseen data

For testing on an unlabeled pattern (py;) of testing dataset, the distance of the pattern (py;) from

the hyperplane was calculated using the classifier f; which has been specified from the training.
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The decision to classify the pattern (py;) into either class 1 or class 2 was determined by its sign

Vki =
ki =

Evaluation

Creating examples

+1), and conversely, if fi (Pr;) < 0, it is classified into class 2 (y,; = —1).

sign(w! @(Py;) + b)). This means that if f; (px;) > 0, the pattern is classified into class 1

Cross-validation (CV) is a statistical method used to evaluate or compare learning algorithms by

repeatedly dividing data into two different datasets: one used to train a model and the other to

measure its classification performance (Payam et al., 2009). Here, the 107 subjects who were

included in the study were randomly divided into an 80-subject cross-validation (CV) sample

107 subjects

50 alcoholics and 57 healthy controls

80-subject sample for cross validation (CWV)

40 alcoholics

40 controls

External 27-subject sample

10alcoholics & 17 controls

1 foop of trainin

and testing (LY)

5 folds for training |

B

1 nested loop

2 folds for training

(nested Lt}

1 foid out for testing

1 fold out for testing

AT

]

1 fold
{4 alcohalics and4 cantrals)

. [ i}
i _:l -:l =1 a5 10 times repeated
P = 10 fold-CV
_ Nestedcross-validation (S times repeated 9 fold-cv) | £=t, .. 700
Figure 2.5. Creating examples for the evaluation l
32 Alcoholics 32 Controls
(including 40 alcoholics and 40 et |
training b
controls) and a 27-subject sample (10 SN cassfiers
Trar'nfng with different kernels/hyperparameters
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nested loops
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external validation. S
W
Selecting kernel/hyper-parameters
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. . SVMcIassiﬂerf
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- - T i h col ﬂ\ti‘ ontrols
repeated 10 times was applied to """ e 1:
. 1001 L
create 10 rounds for the evaluation. oops (L)

Firstly, the 80-subject sample was

10 repeated 10-fold CV

Loops of training and testing for the evaluation
on the 80-subject sample

Analyzing results
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~ Sensitivity

~ Specificity
(p-volue}
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partitioned randomly into 10 equal folds, each of which included 8 subjects (4 alcoholics and 4
controls, corresponding to 96 response patterns of the brain or ROI collected from them). Based
on the 10 folds, each round created 10 loops of training and testing such that within each loop
(Lt; t =1—-10) a different fold of the data containing 8 subjects (A%) was held-out for testing
while the remaining 9 folds including the 72 other subjects (B*) were used for training. To
eliminate sampling bias, this procedure was repeated 10 times on random cross-validation splits
of the 80-subject sample (Lf; t = 1 — 10 x 10). Moreover, within the training segment (B*) of
each loop (Lf), a 9-fold cross-validation procedure repeated 5 times to create 45 nested loops of
training and testing (nested_LS—; j =1— 5x9) was applied for adjusting the kernels/hyper-

parameters of the SVM classifiers described in the previous section (Fig. 2.5).
Evaluating classifiers

As mentioned earlier, for each brain region with a defined size of functional ROI, a
corresponding classifier would be formed. We used the 80-subject sample with the cross-
validation procedure to evaluate their classification performance in terms of accuracy, sensitivity
and specificity. Accuracy, sensitivity and specificity were averaged over the testing results of the
100 test datasets created from the 10-fold cross-validation repeated 10 times. Each test
comprised the 96 patterns collected from the 8 subjects of the corresponding testing dataset.
Accuracy was defined as the relative number of total samples (or patterns) classified correctly.
Sensitivity was defined as the percentage of correctly classified patterns into alcoholic class.

Specificity was defined as the percentage of correctly classified patterns into control class.
Result significance for a classifier

The statistical significance of the classification result for a classifier was analyzed based on
rejecting the null hypothesis. The null hypothesis assumes that there is no difference between the
samples of the two classes. The p-value to reject this hypothesis was estimated by cumulative
probability function (p-value = P(X > k)) where X is a random variable with a binomial
distribution with N trials corresponding to the number of classified samples, k successful trials
and the probability of a successful trial p = 0.5 for the two classes. Each test sample (each
pattern) was regarded as an independent Bernoulli trial (Pereira et al., 2008). To avoid the

optimistic evaluation in multiple testing, the p-value was adjusted using the Bonferroni
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correction with 1% significant level (Bland & Altman, 1995; Pereira et al., 2008). Under the
Bonferroni correction, the accuracies of classifiers were said to be significant with 1% level
(Pcorr<0.01) if their uncorrected p-values were smaller than the corrected alpha (a=0.01/(Nxm);

N: number of trials (samples or classified patterns); m: number of observations).
Comparison of two different classifiers

The comparison of two different classifiers on the same dataset e.g. f; and f; in terms of
statistical significance was carried out using McNemar’s test (Dietterich, 1998; Roggo et al.,

2003; Jaber et al., 2010). This test was based on the chi-square distribution (#?) with one degree
of freedom. Accordingly, the critical value with 5 % significance level is 3.8415 (;(?1'0_95)). The
null hypothesis assumes that the two classifiers f;, and f; would have no difference of error rate.
Then the null hypothesis is rejected if McNemar's value (;(IZW) is greater than 3.8415, and these

two classifiers are said to be significantly different (p<0.05). In this study, McNemar’s value was

calculated using the following formula:

(Ings — nqq |—1)2

Ngq; + Nqg

McNemar’s value =

Where n,, was the number of samples incorrectly classified by f; but correctly classified by f;,

and n;, was the number of samples correctly classified by f;, but incorrectly classified by f;.

To get a more robust analysis, the prediction models (or classifiers) which have been tested on
the 80-subject sample were again evaluated on the external dataset including the 27 subjects.
Since this dataset was up to then never used in the previous design process, the results on this

dataset were not subject to any model selection bias.
Evaluating correlation between the t-value and performance of classifier

In order to assess validity of using the t-values at the second-level statistical analysis for the
formation of functional ROIs within their corresponding structural ROIs, we investigated effects
of the t-values on the classification performance of classifiers or in other words, whether the
performance of classifiers for the functional ROIs with the high t-values is better than those with
the lower t-values. For this, a second level t-test analysis that shows difference of activation

between alcoholics and controls on the 80-subject sample was conducted to create a map of the t-
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value distribution for the whole brain and correspondingly, a map of the second-level t-value
distribution for each structural ROl using its structural mask. As described earlier, a map of the t-
value distribution for each functional ROI was specified based on a ranked map of the t-value
distribution of the corresponding structural ROl and given size d. Then, the comparison of t-
value distribution between the two different functional ROIs was analyzed using a t-test analysis
for difference between two means of these two functional ROIs in the case of independent
samples (Zikmund et al., 2013). In combination with this comparison, the comparison of
classification performance between their two corresponding classifiers was also analyzed to

provide answers for the assessment.

Results

1. Performance on the 80-subject cross-validation sample

The results were summarized from testing on 100 sample sets that were created from 10 repeated
10-fold cross-validations (8 subjects for each test; 12 response patterns of the brain or ROIls
collected from 12 cue blocks for each subject). As a result, the total of the classified patterns for
each observation on each functional ROl was 9600 (N = 8 x 12 x 100). For evaluation of the
significance of classifiers in the observations, their accuracies were said to be significance with
1% level under the Bonferroni correction (p.,,~-<0.01) if their uncorrected p-values were smaller
than 0.248 x 10”7 (0.01/(Nxm); N: number of trials (classified patterns); N = 9600; m: number of
observed classifiers in the same context; m = 42; Tables 2.2, 2.3 and 2.4). According to the
cumulative probability function on a binomial distribution, this also means that the accuracy of a
classifier is significant with p.,,-<0.01 if it is greater than 52.8% (uncorrected p-value =
0.248x10"; N = 9600; p = 0.5; p: probability of success in one trial).

a. Functional ROI with the size of 200 voxels

In the second-level analysis, the functional ROIs such as the PFC were formed by the voxels
with more significantly different activation (t-value = 1.79 £ 0.35) than those of ACC (t-value =
1.45 + 0.4) and VS (t-value = 0.3 + 0.54) (z = 5.55 and 22.34; p<0.01). In contrast to this, the
ACC and VS vyielded the classification outperformance (62.8% and 60.3% vs. 51.8% accuracy
respectively; y2, = 23.61 and 9.37; p<0.01; Table 2.2).
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Table 2.2 The performance of pattern classification for functional ROIs with the size of 200 voxels

ROI t-value distribution at the 2™ level analysis Classification performance (%)
N=9600 max min mean sd Accuracy Sensitivity Specificity

VTA 1.69 0 0.45 0.5 55.7 57.9 53.6
VS-DS 2.39 0 0.51 0.58 58.8 61.1 56.4
VS 1.77 0 0.3 0.54 60.3 61.4 59.2
DS 2.39 0 0.73 0.53 50.7 46.9 54.6
Pallidum 2.37 0 0.35 0.6 59.8 61.9 57.7
Thalamus 2.58 0.74 1.11 0.31 56.7 55.2 58.2
PFC 3.12 14 1.79 0.35 51.8 54.3 49.3
ACC 2.45 0.87 1.45 0.4 62.8 64.9 60.7
mPFC 3.01 1.08 1.54 0.36 45.9 43.3 48.5
OFC 3.12 0.37 1.01 0.55 45.0 45.5 44.6
Amygdala 0.21 0 0.05 0.04 53.7 58.0 49.4
Insula 2.98 1.19 1.66 0.39 48.2 50.8 45.5
Hippocampus 23 0.27 0.98 0.5 51.9 54.7 49.1
Whole brain 4.21 2.56 2.83 0.26 61.8 66.3 57.3

b. Functional ROI with the size of 100 and 50 voxels

The reduction of defined size for the functional ROIs from 200 voxels to 100 and 50 voxels
increased the distribution of the higher t-values correspondingly e.g. for the ACC with the size of
200, 100 and 50: t-value = 1.45 + 0.4, 1.76 + 0.3 and 2.02 + 0.19 respectively; z = 4.18 and 6.02;
p<0.01. However, the increases did not yield a correspondingly better performance (62.8%,
60.6% and 59.5% accuracy respectively; Tables 2.2 & 2.3).

Table 2.3 The performance of pattern classification for functional ROIs with the size of 100 and 50 voxels

Functional ROI size of 100 voxels Functional ROI size of 50 voxels
ROI t-value Classification performance t-value Classification performance
N=9600 distribution (%) distribution (%)
mean sd Accuracy | Sensitivity | Specificity mean sd Accuracy | Sensitivity Specificity

VTA 0.45 0.5 55.7 57.9 53.6 0.45 0.5 55.7 57.9 53.6
VS-DS 0.9 0.5 57.0 55.7 58.4 1.3 0.33 59.2 56.6 61.8
VS 0.3 0.54 60.3 61.4 59.2 0.53 0.64 63.9 65.0 62.9
DS 0.73 0.53 50.7 46.9 54.6 1.1 0.39 54.9 48.9 60.9
Pallidum 0.56 0.67 63.7 65.3 62.1 1.11 0.55 60.8 63.4 58.1
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Thalamus
PFC
ACC
mPFC
OFC
Amygdala
Insula
Hippocampus

Whole brain

1.35
2.05
1.76
1.81
141
0.06
1.96
1.4
3.17

0.27
0.32
0.3
0.32
0.5
0.03
0.32
0.36
0.28

52.6
47.8
60.6
47.9
47.0
58.0
49.5
45.8
58.6

53.8
50.6
61.3
47.7
49.8
61.7
52.5
48.2
61.2

514
45.1
60.0
48.1
441
54.4
46.6
43.5
56.0

1.55
2.28
2.02
2.05
1.78
0.08
2.2
1.7
3.17

0.25
0.29
0.19
0.29
0.47
0.03
0.29
0.24
0.28

50.4
50.5
59.5
49.5
48.2
56.7
53.6
44.2
55.2

52.2
50.4
58.9
48.4
46.9
61.5
56.9
45.6
57.5

48.6
50.6
60.1
50.7
49.4
51.9
50.2
42.8
52.9

2. Performance on the external 27-subject sample

For testing the classifiers for the ROIs on the external 27-subject sample, we trained the

classifiers on the 80-subject cross-validation sample and then tested them on the external sample,

and only focused on the functional ROI size of 200 voxels. The results showed that the VS, ACC

still kept the significantly high performance on the external 27-subject sample (62.3% and 67.6%

accuracy respectively; p.,<0.0001; N =27 x 12; m = 14).

Table 2.4 The performance of pattern classification on the external 27-subject sample

N =324

VTA

VS-DS

Pallidum

Thalamus

ACC

mPFC

OFC

Amygdala

Insula

Hippocampus

Whole brain

Classification performance (%)

For functional ROI size of 200 voxels

Accuracy
52.5
58.3
62.3
72.8
54.9
60.5
57.4
67.6
71.6
67.6
34.9
65.7
29.6
58.6

Sensitivity

48.3
68.3
59.2
63.3
49.2
24.2
65.8
51.7
80.0
71.7
20.8
52.5
333
443

Specificity

54.9
52.5
64.2
78.4
58.3
81.9
52.5
77.0
66.7
65.2
43.1
73.5
27.5
67
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Discussion

Mass-univariate approach for the formation of a functional ROI from its structural ROI

The investigation on individual ROIs indicated that the brain regions of ACC and VS play a
prominent role in the diagnostic classification of alcohol dependence using fMRI, which can be
seen by the good classification performance achieved on the regions (ACC, 62.8% accuracy
(Table 2.2); VS, 63.9% accuracy (Table 2.3); p.or»<0.0001). This result is compatible with
previous studies on cue reactivity in alcohol dependence, in which the VS and ACC has exposed
significant activation under impact of alcohol-associated stimuli in alcoholic patients compared
to those of controls (Braus et al., 2001; Heinz et al., 2004, 2009; Wrase et al., 2007; Park et al.,
2007; Beck et al. 2009; Schacht et al., 2011). However, the investigation on the second-level t-
value distribution of these regions with the functional ROI size of 200 voxels (ACC, t-value =
1.45 = 0.4 and VS, t-value = 0.3 £ 0.54) showed no corresponding prominence compared to
those with the significantly lower performance of classification such as the PFC (t-value = 1.79 +
0.35) (62.8% and 60.3% vs. 51.8% accuracy respectively; Zzzw = 281.42, 154.37; p<0.0001). The

differences of t-value distribution between the functional ROIs e.g. between the VS and PFC (z =
22.34; p<0.00001) can be derived from the significant differences of analyzed structural ROI
size e.g. the VS, 88 voxels and the PFC, 3136 voxels (Table 2.1). Nonetheless, the evidence
indicates that the functional ROIs formed from a set of voxels with the better t-values may not
yield a correspondingly better classification performance using SVM classifier. The inference is
in line with the previous results of fMRI classification showing that the classification
performance with feature selection using the univariate approach was lower than that using a
multivariate approach such as SVM, Gaussian Naive Bayes or Linear Discriminant Analysis
(Pereira et al., 2009). These results therefore appear to confirm that using the t-value as an
indicator to rank voxels for the formation of functional ROIs within their corresponding
structural ROIs is not an optimal method of feature selection for the classification using

multivariate methods such as SVM.
How to form a functional ROI from its corresponding structural ROl appropriately?

To find clues in answer to this question, let’s reconsider the way that a SVM classifier makes a

decision and the nature of classified data.
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Decision-making of a SVM classifier

With a multivariate approach, the decision-making of a SVM classifier for a classified pattern is
influenced by individual variables (e.g. voxel attributes of the pattern (py;) and their
corresponding weights (w)) and correlation between them characterized by a mathematical
formula connecting the variables together (e.g. f(py;) = sign(w'py; + b); Fig. 2.3). This
means that the SVM classifier is appropriate for recognizing informative patterns rather than
contrast differences in individual voxels (Norman et al., 2006; Pereira & Botvinick, 2011). Apart
from the evidence of loose correlation between the performance and t-value for the investigated
ROIs discussed above, the argument is supported by the result of a study by Mourdo-Miranda et
al. (2005) indicating that there was a difference in the selected voxel set over a defined threshold
between a univariate and a multivariate approach when analyzing difference of activation
between tasks. This suggests that the formation of a functional ROI to gain a high classification
performance using a SVM classifier should be based not only on the characteristics of each
individual voxel (voxel attribute) but also on those of correlation between the voxels within the

observed structure.
Nature of classified data

For this reason, in order to answer the question above, let’s try to reconsider the nature of the
information that we are working on. As mentioned in the literature review, the nature of our
classified data is vascular changes represented by BOLD signals and transformed into voxel
attributes (image resolution value; Fig. 1.6). The vascular changes indirectly reflect activity of
the brain under impact of given stimulation (Mathews, 2001; Logothetis et al., 2001; Logothetis
& Pfeuffer, 2004). The neurovascular coupling mechanisms are thought to relate to one or more
vasoactive mediators such as nitric oxide, adenosine and changes in K* or hydrogen ions (i.e.,
pH) which are released from active nerve fibers to mediate local metabolism and blood flow
(Yang et al., 2011). Furthermore, single neurons do not work independently but rather function
in large aggregates (Mathews, 2001). Consequently, the BOLD signals or the data on which we
are working appear to be operated by a mechanism involving the functional specialization of
each brain region according to which the greater the homogeneity of structure and function, the
stronger the correlation between the components within that region. This mechanism is
evidenced by the result of the study of brain complexity measurement that indicated stronger and
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more complex local connections between neurons of similar specificity forming neuronal groups
than those between neurons of the different functional groups (Tononi, 1994). Hence, the
correlation between voxels within an investigated brain region can be considered as degree of
effective connectivity between these voxels in response to given stimulation which complies
with this operating mechanism. The interpretation is supported by the classification results of
PFC and ACC. The anatomical structure of PFC is formed from the substructures including the
ACC, mPFC and OFC, so obviously for the same size of selected voxels, the functional ROIs of
PFC possesses the sets of voxels with the larger t-values than those for its substructures such as
the ACC (e.g. for the size of 200 voxels, the PFC, t-value = 1.79 £ 0.35 vs. the ACC, t-value =
1.45 £ 0.4; z = 5.55; p<0.0001; Table 2.3). Nevertheless, in contrast to this, the classification
performance on the functional ROI of PFC was significantly lower than those on the functional
ROI of ACC (51.8% vs. 62.8% accuracy respectively;;glzw = 23.61; p<0.0001; Table 2.2).

Similar evidence was also found on the structures of VS-DS and VS, where the VS-DS was
formed by combining the VS and DS. This combination did not yield a better classification

performance for the VS-DS than that for the VS (58.8% vs. 60.3% accuracy respectively; ;(IZW =
9.12; p=0.0025; Table 2.2).

Further evidence to support this argument can be observed in the analysis of correlation between
classification performance and ROI size. The results indicate that the reduction in size of
functional ROI to filter out more voxels with no different activation can yield better performance
for several brain regions e.g. the pallidum, 59.8% vs. 63.7% accuracy for the sizes of 200 and
100 voxels respectively. However, this was not recorded for the others e.g. the ACC, 62.8%,
60.6% and 59.5% accuracy for the sizes of 200, 100 and 50 voxels respectively (Tables 2.3 &
2.4). These results suggest that the size of a functional ROl may not be a critical factor
influencing its performance of classification but rather the performance may essentially depend
on its characteristics of structure and functional specialization as well as its role in the
investigated disorder. The inference is evidenced by the classification results of the brain regions
of interest in the case of analyzed functional ROI size with 200 voxels (Table 2.2) showing the
significantly higher performance of classification for the core brain regions in the
pathophysiologic mechanism of alcohol dependence e.g. the VS (88 voxels) than those for the
others e.g. the amygdala (132 voxels) (60.3% vs. 53.7%; ?554 = 94.74; p<0.0001; Table 2.2).
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The above interpretation is in accordance with the evidence showing the “searchlight” approach
which is operated on correlation between neighbor voxels proved more sensitive than the mass-
univariate approach in identifying brain regions containing category information between tasks
(Kriegeskorte et al., 2006). Further, the outperformance for the VS and ACC compared with that
for the VS-DS and PFC recorded on the external sample was consistent with that on the cross-
validation test (the VS, 62.3% vs. VS-DS, 58.3% accuracy; Zﬁ = 2.72; p=0.0992; and the ACC,

67.6% vs. PFC, 57.4% accuracy; ZIZW = 6.36; p=0.0117; Table 2.5). Since the external sample

had never been previously used in the process of model building, this shows that these findings

are not a result of model selection bias.
Observation on the whole brain

As just discussed, the formation of the PFC including the ACC, mPFC and OFC or the VS-DS
combining the VS and DS did not yield the functional ROIs with the better classification
performance than that of some of their corresponding substructures. Thus, for a broader
interpretation where the whole brain is considered as a single structure, it is reasonable that the
observation on the whole brain can be appropriately separated into multiple observations on
relevant brain regions to get better benefits of performance and interpretation of classification
result (e.g. the whole brain, 61.8% vs. the ACC, 62.8%; the VS, 63.9% accuracy; ;(IZW =2.39, 11;

p=0.1219, 0.0009 respectively; Tables 2.2 & 2.3). In other words, it assists the practicality of
deeper focus on the characteristics of structure and function of the investigated brain regions
using multivariate methods such as SVM on fMRI data. Further, in a context where the
combination of different brain structures into a single structure may not yield a better
performance than that of some of its individual substructures, the questions are raised whether
and how to combine multiple observation results on several relevant brain regions is valid for a

fMRI classification. These issues will be elucidated in the next chapter.
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CHAPTER 11l
fMRI CLASSIFICATION
BASED ON MULTIPLE LINES OF EVIDENCE

Introduction

The result of the first study indicates the inefficiency of using the t-value to form the functional
ROIs from their corresponding structural ROIs. Also, it suggests that the classification
performance for the ROIs may depend on their role in the pathophysiological mechanism of
investigated disorder much more than on the different activation level of individual voxels. From
this basis, the question arises that if a functional ROI is just its corresponding anatomical
structure, whether it can give an expected result. If this is validity, it can give a very important
advantage in looking for a way to apply diagnostic functional imaging in practice because the
voxel set of each functional ROI is then the same in all the tests and in all the subjects.

Additionally, for an imaging diagnosis in practice, a decision of image recognition is usually
more confident if it is based on a synthesis of multiple observation results on multiple brain
regions than if it is only focused on a single brain region. However, whether this approach is
feasible in relapse prediction in alcohol dependence using fMRI remains a question. The
clarification of the issues was the objective of our second study. Specifically, this study was to
determine the validity of deeper focus on the anatomical structures of brain regions of interest in
relapse prediction as well as the validity of prediction combining individual observation results

on relevant brain regions using fMRI.
Materials and methods

Materials

Participants

The study was conducted on 40 patients (including 20 relapsers and 20 abstainers) recruited
randomly from the 50 alcoholic patients who were included in the first study. Apart from those

described in the section on the materials in the first study, before fMRI experiment, all the
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patients were assessed with regard to the severity of their alcohol dependence using the Alcohol
Dependent Score (ADS) (Skinner & Horn, 1984). Severity of alcohol craving was measured with
the Alcohol Urge Questionnaire (AUQ) (Bohn et al., 1995) and the Obsessive Compulsive
Drinking Scale (OCDS) (Anton et al., 1995). After discharge, the patients were interviewed
about their alcohol consumption over a follow-up period of another six months, and were
classified as abstainers (no alcohol consumption; n = 20) and relapsers (any alcohol

consumption; n = 20).

Table 3.1. Clinical data of the two groups of relapsers and abstainers

Relapsers Abstainers
Characteristics n=20 n=20 p value
mean sd mean sd

Age (y) 44.1 11.9 44.4 10.9 0.76
Age at onset (y) 36.4 8.8 36.2 9.6 0.48
Sex (male : female) 14:6 15:5 0.49
ADS 154 6.7 16.1 6.8 0.53
0OCDS 16.5 5.6 15.2 5.7 0.87
AUQ score 21.5 7.8 26.9 22.8 0.09
Number of cigarettes per day 19 14.6 18.7 11.4 0.20
Number of abstinent days before fMRI 12.3 4.8 11.6 5.5 0.88
Number of abstinent days until relapse 61 47.0

Alcohol intake during follow-up period (g) 6494 8204

Data pre-processing
The pre-processing in the second study was similar to that in the first study.

Methods

The classification algorithm was designed in a way that emulated the way clinicians usually use
to diagnose imaging in practice. First, to classify a subject, they observe and recognize the
features of several individual brain regions of interest. Second, they infer the feature of the brain
from these observation results. Finally, based on such multiple observations they make a
diagnosis of disorder or condition of the disorder for the subject who has produced the images. In
the study, for the first step, the observation and recognition of the response patterns of individual
brain regions were done by SVM classifiers (step A 1 including A 1.1 and A 1.2; Fig. 3.1). For

the second step, the inference based on these observation results was done using Bayesian
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A Classification of pattern B. Classification of subject
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Figure 3.1. lllustration of general classification algorithm for a particular subject, (+1: relapse class; -1: abstainer class).
inference (step A 2). The prior experience for the inference was learned from the training set.
These two steps were seen as the step of pattern classification (step A). The final step, the step of
subject classification, was considered as the synthesis step of various observation results of the

response patterns of the brain whenever cues are exposed in order to make a prediction for the

subject who has produced these patterns (step B).
A. Classification of pattern

A 1: Observation on individual ROls

A 1.1: Feature construction [

- 1 alcohl;l block i i
The method of constructing the response s i
patterns of investigated brain regions was E
applied in a manner similar to that used in - - R
the first study. As a result, for a particular '.l.lhk"r T : HH H ,
ROI k, each subject provided 12 response e
patterns (py;); and for 20 relapsers and 20 f *

P——

abstainers, 480 response patterns were

Figure 3.2. Feature construction for a ROI k without the t-test
analysis at the second level between the two classes. A
observations of response images of the ROl functional ROI was its corresponding structural ROI.

collected and interpreted as 480 independent
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k to alcohol cues. They were used as input data of a classifier f,. However, in this study there

were the two following important differences compared to those in the first study.

(1). Formation of functional ROL: Table 3.2. Size of structural ROls
with voxel size 3 x 3 x 3 mm®
The investigation was focused more deeply on ROI Number of voxels
anatomical structures of the ROls. The anatomical G | e | B
. . . VTA 12 16 44
structures of each brain region in the left, right and both
S 44 44 88
hemispheres were investigated separately (Table 3.2). DS 44 44 88
While in the first study, functional ROIs were formed Pallidum 79 79 161
within  their own structural ROIs using the Thalamus | 282 288 570
P . ACC 498 489 987
scoring/filtering method based on the t-value obtained
mPFC 681 818 1499
from the statistical analysis at the second-level on the OFC 704 792 1496
training dataset, in this study the functional ROIs were Amygdala 63 69 132
just their corresponding structural ROIs (Fig. 3.2). Insula 612 603 1215
Hippocampus 281 282 563

(2). Normalization of the feature attributes of patterns:

Besides the scaling normalization for the response patterns mentioned in the section on feature
construction in the first study (method 1), we investigated the second method combining both of
the scaling normalization and z-score normalization (method 2) to reduce variability of the
patterns between blocks as well as subjects in situations where it cannot be done using the
scaling normalization alone. For this method, before applying the scaling normalization, each
input vector (py;) was additionally z-score normalized to have mean 0 and standard deviation 1.
For each vector (py;), the average of all the attributes of this vector was subtracted from each of
its attributes, and then the result of the subtraction was divided by the standard deviation of its

t
ap;—mean(py;) |

attributes  (zscored_al; = amn P = {at,} - zscored_py; = {zscored_al;}; t =
ki

1, ..., v; v: size of the ROI k; Fig. 4.3). This z-score normalization was applied to normalize each

individual pattern or each vector (column; Fig. 3.2).
A 1.2: Classifying the response patterns of individual ROI

A SVM classifier was used as an instrument to classify the response patterns of an individual

ROI in the same manner as those in the first study. Hence, for each ROI k, a separate SVM
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classifier f;, was used to classify its response patterns (p,) into either class 1 (relapser class;
fr(pr) = +1) or class 2 (abstainer class; fi (pr) = —1) (Fig. 3.1).

A 2: Combination of the observation results on multiple ROls

Step A 1 was seen as the step to observe and identify individually the response patterns of brain
regions of interest to the given stimulation recorded within blocks. With the design described in
the first study, for each block B; a response pattern of the whole brain corresponding to the
average volume over all the scans recorded for that block was constructed. From this pattern of
the brain, a pattern of each ROI for block B; was extracted using its ROl mask. Thus, the
response pattern of the brain for each block can be considered as an overall picture which is put
together by the pieces of the response patterns of brain regions extracted from it. The
combination of the observation results on these pieces can help us infer the response pattern of
the brain for that block (also termed ‘block classification’) (Fig. 3.1).

Instrument for the combination

Bayesian inference was used as an instrument for this combination. This inference derived from
Bayes’ rule has been applied to solve uncertainty. Bayes' rule shows the relation between two
conditional probabilities that can infer each other (Hall, 2012). Considering a hypothesis H, its
alternative hypothesis H, and the observation E, the posterior probability of a hypothesis H after
observing E is given by

P(E|H) - P(H)

P(HIE) = PE)

where P(H) is the prior probability of H before observing E, P(E|H) is the probability of a the
observation given that the hypothesis H is true, and P(E) = P(E|H) - P(H) + P(E|H) - P(H).

In this inference, Bayes’ rule is applied to update the probability estimate for a hypothesis after
evidence has been observed (Tipping, 2010). Specifically, in this study, the inference was
designed based on multiple observation results corresponding to the classification results on the
different brain regions using their corresponding SVM classifiers. The result of this inference
was to classify the response pattern of the brain into either class 1 (relapser class) or class 2

(abstainer class).
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For instance, we classify the response pattern of the brain for a particular unlabeled block i (B;)
of an unseen test subject after the response patterns of K different individual ROIs (py;; k =
1...K) extracted from the feature vector of the brain for the block i have been classified as
fiPri) = Yii; k =1..K; vy € {—1,+1 }using their corresponding SVM classifiers (Fig. 3.1

& 3.3). The inference process is conducted as follows.

Initially, when no observation has been provided, an initial classification probability of the
response pattern of the brain for block i (B;) issetto 0.5i.e. P(B; =+1) = P(B; =—1) = 0.5 (o

difference to classify the pattern into either class 1 or class 2).

After observation y,; from the first ROl (f; = y;;; k = 1) has been provided, Bayes’ rule was
applied to calculate the posterior probability that the pattern of the brain for block i (B;) was

classified into class 1 (relapser class):

P(fy = yy|B = +1) - P(B; = +1)
P(f1 = y11)

P(B; = +1|fi = yy) =

_ P(fi = yulB = +1) - P(B; = +1)
P(fy = y1|B = +1) - P(B; = +1) + P(fy = yy;|B = —1) - P(B; = 1)

priors learned on the training data.

Now, the classification probability of the response pattern of the brain for block i is updated and
used for the next inference: P(B; = +1) = P(B; = +1|yy;); P(B; = —1) =1 — P(B; = +1).

Then, when the observation y,; from the second ROl (f; = y,;; k = 2) has been provided as
evidence, the posterior probability of the response pattern of the brain for block i (B;) can be
calculated as

P(f, = y2i|B = +1) - P(B; = +1)
P(f, = y2ilB = +1) - P(B; = +1) + P(f; = y5:|B = —=1) - P(B; = 1)

P(B; = +1|f; = y2) =

As before, the classification probability of the response pattern of the brain for block i (B;) is

now updated: P(B; = +1) = P(B; = +1|yy); P(B; =—1) =1— P(B; = +1).
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The inference process continues until all relevant ROIs (1 ... K) have provided their observation
results (Fig. 3.3); and finally the response pattern of the brain for block i (B;) is classified into
either class 1 (relapse class; y; = +1) or class 2 (abstainer class; y; = —1; p;: classification

result of the response pattern of the brain for block i) according to the following decision rule:

5, = {+1 if P(B; = +1|{{¥ki}k=1.) = 0.5
© =1 if P(Bi = 1 kidk=rk) <05

(K: number of observed brain regions (ROI)

[ =1, ..., Itesting: Itesting: NUMber of the unlabeled patterns collected for the testing)

Observation

on RO, i SVM classifier Response Bayes' rule Biain Response(+1)
g of RO, 2 A
. ture construc . =0.5
Brain response to cue / Featu s I (+1) Po with p,
or RO,
recorded for a particular
block €
Observation "
{ v il SVM classifier Bayes’ rule
on ROI, LIk Response :
i g rainR nse (+
< ,13 : - of RO, Bra fespo se (+1)
Feature construction \ ,/ - (+1) Py with Pis2
forROI; —
Volume of an fMRI
[average vector over all
the scans measured H
within block 1} \ v
Observation ne
on ROI, A% ) SVM classifier Response Bayes’ rule BiSin Response (+1)

P
Feature construction
forROI,

of ROI,

fe 1)

Pi..sx.1 withpy, .«

Figure 3.3. lllustration for the inference to classify a response pattern of the brain recorded for a particular block i
(B;) combining multiple observation results on multiple ROIs (P: the probability to classify the pattern into class 1; and it
is updated after each observation result on the ROl k has been provided (Py4....x = P(Bl- = +1|{3’ki}k=1..1()i Vi
the observation result on the response pattern of ROl k recorded for block i).

This inference model was built on the basis of the model of independent relevant symptoms in
which a disorder only involves some relevant symptoms, and the symptoms or the response
features of ROIs are considered conditionally independent of each other. The priors used for the
inference for each ROl k were estimated on the training set using an inner cross-validation loop
(9-fold cross-validation procedure repeated five times) from the test results of the classification
of response patterns of the ROl k with its corresponding SVM classifier f; in step A 1.
Specifically, the priors P(fy=+1|B=+4+1)=1-P(f, =—-1|B=+1) =p,, and
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P(f, =—-1|B=-1)=1—-P(fy, = +1|B = —1) = p,_ were estimated for each ROl k. The
parameter p,, corresponds to the sensitivity of the classifier f, for the ROl k, while p;_
corresponds to the specificity of this classifier. Consequently, the priors can be considered as
previously learned experience of the role of the ROI k in fMRI classification in the investigated
disorder, and the inference based on such experiences and Bayes’ rule can be considered as a

way to emulate the way of decision-making in clinical practice (Kasper et. al., 2008).

Predictive inference of the response pattern of the brain

A predictive inference for a response pattern of the brain recorded for a block i can rely on either
a single observation result (single evidence; K = 1) or a synthesis from multiple observation
results on multiple ROIs (multiple evidences; K > 1). In order to evaluate the validity of the
inference based on multiple lines of evidence in fMRI classification, the classification result of
the response pattern of the brain based on a single observation on a single ROI were evaluated
and compared with those based on multiple ROIs. For this, we applied the methodology just
described. However, in this case, Bayesian inference for a response pattern of the brain for a
particular unlabeled block i (B;) was only based on a single observation corresponding to the
classification result of an SVM classifier (f,) for an observed particular ROl k. As a result, the
posteriors P(B; = +1) and P(B; = —1) used to infer block i (B;) after the observation result on

the ROI k has been provided were calculated as follows:

P(fx = yrilB = +1)
P(fx = YxilB = +1) + P(fx = yxilB = —1)

P(Bi=-1)= 1— P(B; = +1)
for k = 1,...,K; K: number of observed brain regions
B. Classification of subject

Although the response patterns of the brain or brain regions is the main object that we would like
to analyze in order to apply diagnostic imaging in practice, the final target is to predict disorder
or condition of the disorder which subjects suffer from. In our context, this target is to classify
subjects into given classes. For this, the classification of an unlabeled subject (S,) can rely on a

synthesis of multiple observations on the various response patterns of the brain measured in
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different blocks for the subject (S,). In the study, for each subject (S,), this synthesis was
represented by the ratio of the number of response patterns of the brain that were classified into
class 1 (relapser class) to the total number of the patterns measured for the subject (S,)

YL (Pi=+1)

—— ; Y9 (; = +1): the number of observations where the response pattern of
O observations

(Retass1 =
the brain for block B; was classified into class 1; O: the total number of observed patterns of the
brain (or number of observed blocks) for the subject S,). If this ratio was equal or greater than
0.5 (Raass 1 = 0.5), the subject (S,) was classified as a relapser, and by contrast, if the ratio was

smaller than 0.5 (R.4ss 1 < 0.5), the subject (S,) was classified as an abstainer.
Evaluation
Creating examples for evaluation and learning

The creation of examples for evaluating and learning the hyper-parameters for SVM classifiers
together with the priors for Bayesian inference in this study was done in a manner similar to that
applied in the first one. As a result, a stratified 10-fold cross-validation procedure repeated 10
times (10-repeated 10-fold cross-validation procedure) was applied to create 10 rounds for the
evaluation. In each round, the sample including 40 alcoholic patients in the study was
partitioned randomly into 10 equal folds, each of which includes 4 alcoholic patients (2 relapsers
and 2 abstainers, corresponding to 48 response patterns of the brain collected from them). Based
on the 10 folds, each round created 10 loops of training and testing (L¢; t=1-10) in such a way
that within each loop (L') a different fold of the data containing 4 patients (4%) was held-out for
testing while the remaining 9 folds, including the 36 other patients (B*), were used for training.
This procedure was repeated 10 times on random cross-validation splits of the 40-subject sample
(L%; t =1 — 10 x 10). Moreover, within the training dataset (B*) of each loop (L*), a 9-fold
cross-validation procedure repeated five times was applied to create 45 nested loops of training
and testing (nested_L%; j = 5 x 9) for adjusting the hyper-parameters of the SVM classifiers used

in step A 1.2 and for learning the priors for Bayesian inference used in step A 2 (Fig. 3.1).
Evaluation

The evaluation and comparison of classification performance for each individual classifier for

each ROI and between different classifiers were applied similarly to that used in the first study.
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Results

A. Classification performance of the pattern of the brain

The results were summarized from testing 100 sample sets that were created from 10 repeated
10-fold cross-validations. Each set included 4 subjects for testing. Each subject comprised 12
response patterns of the brain or ROIs collected from 12 cue blocks. As a result, the total of the
classified patterns for each observation on each ROI was 4800 (N =4 x 12 x 100; Tables 3.3, 3.4
and 3.5). The indices of performance were the average values over all the sets reported (in %).
Similarly, for evaluation of the significance of classifiers in the observations, their accuracies
were said to be significant with 1% level under the Bonferroni correction (p.,,+<0.01) if their
uncorrected p-values were smaller than 0.425 x 107 (0.01/(Nxm); N: number of trials (classified
patterns); N=4800; m: number of observed classifiers in the same context; m = 49; Tables 3.3,
3.4 and 3.5). According to the cumulative probability function on a binomial distribution, this
also means that the accuracy of a classifier is significant with p.,,,-<0.01 if it is greater than
53.9% (uncorrected p-value = 0.306 x 10”"; N = 4800; p = 0.5; p: probability of a success).

A.1 Classification performance based on a single evidence from an individual ROI
1.1.1 Bilateral ROIs*

The results obtained from the classification of the response patterns recorded on individual
bilateral ROIs are shown in Table 3.3 for the two different methods of normalizing features of
the patterns (voxel attribute) before the classification (scaling normalization vs. the combination
of z-score and scaling normalization). The classifiers on the VS and insula yielded the best
performance with accuracies of 63.7% and 71.5% respectively (p;,,-<0.0001). For several ROIs,
the performance combining the z-score and scaling normalization was poorer than using the
scaling normalization alone e.g. the VS, 52.7% vs. 63.7% accuracy respectively, ;(IZW = 146.78,
p<0.0001. In contrast, on the other ROIs, the combination of z-score and scaling normalization
outperformed the scaling normalization alone such as the insula, 71.5% vs. 61% accuracy, ;(12\4 =
260.47, p<0.0001; the thalamus, 59.7% vs. 54.8% accuracy respectively, ;(]ZV[ = 61.23, p<0.0001
(Table 3.3).
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Table 3.3. The performance of pattern classification (%) for bilateral ROIs

ROI

N = 4800

VTA
VS
DS
Pallidum
Thalamus
AcCC
mPFC
OFC
Amygdala

Insula

Hippocampus

Scaling normalization

Code Accuracy

[Eny

55
63.7
38.8
37.5
54.8
49.9
41.7
49.6

O 00 N OO U B~ W N

55.8

=
o

61

[y
[y

47.1

Sensitivity

52.1
68.6
44.4
335
55.3
46
44.9
47.9
57.7
60.4
47.5

Specificity

57.9
58.8
33.2
415
54.3
53.8
38.4
513
53.8
61.6
46.7

Code

12
13
14
15
16
17
18
19
20
21
22

Z-score and Scaling normalization

Accuracy Sensitivity
333 46.6
52.7 52.1
40.7 28.2
39.8 36.6
59.7 62.9
54.8 55.8
43.9 18.9
47.3 39.3
60.8 65.7
71.5 74.4
49.4 50.8

Specificity

20
53.3
53.2

43
56.4
53.8

69
55.3
55.8
68.6

48

*Note: bilateral ROl was abbreviated to name of the ROl e.g. bilateral insula was abbreviated to insula.

1.1.2 Separate ROIs for left and right hemisphere

In order to check for possible lateralization effects, we repeated the analysis conducted on the

bilateral ROIs in section 1.1.1 on separate ROIs of the left and right hemispheres. For

simplification, we applied the combination of z-score and scaling normalization in the feature
construction of all the ROIs, except the VTA and VS. The results are reported in Table 3.4. This

analysis showed that there existed an asymmetry in the classification performance on several

ROls. Especially, the performance on the right structure of VS and ACC was significantly higher
than the performance on the left of VS and ACC: VS (75.9% vs. 53.1% accuracy; ;(IZW = 603.09)

and ACC (68.2% vs. 58.9%); ;512\/1 = 145.94); p<0.0001; Table 3.4).

Table 3.4. The performance of pattern classification (%) for the left and right ROls

ROI
N = 4800

VTA
VS
DS

Pallidum

Left Hemisphere

Code Accuracy

23 54.4
24 53.1
25 51.8
26 44.6

Sensitivity

47
48.4
56
65.2

Specificity

61.7

57.8

47.5
24

Code

34
35
36
37

Accuracy Sensitivity
511 47.2
75.9 73
59.2 53.4
38.7 20

Right Hemisphere

Specificity
55
78.9
65
57.8
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Thalamus
ACC
mPFC
OFC
Amygdala
Insula

Hippocampus

27
28
29
30
31
32

52.7
58.9
52.2
45.5
52.5
50.8
56.6

56.3
59.6
51.8
34.4
48.5
48.8
48.2

49.2
58.2
52.6
56.5
56.5
52.8
65

38
39
40
41
42
43
44

54.5
68.2
42
57.5
53.3
44.1
34.5

59.3
67.9
49.9
58.8
34
39.7
46.5

49.7
68.5
34.1
56.1
72.5
48.5
22.6

A.2 Classification performance combining multiple observation results on multiple ROls

We used Bayesian inference to combine the predictions from the classifiers on individual ROIs.

We constructed a predictor that included the three best performing individual ROIls (right VS,

right ACC, and insula). Also, we investigated the inclusion of other well-performing regions

(right DS, right OFC, amygdala, thalamus). The results are shown in Table 3.5. The combination

of the right VS, right ACC and bilateral insula yielded a significantly higher accuracy than the
individual ROIs (76.9% vs. the VS, 75.9% accuracy (;512\4 = 3.94; p=0.0472); the ACC, 68.2%

(;@2141.91; p<0.0001) and the insula, 71.5% (;(fw = 69.91; p<0.0001) respectively). However,

the additional inclusion of another ROI, e.g. either the right DS or right OFC or amygdale, did
not further improve the performance (76.9% vs. 73.8%, 74.4%, 72.2% accuracy, ;(IZW = 96.57,

110.25, 211.46 respectively; p<0.0001).

Table 3.5. The performance of pattern classification by combining predictions on multiple ROls

ROI
N = 4800

right VS - right ACC - insula
right VS - right ACC - insula - right DS
right VS - right ACC —insula — right OFC

right VS - right ACC - insula - amygdala
right VS - right ACC - insula - thalamus

ROI code

35-39-21

35-39-21-36
35-39-21-41
35-39-21-20
35-39-21-17

Classification performance (%)

Accuracy

76.9
73.8
74.4
72.2
73.9

Sensitivity
76.3
74.3

74
72.5
73.6

Specificity

77.5
73.3
74.8
71.8
74.2

B. Classification of subject

As mentioned in the section on methodology, the classification of a subject as either a relapser or

an abstainer was designed to rely on the synthesis of observation results on the response patterns
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of the brain measured in various blocks for that subject, and the classification results can be
obtained from the synthesis of various observations either on a single ROI or on multiple ROls.
The results of the two methods are shown in Table 3.6. The accuracies of subject classification
that were said to be significant with 1% level under the Bonferroni correction were the ones
whose p-values were smaller than 0.208 x 10 (0.01/(Nxm); N: number of trials (classified
subjects); N = 400; m: number of observed classifiers in the same context; m = 12; Table 3.6).
This also means that the accuracy of a classifier is significant with p.,,,~-<0.01 if it is greater than
61.4% (uncorrected p-value = 0.15 x 10™; N = 400; p = 0.5; p: probability of success in one
trial).

The results showed that there was no significant difference between the classification of the
response pattern of the brain (‘block classification”) and the classification of subject (p>0.05).
The classification performance of a combination of the right VS, right ACC and insula was better
than that of the respective individual ROIs (77% vs. the right VS, 76.5% accuracy (;(12\4 =0.02;
p=0.8852); the right ACC, 68% (y3, = 12.01; p=0.00053); the insula, 71.3% (x> = 5.69;
p=0.017). In the other combinations of the right VS, right ACC, insula and either the right DS or
right OFC or amygdala, the overall performance was not better than the performance of a
combination of the right VS, right ACC and insula (73.8%, 74.5%, 72% vs. 77% accuracy; 7(12\4 =
7.58, 8.1, 18.05; p=0.0059, 0.0044, 0.00002 respectively; Table 3.6).

Table 3.6. The performance of subject classification

ROI Classification performance (%)
N =400 ROl code Accuracy Sensitivity Specificity
right VS 35 76.5 73 80
right DS 36 57.5 54 61
right ACC 39 68 68 68
right OFC 41 57.8 59.5 56
Insula 21 71.3 73.5 69
Thalamus 17 60.5 64.5 56.5
Amygdala 20 61 68 54
right VS - right ACC - insula 35-39-21 77 76 78
right VS - right ACC - insula - right DS 35-39-21-36 73.8 74.5 73
right VS - right ACC - insula - right OFC 35-39-21-41 74.5 73.5 75.5
right VS - right ACC - insula - amygdala 35-39-21-20 72 72.5 71.5
right VS - right ACC - insula - thalamus 35-39-21-17 74 73.5 74.5
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C. Classification of the response pattern of the brain in the cases where the patterns of

combined ROIs have been classified into the same class (either class 1 or class 2)

As mentioned above, the classification of a response pattern of the brain was designed to be
based on the combination of observation results on the response patterns of several relevant ROIs
extracted from its feature vector (Fig. 3.1). As a result, there may be a number of samples
(response patterns of the brain) (column N; of Table 3.7) in which the classification results of the
response patterns of combined ROIs were in the same class e.g. fi;(x1;) = fii(xri) =
friCxg) = +1or f1;(x1) = friCxri) = fri(xki) = —1;1...K: combined ROIs; i: the block
from which the feature vectors of ROIs 1...K were extracted. By contrast, there may be also
species of samples (response patterns of the brain) (column N, of Table 3.7) in which the
classification results of the response patterns of combined ROIls disagreed e.g.(f1i(xy;) =
+1) #(fri(xx;) = —1) (orright VS (f= +1) and right ACC (f =-1)).

The investigation on all the samples where the classification results of response patterns of
combined ROIs extracted from the same feature vector of the brain were in the same class
showed that if the response patterns of 2 ROIs (e.g. right VS-right ACC or right VS-insula or
right ACC-insula) were classified into the same class, the classification accuracy recorded on the
focused sample set was up to 86% (Table 3.7); and if the response patterns of these 3 ROIs were
classified into the same class, the classification accuracy was over 96% (Table 3.7). Especially,
once the investigation was focused on the samples where the response patterns of 4 ROIs of the
right VS, right ACC, insula and right DS were classified into the same class, the classification

accuracy achieved 98.9%.

Table 3.7. Classification performance of the response patterns of the brain in the cases where the response

patterns of combined ROIs have been classified into the same class (N: total number of samples or response patterns of
the brain created from 10 repeated 10-fold cross-validation procedure on 40 subjects (N = 4800); N+: number of samples (or the response
patterns of the brain) which have the agreement classification results of response patterns of combined ROls extracted from the same feature
vector of the whole brain; N2: number of samples (or the response patterns of the brain) which have the disagreement classification results of
response patterns of combined ROIs extracted from the same feature vector of the whole brain).

Classification performance on
N = 4800
N, (%)
ROI Percentage of Percentage of
excluded samples | analyzed samples Accuracy Sensitivity  Specificity
N2/N N1/N
right VS 0 ‘ 100 75.9 73 78.9
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right ACC 0 100 68.2 67.9 68.5
Insula 0 100 71.5 74.4 68.6
right VS - right ACC 36 64 86.7 84.4 88.8
right VS - insula 37.75 62.25 86 84.4 87.6
Insula - right ACC 43.25 56.75 86.8 89.1 84.6
right VS - right ACC - insula 58.65 41.35 96.2 97.9 94.6
right VS - right ACC - insula —right DS 76.56 23.44 98.9 97.6 99.8
right VS - right ACC —insula — right OFC 74.92 25.08 95.9 99.6 92.7
right VS - right ACC - insula — amygdala 78.56 21.44 98.7 98.8 98.6
right VS - right ACC - insula — thalamus 711 28.9 95.8 97.9 94.2
Discussion

The results in this study provide further evidence that fMRI can identify biomarkers to predict
relapse after detoxification in alcohol dependence (Heinz et al., 2009; Beck et al., 2012).
Besides, our approach where the activation of relevant brain regions is observed separately and
then the observation results are combined appropriately can have benefits in the investigation of
the role of the brain regions of interest as well as the method of predictive inference based on
multiple lines of evidence in the analyzed disorder. On the other hand, the results showed no
significant difference between the classification results of the response pattern of the brain and
the classification results of subject (p>0.05; Tables 3.3 & 3.6). The data can be taken as evidence
for the validity of predictive inference of a neuropsychiatric disorder or its condition using a
synthesis of multiple observations of activation feature of the brain measured by fMRI whenever
the brain is stimulated. Such an approach is compatible with diagnostic imaging and leaves open
the opportunity to analyze temporal characteristics of activation data in further studies.

Investigation on individual ROIs
Insula in relapse prediction

With a high accuracy of 71.5% (p.,~<0.0001; Table 3.3), the insula has demonstrated its
important role in the underlying mechanism mediating relapse. The result is consistent with
recent evidence indicating that the insula plays a crucial part in conscious urges to take drugs,
which can precipitate relapse (Craig, 2009; Naqgvi & Bechara, 2009; Vincent et al., 2012). The

insula has been known as a region that integrates interoceptive states into conscious feelings and
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into decision-making processes involving uncertain risk and reward (Naqvi & Bechara, 2009).
Research results on smokers who sustained damage in the insula showed that these patients quit
smoking and remained abstinent much more easily and immediately than smokers who sustained
damage in other brain areas (Naqvi et al., 2007). In addition, a number of functional imaging
studies have shown that the insular cortex is activated when drug abusers are exposed to drug
cues that trigger craving (Tapert et al., 2004; Filbey et al., 2009; Vincent et al., 2012). A study of
response to conditioned alcohol taste cues following experience with the drug in rats indicated
that ethanol intake and preference were formed during the chronic exposure phase, and
inactivation of the insula eliminated this preference (Castro, 2012). This evidence suggests that
the insula may play an important role in the mechanism leading to relapse and may be one of the

major targets for the treatment of drug addiction.
Lateralization

The investigation results of lateralization indicate that the structures of VS and ACC in the right
hemisphere contain much more relevant information distinguishing relapsers from abstainers
than those in the left one. In other words, a functional asymmetry appears to exist in response to
alcohol-associated cues between the two hemispheres in the striatum and ACC. This result is in
line with results of previous studies indicating that the right hemisphere is more vulnerable to the
effects of alcohol than the left (Oscar-Berman, 2003). The effects can be characterized by a
decreased volume of structures involving reward system, which occur in the right hemisphere
more pronouncedly than those in the left (Makris et al., 2008), and by the response feature to
alcohol-associated cues showing that activation is more stable in the right VS than the left
(Schacht et al., 2011). On the other hand, the observations of Makris et al. (2008) showed that
the volume of VS increased with length of abstinence in alcohol-dependent patients, confirming
that brain atrophy can be partly reversible, and the recovery of such damage may be a predictor
for abstinence (Bihler & Mann, 2011). Taken together, the results of the study provide evidence
for the existence of lateralization for relapse prediction in the brain regions of VS and ACC in
response to alcohol cues. However, the source for the asymmetry still needs further study
because there is a paucity of data on functional lateralization in relapse prediction. Recently, a
study of Beck et al. (2012) showed an increased brain response of abstainers to cues in both of

the left and right VS compared with the response of relapsers. The result supports for our result
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indicating that both of the left and right VS contain valuable information for the classification.
However, we here found that there was a lateralization for relapse prediction in this structure
where the response patterns of VS recorded in the right hemisphere were more predictive than
those in the left hemisphere (the left VS, 53.1% vs. the right VS, 75.9% accuracy; ;(12\4 =603.09;
p<00001). The method of analysis in the study of Beck et al. (2012) was to identify significant
activation voxels in the VS distinguishing relapsers from abstainers, obtained from a statistical
analysis using a univariate approach. This approach is different from our approach which is to
classify the individual activation patterns into the two groups using a multivariate method based
on all the voxels of the investigated structure. Moreover, previous studies of fMRI classification
show that there exists a difference in feature selection between the univariate and multivariate
approaches (Mourdo-Miranda et al., 2005), and the multivariate approach fared better than the
univariate approach in identifying category information in investigated structures (Kriegeskorte
et al., 2006; Normand et al., 2006; Pereira et al., 2009). In any case, the evidence indicates that
the response feature of the VS to alcohol-associated cues is an important indicator for

prognosticating relapse, which was confirmed in our study.
Validity of deeper focus on structural ROIs

The classification performance of bilateral insula with a size of 1215 voxels was significantly
higher than the performance of both the left insula with a size of 612 voxels and the right insula

with a size of 603 voxels (71.5% vs. 50.8% and 44.1% accuracy; ;gfw = 537.83 and 790.81
respectively; p<0.0001; Tables 3.3 & 3.4). In contrast, the performance of the right VS with a

size of 44 voxels and the right ACC with a size of 489 voxels were significantly higher than the
performance of the bilateral VS with a size of 88 voxels and the bilateral ACC with a size of 987
voxels (75.9% vs. 63.7% accuracy (r,, = 383.71) and 68.2% vs. 54.8% (y,, = 337.34)

respectively; p<0.0001; Tables 3.3 & 3.4). The results reinforce the assumption that the
performance of a ROI in relapse prediction may not depend on its size but on its specific
characteristics in response to given stimulation. On the other hand, as discussed in the first study,
since the nature of multivariate methods such as SVM is to exploit attributes of all input
variables (voxel attribute) to categorize (Wang, 2005; Vapnik, 2000), a classification decision for
a pattern of a ROI using this method relies not only on individual voxels but also on correlations
between the voxels within that ROI. The presence of too many voxels which are insignificant for

73



classification or do not correlate closely with the other significant voxels within the investigated
ROI can deflect the dominant classification direction of the significant voxels and cause
misclassification (Pereira et al., 2009). In such a situation, homogeneous attributes of anatomical
structure and function can bring advantages for multivariate analysis, since local connections
between neurons of similar specificity forming neuronal groups are stronger and more complex
than those between neurons of the various functional groups (Tononi, 1994) or in other words,
the features of individual voxels or input variables within the investigated structure are then
placed in close correlation. As a result, the low performance of the other structures e.g. the
bilateral OFC (49.6% accuracy) achieved in this study may originate from our method of feature
selection, which can be improved if their investigated region is localized more homogeneously
and exactly in terms of the structure and function (e.g. the bilateral OFC 49.6% vs. the right OFC
57.5% accuracy; ;gfw = 106.06; p<0.0001; Tables 3.3 & 3.4). On the other hand, due to difference

of location, structure and function that can impact on fMRI measurements (Mathews et al.,
2001), each ROI can require compatible methods of analysis such that it can expose its
distinguishable response features in the best possible way. This is evidenced by the significant
differences of classification performance on several ROIs between using the combination
method of z-score and scaling normalization and the single method of scaling normalization such
as the VS, 52.7% vs. 63.7% accuracy respectively, ;gf/l = 146.78, p<0.0001; the insula, 71.5% vs.

61% accuracy respectively, ;(IZW =260.47; p<0.0001 (Table 3.3).

Validity of combining multiple observation results on multiple ROIs

Given the situation that there is no ROI playing a decisive role in prediction as a “gold standard”,
the prediction can be based on an extensive observation on multiple relevant ROIs to obtain
higher accuracy compared with predictions only based on a single observation on a single ROI.
The assumption is supported by the better performance combining multiple observation results
on the VS, ACC and insula than those using a single observation result on an individual ROI
(76.9% vs. the right VS, 75.9%, the ACC, 68.2% and the insula, 71.5% accuracy respectively;
p<0.05; Tables 3.3 & 3.5). The result provides evidence that specific response features of the
brain to specific stimuli can spread across several relevant brain regions (Barry et al., 1999), and
that they can be identified and integrated into an overall picture used for predictive inference of

brain disorder. This also suggests that the response patterns of different brain regions with
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different structures and functions can be observed independently, and the more the brain regions
manifest the response features that are classified into the same class, the higher the classification
probability into that class (Table 3.7). Such an approach can enable us to prognosticate relapse
risk via functional imaging with an estimable confidence. Additionally, our study was conducted
on the sample with no significant difference in clinical data between the two groups of
subsequent relapsers and abstainers after detoxification (Table 3.1), and fMRI measurements
were carried out about 2 weeks after detoxification, before participants were identified as
relapsers or abstainers 6 months later (Table 3.1). These data provide evidence demonstrating

that fMRI can identify biomarkers for relapse prediction in alcohol dependence.

An addition of ROIs such as either the right DS with 59.2% accuracy or the right OFC with
57.5% accuracy (or the amygdala with 60.8% accuracy) to the combination of the right VS, right
ACC and insula did not yield better performance (73.8%, 74.4%, 72.2% vs. 76.9% accuracy
respectively; p<0.0001; Tables 3.3-3.5). However, if the observation was only focused on the
samples where the response patterns of all the combined ROIs extracted from the same feature
vector of the brain were classified into the same class, the classification accuracy on this sample
set increased linearly with the number of combined ROIs from appropriately 86% accuracy for
the combination of two of the three ROIs: right VS, right ACC and insula to 98.9% accuracy for
the combination of four ROIs: right VS-right ACC-insula-right DS (Table 3.7). Unfortunately,
unlike the accuracy increase, the number of agreement samples diminished correspondingly from
appropriately 60% to 23.44% (Table 3.7). This shows that there existed greater differences of
classification results of the response patterns of individual ROIs when the number of the
combined ROIs was increased, and misclassification of the added ROIs (e.g. right DS) can
deflect the correct inference direction of the other ROIs in some analyzed samples via Bayesian
inference (Stefan & Lionel, 2011) and lower the overall performance. Despite this, in a positive
aspect, the results reinforce the potential for increasing classification accuracy by methods of
controlling the combination of the evidence collected from the ROIs in the inference process.
One of the commonly used methods in clinical practice is to eliminate from the inference process
ambiguous signs or symptoms that in this context are the indistinguishable response patterns of
ROIs which can cause misclassification. How to identify the indistinguishable response patterns
reliably and whether it may be a feasible approach to diagnostic functional imaging in practice

are the issues which will be addressed in the next chapter.
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CHAPTER IV
IMAGING APPROACH IN fMRI CLASSIFICATION

Introduction

In the first and second studies, the classification of response patterns of the investigated ROIs
was implemented automatically by machine. In order to realize diagnostic functional imaging in
clinical practice, our third study was designed for the initial step of imaging approach based on
the indication of machine-based image recognition. Specifically, it offers a way to allow us to
have insights into individual response patterns accompanied with their corresponding
classification decisions obtained from machine, by which means we can gradually learn and find
out rules of the classification for the response patterns of the investigated brain regions. This
would open an important window into differences of individual functional images identified by
machine inference between the two investigated classes, which would allow moving beyond

group-based analysis and to the important clinical realm of diagnostic imaging.
Materials and Methods

Materials

This study was a continuation of the second study, which delves deeper into the investigation of
machine-based classification decisions and discernibility level of classified patterns between the
two classes, i.e. relapsers and abstainers. Thus, the materials and data pre-processing in this

study were those used in the second study.
Methods
Outline of the method

The response patterns of each brain region collected from relapsers and abstainers were
considered as experience of response imaging of that region to given stimulation for the two
classes. To learn the experience better, these patterns should be ranked according to different
level of the response feature between the two classes. The ranking would form a data bank of the

ranked response patterns for each brain region for relapse risk which can help to obtain an insight
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into the response images of this brain region more easily and to facilitate classification. The
method was designed in three steps: Step 1: constructing and collecting the response patterns of

ROls; Step 2: ranking the collected patterns; Step 3: validating the ranking.
Step 1: Constructing and collecting the response patterns

The feature selection for individual ROIs was applied in a manner similar to that used in the
second study. Consequently, for a particular ROl k, each subject provided 12 response
patterns (py;; i = 1 — 12); and for 20 relapsers and 20 abstainers, 480 response patterns were
collected and interpreted as 480 independent observations of response images of the ROI k to

alcohol cues. They were used as input data of the corresponding classifier f;.

Based on the findings in the previous studies of relapse in alcohol dependence as well as the
results in the second study (Makris et al., 2008; Schacht et al., 2011; Beck et al., 2012), the brain
regions, which play an important role in relapse prediction, were selected for the investigation in
this study including the right VS, right ACC and insula. As those in the second study, the

functional ROIs for these brain regions were also just their corresponding structural ROIs.

Step 2: Ranking the response patterns of individual ROls
Defining index of the ranking & algorithm of the ranking

As mentioned above, the set of the 480 response patterns for each ROl k may be viewed as
experience or data bank of response imaging of that ROI of alcoholic patients to the given
stimulation accumulated from the two investigated groups comprising 20 relapsers (class 1) and
20 abstainers (class 2). The ranking was carried out based on the assumption that in the collected
patterns there may be the patterns showing a prominent difference between the two classes,
while the other patterns manifest the confused or indistinguishable difference and that the
different level can be detected through classification. From this assumption, the classification
result of a pattern (py;) can be used to measure the difference level of that pattern. This
difference level was also defined as the discernibility level showing the degree of separation of
the pattern between the two classes (Voulgaris & Mirkin, 2008). Moreover, from validity
standpoint, it is logical that the measurement obtained from a single classification may be less

reliable than those obtained from a synthesis on multiple classifications (Kukar & Kononenko,
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2002; Voulgaris & Mirkin, 2008), and the degree of agreement of the classification decisions
over the various classifications would give an indication of consistency of the discernibility level
of that pattern (Douglas, 2007).

On this basis, for each ROI k, the ranking index of a response pattern (py;) for a class (c,) was
defined as the ‘classified index’ of the pattern (py;) into class (c,) which was estimated by the
ratio of the number of tests in which the pattern (py;) is classified into the class (c,) to the total
number of tests. In the study, a pattern (py;) was classified into one of the two classes, so the
classification value of the pattern (py;) for class 1 is the complement of class 2. Likewise, the
ranking index of the pattern (py;) for class 1 is the complement of class 2. For this reason, we
only considered the ranking index (RI) of the pattern (py;) for class 1 (relapser class); it ranged
from 1 to 0, with level ‘1’ indicating the most discernible response pattern and level ‘0’
indicating the lowest discernible response pattern for relapser class or in reverse order, indicating
the most discernible pattern for abstainer class (class 2). Given this design, the ranking index
(RI) of the pattern (py;) can be seen as the index of relapse risk for that pattern (py;). On this
basis, we hope that for each ROI, a ranked scale of the response patterns with the ranking index
of relapse risk would be formed which can facilitate imaging approach and which can be used in

classification.

Ranked scale

Set of response patterns of ROl of the response patterns of ROl
collected from blocks of subjects according to relapser class (relapse risk)
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Figure 4.1. lllustration for the ranking algorithm. The ranking of a particular pattern (py;) is designed to
translate the machine-based decisions of class classification for the pattern (p,;) obtained from M classifications
into the ranking index of relapse risk for that pattern.
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Creating examples and calculating ranking index

The 10-repeated 10-fold cross-validation procedure was applied similarly to that used in the
second study. However, in this study, for each loop of training and testing (Lf), instead of a
single training set (B*), each training segment (nested_BY) of each nested loop (nested_L" Hi=
5 x 9) within the training set B® created from the stratified 9-fold cross-validation procedure
repeated 5 times was used as a separate training dataset for the loop (L!), and the corresponding
testing set (AY) was the dataset including the 4 patients used for the testing of the loop (L!) (Fig.
4.2).
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Figure 4.2. Creating examples for calculating the ranking index of relapse risk (CV: cross-validation).

With this design, each of the response patterns (py;) recorded for the 4 patients of the testing
dataset (A°%) was classified 45 times for each loop (Lt). Based on these classification results, the
ranking index for the pattern (py;) was estimated. To avoid an optimistic result (Pereira et al.,
2008), the ranking index for each pattern (py;) was estimated only for the classifications where
this pattern has been partitioned into the testing set (4%). With the cross-validation procedure, for
each round, a different fold of the data was used in turn for testing. This also means that for each
round, a particular subject or the patterns (py;) recorded for that subject appeared only once in a
testing segment. As a result, for 10 rounds of the 10-repeated 10-fold cross-validation procedure,

each pattern (py;) was classified 450 times (M = 45 x 10).
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Classifying the response patterns of ROI

a. Similarity and dissimilarity between the response patterns

With the method of feature -construction Coordinate  Attribute

described earlier, a response pattern (py;) of [;Ylu fa-o‘ | Y.z
each ROI k was a feature vector holding the N zs et
attributes of all the voxels of the ROl k Disimierity |
recorded within a block (Fig. 4.3). Therefore, : Distance

the similarity and dissimilarity between the two

different patterns may be characterized by the EARSR R %] vz
distance between them with the rule that the pattemn (i) pattem (i)

larger the distance, the larger the dissimilarity Figure 4.3. Attribute of the response pattern

between the two patterns and vice versa (Duda et al., 2001). There are several distance measures,
one of which is estimated by the Euclidean distance (McCune & Grace, 2002). The formula of

the Euclidean distance is applied as follows:

v
d(Pki,ij) = d(ij,Pki) = \/(allcj —ap)? + (alzcj —ap)?+ .+ (ag; — ag)? = Z(altcj — aj;)?
t=1

Where py;, pi; are two different response patterns; d(pki,pkj) and d(pk j,pki) are the Euclidean distance between the two
patterns; (aj, i a;), (a2 i az), ..., (a¥ ;» ak;) are the pairs of corresponding variables (or attributes of voxels) of the patterns py;
and py;; [X, Y, Z] are the corresponding coordinates of voxels in the MNI standard space of investigated ROl (t=1— v; v is the

size of the ROI) (Fig. 4.3).

On this basis, a pattern can be simply classified into a class (c,) if the dissimilarity of the pattern
to that class (c,) is the smallest, or in other words, the distance from the pattern to the
representative pattern of the class (c,) is the closest. The representative pattern of a class may be
defined by the mean vector of that class (Scholkopf & Smola 2000; Balakrishnama &
Ganapathiraju, 2013). This simple method of pattern classification may be appropriate if data for
the classification are spread evenly in all directions, and the feature space is isotropic (Duda et
al., 2001). However, this is the problem for original fMRI data because they are often very high
dimensions in the feature space (Song et al., 2009). The obstacle has prompted the formation and

development of algorithms of pattern classification for such data.
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b. Classifiers

The algorithm was applied to pattern classification in this study in the same way as in the second
study. Likewise, for each ROl k,a separate SVM classifier f,, was also used to classify its
response pattern (py;) into either class 1 (relapse class) or class 2 (abstainer class). However, in
this study, besides the class classification for the response pattern (py;) (into either class 1 or
class 2), we considered the confidence level of the classification decision. As mentioned in the
methodology in the first study, the class classification for a pattern (py;) relies on sign of the
distance of the classified pattern (py;) from the optimal margin hyperplane of the classifier
(f (pri) = sign(wT@(py;) + b); Fig. 2.3) while the confidence level of this decision depends on
the absolute value of this distance (|w'@(p,,) + b|) since this value shows the degree of
separation of the pattern (py;) between the two classes. Specifically, this implies that the larger
the absolute decision value, the higher the confidence of the classification decision (Vlachos,
2004). Thus, this value can be used to measure the discernibility level of the response pattern.
Nonetheless, it is an uncalibrated value mapped in R (Platt, 2000; Vapnik, 2000). Moreover, the
calculation of this decision value depends strictly on the support vectors identified during the
training. Accordingly, the decision values produced by SVM classifiers with different kernels or
with different training datasets cannot be used to compare each other (Vapnik, 2000). In order to
get the estimate more standardized, the decision values are mapped into probabilities. For a
detailed description, reference is made to Platt, 2000; T.F. Wu et al., 2004. In the study, both of
the two estimates were evaluated and compared with the ranking index. Moreover, to evaluate
outperformance of classification with SVMs, the classification results of individual ROIs with
this method were compared to those obtained with the method in which data were classified in
their original input space with the simple decision rule based on the difference of the Euclidean

distance from the mean vectors of the two classes.

The normalization of data as well as the selection of kernel and hyper-parameters for SVM
classifiers was applied in a way similar to that used in the second study. Based on the
classification performance of the ROIs in the second study both the scaling and z-score
normalization were applied to the right ACC and insula while only the scaling normalization was
applied to the right VS.
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Step 3: Validating the ranking
Ranking index, decision value, and probability estimate

The ranking index of a pattern (p,;) was designed as an indicator of the discernibility level of
the pattern between the two investigated classes and was estimated by a synthesis of class
decisions for the pattern from various classifications. Thus, the ranking index of a pattern was
seen as the result of measurement for its nature. With such a design, the key to determining the
validation of the ranking is validity and reliability of the measurement. Fortunately, for SVM
classifiers, the discernibility level of response patterns between the two investigated classes can
be characterized by their outputs such as the decision values or probability estimates (Platt, 2000;
T.F. Wu et al., 2004; Vlachos, 2004; Voulgaris & Mirkin, 2008). From this basis, to investigate
the validity of the ranking index corresponding to what it is supposed to measure (Kimberlin &
Winterstein, 2008), the ranking index of the response pattern for each ROl k was compared with
the corresponding decision value and probability estimate through correlation between them, and
for evaluation of the reliability, we investigated stability and consistency through convergence of
the index (Kimberlin & Winterstein, 2008).

For investigation of the correlation, the ranking index of each pattern obtained after M
classifications was calculated according to the definition described earlier while the decision
value and probability of that pattern was the average value of all the corresponding decision

values and probabilities over the M classifications (M = 450).

For the convergence, we investigated variation of the ranking index of the response patterns
during M classifications. For each ROI k there were the collected 480 patterns, each of which
was classified 450 times. Consequently, a representative index for the 480-pattern set at the
jt" classification was estimated by an average value (aRI”) over the 480 ranking indices of the
480 patterns obtained after j classifications (j=1 - M; M = 450; Fig. 4.4). Together with the

observation of the variation of this representative index during M classifications, its

ZezaojaRIll
. )

corresponding expectation value (E(aRl’) = j=1- M;M =450) and error rate

(Er’) compared with the expected ranking index at the last classification

_ laRU—E(aRIM)| .

(Er/ R ) = 1 - M; M = 450) were taken into account as well.
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Ranking index and classification
a. Classification of the response patterns of individual ROIs

After ranking, the 480-pattern set for each ROI k can be viewed as the scale of the unlabeled
response patterns of that ROI (py;) for relapse risk accumulated from 20 relapsers (class 1) and
20 abstainers (class 2). The ranking index of a pattern (p,;) was considered as the index showing
the position of that pattern on the scale. Hence, the ranking index is only an indicator of the
discernibility level of the response pattern for relapse risk rather than a label of the pattern (py;)
in either class 1 or class 2. However, thanks to this indication, it can be used to classify the
pattern (py;) with the rule that if the ranking index of the pattern (py;) is equal or greater than
0.5 (RI>0.5), the pattern is classified into class 1, and by contrast, if the index is smaller than 0.5
(R1<0.5), the pattern is classified into class 2. In the study, the application of the ranking index in
classification was carried out at the last classification (M = 450), and for each ROI, the
performance was evaluated on the classification results of all the response patterns of that ROI
(N = 480).

To compare the ranking based on the decision value and probability estimate, the classification
results of the response patterns based on the average decision value (aDec) and the average
probability estimate (aProb) summarized from the M classifications were considered as well (M
= 450). The decision rule for these classifications was similar to those made by SVM classifiers.
For the decision value, if the average decision value (aDec) of a pattern (py;) is equal or greater
than O (aDec = 0), the pattern is classified into class 1, and by contrast, if aDec < 0, the pattern is

classified into class 2. For the probability estimate, if the average decision value (aProb) of a
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pattern (p,;) is equal or greater than 0.5 (aProb > 0.5), the pattern is classified into class 1, and

conversely, if aProb < 0.5, the pattern is classified into class 2.
b. Classification of subject

As in the second study, the classification of a unlabeled subject (S,) as either a relapser or an
abstainer was also designed based on a synthesis of multiple observation results on the response
patterns of the brain measured in various blocks for the subject (S,). However, instead of the
synthesis based on the observation results of class on these patterns in the second study, in this
study the synthesis was designed to specify the ranking index of relapse risk for the response
feature of each brain region of interest for the subject (S,). For this, the ranking index for the
response feature of the ROI k for each subject (sRI*) was calculated by averaging all the ranking

indices of the response patterns of the ROl k measured in the corresponding blocks for that

O RIF N .
Z‘=1Rll, : RI¥: ranking index for the patterns of ROI k recorded in block i;
O observations

O: number of blocks for a subject; O = 12). Then, the rule for the classification of subject was

subject (sRI* =

applied in a manner similar to that used for the classification of pattern just described above.
Specifically, in the case of the classification of a particular subject (S,) based on evidence
collected from a single ROI k, if the response feature of the ROl k for the subject (S,) was
classified into class 1 (sRI1¥>0.5), the subject was classified as a relapser (class 1). Conversely, if
sRI¥<0.5, the subject was classified as an abstainer. For the classification of a subject (S,) based
on a synthesis of multiple lines of evidence collected from multiple ROlISs, in this study, we only
focused the investigation on the cases where the classification results of all the observed ROIs in
the same subject were in agreement. Then, the classification result of the subject (S,) was

specified as being the same as one of the classification results of the subject for these ROIs.

For the decision value (sDec*) and probability (sProb¥), the methods of their calculation and
classification for the response feature of the ROIs k for a subject were applied similarly. The

investigation was implemented at the last classification (M = 450) on the 40 alcoholic patients.
Evaluation

In this study, the evaluation and comparison of the classifications on the same dataset were

applied in a manner similar to that used in the first and second studies. For the comparison of
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two different classifications on the datasets with different sample size, t-test analysis for
difference between two proportions in the case of unpaired samples was applied (Zikmund et al.,
2013).

Results

1. Classification of the patterns for individual ROIs estimated from the cross-validations

The classification result of pattern for each ROl was averaged over all the test sets created from
the 10-repeated 10-fold cross-validation procedure on the 40 alcoholic patients (N = nSF x nB X
nF =4 x 12 x 100; N: number of classified patterns for each ROI k; nSF: number of subjects for
each fold; nB: number of blocks for each subjects; nF: number of tested folds). The indices of

performance were the average values over all the sets reported (in %).

The results showed that the difference of performance for the right ACC between the two
estimates of the decision value and probability was a little significant (;512\4 = 4.5; p=0.0339)
while for the right VS and insula the difference was not significant (;(IZVI =1.32 and 1.33;
p=0.2515 and 0.2482; Table 4.1). Especially, the performance of the right VS, right ACC and
insula using SVMs was very significantly higher than that using the simple classification rule
based on the difference of the Euclidean distance from the mean vectors of the two classes in the
original fMRI space (76.2%, 68.8% and 71.3% vs. 47.9, 48.1 and 50% accuracy respectively;
;(IZW = 917.8, 675.5 and 563.4; p<0.00001; Table 4.1).

Table 4.1. The classification performance of pattern for individual ROIls

Classification performance (%) Classification performance (%) using SVMs
ROI using the distance difference
N = 4800 in the original fMRI data Decision value Probability estimate

Accurac) y Sensitivity Specificity Deorr Accuracy Sensitivity Specificity Peorr Accuracy Sensitivity Specificity Pcorr

Right VS 47.9 47.7 | 48.1 | 09997 76.2 | 729 | 79.5 <0.0001 75.9 73 78.9 | <0.0001

Right ACC 48.1 47.5 48.5 | 0.9955 68.8 68 69.5 | <0.0001 68.2 67.9 68.5 | <0.0001

Insula 50 50 50 | 0.5058 71.3 74 68.5 | <0.0001 71.5 74.4 | 68.6 @ <0.0001

2. Validation of the ranking

2.1 Validity and reliability of the estimated ranking index
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2.1.1 The correlation between the ranking index and the decision value and probability

The results showed that all the three estimates correlated strongly and positively (p<0.001; N =
nS x nB = 40 x 12; N: number of analyzed patterns for each ROI k; nS: number of subjects; nB:
number of blocks for a subject; Table 4.2). In particular, the correlation between the ranking
index and probability estimate was very strong and positive (0.978, 0.975 and 0.99 for right VS,
right ACC and insula respectively; p<0.001) while the correlation between the ranking index and
the decision value was less powerful (0.906, 0.882 and 0.906 respectively; p<0.001; Table 4.2).

Table 4.2. Correlation between the ranking index & the decision value and probability

Correlation Right VS Right ACC Insula
N =480 R* ‘ p-value R ‘ p-value R ‘ p-value
Ranking index & Decision value 0.904 ‘ <0.001 0.882 ‘ <0.001 0.906 ‘ <0.001
Ranking index & Probability 0.976 ‘ <0.001 0.972 ‘ <0.001 0.99 <0.001
Decision value & Probability 0.965 ‘ <0.001 0.955 ‘ <0.001 0.948 <0.001

*R: Pearson correlation coefficient

Right Ventral Striatum

Correlation between ranking index and decision value Correlation between ranking index and probability estimate

1.0000—] 1.00007

0.8000— 0.8000

0.6000— 0.6000—

Ranking index

0.4000] o 0.4000—

Ranking index

0.2000— 0.2000—]

[0)
0.0000—] 0.0000—]

T T T T T T T T T T T T
-1.5000 -1.0000 -0.5000 0.0000 0.5000 1.0000 1.5000 0.000 0.200 0.400 0.600 0.800 1.000

Decision value Probability estimate

(4.5a) (4.5b)

Figure 4.5. The graphs of the correlation between the ranking index, the decision value and probability obtained from the
analysis on the 480 response patterns of the right VS summarized after 450 classifications. The graph (4.5a) shows that the
correlation between the ranking index and the decision value is strong and positive, in particular with regard to the decision
values in the range from -0.5 to +0.5. For the decision values outside this range (<-0.5 or >+0.5), most of the ranking indices
were approximately equal to 0 and 1 correspondingly. The graph of the correlation between the ranking index and probability

estimate (4.5b) indicates that the correlation between them is very strong and positive.
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2.1.2 Convergence of the ranking index

The convergence of the ranking index was 054

Variation of Ranking index

investigated through variation of the average for right VS

0.52

ranking index (aRI’) of the 480-pattern set and
05

variation of the error rate (Er’) of this index

Ranking index

(aRI’) compared with its expectation value o

(E(aRI™)) at the M™ classification 0.46 ——— Renking ndx
(:the ™ classifications] = 1 MM = 450).  ast e S R
The variation of the average decision value Classification number
(aDec’) and average probability (aProb’) (4.6a)

were considered as well.

-0.02 Variati f Decisi I 0.53
ariation of Uecislon value Variation of Probability estimate
004 for right VS 051 for right VS
006 g
V- ©
2 £ 049
> (]
50.08 =
g 8 047 —
S 0.1 8 ~
o
. 0.45
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e ExDeGtation value e Expectation value
-0.14 0.43
1 51 101 151 201 251 301 351 401 451 1 51 101 151 201 251 301 351 401 451
Classification number Classification number
(4.6b) (4.6¢)

Figure 4.6. The graphs of variation of the average ranking index (4.6a), the average decision
value (4.6b) and the average probability (4.6¢) together with their corresponding expectation
values during M classifications (M = 450) for the right VVS. The graphs (4.6a, b, ¢) shows that the
ranking index, decision value, probability and their corresponding expectation values fluctuate
strongly at the first classifications, and after more than 200 classifications, the amplitude of the
fluctuation diminishes gradually. However, while the ranking index and decision value still
fluctuate slightly after the 300™ classification, their expectation values show convergence. For
the right ACC and insula, the ranking index also shows similar convergence. Their graphs are

presented in the appendices (Fig. s.1).
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Figure 4.7. The graph of variation of the error rates of the ranking indices (Er/) for the right VS,
right ACC and insula during M classifications compared with their corresponding expectation
values at the last classification (E(aRIM)) (j =1 —» M; M = 450). The graph shows that the error
rates of the ranking indices for all the three ROIs fluctuate strongly at the first classifications,
and then the amplitude of the fluctuation decreases gradually. After the 400" classification, the

error rates fluctuate quite steadily at the low level less than 1%.
2.2 Ranking index & Classification
2.2.1 Classification of the patterns for individual ROIs

For the classifications of the 480-pattern set for individual ROIs based on the ranking index,
decision value and probability estimate (Tables 4.3.1 & 4.3.2), the accuracies of classification
were said to be significant with 1% level under the Bonferroni correction (p;o,-<0.01) if their
uncorrected p-values were smaller than 0.868 x 10 (0.01/(Nxm); N = 480; m = 24; N: number of
classified pattern; m: number of observations). Equivalently, the accuracies of classification are
significant with 1% level if they are greater than 60.8%. On this basis, the results showed that all
the classifications for the three investigated ROIs were significant with p.,,,,<0.01; and there
was no significant difference between the classification results of the right VS, right ACC and
insula in the three methods based on the three indices: the ranking index, the decision value and
probability estimate (right VS, 42 = 2.25, 3.13 and 0.25; right ACC, 42, = 0.25, 0.8 and 0;
insula, 72, = 0.06, 0, 0; p>0.05; N = 40 x 12; Tables 4.3.1 & 4.3.2). Also, these results were not
significantly different from those with the evaluation using the cross validation procedure (the
right VS, 77.1% vs. 76.2% (z = 0.45; p=0.69870); the right ACC, 71.5% vs. 68.8% (z = 1.25;
p=0.3388); the insula, 70.2% vs. 71.3% accuracy (z = 0.5; p=0.665); Tables 4.1 & 4.3.1).
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Table 4.3.1. The classification performance of response patterns (%) for the right VS, right ACC and insula
using the ranking index, decision value and probability

ROI Ranking Index Averaged decision value Averaged probability
(RI) (aDec) (aProb)
e Accuracy ‘ Sensitivity ‘ Specificity Accuracy ‘ Sensitivity ‘ Specificity Accuracy ‘ Sensitivity ‘ Specificity
right VS 771 783 76 779 797 764 783 | 806 764
right ACC 71.5 ‘ 71.9 ‘ 71 71.9 ‘ 72.7 ‘ 71.1 72.1 ‘ 73 ‘ 71.2
Insula 702 | 689 718 | 698 | 692 704 70 694 707

There was no significant difference between the classification results based on the ranking index,
decision value, probability estimate and their corresponding expectation values (p>0.05; Tables

431&43.2).

Table 4.3.2. The classification performance of response patterns (%) for the right VS, right ACC and insula
using the expectation values of the ranking index, decision value and probability

Estimation based on expectation value (E)
el Ranking Index Averaged decision value Averaged probability
N =480 (E(RD) (E(aDec)) (E(aProb))
Accuracy ‘ Sensitivity ‘ Specificity Accuracy ‘ Sensitivity ‘ Specificity Accuracy ‘ Sensitivity ‘ Specificity
right VS 77.9 ‘ 79.7 ‘ 76.4 78.1 ‘ 78.7 ‘ 77.6 77.9 ‘ 79.1 ‘ 76.8
right ACC 71.9 ‘ 72.7 ‘ 71.1 71.7 ‘ 72.2 ‘ 71.1 71.9 ‘ 71.2 ‘ 72.7
Insula 69.8 ‘ 69.2 ‘ 70.4 70.2 ‘ 69.3 ‘ 71.2 70 ‘ 69.4 ‘ 70.7
Figure 4.8. The graph of variation 00
0
. Variation of Accurac
of accuracy during M for right VS y

90%
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the accuracies achieved from the classification based on the ranking index (RI) and its

expectation value (E'(RI)) estimated after j classifications. The graph indicates instability of the

classification accuracy based on a single classification (blue line) as well as stability of the

classification accuracy based on the synthesis of multiple classifications (1 — j) (brown and

green lines) represented by the ranking index as well as its corresponding expectation value.

2.4.2 Classification of subject

2.4.2.1 Based on a single observation result on a single ROI

The results indicated that there was no significant difference between the three methods based on

the three indices of the ranking index, decision value and probability (p>0.05; Tables 4.4.1 &

4.4.2). In addition, it seems that the classification results based on the ranking index, decision

value and probability were lower than those based on their corresponding expectations (Tables
4.4.1 & 4.4.2). However, the difference was not significant (p>0.05). The detail table of the

ranking index (sRI) for the three ROIs for the 40 patients is presented in the appendices (Table

s.2).

Table 4.4.1. The performance of subject classification (%) based on the response feature of a single ROI

using the ranking index, decision value and probability

N =40

right VS
right ACC

Insula

Ranking Index
(SRI)

77.5 ‘ 79 ‘ 76.2 ‘ 0.0001
72.5 ‘ 73.7 ‘ 71.4 ‘ 0.0011
67.5 ‘ 66.7 ‘ 68.4 ‘ 0.0083

Averaged decision value
(sDec)

Sensitivity ‘ Specificity

80‘80‘80

Accuracy

. 3.7 ‘ 71.4
67. 66.7 A4

725‘7
5

‘68

Averaged probability

(sProb)
Accuracy ‘ Sensitivity ‘ Specificity ‘ p-value
80 ‘ 80 ‘ 80 ‘ 0.00002
72.5 ‘ 73.7 ‘ 71.4 ‘ 0.0011
67.5 ‘ 66.7 ‘ 68.4 ‘ 0.0083

Table 4.4.2. The performance of subject classification (%) based on the response feature of a single ROI

using the expectation values of the ranking index, decision value and probability

right VS
right ACC

Insula

Estimation based on expectation value (E)

Ranking Index
(E(sRI))

Accuracy

80

Sensitivity

80

Specificity

80

p-value

0.00002

72.5 ‘ 73.7 ‘ 71.4 ‘ 0.0011
70 ‘ 70 ‘ 70 ‘ 0.0032

Averaged decision value
(E(sDec))

Accuracy

80

Sensitivity

80

Specificity

80

p-value

0.00002

72.5 ‘ 73.7 ‘ 71.4 ‘ 0.0011
70 ‘ 70 ‘ 70 ‘ 0.0032

Averaged probability
(E(sProb))

Accuracy

80

Sensitivity

80

Specificity

80

p-value

0.00002

72.5 ‘ 73.7 ‘ 71.4 ‘ 0.0011
70 ‘ 70 ‘ 70 ‘ 0.0032
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2.4.2.2 Based on multiple observation results on multiple ROIs

The results showed that if we only focused the investigation on the subjects with the agreement
classification results on the two ROIs, the classification accuracy was up to over 84% (Table
4.5), and if the classification results on the three ROIs were in agreement, the classification
accuracy was 100%. However, in the opposite direction, the number of the excluded subjects

increased correspondingly (0 — 14 — 23; Tables 4.5 & s.2).

Table 4.5. The performance of subject classification based on multiple ROIs

Classification performance (%) on
N =40
N,
sl The number of The number of
excluded subjects included subjects Accuracy Sensitivity Specificity p-value
Nz Nl
right VS - right ACC 14 26 88.5 91.7 85.7 0.00001
right VS - insula 14 26 84.6 84.6 84.6 0.00027
Insula - right ACC 18 22 86.4 81.8 90.9 0.00006
right VS - right ACC - insula 23 17 100 100 100 0.00000

*N: the number of investigated subjects; N1: the number of subjects with the agreement classification results on the observed ROIs; N2: the number of

subjects with the disagreement classification results on the observed ROls.

2. Mlustration
3.1 The ranking of the 480 response patterns of individual ROls

Figure 4.9. The ranking of the 480 response patterns of the right VS to alcohol cues collected

from the 20 relapsers (a) and 20 abstainers (b) arranged in the order as shown in Table s.2 (see

The response patterns of right VS of 20 Relapsers The respo patterns of right VS of 20 Abstainers

Ranking index
(C)




the appendix section). Each column was a response pattern (py;) including the attributes of all
the voxels of the right VS (a; ; k: the right VS; t = 1- v;v = 44 (size of the right VS);
i =1- N; N =480) which were arranged in the order of their coordinates (see Fig. 4.3). The
response patterns were ranked according to the ranking index of relapse risk for the right VS for
subject (sRI*) (c). The figures of the ranking of the right ACC and insula are shown in the

appendix section (Figures s.2 & s.3).
3.2 lllustration of the response images of the observed ROIs recorded from 2 alcoholic patients

Figure 4.10. The illustrative response images of the VS, ACC and insula to alcohol-associated
cue overlapped on the corresponding structural images acquired from two individual alcoholic
patients within the first cue block. The images a, ¢ and e were the images recorded from the
relapser with code 30. His ranking indices of relapse risk for the right VS, right ACC and insula
were 1, 0.7083 and 0.9807, respectively (Table s.2). The images b, d and f were the images
recorded from the abstainer with code 6. His ranking indices for the right VS, right ACC and
insula were 0.0024, 0 and 0, respectively (Table s.2). The differences in the activation images
recorded on the three ROIs between the two patients can be found in the 14-17™ axial slices
which were cut through basal ganglia with dimensions of the whole brain image: 53 x 63 x 46
(voxel size, 3 x 3 x 3 mm®). In the sagittal view, the difference can be observed in the 25-27"
sagittal slices (c, d). Further, the differences can be shown more clearly in the 2D and 3D space
(e, ). All of the 15" axial and 28" sagittal slices collected from the 40 patients are also shown in

the appendix section (Figures s.4 & s.5).

Axial view

Relapser with code 30 Abstainer with code 6

(a) (b)
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Sagittal view

Subject code: 30 - block code: 1

(c) (d)

Cube view

Subject code: 30 - black code: 1 Subject code: 6 - block code: 1
rightVs rightV's

(f)

Discussion

Original fMRI data space and SVMs

The classification performance of right VS, right ACC and insula using the method based on the
difference of the Euclidean distances from the mean vectors of the two classes in the original
fMRI data space were significantly lower than that using SVM classifiers (47.9%, 48.1% and
50% vs. 76%, 69.1% and 70.4% accuracy respectively; p<0.00001; Table 4.1). This indicates
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that for fMRI data to get the higher accuracy it is necessary to use classification algorithms.
Moreover, in the cases where data are not separable, the classification can be implemented in an
appropriately transformed space (Vapnik, 2000; Duda et al. 2001; Wang, 2005; Demirci &
Calhoun, 2009). However, such classification methods have involved difficulties in applying
diagnostic functional imaging of neuropsychiatric disorders in clinical practice since the basis for
the diagnostic imaging is an imaging-based classification method in which the classified images
are not transformed in order to keep the anatomical structures of the brain intact (Scott, 2009;
Bohland et al., 2012). For this reason, finding the bridges connecting the achievements of
information technology solutions with diagnostic imaging has become a practical need. One of
the bridges may be found from an understanding of reliability and certainty level of classification
decisions for the response patterns obtained from machine inference, because they reflect
different levels of response feature between individual patterns, also called discernibility level
(Voulgaris & Mirkin, 2008) through which it is possible to reveal the nature of analyzed images

forming the basis of diagnostic imaging.
Validation of the ranking algorithm
A single classification and multiple classifications

The reliability of the decision for a pattern (p,;) cannot come from a single classification (Kukar
& Kononenko, 2002; Voulgaris & Mirkin, 2008). Let’s assume that in a certain unfortunate
situation, the support vectors of a SVM classifier identified from training data is inappropriate
for classifying the pattern (py;). In such a situation, the classifier may give a wrong estimate of
the decision value for the pattern (p,;) compared with its real nature. This example is similar to
an actual case in which mild depression of a particular patient is diagnosed by a surgeon less
inaccurately than by a psychiatrist. However, if this patient is examined by hundreds of various
specialists, and the diagnosis of his disorder is a synthesis based on all these examinations, the
diagnosis would almost achieve high reliability and accuracy reflecting the nature of his disorder
(Kasper et al., 2008; Foot et al., 2013).

In the context of SVM classifiers, due to the close dependence of characteristics of SVM
classifier on training data, the classifiers formed from different training datasets can be seen as
different specialists (Schohn and Cohn, 2000; Vapnik, 2000). Therefore, when the classification
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result of a pattern (py;) is viewed as a measure of its real nature, the measure would be more
reliable if it is obtained from multiple classifications (Kukar & Kononenko, 2002; Kimberlin &
Winterstein, 2008; Voulgaris & Mirkin, 2008). This hypothesis is supported by the fluctuation of
the ranking index (aRI) and its error rate (Er) with large amplitudes in the first classifications
(>10%) and with smaller amplitudes when the number of classifications increased (<1% after the
400™; Figures 4.6a & 4.7). This property is also true for output values of the SVM classifier i.e.
the decision value (aDec) and probability estimate (aProb) (Figures 4.6b, ¢ & 4.7). These facts
suggest that the measure of reliability of classification for a response pattern does not depend on
the classifier but rather mostly on the nature of that pattern or the discernibility level of that
pattern when the number of classifications for the pattern increases significantly (Voulgaris &
Mirkin, 2008).

Validation of the ranking index

The strong and positive correlation between the ranking index and decision value (the right VS,
0.904; the right ACC, 0.882 and the insula, 0.906; p<0.001; Table 4.2) shows that the ranking
index also possesses the characteristic of the decision value, namely that the larger the absolute
value, the higher the confidence of classification (Vlachos, 2004; Aydin & Guvenir, 2006). The
result is in line with the study of Voulgaris & Magoulas (2008) indicating a positive correlation
between the degree of certainty of a classification and the accuracy rate of the classifications. In
the context of the study, the former is represented by the absolute decision value, and the latter is
represented by the ranking index. Therefore, it can be said that the reliability level of
classification for a pattern (p;) into class 1 (relapser class) is closely related to the ranking index
which can be seen as an indicator for the degree of separation of that pattern between the two
classes. This interpretation is reinforced by the very strong and positive correlation between the
ranking index and probability for the classification into class 1 (the right VS, 0.976; the right
ACC, 0.972 and the insula, 0.99; p<0.001; Table 4.2). Another piece of evidence to support the
existence of this relationship is that the classification results of pattern based on the ranking
index (1) were significantly high (the right VS, 77.1%; the right ACC, 71.5%; the insula, 70.2%
accuracy; p<0.0001; Table 4.3.1), and there was no significant difference compared to the results
obtained from the 10-repeated 10-fold cross-validation test (2) (the right VS, 77.1% vs. 76.2%;
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the right ACC, 71.5% vs. 68.8% and the insula, 70.2% vs. 71.3% accuracy; p=0.698, 0.33 and
0.665 respectively; Tables 4.1 & 4.3.1).

For the reason that the classification results with methods (1) and (2) showed no significant
difference in any of the investigated ROIs, the interpretation can be derived from the similarity
of the reliability level of estimation between the two approaches. The classification performance
obtained from the 10-repeated 10-fold cross-validation test can be seen as a reliable estimate
(Payam et al., 2009) while with the design described earlier, the classification performance based
on the ranking index at the M*" classification (M = 450) can be seen as a variant of the special
cross-validation procedure with ‘leave one out’ which can give an unreliable estimate with large
variance (Payam et al., 2009). However, in the latter, the classification decision for a pattern (p;)
did not come from a single classification but rather came from a synthesis of various decisions
which gave a more reliable classification decision for that pattern. This interpretation is
supported by stability and consistency of the ranking index’s measurement characterized by
convergence of the ranking index (Kimberlin & Winterstein, 2008) through the gradually stable
variation of the ranking index as well as its error rate when the number of classifications
increased (Figures 4.6 & 4.7). In addition, another piece of evidence to reinforce the
interpretation can be found from the observation of the variation of accuracy during the M
classifications that showed the accuracy of the method based on a synthesis of multiple
classifications represented by the ranking index to be more stable and consistent than that based

on a decision of a single classification (Fig. 4.8).

Taken together, the approach of the study appears to be just a translation from the performance
of classifier into the performance of individual response patterns represented by their ranking
index (or discernibility level). This is evidenced by the validity of the ranking index in
classification as well as the similarity of the performance between the two classification methods
(1) and (2). Such a validity and similarity also implies that the higher the performance of a
classifier, the higher the validity and accuracy of applying the ranking index produced by the
classifier in classification and vice versa. Usefully, this translation provides us an opportunity to
obtain the classification decisions accompanied with the corresponding estimates of
discernibility level of response patterns which can be used as an indication to identify the

difference of response images between the two investigated classes more easily.
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Ranking index and methods of estimation

The classification results obtained with the methods based on the ranking index, decision value
and probability showed no significant difference (p>0.05; Tables 4.3.1 & 4.4.1). Together with
the strong and positive correlation between them, this evidence suggests that not only the
classified index into a class but also outputs of SVM classifier such as the decision value or
probability estimates can be used as the ranking index as well. Furthermore, they appear to be
better when the estimation was based on their corresponding expectation values (e.g. the right
VS, 77.5% vs. 80%; the insula, 67.5% vs. 70% accuracy; Tables 4.4.1 & 4.4.2). However, this
outperformance needs more evidence because in the study, it did not show a significant
difference (p>0.05; Tables 4.3.1 & 4.3.2 and 4.4.1 & 4.4.2), and it seems that these methods can
be used interchangeably. Despite this, intuitively the estimate based on the expectation values of
the classified index into a class and probability estimate may be an interesting choice because the
indices can give us a suggestion of the significance of the discernibility level of the pattern in a
more standardized manner while the estimate based on the decision value may produce some

unexpected outliers since they are uncalibrated values (Platt, 2000; Vapnik, 2000).
Classification based on multiple ROIs

As the results obtained in the second study, the investigation on the subjects with the agreement
classification results on the observed ROIs showed that the accuracy of subject classification
increased significantly in the same direction with the number of observed ROIs. For two ROls,
the accuracy increased from 77.5% (right VS), 72.5% (right ACC) to 88.5% (right VS-right
ACC), and achieved 100% for three ROIs (right VS-right ACC-insula) (Table 4.5). The evidence
suggests that the classification decision for a subject (S,) may be more reliable and certain when
the decision comes from the inference based on multiple evidences collected from several
relevant brain regions rather than based on a single piece of evidence from a single region. Such
an inference is consistent with the previous fMRI studies of alcohol dependence. The study result
of Heinz et al. (2004) indicates the connectivity between the VS and ACC through the inverse
correlation between the availability of dopamine receptors in the VS and the strength of
activation of the ACC under the stimulation of alcohol-associated cues in alcoholics. The
existence of this connectivity is reinforced by the evidence of previous studies of alcohol
dependence showing that a significant activation was recorded in both of these regions when
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elicited by alcohol-associated stimuli (Grisser et al., 2004; Myrick et al., 2004; Tapert et al.
2004; Sinha & Li, 2007; Beck et al., 2009; Heinz et al., 2009). Thus, the functional connectivity
between them may be the source to generate the selectively different response patterns of the VS
and ACC for relapsers and abstainers recorded in the majority of the patients (26/40; Table 4.5).
Besides these, the increase of classification accuracy when the number of ROIs increases (100%
for the three ROIs; Table 4.5) consolidates the validity of the inference method based on the
response features of multiple relevant ROIs.

In the other observation, along with the increase of the performance, the number of excluded
subjects due to the disagreement classification results on the observed ROIs increases
correspondingly from 0% (40/40) for a single ROI to 35% (14/40) for two ROIs (right VS-right
ACC) and 57.5% (23/40) for three ROIs (right VS-right ACC-insula) (Table 4.5). Logically, in a
negative perspective, the disagreement can deflect the correct inference direction of several ROIs
in some analyzed patterns which can cause misclassifications when the number of the incorrect
evidences overwhelms (Stefan & Lionel, 2011). Thus, it can be seen as one of the sources
leading to a decline in the accuracy or reliability of classification when the classification is based
on multiple lines of evidence. However, in a positive aspect, it may suggest that the disagreement
can be seen as a sign indicating that patient may be in an instable status of the investigated
disorder which needs to be under an additional follow-up supervision. Therefore, the synthesis of
evidence from multiple ROIs can help us discern the various reliability and certainty level of
relapse risk from fMRIs. With such a consideration, our hope is to control the decision of
machine and to improve reliability of classification as well as to give insights of the brain
activity hidden behind the response images. Moreover, this way is compatible with the way of

decision-making in clinical practice (Kasper et al., 2008).
Feasibility of imaging diagnosis of the approach

The goal of the ranking is to build the reliably ranked scales of the response patterns of relevant
brain regions which can be used as data bank of the response images of these ROIs between the
two investigated classes to found for diagnostic imaging.

For example, for a particular pattern (p;), we can match its response image against its
corresponding scale to estimate a position on this scale on which we can predict the class as well

as degree of separation between the classes. For this, initially, the classification decision of the
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pattern (p;) received from machine inference is accompanied with an estimate of the
discernibility level of the pattern, which can help clinicians approach gradually imaging of the
investigated disorder. Let’s consider the functional images of right VS, right ACC and insula of
the two particular cases one of which was a relapser with code 30, and the other was an abstainer
with code 6 (Table s.2). The difference of response images of the right VS and ACC was found
in the 14 - 17" axial slices and in the 25 - 27" sagittal slices (Fig. 4.10). If we continue to
consider the positions of the response patterns of the right VS for the two patients on the scale,
we find that they are located at the 2" and 34™ position with the ranking index of relapse risk = 1
for the subject with code 30 and 0.0024 for the subject with code 6 (Table s.2 & Fig. 4.9). With
such an approach, we hope that the interaction between clinician and machine inference would
be formed. The machine-based classification decisions become easier to verify and learn, which
can help us discern the specific response features of relevant brain regions for the two classes as
well as actively exclude ambiguous evidence collected from several ROIs in the inference
process to improve the classification accuracy. Then we can step by step approach diagnostic

imaging and eliminate our complete dependence on the machine.

Furthermore, with this approach, the generalization of the achievements of the classification to a
larger dataset would become the accumulation of experience with the gain that makes the data
bank of response images of relevant brain regions more plentiful rather than makes a change of
available SVM classifier. Then the generalization can be designed to change the number of SVM
classifiers formed from quality training datasets with appropriate size rather than to change the
characteristics of the available SVM classifier with a single large training dataset. In addition to
reducing dependence of classification decision on a single classifier, such an approach can limit
an inversion of SVM optimization when the number of samples of training data increases
significantly (H. Yu et al., 2003; Shalev et al., 2008) while retaining the advantages of available

good classifiers.

Finally, although the study introduced a feasible approach to realizing diagnostic functional
imaging of relapse prediction in practice, there are still numerous challenges ahead in turning the
feasibility into reality. To reinforce the approach, we conducted the two pilot studies of clinical

application which are presented in the next chapter.
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CHAPTER V
FEASIBLE APPLICATIONS IN CLINICAL PRACTICE

Application 1

Feasibility of monitoring treatment response in alcohol dependence

using functional imaging
Introduction

In neurological disorders, structural damage to relevant brain regions often exists during a period
long enough to be recognized with imaging, and imaging changes of the damage can be used to
keep track of treatment response for a specified disorder (Scott, 2009). For psychiatric disorders
where the pathology is often due to dysfunction of relevant brain regions, the question this study
asks is whether the clues for such a monitoring can be found in the activation patterns of these
brain regions. Specifically, the aim of this study was to explore the specific characteristics of
activation images for each class of either relapser or abstainer which can be focused on as a sign

for monitoring treatment response during detoxification in clinical practice.
Materials and Methods

Materials

This study is a continuation of the third study. The materials and data pre-processing in this
study were those used in the third study comprising the 20 relapsers and 20 abstainers.
Moreover, only the right VS was chosen for this pilot analysis, and the functional ROI of right

V'S was just its structural ROI.
Methods

In our three previous studies, characteristics of the patterns for classification were recognized
completely by machine. In clinical practice, such characteristics would be recognized through
imaging, and for a general preliminary recognition, the characteristics of spectrum or activation

level of the patterns can be focused on to observe and analyze. Thus, the objective of this study is
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to determine the feasibility of such recognition or to determine whether a significant correlation

between the activation level of the patterns and classes exists.
Ranking the pattern according to class (difference of class)

As presented in the methodology of the third study, this ranking indicates the relapse risk for
each pattern through the ranking index for the relapser class. Its method is based on class
classification. In other words, it is focused on
dissimilarity of a pattern (py;) to the investigated o+
"/‘ \\Classl
- - - - - - h ."Jv +-\"“\. +
into a class (c,) if the dissimilarity of the pattern to that e

class (c,) is the smallest (Fig. 5.1). With such a o

classes with the rule that the pattern can be classified

classification, the characteristics of differences between
Class1 " py, Themeanwvector of

the patterns in the same class are of no interest. . thetwodasses(a)

Therefore, there may be patterns (e.9. py; and py;; Fig.

5.1) classified into the same class (c;) i.e. the same sign ~ Figure 5.1 lllustration for class dissimilarity.

DPxi and py ;. the response patterns i and j; dy;;,
(-9 fiu i) = fic(prj) = signw™B(p) + b) = dyiz and dyjy, dyjp: dissimilarities of the
(signwT@(py;) + b) = +1) with the same confidence  Patterns p,; and py; fo class 1 and class 2
correspondingly; Given dy;;=dyj; and dy;,=
dyj, but the projected coordinates on the mean

lwT®(py;) + b|) using SVMs but they may differ in the  vector of the two classes (a) of py; and py; are
different from each other (a; # a; ).

i.e. the same decision value (e.g.(lw™@(py;) +b| =

spectrum or activation level (Fig. 5.1).
Ranking the pattern according to spectrum or activation level (difference of spectrum)

Apart from differences in content, we normally can recognize two different images through a
general observation on their spectrum differences. This also means that if the characteristics of
spectrum between different classes differ from each other, we can recognize the patterns of the
different classes using imaging. For this investigation, we used an average pattern over all the
patterns of alcoholic patients comprising the 20 relapsers and 20 abstainers as a standard
coordinate axis. Then, the projection position of a pattern (p;) onto the axis (a;; Fig. 5.1) can
reflect its magnitude on this axis; and this magnitude was used as the ranking index of spectrum

or activation level for the pattern (py;) (Fig. 5.1).
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Since the patterns collected from the same subject may possess more similar characteristics than
those from the others, in this study, we only analyzed the ranking index of the spectrum for each
subject. The index for a subject was the average index over all the corresponding indices of the
patterns collected from that subject.

Creating subgroups

After the ranking index of spectrum for each subject had been calculated, all the subjects were
sorted according to the index, assigned sequence numbers respectively, and then partitioned into
4 subgroups. Each subgroup comprised 10 different subjects. Subgroup 1 comprised 10 subjects
with the 10 lowest indices with the assigned sequence numbers from 1 to 10. Subgroup 2
comprised 10 next subjects with the sequence numbers from 11 to 20. Subgroup 3 consisted of
10 subjects with the sequence numbers from 21 to 30, and subgroup 4 comprised 10 subjects
with the numbers from 31 to 40. These 4 subgroups can be considered as the 4 subgroups
representing the 4 different levels of the spectrum or activation: the low, low-moderate, strong-
moderate and strong level. Then, distribution of the relapsers and abstainers in the subgroups can
reveal the correlation between the activation level and classes. For this investigation, all the
subjects were labeled as either relapser or abstainer before being distributed in the subgroups.
There were two methods of labeling; in one of them the labels of the subjects were specified
based on an interview another six months after detoxification as described in the sample
collection in the second study (i.e. abstainers: no alcohol consumption; relapsers: any alcohol
consumption). In the latter, the subjects were labeled based on the ranking index of relapse risk

(the ranking index of class) determined in the third study.
Evaluation

The statistical significance of a proportion between relapsers and abstainers in a subgroup was
analyzed based on rejecting the null hypothesis. The null hypothesis assumes that there is no
difference between the number of relapsers and abstainers partitioned into the analyzed
subgroup. Since the sample size of each subgroup was small (n<30), the p-value to reject this
hypothesis was estimated based on the binomial distribution as described in the methodology of
the first study (Diez et al., 2013). However, here, there was a modification of variables where N

trials was the total number of subjects partitioned into the analyzed subgroup, k successful trials

102



was the number of either relapsers or abstainers in this subgroup according to the analyzed class
and the probability of a successful trial p = 0.5. For comparison of the two proportions between
the two subgroups, we used t-test analysis for the difference between two proportions in the case
of unpaired samples (Zikmund et al., 2013).

Results and Discussion

Correlation between the activation level (spectrum) and classes (relapser and abstainer)
The subjects were labeled based on an interview

The results showed that in subgroup 1 with the low activation level (blue), relapsers prevailed
over abstainers (R/n;=8/10; p=0.0107; Table 5.1) while subgroups 2 and 3 with the moderate
level (green) mainly comprised abstainers (A/n,.3=14/20; p=0.0207; Table 5.1). The ratio of
relapsers to abstainers in subgroup 4 with the strong activation level was equal (R/A=5/5;
p=0.1719; Table 5.1). This appears to indicate that if the activation of the VS is recorded for a
subject at the low level, the probability of identifying the subject as a relapser is much higher
than that of identifying him as an abstainer. By contrast, the probability of identifying him as a
relapser would be lower if this activation is recorded at the stronger level. In other words, the
significant difference of distribution of relapsers and abstainers between subgroup 1 and
subgroups 2+3 (p=0.011) appears to imply that there exists a difference of spectrum or activation
level between relapsers and abstainers. The inference is supported by the results of Beck et al.

(2012) indicating that the activation of VS in abstainers was stronger than that in relapsers.

Table 5.1. Correlation between the activation level (spectrum) and classes (relapser and abstainer)

Activation level (spectrum)
Low Moderate Strong
1->10 1130 31540
Right VS ( ) ( ) ( )
N =40 Subgroup 1 Subgroup 2 + 3 Subgroup 4
n{= 10 N3 = 10+ 10 Ng= 10
(1—>10) (112>20 + 21—30) (31—40)
R/A p-value R/A p-value R/A p-value
Subjects labeled with an interview 8/2 0.0107 3/7 +3/7 0.0207 6/4 0.1719
Subjects labeled with thg ranking index 9/1 0.001 3/7+3/7 0.0207 5/5 0377
of relapse risk

*R/A: the number of relapsers (R) and abstainer (A) correspondingly
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The subjects were labeled with the ranking index of relapse risk

The results of the distribution of the subjects with the labeling using the ranking index of relapse
risk arrived at in the third study showed no significant difference compared to those with their
real labels based on interviews (p>0.5; Table 5.1). This indicates the feasibility of classification
combining imaging and decision of machine inference through the ranking index. Usefully, the
combination can help us approach gradually imaging of the response feature of the ROIs for
different classes through which we can learn the typical response patterns of a ROI for the
different classes. Hence, this learning process can give us the ability to check the consistency
between the machined-based classification decision for a pattern and its response image with the
aim of improving the classification confidence and gradually eliminating the complete

dependence on the machine inference.

Figure 5.2. The ranking of the 480 response patterns of the right VS to alcohol cues according to
spectrum or activation level. These patterns were collected from 20 relapsers (a) and 20
abstainers (b) arranged in the order as shown in the Table s.2 (see the appendix section). Each
column was a response pattern (p;) including all the attributes of voxels of the right VS as those
in Fig. 4.9. The patterns were ranked according to the spectrum or activation level for the
subjects and partitioned into the 4 subgroups with the levels of spectrum from low to strong (s1,

s2, s3 and s4). Moreover, graph (c) shows the ranked patterns according to the ranking index of

relapse risk achieved in the third study.
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In this work, we introduced the ranking based on dissimilarities of the spectrum or activation
level of the patterns for the right VS. The results showed that there appears to exist a significant
correlation between the different subgroups of spectrum and classes. This implies that the
characteristics of spectrum of the patterns recorded on this structure from the abstainers are
distinguishable from those from the relapsers. Furthermore, the results of Schacht et al. (2011)
indicate that the right VS activation in alcoholic patients elicited by alcohol cues appears to be
stability across time. Taken together, if abstinence from alcohol is considered as a treatment
response in alcoholic patients, it is likely that the characteristics of the spectrum difference
between the two classes may be a sign which can be used to monitor this response during
detoxification. To confirm this, it is necessary to conduct studies with larger samples where the
changes of activation in the brain regions of interest would be monitored before, during and after

detoxification.

Application 2

Feasibility of investigating correlation between clinical variables and

functional imaging in alcohol dependence

Introduction

In the third study, the approach is to specify the differences of activation images between
relapsers and abstainers through the ranking index of relapse risk (ranking index of class).
However, the images characterize vascular changes under the impact of given stimulation rather
than directly characterizing neutral activation (Mathews, 2001; Logothetis & Pfeuffer, 2004),
while cognitive and behavioral changes of the alcoholic patients are the consequence of neural
activation. Therefore, whether correlation between the ranking index and clinical variables exists

was the question for this investigation.
Materials and Methods

The materials and the ranking indices of relapse risk for the patterns of the right VS, right ACC
and insula collected from the 20 relapsers and 20 abstainers were those used in the third study.
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The clinical variable for the investigation was the visual analog rating scale of thirst and hunger
(VAS-TH). The rating was performed before and after the fMRI measurement. It ranged from 0
(“no craving at all”) to 100 (“severe craving”). The index of the VAS-TH was the sum of the two
rating indices of thirst and hunger. As a result, it ranges between 0 and 200.

The investigation of the correlation between the ranking index of relapse risk and clinical
variable i.e. VAS-TH was conducted on the two following cases: (1) The analyzed sample
included all of the 20 relapsers and 20 abstainers; (2) The analyzed sample only included the
subjects who have produced the compatible activation patterns recorded on the combined ROIs
i.e. all of the activation patterns recorded on the right VS, right ACC and insula within the same
block (extracted from the same pattern of the brain) were classified into the same classes (see the

second and third studies).
Results and Discussion

Correlation between the VAS-TH and relapse

We calculated Pearson correlations between the VAS-TH and relapse specified with an interview
six months later after detoxification. The results showed no significant correlation for the total
sample of the 40 alcoholics before and after the fMRI (R = 0.005 and -0.126; p=0.977 and 0.437
respectively; Table 5.2). For the selective subsample of the 17 alcoholics who produced the
patterns of the right VS, right ACC and insula with the agreement classification results using
their ranking indices, the correlation between the VAS-TH after the fMRI and relapse increased
significantly (R =-0.596; p=0.012; Table 5.2).

Table 5.2 Correlation between the VAS-TH and relapse

Whole sample Selective sample
N=40 n=17
Correlation
before fMRI after fMRI before fMRI after fMRI
R* ‘ p-value R ‘ p-value R ‘ p-value R ‘ p-value
VAS-TH & relapse 0.005 ‘ 0.977 -0.126 ‘ 0.437 -0.224 ‘ 0.387 -0.596 ‘ 0.012

R*:Pearson correlation coefficient
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Correlation between the VAS-TH and ranking index of relapse risk

Again, the results showed no significant correlation between the VAS-TH and ranking indices
for the three ROIs before the fMRI measurement for either of the two samples (p>0.05; Table
5.3). However, the correlation became stronger after the fMRI in both samples e.g. the insula: R
=-0.373 - -0.674; p=0.14 — 0.003 (n = 17; Table 5.3).

Table 5.3. Correlation between the VAS-TH and ranking index of relapse risk for functional brain regions

Whole sample Selective sample
N=40 n=17
ROI
before fMRI after fMRI before fMRI after fMRI
R p-value R p-value R p-value R p-value
Right VS 0.117 0.474 -0.374 0.017 -0.196 0.451 -0.543 0.024
Right ACC -0.198 0.22 -0.347 0.028 -0.325 0.203 -0.596 0.012
Insula 0.033 0.841 -0.201 0.213 -0.373 0.14 -0.674 0.003

The results appear to indicate that there exists a selective activation on the VS, ACC and insula
between relapsers and abstainers during the fMRI experiment involved in thirst and hunger. The
agent generating such activation may be derived from the cues used in the experiment. The
interpretation is supported by evidence of a significant difference in activation in several brain
regions involving the mesolimbic system between alcoholics and healthy controls under impact
of alcohol-associated cues reported in previous studies (Braus et al., 2001; Wrase et al., 2007;
Park et al., 2007; Beck et al. 2009; Heinz et al., 2009; Schacht et al., 2011; Beck et al., 2012).
Therefore, it is likely that when activated specially, the system exposes differences in response in
the relevant brain regions between the different classes e.g. alcoholics and controls or relapsers

and abstainers which have been identified in the studies.

Compatible activation of the relevant brain regions

The understanding of this activation mechanism has continued to be decoded. However, one of
the interesting findings in this study is that the moderate correlations between the VAS-TH and
ranking indices of the ROIs were observed in the selective subsample (n = 17; e.g. insula,
R=-0.674; p=0.003) while the correlations in the total sample (N = 40) proved weaker (e.g.
insula, R=-0.201; p=0.213; Table 5.3). Since the calculation of the ranking index was
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Figure 5.3. The graphs of the correlation between the VAS-TH and ranking index of relapse risk for the insula. The
rating for the VAS-TH was performed after the fMRI experiment. The graph (5.3a) showed a weak correlation between the
two variables on the whole sample (R =-0.201; p=0.213; N = 40). The correlation became stronger when estimated only on
the selective 17-alcoholic sample (R =-0.674; p=0.003; n = 17) (graph 5.3b).

independent of that of VAS-TH, the results appear to imply that there is a bond between the
VAS-TH and ranking index which is brought to light more clearly in the selective subsample.
Although several lines of evidence have shown that the insula is primarily in charge of
homeostatic emotions such as hunger and thirst (Craig, 2003 & 2009), the emotions may be a
consequence of the harmonic activation of several relevant brain regions rather than a single
region. The basis for the inference is an increase in the strength of the correlations recorded for
all of the three ROIs, including the right VS, right ACC and insula in the selective subsample
where the activation patterns measured on these three ROIs in the same time were grouped into
the same class (Table 5.3). This creates difficulties when specifying the correlation between
clinical variables and a response feature of a single brain region. However, the evidence again
supports the practicality of the approach to classifying neuropsychiatric disorders as well as their
condition using fMRI based on the synthesis of multiple lines of evidence collected from various

Sources.
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CHAPTER VI
GENERAL DISCUSSION AND CONCLUSION

Summary of Discussion

In addition to the understanding of the role of specific brain regions in the diagnosis as well as
prediction of relapse risk in alcohol dependence using fMRI presented the earlier chapters, the
results support our approach to realizing diagnostic functional imaging in clinical practice. The
aspects of location of brain activation, connectivity and classification/prediction achieved from
machine inference as well as the decision-making way used by clinicians in the clinical practice
of diagnostic imaging have been considered in the approach. Overall, our approach can be

summarized with a framework (Fig. 1.8) including the following steps.
(1) Specifying relevant brain regions

The more precise the focus on the brain regions in the aspects of structure and function involved
in the pathophysiologic mechanism of the investigated disorder and the cues used to activate
them, the higher the classification performance on activation images of the regions using
classifiers such as SVMs. Further, the performance may depend on the characteristics of
structure and function of the brain regions and their role in the pathophysiologic mechanism

rather than on the size of the structures (studies 1 & 2).
(2) Specifying the role of the brain regions of interest in fMRI classification

The classifiers formed from classification algorithms can be used as exploratory instruments to
specify the role of the brain regions of interest in fMRI classification in the initial steps (studies 1
& 2).

(3) Translating classification decisions from the classifiers into the discernibility levels between

the classes

The translation is to convert classification decisions for the patterns obtained with the classifiers
to the discernibility levels (ranking index) showing the separation degree between the two

investigated classes. The conversion for each pattern is performed based on the synthesis of the
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various classifications for that pattern. The specification of discernibility level for each pattern
can be viewed as scoring, and each scored object here is an activation pattern (group of voxels)
rather than a single voxel. The data bank of response imaging of brain regions of interest to given
stimulation accumulated from the collected subjects can be ranked based on the scores of the
patterns. Thanks to the validity of the ranking in classification, we can approach diagnostic

functional imaging of the investigated brain regions more easily (study 3).
(4) Classifying an fMRI based on multiple lines of evidence

Like as the way to make a diagnosis of a particular disorder in clinical practice, the inference of a
disorder or its condition using fMRI should be based on multiple lines of evidence collected
from various sources corresponding to multiple brain regions with different structures and
functions, and even from clinical variables in this context. Such an inference can lead to a more
reliable decision than those that are only based on a single piece of evidence; and the evidence
can be synthesized according to the rule that the more compatible the evidences, the higher the
certainty of the classification decision. With such an inference rule, functional connectivity
between brain regions and between the brain regions and clinical variables are also considered
implicitly. Bayesian inference can be used as a means to realize this rule in the machine-based
steps. Since the inference method with Bayes’ rule is similar to the decision-making way used by
clinicians, the machine inference can be replaced with inference by clinicians in the steps of

realizing diagnostic functional imaging in practice (study 3 & application 2).
(5) Approaching activation images of brain regions of interest

For a general observation of imaging, differences of spectrum or activation level of the patterns
between different classes are highlighted. The differences can be identified by projecting the
patterns onto the same coordinate axis. The distribution of subjects of the classes in the different

spectrum groups can reveal rules for this observation (study 3 & application 1).

(6) Considering the compatibility of clinical variables and activation images of relevant brain

regions

The logic correlation between clinical variables and activation features of the relevant brain

regions is always a major concern in fMRI studies since it would bring a thorough understanding
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of the operation of the brain through which we would make an inference of brain disorder more
reliable. Although the study result remains limited, it supplies evidence for the feasibility of the

application based on the discernibility level (application 2).

With such a framework, the turning-point of the approach to convert the findings of machine-
based classification into our understanding of recognition of the analyzed patterns is to translate
the machine-based classification decisions for the patterns into indices showing their degree of
separation between the two investigated classes. However, the most difficult and key point of
the approach to obtain a high achievement in classification is to identify and define as exactly as
possible the important brain regions involved in the investigated disorder using fMRI. Such a
task is practical for diagnostic imaging because it would help us understand more about the brain
and the investigated disorder. Also, it would show the way to identifying and defining the
functionally specialized brain regions more exactly. Usefully, the exact definition of the
important brain regions impacts positively on the machine-based classification performance and
the facilitation for diagnostic imaging approach; and thus a positively reciprocal interaction
between us and machine would be formed, which could shorten the road of realizing diagnostic

functional imaging in practice.
Limitations

Even if the results of the studies are promising and can be applied to realize diagnostic functional
imaging in alcohol dependence, due to the small sample size, the findings of our study may not
satisfy clinical diversity in practice. On the other hand, the prediction was only based on a single
fMRI measurement after detoxification (1 run), and it was only focused on the differences of the
response feature of ROIs between the classes i.e. alcoholics and healthy controls or relapsers and
abstainers (between-group) and between different subjects (between-subject). Therefore, the
findings might have been more significant and convincing if the response features of the ROIs of
each patient were followed up and compared over time before, during and after detoxification

along with clinical data of alcohol dependent status (within-subject) on larger samples.
Future works

In this work, we only focused on spatial characteristics of the patterns and ignored the temporal

characteristics that may hold useful information for classification. The difference of response to
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various cues was not focused on either. Furthermore, in the observation of functional images, we
preliminarily examined their differences of spectrum between the classes. Such an observation
can be considered as an overview of the images regardless of the important details about content
of the images that may hidden the crucial information of differences of the patterns among the
classes. Finally, characteristics of the compatibility between the activation images of the relevant
brain regions and between the activation images and clinical variables and structural changes of
the brain regions of interest e.g. brain atrophy may also keep the valuable information which can
help us achieve a logical inference of brain disorders. An inference based on the synthesis from
multiple lines of such evidence would significantly improve the certainty of the classification
decision. How to unravel these issues will be our major concern in our future works. However,
above all, whether and how the approach is fruitful in clinical practice has always occupied a
special place in all the questions and solutions that we have been trying to target.

Conclusions

In this dissertation, we proposed an approach to realize diagnostic functional imaging in clinical

practice starting from classification algorithm to imaging approach.

In regard to methodology, the approach starts with the formation of functional ROIs from their
corresponding anatomical structures and specification of the role of the ROIs in fMRI
classification using exploratory instruments formed from the given classification algorithm. The
rules of machine-based classification can be transformed into recognition rules of functional
imaging in clinical practice. The results demonstrated the feasibility of the approach with a

proposed framework.

In regard to alcohol dependence, we found that the VS, ACC and insula are the brain regions
playing an important role in relapse prediction using fMRI. The prediction accuracies based on
the activation patterns recorded on these brain regions were 63.1%, 58.1% and 71.5% for the VS,
ACC and insula respectively (p.0,»<0.0001). Additionally, the results indicate that there appears
to exist a lateralization in response to alcohol cues in the VS and ACC where the activation
images of these structures recorded in the right hemisphere were more predictive than those in
the left one (e.g. the right VS, 75.9% vs. the left VS, 53%; the right ACC, 68.2% vs. the left

ACC, 58.9% accuracy; p<0.0001). For a predictive inference based on multiple observations on
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multiple brain regions, a combination of the individual predictions from the right VS, right ACC

and insula yielded a better overall prediction (76.9% accuracy; p<0.0001).

Although limited in scope, this dissertation helps us to deepen the understanding of relevant
brain regions and the method of predictive inference in alcohol dependence using fMRI.
Particularly, it provides further evidence that using fMRI images as biomarkers in dealing with

neuropsychiatric disorders in clinical practice is feasible.
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APPENDICES

Table s.1.Clinical data of the 40 alcoholic patients

VAS-TH  VAS-TH Numberof

No. Code ;::l Gender Age ﬁii:tt ADS OCDS AUQ bfefore after ::‘S:Ei:;
MRI fMRI relapse

1 27 1 0 38 28 32 21 23 52 73 34
2 28 1 0 48 45 12 27 16 125 50 18
3 29 1 0 56 36 27 28 21 182 126 29
4 30 1 0 43 35 26 14 16 42 53 154
5 31 1 0 42 18 23 16 29 17 43
6 32 1 0 30 15 9 37 28 24 23
7 33 1 0 49 37 3 13 17 43 53 20
8 34 1 0 35 35 13 13 21 4 41 40
9 35 1 1 49 34 15 18 16 12 46 179
10 36 1 1 33 33 11 17 17 102 161 75
11 42 1 0 64 20 13 14 16 2 5 38
12 43 1 0 47 10 11 16 30 34 25
13 44 1 0 32 32 16 17 23 61 97 141
14 45 1 0 43 43 10 17 25 0 17 90
15 46 1 0 23 23 12 8 24 101 112 42
16 47 1 1 57 47 17 12 16 10 153 31
17 48 1 0 61 41 16 15 32 55 156 79
18 49 1 1 58 55 18 16 16 67 90 51
19 106 1 1 25 8 12 16 8 0 74
20 107 1 1 48 38 15 24 43 57 132 33
21 1 -1 0 26 14 9 22 6 24

22 2 -1 0 40 37 17 18 16 136 127

23 3 -1 0 51 48 12 26 16 26 43

24 4 -1 0 49 39 18 10 16 59 100

25 5 -1 0 43 28 13 15 16 9 105

26 6 -1 0 28 27 24 17 30 112 108

27 7 -1 0 46 20 9 12 18 5 88

28 8 -1 0 54 42 10 16 16 54 54

29 9 -1 1 57 53 10 10 16 25 115

30 10 -1 1 28 28 25 19 40 30 147

31 37 -1 0 49 31 22 15 22 102 119
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32 38 -1 0 48 39 6 8 34 97 168
33 39 -1 0 50 6 12 22 46 86
34 40 -1 1 54 40 22 22 16 96 122
35 41 -1 1 40 32 14 9 28 39 101
36 51 -1 0 30 30 28 19 116 7 45
37 53 -1 0 59 56 15 7 16 6 3
38 54 -1 1 62 35 13 19 16 73 42
39 55 -1 0 41 41 28 26 45 72 90
40 100 -1 0 33 26 15 14 16 2 0
*Note:Class: 1: relapser, -1: abstainer; Gender: 0: male; 1: female;
Table s.2.The table of the ranking index (sRI) of relapse risk
for the right VS, right ACC and insula for the 40 alcoholic patients
No. | code Real Right VS Right ACC Insula
class SRI E(sRl)  Predict SRI E(sRI) Predict sRI E(sRI) Predict
1 27 1 0.9726 0.9915 1 1 1 1 0.28 0.3461 -1
2 28 1 0.9407 0.9538 1 0.3926 0.3914 -1 0.92 0.9207 1
3 29 1 0.9998 1 1 0.0969 0.0636 -1 0.9122 0.9168 1
4 30 1 1 1 1 0.7083 0.7116 1 0.9807 0.985 1
5 31 1 0.4939 0.533 -1 0.9907 0.9912 1 0.9617 0.9727 1
6 32 1 0.9239 0.9461 1 0.7117 0.688 1 0.8907 0.8631 1
7 33 1 0.9469 0.943 1 0.9994 0.9998 1 0.7037 0.6505 1
8 34 1 0.6994 0.7059 1 0.9841 0.9871 1 0.9802 0.9882 1
9 35 1 1 1 1 0.8802 0.9121 1 1 1 1
10 36 1 0 0 -1 0.2361 0.186 -1 0.9128 0.8993 1
11 42 1 1 1 1 0.2017 0.1868 -1 0.2509 0.2518 -1
12 43 1 0.9683 0.9933 1 0.8341 0.9232 1 0.3876 0.4334 -1
13 44 1 0.948 0.9306 1 0.7157 0.764 1 0.8226 0.8138 1
14 45 1 0.8633 0.9553 1 0.8333  0.8059 1 0.8807 0.8799 1
15 46 1 1 1 1 0.2126  0.1281 -1 0.7807 0.8251 1
16 47 1 0 0.0003 -1 0.0026  0.0008 -1 0.8672 0.8389 1
17 48 1 0.003 0 -1 0.8002 0.7306 1 0.0448 0.062 -1
18 49 1 0.9846 0.999 1 0.9572 0.9604 1 0.582 0.5107 1
19 106 1 0.2331 0.1583 -1 1 1 1 0.3822 0.4366 -1
20 107 1 0.5194 0.5504 1 0.7852 0.7884 1 0.4963 0.3413 -1
21 1 -1 0.0124 0.0043 -1 0.8709 0.8831 1 0.7841 0.8111 1
22 2 -1 0.2454 0.2719 -1 0.955 0.9243 1 0.538 0.4617 1
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

55

100

=il 0.0039 0.0015 -1
=il 0.082  0.0445 -1
-1 0.2331 0.2038 -1
-1 0.0024 0.002 -1
=il 0.0433 0.0211 -1
-1 0.6031 0.5114 1
-1 0.0202 0.0197 -1
=il 0.1193 0.1547 -1
-1 0.2226 0.1731 -1
-1 0.0024 0.0016 -1
-1 0.163  0.1359 -1
=il 0.8633 0.8846 1
=il 0 0 -1
-1 0.0063 0.0074 -1
-1 1 1 1
=il 0.9946  0.997 1
=il 0.1489 0.1748 -1
-1 0 0 -1

0.3846
0.0041
0.0646

0.2137
0.007
0.2
0.2131
0.0165

0.9994
0.8046
0.3383

0.3996
0
0.9015

0.4043 -1 0.0033 0.0017
0.0006 -1 0.9943 0.9964
0.0664 -1 0.155 0.1586
0 -1 0 0
0.1772 -1 0.952 0.9406
0.0133 -1 0.1304 0.1516
0.2515 -1 0 0
0.217 -1 0.0243 0.026
0.0076 -1 0.7133 0.7636
0 -1 0.0531 0.0966
0.9998 1 0.0557 0.0599
0.8104 1 0.1128 0.0812
0.3751 -1 0.203 0.1737
0 -1 0.3144 0.3082
0 -1 0.8774 0.9127
0.3683 -1 0.7385 0.7391
0 -1 0.0456 0.0201
0.9517 1 0.0437 0.0301

*Note: sRI: the ranking index for subject; E (sRl): the expectation value of ranking index for subject; Predict: predicting response feature of a
ROI for a subject with the rule that if the sRI for that ROl is greater or equal to 0.5 (sR>0.5), the response feature of the ROI for that subject
was classified into class 1 and by contrast, if sRI<0.5, the response feature of the ROI for that subject was classified into class 2.

Figure s.1. The graphs of variation of the average ranking index (aRI) (blue line) and its

corresponding expectation values (E (aRI)) (brown line) during M classifications (M = 450) for
the right ACC (Fig. s.1a) and insula (Fig. s.1b).
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Figure s.2. The ranking for the 480 response patterns of the right ACC to alcohol cues collected
from the 20 relapsers (a) and 20 abstainers (b) (Tables s.1 & s.2).

The response patterns of right ACC of 20 Relapsers The response patterns of right ACC of 20 Abstainers
— r—— — - =

Figure s.3. The ranking for the 480 response patterns of the insula to alcohol cues collected from
the 20 relapsers (a) and 20 abstainers (b) (Tables s.1 & s.2).
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Figure s.4. The response images of the VS, ACC and insula to alcohol-associated cues at the 15"
axial slice (a, b) and 28" sagittal slice (c, d) overlapped on the corresponding structural images
acquired from the 20 relapsers (a, ¢) and 20 abstainers (b, d) (Tables s.1 & s.2) within the first
cue block. Each slice corresponds to each subject. The code of each subject are attached to each

slice.
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Axial view

Subject code: 1

128



Sagittal view

Subject code: 27
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