Abbildungsverzeichnis

1.1	Femtochemie an Metalloberflächen	3
1.2	Prinzip der zeitaufgelösten Spektroskopie an Oberflächen	4
2.1	Mechanismen der Femtochemie an Metalloberflächen	12
2.2	Drei-Niveau-System zur Beschreibung des SFG-Prozesses	14
2.3	Schematische Darstellung des Austauschmodells	19
2.4	Morse-Potential der C–O-Streckschwingung auf $Ru(001)$	20
2.5	Schwingungsmoden von CO/Ru(001) und gasförmigem CO \ldots .	21
3.1	Optisch parametrische Erzeugung von fs-IR-Pulsen (TOPAS)	27
3.2	Pulsformer zur Erzeugung der Aufkonversions-Pulse	28
3.3	Intensitäts-Autokorrelation und Spektrum der verstärkten fs-Pulse	29
3.4	Kreuzkorrelation und Spektrum der fs-IR-Pulse	30
3.5	Spektrum und Kreuzkorrelation typischer Aufkonversions-Pulse	31
3.6	Schematische Darstellung des Photoreaktions-Experiments	32
3.7	Schematische Darstellung des SFG-Experiments	36
3.8	IR-Absorptionsspektrum von $W(CO)_6$ in CCl_4	39
3.9	Prinzip der IR-Frequenz-Eichung	39
3.10	Gitter: Frequenzänderung vs. Pixelzahländerung	40
3.11	Die drei Ebenen der UHV-Apparatur	41
3.12	Thermische Desorptionsspektren von CO auf $Ru(001)$	43
3.13	Thermische Desorptionsspektren von CO auf $O/Ru(001)$	45
3.14	Thermische Desorptionsspektren von H_2 und D_2 auf $Ru(001)$	47
4.1	Prinzip der Breitband-IR-Summenfrequenz-Erzeugung	53
4.2	SFG-Spektren der C–O-Streckschwingung, Bedeckungsabhängigkeit	55
4.3	Bestimmung der CO-Bedeckung	57
4.4	Temperaturabhängigkeit der C–O-Streckschwingung	58
4.5	Temperaturabhängigkeit der Resonanzfrequenz	59
4.6	Relative Frequenzänderung in Abhängigkeit von der Temperatur .	60
4.7	Besetzung der frustrierten Translation von $CO/Ru(001)$	60
4.8	Bedeckungsabhängigkeit C–O-Streckschwingung	61
4.9	SFG-Spektren in Abhängigkeit von der Bedeckung	63
4.10	Bedeckungsabhängigkeit der Resonanzfrequenz und Linienbreite	63

4.11	Integrierte SFG-Intensität in Abhängigkeit von der Bedeckung	65
$5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5$	$v=1\rightarrow 2$ -Anregung der C–O-Streckschwingung \dots $v=0\rightarrow 1$ -Anregung der C–O-Streckschwingung \dots $v=1\rightarrow 2$ -Anregung in Abhängigkeit von der Temperatur \dots $v=1\rightarrow 2$ -Anregung in Abhängigkeit von der chemischen Umgebung $v=1\rightarrow 2$ -Anregung in Abhängigkeit von dem CO-Isotop \dots	69 71 72 75 78
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \end{array}$	Zwei-Phononen-Zustände in Abhängigkeit von der Dispersion SFG-Spektren in Abhängigkeit von der Bedeckung (95 K) $v=1\rightarrow 2$ -Anregung: Abhängigkeit von der IR-Intensität/Bedeckung $v=1\rightarrow 2$ -Anregung: Abhängigkeit von der Bedeckung, Modellierung Mittlerer CO-Abstand in Abhängigkeit von der Bedeckung $v=1\rightarrow 2$ -Anregung in Abhängigkeit von der Umgebung $v=1\rightarrow 2$ -Anregung: Abhängigkeit von der Bedeckung (400 K)	82 84 85 87 89 91 92 94 96
$7.1 \\7.2 \\7.3 \\7.4 \\7.5 \\7.6 \\7.7 \\7.8 \\7.9 \\7.10 \\7.11 \\7.12 \\7.13 \\7.14$	Bedeckungsabhängigkeit der Resonanzfrequenz/Linienbreite SFG-Spektrum der C–O-Streckschwingung bei 340 K Freier Induktionszerfall bei 95 K	$101 \\ 102 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 109 \\ 109 \\ 111 \\ 114 \\ 115 \\ 116 \\ 116 \\ 101 $
 8.1 8.2 8.3 8.4 8.5 8.6 8.7 9.1 9.2 	Vergleich von IV-SFG- und IIV-SFG-Spektren Energiediagramme möglicher IIV-SFG-Prozesse	122 123 125 125 127 127 128 132 133
9.3	Zwei-Temperatur-Modell: Elektronen- und Phononentemperatur .	134

CO/CO_2 -Zwei-Puls-Korrelationen von $CO/O/Ru(001)$	135
DFT: Änderung der Zustandsdichte von Ru(001) bei O-Adsorption	138
CO/CO_2 -Zwei-Puls-Korrelationen (3 ps-Pulse)	139
Mechanismus der CO ₂ -Bildung nach fs-Laseranregung	141
H_2O -Flugzeitspektrum von $H/^{18}O/Ru(001)$	143
H_2/D_2 -Flugzeitspektren von $H(D)/Ru(001)$	146
Fluenzabhängigkeit der H ₂ -Bildung \ldots \ldots \ldots \ldots	147
H_2 -Zwei-Puls-Korrelation von $H/Ru(001)$	148
H_2 - und D_2 -Bildung, Modellierung	149
Bedeckungsabhängigkeit der H ₂ -Ausbeute $\ldots \ldots \ldots \ldots \ldots$	151
	$\begin{array}{llllllllllllllllllllllllllllllllllll$