9 Desorption und Oxidation von CO auf Ru(001)

Dieses Kapitel zeigt anhand der fs-laserinduzierten Desorption bzw. Oxidation von CO auf Ru(001), daß die Anwendung von Kurzpulstechniken in Kombination mit theoretischen Untersuchungen ein mechanistisches Verständnis von Oberflächenreaktionen ermöglicht. Die experimentellen Methoden umfassen Messungen der Flugzeitverteilung, der Zwei-Puls-Korrelation und des Isotopeneffekts desorbierender Reaktionsprodukte. Die theoretischen Berechnungen auf der Grundlage der Dichtefunktionaltheorie wurden von Catherine Stampfl in der Theorie-Abteilung des Fritz-Haber-Instituts durchgeführt. Das Kapitel schließt mit ersten experimentellen Ergebnissen zur fs-laserinduzierten Bildung von Wasser auf Ru(001).

9.1 Einleitung

Die Oxidation von CO auf Ru(001) ist ein gut charakterisiertes Modellsystem [Böt97]. Auf Grund des unterschiedlichen Verhaltens unter Hochdruck- und Ultrahochvakuumbedingungen stellt es ein gutes Beispiel für die häufig angeführte "Drucklücke" dar: Während Ru(001) (innerhalb der Gruppe der Platinmetalle) die CO-Oxidation unter Hochdruckbedingungen am besten katalysiert [Ped86, Ped91], läuft sie im UHV nur sehr langsam oder gar nicht ab [Kos92]. Insbesondere führt die thermische Aktivierung einer Oberfläche, auf der Sauerstoff in Form einer (2×1)-O-Struktur und CO koadsorbiert sind, entsprechend

$$\mathrm{CO}_{\mathrm{ad}} + \mathrm{O}_{\mathrm{ad}} \xrightarrow{k_{\mathrm{B}}T} \mathrm{CO}_{\mathrm{g}} + \mathrm{O}_{\mathrm{ad}}$$

zwischen 200 K und 400 K zur Desorption von CO und anschließend zur rekombinativen Desorption von Sauerstoff oberhalb von 1200 K [Mad75]. Die Oxidation von CO kann jedoch durch Anregung mit 800 nm-120 fs-Laserpulsen ausgelöst werden:

$$2 \operatorname{CO}_{\mathrm{ad}} + \operatorname{O}_{\mathrm{ad}} \xrightarrow{\mathrm{fs}} \operatorname{CO}_{\mathrm{g}} + \operatorname{CO}_{2,\mathrm{g}}$$

Auf diese Weise wird ein neuer Reaktionspfad erschlossen.

Abbildung 9.1: Flugzeitspektren von CO und CO₂ nach Anregung von CO/O/Ru(001) bei 95 K mit 800 nm-110 fs-Laserpulsen. Das Verhältnis der Ausbeuten von CO und CO₂ beträgt 35:1. Die mittleren Translationstemperaturen ergeben sich aus der Anpassung der Verteilung an die Daten (durchgezogene Linien). Die CO₂-Daten wurden der besseren Übersicht wegen nach oben verschoben.

9.2 Ergebnisse und Diskussion

Die Experimente wurden mit Hilfe des in Abschn. 3.2 beschriebenen Aufbaus durchgeführt. Die Oberfläche wurde zunächst mit Sauerstoff belegt $((2 \times 1)-O-$ Bedeckung) und anschließend mit CO über den Hintergrund gesättigt (vgl. Abschn. 3.4.4). In den Experimenten wurde die Oberfläche mit fs-Laserpulsen bestrahlt und die Ausbeute an Reaktionsprodukten mittels eines Massenspektrometers entlang der Oberflächennormalen bestimmt. Abbildung 9.1 zeigt die Flugzeitverteilungen für CO und CO_2 nach Anregung mit 800 nm-110 fs-Laserpulsen. Sie wurden durch Messung der Ausbeute als Funktion der Zeit nach Auftreffen des Laserpulses erhalten. Die Translationstemperaturen $E_{\rm trans}/2k_{\rm B}$ betrugen 640 K und 1600 K für CO bzw. CO₂. Für das Verhältnis der CO- zur CO₂-Ausbeute wurde 35:1 erhalten. Die deutlich höhere Translationsenergie der CO₂-Moleküle gibt einen ersten Hinweis auf die Dynamik der zugrunde liegenden Prozesse. So muß aus Gründen der Energieerhaltung die Bildung von CO_2 mit einem erheblichen Energiegewinn verbunden sein. Dieser wird durch die Form der Potentialhyperfläche bestimmt, auf der die laserinduzierte Reaktion zwischen Sauerstoff und CO abläuft.

Für die Bildung von CO_2 müssen beide Reaktanten auf der Oberfläche koadsorbiert sein (Langmuir-Hinshelwood-Mechanismus). Abbildung 9.2 zeigt die laserinduzierte CO_2 -Ausbeute in Abhängigkeit von der Dauer der CO-Dosis bei $p_{\text{CO}}=3.5\times10^{-8}$ mbar. Hierbei war die Oberfläche mit einer (2×1)-O-Struktur (0.5 ML) vorbelegt (vgl. Abschn. 3.4.4). Als Folge einer höheren CO-Dosis vergrößert sich die CO-Konzentration auf der Oberfläche und entsprechend $R=kc_{\text{CO}}c_{\text{O}}$ auch die Geschwindigkeit der CO₂-Bildung bzw. die CO₂-Ausbeute nach fs-Laseranregung. Die in Abb. 9.2 dargestellte Kurve entspricht einer Langmuirschen Adsorptionsisothermen zur Beschreibung des CO-Adsorptionsverhaltens.

Abbildung 9.2: CO₂-Ausbeute in Abhängigkeit von der CO-Dosis bei 390 K nach Anregung mit 800 nm-110 fs-Pulsen. Dazu wurde, ausgehend von einer (2×1) -O-Struktur, für die angegebenen Zeiten CO dosiert ($p_{\rm CO}=3.5\times10^{-8}$ mbar). Die durchgezogene Linie entspricht einer Langmuirschen Adsorptionsisothermen zur Beschreibung der CO-Adsorption (siehe Text).

9.2.1 Einfluß des Lasers auf die Adsorbatschicht

Eisen und Ruthenium sind in der Industrie als Katalysatoren für die Ammoniakund Fischer-Tropsch-Synthese bekannt [Sac82]. In beiden Reaktionen müssen mit der N≡N- bzw. C≡O-Bindung die stärksten Bindungen gebrochen werden. Bei Adsorption von CO auf einer Ru(001)-Oberfläche finden sich keine Anzeichen einer Dissoziation in die Fragmente C_{ad} und O_{ad}. Um eine fslaserinduzierte Dissoziation von adsorbiertem CO auszuschließen, wurde der mit CO bedeckte Ru(001)-Kristall mit Hilfe von fs-Laserpulsen abgerastert und anschließend ein CO- bzw. O₂-TDS-Spektrum aufgenommen. Die Fläche des CO-TDS- "Peaks" war wegen der laserinduzierten CO-Desorption gegenüber der eines CO-Referenzspektrums verringert. Durch Rekombination von O_{ad}-Fragmenten gebildetes O_2 konnte nicht nachgewiesen werden. Es sei allerdings angemerkt, daß die Empfindlichkeit des CO- bzw. O₂-TDS-Spekrums auf O_{ad}, welches durch Dissoziation von CO gebildet wird, eingeschränkt ist, da bei längeren Experimenten eine signifikante Adsorption von Sauerstoff aus dem Hintergrund erfolgt.¹ Im Rahmen der Nachweisgenauigkeit für O_{ad} stellte die (2×1)-O-Schicht somit die einzige Sauerstoffquelle in den Experimenten zur fs-laserinduzierten CO₂-Bildung dar (vgl. Abschn. 9.2.3).

9.2.2 Zwei-Puls-Korrelation

Nach fs-Laseranregung wird die Anregungsenergie zunächst im elektronischen Subsystem des Substrats gespeichert. Um zwischen den verschiedenen Mechanismen, nach denen die Energie in die Adsorbatfreiheitsgrade fließt, unterscheiden zu können, wurden Zwei-Puls-Korrelations-Experimente durchgeführt. Dabei wurde die CO/O/Ru(001)-Oberfläche mit zwei nahezu isoenergetischen² 800 nm-

 $^{^1 \}rm Der$ Einfluß eines möglichen $\rm C_{ad}$ -Fragmentes auf das CO- bzw. O₂-TDS-Spekrum wurde nicht näher untersucht.

Abbildung 9.3: Zeitverlauf der Elektronen- und Phononentemperatur von Ru nach Absorption von 120 fs-Laserpulsen mit einer Fluenz von 100 J/m^2 nach dem Zwei-Temperatur-Modell. Die Berechnungen wurden für Verzögerungen von 0 und 6 ps durchgeführt(siehe Text).

110 fs-Pulsen, welche zeitlich gegeneinander verzögert wurden, bestrahlt und die CO/CO_2 -Ausbeute als Funktion der Verzögerung gemessen (vgl. Abb. 9.4). Die Beobachtung eines Korrelationssignals für CO und CO₂ im Bereich des Zeitnullpunkts ist eine Konsequenz der nichtlinearen Abhängigkeit der CO- bzw. CO₂-Ausbeute von der eingestrahlten Laserfluenz [Bon99]. Beide Reaktionen können durch ein Potenzgesetz $Y=aF^n$ mit $n=3.5\pm0.5$ beschrieben werden. Das Verzweigungsverhältnis zwischen CO und CO₂ ist somit innerhalb des untersuchten Bereichs von der eingestrahlten Fluenz unabhängig [Fun99, Fun00]. Aus den Zwei-Puls-Korrelations-Messungen können Informationen über die Lebensdauer der Anregung, welche für die CO₂-Bildung verantwortlich ist, erhalten werden. Bei Verwendung zweier Laserpulse mit Pulsenergien von 1.5 mJ heizt der erste Puls, wie in Abb. 9.3 dargestellt,³ die Substratelektronen nahezu instantan auf Temperaturen von ~4000 K auf. Diese kühlen anschließend innerhalb von 1.5 ps als Folge der Gleichgewichtseinstellung mit den Gitterphononen ab. Für Verzöge-

 $^{^2\}mathrm{Das}$ Verhältnis der Pulsenergien in den Experimenten betrug 52:48.

 $^{^3 \}rm Der$ Modellrechnung für Ruthenium liegt die Absorption von 120 fs-Pulsen mit einer max. absorbierten Fluenz von 200 J/m² zugrunde.

Abbildung 9.4: Oben: Prinzip der Zwei-Puls-Korrelation. Unten: Zwei-Puls-Korrelation von CO und CO₂ nach fs-Laseranregung (800 nm, 110 fs) ausgehend von CO/O/Ru(001) bei 95 K und $\langle F^{\text{max}} \rangle \approx 200 \text{ J/m}^2$ zusammen mit dem Ergebnis von Modell-Rechnungen (durchgezogene Linien). Die CO₂-Daten zeigen einen ultraschnellen Verlauf mit einer Halbwertsbreite von 3 ps (FWHM) und lassen sich im Rahmen des elektronischen Reibungsmodells mit $\tau_{\text{el}}=0.5$ ps und $E_{\text{a}}=1.8$ eV beschreiben (siehe Text).

rungen innerhalb dieses "Zeitfensters", welches durch die Kopplungsstärke $\tau_{\rm el-ph}$ ($\tau_{\rm el-ph}\approx300$ fs) zwischen Elektronen und Phononen gegeben ist, kann der zweite Puls den Effekt des ersten Pulses verstärken und die Temperatur der "heißen" Elektronen auf ~6000 K erhöhen (vgl. Abb. 9.3).

Die Zwei-Puls-Korrelation für CO₂ ist in Abb. 9.4 dargestellt. Sie zeigt einen ultraschnellen Verlauf mit einer Halbwertsbreite von 3 ps (FWHM). Diese Zeitskala korreliert mit der der Abkühlung der "heißen" Substratelektronen. Man kann daher annehmen, daß die CO₂-Bildung durch einen elektronenvermittelten Anregungsmechanismus initiiert wird. Andererseits weist die Zwei-Puls-Korrelation für CO (vgl. Abb. 9.4) eine Halbwertsbreite von 20 ps (FWHM) auf. Diese Zeitskala steht im Einklang mit der Lebensdauer der Gitterphononen (vgl. Abschn. 2.1.3). Da sich Phononen und Elektronen auf dieser Zeitskala aber im Gleichgewicht miteinander befinden, reicht der Zeitverlauf der Zwei-Puls-Korrelation alleine nicht aus, um zwischen einem elektronischen und einem phononischen Szenario unterscheiden zu können. Ergebnisse, die im Rahmen von Isotopenexperimenten erhalten wurden, weisen allerdings auf einen phononenvermittelten Anregungs-

mechanismus hin (siehe unten). In Abb. 9.4 sind neben den experimentellen Daten auch die Ergebnisse von Modell-Berechnungen im Rahmen des Reibungsmodells (vgl. Abschn. 2.2.1) dargestellt. Die Zwei-Puls-Korrelation von CO läßt sich durch Ankopplung an die Phononen mit einer Ankopplungszeit von $\tau_{ph}=1$ ps und einer Aktivierungsenergie von $E_a=0.85$ eV (entprechend eines Wertes, der mittels thermischer Desorptionsmessungen erhalten wurde)⁴ beschreiben. Im Bereich des Zeitnullpunkts der beiden Pulse ergibt die Modellrechnung einen Einbruch in der CO-Ausbeute. Dieser ist die Folge eines Einbruchs in der Phononentemperatur und beruht auf der Tatsache, daß der mit der Elektronen-Phononen-Kopplung konkurrierende Wärmetransport in den Festkörper (vgl. Gl. 2.5) mit steigender Elektronentemperatur zunehmend an Bedeutung gewinnt [Fun99].⁵ Die CO_2 -Daten lassen sich im Rahmen des elektronischen Reibungsmodells (vgl. Abschn. 2.2.2) gut beschreiben, d.h. indem die Adsorbatfreiheitsgrade ausschließlich an Substratelektronen angekoppelt werden. Die beste Übereinstimmung mit den experimentellen Daten erhält man bei einer Ankopplungszeit von $\tau_{\rm el}=0.5$ ps und einer O-Aktivierungsenergie von $E_a=1.8$ eV.

9.2.3 Isotopeneffekt

Die Isotopenexperimente wurden in erster Linie ausgeführt, um Einblicke in die Kerndynamik zu erhalten, die der Produktbildung zugrunde liegt. So stellt sich insbesondere hinsichtlich der CO₂-Bildung die Frage, ob der geschwindigkeitsbestimmende Schritt primär auf eine Anregung von adsorbiertem CO oder Sauerstoff zurückzuführen ist. Für die Isotopenexperimente wurde die Oberfläche mit einer 50/50-Mischung von ¹²CO/¹³CO bzw. ¹⁶O/¹⁸O und dem jeweils anderen Reaktionspartner belegt. Anregung des Koadsorbatsystems mit 800 nm-110 fs-Laserpulsen ergab hinsichtlich der CO-Desorption im Rahmen der Meßgenauigkeit keine bevorzugte Produktbildung $(Y(^{12}CO)/Y(^{13}CO)=1.0\pm0.1)$ in Übereinstimmung mit der CO-Desorption von der reinen Oberfläche, für die ebenfalls kein Isotopeneffekt gefunden wurde $(Y(^{12}C^{16}O)/Y(^{13}C^{18}O)=0.97\pm0.1)$. Im Rahmen des Reibungsmodells würde man in einem phononischen Szenario einen vernachlässigbaren Isotopeneffekt von 1.01, in einem elektronischen Szenario hingegen einen Isotopeneffekt von 1.17 erwarten. Ein phononenvermittelter Desorptionsprozeß scheint also das wahrscheinlichere Szenario zu sein.

Auch hinsichtlich der Bildung von CO_2 konnte keine Abhängigkeit der Ausbeute von der CO-Masse beobachtet werden $(Y(^{12}CO)/Y(^{13}CO)=1.0\pm0.1)$. Im Gegensatz dazu wurde eine ausgeprägte Abhängigkeit von der Sauerstoffmasse,

⁴Es handelt sich um einen gemittelten Wert, der unter Berücksichtigung des γ_1 - und γ_2 -"Peaks" erhalten wurde (vgl. Abschn. 3.4.4).

⁵Da die thermische Diffusion der Elektronen proportional zu $T_{\rm el}^2$ ist, die Elektronen-Phononen-Kopplung jedoch linear mit $T_{\rm el}$ geht, nimmt die Krümmung von $T_{\rm el}^2$ gegenüber der von $T_{\rm el}$ und damit auch der Wärmetransport mit zunehmender Energiedichte der Elektronen stärker zu.

d.h. ein Isotopeneffekt von 2.2 ± 0.3 beobachtet. Im Rahmen des elektronischen Reibungsmodells ergibt sich hinsichtlich der O-Anregung ein Isotopeneffekt von 1.6. Die Annahme einer elektronenvermittelten CO₂-Bildung, die auf der Grundlage der Zwei-Puls-Korrelation gemacht wurde, findet auf diese Weise Bestätigung.

Der Isotopeneffekt zeigt des Weiteren, daß die Aktivierung der Ru–O-Bindung den geschwindigkeitsbestimmenden Schritt in der CO₂-Bildung darstellt. Die Breite der CO₂-Zwei-Puls-Korrelation erlaubt es, weitere Rückschlüsse zu ziehen. Die Beschreibung im Rahmen des elektronischen Reibungsmodells liefert eine endliche Kopplungszeit für die Ankopplung der Adsorbatfreiheitsgrade an die Elektronen von $\tau_{el}=0.5$ ps. Für die Reaktion von CO mit einer elektronisch angeregten Sauerstoffspezies würde man hingegen eine deutlich kürzere Kopplungszeit von 1–10 fs⁶ erwarten [Zac88]. Es ist somit anzunehmen, daß die aktivierte Sauerstoffspezies schwingungsangeregt ist und von einem angeregten Schwingungszustand des elektronischen Grundzustandes des Ru–O-Potentials ausgehend mit koadsorbiertem CO reagiert.

Für die Messungen zum Isotopeneffekt war die Vorbehandlung der Oberfläche von Bedeutung. So wurden vor der Messung mehrere Sauerstoff-Adsorptions- und Heizzyklen (vgl. Abschn. 3.4.1) mit einer 50/50-Mischung von ${}^{16}\text{O}_2/{}^{18}\text{O}_2$ durchgeführt. Isotopenexperimente, die am Anfang und während der Vorbereitungsphase durchgeführt wurden, wiesen einen gegenüber dem Endwert von 2.2±0.3 um 0.2 bzw. 0.1 vergrößerten Isotopeneffekt auf. Sie deuten möglicherweise auf einen Beitrag von "subsurface"-Sauerstoff an der CO₂-Bildung hin. Experimente an einer mit ${}^{18}\text{O}_2$ vorbehandelten Oberfläche, aber mit einer (2×1)- ${}^{16}\text{O}$ -Struktur bedeckten Oberfläche, führten zu einem ${}^{18}\text{OC}{}^{16}\text{O}$ -Anteil von ≤10% an der Gesamtausbeute.

9.2.4 Ergebnisse der DFT-Rechnungen

Die im folgenden Abschnitt beschriebenen Ergebnisse von DFT⁷-Rechnungen wurden von Catherine Stampfl in der Theorie-Abteilung des Fritz-Haber-Instituts durchgeführt. Die Berechnungen hatten zum Ziel, den Einfluß einer Sauerstoffbedeckung auf die elektronische Struktur der Ru(001)-Oberfläche zu untersuchen und sind damit für das mechanistische Verständnis der elektronenvermittelten O-Aktivierung von unmittelbarem Interesse.⁸ In Abb. 9.5 ist die Änderung der Zustandsdichte von Ru(001) bei Adsorption von 0.5 ML Sauerstoff ((2×1)-O-Struktur) gegenüber der reinen Oberfläche als Funktion der Energie, bezogen auf die Energie des Fermi-Niveaus, dargestellt. Bei –6 eV entsteht ein Zustand mit bindendem Charakter hinsichtlich der Ru–O-Bindung. Die Verarmung der

 $^{^6 {\}rm entsprechend}$ der typischen Lebensdauer elektronisch angeregter Spezies an Metalloberflächen $^7 {\rm d.h.}$ Dichtefunktionaltheorie

⁸Für Einzelheiten hinsichtlich der Rechnungen sei auf [Bon99, Fun99] verwiesen.

Abbildung 9.5: Anderung der elektronischen Zustandsdichte von $\operatorname{Ru}(001)$ bei Adsorption von 0.5 ML Sauerstoff entprechend einer (2×1)-O-Struktur. Etwa 1.7 eV oberhalb des Fermi-Niveaus entsteht ein antibindender Zustand, dessen Besetzung die Ru–O-Bindung schwächt. Des Weiteren ist die thermische Besetzung bei 400 K und 6000 K nach einer Fermi-Dirac-Funktion dargestellt (siehe Text).

Elektronendichte bei –1 eV geht auf einen nichtbindenden Zustand zurück. Etwa 1.7 eV oberhalb des Fermi-Niveaus entsteht ein Zustand mit antibindendem Charakter. Er deckt einen Energiebereich von ~1.4 eV ab und ist durch eine Knotenlinie in der Elektronendichte zwischen Sauerstoff und Ruthenium charakterisiert. Eine Besetzung dieses Zustands hat somit eine Schwächung der Ru–O-Bindung zur Folge. In Abb. 9.5 wird neben der Änderung der Zustandsdichte die thermische Besetzung bei 400 und 6000 K entsprechend einer Fermi-Dirac-Funktion f(E) gezeigt. Im Gegensatz zu 400 K ist bei 6000 K ein deutlicher Überlapp mit dem antibindenden Zustand der Ru–O-Bindung gegeben und somit eine Schwächung der Ru–O-Bindung zu erwarten.

9.2.5 Abhängigkeit von der Pulslänge

Die Anregung mit fs-Laserpulsen führt zu einer hohen Dichte "heißer" Substratelektronen. Diese ermöglichen einen ultraschnellen Energieaustausch mit den Adsorbatfreiheitsgraden, indem Adsorbatresonanzen transient besetzt werden. So erfolgt z.B. die Bildung von CO₂ innerhalb von 1–2 ps, und somit auf einer Zeitskala, auf der die CO-Desorption⁹ gerade startet [Bon99, Fun99]. Eine Erhöhung der Pulsdauer τ_p auf Werte, bei denen Elektronen und Phononen schon equili-

 $^{^{9}\}mbox{welche}$ mit der CO-Oxidation bzgl. der adsorbierten CO-Moleküle konkurriert

Abbildung 9.6: Zwei-Puls-Korrelation von CO und CO₂ nach ps-Laseranregung (800 nm, 3 ps) ausgehend von CO/O/Ru(001) bei 95 K. Die CO₂-Daten zeigen eine Halbwertsbreite von 16 ps (FWHM) (siehe Text).

briert sind, sollte daher das Verzweigungsverhältnis zugunsten der CO-Desorption verschieben, ein Effekt, der experimentell auch beobachtet wird. Eine Verlängerung der Laserpulse von 130 fs auf 3 ps bzw. 120 ps (bei vergleichbarer absorbierter Laserfluenz) führt zu einer Vergrößerung des Verzweigungsverhältnisses von 35 auf 50 bzw. 81 zugunsten der CO-Desorption.¹⁰ Außerdem vergrößert sich der Isotopeneffekt hinsichtlich der CO_2 -Bildung von 2.2 \pm 0.3 auf 5.5 \pm 0.5, wenn man von 110 fs-Pulsen auf 120 ps-Pulse übergeht. Ein derartig großer Isotopeneffekt ist mit einem phononenvermittelten Anregungsmechanismus nicht vereinbar (vgl. Abschn. 9.2.2). Des Weiteren nimmt die Fluenzabhängigkeit der CO_2 -Ausbeute (Y=Fⁿ) mit steigender Pulsdauer von n=3.5 (110 fs) auf n=1.9 (120 ps) ab, was auf den Ubergang von einem DIMET- zu einem DIET-artigen Prozeß hinweist (vgl. Abschn. 2.2.3). Da die Zunahme der Pulsdauer um einen Faktor 1000 zu einer erheblich verringerten Anregungsdichte an "heißen" Substratelektronen führt, müßte die CO_2 -Bildung in einem solchen Szenario durch "naszente", d.h. nichtthermalisierte Elektronen initiiert werden. Deren Energie $(h\nu=1.5 \text{ eV})$ würde gerade ausreichen, um den antibindenden Zustand der Ru-O-Bindung zu besetzen (vgl. Abb. 9.5). Im weiteren Verlauf der Reaktion würde es dann, entsprechend eines MGR-Prozesses (vgl. Abschn. 2.2.3), zu der Erzeugung einer schwingungsangeregten O-Spezies im elektronischen Grundzustand kommen. Im Rahmen dieses Szenarios würde man daher einen Isotopeneffekt erwarten, da die leichtere Masse bei der Bewegung auf der Potentialfläche des angeregten Zustandes mehr kinetische Energie gewinnt. Eine Abnahme der CO₂-Ausbeute sollte dabei als Folge ansteigender Selektivität zu einer Zunahme des Isotopeneffekts führen. Ein solches Verhalten wurde beim Ubergang von 110 fs-Pulsen auf 120 ps-Pulse auch beobachtet (siehe oben).

In Abb. 9.6 ist die Zwei-Puls-Korrelation von CO und CO_2 bei Anregung mit 3 ps-Pulsen dargestellt. Die CO_2 -Daten zeigen eine Halbwertsbreite von 16 ps.

 $^{^{10}}$ Mit 526 nm-120 ns-Pulsen wird keine nennenswerte Bildung von CO₂ mehr beobachtet.

Für nichtthermalisierte Elektronen würde man eine Zeitskala für die Abkühlung von der Größenordnung der Autokorrelationsbreite der Anregungspulse (4.2 ps) erwarten. Die CO₂-Zwei-Puls-Korrelation weist daher auf einen Beitrag thermalisierter Elektronen an der CO₂-Bildung hin. Dies steht im Einklang mit der Fluenzabhängigkeit der CO₂-Ausbeute bei Anregung mit 3 ps-Pulsen (n=3), da man im Falle eines reinen DIET-Prozesses, d.h. einer Anregung, der ausschließlich nichtthermalisierte Elektronen zugrunde liegen, eine lineare Abhängigkeit (n=1) erwarten würde.

Bei der CO-Desorption bewirkt die Verlängerung der Laserpulse keine nennenswerten Veränderungen hinsichtlich der Zwei-Puls-Korrelationsbreite und Fluenz-Abhängigkeit der Ausbeute. Diese sind, in Übereinstimmung mit einem phononenvermittelten Anregungsmechanismus, primär von der Größe der Aktivierungsenergie abhängig.

Die Tatsache, daß auch mit 130 ps-Pulsen CO_2 gebildet wird, kann nur über eine O-Aktivierung durch "naszente" Elektronen, d.h. nichtthermalisierte Elektronen erklärt werden. Der Beitrag dieser Elektronen an der fs-laserinduzierten CO_2 -Bildung ist bis jetzt noch nicht klar. Eine mögliche Beteiligung könnte allerdings durch Variation der Anregungswellenlänge und Vergleich zwischen fs- und ps-Daten aufgeklärt werden. Es ist zu erwarten, daß sich auf diese Weise auch das Verzweigungsverhältnis zwischen CO-Desorption und Oxidation zugunsten der CO-Oxidation verbessern ließe.

9.2.6 Mechanismus der CO-Oxidation nach fs-Laseranregung

Ausgehend von diesen Ergebnissen, kann auf den folgenden Mechanismus für die Reaktion zwischen CO und koadsorbierten Sauerstoffatomen geschlossen werden: Wie in Abb. 9.7 schematisch dargestellt ist, führt die optische Anregung mit intensiven fs-Laserpulsen zu einer heißen Elektronenverteilung innerhalb des Substrats. Die Elektronen erhalten dabei auf Grund ihrer kleinen Wärmekapazität transient Temperaturen von bis zu 6000 K, entsprechend einer (thermischen) Energie $k_{\rm B}T$ von 0.5 eV. Elektronen aus dem hochenergetischen "Schwanz" einer solch energiereichen Verteilung können nun das antibindende Orbital der Ru–O-Bindung bei 1.7 eV oberhalb des Fermi-Niveaus besetzen. Die transiente Besetzung dieser Adsorbatresonanz führt zu einem Energieaustausch zwischen "heißen" Elektronen und der Ru-O-Bindung und resultiert in einer Schwingungsanregung der Ru-O-Bindung. Der auf diese Weise aktivierte Sauerstoff kann mit koadsorbiertem CO reagieren. Als Folge der hohen O-Bindungsenergie von 4.9 eV bei $\theta_{\rm O}=0.5$ ML wird keine rekombinative Desorption von Sauerstoff beobachtet. Die Reaktion zwischen Sauerstoff und CO hingegen führt zu CO₂-Molekülen mit hoher kinetischer Energie entsprechend den mittleren Translationstemperaturen von etwa 1600 K. Der Grund für diese Überschußenergie wird anhand des Potentialdiagramms¹¹ für

¹¹auf der Grundlage von Standardbildungsenthalpien und Bindungsenergien aus der Literatur

Mechanismus der CO₂ - Bildung auf Ru(001) nach fs-Laseranregung

Abbildung 9.7: Mechanismus der CO₂-Bildung auf Ru(001) nach fs-Laseranregung. Ein fs-Laserpuls erzeugt eine Verteilung "heißer" Substratelektronen, welche durch transiente Besetzung eines antibindenden Orbitals der Ru–O-Bindung eine Schwächung der Bindung herbeiführen und die Reaktion mit koadsorbiertem CO ermöglichen.

 $CO_{ad}+O_{ad}\rightarrow CO_2$ verständlich. Durch die Bildung von thermodynamisch stabilem CO₂ fließt ein Teil des Energiegewinns bei der CO₂-Bildung in die Translationsbewegung. Daneben erfolgt Energietransfer an die Rotations- und Schwingungsfreiheitsgrade. Die Isotopenexperimente weisen darauf hin, daß die Aktivierung der Ru–O-Bindung der geschwindigkeitsbestimmende Schritt bei der CO₂-Bildung ist. Es bietet sich daher an, die Aktivierungsenergie für die CO₂-Bildung auf der Basis der Ru-O-Aktivierung zu bestimmen. Im Rahmen des elektronischen Reibungsmodells erhält man auf der Grundlage der O-Aktivierung eine Aktivierungsenergie von 1.8 eV. Im Folgenden soll dieser Wert mit Ergebnissen von DFT-Rechnungen, welche allerdings von anderen Sauerstoff-Bedeckungen ausgehen, verglichen werden. So wurde für die Aktivierungsenergie der CO₂-Bildung von Alavi et al. ein Wert von 1.4 eV für den Reaktionspfad minimaler potentieller Energie erhalten, indem von einer (2×2) -(CO+O)-Struktur auf Ru(001) ausgegangen wurde [Zha00]. Nach dieser Untersuchung stellt die Aktivierung der stark gebundenen O-Atome den entscheidenden Schritt in der CO₂-Bildung dar, in Ubereinstimmung mit dem experimentellen Ergebnis. Alavi et al. folgern weiter, daß die O-Aktivierung auf der Bewegung eines O-Atoms von einem dreifach koordinierten zu einem verbrückten Adsorptionsplatz und der damit verbundenen Verringerung der Bindungsenergie beruht. Die nachfolgende Reaktion ist dann die Folge einer simultanen Annäherung von O und CO. Geht man von einer (1×1) -O-Struktur mit koadsorbiertem CO in Sauerstoff-Leerstellen aus, erhält man für die CO₂-Bildung nach Stampfl und Scheffler [Sta99] eine Energiebarriere von 1.5 eV.

Entsprechend dieser Studie ist der Reaktionspfad minimaler potentieller Energie im Wesentlichen durch die Bewegung des CO-Moleküls in Richtung O-Atom und einen Übergangszustand mit erheblich geschwächter Ru–O- und Ru–CO-Bindung charakterisiert.

9.3 Ausblick

Wie oben erläutert wurde, stellt die elektronenvermittelte Aktivierung der Ru– O-Bindung den geschwindigkeitsbestimmenden Schritt in der CO_2 -Bildung auf Ru(001) dar. Es stellt sich die Frage, ob dieser Anregungsmechanismus auch bei Reaktion mit anderen Koadsorbaten, wie z.B. Wasserstoff, eine Rolle spielt. Im Folgenden sollen daher erste Ergebnisse zur fs-laserinduzierten Wasserbildung auf Ru(001) vorgestellt werden.

9.3.1 Wasser-Bildung auf Ru(001)

Durch Koadsorption von atomarem Sauerstoff und Wasserstoff und eine anschließende Anregung mit 800 nm-130-fs-Laserpulsen können entsprechend

$$2 \text{ } H_{ad} + O_{ad} \longrightarrow OH_{ad} + H_{ad} \longrightarrow H_2O_{ad} \longrightarrow H_2O_g$$

und

$$2 \operatorname{H}_{\mathrm{ad}} + \operatorname{O}_{\mathrm{ad}} \longrightarrow \operatorname{H}_{2,\mathrm{g}} + \operatorname{O}_{\mathrm{ad}}$$

sowohl Wasser als auch molekularer Wasserstoff gebildet werden. Durch thermische Aktivierung des Koadsorbatsystems im UHV wurde, in Übereinstimmung mit der Literatur [Hrb86], zwar H₂-Bildung, jedoch keine H₂O-Bildung beobachtet.¹² Der Grund dafür ist, daß die Aktivierungsenergie für die rekombinative H₂-Desorption um etwa 27 kJ/mol kleiner ist als für die OH_{ad}-Bildung [Wei96]. Die laserinduzierte Bildung von H₂ erwies sich dabei als wichtiger Konkurrenzkanal zur H₂O-Bildung und wurde separat (ohne O-Vorbedeckung) untersucht (vgl. Kap. 10). Die Bildung von molekularem Sauerstoff hingegen wurde bei θ_{O} =0.5 ML nicht beobachtet. Im Folgenden sollen vorläufige Ergebnisse zur fslaserinduzierten Bildung von H₂O vorgestellt werden. Dabei würde man in Analogie zur CO-Oxidation erwarten, daß die O-Aktivierung den geschwindigkeitsbestimmenden Schritt bei der Bildung von H₂O darstellt.

Untersuchungen zur H₂O-Bildung an Oberflächen werden durch den Umstand erschwert, daß die Bildung des Reaktionsproduktes durch Desorption von Wasser, welches über den Hintergrund adsorbiert wurde, vorgetäuscht werden kann. Die Experimente wurden daher unter Verwendung von ¹⁸O durchgeführt. H₂ wurde über den Hintergrund angeboten.

¹²Andererseits konnte H₂O durch Reaktion von O_{ad} mit atomarem H gebildet werden [Wei96].

Abbildung 9.8: Flugzeitverteilung von $H_2^{18}O$ nach Anregung mit 800 nm-120 fs-Laserpulsen, ausgehend von $H/^{18}O/Ru(001)$ bei 95 K. Die mittlere Translationstemperatur ergibt sich aus einer Anpassung einer Verteilung an die Daten (durchgezogene Linie).

In Abb. 9.8 ist die Flugzeitverteilung von H_2O nach Anregung mit 800 nm-120 fs-Pulsen ausgehend von $H/^{18}O/Ru(001)$ bei 95 K dargestellt. Die Oberfläche wurde durch Adsorption von ${}^{18}O_2$ bei 600 K und anschließende Sättigung mit H₂ über den Hintergrund präpariert. Die ¹⁸O-Bedeckung wurde mittels CO-TDS zu $\theta_{\rm O}{=}0.6~{\rm ML}$ bestimmt (vgl. Abb. 3.13).¹³ Die Bildung von ${\rm H}_2^{18}{\rm O}$ war nur in Gegenwart beider Reaktanden an der Oberfläche möglich (Langmuir-Hinshelwood-Mechanismus): So nahm die H_2^{18} O-Ausbeute in aufeinander folgenden Experimenten, nach Schließen des H₂-Leckventils, kontinuierlich ab. Die Erhöhung der Oberflächentemperatur von 95 K auf 300 K führte zum Verschwinden des H¹⁸₂O-Signals. Die Ursache hierfür dürfte in der thermischen Desorption von H_2 liegen.¹⁴ Die gebildeten H_2^{18} O-Moleküle besitzen eine mittlere Translationstemperatur von etwa 600 K.¹⁵ Da die Wasser-Bildung mehrere Elementarschritte beinhaltet, besitzt die Translationstemperatur der H¹⁸₂O-Moleküle nur eine eingeschränkte Aussagekraft. Der Vergleich mit der mittleren Translationstemperatur von Wassermolekülen, die über den Hintergrund adsorbiert wurden und unter vergleichbaren Bedingungen angeregt worden sind, weist allerdings darauf hin, daß ein Teil der Energie, der bei der Reaktion zwischen O_{ad} und H_{ad} frei wird, an das gebildete Wasser abgegeben wird. Erste Zwei-Puls-Korrelations-Messungen zur Wasserbildung, ausgehend von O_{ad} und H_{ad}, sind durch ein Abklingverhalten mit zwei Zeitkonstanten $\tau_1=2$ ps und $\tau_2=30$ ps charakterisiert und weisen somit zumindest auf einen Beitrag elektronenvermittelter Anregungsprozesse zur H₂O-Bildung hin. Mit Hilfe weiterer Zwei-Puls-Korrelations-Experimente und durch Isotopenexperimente wird es in näherer Zukunft möglich sein, detailliertere Einblicke in den Mechanismus der fs-laserinduzierten Wasser-Bildung auf Ru(001) zu erhalten.

 $^{^{13}\}text{Es}$ sei angemerkt, daß die Adsorption von Wasserstoff bei $\theta_{\rm O}{=}0.5$ ML entsprechend früherer Untersuchungen vollständig unterdrückt wird [Hrb86].

¹⁴Entsprechend früherer Untersuchungen [Hrb86] ist zumindest für O-Vorbedeckungen zwischen 0.4 ML und 0.54 ML keine H₂-Adsorption bei 300 K möglich.

 $^{^{15}\}mathrm{Zur}$ Anregung wurden 120 fs-Pulse mit einer Fluenz von etwa 150 J/m² verwendet.

Wie sich in diesen Ergebnissen zur Wasser-Bildung andeutet und in den Ergebnissen zur CO₂-Bildung gezeigt hat, scheinen elektronenvermittelte Oberflächenreaktionen auf Ru(001) von allgemeinerer Bedeutung zu sein. Ein weiteres Beispiel für diesen Anregungsmechanismus stellen die Ergebnisse zur fs-laserinduzierten H₂- bzw. D₂-Bildung dar, die im folgenden Kapitel vorgestellt werden.