Ultraschnelle Reaktionsdynamik und Schwingungsspektroskopie an Oberflächen

Im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin eingereichte Dissertation

> von Christian Hess aus Heidelberg

> > April 2001

Ultraschnelle Reaktionsdynamik und Schwingungsspektroskopie an Oberflächen

Im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin eingereichte Dissertation

> von Christian Hess aus Heidelberg

> > April 2001

Meinen Eltern

Zusammenfassung

Anhand der Bildung von CO_2 , H_2 und der Desorption von CO von Ru(001)wurde gezeigt, daß es durch Anwendung von Methoden der Ultrakurzpuls-Laserspektroskopie möglich ist, ein mechanistisches Verständnis chemischer Reaktionen an Metalloberflächen zu erlangen. Die experimentellen Methoden schlossen die Messung von Flugzeitspektren, Zwei-Puls-Korrelationen, Isotopeneffekte und Schwingungsspektren der Reaktionsprodukte nach Anregung mit Femtosekunden- (fs) Laserpulsen (800 nm) ein.

Die fs-laserinduzierte CO_2 - und H_2 -Bildung werden durch photoangeregte, "heiße" Substratelektronen ausgelöst. Auf diese Weise können neue Reaktionswege erschlossen werden, welche durch einen ultraschnellen Verlauf der Zwei-Puls-Korrelation mit einer vollen Halbwertsbreite von 3 ps bzw. 1 ps, Isotopeneffekte von 2.2 bzw. 9, und Translationstemperaturen der Reaktionsprodukte von 1600 K bzw. 2300 K für CO_2 und H_2 charakterisiert sind.

Die oberflächensensitive Methode der Breitband-IR-Summenfrequenz-Erzeugung (SFG) wurde verwendet, um die Dynamik der C–O-Streckschwingung von CO/Ru(001) zu studieren. Die Methode erwies sich als sehr empfindlich, so daß es möglich war, CO-Bedeckungen kleiner 0.001 ML nachzuweisen. Auf diesem Wege konnte die C–O-Streckschwingung (nahezu) isolierter CO-Moleküle untersucht werden. Durch intensive IR-Anregung (Sättigung) der Fundamentalen konnte der erste (v=1) und zweite (v=2) angeregte Schwingungszustand der C– O-Streckschwingung besetzt und der $v=1\rightarrow 2$ - und $v=2\rightarrow 3$ -Übergang neben der Fundamentalen simultan beobachtet werden. Die Dissoziationsenergie der C–O-Bindung ergab sich zu 9.1±0.1 eV.

Der $v=1\rightarrow 2$ -Übergang erwies sich als empfindlicher Indikator für die Lokalisierung von Schwingungsenergie. So führte eine graduelle Zunahme der Adsorbat-Adsorbat-Wechselwirkungen (als Folge zunehmender CO-Bedeckung) zur Delokalisierung der Schwingungsenergie innerhalb der Adsorbatschicht und zum Verschwinden des $v=1\rightarrow 2$ -Übergangs bei $\theta_{\rm CO}=0.025$ ML (95 K). Die Anwendung eines Austauschmodells ermöglichte es, Einblicke in die Dynamik des Delokalisierungsprozesses zu gewinnen, indem das Ausmaß der Delokalisierung als Lebensdauer der $v=1\rightarrow 2$ -Anregung an einem CO-Oszillator interpretiert wurde.

Mittels zeitaufgelöster Pump/SFG-Probe-Experimente war es möglich, die Dynamik der C–O-Streckschwingung von CO/Ru(001) direkt in der Zeitdomäne mitzuverfolgen. Dazu wurden Schwingungsspektren der C–O-Streckschwingung in Abhängigkeit von der Verzögerung zwischen Pump- und Probepuls aufgenommen. Nach Anregung mit 800 nm-110 fs-Pulsen (55 J/m²), welche zur Desorption von CO führen, erfolgte eine starke transiente Rotverschiebung und Linienverbreiterung. Diese gehen auf die anharmonische Kopplung der C–O-Streckschwingung an die frustrierte Translation und Rotation, welche unter diesen Anregungsbedingungen stark angeregt werden, zurück.

Abstract

A mechanistic understanding of the surface femtochemistry leading to the formation of CO_2 , H_2 and the desorption of CO from a Ru(001) single crystal surface is obtained by application of a variety of experimental methods. Among these are measurements of the translational energy distributions, two-pulse-correlations, isotope effects, and vibrational spectra of the reaction products after excitation with near-infrared (800 nm) femtosecond laser pulses.

It is demonstrated that both the formation of CO_2 and of H_2 are initiated by an electron-mediated excitation mechanism leading to novel reaction pathways only accessible via excitation with femtosecond laser pulses. The observed characteristics are an ultrafast response of the two-pulse-correlation with a full width at half maximum of 3 ps and 1 ps, pronounced isotope effects of 2.2 and 9, and high translational temperatures of the reaction products of 1600 K and 2300 K for CO_2 and H_2 , respectively.

The nonlinear optical technique of broadband-IR sum-frequency generation (SFG) spectroscopy is found to be a highly sensitive and surface-specific method. The C–O stretch vibration of CO/Ru(001) can therefore be studied at CO coverages even below 0.001 ML. The high intensity and the use of broadband-IR pulses lead to a strong excitation (saturation) of the fundamental transition $(v=0\rightarrow1)$ and make it possible to simultaneously observe the fundamental and subsequent hot-band transitions $(v=1\rightarrow2 \text{ and } v=2\rightarrow3)$ at conditions where lateral interactions are negligible. From the anharmonicity the dissociation energy of the C–O bond is determined to be $9.1\pm0.1 \text{ eV}$.

The $v=1\rightarrow 2$ hot-band transition serves as a sensitive indicator for vibrational energy localization. With increasing coverage the lateral interactions (dipoledipole coupling) between the adsorbed molecules, and therefore the delocalization of vibrational energy, increases and leads to the disappearance of the hot band at a coverage of 0.025 ML at 90 K. Thus, the transition from local oscillators to delocalized phonons is observed directly by changing the CO coverage. This behavior can be described by a modified exchange model with residence times of the hot-band excitation on a single oscillator down to 2.5 ps.

The technique of broadband-IR SFG spectroscopy has also been applied to study the dynamics of the C–O stretch vibration under conditions of laser-induced desorption of CO. A large transient redshift and a broadening of the resonance is observed after excitation with 110 fs laser pulses at 800 nm. This originates from anharmonic coupling of the C–O stretch vibration to the frustrated translation and rotation that are highly excited under these excitation conditions.

PACS

82.65.+r; 78.47.+p; 68.35.Ja

Die vorliegende Arbeit wurde in der Zeit von April 1998 bis April 2001 am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin in der Arbeitsgruppe von Herrn Prof. Dr. Martin Wolf unter der Leitung von Herrn Prof. Dr. Gerhard Ertl erstellt.

Gutachter:
 Gutachter:

Prof. Dr. G. Ertl Prof. Dr. E. Illenberger

Die Disputation fand am 15.06.2001 statt.

Inhaltsverzeichnis

1 Einleitung			1
1.1	Motiv	ation	1
	1.1.1	Heterogene Katalyse	1
	1.1.2	Femtochemie an Metalloberflächen	3
1.2	Gegen	stand der Arbeit	5
Мо	delle u	nd theoretische Grundlagen	7
2.1	Wechs	selwirkung von fs-Laserpulsen mit Metalloberflächen	7
	2.1.1	Optische Anregung	8
	2.1.2	Optische Eindringtiefe und Absorption	8
	2.1.3	Zwei-Temperatur-Modell	9
2.2	Adsor	batankopplung	10
	2.2.1	Reibungsmodell	10
	2.2.2	Modell der elektronischen Reibung	11
	2.2.3	DIET und DIMET	13
2.3	Schwi	ngungsspektroskopie	14
	2.3.1	Grundlagen der Summenfrequenz-Erzeugung	14
	2.3.2	Schwingungsdynamik	16
	2.3.3	Dipol-Dipol-Kopplung	18
	2.3.4	Austauschmodell	18
	2.3.5	C–O-Streckschwingung auf $\operatorname{Ru}(001)$	20
Exp	erimen	telles	23
3.1	Lasers	system	23
	3.1.1	Erzeugung der fs-Laserpulse	23
	3.1.2	Verstärkung der fs-Laserpulse	25
	3.1.3	Erzeugung der fs-IR-Pulse	26
	3.1.4	Pulsformer	28
	215	Charakterisierung der verwendeten Laserpulse	29
	0.1.0		40
3.2	Photo	reaktions-Experimente	$\frac{29}{31}$
3.2	9.1.5 Photo 3.2.1	Messung der Flugzeit	23 31 32
3.2	9.1.9 Photo 3.2.1 3.2.2	Messung der Flugzeit Auswertung der Flugzeitspektren	31 32 33
	 Einl 1.1 1.2 Mod 2.1 2.2 2.3 Exp 3.1 	Einleitung 1.1 Motiv 1.11 1.1.1 1.12 1.1.2 1.2 Gegen Modelle un 2.1 Wechs 2.1.1 2.1.2 2.1.3 2.2 2.1.3 2.2 2.1.4 2.2.2 2.2.3 2.3.3 2.3 Schwith 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 Experimen 3.1 Lasers 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.5	Einleitung 1.1 Motivation 1.1.1 Heterogene Katalyse 1.1.2 Femtochemie an Metalloberflächen 1.2 Gegenstand der Arbeit Modelle und theoretische Grundlagen 2.1 Wechselwirkung von fs-Laserpulsen mit Metalloberflächen 2.1.1 Optische Anregung 2.1.2 Optische Eindringtiefe und Absorption 2.1.3 Zwei-Temperatur-Modell 2.2 Adsorbatankopplung 2.2.1 Reibungsmodell 2.2.2 Modell der elektronischen Reibung 2.2.3 DIET und DIMET 2.3 Schwingungsspektroskopie 2.3.1 Grundlagen der Summenfrequenz-Erzeugung 2.3.2 Schwingungsdynamik 2.3.3 Dipol-Dipol-Kopplung 2.3.4 Austauschmodell 2.3.5 C–O-Streckschwingung auf Ru(001) Xi.1 Erzeugung der fs-Laserpulse 3.1.1 Erzeugung der fs-Laserpulse 3.1.2 Verstärkung der fs-Laserpulse 3.1.3 Erzeugung der fs-Laserpulse 3.1.4 Pulsformer 3.1.4 Pulsformer <

		3.2.4 Zwei-Puls-Korrelations-Messung	5
	3.3	SFG-Experiment	6
		3.3.1 Aufbau des SFG-Experiments	6
		3.3.2 Spektrale und zeitliche Auflösung	8
		3.3.3 Frequenz-Eichung	8
	3.4	Ultrahochvakuum-Apparatur	0
		3.4.1 $\operatorname{Ru}(001)$ -Oberfläche	2
		3.4.2 Verwendete Gase	3
		3.4.3 Das Adsorbatsystem $CO/Ru(001)$ 4	3
		3.4.4 Das Adsorbatsystem $CO/O/Ru(001)$ 4	4
		3.4.5 Das Adsorbatsystem $H/Ru(001)$ 4	6
	3.5	Fehlerbetrachtung	7
		3.5.1 Resonanzfrequenzen	7
		3.5.2 Hintergrundadsorption	8
4	SFG	-Spektroskopie der C–O-Streckschwingung 5	1
	4.1	Einleitung	1
	4.2	Ergebnisse und Diskussion	2
		4.2.1 Prinzip der Breitband-IR-SFG-Spektroskopie	2
		4.2.2 Empfindlichkeit der Breitband-IR-SFG-Spektroskopie 5	4
		4.2.3 Temperaturabhängigkeit der C–O-Streckschwingung 5	9
		4.2.4 Bedeckungsabhängigkeit der C–O-Streckschwingung 6	1
	4.3	Zusammenfassung	5
5	Anr	egung heißer Banden der C–O-Streckschwingung 6	7
	5.1	Einführung und Stand der Forschung 6	$\overline{7}$
	5.2	Ergebnisse und Diskussion	9
		5.2.1 Abhängigkeit von der IR-Intensität	9
		5.2.2 Abhängigkeit von der Zentralfrequenz der IR-Pulse 7	1
		5.2.3 Abhängigkeit von der Temperatur	2
		5.2.4 Abhängigkeit von der chemischen Umgebung 7	4
		5.2.5 Abhängigkeit von dem CO-Isotop	8
	5.3	Zusammenfassung und Ausblick	9
6	Delo	okalisierung von Schwingungsenergie der C–O-Streckschwingung 8	1
	6.1	Einführung und Stand der Forschung 8	1
	6.2	Ergebnisse und Diskussion	3
		6.2.1 Abhängigkeit von der Bedeckung und IR-Intensität 8	3
		6.2.2 Modellierung der Bedeckungsabhängigkeit 8	7
		6.2.3 Abhängigkeit von dem CO-Isotop 9	0
		6.2.4 Temperaturabhängigkeit	2
		6.2.5 Bestimmung der Dispersionsbreite	3
	6.3	Zusammenfassung und Ausblick	7

iii

7	Zeit	aufgelöste Schwingungsspektroskopie von CO/Ru(001)	99
	7.1	Einleitung und Stand der Forschung	99
	7.2	Zeitaufgelöste Summenfrequenz-Erzeugung	100
	7.3	Ergebnisse und Diskussion	100
		7.3.1 SFG-Spektroskopie der C–O-Streckschwingung	100
		7.3.2 Freier Induktionszerfall der C–O-Streckschwingung	102
		7.3.3 Schwingungsdynamik der C–O-Streckschwingung	105
		7.3.4 Schwingungsdynamik unter Desorptionsbedingungen	108
		7.3.5 Modellierung und Interpretation	113
	7.4	Zusammenfassung und Ausblick	118
8	IR-I	R-VIS-Summenfrequenz-Erzeugung von CO/Ru(001)	119
	8.1	Einleitung und Motivation	119
	8.2	Experimentelles	120
	8.3	Ergebnisse und Diskussion	121
		8.3.1 Vergleich von IR-VIS-SFG und IR-IR-VIS-SFG	121
		8.3.2 Abhängigkeit von der Zentralfrequenz der IR-Pulse	125
		8.3.3 Abhängigkeit von der Temperatur	126
		8.3.4 Abhängigkeit von der Bedeckung	126
	8.4	Zusammenfassung und Ausblick	129
•	Doc	orption und Oxidation von CO auf Ru(001)	121
9	Des		121
9	9.1	Einleitung	131
y	9.1 9.2	Einleitung Ergebnisse und Diskussion	131 132
y	9.1 9.2	Einleitung	131 132 133
y	9.1 9.2	EinleitungErgebnisse und DiskussionErgebnisse und Diskussion9.2.1Einfluß des Lasers auf die Adsorbatschicht9.2.29.2.2Zwei-Puls-Korrelation	131 132 133 133
9	9.1 9.2	EinleitungErgebnisse und Diskussion9.2.1Einfluß des Lasers auf die Adsorbatschicht9.2.2Zwei-Puls-Korrelation9.2.3Isotopeneffekt	131 132 133 133 136
9	9.1 9.2	EinleitungErgebnisse und Diskussion9.2.1Einfluß des Lasers auf die Adsorbatschicht9.2.2Zwei-Puls-Korrelation9.2.3Isotopeneffekt9.2.4Ergebnisse der DFT-Rechnungen	131 132 133 133 136 137
9	9.1 9.2	EinleitungErgebnisse und Diskussion9.2.1Einfluß des Lasers auf die Adsorbatschicht9.2.2Zwei-Puls-Korrelation9.2.3Isotopeneffekt9.2.4Ergebnisse der DFT-Rechnungen9.2.5Abhängigkeit von der Pulslänge	131 132 133 133 136 137 138
9	9.1 9.2	EinleitungErgebnisse und Diskussion9.2.1Einfluß des Lasers auf die Adsorbatschicht9.2.2Zwei-Puls-Korrelation9.2.3Isotopeneffekt9.2.4Ergebnisse der DFT-Rechnungen9.2.5Abhängigkeit von der Pulslänge9.2.6Mechanismus der CO-Oxidation nach fs-Laseranregung	131 132 133 133 136 137 138 140
9	9.1 9.2 9.3	EinleitungErgebnisse und Diskussion9.2.1Einfluß des Lasers auf die Adsorbatschicht9.2.2Zwei-Puls-Korrelation9.2.3Isotopeneffekt9.2.4Ergebnisse der DFT-Rechnungen9.2.5Abhängigkeit von der Pulslänge9.2.6Mechanismus der CO-Oxidation nach fs-LaseranregungAusblick	131 132 133 133 136 137 138 140 142
y	9.1 9.2 9.3	Einleitung	131 132 133 133 136 137 138 140 142 142
9	9.1 9.2 9.3 Rek	Einleitung	131 132 133 133 133 136 137 138 140 142 142 142
9 10	9.1 9.2 9.3 9.3 Rek 10.1	Einleitung	131 132 133 133 136 137 138 140 142 142 142 145
9 10	9.1 9.2 9.3 9.3 Rek 10.1 10.2	Einleitung	131 132 133 133 133 136 137 138 140 142 142 142 145 145 146
9 10	9.1 9.2 9.3 Rek 10.1 10.2	Einleitung	 131 132 133 133 136 137 138 140 142 142 142 145 146 146
9 10	9.1 9.2 9.3 Rek 10.1 10.2	Einleitung	131 132 133 133 136 137 138 140 142 142 142 145 146 146 147
9 10	9.1 9.2 9.3 Rek 10.1 10.2	Einleitung	131 132 133 133 136 137 138 140 142 142 142 145 146 146 147 150
9	9.1 9.2 9.3 9.3 Rek 10.1 10.2	Einleitung	131 132 133 133 136 137 138 140 142 142 142 145 146 146 147 150 151

11 Zu	isamm	enfa	ssung
-------	-------	------	-------

Literaturverzeichnis	159
Abbildungsverzeichnis	169
Tabellenverzeichnis	172

Danksagung

Zunächst möchte ich mich bei allen, die zur Entstehung dieser Arbeit beigetragen haben, herzlich bedanken.

Mein besonderer Dank gilt

Herrn Prof. Ertl für die Möglichkeit, das faszinierende Gebiet der Ultrakurzpuls-Spektroskopie an Oberflächen kennenzulernen, und für sein Interesse am Fortgang dieser Arbeit sowie die äußerst großzügige Unterstützung. Die hervorragenden Arbeitsbedingungen in seiner Abteilung trugen ganz wesentlich zum Gelingen dieser Arbeit bei.

Herrn Prof. Wolf für seine intensive Betreuung, viele Anregungen und fruchtbare Diskussionen sowie die Möglichkeit, eigene Ideen zu verwirklichen.

Herrn Prof. Illenberger für die Begleitung und Begutachtung dieser Dissertation.

Mischa Bonn, Daniel Denzler und Stephan Funk für die freundschaftliche und produktive Zusammenarbeit, viele nützliche Hilfen bei der Bewältigung alltäglicher Probleme und zahlreiche Diskussionen über Wissenschaftliches und Nichtwissenschaftliches.

Jim Miners für die gute und tatkräftige Zusammenarbeit.

allen Mitgliedern der Arbeitsgruppe, Christian Frischkorn, Juliane Fry, Cornelius Gahl, Tobias Hertel, Arthur Hotzel, Kunie Ishioka, Gunnar Moos, Hendrik Ulbricht, Dusan Velic und Qun Zhong, für die freundschaftliche Zusammenarbeit und Hilfsbereitschaft.

Catherine Stampfl und Bo Persson sowie Huib Bakker, Tony Heinz und Minhaeng Cho für die erfolgreiche Kooperation.

allen MitarbeiterInnen der Abteilung, der Werkstätten, des Elektroniklabors, von PP&B, der Verwaltung und des Sekretariats für die gewährte Unterstützung.

meinen Freunden und meiner Familie, insbesondere meinem Bruder Stephan, für die unschätzbare Unterstützung.

Lebenslauf

Persönliche Angaben

Name	Christian Hess
Geburtstag	25.02.1972
Geburtsort	Heidelberg
Eltern	Bärbel und Peter Hess

Schulbildung

1978 bis 1982	Mönchhof-Grundschule in Heidelberg
1982 bis 1991	Bunsen-Gymnasium in Heidelberg
21.06.1991	Allgemeine Hochschulreife
09.1991 bis 09.1992	Zivildienst in Heidelberg im Bereich der individuellen Schwerstbehindertenbetreuung

Weitere Ausbildung

09.1992 bis 10.1994	Grundstudium der Chemie an der Julius-Maximilians-Uni-
	versität Würzburg
26.10.1994	Vordiplom
11.1994 bis 03.1995	Forschungsaufenthalt an der Universität Cambridge, Groß-
	britannien, in der Arbeitsgruppe von Herrn Prof. D.A. King
04.1995	Beginn des Hauptstudiums der Chemie an der Georg-Au-
	gust-Universität Göttingen
1997	Diplomarbeit in der Arbeitsgruppe von Herrn Prof. J. Troe.
	Thema: "Entwicklung und Einsatz von Breitband-Detek-
	tionsmethoden in der fs-Pump-Probe-Spektroskopie"
06.02.1998	Diplom
04.1998	Beginn der Dissertation am Fritz-Haber-Institut der Max-
	Planck-Gesellschaft in Berlin unter der Leitung von Herrn
	Prof. G. Ertl und Herrn Prof. M. Wolf