

7 Conclusions and Future Work

7.1 Good algorithmic animations

Right at the beginning of The Visual Display of Quantitative Information Edward
R. Tufte summarizes his rules for graphical excellence. This thesis is concerned
also with graphical quality, but first and foremost, with algorithmic animation
excellence. The difference is important: while Tufte only needs to consider rules
for the esthetic and efficient display of static data, we are confronted with the
more challenging problem of representing movement, changes, and individual
steps of algorithms, that is, dynamics [Foley 86]. However, we can paraphrase
Tufte’s original rules, adapting them to the problem of algorithmic animation
[Tufte 83]. What we obtain is a useful set of heuristic rules which can be found
fully developed or just implicit in some sections of this thesis. Tufte’s modified
rules (my modifications are highlighted using italics) are now:

Excellence in algorithmic animation consists of complex ideas communicated
with clarity, precision, and efficiency. Algorithmic animation should

- show the data transformations
- induce the viewer to think about the substance rather than about methodol-

ogy, graphic design, the technology of rendering, or something else
- avoid distorting what the algorithm has to say
- present many steps in small space
- make large data sets coherent
- encourage the eye to compare different algorithm steps
- reveal the algorithm at several levels of detail, from a broad overview to the

fine structure
- serve a reasonable clear purpose: description, exploration, learning or deco-

ration
- be closely integrated with the verbal descriptions of the algorithm.

The animations discussed in this thesis try to put the spotlight on all data trans-
formations, using explicit movement of data objects or highlighting them. The
idea is always to convey the essence of an algorithm to the viewer, making her or
him concentrate in the most important operations. The scripting language can deal
with small and with large data sets. Small data sets were used extensively in the

Conclusions 191

Flash animations. Large data sets were handled as examples with E-Chalk Anima-
tor. The animations try to guide the eye of the observer, connecting a view of the
pseudocode with views and overlays of the data. Algorithm steps can be reviewed,
either by rerunning the algorithm or by letting it execute backwards. The algo-
rithmic animation tools described in this thesis serve the main purpose of teaching
students about such algorithms, and both E-Chalk Animator and Flashdance can
be enhanced with sound and verbal descriptions.

The scripting language is a general purpose animation tool, and, of course, it can
be misused. Bad animations can still be produced with the best animation engine
available, in the same way that a blackboard can be used to give bad or good lec-
tures. The animation engine is a clean slate in which the algorithm animator can
imprint his or her understanding of an algorithm. The best animations, as ex-
plained in Chapter 3, are those in which the mental data structures proposed by
the algorithm correspond best to the algorithms data structures. Or to put it in the
words of Bertin: “The entire problem is one of augmenting this natural intelli-
gence (of the user, ME) in the best possible way, of finding the artificial memory
that best supports our natural means of perception” [Bertin 83].

I have tried to follow the principles for good algorithmic animations discussed in
Chapter 3 and summarized above in Tufte’s words. It is interesting to know how
others have applied my animation tools, as described in the next section.

7.2 Evaluation of algorithmic animations

The algorithmic animations developed with Chalk Animator and Flashdance have
been used in the classroom. The handcrafted animations presented in Chapter 3,
have been also used for teaching algorithms and data structures at the Technische
Fachhoschule Berlin and at the Technische Fachhochschule Kiel.

From our discussion in Chapters 2 and 3, about the value and impact of algo-
rithmic animations, it should be clear that algorithmic animations can be used in
two different settings. In the intructivist framework, the information for the stu-
dents is arranged and digested in order to give it a form easy to grasp and remem-
ber later. Chalk Animator and Flashdance can be used in this framework. The
first, especially, is geared towards teaching in the classroom, while Flashdance
animations are suited for delivery through the Internet.

In the constructivist framework, students learn the material but they also learn to
build their own representations. By experimenting, they construct an internal
model which is arguably superior to a model provided from outside. Learning by
doing is the strategy proposed by constructivists.

192 Conclusions

I applied partially the constructivist approach during an Algorithms and Data
Structures course at the Fachhochschule Kiel in the winter term 2003. For exam-
ple, the animations presented in Chapter 6 were tested intensively by my students.
The Flashdance animation language is so simple, that as an experiment, I let stu-
dents in Kiel develop their own animations as part of the homework. Groups of
two students wrote C programs and produced the animations described in what
follows.

Heapsort

The animation produced by the students is rather complex. The C code is visible
on the right window in Figure 7.1. The visualization of the heap is the classical
one, as binary tree. The array being sorted is visible below. Four numbers at the
end of the array have already been sorted. Unfortunately, the animation does not
highlight these sorted numbers using another color, for example, green. The in-
struction being executed is highlighted with white. The specific function being
called is shown with additional text at the bottom of the left display.

Figure 7.1 Student produced animation of Heapsort.

This animation is a good example of what students taking a first programming
course can produce after a single lecture in which Flashdance was introduced.

Conclusions 193

Sieve of Erathostenes

The next example is an animation of the classical sieve of Erathostenes algorithm
(Figure 7.2). The students decided to represent numbers by their position in an
array, and each element by a rabbit, which falls from the array when “touched” by
an index jumping along the array with steps of length 2, 3, 5, etc. In this particular
animation, the number of data points is very limited. It would have been probably
better to use a larger array, representing the data by single points. The C code is
small, it is highlighted while being executed and the fall of the rabbits makes for
an interesting animation. The color of the background has been poorly chosen, but
it can be modified by the user while running the animation.

Figure 7.2 Student produced animation of Erathostenes’ sieve.

Selection Sort

This animation looks good on the screen (Figure 7.3). The students animated dif-
ferent actions using different speeds, and the color code is explained below the
array being sorted. The C code is highlighted while being executed. If the students
had used smaller spheres, more data could have been shown.

These few examples show that students are able to make creative use of the script-
ing language after a short introduction in class. My experience was that the stu-
dents became more involved with their assignment, once they could see the algo-
rithm running. The students worked many hours on their projects and this in a
class, in which students traditionally have not gone further than learning the ba-
sics of C. In this class, algorithmic animation helped to elevate the level of learn-
ing and achievement. My experience was thus similar to that reported by Stasko

194 Conclusions

[97]. Algorithmic animation can easily become part of the curriculum when the
appropriate tools are available and the time invested in the production of the an-
imations is drastically reduced.

Figure 7.3 Student produced animation of selection sort.

7.3 Abstract interpretation and algorithmic animation

Something should be said now about the future. Many algorithm animators have
struggled with the problem of generating automatic animations for many years.
Brown, for example, discusses Quicksort and the way it could be recoded to pro-
vide an automatic animation. Indices, he notes, could be increased not by writing
“j = j+1”, but by making the operation explicit with an increment function,
which at the same time, updates the position of an arrow on the screen [Brown
88c]. Such kind of recoding should be done automatically by the compiler or in-
terpreter; the programmer should not carry the burden of rewriting her code.

Code transformations require a higher level of intelligence by the compiler, that
is, a higher level of abstract understanding about the operations involved and
which of them are “interesting events” for an animation. The way to provide this
capability could be by performing an abstract interpretation of program code in
order to find such interesting code sections.

In abstract interpretation, code is run by not using actual data, but a representation
for the possible data types. In an abstract interpretation run, we are interested in
examining properties of a program, such as whether the code can be parallelized
or not, or whether data structures can be absorbed by the garbage collector or not.
It would be feasible to examine code for the presence of indices and arrays, or

Conclusions 195

linked data structures. The code could be transformed in order to make pointer or
index operations explicit, like in the Quicksort example mentioned above. The
user could then declaratively select which of the data structures should be visual-
ized and a compiler would generate the appropriate code.
A first promising example in this direction, which at the same time deals with the
problem of representing large data structures on a screen, is the work of Braune
and Wilhelm [Braune 00]. Using techniques borrowed from the compiler con-
struction field, they propose to focus the display of data structures only on those
special nodes that are relevant for the visualization. In a sorting algorithm, for
example, two nodes in a list could be referenced by the pointers p and q. Figure
7.4 shows a possible visual transformation of a standard list, to one in which only
special nodes are rendered individually. The nodes in-between the first node and
special nodes are summarized using a box pointing to itself, an iconic representa-
tion of a recursive data structure. We could as well have rendered three dots, to
illustrate repetition of the main pattern.
This example shows how shape analysis, that is, an analysis of the data structures
and their shape in a visual representation, can help to simplify the animation and
reduce the cognitive load on the viewer. This shape analysis can be done auto-
matically and represents a first glimpse of the advantages of automatic animation
of algorithms. The same techniques can be applied to trees and any other recursive
data structure.

Figure 7.4 Abstract graphical display (below) of a long linked list (above).

My expectation is that techniques borrowed from the compiler construction com-
munity will serve one day to analyze code and generate animations in semi-
automatic form. An adequate user interface could allow the user to provide some
insight or manipulate the graphical and esthetical part of the representation, the
portion of the art of algorithmic animation impenetrable to computers.

196 Conclusions

7.4 The future of algorithmic animation

Much more complex algorithmic visualizations will be possible on the electronic
blackboards of the future. Therefore, in the closing section for this chapter, I
would like to speculate about what will be possible years from now by just de-
scribing a computer science lecture taking place in 2015. The story is fiction, but
informed fiction (see for example [Cypher 93]).

Professor Müller arrived to his class at 8:00 AM, ready to deliver his lec-
ture about heaps, the next data structure to be covered in the Algorithms
and Programming course. He went slowly to the front of the classroom,
every one of his sixty eight years weighting heavily on his every step. Some-
time around the turn of the century, retirement age was increased from 65
to 70 years, and here he was, still working at the trenches.

The blackboard looked like any other blackboard from a distance, but on
closer examination one could see that this blackboard was smooth and
shiny. Prof. Müller was a computer scientist from the old school. He never
adopted the fashions of the day. Never bought a cellular telephone, never
used the old PowerPoint system championed by the long extinct Microsoft
Corporation. He stuck to the chalk and was very proud of the way he could
fill many blackboards during an entire lecture. Every one of them was, when
finished, a piece of art. It would have been possible to hang each of them at
the Berlin Museum of Modern Art, to great advantage for the museum.

A few years earlier, in 2013, the traditional blackboard had eventually dis-
appeared. It was too expensive, compared to the new organic screens being
built for a few Euros per square meter. When technologists finally mastered
the production of organic screens in 2006, production skyrocketed and
slowly displaced old technologies. Nobody hung pictures on the wall any-
more. An organic display could update the image on the screen every min-
ute. Apartments without windows could now be sold. People just hung a
large organic screen, connected to a video camera in any city in the world.
They could have a virtual window with a real-time view of Paris, Manhattan
or the ocean.

Prof. Müller never bought such a window, and was rather speechless when
his old beloved blackboard disappeared. After some days of mourning, he
started to experiment with the new blackboard, and to his surprise it was
exactly like the old one. The chalk was now a piece of plastic, but he could
write perfectly on the screen and that was all he needed. He became an ex-
pert in a few days.

Conclusions 197

Prof. Müller started his class by drawing an array of fifteen elements as a
box with fifteen compartments. He then explained the logical structure of a
heap and how it could be stored in an array. At his command, the array
smoothly transformed into a tree, showing how each entry in the array was
mapped to a node in the tree. Prof. Müller proceeded to explain the heap
property – he erased the number in the root and wrote a smaller one. The
heap then reorganized automatically by smoothly exchanging values down
the logical tree, until the heap property was fulfilled again. Prof. Müller
tried again, the result was the same.

He then explained the main idea of Heapsort and extracted manually the
largest element from the heap, exchanging it with the last element in the ar-
ray. The heap reorganized again, and he kept exchanging the root with the
last node, until there were no elements left. They had been ordered.

The students asked the professor for the pseudocode of the algorithm. Prof.
Müller could have written it down himself, but he just asked the electronic
blackboard to produce the pseudocode of Heapsort automatically. The
blackboard had generalized the manual sorting procedure Prof. Müller had
followed and showed neatly typed pseudocode on the screen. Prof. Müller
then asked the machine to please sort 1000 random numbers using this al-
gorithm and show the computation graphically, to which the machine com-
plied without a glitch.

Very satisfied, Prof. Müller said to the electronic blackboard “Thank you
very much, HAL that is all for today. Please produce a transcription in elec-
tronic format for all students and put it in their electronic mailboxes”.

Prof. Müller left and on his way home he muttered to himself “HAL, this
Heuristically Programmed Algorithmic Computer is better every day. I
wonder if it likes my algorithms class”.

