
 

 

 
 
6 Flashdance – An Algorithmic Animation 

Platform for the Web 
 
 
 
 
 
 
 
 
6.1 The Flash animation engine 
 

 
During the founding years of computer science, 
the development of visualization tools was 
guided by the interests and possibilities of the 
academic community. Even in the case of com-
puter languages, most of them were proposed 
and developed in academia, with the notable 
exception of FORTRAN (an IBM product). 
Now, the situation has changed. A multibillion 
computer and software industry is continually 
pushing the boundaries of the state of the art. It 

is very difficult for academic projects to compete against the likes of Microsoft, 
Sun, Intel or IBM. In the case of computer graphics, the driving force has 
switched from the universities to companies such as Pixar (general animation), 
Macromedia, or many of the computer games foundries. Such companies set now 
de facto standards which are very difficult to ignore [Rhyne 00]. Even Java, which 
has penetrated so much of the educational curriculum, started as a proposal by 
Sun Microsystems before it was put into the public domain. 
 
If we look back to Chapter 2 and review the history of algorithmic animation, it is 
striking to see that almost all systems built in the 1980s and 1990s had to provide 
their own animation engine. This was the case for the BALSA and for the Tango 
family, as well as for most other systems. When Java arrived, there was at least 
the possibility of doing animation with a graphical standard engine. Java, how-
ever, was not conceived for animation. Java animations still look like graphical 
products of the 1980s. The reason is that for Java to run on many machines, it had 
to settle for the minimum common denominator of all these machines, mostly 
regarding the user interface, i.e., windows, buttons, and graphics. New versions of 
Java, the Swing library and the 3D extensions have alleviated this problem, but 
the need for compatibility at the browser level has led to a slow evolution of the 
language. 
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Macromedia, as a company, has much more freedom to define and modify its 
Flash animation engine. Introduced in 1995-96 (first with the name FutureSplash 
by a company later bought by Macromedia), Flash has gone through several gen-
erations and has transformed into a de facto Internet standard. Today, high-quality 
animations for the Web are most likely produced in Flash. Since the player is free, 
the market penetration of Flash is well above 90% for the previous versions of 
Flash and is growing steadily for the latest version (Table 6.1). Macromedia Inc. 
claims an installed base of 436 million users and a projected market penetration of 
90% for Flash 6 in December 2003. 
 

Table 6.1: Flash player market penetration (percent of computers with the player installed) 
 

Worldwide Ubiquity of Macromedia Flash by Version - June 2003  

  Macromedia 
Flash 2 

Macromedia 
Flash 3 

Macromedia 
Flash 4 

Macromedia 
Flash 5 

Macromedia 
Flash 6 

US 97.4% 97.3% 97.0% 94.8% 86.3% 
Canada   97.5% 97.3% 96.8% 95.6% 86.9% 
Europe 97.7% 97.7% 97.5% 97.1% 87.2% 
Asia 96.1% 95.3% 94.2% 92.6% 82.7% 
Sources: Macromedia Inc, NPD Online Worldwide Survey — conducted June 2003 
 
 
Figure 6.1, taken from the Macromedia Inc. Web site, compares the market pene-
tration of several browser plug-ins for multimedia content for a US sample. The 
survey was conducted by NPD Online. The Flash player and Java are the more 
popular platforms, although Flash is more geared towards animation and Java 
towards general programming. 
 
 

 
Figure 6.1   Market penetration of browser plug-ins 

 
Therefore, after having dealt in the previous two chapters with algorithmic anima-
tions produced for an electronic blackboard, we switch gears in this chapter. Now 
the emphasis will be put on the production of high-quality animations for the 
Web, which will be animated with Flash. We want to export those animations to 
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the Web, but we want the animation script to be compatible with E-Chalk anima-
tions. With this in mind, I defined a single script language for algorithmic anima-
tion but with two distinct players, one for E-Chalk and one for Flash. The com-
plete system is called Flashdance, in the tradition of naming algorithmic anima-
tion systems by a kind of dance. No other algorithmic animation system until now 
has used a standard animation engine with the popularity and user base of Flash. 
Attempts in this direction are represented by those vintage animation systems 
based on Hypercard which later disappeared from the scene [Gloor 92, 93]. Java 
was supposed to provide this functionality, but it has still many deficiencies as an 
animation language. Thus Flashdance. 
 
 
6.2 Flash animations - basics 
 
I decided to adopt the Flash animation engine for the production of high quality 
animations mainly as a graphical front-end because of the following reasons: 
 
- Flash is a de facto standard for the Internet 
 
As explained above, Flash players have become widely available and Flash is a 
real alternative to Java, when considering high quality animations. Third party 
libraries are growing and many are being put in the public domain. 
 
- Flash animations can be posted in Web pages 
 
Flash animations can contain interactive buttons and objects, which allow the user 
to control the parameters of an animation or navigate a Web site. 
 
- Flash offers esthetically pleasing graphical objects 
 
Flash is based on vector graphics. This makes the rendering of graphical objects 
independent of the screen resolution. Flash graphics are of the highest quality pos-
sible today. 
 
- Flash animations can be stored in small files 
 
Since Flash animations are vector oriented, the files are smaller. Objects reused in 
an animation are downloaded only once but can be reused many times. Vector 
objects can be downloaded faster and animations start much faster than Java Ap-
plets. This is one of the features that probably explains the popularity of Flash 
animations. 
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- Flash animations are streamed 
 
Flash animations can start rapidly because they are streamed from a server to the 
client. In the case of large animations, the first scenes can start playing before the 
whole file has been received, reducing the waiting time for the viewer. 
 
- The playing format is in the public domain 
 
Flash animations are stored as SWF files. The SWF format is open source and is 
handled by the SWF organization. The SWF format was designed to optimize 
performance and delivery through a computer network. It is extensible and sim-
ple. 
 
- The Flash ActionScript language 
 
Macromedia has developed over the last years ActionScript, a scripting language 
for Flash animations. ActionScript is a prototype object-based language, with a 
very similar syntax to JavaScript. Like many script languages, ActionScript is a 
loosely typed language.  
 
The actual authoring environment of Flash 2004 integrates drawing, animation 
and programming tools in the same work environment. The ActionScript code 
reacts to events on the timeline. Algorithms must extensively been modify to be 
able to produce animations and to make then fit the ActionScript style. 
 
As a result, learning to use the authoring environment is very time intensive. Only 
the drawing tools are easy to learn. Efficient programming is still difficult with the 
current programming tools.  
 
Although the syntax of ActionScript is similar to JavaScript, to find bugs in a 
Flash animation is more difficult because the code is distributed among many 
components. 
 
The ActionScript language can be very frustrating for the most programmers used 
to work with programming environments for languages like Java or C++.  
ActionScript is not a suitable language for algorithm design or for beginner stu-
dents of computer science. 
 
I decided to use Flash because of two main advantages: the graphical quality of 
the animations and the ease with which object libraries can be built. It is then pos-
sible to use an intermediate language to create Flash animations, which can be 
produced from any programming language. Less effort is necessary and results are 
obtained faster. 
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It is easy to import and export libraries of graphical elements for animations. The 
algorithms themselves can be written in any language and the animations com-
mands are produced by inline print instructions. 
 
General structure of an animation produced direct with the Flash-GUI. 
 
Fig. 6.2 shows the general structure of a Flash animation. A film consists of 
scenes, which are played one after the other (unless control code and user interac-
tion determine a “non-linear” flow). Each scene consists of one or more frames. A 
frame contains one or more layers. Layers are placed one on top of each other. 
Layers are containers for graphical objects, interaction objects, or animation ob-
jects. 

 
Figure 6.2   A Flash film may contain many scenes, and each scene may have many frames. 

 
Figure 6.3 shows four layers on top of each other. The background of layers can 
be transparent. Graphical objects can also have some degree of transparency, so 
that other objects in layers further down in hierarchy can also be seen through 
them. 
 

 
Figure 6.3   Scenes consist of layers, stacked on top of each other. Layers contain drawings and 

other objects. 

 
Flash animations are frame-based. When a user develops an animation, she has to 
define all the frames that will be played, for all the layers it contains. Complex 
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animations, with many frames, can be produced more easily by defining “key” 
frames in the animation. Flash can then interpolate additional frames between the 
key frames, a process called “tweening”. 
 
The sequence of frames in an animation defines the “timeline”. The different lay-
ers share a timeline. Objects in each overlay are in principle independent of the 
other objects and can move or change aspect in any frame. Tweened objects must 
be in their own layer. Objects in different layers can also coordinate their move-
ment of change of appearance. Fig. 6.4 shows an example of a scene with two 
layers. “Ebene 2” is the upper layer, “Ebene 1”, the lower layer. The upper layer 
contains a sphere; the lower layer a shaded square. The scene consists of 19 
frames, in which the sphere moves in front of the square covering it partially. 
 

 
Figure 6.4   The timeline with two layers.. 

 
The key frames in this animation are the first and the last in “Ebene 2”. Intermedi-
ate frames are generated by Flash, using the “tweening” option (for in-
betweening). It is also possible to assign a curved trajectory to the sphere, from 
the first to the last frame. In that case an additional layer is used to define the path. 
 
Tweening can also be used to interpolate frames when the form or the color of an 
object is changed. In this way, smooth transitions between transformations of an 
object can be produced. 
 
Therefore, creating a Flash animation by hand usually involves the following 
steps: 
 
-  The film is first divided in scenes, and scenes in overlays. 
-  At least one key frame for each scene is inserted. 
-  Graphical objects that will be reused are defined as symbols and saved in the 

project library. Symbols can be reused as “instances”. Parameters of symbol 
instances (color, form, etc., can be changed). 
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-  The objects are arranged in the key frames for each overlay. This is similar to 
the way a slide presentation is created using PowerPoint. 

-  Where tweening-frames are to be interpolated between key frames the tween-
ing-options must be set. 

 
Even a short Flash animation can involve many overlays and many frames. The 
programmer can determine the frame rate at which the film will be played. A 
complete animation can then be exported as a SWF file, and the Flash develop-
ment environment is not needed to view it. Any Flash player will do. 
 
A handcrafted Flash animation is produced by drawing and redrawing frames, and 
by interpolating between the important frames. But there is one more powerful 
feature of Flash that makes Flash animations so compelling. Symbols in Flash can 
be themselves self-animated objects. In this case, they are called movieclips. A 
movieclip pasted on an overlay has it own timeline and plays its own animation 
when it is used. The timelines of the main scene and the timeline of the movieclip 
run at the same frame rate. One could, for example, animate a person walking. 
The eyes could be a movieclip. The movement of the eyes could be defined inside 
the eyes movieclip. When the person walks in the animation, the eyes will be 
moving. In this way it is possible to create complex and powerful hierarchical 
movieclips. 
 
The full power of Flash animations is unleashed, when ActionScript is used. Ac-
tionScript, the Flash scripting language, gives the programmer full access to all 
these features and more. An animation can then consist of a single frame which 
contains the script code. When the script code runs, it generates all frames of the 
film. Objects used by ActionScript can contain ActionScript code themselves, so 
that a Flash animation running is a collection of objects executing their code con-
currently.  
 
In the next section we look closer at Flash’s scripting language. With ActionScript 
it is possible to produce an animation directly from an instrumented algorithm. 
Flashdance, my own algorithmic animation language, is converted into Action-
Script by an interpreter, which then takes advantage of the powerful Flash anima-
tion engine. 
 
 
6.3 ActionScript 
 
 
I said before, that Flash animations consist of sequences of frames. Flash anima-
tions can also contain interactive objects or components (buttons or check boxes, 
for example) which can be activated by the user. The animation flow changes ac-
cording to user actions and therefore some way of specifying such changes is 
needed. ActionScript is used to produce non-linear animations, i.e. animations 
without a fixed frame sequence.  
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ActionScript is based on Netscape’s JavaScript. The European Computer Manu-
facturers Association adopted JavaScript in 1998 as the model for a standard 
scripting language for Web applications. The ECMA-262 standard defines a lan-
guage very similar to JavaScript. Compliant implementations must cover the lan-
guage specification but can provide additional data types and features not speci-
fied in the standard. ActionScript is mostly ECMA-262 compliant, although there 
are a few incompatibilities, mainly regarding data types, exception handling, and 
case sensitivity. Following the ECMA standard closely is a way for software 
companies to guarantee that their products can be adapted to current and future 
Web services with low effort. 
 
The main strength of ActionScript is its consistency across different operating 
systems and browsers. A Flash animation rarely fails. The players have been writ-
ten by Macromedia and they provide the same animation on every computer. The 
vector graphics format provides a way of scaling the output, which is difficult to 
do in Java and one of the most frequent problems encountered when designing 
Java Applets for the Internet. 
 
As we saw above, Flash animation can be produced by drawing frames, one after 
the other. However, frames can also be declared “action frames”, and in this case 
code is included in the action window of the frame to tell the animation engine 
which actions to perform.  
 
First, a simple example: ActionScript code can be included as “actions” to be fol-
lowed by symbols when certain events take place. A circle, which has been trans-
formed into a movieclip symbol, can contain this code in its action field: 
 
onClipEvent (load) { 
// sets the initial x position of the circle 
        this._x = 70; 
} 
 
 
onClipEvent (enterFrame) { 
//moves the circle 7 pixels to the right when entering this frame 
        this._x = this._x+7; 
} 

 
This code means that the coordinates of the circle are set to 70 when the movie-
clip is first loaded. When each subsequent frame starts, the x-coordinate of the 
circle is shifted 7 pixels to the right. It is therefore fairly easy to associate an ac-
tion with symbols and events in a Flash animation. The actions can be triggered 
by the animation itself, or by user interaction. 
 
ActionScript code can “catch” events when they happen. Events can be user or 
system events. If the user clicks with the mouse, this is a mouse down event and it 
is passed to all objects in all overlays in the scene currently running. The Action-
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Script code can decide to react to this event or can ignore it. System events are 
produced when a new frame is loaded, when a frame is started, when an exception 
occurs, etc. System events coordinate all objects playing in an animation. Figure 
6.5 shows an animation running and receiving events. All objects in all layers 
receive the events. 

 
Figure 6.5   Events are produced by the user or by the system. 

 
A more complex example, from the Flash library of animations can help to sum-
marize what I have said above. 
 
Figure 6.6 shows an animation of a clock. The hours, minutes and seconds hands 
move accordingly to the computer’s internal time. The animation consists of one 
single frame, played repetitively, and 11 overlays. 
 

 
Figure 6.6   An animated clock. 

 
Figure 6.7 shows the timeline and the library of objects for this animation. The 
timeline contains one frame and layers for different parts of the clock. The shine 
of the clock cover is above all other graphical overlays. The hour hand is above 
the minute hand, and so on. An “empty” overlay (actions) contains the code for 
the animation. There are no graphical objects in this overlay, only code. 

User events 

Animation 
Engine 

 system events 
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The graphical objects to be animated are defined as movieclips. The minute-hand 
has been selected in the menu, and its graphical definition is visible in the small 
window. 
 

 
Figure 6.7   Layers and timeline of the clock animation (left picture). The library of movieclips for 

the animation (right picture). 

 
The main code in the actions overlay is the following: 
 
myDate = new Date(); 
  
// rotate clock hands and shadows 
hourHand._rotation = myDate.getHours()*30+(myDate.getMinutes()/2); 
minuteHand._rotation = myDate.getMinutes()*6+(myDate.getSeconds()/10); 
secondHand._rotation = myDate.getSeconds()*6; 
 
 
This code first generates a new object of type Date. The object has three methods: 
getHours(), getMinutes() and getSeconds(). Using the methods, it is possible to 
compute the position (angle of rotation) of the hours, minutes and seconds hands. 
The parameter “_rotation” of each hand is set, and the frame is finished. This pa-
rameter “_rotation” is a property of all movieclips which can be modified to pro-
duce an animation. 
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Since the animation runs in a loop, the position of the three hands is being updated 
continually. 
 
These examples should suffice as an overview of the capabilities of the Action-
Script language. Additional details can be found in [Müller 03]. 
 
 
6.4 A first overview of the Flashdance-System 
 
 
Figure 6.8 shows an overview of the architecture of the Flashdance system.  An 
algorithm provides events which can activate instrumented classes (see section 
6.11), or it directly provides the instructions which are accumulated in a script file 
(“name.ans”). The Flashdance interpreter executes the animation using the stan-
dard library of animation objects as well as user defined libraries. The result is 
visible on the screen. The user has some buttons to control the speed and appear-
ance of the animation, as well as its rendering in overlays. 
 

 
Figure 6.8. Architecture of the Flashdance system 

 
A Flashdance animation is played on a single scene. We can create the animation 
directly on the scene background or we can have many views.  
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An important difference between Flashdance and other algorithmic animation 
systems is that, in Flashdance a single class of animation objects is used (called 
AObjects). They provide a high abstraction level for the programmer. All objects 
in an animation are instances of the AObjects class. An AObject has properties 
such as x- and y-coordinate, width, height, color, and also name, type (the shape), 
types of possible highlighting, etc. An AObject behaves like a software agent: it 
can change any of its properties autonomously, including its form (shape or type). 
An AObject can execute any instruction of the Flashdance script language, with 
exception of the setTime and setStop instructions, which control global temporal 
properties of the animation. 
 
A Flashdance animation consists of a sequence of messages to AObjects, com-
manding them to change their properties. A View is also an AObject with the spe-
cial property that it can contain other AObjects. If an AObject of subtype “view” 
is modified, all those objects contained in the view are modified. This opens the 
possibility of implementing more sophisticated animations which can zoom into 
the data structures in which relevant changes are taking place. In my interpreter, 
AObjects are an extension of Movieclips with the mentioned additional properties 
such as name, label, type, etc., and also additional highlighting methods. 
 
AObjects are subdivided into two categories: those which are built completely 
when they are needed and those which are instances of predefined objects from 
the library of the Flash animator. The following objects are built completely dur-
ing execution: Points, Lines, Rectangles, Ovals, and Views. The following AOb-
jects are instances of objects in the library: Bubble, Ball, Rabbit. The second cate-
gory allows the user to define many types of objects which can be used in anima-
tions. This approach was followed in my implementation of Flashdance and also 
in the Java classes which were instrumented for animations. 
 
An example is the following: An AArray is a class capable of animating any rele-
vant change in an array. All the visible components of the AArray are AObjects. 
The elements of the array, the boxes in the array, and the indices used to point to 
operations in the array are AObjects. The AArray provides all methods and opera-
tions necessary for modifying the array, and also the corresponding animated ver-
sion. There are several methods for AArray. Some of them animate state transi-
tions, others not. For example “swap” is the method to exchange two array ele-
ments without animating, whereas “aSwap” swaps two elements and produces the 
animation. 
 
An AArray frees the user from the computational details needed to animate an 
element of the array, when it moves from one position to another, or when the 
indices change. It substantially simplifies the programming of the animations 
based on this kind of data structures. Other instrumented classes, AQueue, 
AStack, AGraph, ATree, were programmed in the same way. 
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Overlays can be defined by the programmer of the algorithmic animation with the 
definition of different Views. Views can be placed over each other and can have a 
transparent background.  
 
Flashdance has a pre-defined library of animation-objects which can be very eas-
ily extended by the user (see section 6.5). 
 
 
 
6.5 The Flashdance script language 
 
 
The Flashdance animation language was designed for simplicity [Esponda 04a]. 
An animation should be easy to produce, without having to master a very exten-
sive set of commands. The quality of the vector graphics should be preserved. 
This is guaranteed by allowing the user to select objects from a library of standard 
object types. The user should be able to import or produce graphical libraries in 
advance. 
 
I had already listed the different instructions of the Flashdance script language in 
Chapter 4, without going into their description. Here I offer a more detailed over-
view of them. 
 
 
Instructions 
 
The name of each command is given in bold face. Mandatory parameters follow. 
Optional parameters are enclosed in square brackets. Parameters are separated by 
blank space. 
 
 
new     object-type   object-name   x    y    width   height   [label]  [colour] 
 
    special primitive object-types: 
 

       View  view-name    x    y    width   height   [label]  [ background-colour] 
             String  object-name   x     y   width   height   string-text   [colour]  [style]   
             Line  object-name   x1   y1   x2    y2   [line-width]  [colour] 

       Rectangle    object-name   x    y   width   height   [line-width]  [colour] 
       Oval  object-name   x   y   width   height   [line-width]  [colour]       

 
With this instruction a new animation object from the library is selected and an 
instance of it is inserted at the position (x,y) of the current view. Object-type is the 
name of the animation object (movieclip-symbol) in the library. Object-name is 
the name of the new instance. All objects in an animation must have different 
names. Only objects in different views may have the same name. x and y is the 
position on the view-window of the animation. If no views were defined and set at 
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the time the instruction new is executed, the object will be position directly in the 
background of the scene. The new instruction must have at least the four argu-
ments listed. If width or height is not specified, the object will be drawn with a 
standard size.  
 
Most objects of the library have a label option which can be written when the ob-
ject is created. 
 
An animation-object (movieclip) can be of type “View”, that is, a window at a 
specific position on the animation screen and of size width × height in pixels. The 
background colour can be given as an option. The default colour is transparent. 
 
Views are Flash-movieclips and can be created one on top of another. This is a 
very significant difference to other algorithmic animation systems, which do not 
offer the option of overlaying views. 
 
A new object can be of type String, Line, Point, Rectangle, or Oval. These simple 
standard animation Objects do not really exist in the library. They are created at 
run time for more flexibility and because of their simplicity. For each one of these 
objects it is possible to give some special options like colour, line-width, style (for 
strings), etc. 
 
 
remove object-name1  . . .  object-namen 
 
This instruction removes one or more animation objects from the current view. 
 
 
removeAll   
 
This instruction removes all objects from the current view. 
 
 
change      object-name   property1 value1  property2  value2  . . . propertyn  valuen 

 
This command is used to change one or more properties of an object to one or 
more values (for example colour, width, height, etc.) 
 
 
exchange     object-name  object-type [x y width height]  [ label] 
 
Redefines the object with the name object-name to have the type object-type. The 
original object is removed and a new animation-object is created with the same 
object-name but the new object-type. The new type uses the parameters of the old 
object, except if optional parameters are explicitly given. 
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This instruction is very useful when properties like color or shape of complicated 
objects have to be changed. 
 
 
moveTo object-name1   x1    y1  . . .  object-namen   xn    yn 
 
With this command an object, or several objects, are beamed to a new position 
with coordinates (x,y). 
 
 
animTo object-name1   x1    y1   . . .  object-namen   xn    yn   [ path]  
 
animTo produces a smooth movement of an object from its current to a new posi-
tion. Several objects can be animated simultaneously. A different path can be use 
as an option. If no path is specified the movement is a straight line. 
 
 
highlight highlight-type  object-name1   . . .  object-namen   
 
A visual cue is produced to highlight one or more objects simultaneously. Types 
of possible highlight are blinking (twinkle) and a momentary change of size 
(swelling).  
 
swap            object-name1  object-name2  [path] 
 
This instruction is used to swap two objects with a smooth movement. It is not 
necessary to pass the position of the two objects as parameter. An optional path 
gives the trajectory for the movement of both objects. 
 
setView        view-name 
 
All instructions following a setView instruction refer to view-name, until a new 
setView instruction is executed. 
 
setTime duration 
 
Set the execution time for each instruction following, until a new setTime instruc-
tion is used. 
 
stop            [label ] 
 
Set a stop mark with an optional name label in the animation script. The anima-
tion can be restarted pressing the “run” button in the viewer. 
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6.6 The object library 
 
 
One of the major advantages of adopting a standard animation engine such as 
Flash for algorithmic animation is that all the editing and animation tools devel-
oped by Macromedia can be inherited for our task. There is no need to generate 
bad looking objects with our own system, when we can define a library of graphi-
cally appealing objects using the tools of the system. 
 
Flashdance animations use symbols stored as movieclip in a library of objects. 
The new command accesses these objects and makes them available for the ani-
mation. For my first animations I defined a simple library of objects using the 
Flash editing tools. Figure 6.9 shows a selection of some of the animation objects. 
The name of the object is shown above each one (in black). There are several 
types of spheres, for example, with names _B, _G, _R, Rb, etc. The library in-
cludes spheres, discs, containers for arrays, bars, rulers to measure objects, ar-
rows, circles, rectangles, and even rabbits (which can perform fully animated 
jumps). 
 

 
Figure 6.9   Library of some of the animation objects available in Flashdance. 
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In Figure 6.9 some of the objects have a dashed rectangle in front of them. This 
rectangle can be used to write a label for the animation. The spheres, for example, 
can be labelled with the number they represent. Array locations can be labelled 
with their index value, and so on.  
 
The movieclips library is the heart of the pictorial representation. It is very easy to 
draw good-looking objects using the refined Flash editing and drawing tools. A 
movieclip-symbol can be modified at any time, or can be completely substituted 
by another representation. 
 
Objects in the library can be animated objects themselves. The spheres, for exam-
ple, could have a texture and could be rotating spheres during the animation or 
could be growing during the animation. The algorithm animator does not have to 
take care of such details. This is done in advance by the person designing the ob-
ject library. This library is defined once and much design work is saved by reus-
ing symbols later. 
 
 
6.7 Instrumenting a program 
 
It is easy to instrument programs which produce the animation script. Let us re-
view a simple example: the Quicksort algorithm, as it can be written and animated 
in Python.  
 
The main program for the animation consists of the following few lines: 
 

f = open('quicksort.ans','w') 
f.write("&prog_text=\n") 
 
S = [12,5,13,8,9,1,3,10,14,4,7,6,15,2,11] 
 
for i in range(0,len(S),1): 
    f.write("new Oval o%s %s 300 %s %s \n" %   
 (S[i],20+i*30,15+S[i],15+S[i]*5)) 
 
qsort(S) 
f.close() 

 

In this program, a file “quicksort.ans” is opened as writable file. The list to be 
sorted is S. The call to Quicksort is “qsort(S)” and the animation script file is 
closed. A circle is defined and painted in the animation window using the “new 
Oval” command. Each circle is an object, the object number is given by S[i]. The 
position of the circles has been defined to be at row 300 on the screen. The col-
umn position increases by 30 pixels each time (with an offset 20). The height of 
the circles (ellipses) is 15+S[i]*5, the width is 15+S[i]. 
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The Quicksort algorithm is as in the first edition of [Cormen 90]. Two indices are 
used. In the minimal version defined below, the indices are not being shown on 
the screen, only the movement of the array elements. All movement is concen-
trated in the function “swap”. This interchanges two elements in the array, and at 
the same time, writes the script animation command in a file. 
 
The script command is “swap ox oy”, where x and y are the objects (numbers) 
being swapped. There is no need to write their coordinates, they are implicit when 
we refer to the objects by name. The trajectory followed during the swap is a rec-
tangle, that is, both objects move vertically upwards, then horizontally to their 
new horizontal coordinated, and then vertically downward to fill in-place. 
 
The instrumented code of Quicksort is the following: 
 

import random 
 
def qsort( A ): 
        quicksort(A,0,len(A)-1) 
 
def quicksort(A,low,high): 
    if low < high: 
        m = partition(A,low,high) 
        quicksort(A,low,m-1) 
        quicksort(A,m+1,high) 
 
def partition(A,low,high): 
    pivot = A[high] 
    i = low-1 
    for j in range(low,high): 
        if A[j]<=pivot: 
            i = i+1 
            swap(A,i,j) 
    swap(A,i+1,high) 
    return i+1 
 
def swap(A,i,j): 
    temp = A[i] 
    A[i] = A[j] 
    A[j] = temp 
    f.write("swap o%s o%s rect 0\n" % (A[i],A[j])) 
 
def generate(A,low,high): 
    i=low 
    while i<high: 
       A[i]=random.randrange(1,400) 
       i=i+1 
 
 

The instrumented code remains very readable, as can be seen. To animate indexes 
(pointers), a “new” instruction has to be defined for each index (to generate an 
arrow) and every time a pointer is updated, the arrow has to move. This is best 
done by defining an “update_pointer” function which sets a pointer to its new 
value and writes the animation command to a file. In this way the scripted pro-
gram remains short and readable. Since this example consists of a single view and 
has no overlays, no view commands are needed. 
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6.8 The interpreter 
 
The general structure of the Flashdance interpreter is shown in Figure 6.10. The 
Flashdance script produced by a program is parsed, in order to identify the indi-
vidual instructions. Each instruction is then given to the instructions interpreter, 
which starts the ActionScript sequence corresponding to the instruction found in 
the Flashdance stream. The instructions interpreter accesses the predefined object 
library in order to create the objects for the animation. 

 
Figure 6.10   Block diagram of the Flashdance interpreter. 

 
The structure of the interpreter is simple, but powerful. Drawing commands are 
almost not needed; the library of objects contains already the most common 
graphical primitives, which are then accessed by name. 
 
When the Flashdance interpreter is run, a screen appears with a drawing window 
for the views of the algorithm and with some buttons to control the animation… 
 
 
6.9 Examples of animations 
 
In this section, I will review some animations created with Flashdance. The pro-
duction time for most of them was very low. Most of the effort went into defining 
the object library, but this is a one-time effort whose result can be reused many 
times. 
 
 
6.9.1 The Game of Life 
 
The Game of Life was invented by John Conway around 1970 [Gardner 70]. It is 
a kind of mathematical recreation, which nevertheless has led to many implemen-
tations and even serious research about the computational capabilities of cellular 
automata. The Game of Life is universal, that is, any computable function can be 
implemented with the 0-1 code and with the matrix used by the game. 

Flashdance 
script Parser 

 
Instructions 
interpreter 

objects 
library 
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Life is played on a matrix of cells. Each of them can be dead (0) or alive (1). The 
game proceeds by generations. Out of an initial state, cells can become alive or 
dead in the next generation. A cell which is dead becomes alive in the next gen-
eration if it has exactly three live neighbors in the current generation. Each cell 
can have up to eight possible neighbors in the 3 by 3 matrix with this cell at the 
center. A cell which is alive stays alive in the next generation only if it has two or 
three live neighbors. In all other cases the cell dies. 
 
 Figure 6.11 shows the start of a game. The red cells have been predefined as 
alive, the blue cells are dead. The pattern in the middle is called a “glider” since it 
reproduces after four generations, but displaced diagonally. The pattern to the left 
is a stationary one, which “twinkles”, that is, alternates between a vertical and 
horizontal bar in each generation. 
 

 
Figure 6.11   Initial configuration for a game of Life. Red cells are alive, blue cells are dead. 

 
Figure 6.12 shows two pictures of the evolution of the game after several genera-
tions. The glider is going across the matrix, whereas the stationary pattern keeps 
alternating between its two states. 
 
The algorithm for the game was written in Python. The Python program produced 
a script by writing to the script file. For example, the matrix of cells is initialized 
with two loops and the write command: 
 
f.write("new Bb c%sc%s %s %s 0 0\n" % (i,j,70+i*20,100+j*20))  

 
This command tells Flashdance to define a new cell, a blue small ball (Bb), with 
name “c<i>c<j>”, where <i> and <j> are the numerical decimal values of the in-
dices of the entry (i,j) in the game matrix. Each cells is positioned at the pixel co-
ordinates (70+i*20,100+j*20). 
 
When the simulation runs, only a “change” command is needed, every time a cell 
changes state, to order a ball to change its color from blue to red, or vice versa. 
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Figure 6.12   A glider moving to the right, a blinker blinking on place. 

 
The complete animated Python code for the Game of Life is just a few lines long. 
 
 
6.9.2 Sorting Algorithms 
 
Insertion Sort 
 
Our next example is the insertion or insert sort algorithm. Figure 6.13 shows the 
image of the animation running. The sorting algorithm was written in Java and it 
produced the animation script for this example. 
 

 
Figure 6.13   Insertion sort, illustrated with an array of boxes. 

 
The algorithm is sorting nine numbers, represented by the spheres. Numbers al-
ready inserted into the array are colored green. In the picture, the number 2 has 
been copied to a temporary variable, from which it will be inserted at the appro-
priate position, shifting first some green numbers to the right.  
 
Figure 3.14 and Figure 6.15 show the progression of the animation. The numbers 
have been shifted and the 2 is inserted in front of the array. The index j points at 
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the last position which has been sorted, the index k+1 at the position where a 
number is inserted into the array. The animation runs showing smooth movements 
of the objects (picture in the lower left). The last picture shows the sorted array. 
 

   

Figure 6.14   The number 2 input at the beginning of the array, after having shifted the green col-
ored spheres. 

 

   

Figure 6.15   Further progression and end of the algorithm. 

 
In this animation only three kind of graphical objects were used: a box container 
for variables, spheres to represent the numbers and the index-objects (i, k). The 
labels of the spheres correspond to the stored numbers. 
 
 
Quicksort 
 
A further improvement to this kind of animations is to include the Java code of 
the algorithm in an additional view, which is played alongside the algorithm. This 
has been done with another version of the Quicksort algorithm. The Java code is 
written in an auxiliary text file, which is read by the interpreter. In the Java code, 
where Quicksort is implemented, it is necessary to produce an instruction for the 
Flashdance interpreter to let it know which line of the code to highlight. This is 
the “setCodeLine” command, followed by the line number. 
 
A portion of the animation script, for example, is the following: 
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highlight swelling o7 o14  
animTo i1 297 173 
setCodeLine 13 

 
This tells the animation engine to highlight objects o7 and o14 by swelling them. 
Then object i1 is smoothly moved to its new position (297,173) and line 13 in the 
Java code is highlighted. This gives the impression that the algorithm is running 
concurrently with the data view. 
 
Figure 6.16 shows the start of the animation. The Java code has been loaded and 
the array has been initialized, as well as the pointers i and j. 
 

 
Figure 6.16   Start of the Quicksort animation. 

 
 

 
Figure 6.17   Exchange of two numbers at the index positions i and j. 

In the next screenshot, Figure 6.17, Quicksort is exchanging two numbers (1 and 
17), and the pseudocode is highlighted at the “swap” operation. 
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In the next screenshot, Figure 6.18, Quicksort has further progressed. The first 
recursive evaluations have returned and the numbers at the beginning of the array 
are sorted. They are thus colored green. 
 

 
Figure 6.18   Sorted subarrays are colored green. 

 
The speed of the animation can be controlled by the user or by the teacher ex-
plaining the algorithm to a class. The animation can be exported to a Web site 
also. 
 
 

 
Figure 6.19   Quicksort in Python (code in the right window). The magnitude of the numbers is 
represented by the size of the objects. The horizontal colored lines show the displacement of the 
indices on each recursive pass. 

 
The screenshot in Figure 6.19 shows a second implementation of Quicksort, now 
in Python (as in section 6.6). A simple change of the objects selected from the 
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animation library yields the row of Santa Claus with different sizes. The algorithm 
works with three pointers: all elements below the “equal” pointer are lower than 
the pivot. All elements between the “equal” and “under” pointers are equal to the 
pivot. All elements above the “over” pointer are larger than the pivot. In the 
screenshot two elements are being exchanged. 
 
The animation highlights the Python code (on the right) and uses another view 
below the array being sorted. The green segment shows the position of the pivot 
in one pass. The yellow line shows the elements smaller than the pivot. The red 
line shows the position of the elements larger than the pivot. A recursive call 
yields a new line level. Figure 6.20 shows the end of the animation. All array ele-
ments are sorted and the colored lines below illustrate the sequence of recursive 
calls and the array used for them.  
 

 
Figure 6.20   Final state of the Quicksort animation. 

 
This animation was featured in the Web site of the Institute of Computer Science, 
FU Berlin, during the Christmas season of 2003. 
 
 
Shellsort 
 
The next example, the Shellsort algorithm, is usually difficult to explain. In Shell-
sort, sorting is done by dividing an array into h virtual arrays, using the position of 
each element modulo h. The equivalence classes modulo h produce h pieces of the 
array. Each piece is then sorted using insertion sort. The constant h is progres-
sively decreased until it is equal to 1.  
 
The idea of the algorithm is to move small elements fast to the beginning of the 
array, and large elements fast to the back. The same positions of the different 
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pieces of the array are sorted in parallel with insertion sort. Exchanges, when h is 
still large, lead to long position jumps. When h comes down to 1, Shellsort dilutes 
into insertion sort, but with a very favorable array, in which not many element 
shifts will be needed. 
 

 
 

 
Figure 6.21   Shellsort running. The step size is h = 7. The virtual arrays are on top, the array being 

sorted below, in the view with a lighter background. 

 
The screenshot shows the original array (at the botton) and seven equivalence 
classes being sorted independently (for h equal to 7, as shown in the small 
square). Code is also highlighted to the right. When a pass of the algorithm fin-
ishes, the elements rearrange into a new set of equivalence classes, corresponding 
to the change of m. 
 
 
Radix Sort 
 
Radix sort is a sorting algorithm with linear complexity. Figure 6.22 shows the 
algorithm running, using a set of dates as the numbers to be sorted. The first set of 
bars shows the days, the second row the months, and the third row the years. A 
date is composed on one bar in each row (one day, one month, and one year). 
Radix sort starts sorting first the days, as shown in Figure 6.22, where the days (in 
green) are being copied to a second array. After the dates have been sorted accor-
ing to the day, the next sorting sweep sorts the months (Figure 6.23, in blue). Now 
the dates are copied from the lower part of the screen to the upper part. Repeating 
this process for the years, the dates are finally sorted. Each sort was implemented 
using the counting sort algorithm. 
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Using dates to illustrate Radix sort makes the algorithm easier to understand. It 
also becomes obvious that different numerical bases can be intermixed, for differ-
ent portions of the input. The animation is reversible (see Section 6.9) and the 
code is shown on the panel on the right. 
 

 
Figure 6.22   Radix sort running. Dates are being sorted. Days are represented by green bars, 
months by blue bars, and years by red bars. The dates on the upper portion of the window are 

being copied to the lower portion, ordering by day. 

 

 
Figure 6.23   In the next sort sweep the dates are ordered by month and are copied from the lower 

to the upper portion of the window. 
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6.9.3 Depth and Breadth First Search 
 
 
The next example is an animation of an algorithm that works on graphs.  Starting 
from a given node, depth first search looks for a way to access all nodes in a 
graph, generating a spanning tree of all reachable nodes. The algorithm preserves 
a set of nodes to be visited, and is depth first, because explores as far as possible 
along each branch before backtracking. 
 

 
Figure 6.24   Depth First Search in a graph. 

 
The screenshot in Figure 6.24 shows the algorithm running. The spanning tree 
being formed is colored red. Nodes, whose children have been completely consid-
ered, are colored grey. Nodes which have been discovered are colored green. 
 
 

 
Figure 6.25   End of the DFS algorithm. The spanning tree is shown in red. 

 
The screenshot in Figure 6.25 shows the final state of the simulation: all nodes 
have been reached, the spanning tree is complete, and there are no more nodes to 
continue processing. 
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The last screenshot of the DFS Algorithm in Figure 6.26 shows more information 
about the internal representation of the graph. You can see the time stamps of the 
nodes when they are discovered or finished and the adjacency list of the node 
neighbours. 
 

 
Figure 6.26   DFS algorithm with a second view of the graph representation. 

 
The screenshots in Figure 6.27 and Figure 6.28 show a search operation running, 
but now in breadth-first mode. Here, a node and all its siblings are processed first, 
before considering their descendants. 
 

 
Figure 6.27   Breadth First Search in a graph. The queue of nodes is shown at the bottom. 
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In this example, an additional source of information has been added to the repre-
sentation. A second view at the bottom of the animation shows the queue of nodes 
to be finished. Since node descendants are entered at the back of the queue, all 
node siblings will be processed before their descendants. The BFS is finish when 
the queue becomes empty. 
 

 
Figure 6.28   Second  to Last step of the Breadth First Search algorithm. 

 
The last screenshot (Figure 6.28) shows the final steps of the algorithm. The last 
node in the queue is about to be removed (node 3), making it transform from 
green into gray in the graph diagram. 
 
 
6.9.4 The towers of Hanoi 
 
The towers of Hanoi are one of the classical examples used for explaining recur-
sion and one favorite theme of algorithmic animation systems. The screenshot in 
Figure 6.29 shows a Flashdance animation of the Java code shown in the right 
window. Instrumenting the animation was very simple, scripting commands had 
to be included in just one function call. 
 
The animation shows the position of the plates during an animation run. The 
plates are inserted into three poles. Plate number 4 is moving from the central to 
the left pole. The lines below the poles show the successive movement of the 
plates: a red line represents a movement from the right to the left, a blue line a 
movement of a plate from the left to the right. The pseudocode is shown on the 
right, highlighted at the current instruction. 
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Figure 6.29   The towers of Hanoi animation. 

 
Now that we have seen Flashdance being used in several algorithmic animations, 
let us look at its implementation in greater detail. 
 
6.10 Reversibility and Overlays 
 
As explained in Section 2.8 and Chapter 3, reversibility is an important feature for 
algorithmic animations. Just a couple of the systems surveyed in Chapter 2 offer 
full reversibility. This feature gives the viewer the possibility of mentally “zoom-
ing” into an operation in order to examine the conditions and context in which a 
data structure is modified. Reversibility is difficult to implement in systems which 
do their own rendering (for example Zeus) because it is easier to draw an object 
on top of an existing picture than it is to remove the object from the composite 
image. If a single rendering layer is used, the set of pixels covered by an object 
has to be determined and managed. This imposes a high overhead on the simula-
tion system. 
 
Reversibility was included in Chalk Animator by exploiting the existing 
undo/redo facility of the E-Chalk system (section 4.5). The user can backtrack or 
go forward in an animation by undoing or redoing a previous operation. This is 
also the approach I followed in Flashdance: when an animation runs, it is made 
reversible by generating the inverse instructions and saveing them on a stack. The 
user can press the forward button activating so the next operation in the Flash-
dance code, or she can decide to go backwards pressing the “step back” button 
which executes the next operation from the undo stack. Reversibility is achieved 
through the interplay of the programmed sequence of commands and the undo 
stack. Reversibility is easier to implement in Flash than in other systems, because 
Flash animations are drawn on layers – the runtime system maintains each layer 
and redraws it automatically, respecting the object occlusion constraints. 
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Flashdance commands were defined from the beginning with reversibility in 
mind: for every operation there is a corresponding inverse operation. The inverse 
operation is generated at runtime; each inverse operation is pushed into the undo 
stack before her corresponding Flashdance instruction is executed. 
 
The inverse operations, for the most important instructions, are shown in Table 
6.1. All inverse instructions are generated when the program is executed.  
 
Table 6.1  Some Flashdance commands and inverse operations. The first column lists the instruc-
tions with its parameters. The second column provides the corresponding inverse instructions. The 
third column gives some information about the parameters used.  The subindex “o” (for original) 
refers to the object parameters before they are modified by a Flashdance instruction. 
 
      Command              Inverse command       Comments 

remove name new type name x y width 
height label color  

The arguments type, name, x, 
y, width, height, label and 
color must to be read from 
object name before remove is 
executed. 

new type name x y width 
height  [label] 

remove name Deletes object with ID  name 

change name property1 value1   
[property2 value2]… 
  

change name property1 
valueo1  [property2 val-
ueo2]… 

The parameters valueo  (old 
value) are read from the object 
before they are changed. 

exchange name type [x y 
width height label] 

exchange name typeo xo yo 
widtho heighto labelo coloro 
 

The arguments typeo, name, 
xo, yo, widtho, heighto, labelo 
and coloro must be read from 
the object before, the  ex-
change is executed. 

moveTo    name1   x1    y1  
                [name2   x2    y2] 
                    . . . 

moveTo    name1   xo1    yo1  
                [name2   xo2    yo2] 
                    . . . 

The old position of the objects 
must be read to construct the 
reverse instruction 

animTo     name1   x1    y1  
                 [name2   x2    y2] 
                    . . .  
                  [ path] 

animTo     name1   xo1    yo1  
                 [name2   xo2    yo2] 
                    . . .  
                  [ path] 

The position of the objects 
must be read,  before the in-
struction is executed. The 
animation path is the same. 

Highlight  type    name1 
                            [name2 ] … 

Highlight  type    name1 
                            [name2 ]… 

Both instructions are equal 

swap name1 name2 [path] swap name1 name2 [path] Both instructions are equal 
setView view-name setView original-view The original view where the 

animation was running, must 
be read before changing it 

removeAll list of  new instructions A new instruction for each 
objects is pushed into the 
stack 

setCodeLine line setCodeLine lineo The original lineo for the pro-
gram pointer is used before 
updating the pointer. 

 
 
Figure 6.30 shows the panel for controlling an animation. The name of the Flash-
dance program is entered in the text window. The button “load program” loads the 
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code and generates the reversible code (undo stack). Pressing “start” lets the simu-
lation run. The button changes its label to “stop”; if pressed again this button stops 
the simulation. A stopped simulation can be operated in single steps forward or 
backward, using the buttons “next” and “prev”, respectively. The color of the 
background can be changed by selecting one of the colors on the left. The pro-
gram counter is shown under the label “pc”, and the time interval for a single step 
under the label “tpi” (time per instruction). This number can be changed, making 
the animation run faster or more slowly. 
 

 
Figure 6.30   Control panel for a Flashdance animation showing the button for reversible execu-

tion. 

 
A nice example of a reversible animation and its usefulness is this implementation 
of Dehornoy’s algorithm for bringing braids into a canonical form [Dehornoy 97]. 
A braid is a set of n lines starting from ordered positions 1 to n, which overlap in 
the way shown in Figure 6.31. A braid can be simplified, in order to make it com-
parable to other braids. Figure 6.31 shows the start of Dehornoy’s algorithm and 
the construction of a braid from its description as a list of positive and negative 
numbers, which represent crossings. The screenshot on the right of Figure 6.31 
has been executed reversibly and brings the construction process some steps back. 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 6.31   Dehornoy’s algorithm running forward (left), and running backwards (right). 

 
Figure 6.32 shows the final step of the braid simplification process. As can be 
seen, only the crossings that remain in the braid to the right are essential. Other 
crossings are not essential and can be discarded. 
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Figure 6.32   Final simplification: the braid to the left is equivalent to the braid to the right. 

 
This animation of Dehornoy’s algorithm shown in Figure 6.31 and Figure 6.32 
was produced and used by a student in the Junior Mathematics Seminar at Prince-
ton University during the fall term of 2003. It is one more of the Flashdance an-
imations which have been used successfully in the classroom. 
 
 
Overlays 
 
Overlays were introduced in Chapter 3. The general idea is to generate an anima-
tion using different superimposed views, which can be switched on and off when 
the animation runs. This allows the viewer to control the amount of informational 
detail that she or he wants to receive. Overlays are another way of focusing the 
attention on the important details of an animation. Overlays were used in the 
handcrafted animation of bubble sort discussed in Section 3.6.1. The trace of the 
displacement of a number in the array, when it is sorted, is an important piece of 
information which can be switched on and off to sometimes better understand the 
complexity of the algorithm. 
 
Flash animations are based on the concept of animation layers. Layers are super-
imposed on each other and can be switched off manually using the Flash user in-
terface. In Flashdance we make this functionality available in the simulation win-
dow itself. For every view the interpreter creates a button which can be toggled by 
the user, and which switches on or off the display of an animation view. The 
views are still present and are updated continuously, but they are made visible or 
invisible according to the corresponding overlay button setting. No other algo-
rithmic animation system, of those surveyed in Chapter 2, offers overlays as an 
integral part of the user interface.  
 
Figure 6.33 shows Shellsort running, enhanced with two views defined as over-
lays. The upper view (on the left) shows Shellsort running with a step length of 3. 
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The array has been divided into three equivalence classes, each one of which is 
sorted with insertion sort. The lower view shows the complete array and the 
pointers used to make the sorting comparisons. The first view is more abstract, the 
second is more related to the implementation. 
 

 
Figure 6.33   Shellsort algorithm with two different views. 

 
Two toggle buttons, shown in Figure 6.34 (a magnification of part of Figure 6.33), 
allow the user to switch on or off any of the two views. If the button “view_1” is 
pressed, the view is switched off and is made transparent. The button changes to 
the “on” label. If it is pressed, the view is switched on again. 
 

 
Figure 6.34   Two toggle buttons allow to switch-off view 1 and view 2. 

 
A second example for the use of overlays is the animation of an algorithm for 
finding the convex hull of a set of points. Figure 6.35 shows the algorithm running 
in the Flashdance environment. The points are visible to the left. The algorithm 
code is on the right. When the algorithm runs, the segments tested as possible 
components of the convex hull are marked in black. The buttons below the blue 
window, are the overlay buttons. There are four overlays in this simulation: two 
for the left side of the convex hull, and two for the right side. With one of the but-
tons for the left side, the tested segments can be shown or not as black segments. 
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With the other button, it is possible to turn on or off the left side of the convex 
hull. 
 

 
Figure 6.35  The convex hull algorithm running. 

 
Figure 6.35 shows the five overlays of the algorithm superimposed on each other 
(left side). The right side shows two of the overlays switched off, namely those 
containing the information about the segments which were tested. The left side 
marks tested segments in black. For the right side of the convex hull construction, 
the segments were marked in red. As can be seen with this experiment, the 
amount of information displayed by the animation can be controlled directly by 
the user, while the algorithm is running, providing a better way of spatially zoom-
ing in and out of an algorithm. Temporal zooming is available in Flashdance 
through the control of the animation step. Overlays play the same role, from the 
perspective of the objects shown by the animation. 
 
The use of overlays allows you produce automatic animations. Using dataflow 
analysis, the data flow of a program could be automatically distributed on several 
layers. The user can then just switch off those layers which are not relevant for the 
operations she wants to focus on. 
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Figure 6.36  The convex hull algorithm running. On the left side we see all overlays. On the right 
side, the tested segments overlays for the laft and right convex hull have been switched off. This 

can be done while the algorithm is running. 

 
6.11 Instrumented Java classes 
 
An alternative to the inclusion of inline code in an algorithmic animation is to 
provide instrumented classes, which supersede the standard array or linked data 
classes, providing the same functionality plus an animation. This approach has 
been used by authors of algorithmic animation systems [Hausner 01, Ben-Ari 02]. 
Instrumented classes have been used to visualize lists in Java [Dershem 2002]. A 
JVALL class overloads the Java LinkedList class and the user can switch between 
a linear or a circular visualization of a linked list. The same technique has been 
used to animate arrays in C++ [Rasala 99].  
 
Flashdance code can be produced by instrumented Java or C++ classes and can be 
played with the Flashdance interpreter.  It would be easy to take a large library of 
algorithms and data structures, such as LEDA, and add the necessary code in or-
der to have instrumented classes. This work could be done by a group of students 
now that the necessary infrastructure is in place. 
 
As an illustration of how instrumented Java classes can be used for animating 
algorithms, I instrumented a small library of Java methods for handling trees. 
Figure 6.37 shows a screenshot of a tree being built by repetitively inserting nodes 
into a tree (using the corresponding Java method). When the Java program runs, it 
produces the Flashdance commands which when played animate the sequential 
construction of the tree.  
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Figure 6.37  : Construction of a tree by an instrumented Java class. 

 
In Figure 6.38 we see how a node is being deleted by another Java method.  
Pointers help to find the node, which is then erased from the tree. The tree point-
ers are updated as needed. The pointers are drawn on an overlay which can be 
switched on or off. 

 

 
Figure 6.38  Deleting a node from a tree by an instrumented Java class. 

 
This example suffices to show that all the machinery needed to instrument classes 
in any programming language (Java, C++, Python) is available in the Flashdance 
system. Significant libraries of instrumented classes in these languages can be 
created as part of students projects. 
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6.12 Summary and Discussion 
 
In this chapter I have shown how to harness the Flash engine for our own pur-
poses, namely algorithmic animation. Flash is a powerful animation system, 
which has gained widespread acceptance in the Internet. I have shown why: the 
vector oriented representation used by Flash leads to compact yet good-looking 
animations, which can be streamed. The difference to Java animations is startling. 
Flash animations are much smaller, yet more appealing. 
 
This chapter discussed ActionScript and the general structure of Flash animations, 
but the user of Flashdance does not have to be aware of these technicalities. 
Flashdance is a scripting language which effectively insulates the user from all 
Flash issues. ActionScript itself is changing; it has evolved from year to year. It 
would be annoying to have to modify the algorithms already implemented, in case 
a new version of ActionScript is released. This is not needed, since the Flashdance 
interpreter takes care of providing the correct interpretation of the scripted code. 
 
The Flashdance script language has been designed with simplicity in mind. It 
should be easy for students and researchers to animate code in a few minutes. 
Flashdance offers an option not present in other algorithmic animation systems: 
overlays. Taking advantage of the fact that Flash animations are organized in lay-
ers, we can also organize algorithmic animations in different views. One view can 
show the algorithm itself, another layer the number of operations or data ex-
changes. Overlays can be switched on and off by the viewer of the animation and 
provide a way of transporting more information to the final viewer. 
 
As shown in this chapter, instrumenting a program to produce an animation is 
very simple. It would be easy to instrument classes in object oriented program-
ming languages to extend them with animation capabilities.  
 
Many other algorithmic animation systems have gone into oblivion because the 
implementation platform has disappeared. Flashdance is a simple scripting lan-
guage for which players can be written fairly easily. One player was written for E-
Chalk, the other for Flash. I expect Flash to be around for at least ten more years 
and ActionScript animations to be upward compatible at least for a decade. In ten 
more years, it could be that animation features are already part of the operating 
system and then other animation scripting languages could become more popular. 
Microsoft is working in this direction and the new version of Windows, to be in-
troduced in 2006, could offer such animation scripting. Flashdance should be easy 
to adapt to new scripting languages, so that Flashdance animations for the Web 
survive more than ten years into the future. 
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The popularity of Flash animations is also transforming the Linux world. Players 
for Linux are already available, and also Web servers for Flash content. The inten-
tion of Macromedia is to position Flash as the interface for Rich Internet Applica-
tions, that is, applications delivered through the Web, and compatibility across 
platforms becomes important. Sun Microsystems, for example, started delivering 
Flash as a component of its Java Desktop in 2003 and the Flash player is an inte-
gral part of the open source Mozilla browser. Therefore, using Flash as the 
graphical front-end for my own system seems to be a good bet for the future. 
 
Flashdance is the first algorithmic animation system which takes advantage of the 
inherent animation capabilities of an animation engine for the Web. I assume that 
other systems will emerge in the future and will follow this lead. In this chapter I 
have provided examples of many algorithmic animations with high-quality graph-
ics, reversibility, overlays, and coupling between a code and an animation win-
dow. The interested user can follow an animation, stop it, and zoom on a step by 
going forwards and backwards. Flashdance thus fulfills the requirements I set out 
for an algorithmic animation system in Chapter 3. 
 


