
 

 

 
 
 
4 Chalk Animator – Algorithmic Animation for an 

Electronic Chalkboard 
 
 
 
 
 
 
 
 
Conventional systems for algorithmic animation handle only computer generated 
images as building blocks in an animation. Perfect rectangles, circles, arrows, etc. 
are drawn by the user using a graphical editor or are generated automatically by 
the system. Exceptions are Hundausen [02] who studied a system for animating 
sketches of objects produced by an editor, and Stasko, who studied the animation 
of objects along paths defined interactively by the user, also with an editor [Stasko 
91a, 98b]. Strothotte [98] has also studied the techniques involved in animating 
non-photorealistic images rendered with the computer. In this chapter we consider 
a more radical alternative: the generation of algorithmic animations starting from 
sketches drawn by the user on an electronic blackboard, which is both the presen-
tation tool and the user interface for the lecturer. Not only is this approach time-
effective for the lecturer, but also the “look and feel” of animated sketches is very 
different from computer generated graphics. Sketch animation resembles best the 
kind of teaching done using a traditional chalkboard. If applied properly, sketch 
animation can result in a more interesting lecture. 
 
This chapter is organized as follows. First we review the basics of the E-Chalk 
system, developed at the Free University of Berlin [Rojas 01, Friedland 02, 03a, 
03b, 03c]. We then review how teachers make use of the chalkboard to produce 
what I call “static animations” (a term used in the “visual literacy” literature). 
Then we will see how to automatically produce sketch animations in E-Chalk with 
a sequence of images produced by a program running as intelligent assistant to the 
lecturer. Since a transcription of E-Chalk lectures can be printed, this is an impor-
tant additional feature for the whole system. We discuss the protocol needed for 
synchronization between the animation program and E-Chalk and we finish giving 
some examples of animations. 
 
 
4.1 The E-Chalk System 
 
The main idea of the E-Chalk system is to provide the functionality of the tradi-
tional chalkboard using a large contact sensitive computer screen, but enhanced 
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with all the capabilities of a digital system. An electronic blackboard should be as 
easy to use as a traditional one. It should be in service 24 hours a day, seven days 
a week (that is, it should switch-on when touched). The only interface to the elec-
tronic board should be a stylus, instead of a piece of chalk. 
 
E-Chalk is not only a software system but also a vision of our digital future. The 
large computer screens which are needed are not available yet at a price affordable 
for elementary schools or small universities. However, prizes are going down at 
such a pace that in a few more years, large computer screens will be ubiquitous. A 
day will arrive in which large flat computer screens, possibly made of organic 
materials, will be as cheap, or cheaper than traditional blackboards. There will be 
no reason for not going digital in the classroom. 
 
The current implementation of E-Chalk was written in Java, mainly because the 
large computer screen is attached to a computer and remote viewers can connect 
to the system using an Internet browser. A Java enabled browser frees the viewer 
from having to install a plug-in to play the lectures being transmitted. Each lecture 
stream transports its own decoder as an Applet, so that users do not have to install 
and reinstall software every time the server software is changed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1   The E-Chalk system. A lecturer writes on an electronic blackboard. Audio, video, and 
board contents are stored and are streamed through the Internet. Remote viewers watch a lecture 

using a Java enabled browser. 

 
When an E-Chalk session is started, the server computer starts storing and sending 
three streams: the board events, the audio channel, and an optional video channel. 
The three streams can be accessed from a Web page, by starting the E-Chalk cli-
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ent, which is a collection of three client Applets, one for each stream. The streams 
are synchronized by the audio time stamp. Therefore, an E-Chalk session can be 
recorded completely, as on a video tape, but the quality of the reproduction of the 
board on the client side is much higher, since the board is repainted with the full 
resolution of the computer screen. Figure 4.1 above shows schematically a teach-
ing scenario: a lecturer teaches to a live audience; the E-Chalk server transmits the 
audio, video and board streams and stores an archival copy. A remote viewer 
watches the class using an Internet browser. 
 
Figure 4.2 shows a diagram of the main components needed for an E-Chalk 
transmission. Three servers synchronize on the sender side, one for each stream. 
The servers fill buffers, in order to provide a smooth transmission stream even 
when the Internet quality of service is changing. On the receiving side, when the 
viewer clicks on the URL of the lecture, three Applets are started, one for each 
stream. The three Applets receive and play the information sent by the server. In 
the case of the board Applet, the stream is composed of ASCII characters that 
encode the kind of action required: draw a line, paste a picture, write text, etc. The 
viewer hears and sees the lecture and can also scroll the window where the lecture 
is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2   Three stream servers feed three Applet clients during an E-Chalk lecture (from the E-

Chalk documentation) 

 
Figure 4.3 is a screen dump of an actual lecture, as seen by a remote viewer in his 
browser. The look and feel of the screen is that of a lecture on a good blackboard. 
The use of color helps to emphasize some important aspects of the lecture. 
 
The main feature of E-Chalk is to go beyond the original blackboard metaphor 
and provide “intelligence and information on demand”. This means, that a series 
of special programs is running in parallel with E-Chalk and is watching the user 
interacting with the screen. Certain programs can then become active when certain 
conditions are met. For example, a program can observe the handwriting of the 
user and if a mathematical formula is entered, and if the user writes a special stop 
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symbol, the program can interpret the formula. If it is an equation, it can solve it. 
This capability has been already implemented in E-Chalk, using Mathematica as 
the mathematical equation solver [Tapia 02, 03a, 03b]. Another example could be 
a program that interprets musical notation written on the blackboard. If the user 
gives a signal (that is, if she writes a special gesture symbol) the computer plays 
the music. Another example could be a program that plays tic-tac-toe with the 
user, as soon as the user draws a tic-tac-toe field and gives a signal. The possibili-
ties for interfacing applications with the blackboard are endless. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.3   A real E-Chalk lecture about geometric concepts at the FU Berlin. 

 
 

 
Figure 4.4   The mathematical handwriting recognition engine and editor. 
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Regarding algorithmic animations there are two things which come immediately 
to mind as possible extensions of the blackboard metaphor: a) the immediate exe-
cution of code written on the blackboard, b) the animation of algorithms started by 
the lecturer. Imagine a lecturer who writes the code for bubble sort in some con-
cise pseudocode. Imagine that the code runs and delivers a numerical result, or 
still better, it animates an array in which the steps of the algorithm are clearly 
visible as exchanges of numbers. 
 
In this thesis both problems are considered, whereby I concentrate on the second 
one: the animation of algorithms on an electronic blackboard, interactively with a 
lecturer. But before we proceed further with this investigation, we will look more 
closely at what constitutes a good “animation” of an algorithm on the blackboard. 
 
4.2 Good chalkboard animations – good paper animations 
 
There are many cases in which lecturers have to illustrate a dynamic process using 
a traditional chalkboard. Algorithms are such an example: if the steps of the algo-
rithm are to be visualized, both the program and the data can be viewed “dynami-
cally”. There are several alternatives when using a chalkboard: 
 

a) A diagram of the data model can be drawn and can be progressively erased 
and drawn again, to show the modifications. 

b) A diagram can be drawn and subsequent modifications can be shown on a 
second version. For example, if a sorting algorithm is being discussed, the 
current state of the list of numbers can be displayed in successive lines 
(“stills,” as defined in the ANIM system [Bentley 91a]). 

c) A single diagram is drawn and temporal changes are shown using another 
color. 

 
The first alternative, which is, animating by erasing, is confusing for the students. 
If a step is not understood, any subsequent step does not make sense. There is no 
way to go back to the previous state in order to connect it mentally with the pre-
sent state. Some lecturers use this kind of static animation technique, but it should 
be avoided. 
 
The second alternative is the one used in books, and usually the best that can be 
followed in class, when only a blackboard is available. Changes are shown in suc-
cessive illustrations and the reader can go back and forth between the different 
steps of an algorithm. In fact, psychological experiments have found that illustra-
tions of the individual steps of a process are superior to static illustrations. Such 
“dynamic” illustrations enhance the problem solving ability of students [Mayer 
90]. 
 
However, it is difficult to generate “dynamic” illustrations in the classroom, since 
it requires too many redraws of the same data. An electronic chalkboard is there-
fore an ideal instrument for illustrating the dynamics of an algorithm. I call this a 
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“static animation”. Each image by itself is static, shows a snapshot of the data or 
program state. But successive images show the state transitions. A “static anima-
tion” displays the temporal dimension across several pages, or across several im-
ages pasted on the screen. Static animation can be done in E-Chalk by pasting 
successive steps of an algorithm to the screen. 
 
Figure 4.5, taken from an actual E-Chalk lecture delivered in 2002, shows how an 
algorithm can be “animated” using a high-level view of the computations in-
volved. Quicksort is illustrated here by showing how a list is split into the ele-
ments smaller and the elements larger than the pivot (red arrows). Then, recursive 
calls sort both lists, which are appended, with the pivot in the middle, to yield the 
final result. We will return later to this problem of producing high-level, abstract 
illustrations of algorithms. 
 

 
Figure 4.5   A “static animation” of Quicksort from a real lecture at the FU Berlin. 

 
This “static animation” contains the essential information of the mechanics of the 
algorithm; it is almost “graphical code”. Color has been assigned a meaning and 
the resulting composition is even esthetically pleasing. This could be called an 
algorithm explanation “without words”. 
 
My second example of a “static animation” is Figure 4.6. Here, a table for a Boo-
lean function has been pasted four times on the electronic blackboard. The teacher 
can illustrate the individual steps involved in deriving a minimal Boolean expres-
sion for this table. By finding rectangular regions with ones, and enclosing them 
with a different color, it is easy to see where the final expression comes from. 
Such a manipulation could be done on a traditional blackboard, but is much easier 
to perform on an electronic blackboard. It is also very interesting to notice that 
when the costs of duplicating a diagram are so low, the possibility of spontane-
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ously deciding to show a new example, given by a student, increases dramatically. 
A lecture can become more dynamic and interactive, when material and examples 
are produced on the fly, during a lecture. 
 

 
Figure 4.6   Reusing pasted diagrams in order to explain Karnaugh maps 

 
As can be seen from this example, the temporality of the steps followed has been 
captured in a sequence of images. The color cue has been used to focus the atten-
tion of the viewer in the sequential production of the logical terms. 
 
An electronic blackboard provides lecturers with additional possibilities for illus-
trating algorithm steps. In what follows, I will explain how my own animations 
exploit the features of E-Chalk. 
 
 
 
4.3 Reuse of macros in E-Chalk 
 
A “static animation” can be produced in E-Chalk in a simple way: the user starts 
the E-Chalk macro recording tool when preparing his or her lecture, draws a dia-
gram the way this diagram should appear on the blackboard and saves the macro. 
Later on, the macro can be called during a lecture, from the E-Chalk menu, and 
can be annotated. A change of state can be shown by calling the macro again, 
pasting the original picture to the board, and annotating it. Through the reuse of 
macros, a sequence of images can be easily produced. 
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Figure 4.7 shows an example. The lecturer is explaining the different outputs of a 
circuit for the XOR function for all four cases of two inputs. Instead of erasing the 
first diagram, he can redraw the circuit (pasting the stored macro) and can anno-
tate in a new way. Fig. 4.7 shows the evolution of the state of the electronic 
blackboard after each macro operation, and after the lecturer has labeled each dia-
gram. 
. 

 
 

 
 

Figure 4.7   Static animation of a logic gate using the same pasted image 

 
I call this approach static animation by reuse of images. The lecturer is an active 
participant, and is helped by the computer providing him with the ability to re-
draw sketches without loss of time and with minimal effort. 
 
 
4.4 Animations in discrete steps 
 
A second possibility of animating sketches in E-Chalk is by allowing the user to 
do the drawing and erasing himself, as preparation for a lecture. A macro couldbe 
recorded in E-Chalk, and a special “pause” button introduces a “pause event” in 
the stream recorded for the macro. When the macro is replayed in E-Chalk, the 
pause event could stop animating and provides the lecturer some time for explana-
tions. The right-arrow key of the wireless keyboard used with E-Chalk could acti-
vate the continuation of the macro recording. Drawing resumes. Since any use of 
the eraser is also recorded in a macro, the user can proceed to erase parts of the 
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drawing and redraw them, possibly with some changes. The result is a stop-and-
go animation of an algorithm, similar to the handcrafted animations mentioned in 
Chapter 2. Pauses will be included in E-Chalk macros in future releases of the 
system. 
 
 
4.5 Reversibility 
 
The E-Chalk macro facility can be used in reverse mode by just combining undo 
with redo steps. An animation which has been played as a macro is stored in the 
undo stack as a sequence of undo steps. For any stroke which has been painted by 
a macro, the corresponding inverse action is stored in the undo stack. It is possible 
to run an animation backwards by clicking on the undo button. Clicking on the 
redo button it can be made to run forward again. 
 
We saw before that reversibility of an algorithm is an important aspect for any 
animation system. Here we obtain reversibility practically at zero cost because the 
undo stack is already a standard feature of the E-Chalk system. Reversibility al-
lows the user to inspect an algorithm more closely, enhancing understanding. 
 
 
4.6 The E-Chalk event format 
 
The macro facility of E-Chalk was written by Lars Knipping, member of the E-
Chalk team – it allows the system to load a macro file and play it, executing the 
board events stored in the file. For my own purposes, the format of the board 
events is important, since this is the data that must be produced by my algorithm 
animations.  
 
Board events are dynamic events – the time of execution is given so that strokes 
are painted in a well-defined temporal order. 
 
A macro file starts with a header: 
 

ec1 
1018 
736 
Macro #1 
ff000000 
0$Nop$created 03-10-30 11:46:57 GMT+01 

 
 

Line 1 is a version identifier for E-Chalk lectures. Lines 2 and 3 give the size of 
the window in pixels (1018 horizontally, 736 vertically). The next line defines the 
name of the macro, and the last line is a NOP (No operation) containing the date 
and time of creation of the file. 
 
The file continues with a definition of the strokes to be painted, for example: 
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708$Form$Line$64$96$64$72$ffffffff$2 
708$Form$Line$69$96$69$6E$ffffffff$2 
708$Form$Line$6E$96$6E$76$ffffffff$2 
708$Form$Line$73$96$73$7A$ffffffff$2 
708$Form$Line$78$96$78$7E$ffffffff$2 
 
These five lines tell E-Chalk to draw five lines ($Form$Line command), all of 
them 708 milliseconds after starting the macro. The first line goes from the pixel 
with coordinates (64,96) to the pixel with coordinates (64,72). All numbers are in 
hexadecimal code, to save space. The color of the stroke is coded in 24 bits (last 
six hexadecimal digits of the long hexadecimal number). The code $ffffffff$ cor-
responds to white. The last number (2) is the width of the stroke. 
 
As an example, consider the following event lines which are part of the macro that 
draws the rectangle with four colors shown on the right. The line width is 3. The 
first line starts at 120e hex milliseconds, the last line at 4353 hex milliseconds. 
 
ec1 
1016 
734 
Macro #3 
ff000000 
0$Nop$created 03-11-19 17:34:18 GMT+01 
… 
120e$Form$Line$78$36$7a$36$ffffffff$3 
1222$Form$Line$7a$36$7b$36$ffffffff$3 
… 
22ac$Form$Line$dd$35$de$38$ffffff00$3 
22c0$Form$Line$de$38$de$39$ffffff00$3 
… 
302c$Form$Line$db$90$d8$90$ff00ff00$3 
3036$Form$Line$d8$90$d7$90$ff00ff00$3 
433f$Form$Line$70$91$70$8f$ff0000ff$3         
4353$Form$Line$70$8f$70$8d$ff0000ff$3 
… 
5f54$Nop$end 03-11-19 17:34:43 GMT+01 
 

Figure 4.8   E-Chalk macro for a sketch of a square 

 
 
 

When the macro is played, the lines are drawn smoothly,  as when the macro was 
first defined. 
 
It is also possible to include other type of events in macros. One important event 
is pasting text on the screen. Individual characters are pasted one after the other, 
and the sequence is opened with a $Form$Text$ command. The characters follow, 
each at a specific time, and the whole sequence is finished with a $Text$End$ 
command. In the example below, the square has been embellished now with the 
word “square” to the right. 
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100$Form$Text$$f6$5a$ff00ff00$14 
6d2$Text$Char$s 
7b7$Text$Char$q  
846$Text$Char$u 
9be$Text$Char$a 
10de$Text$Char$r 
11fe$Text$Char$e 
11ff$Text$End$square   

 
 

Figure 4.9   A square with text. 

 
It is now very easy to take the next step. An algorithm can be animated by insert-
ing the appropriate events in the source code of the algorithm. This can be done in 
any programming language, as shown in the next section. 
 
 
4.7 Animation with sequences of stills 
 
We can now produce our first E-Chalk animation using programs that produce the 
E-Chalk events. For the first experiment we will use Matlab code, extended with 
write instructions that produce the appropriate animation strokes.  
 
Figure 4.10 shows the result of running the bubble sort algorithm in Matlab. The 
Matlab code was annotated to produce the header of the macro and each of the 
strokes, as well as the text. The screenshot shows each one of the ten iterations of 
the algorithm, as columns, the displacement of the element being compared (red 
line) in each iteration, and which elements have been already sorted (in green). 
The magnitude of an element of the array is represented by the length of the 
stroke. 
 
When the macro runs, each array appears one after the other (not all at the same 
time), so that the viewer can see the algorithm running and going from one itera-
tion to the next. It is not the same visual impression as when an array is being 
sorted in-place, but the history of the algorithm remains on the screen and can be 
reviewed later at a glance. 
 
The animation has not been heavily annotated with text, and it would be prefer-
able to avoid any lettering, because the intention is to use these animations during 
a class. The lecturer should do the labeling and annotations to the animation, so 
that there is a more direct interaction between lecturer and blackboard. When the 
lecturer writes her annotations, she explains the algorithm, and this reinforces the 
visual impression from the animation, as postulated by the dual channel coding 
theory. 
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Figure 4.10   The history of ten bubble sort iterations. The pivot has been colored red, sorted num-

bers green. 

 

 
Figure 4.11   Discussing the complexity of bubble sort 

 
The code inserted in the Matlab definition of bubble sort has the following form: 
 
 
 x=dec2hex(95*it+5*j); 
 y=dec2hex(100+i*50+50); 
 y2=dec2hex(100+i*50-4*a(j)+50); 
 tt=dec2hex(time+1800+(i-1)*20); 
 fprintf('%s$Form$Line$%s$%s$%s$%s$ff55ff0%i$2\n',tt,x,y,y2,x4,1); 
 

The coordinates for the line to be drawn are computed, also the time at which the 
line should appear, and then the $Form$Line$ command is written to the macro 
file. The it, i, and j variables define the iteration (two loops) and the array element 
we are painting. The constants were calculated to allow displaying the whole table 
in one screen. 
 
Of course, the whole algorithm instrumentation could be made easier by defining 
Matlab functions which take care of the details. This was not done for Matlab, but 
for Java, as will be explained in the next sections. The Matlab experiment was 
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performed to illustrate macro animation in the E-Chalk system, which is language 
independent. Any high-level language can be used to generate macros. 
 
 
4.8 Overlaying images – pseudoanimation  
 
It is also possible to produce an in-place animation of an algorithm in E-Chalk. 
For this, the macro file should just avoid translating the array on the screen. The 
array is repainted after every iteration (covering the previous strokes with black). 
Since in E-Chalk the velocity of the macros can be regulated, it is possible to play 
a sequence of images at a rate that gives the illusion of a smooth animation. 
 

 
Figure 4.12  In place animation of bubble sort in E-Chalk. The four screenshots show four differ-

ent temporal states of the animation. 

 
Figure 4.12 shows four screenshots of a running animation of bubble sort. The 
numbers in an array are represented by the height of the bars. The pivot of the 
previous iteration is shown in red (possibly after having been exchanged with a 
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larger element). The unsorted numbers are shown in yellow, and the numbers 
sorted in the previous pass are shown in green. 
 
The animation was produced with few annotations in the Matlab code, which is 
essentially the same as was used to produce the animation of the history table of 
the execution of the algorithm. The lines below show the code for painting one of 
the number bars. The code is inserted in the main execution loop. 
 
x  = dec2hex( 100+50*j ); 
y1 = dec2hex( 300 ); 
y2 = dec2hex( 300-20*a(j) ); 
tt = dec2hex(time+1800+(i-1)*20); 
fprintf('%s$Form$Line$%s$%s$%s$%s$00000000$10\n',tt,x,y1,x2,100); 
fprintf('%s$Form$Line$%s$%s$%s$%s$00ffff00$10\n',tt,x,y1,x2,y2); 
 
As can be seen from Fig. 4.12, the lecturer has done the textual annotations her-
self. Before the animation runs, the lecturer can explain the coding to be used and 
annotate the blackboard. Then the macro is started and the lecturer provides an 
explanation. The macro can be stopped at any time by pressing a key on a wireless 
keyboard. 
 
Our experience in the classroom with this kind of algorithmic animations is that 
embedding them in the electronic blackboard provides a feeling of immediacy. 
Since the appearance of the animation is made to look like a sketch, the lecture 
seems more spontaneous and students are driven to ask more questions. There is a 
community within the computer graphics field that has actively explored natural-
istic and non-photo realistic rendering in the last few years. The animations possi-
ble with E-Chalk go in this direction, but as we will see in the next chapter, there 
is still room for additional improvements. 
 
 
 
4.9 Audio for the animations– explanatory narration 
 
 
The E-Chalk system allows the producer of a lecture to store the signal from a 
microphone when an animation is running. This is relevant for us because algo-
rithms taught in class with an animation automatically become a narration. It is 
possible to bring the animation on-line for viewers from the Internet. We already 
saw in Chapter 2, that some algorithm animators consider sound a valuable and 
important addition to the visual material [Brown 98d]. 
 
Psychological research has confirmed how important a synchronized narration is 
for understanding algorithms. Mayer and Anderson, for example, conducted ex-
periments with a simple learning task: students had to learn the operation of a tire 
pump and a brake system with the help of a multimedia system. In one group, an 
animation was shown, and a narration was provided before, or after the animation. 
In another group, the animation was shown coupled with the narration. The later 
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group performed better in problem solving tests, although there was no difference 
in memory retention tests. The authors conclude that images and words are most 
effective when used contiguously in time and space [Mayer 92]. This shows that 
the concurrent presentation of audio and animations helps the student to build 
references between both, which provide an advantage later in creative problem 
solving [Mayer 91].  
 
However, one word of caution is needed here. When the narration and the mate-
rial on the screen compete for the attention of the viewer, this can lead to a split- 
attention situation, in which the actual assimilation of the material is impaired. 
The best effect is obtained when the narration and the action on the screen are 
correctly synchronized. What is being narrated should be visible on the screen 
[Moreno 02] and should not confuse the viewer. This is a problem of staging 
which cannot be solved automatically by a computer but where we rely on the 
experience of the lecturer. 
 
 
 
4.10 Python as pseudocode language 
 
 
In the rest of this chapter, the programming language Python will be used as the 
implementation platform for algorithms. There is an important reason for this: the 
syntax of Python is very similar to the kind of algorithmic pseudocode used in 
[Cormen 90]. Several algorithms from this standard book can be transformed into 
Python with small effort. 
 
Python is by now a relatively old programming language, but from its origins of 
not being a not very well-known system its use has increased significantly in the 
last years. Python was first defined in 1990 by Guido van Rossum, who wanted a 
scripting language for the Amoeba distributed operating system developed at CWI 
in Amsterdam. Van Rossum’s intention was to have a simple language with a 
clean syntax. In this endeavor he was influenced by the programming languages 
ABC and Modula 3. The first release of Python was posted in February 1991 and 
since then the language has evolved, adding new capabilities, but preserving its 
original simplicity. Python is an interpreted language, which can be used interac-
tively, in a similar way to Matlab. Python is object oriented and can call external 
libraries. 
 
An example can illustrate the similarity between Python and the pseudocode used 
in [Cormen 90]. The example was written by Pai Chou for a Web page about “ 
Algorithm Education in Python.” To the left, we see the definition of the insertion 
sort algorithm as in [Cormen 90], to the right, equivalent Python code. 
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Figure 4.13   Comparing pseudocode with Python code 

 
As can be seen, there are no begin-end blocks in Python. Indentation groups 
statements in blocks. A difference to the pseudocode is that Python arrays start 
with the index zero, and this has to be taken into account when using the length of 
an array as a parameter (as in the algorithm). Other than that, we can see that there 
is almost a one to one correspondence between both types of coding. Python has, 
of course, many other instructions that go beyond pseudocode, but for the purpose 
of algorithmic animations we are interested only in the similarity to pseudocode. 
 
The next example is Quicksort in-place (code below by David Eppstein). Quick-
sort operates with two pointers that traverse the array in opposite directions, mov-
ing elements lower than a key towards the lower indices, elements greater than a 
key to the larger indices. This algorithm was instrumented to produce the E-Chalk 
animation discussed in section 4.12. 
 

def qsort(L): 
   quicksort(L,0,len(L)) 
 
def quicksort(L,start,stop): 
 if stop - start < 2: return 
 key = L[start] 
 e = u = start 
 g = stop 
 while u < g: 
  if L[u] < key: 
   swap(L,u,e) 
   e = e + 1 
   u = u + 1 
  elif L[u] == key: 
   u = u + 1 
  else: 
   g = g - 1 
   swap(L,u,g) 
 quicksort(L,start,e) 
 quicksort(L,g,stop) 
 
def swap(A,i,j): 
    temp = A[i] 
    A[i] = A[j] 
    A[j] = temp 

Insertion-Sort(A) 
1 for j <- 2 to length[A] 
2   do key <- A[j] 
3      i <- j - 1 
4      while i>0 and A[i]>key 
5            do A[i+1]<-A[i] 
6               i <- i - 1 
7      A[i + 1] <- key 

def InsertionSort(A): 
1 for j in  range(1,len(A)): 
2    key = A[j] 
2    i = j - 1 
4    while(i>=0)and(A[i]>key): 
5         A[i+1] = A[i] 
6         i = i - 1 
7    A[i+1] = key 
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Python has been very popular for writing scripts and part of the Google code has 
been developed in this language. Now, Python is also gaining increasing accep-
tance in education as a first programming language and it is therefore very inter-
esting as a platform for algorithmic animation. Another language which can be 
also used for algorithmic animation is Haskell. Instrumenting a program in Has-
kell is non-trivial, due to its declarative functional nature, but one of the examples 
in the next section was produced using Haskell. 
 
 
 
4.11 A scripted animation language 
 
In order to minimize the effort needed to generate an animation for E-Chalk, I 
defined a new scripting language for algorithmic animation. The script language 
has been defined primarily with Macromedia Flash productions in mind, and 
therefore I call it Flashdance, true to the tradition of naming algorithmic anima-
tion languages after a kind of dance. 
 
The algorithms discussed in the next section were produced by generating a 
Flashdance script. The script is then processed by an interpreter written in Java 
which produces the appropriate E-Chalk macros. The macros can then be played 
in E-Chalk during a lecture. It would be possible to play the animations in any 
other animations system (Quicktime, a Java Applet). In that case an interpreter for 
the script language has to be written, which produces the appropriate Quicktime 
or Java commands. 
 
Flashdance will be extensively covered in Chapter 6. Here, I only list the com-
mands available in the macro language.  
 
The commands have a name, reproduced in bold face, and arguments. Optional 
arguments are enclosed in square brackets. 
 
 
new     object-type   object-name   x     y    width   height   [label] [colour] 
 

       View  view-name    x    y    width   height   [background-colour] 
             String  object-name   x    y   width   height  [label]  [colour]  [style]  
             Line  object-name   x1   y1   x2    y2   [line-width]  [colour] 

       Rectangle   object-name   x   y   width   height   [line-width]  [colour] 
       Oval  object-name   x   y   width  height   [line-width]  [colour]       

 
remove object-name1   …  object-namen  
removeAll   
change         object-name   property1   value1    property2   value2  …  
exchange     object-name  object-type  [label] 
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moveTo object-name1   x1    y1  . . .  object-namen   xn    yn 
animTo object-name1   x1    y1   . . .  object-namen   xn    yn   [path]  
highlight highlight-type  object-name1   . . .  object-namen   
swap            object-name1  object-name2  [path] 
 
setView        view-name 
 
setTime interval 
stop            [label ] 
 
See section 6.5 for a complete description of the Flashdance language. 
 
For the animations in section 4.12, I only had to use the “new Line” command in 
order to generate points and lines. Points were generated as lines going from one 
point on the screen to itself, with a certain appropriate line width. The command 
“swap” was used to generate the animation of an element swap. In the macro 
event code for E-Chalk, the swapped data points are erased and painted again at 
the new location.  
 
 
4.12 Examples 
 
 
In this section I will describe some algorithms which were implemented in Py-
thon, producing scripted code that was then transformed into E-Chalk macros. 
The macros have been collected in a library of illustrative examples which can be 
used during a class with the electronic chalkboard. The lecturer does not have to 
change the user interface metaphor; all animations are started from within E-
Chalk. 
 
 
4.12.1 Seeing Quicksort 
 
My first example is Quicksort. The code is the one described in section 4.10. The 
actual code produces two macros, one which draws the initial data, enclosing it in 
a frame. Figure 4.14 shows an array, with the index going from 0 to 99 in the 
horizontal direction. The distance of a point from the horizontal axis represents 
the magnitude of the number stored in the array. The numbers were selected ran-
domly in the range 1 to 100. When the lecture about Quicksort begins, the lecturer 
can first let the data be drawn. 
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Figure 4.14   A macro draws the original unsorted data. The horizontal direction represents the 

position in an array of 100 elements. The vertical height is proportional to the value of the element 
at each position in the array. 

 
The next screenshot, Figure 4.15, shows how the lecture has progressed. The lec-
turer writes the name of the algorithm, and explains the data. To the left a small 
example of the recursion used in Quicksort has been drawn. The code shows that 
the initial list is partitioned into two lists, the lists of elements smaller than the 
pivot, and the list of elements larger than the pivot. Two recursive calls sort the 
data, which provides the final answer after appending the lists. In the case of in- 
place sorting, the append operation is implicit in the calls. 
 

 
Figure 4.15   The lecturer has annotated the blackboard. 

 
The next screenshot, Figure 4.16, shows the state of the electronic chalkboard 
once the second macro is started. This macro erases and repaints the swapped 
elements of the array. The sorted elements are painted in green. One can see that 
the algorithm has more or less grouped the input, and that the first array elements 
are already sorted, that is, they are green. 



114 Chalk Animator 

 

 

 
Figure 4.16    Progress of the animation 

 
In Figure 4.17 (left) we can see the further progression of the animation, now al-
most all numbers have been sorted. Figure 4.17 (right) shows the final result. 
 

 
Figure 4.17   The animation ends, the data has been sorted. 

The lecturer can now offer several more examples: Figure 4.18 shows a worst 
case for Quicksort: an ordered list of numbers. The screenshot on the right shows 
the slow progression of the algorithm. If the algorithm is too slow, the macro can 
be stopped by the lecturer by clicking on the screen. 
 
Now, the lecturer can ask an interesting question, namely, which numbers have 
been swapped to which array positions. An animation with an overlay can be run. 
The overlay shows all array positions and which numbers have occupied them 
during the algorithm run. For the worst case example, the pattern shown in Figure 
4.19 provides the answer. One can see that there are some repetitive patterns, 
which better illustrate the algorithm dynamics. Some array positions are used to 
store sequential numbers and this yields the vertical lines in the pattern. 
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Figure 4.18   One worst case for Quicksort: a sorted list is the input. To the right we see the slow 
progress of the algorithm. 

 
 

 
Figure 4.19   All positions occupied by elements in the array have been marked. The white points 

give an idea of the number of exchanges performed for this data. 

 
In the average case, that is, for randomly selected numbers, the pattern is still 
more intriguing. Instead of vertical lines, now horizontal lines dominate. Some 
numbers are copied sequentially through several array positions. The pattern is 
interesting – it looks somewhat fractal. One can see that the points are organized 
in boxes of different sizes, a typical visual pattern produced by the Quicksort filter 
operation.  
The most astonishing property of the animation cannot be reproduced with these 
images: it is the visual surprise of seeing a blackboard come alive to play an algo-
rithm. 
 
The lecture about this specific algorithm can be stored on the Web, and the expla-
nation of the lecturer is integrated with the animation. Any interested student from 
all over the world can access the animation, hear the explanation, and see the 
numbers being sorted. 
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Figure 4.20   History of Quicksort swaps for random data. 

 
The time needed to prepare this animation was negligible: only a frame had to be 
drawn, and point objects were painted on the screen. The rest, the textual material, 
was added by the lecturer on-the-fly, during a class, and completes the algorithmic 
animation. 
 
 
4.12.2 Convex hull algorithm 
 
The next example is a geometric algorithm for computing the convex hull of a set 
of points in the plane. The algorithm is quite simple, it is known as the Graham 
scan. It works by generating a stack of points. Each new point pushed into the 
stack is tested for membership in the convex hull. If a point does not belong to the 
convex hull, as evidenced later by the consideration of new points, it is popped 
out from the stack. A description of the algorithm can be found in [Cormen 90]. 
The code below, in Python, is from the Python cookbook repository and was writ-
ten by D. Eppstein. The algorithm computes the upper and the lower convex hull 
of a set of points. The code is very elegant and short, an excellent example of the 
pseudocode flavor of Python. 
 
def orientation(p,q,r): 
    return (q[1]-p[1])*(r[0]-p[0]) - (q[0]-p[0])*(r[1]-p[1]) 
 
def hulls(Points): 
    U = [] 
    L = [] 
    Points.sort() 
    for p in Points: 
        while len(U) > 1 and orientation(U[-2],U[-1],p) <= 0: U.pop() 
        while len(L) > 1 and orientation(L[-2],L[-1],p) >= 0: L.pop() 
        U.append(p) 
        L.append(p) 
    return U,L 
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The algorithm was instrumented and the Flashdance script was generated. From 
this, the macro file was generated. Figure 4.21 shows the algorithm starting from 
the left. The upper convex hull is being formed with a white polygon, the lower 
convex hull with a yellow polygon. At the beginning, only a few points have been 
tested and the white and yellow polygons almost touch. 
 

 
Figure 4.21   convex hull algorithm starting in E-Chalk. 

 
Figure 4.22 and Figure 4.23 show the further progression of the algorithm. Lines 
which have been tested for membership in the convex hull are painted green, us-
ing a fine line. As can be seen, both convex hulls are built slowly and many lines 
have been tested during the computation. Fig. 4.23 shows the final result, further 
annotated by the lecturer, who has drawn arrows pointing to the upper and lower 
convex hulls. 
 

 
Figure 4.22   Progress of the convex hull algorithm. Lines tested and rejected are shown in green. 

 
Figure 4.24 shows another run of the algorithm, played at the same position on the 
screen. Now the lines which have been tested have not been highlighted in green. 
This is an overlay which can be turned on or off when the animation is translated 
into an E-Chalk macro. 
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Figure 4.23   The final result. The lecturer has annotated the upper and lower convex hulls. 

 

 
Figure 4.24   Another example where only the convex hulls and the points have been drawn. 

 
 
4.12.3 The Heapsort algorithm 
 
 
The last example in this chapter is the Heapsort algorithm. Heapsort builds a max-
heap of numbers using an array. The first element (the root) is then taken out of 
the heap (because it is the maximum number in the array). The rest is heapified 
and the algorithm continues. The four screenshots shown in Figure 4.25 illustrate 
a run of the algorithm, when the numbers have been selected randomly between 1 
and 100. The visualization used is the one introduced before in section 3.4. 
 
The animation shows clearly, how the heap becomes smaller and smaller. The 
numbers which have already been sorted are colored green. The heap cloud is 
restricted to a smaller and smaller rotated square, until all numbers have been 
sorted. 
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Figure 4.25  The Heapsort algorithm running. 

 
 
Figure 4.26 shows all numbers which have been stored in every entry of the array. 
The number of white points is a good indicator for the number of substitutions 
computed during the sorting algorithm. It is easy to see that the number of substi-
tutions is much lower than order n2. 
 
 
 
4.13 Summary and discussion 
 
In this section I have introduced the E-Chalk system for electronically enhanced 
classroom teaching. E-Chalk was developed mainly in order to improve classroom 
teaching. The transmission and storage components are secondary derivatives of 
the technology. E-Chalk is based on the concept of “intelligent assistants” work-
ing in the background, helping the lecturer to deliver her class. The algebraic 
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server, for example, is used to compute algebraic expressions or to plot functions 
on demand. The teacher does not have to leave the chalkboard metaphor when 
using any of these intelligent tools. 
 
 

 
 

Figure 4.26   A trace of the Heapsort algorithm. All values which were stored at every array posi-
tion have been marked with a white point. The greatest activity has been registered at the lowest 

indices. 

 
In this chapter, I have reviewed the type of teaching that can be done with a 
blackboard. Using a blackboard is an art and not everybody can do it correctly in a 
class. A static description of an algorithm or process should make visible the main 
steps involved. I showed that an electronic blackboard makes possible the reuse of 
diagrams, impossible in a classical blackboard, and that a kind of static animation 
by reuse of pictures becomes possible. This type of explanation is extremely im-
portant in computer science. 
 
I have shown above that real algorithmic animations can be integrated in an ele-
gant way in electronic blackboard teaching. Although E-Chalk has the capability 
of calling Applets, which are pasted to the blackboard, and these Applets can be 
algorithmic animations, my approach of generating macros is more natural for a 
class given with a blackboard. The teacher never changes the interaction interface 
with the system – it is always a blackboard. 
 
The effort needed to instrument algorithmic animations for E-Chalk, following 
my approach, is negligible. All textual annotations can be done by the teacher 
while giving her class. The Quicksort example is very illuminating in this respect. 
The code had to be annotated just in the swap function and every time a point had 
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been sorted (to paint it green). Since the teacher writes the rest, the text and dia-
grams for an explanation, this does not have to be included in the macro. Different 
experiments can be conducted in the same region of the blackboard or in another, 
if desired. 
 
I showed also, that there are two possible ways of showing an animation: as an 
animation of the history of the algorithm or as an animation in-place. Both kinds 
of animation fulfill different needs. The static animation through a history helps 
the teacher to slowly go from one step to the next. The student can review the 
whole history of the animation with her eyes. 
 
I also introduced briefly in this chapter the Flashdance script animation language. 
Using this script notation, instrumenting algorithms becomes very easy. The script 
language will be described fully in Chapter 6. The examples described in this 
chapter were written in Matlab and Python. This shows how easy it is to change 
the coding language. Python is especially attractive, since algorithms written in 
Python resemble pseudocode of the type used by [Cormen 90]. 
 
The sequences of screenshots presented in this chapter should give the reader an 
idea of the kind of result obtained from my Flashdance algorithmic animation 
system for E-Chalk. The visual impression during class is one of surprise and im-
mediate interest. Although macros were initially integrated into the system as a 
way of storing definitions or small handwritten diagrams, in order to speed up the 
pace of a lecture when those definitions or diagrams are given. I have shown in 
this chapter how to exploit the macro event format for the production of algo-
rithmic animations. Animations using this approach have already been produced 
and have been made available through the Web, together with an oral explanation 
of the algorithms. With my approach, the lecturer has a partner in the computer, 
who helps to produce the visual effects. Likewise the lecturer is a partner of the 
algorithmic animation, because she annotates and embellishes the animation. 
 
In the next chapter, I will show that the level of coupling between lecturer and 
computer can be further increased by allowing the user to enter her own data in 
handwritten form, even the code of an algorithm in a simple language.  
 


