

2 Survey of Algorithmic Animation Platforms

2.1 Prehistory of algorithmic animation

Some authors date the origins of algorithmic animation back to the first efforts
towards making the structure of computer programs easier to grasp with the help
of visual aids, such as flowcharts and pretty printing [Baecker 98b]. John von
Neumann is mentioned in this regard as one of the pioneers of this visual ap-
proach [Goldstein 47]. In reality, however, only when computers became widely
available in the 1960s, did computer animation become a possibility. Designers
interested in exploring the new technology started collaborating with computer
scientists. One paradigmatic case is Ken Knowlton, a programmer and artist at
Bell Labs in New Jersey, who developed “Bell Flicker” one of the first systems
for producing animated movies. His interest in animation and list processing lan-
guages, led him to produce a film showing an animation of the language L6
[Knowlton 66a, 66b, 66c]. The movie explains the instruction set of the language
in a visual manner. This was necessary because at that time list processing lan-
guages were not as popular as they later became. LISP, for example, had just been
defined by John McCarthy in 1959, and there was a need for educational material.

After this pioneering effort, however, many years passed before there was a defi-
nite improvement in the state of the art. Notable exceptions mentioned by R.
Baecker [98b] are Hopgood [74] and Booth [75]. Baecker had himself previously
written a thesis about computer mediated animation, which already showed the
possibilities of the medium [Baecker 69a]. He also pioneered the visualization of
the execution of running programs [Baecker 73, 75]. Under the direction of
Baecker, Yarwood wrote a system that could illustrate program runs on hard copy
output, showing changes to monitored variables [Yarwood 74].

A system distributed as a production tool, was the visual debugger GDBX [Bask-
erville 85] which could animate data structures for the Unix debugger DBX. The
FIELD programming environment also offered a similar viewer for data structures
[Reiss 98]. GDBX ran on Sun workstations and represented records by nested
boxes, and lists by linked boxes. The data in the structures could change the
graphical representation, and the user could also manipulate the pointers, chang-
ing the data. However, GDBX did not develop further and quietly faded away.

22 Survey of Algorithmic Animation Platform

2.2 The emergence of computer animation systems

In 1981, Ronald Baecker published his well-known film “Sorting Out Sorting”
comparing several animated algorithms. The film, now a video, was immediately
hailed as an excellent example of the motivation behind algorithmic animation
and the high-quality visualizations that could be possible [Baecker 81]. “Sorting
Out Sorting” became very influential and is probably one of the most cited exam-
ples of what algorithmic animation is all about [Backer 98a]. Figure 2.1 shows a
snapshot of nine sorting algorithms processing the same data concurrently in a
“race.” The cloud pattern has a well-defined relationship with the way the algo-
rithm sorts the data. Sedgewick has included many such patterns in his algorithms
book [Sedgewick 03].

Figure 2.1 A snapshot of the video “Sorting Out Sorting” – the sorting algorithms race

[Baecker 81].

Backer wrote later that the main lessons learned from the film were: a) Effective
symbolism very much depends on the amount of data. It is easy to find a represen-
tation for small data sets, but large data sets are more difficult to represent; b) Il-
lustrations and timing should be carefully selected and a narration should be
added; c) Timing is the key to effective algorithm animation. Fancy pictures are
not necessarily needed [Baecker 98a].

“Sorting Out Sorting” was a one-of-a-kind manually produced animation. With
the availability of graphical workstations and personal computers, the time was
now ripe for the emergence of algorithmic animation systems. Thus, between
1981 and 1990, two main general purpose families of algorithmic animation sys-
tems emerged: the BALSA family, whose development has been lead mainly by
Marc H. Brown, and the TANGO family, whose chief designer has been John

Survey of Algorithmic Animation Platform 23

Stasko. The BALSA family comprises the original BALSA system, BALSA II
and later on, Zeus and JCAT. The TANGO family comprises the original TANGO
system, XTANGO, POLKA and the front end Samba with its Java version
JSamba. These two families illustrate very well how algorithmic animation
started, how it grew, and which limits would eventually be reached.

2.3 The BALSA family

The system which is often mentioned as the predecessor of all modern algorithmic
animators is BALSA (Brown Algorithm Simulator and Animator) developed by
Marc H. Brown and Robert Sedgewick at Brown University in the early 1980s
[Brown 84]. BALSA was implemented in Pascal and allowed students to instru-
ment a program in order to visualize its behavior on a screen. The program was
introduced in 1983 in one of the first electronic classrooms installed at American
universities [Brown 83]. The lecturer would explain an algorithm and the students
could start a script from the workstations in order to play examples of the algo-
rithm [Brown 85a, 85b]. Figure 2.2 shows a vintage Apollo workstation running a
BALSA algorithm animation in the new installed electronic classroom at Brown
University. The photograph to the right shows the same classroom with second
generation Apollo workstations. Students could run animations from their places,
following the instructions of the lecturer [Bazik 98].

Figure 2.2 Apollo workstation running a BALSA animation (left). Panoramic view of Brown’s

electronic classroom (right).

2.3.1 BALSA and interesting events

BALSA is based on the concept of “interesting events” [Brown 98a]. The algo-
rithm produces a list of monitored events, which are then processed and given to a
renderer for visualization. Interesting events are such things as changes in the
value of variables, swaps of values, permutations, etc. Multiple views of the data
using different windows are possible.

24 Survey of Algorithmic Animation Platform

BALSA provides a display (the window manager), and an interpreter for scripts
and a shell to process commands. The user interface was modeled after Smalltalk,
it provided multiple windows, and most of the interaction was done with the
mouse. Scripts were recordings of keystrokes for algorithm replay and could be
edited. This allowed the lecturers to prepare a sequence of animations that was
started by the students by pressing a single key. The script was therefore, not just
a sequence of interesting events in the algorithm, but also commands for the ani-
mation system on how to display the data.

Figure 2.3 is an example of an animation of binary search trees and balanced trees
produced with BALSA, as well as a table of contents for several animations.

Figure 2.3 Left, a screenshot of a BALSA animation showing several views of balanced and

binary trees [Brown 85a]. Right, an iconic table of contents for BALSA animations [Brown 1984].

Preparing an animation in BALSA involved a significant amount of effort. The
instructors spent 15 to 25 hours writing the algorithm and its different views, and
one to two hours writing a script for a “dynamic book” [Brown 85a]. Automatic
animation was conceived as desirable, but not yet feasible at the time.

The main problems faced by the BALSA authors were finding an appropriate
conceptualization for the data structures and algorithm (that is, a good model),
designing a good sequence of examples for a script, and scaling the data in the
views presented. Trees, for example, tend to grow when used with certain algo-

Survey of Algorithmic Animation Platform 25

rithms and they have to be redrawn at every step. This irritates the viewer, who
can get lost.

2.3.2 BALSA II

BALSA II was the successor of BALSA, which was rechristened to BALSA I. It
was written by Brown as part of his doctoral dissertation [Brown 88a, 88b, 88c].
BALSA II is based, as its predecessor, on the concept of interesting events and
multiple animation views.
In BALSA II, the animation model consists of an algorithm, an input data genera-
tor, and views. Views can consume events from multiple generators. The user
interface allows the user to provide data and manipulate the views and parameters
of components. Keystrokes of the user can be stored as “scripts” of operations
(Pascal programs that can be edited) which can then be used to rerun an animation
for dynamic books.

BALSA II gave the user some kind of limited interactivity, for example, allowing
her to change a variable or the position of an object in the view window during a
simulation. BALSA II could also show several algorithms operating on the same
data. For testing algorithms, a data generator allowed the user to change the data
with a few clicks and run the algorithm again.

The first step for a BALSA II animation is to instrument the program, by replac-
ing read and write calls with calls to a module InputEvent and OutputEvent. In a
sorting algorithm, for example, the length of the array to be sorted can be read
with a call to
InputEvent.HowManyKeys(N);

The individual keys can be read with a call to
InputEvent.ReadKey(a[i]);

The input events are then provided by the user or by a data generator. The user
interacts with the animation system to provide the data.

In bubble sort the only interesting event is the swapping of two elements at the
positions j and j+1. This can be expressed by calling
OutputEvent.Swap(j,j+1)

The routines in the modules InputEvent and OutputEvent have to be provided by
the programmer, who can develop a general purpose library for many algorithms.
The Event libraries take care of providing the desired functionality, but also of
alerting the animation system to the event which has taken place.

Figure 2.4 shows schematically the connection between the various possible
views, the instrumented algorithm, and the input generator in BALSA II. The al-
gorithm generates output events, which are handled by the module OutputEvents,
which in turn sends update events to any of the active views. The views perform

26 Survey of Algorithmic Animation Platform

the corresponding animation actions. The view with the keyboard and mouse fo-
cus (shaded) can pass messages to a message router that transports them further to
the input generator. The input data from the user is given to the algorithm, or the
if the user requests automatically generated data, the input data generator pro-
duces and sends data to test the algorithm (for example, an array of random num-
bers to test a sorting algorithm.

Figure 2.4 The BALSA II animation architectur

The main drawback of BALSA and BALSA II was the limited scope of the lan-
guage supported, Pascal. The user had to incorporate data structures and code in
their programs in a rather complicated way. There is no editor for the graphical
objects – these have to be defined by the user using graphic primitives.
The BALSA family came to a close with the development of Zeus, a new algo-
rithmic animation system, developed by Brown at the Digital Equipment Research
Center [Brown 91].

2.3.3 Zeus and Collaborative Books

Zeus was developed to take into account the emerging object oriented program-
ming paradigm. Unfortunately, the language chosen by Brown was Modula 3,
which did not have the influence of Modula II, and not even remotely that of Pas-

Algorithm

Input
generator

View 1

View 2

View 3

View 4

Event
router

message
router

Event
router

output event
input event

Survey of Algorithmic Animation Platform 27

cal. The Zeus system illustrates many interesting ideas but remains largely a re-
search prototype with few users in education.
In Zeus, a program writes a list of interesting output events to a file, as in BALSA
II. Events are high-level descriptions of the transformations of the data. Views are
displays that are informed of the output events taking place. This leads to updates
managed by a renderer. Interestingly, a view can also be a sound output, which in
some way gives the user a feeling for the data and its transformations [Brown 92].

Zeus is a very flexible system and can also produce 3D effects for illustrating al-
gorithms. The problem is the high level of involvement required from the user for
producing a single animation.

The user has to define first the events for an output event file. This output event
file is then processed by a pre-processor called Zume, which generates several
Modula 3 files. One file, for example, is for producing the output event view, a
window listing all events received by the views (a kind of console for checking
the animation at run time). Another file is for the views and another for embed-
ding the algorithm that has to be animated. The programmer continues by using
these files as the general layout of the program. If a programmer wanted to ani-
mate an existing program, the class definitions would have to be inserted by hand,
which presupposes an intimate acquaintance with the simulation system.

The algorithm is then embedded in the Modula 3 file wrap provided by Zeus. The
algorithm makes the calls that produce the list of output events at the relevant po-
sitions in the code. Some interfaces have to be added to the code, which is then
finished. A graphical control panel for starting and stepping the animation will be
called at runtime. The user can also let the panel provide some of the variables for
the animation, but the corresponding code has to be included in the algorithm pro-
gram.

Now the user has to program his views, making use of the graphical libraries.
There are different options, 2D and 3D [Brown 93], and the user has to be sure of
which graphical package is better for the application. The graphics runs on top of
X-Windows and was tailored initially for DEC machines. The code for the views
is written in an untyped interpreted language called Obliq [Najork 94]. Using this
language gives the programmer great liberty for describing the appearance of the
animation, but also much more work, since Obliq has to be known and a new file
with Obliq has to be written. The complete simulation consists at this point of so
many files that a Makefile utility is needed. The utility handles the complexity
behind the scenes, but it is probably safe to say that the programmer needs to be
fully aware of the different steps, especially when a simulation fails for some rea-
son. To reduce the complexity of writing a Zeus simulation, two packages were
added later on. A packet for the display of graphical objects called GraphVBT
[DeTreville 93] and an interpreted language, called GEF, which can handle Zeus
events and generate views, which can coexist with Modula 3 views [Glassman
93].

28 Survey of Algorithmic Animation Platform

One interesting aspect of Zeus is that code and data views can be connected. A
code view is just a textual pseudocode representation of the algorithm running,
whose rows can be highlighted at the appropriate time. This gives the viewer a
good correspondence between the algorithm being executed and the animation
itself.
Figure 2.5 shows a screenshot of a Zeus animation showing the proof of Pythago-
ras Theorem. Snapshots of the diagrams appear, below which a textual description
is also simultaneously to be seen. Since an audio window can be added, an algo-
rithm can be animated and narrated at the same time.

Figure 2.5 A narrated proof of Pythagoras Theorem

Collaborative books are a further development of the work done at Brown Univer-
sity by Brown [Brown 96, 97]. The idea of collaborative books is that text is
mixed with animations, and that the reader is not confronted with a static medium.
Collaborative books written in Java (with the JCAT system) include Applets and
narrations that can be activated by the user. Algorithms are annotated with calls to
subclasses of a view [Najork 01]. Much code is needed, but the net effect should
be a more complete learning experience for the students. In JCAT the textbooks
are Web based: an instructor has control over a Web page, and students connect as
clients. This eliminates all need for special proprietary synchronization systems,
and opens the way for teleteaching, since remote viewers can get the same infor-
mation as local viewers.

Survey of Algorithmic Animation Platform 29

Figure 2.6 A view of a collaborative book about Heapsort

2.4 The TANGO family.

TANGO stands for Transition-based Animation GeneratiOn and was developed
by John Stasko in the late 1980s and early 1990s [Stasko 89, 90b]. TANGO is
similar to the BALSA family in some ways, but also has some notable differ-
ences. The name of the system emphasizes transitions in algorithmic animation.
Elementary steps of an algorithm are shown in TANGO in a way that tries to
maximize the usefulness of the visual channel. Variables are represented by
physical objects, whose exchange is animated by smooth movements on the
screen [Stasko 98a]. Interesting transitions can also be highlighted using color or
other visual effects. TANGO is sometimes called the first system to implement
the “path transition” paradigm [Stasko 90a].

The X-Windows version of TANGO, XTANGO, was unveiled just a few years
later [Stasko 92a]. There are some minor differences between TANGO and
XTANGO, the main improvement though was to use a standard graphical system
to produce the animation. This made it possible to port the animation tool to more
systems. The main difference between the two is that in TANGO the animation
system runs as separate process from the algorithm itself. In XTANGO, the ani-
mator runs in the same binary as the main program and has to be compiled to-
gether [Hayes 90].

2.4.1 The XTANGO system

XTANGO was designed as a general purpose animation tool, that frees the pro-
grammer from having to write low-level graphics code. All calls to the system are
kept at a high level of abstraction so that the user can concentrate on the actual

30 Survey of Algorithmic Animation Platform

algorithmic code. There are four types of data objects in XTANGO: locations,
images, paths, and transitions. A location is a point on the XWindow screen where
some image will be eventually posted. Images are rectangles, circles, etc. Paths
are trajectories for the movement of objects on the screen, and transitions are
changes of appearance that visually highlight a particular object [Stasko 92d].

XTANGO provides nine graphical objects: circles, ellipses, rectangles, polygons,
polylines, splines, bitmaps, and text. Closed shapes can be filled in different man-
ners. Lines can be rendered with different widths and styles. When an image is
created, let us say a rectangle, an XTANGO system call creates the type of
graphical image and its parameter slots (size, for example). The system call re-
turns a handle for the image that can be used to refer to it in all subsequent calls.
Composite images can be also defined, that can be later loaded (for example an
array of rectangles). The font of text can be specified when the text object is cre-
ated.

Locations in XTANGO are defined in the real unit square. This provides a way of
enlarging or shrinking the animation window, without having to rescale the ani-
mation code by hand. The animation system runs concurrently with the main pro-
gram and receives calls with information about the operations to be performed.
The animation controller has to be started and closed. Locations have handles, so
that an algorithm can refer to positions on the screen by name, not directly by
their numerical values. This makes the instrumentation of the animation easier.

Paths are lists of coordinate pairs, which determine the relative offset of an image
in each successive animation frame. An image following a path moves as
smoothly as defined by the number of intermediate frames. XTANGO includes
some calls for starting a path. Paths can contain parameters, for example, for
changing the color of the object moving along it.

Transitions in XTANGO are visual actions performed on animation objects. There
are ten types of transitions: resizing, raising, lowering, grab, delete, refresh, de-
lays, and changes in fill, color, and movement. Objects cannot “transmute” into
other objects, as in other animation systems.

XTANGO provides the animator with some interactivity, mainly for defining the
position and type of objects on the screen, as well as its color. The animation sys-
tem returns these values to the driving program.

XTANGO makes life easier for developers by providing grids or trees of locations
for positioning useful and common data structures. The user can allocate in ad-
vance an array of positions for an array, or a tree of positions for a binary tree.
This frees the user from having to compute all positions later in her code.

Figure 2.7 shows an example of an XTANGO animation developed by Sami
Khuri and Y. Sugono. The buttons on the left side are provided by XTANGO and

Survey of Algorithmic Animation Platform 31

are used for scrolling to the left, to the right, upwards or downwards, as well as
for zooming in and out. The mode button (below to the right) can be used to de-
fine if repaint will be called at each frame or not (which makes the animation run
faster, but not as smoothly). The vertical scrollbar thumb (on the right scroll win-
dow) can be moved to slow down or speed up the animation.

Figure 2.7 XTANGO animation of an SLR parser

Producing an animation with XTANGO is done by writing a complete program in
C, or a program in C that reads a trace file of another programs execution. The
animator runs as a separate thread waiting for animation commands from the main
program.

2.4.2 Polka

The next iteration in the Stasko family of languages was Polka. Remember that
TANGO started as two communicating processes, the algorithm program and the
animator. The two danced together. The main motivation for Polka was making
possible the visualization of parallel algorithms and this meant that the architec-
ture of the XTANGO system had to be modified. In addition, Polka is an object
oriented animation system, written in C++, which is more general and elegant that
the C based XTANGO system.

One of the main differences between XTANGO and Polka is the animation para-
digm. While in XTANGO a movement of an object is an atomic operation that is

32 Survey of Algorithmic Animation Platform

performed from the beginning to the end, in Polka there is a kind of global clock,
the animation frame number, which allows coordinating the transitions and
movements in the animation [Stasko 95]. In Polka, the animated object performs
an action at a certain frame. The frames are generated sequentially.

A Polka animation is managed by an animator object, which consumes the events
generated by the algorithm’s code. Polka allows the generation of multiple views
of an algorithm. One of the views can show the data being sorted, another view
the number of operations performed until now. As in XTANGO, the graphical
commands are generated for the X-Windows system. A view keeps a list of the
animated objects, in order to manage their animation. A static view, on the con-
trary, is just a kind of blackboard on which graphical objects can be painted and
forgotten.

In Polka there are not four types of data objects (as in XTANGO) but three: loca-
tions, animation objects, and actions. Gone are the path objects, since a path is
managed now directly through the global frame time. Locations are names for
positions on the screen; they can be grouped in logical structures. Animations
objects are graphical objects with attributes (parameters). Animations objects are
associated with a specific view, have a position on it, and have a visibility type.
Subclasses of the animation object class are rectangle, line, circle, ellipse, poly-
line, spline, polygon, pie, text, bitmap, and set, which are references to other ani-
mation objects. When an object is first added to a view, a parameter “time” speci-
fies in which frame the object first appears. Objects can be generated in “struc-
tured layouts”, as an array of objects, as a matrix, etc. This saves time when pro-
gramming the animation and makes distributing objects on the screen easier.

Managing a global clock makes handling animations for sequential algorithms a
little more intricate as with XTANGO. The scheme is more powerful, because it
gives the programmer more control over the animation. Actions can be pro-
grammed to happen in the future at any point in the animation sequence.

An action is what was called a transition in XTANGO. An action is any change to
an animation object, be it color, position, etc. Multiple actions can be turned on in
an object at the same time, or a single action can be started on multiple objects at
the same time. An action consists of an action type (moving, resizing, etc.) and a
path, a collection of displacement offsets for the change. Since actions start at a
specific time, this also coordinates the execution of a path in the subsequent
frames.

Some general options allow Polka to stop or resume an animation, to change the
speed at which each frame is shown.

As is obvious from the above description of Polka, the system is very much like
the object oriented version of XTANGO, with a global frame time and synchroni-
zation between multiple views for parallel programs. Figure 2.8 below shows a

Survey of Algorithmic Animation Platform 33

screenshot from the Polka Animation Gallery. It shows data being sorted, with
two views. The view to the left contains the data while the other shows the data
transitions. The buttons (below each window) are very similar to the XTANGO
system: they allow scrolling and zooming. The global control panel (above) runs
or pauses the animation, allowing the user to adjust the speed with a horizontal
scroll bar.

Figure 2.8 Visualization of Quicksort in Polka

Figure 2.9, also from the Polka Animation Gallery, shows multiple views of pro-
grams running concurrently and how the program calls happened.

Figure 2.9 Visualization of concurrent threads with Polka

All algorithm development in the XTANGO-Polka family is done with Polka
now, and there exits an MS-Windows version called PolkaW. Polka was first re-
leased in 1993, PolkaW in 1997.

34 Survey of Algorithmic Animation Platform

2.4.3 Animation scripting – Samba

There exist a very user friendly front-end to the Polka system called Samba.
Samba has been conceived as a set of very simple commands that can be inter-
preted by an animation interpreter. The user just produces an ASCII file of the
appropriate commands and this provides what is needed for visualizing an algo-
rithm.

This approach, separating the animation engine from the code of the algorithm, so
that no libraries have to be compiled together with the algorithm’s program, is
called animation scripting. There exists an animator for the X-Windows system.
Samba, in conjunction with a Java Applet that works as an animator, is called
JSamba.

Samba consists of one-line commands that can be used to draw objects on the
screen and displace them. The front-end accepts commands interactively or a se-
quence of them in a batch file. Samba commands are passed to the Polka inter-
preter, which performs the requested animation.

A Samba command has the following general structure

<command-name> <parameters>

The command name consists of a word; the parameters can be one or many, sepa-
rated by spaces. The animation canvas is a square window with coordinates (0,0)
in the lower left and (1,1) in the upper right.

A circle of radius 0.2, for example, can be drawn in the middle of the window
with the command

circle 5 0.5 0.5 0.2 green half

In this command 5 is an identifier for the object which has been created, the next
three numbers are the coordinates and radius of the circle, which will be green and
half-filled. The circle can now be displaced to the position (0.3,0.3) with the
command

move 5 0.3 0.3

The movement is computed as a smooth transition through intermediate points, in
order to create the animation illusion. Samba allows the user to open multiple
windows and coordinate the movement of objects in each window so that parallel
execution can also be visualized.

Survey of Algorithmic Animation Platform 35

The main advantage of a language such as Samba is that the animation commands
can be printed from the program code. The user only needs to insert some print
statements at the appropriate lines and a batch file can be generated that will be
interpreted by Samba. It is therefore fairly easy to generate animations without
having to deal with the graphical user interface of the program itself.

Some very interesting educational experiments were conducted by John Stasko
using Samba, due to its simplicity and the ease with which the animation scripts
can be produced [Stasko 97].

2.5 Other Algorithmic Animation Systems

There are some other systems that have appeared independently from the two
main algorithmic animation families. Some of them contain interesting ideas that
we review in the next sections.

2.5.1 ANIM – A minimal system

ANIM is a set of tools for the UNIX operating systems that can be used to pro-
duce computer animations or snapshots (“stills”) of an algorithm running [Bentley
91a, 91b]. The program to be animated is expanded by the inclusion of output
statements which generate the commands for the visualization. The instrumented
program and the visualization tools can be connected through a pipe, in order to
produce almost “live” visualization.

ANIM has a very simple structure. The script language used provides four com-
mands for drawing geometric objects: text, line, box, and circle. The general for-
mat of a command is:

Optional_label: command options x y additional parts

Options for geometric objects are the type of line and if the object is filled or not.
Text is placed with the command

Optional_label: text options x y string

The label gives a name to the generated objects. The options further refine the
format or position of the object. Text, for example, can be adjusted in size, justi-
fied, or placed above and below objects.

There are also four control commands, view, click, erase, and clear. The last two
clear a previously defined object, or all objects defined. The command “view

36 Survey of Algorithmic Animation Platform

name” specifies the name of the view (window) which the commands refer to
thereafter. The command “click name”, defines a kind of breakpoint in the pro-
gram that can be used to segment later the different portions of an animation. For
example, a click can be put at the end of each loop in a nested set of two loops.
Later on, the user can select a snapshot that will be generated at the end of the first
loop (first click) or at the end of the second loop (second click). This segmenta-
tion of the simulation is very useful for producing slides of an algorithm.

The script language is summarized by Bentley and Kernighan [91b] as follows:

comment
optional_label: line options x1 y1 x2 y2
[-] -> <- <->
[solid] fat fatfat dotted dashed
optional_label: text options x y string
[center] ljust rjust above below
small [medium] big bigbig
optional_label: box options xmin ymin xmax ymax
[nofill] fill
optional_label: circle options x y radius
[nofill] fill
view name
click optional_name
erase label
clear

Figure 2.10 ANIM stills showing a comparison of sorting algorithms [Bentley 91a]

As can be seen, there is no command for smooth transitions. The animation ef-
fects are produced by painting and erasing objects (redrawing an object, erases it

Survey of Algorithmic Animation Platform 37

first). The ANIM movie viewer animates a script. A menu allows the animation to
be run forward, backward, faster, and slower. Stills can be generated by specify-
ing the clicks that must be rendered. The UNIX utility TROFF takes care of the
final formatting.

Figure 2.10 is an example of stills produced by ANIM comparing Quicksort and
Insertion Sort at specified number of iterations.

Although ANIM never became a much used system, it is an excellent example of
a minimalist implementation of an animation tool. In this thesis, I have also tried
to follow a minimalist approach in the design of my own scripting language.

2.5.2 Mocha and Web animation

Mocha is the concept of an architecture for the distribution of computation be-
tween a server and a client rather than a specific animation system. Mocha is
geared toward animation of algorithms through the Web [Baker 95]. An animation
server running an algorithm repository provides the animation commands, which
are executed by an Applet at the client machine. The Applet provides the GUI for
the user, allows her to select options or input data. The burden of the computation
remains with the server. Several animations using this architecture were produced
for the Web, but the system never really got beyond the prototype stage.

2.5.3 Leonardo

Leonardo offers more than just an animation system. It is a full development sys-
tem for C programs and visual debugging [Demetrescu 99, 01], and animations
can be produced. Since it is a development system, Leonardo provides an editor
and compiler. Its more interesting feature is the virtual reversible CPU [Crescenzi
00]. All computation runs on a software CPU. The CPU keeps tracks of computa-
tions and can be sent on reverse, undoing past imperative computations. Reversi-
ble execution was proposed long time ago as a desirable feature for programming
languages [Zelkowitz 73] and Leonardo provides it. Leonardo does not generate
executable code; programs are executed within the development environment. A
predecessor, but unrelated system, which also used a virtual reversible CPU was
the DYNALAB [Birch 95]. ZStep 95 is a more recent stepper for debugging, also
based on reversible execution and animation [Lieberman 98].

Special commands for producing the visualization are embedded in C code as
comments. The language used is called Alpha. Annotations in Leonardo are called
predicates; they are like global functions known to the system.

38 Survey of Algorithmic Animation Platform

Figure 2.11 The Leonardo control panel

Predicates define graphical objects, their parameters and the correspondence of
their parameters to variables in the C code itself. A variable that changes value,
changes immediately the appearance of a graphical object which has this variable
as one of its parameters. Standard predicates in Leonardo handle animation, the
creation and parameterization of graphical objects, and their visual properties.
Library predicates are sequences of standard predicates stored in libraries which
can be accessed by the user. Libraries handle special data types and some conven-
tional visualization styles.

Leonardo is clearly most useful when learning to write programs in C. There is
only an implementation for the Macintosh and a prototype of a multiplatform sys-
tem. The Leonardo Computing Environment is the new name of the Leonardo
project. Future versions of Leonardo will provide predicates to produce smooth
animations, which are not yet possible.

The Leonardo predicates are declarative. The presence of graphical objects is de-
clared in the program, making them appear on the screen at the selected position.
The linkage of parameters of the visual objects with variables produces an auto-
matic update, which is sometimes undesirable (when swapping two numbers, for
example, using a third variable as repository). Some predicates are actually im-
perative, they can switch the update on and off at specific parts of the code. This
is also what makes smooth animations difficult in a declarative system. The level
of abstraction of the data driven updates is sometimes too low and can distract
from the essential properties of the algorithm.

2.5.4 GAWAIN – Geometric Animation

GAWAIN (Geometric Algorithms Web Based Animation) is a system developed
by Alejo Hausner at Princeton, and which has a general approach similar to the
MOCHA architecture. A Java Applet receives events and animates them on the

Survey of Algorithmic Animation Platform 39

screen. GAWAIN is geared towards geometric problems, although is a general
purpose simulation system [Hausner 01].

GAWAIN can animate algorithms backwards or forwards, at different speeds, and
with discrete or continuous steps. The system is interactive (when an event script
is not being processed) since the user can modify input data with the mouse and
watch the resulting run of the algorithm. Gawain provides input generators (as in
BALSA II) and support for 3D views, unfortunately with a hand crafted library
without relationship to Java 3D. Multiple views of an algorithm or algorithms
races are supported.

The interface to a GAWAIN animation allows the user to scroll in four directions
and zoom in and out, as in XTANGO. The speed of the simulation is measured in
events per second and can be adjusted. The number of events per animation step
can also be adjusted, allowing the user to speed forward through an algorithm and
look at it at several levels of detail.

The main problem of the Gawain system is that interesting animations are hand
produced using instrumented Java classes. Although the animator Applet can
animate code written in other languages (through an event stream) the bulk of the
system is geared towards the seasoned Java programmer. Gawain did not achieve
wide popularity.

2.5.5 Pavane and declarative animation

The Pavane animation system differs from all others mentioned above mainly
because it is a declarative and not an imperative system [Roman 89, 92]. Code is
not extended with appropriate event generators – the extension is done automati-
cally by an interpreter which knows which variables or data structures are being
monitored. Like many other algorithmic animation systems, Pavane is the name of
a type of dance, namely one which originated in Italy during the Renaissance.
Pavane was one of the first social dances for couples, which glided on the dance
floor. Maybe it was this elegance of the dance which the authors of Pavane tried
to recreate with their animation system.

Pavane was not the first declarative animation tool. Other systems, used for pro-
gram run visualization and debugging, were declarative from the beginning. In
PROVIDE, interactive computer graphics are used to illustrate program execu-
tion. The user specifies which variables it wants to be shown on the screen, and
the system takes care of handling the graphical view [Moher 88].

In Pavane, the author of a visualization declares some logical formulas, which
state when a certain object will be shown on the screen, or not. In a visualization
of the game of Life, for example, the programmer needs to state only that a sphere
should appear on the screen or not, according to the value of a bit in a matrix

40 Survey of Algorithmic Animation Platform

(Figure 2.12). The animation engine takes care of updating the view according to
the value of each bit in that matrix.

Figure 2.12 : Animation of the Game of Life in Pavane

Pavane was conceived initially for instrumenting the visualization of concurrent
programs. A special language, called Swarm, was used to write concurrent pro-
grams [Cox 90]. Swarm code was then interpreted in Prolog and Prolog clauses
could be added to animate the code.

The main idea in Pavane is to map program states into images. When a certain
state is reached, this triggers an update of the animation. The approach is expen-
sive when the system has to take care of identifying states which act as triggers. In
Prolog it is easier to test for such program states, since states can be transformed
into Prolog clauses that can be tested later.

Pavane has been extended lately to also handle programs written in C [Roman
98]. Figure 2.13 is an image of a Pavane animation for the Towers of Hanoi prob-
lem.

Figure 2.13 Pavane animation of the Towers of Hanoi

Survey of Algorithmic Animation Platform 41

The C program for the algorithm has to first include the Pavane interface with:

#include “CtoVis.h” /* C interface to Pavane */

Then at specific points in the code the “VisualUpdate()” function is called. This is
not really declarative, it is an imperative command inserted in the algorithmic
code. The state of the computation, represented by the relevant data, is visible to
the Pavane animator. This is guaranteed by initialization code inserted before the
main program start. The Pavane animator checks at each call of VisualUpdate() if
something has changed in the program state and generates the necessary changes
to the image.

Pavane’s approach to declarative animation is therefore sound, but expensive, if a
completely declarative animation is wanted. A debugger or a development envi-
ronment can do here better, because program state changes can be checked di-
rectly using a virtual machine or triggers which are activated by the variables be-
ing watched. Pavane must simulate this using the VisualUpdate function, and
therefore Pavane is a kind of hybrid system: rules specify which aspects of the
computation state have to be checked and which changes they generate to the im-
age, but the monitoring of the code portions in which the checks are relevant has
to be hand-coded by the programmer.

Figure 2.14 shows that Pavane can also handle 3D graphics. The illustration of
Quicksort is interesting, because it demonstrates another way to create anticipa-
tion in the user and directing her attention to a compare operation. Without chang-
ing the order of the two numbers, it is evident which two are being compared. It is
easy to see how the mapping from program state to image is handled here: each
pointer represents part of the computation state. The elements of the array at the
pointer value are slightly displaced, that is, one of their coordinates has been
added a constant.

Figure 2.14 Colored animation of Quicksort with Pavane

42 Survey of Algorithmic Animation Platform

2.5.6 Other approaches

There are many other algorithmic animation systems that have been developed in
the past. Some of them are mentioned in what follows.

JAWAA

A system for the animation of algorithms using a player Applet. A script language
defines the animation and the player executes it. Basic graphical primitives are
provided, as well as some predefined data structures and their operations [Pierson
98]. The basic functionality is lower than Gawain, but JAWAA 2.0 includes a
graphic editor for drawing some pictures and providing coordinates of animation
objects [Akingbade 03].

GANIMAL and GANIMAM

This is a system for interactive animations geared towards virtual machines and
compiler design [Diehl 97].

JEliot

JEliot is a Java system for algorithmic animation based on self-animated data
types. Animations are produced automatically and show all state changes in the
observed data structures [Haajanen 97]. JEliot animations are funny, but poor.

JEliot was derived from Eliot (from Finnish, Elävät oliot, meaning living beings).
Eliot, in turn, was derived from HALSA and HALSA+ (Helsinki Animation Li-
brary for String Algorithms). Eliot was used to animate C programs. A precom-
piler finds the data structures and allows positioning the animation structures. Ex-
ecutable code is produced and the animation is visible. JEliot applies the same
idea to Java programs. The user can interact with the mouse and define the posi-
tion and size of graphical elements. Other developers have embraced JEliot and
there is now JEliot 2000 and JEliot 3 [Ben-Ari 02].

ANIMAL

The ANIMAL (A New Interactive Model for Animations in Lectures) system was
developed by Guido Rößling, who also maintains an archive of animations pro-
duced with this tool. At the core of the system is. AnimalScript, a set of com-
mands designed for general animations tasks [Rößling 01]. AnimalScript lines are
produced by a program and can then be parsed and executed by an interpreter.
AnimalScript provides graphical primitives and operations to move, rotate, show,
hide, and change the color of objects. The script language can be extended by a
user, to include new functionality. The player can be written in any language, but
the existing implementation was developed in Java. A Java API for the animator

Survey of Algorithmic Animation Platform 43

has also been written, which allows a Java program to control an animation di-
rectly.

Many other animation systems have been developed which are more limited in
scope. Algorithma can couple code walkthroughs with animations [Concepcion
99]. The Algorithm Explorer is a front-end for Tango [McWirther 96], GAIGS
(Generalized Algorithm Illustration through Graphical Software) is an object ori-
ented animation system [Naps 94] and its Internet variation, Web GAIGS, uses a
client-server architecture [Naps 97], as does its descendant JHAVE [Naps 00].

2.6 Sketch animation

Few authors have explored the animation of handwritten sketches produced spon-
taneously during a lecture. Strothotte and collaborators [98] have experimented
with non-photorealistic animation. Most of the experiments which have been done
in this direction are related to the animation of cartoons. The system, for example,
developed by Baecker, allowed a graphics animator to sketch forms and define
movement paths. Genesys would then interpolate the frames for the desired
movement, not quite in the way this is done in Macromedia’s Flash, but in a re-
lated manner [Baecker 69b, 70, 74].

One possible partial exception is the system SALSA (Spatial Algorithmic Lan-
guage for StoryboArding) [Hundhausen 00, 01]. In SALSA, a sketch editor allows
the animator to draw sketches of objects used for animations, which are then posi-
tioned by the user on the screen using a mouse and menus. The connection to the
animation is done through commands in a command window (where the main
algorithm also runs) which specify the changes in the position or appearance of
the animation objects. The environment in which the animation runs is called
ALVIS (Algorithm Visualization Storyboarder). It is rather primitive, but some
educational experiments were conducted by the authors.

The main advantage of animating sketches could be the involvement of the stu-
dents. There is much more to be refined and even the correctness of the corre-
spondence between the algorithm and the animation is not guaranteed, but the
authors of SALSA see this as a positive, since the meaning and value of the ani-
mation has to be negotiated between the students and the teacher. Better teaching
of algorithms can be realized in an “algorithms studio” [Hundhausen 02a].

The accent of the SALSA system lays in the direct involvement of the students in
the production of animations, which should be easy to produce, convey the ap-
pearance of the imperfect and unfinished, and lead therefore to stronger student
participation.

44 Survey of Algorithmic Animation Platform

2.7 Animation by handcrafting

Two systems which have been also used for algorithmic animation should also be
mentioned here. In the form they have been used, the kind of animation possible
with them can be called “animation by handcrafting”. Microsoft’s PowerPoint and
Macromedia’s Flash provide ways of animating algorithms. In the case of Power-
Point they are very limited, in the case of Flash there is a real animation engine
behind the whole. Hypercard for the MacIntosh has also been used for algorithmic
animation [Velez-Sosa 93]. At MIT, the algorithms from [Cormen 90] were im-
plemented with Hypercard following a systematic methodology [Gloor 92, 93].
However, Hypercard has disappeared and we will not comment further on it.

In PowerPoint the main kind of animation is making elements appear or disappear
from a diagram. In the newest versions, it is also possible to give elements a
movement path from slide to slide. This allows ingenious educators to illustrate
algorithms with small changes in pictures. It should be also mentioned, that Mi-
crosoft Office programs accept Visual Basic as macro language. It is possible, for
example, to write algorithms in Basic and visualize them using Excel [Rautama
97].

In Macromedia Flash it is easy to draw scenes, move objects on the screen and ask
the system for a smooth interpolation. A Flash animation is produced by segment-
ing a movie in scenes, and each scene contains several layers in which objects are
defined and moved. We will review the Flash animation engine in more detail in
Chapter 5.

Microsoft will probably avoid further development of the animation features of
PowerPoint, mainly because it makes the system more complex, but also because
Flash animations can be inserted in PowerPoint presentations. That is an interest-
ing feature for my own Flash algorithmic animations described in Chapters 3 and
5 – they can be viewed inside the main presentation tool used today.

2.8 Taxonomy and comparison of algorithmic animation systems

A very comprehensive taxonomy for the classification of algorithmic animation
systems has been proposed by Price et al. [Price 93, 98]. Their taxonomy, how-
ever, is too large, tries to cover all possible cases and is not hierarchical. In a
sense it is not even a real taxonomy, it is just a large catalog of features that an
algorithmic animation system can have or not have. Myer’s early taxonomy of
program visualization systems, by contrast, was too simple: it divided systems
only in code and/or data visualization tools, for static and/or dynamic views
[Myers 86].

For our purposes we are interested in a more useful classification. In a taxonomy,
ideally, all systems described could be assigned to a leaf of a taxonomic tree. The

Survey of Algorithmic Animation Platform 45

whole purpose of taxonomy is to bring order to the natural world, with its wealth
of occurring forms.

With that in mind, I propose to look at algorithmic animation systems according
to the main features described next.

Imperative versus Declarative Instrumentation

The first major subdivision occurs at the level of instrumentation. Is it necessary
to specify in the code explicitly the places where interesting events occur? Or can
this be done in a declarative manner? Almost all of the systems considered above
handle interesting events in an imperative manner, only Pavane uses the declara-
tive approach (Leonardo a virtual machine). The declarative approach seems, of
course, easier to integrate in the code, but it is difficult to implement, because it
can only be done by an automatic preprocessor or by a virtual machine which out-
puts the events when they happen.

Consider an algorithm in which only changes to a variable at the end of a loop are
considered interesting. This is easy to include in an imperative instrumentation,
but is difficult to specify with a declarative system. The declarative approach is
easier to use only when all changes to a variable are interesting, and we only need
to declare this variable. The declarative method is difficult to use when interesting
changes depend on context.

It is therefore safe to say that the imperative approach handles context, the de-
clarative approach can hardly consider context, unless the declarations themselves
become so difficult to write and read as to make the system unusable.

Separation of Instrumentation from Rendering

When the animation is driven directly by system calls inserted into the algorithm
being animated, we have a close coupling between instrumentation and rendering.
When the instrumentation produces a stream of events, rendered by another thread
or process, we have a clean separation between the algorithm and its animation
view. In some systems, special data structures (for example a stack) provide their
own animation primitives. The programmer writes her programs using these data
structures from a library which can also be ordered to self-animate. This is the
approach used by JEliot and GAWAIN. It can seem simpler and straightforward,
but it means that the programmer will have to write programs based on this li-
brary. Preexisting code cannot be animated, unless the data structures are adapted
to use the instrumented libraries.

Both the BALSA and the TANGO family work using the separation between in-
strumentation and rendering, because it provides a more flexible system. The in-
strumentation can be done in any language that provides the stream of events for

46 Survey of Algorithmic Animation Platform

the renderer. With instrumented classes, only the language of the instrumentation
library can be used.

Single view or multiple connected views

The first animation systems could manage a single view of the data. All current
systems try to provide multiple views, which show the same algorithm from dif-
ferent perspectives. One view can show the data, the other the number of opera-
tions. Multiple views are especially interesting when they are used to compare
different algorithms.

Debbuging Features

There are several visual debuggers available. They show textually changes in the
variables and step through the code. The most notable example of an early visual
debugger was MacPascal for the Macintosh, which probably inspired some of the
algorithmic animation work started in the 1980s.

The only system described above that includes a kind of debugging capability is
Leonardo, since it is a development environment in itself. Most other systems do
not offer this capability, since rendering is separated from event generation.

Development environment or strictly animation system

The Leonardo system pioneered the idea of simulating a virtual machine that exe-
cutes a program and the animation code. Having a virtual machine gives the pos-
sibility of reversing algorithms, even if the code was not instrumented this way.
From all the systems considered above, only Leonardo is a development environ-
ment for C programming.

Reversible versus non reversible animation

BALSA II and the TANGO family do not offer any kind of reversible animation
feature. Leonardo has integrated this as a core aspect of its virtual machine envi-
ronment. Other systems that offer reversibility are Gawain and ANIM.

Reversibility seems to be a very important feature for algorithmic animation be-
cause it allows a student to pace through an animation and replay aspects of the
animation that are difficult to understand. They give microcontrol over the anima-
tion sequence and more freedom to the viewer. Reversibility is very important in
systems based on backtracking, such as Prolog [Eisenstadt 85, 88].

Survey of Algorithmic Animation Platform 47

Interactive versus non-interactive Animation

An animation seems to be more educationally effective if the viewer is able to test
an algorithm with her own data. This is difficult to do at the renderer level, which
only displays a stream of events from the instrumented algorithm. The best world
is one in which the instrumented program runs side by side with the animation,
and can be stopped to change parameters. Most systems mentioned above allow
the user to run the instrumented algorithm concurrently with the visualization,
even if there is a separation between renderer and algorithm.

Parallel programming

From the system discussed above only Polka handles parallel processes. Zeus can
simulate parallel processes running, but sequential code has to be specially writ-
ten. Polka synchronizes events through its global clock facility.

Standard versus non-standard animation engine

All the systems described above use a non-standard animation engine. Animations
have been especially written using a standard graphical package, such as X-
Windows or MS-Windows, but the animation engine has been written and rewrit-
ten by every group by itself.

Export function for the Web

Most systems discussed above do not offer an export function for the Web. Only
the Java based systems can let an Applet run, that interprets a script or events
from the instrumented algorithm. This is the case with JSamba, JEliot, Gawain
and MOCHA. However, most of the Java animations written for all these systems
are not very attractive from the graphical point of view and some of them do not
run in browsers anymore. Java code should be compatible across platforms and
browsers, but in many cases it is not, as developers soon realize. An export func-
tion for the Web is, however, highly desirable since it can make many animations
available for use outside of the one’s classroom and automatically reach a global
educational audience.

2.9 Conclusions and requirements for an algorithm animator

From our grand tour of previous algorithmic animation systems, we can extract
some conclusions, which will guide the rest of this thesis. What we should de-
mand from an animation system is the following.

48 Survey of Algorithmic Animation Platform

- Standard graphics

Many animation systems have disappeared or become irrelevant because they do
not provide support for a standard graphics engine. This is the case of the
BALSA-I and BALSA-II systems. Both were geared toward special machines
(Apollo and Macintosh) and were implemented with software libraries that ran
only on such machines. An algorithmic animation system should provide platform
independence, by using as much as possible, standard graphics or by providing
alternative rendering possibilities that can be adapted fast to new machines. The
transformation of TANGO in XTANGO, for example, was a step in the right di-
rection because it standardized the graphical interface.

- Standard animation engine

The time is ripe for abandoning all efforts to provide a special animation engine
for algorithmic animations. Practically all existing animation systems implement
smooth animations by hard programming. Many authors have switched to Java,
because of its convenience in reaching platform independence, but there is no
standard animation engine for Java. The programmer has the burden of writing
her own library.

Although Flash is a proprietary animation engine, its large diffusion makes it pos-
sible to adopt if for the production of algorithmic animations. In Chapter 5, I in-
troduce the Flashdance system for the production of stand-alone algorithmic an-
imations and for the Web.

- Web capable

Today algorithmic animations should be embeddable in electronic books. Docu-
ments in the Web should provide textual explanations but also give the reader the
possibility of watching and interacting with animations. The animations should
not run in special environments, that have to be installed and started, but should
run in the Web browser. Currently, only two platforms provide such functionality,
Java and Flash animations.

- Executable without extra software

Viewers should be able to let an animation run without needing extra software.
The Leonardo system, for example, is an excellent tool for developers of C pro-
grams, but cannot be used to export teaching material. An animation should pro-
vide its own viewer, as for example PowerPoint presentations can do.

Survey of Algorithmic Animation Platform 49

- Export function

An animation should be exportable, that is, it should be able to be shown in dif-
ferent ways. The animation snapshots, for example, should be printable and ex-
portable as JPEG or GIF files. Ideally, a Flash animation, for example, should be
exportable as a Java Applet.

- Export function for video

It should be possible to generate video formats from the animations, in order to
support video streaming systems.

- Reversibility through a virtual machine

Some of the reviewed systems provide reversible execution. Reversible execution
allows the student to stop an animation and replay the last scenes. This is equiva-
lent to being able to go back and forth in a book or video.

- Separation of instrumentation from rendering

The most effective and versatile systems are those that separate the coding and
instrumentation of an algorithm from its rendering. ANIM, for example, is a
minimal system, but very flexible due to this separation. It can produce stills or
animations.

Separating coding from instrumentation also allows the use of different kinds of
renderers. In this thesis we show that the same scripted animation can be used to
produce a high quality Flash animation, or an animation for an electronic black-
board. The same script can also be used to produce a transcript of the animation.

The separation of instrumentation from rendering, through an event file, makes
the animation system language independent. Pavane, for example, is language
specific, as well as Leonardo or JEliot. We would like to be able to animate any
kind of computing language. Therefore we will use a script language. Instru-
mented classes can be derived from the script language (see Chapter 6).

- Graphical objects editor – library of graphical objects

Most Java animation systems (JEliot or JSamba) produce low quality graphical
animations. This has to do with the fact that the graphical output of standard Java
is not very appealing, but also with the lack of a graphical editor for animation
objects. The instrumenters of the algorithm have to draw everything (as in ANIM
or BALSA-II). It would be more effective if the animator could just select an ob-
ject from a library of graphical objects that the user can draw directly in high
quality. This functionality is provided by the graphical engine of Flash.

50 Survey of Algorithmic Animation Platform

- Interactivity

Interactivity is desirable. The user should be able to experiment with different
kinds of data and his own input.

- Audio channel

An oral explanation can reinforce the effect of the animation. In this thesis we
explore the production of sketch animations coupled to an audio channel. Anima-
tions can be produced fast, with negligible cost, and can be exported to the Web.

- Multiple connected views and overlays

BALSA, TANGO or ANIM, they all support multiple views of an animation.
Multiple views are convenient, but must be supplemented by something else. In
this thesis we propose also to use view overlays, which can be switched on and
off, in order to show several layers of information superimposed. None of the sys-
tems mentioned above provides this capability, which we explore further in Chap-
ter 6 for our own system.

- Hierarchical stepping

Almost all the systems reviewed offer some kind of velocity control for the algo-
rithmic animation. The viewer can proceed faster or more slowly. Only ANIM
provides a “click” modus, which allows the viewer to advance an animation to
several levels of click marks. This capability, which I will call here hierarchical
stepping, is in fact not very difficult to implement, and will be adopted for the
animation system that I describe in Chapter 6.

- Esthetics and ease of use

Last but not least, an algorithmic animation should be easy to use and should be
esthetically pleasing. In the last few years I have started many algorithmic anima-
tions written by experts and students. When the graphics are not appealing, the
result is not worth the effort. Algorithmic animation should be pleasing to the eye.

Finally, and to close this chapter about the state of the art in algorithmic anima-
tion, Figure 2.15 provides an illustrated chronology of the animation systems
mentioned in the text above.

Survey of Algorithmic Animation Platform 51

Imperative Declarative Instrumented Classes
 Prog. Environment

1981

1985

1990

1995

2000

BALSA

BALSA II

ZEUS

TANGO

XTANGO

POLKA
Samba

JSamba

Pavane

Leonardo

ANIM

JEliot

Eliot

Alladin

Sorting Out
Sorting

POLKAW
MOCHA

GAWAIN

PROVIDE

JAWAA

SALSA

JCAT

JEliot 2000

Figure 2.15 Chronology of algorithmic animation systems

