
 

 

 
1 Algorithmic Animation in Education 
 
 
 
 
 
 
 
 
 
1.1 The motivation for algorithmic animation 
 
As mentioned in the introduction, algorithms are well-defined sequences of com-
putations which transform input data into output data. A formal definition of algo-
rithm always makes reference to a specific computational model, such as the 
lambda calculus or the Turing machine. The central aspect of any algorithm is that 
it involves computations and thus determines a specific trajectory in the state 
space of machine configurations [Sedgewick 03, Cormen 90]. In imperative com-
puter languages, machine state transformations are handled explicitly in the code 
and affect specific data structures such as single variables, arrays, lists, or trees. 
Understanding an algorithm often involves reconstructing the machine state evo-
lution with the mind’s eye. Debuggers, which allow us to follow the sequential 
execution of program code and to define breakpoints, are useful for understanding 
a program and for experimenting with it.2 But many educators think that animat-
ing an algorithm can provide students with a deeper level of comprehension, 
which goes beyond just watching debugging steps. For this reason, some authors 
have extended debuggers with algorithm visualization capabilities [Mukherjea 
94]. My own interest in algorithmic animation started long ago with the work I 
did for simulating and visualizing the operation of a parallel Prolog machine 
[Esponda 87]. 
 
Even good formatting of a program can make a difference to its comprehendabil-
ity. An active community of researchers has studied the relationship between 
readability of software and different formatting strategies for programs. Good 
annotated and formatted programs are easier to understand and maintain [Knuth 
84]. The eye can sometimes help to organize the code – we profit from its natural 
ability to categorize objects in groups [Oman 90]. We will return to this issue, 
from the point of view of visual design, in Chapter 3. 
                                                 
2 Declarative languages have seldom been visualized. Functional languages, such as Miranda or 
Haskell, do not even provide a debugger. The whole idea of a declarative computation is to elimi-
nate machine state space thinking: the programmer specifies the relationship between input and 
output, for example in logical terms, and the computer takes care of providing the necessary steps. 
In reality, much state space thinking is used to write programs in functional or logic programming 
languages, such as for example Prolog.  
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Eventually, what an educator wants is not just to make an algorithm easy to un-
derstand during a class, but also easy to remember. The student should be able to 
recall the mechanics of the algorithm after having learnt it, maybe just once. As 
mentioned before, debuggers are effective for stepping through code thus making 
it more readable, but they are not effective in imprinting the algorithm’s steps on 
the students’ minds. For this, an algorithm must be considered from a more ab-
stract perspective, from the point of view of abstract data types. According to 
[Lohse 94], visual representations are also “data structures for expressing knowl-
edge.” Many psychologists are of the opinion that thinking involves and requires 
images [Arnheim 69], and we now talk of “visual literacy” as a skill that can be 
trained [Dondis 73]. 
 
Images for computer science concepts require models. Abstract data types are 
defined through the operations possible on the data, regardless of the concrete 
implementation. A stack, for example, is defined through the push, pop and empty 
operations. Visualizing an algorithm which makes use of a stack requires provid-
ing a physical visual model for the operations and the substrate they act upon, for 
example, a pile of books, one on top of the other. A model is the flesh and bones 
of any algorithmic animation. A model is something which can be understood 
intuitively by the viewer, something related to our visual or physical experience. 
 
Therefore, the main problem for a successful algorithm animation is to select the 
appropriate visual model for the abstract data types involved in the computation 
and the appropriate level of aggregation of the algorithm’s steps. The execution 
granularity determines if we will be able to see only high-level operations or also 
the atomic manipulations that occur in each step. Ideally, an algorithmic anima-
tion system should provide both possibilities through user control of the animation 
granularity. 
 
The right visual model is the single most important aspect for the production of a 
high-quality animation. A visual model should make the algorithm’s operation 
understandable just by producing pictures of the abstract data types and the transi-
tions involved.  Mathematical proofs are a good example of the kind of techniques 
required in algorithmic animation. 
 
 
 
 
 
 

Figure 1.1   Proof without words: the sum of successive odd integers is the square of an integer 

 
In Mathematics there is a long tradition of producing images for “proofs without 
words”. The statement of a theorem and a picture are provided and the reader can 



Algorithmic Animation in Education 13 

“see” immediately that the theorem is true. In proofs without words the model fits 
like a glove to the semantics of the theorem. Consider for example the sequence 
consisting of the sum of successive odd numbers: 1, 1+3, 1+3+5, 1+3+5+7, and so 
on. It is easy to prove that every member in this sequence (every partial sum) is 
the square of an integer. Just look at Figure 1.1, a proof without words. 
 
Interestingly, in Mathematics, proofs without words are static pictures of objects 
adorned with a few labels. A little reflection on the part of the reader suffices to 
convince her that the proof in Figure 1.1 is correct [Nelsen 1997]. 
 
In computer science, on the other hand, we are interested in dynamic data struc-
tures being modified by an algorithm. A single picture is usually not enough: se-
quences of pictures or a smooth animation are needed to make the algorithmic 
transformations come alive. However, the purpose of the animation is the same as 
in mathematical proofs without words: the essence of the method being discussed 
should be coupled to the human visual channel, so as to make the method evident 
and also memorable for the student. The best algorithmic animations are those 
that cannot be forgotten, because they are so simple and natural, that they fit the 
algorithm perfectly. 
 
Let me give another example from Mathematics which can help to illustrate this 
idea. There is a classical proof of the Pythagoras Theorem that relies in just two 
squares drawn inside one another. A triangle with sides a and b and hypotenuse c 
repeats four times inside the larger square (see Figure 1.2). 
 
From the diagram it is evident that (a+b)2 = 2ab + c2. Pythagoras Theorem fol-
lows immediately from this identity. 

 
Figure 1.2  Proof without words of Pythagoras’ Theorem 

 
It could be that in the visual proof the validity of the theorem is just an accident, 
just valid for the particular a-b-c triangle used in the picture. A way of testing this, 
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would be to let a and b vary continuously over a certain interval and watch how 
the resulting picture transforms. This would amount to a proof by visual anima-
tion, which has been implemented by some authors, for example, using the Cin-
derella geometry system [Kortenkamp 99]. 
 
We have the same problem in algorithmic animation as in animated proof sys-
tems: it would be desirable to produce animations on demand, using data provided 
by the viewer. In this way, the correctness of the algorithm can be empirically 
tested with new data. Also, the variations in program behavior can further rein-
force the understanding of the algorithm. Such computer science visual proofs 
using data structure visualizations have been advocated by Goodrich and Tamas-
sia [Goodrich 98]. In their teaching practice they have found that students can 
recall the properties of data structures best, when they have learned to associate a 
picture with it. One of their examples is the proof that a heap can be built in linear 
time from an unordered array. They used a single picture for their visual proof. 
 
 
1.2 Algorithmic animation as a subfield of software visualization 
 
It is important to be aware of the relationship between algorithmic animation and 
other forms of software visualization. The diagram below, improved from the one 
shown in [Price 98], shows the different areas of specialization of “software visu-
alizers”. The first main subdivision has to do with the subject to be visualized: 
programs or algorithms. In the first case, concrete code for a certain programming 
language is involved and in the second, we are more interested in a high-level 
view of computation, like the algorithmic manipulation of data structures.  
 

Software Visualization

Algorithm 
visualization

Program 
visualization

static

data animation

static data
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static code

animation

static history
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Figure 1.3   The subfields of Software Visualization 
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In the subfield of program visualization, both the code and the data can be visual-
ized statically. Flow-charts, for example, provide an organized view of code 
[Scanlan 99]. Different variations of “literate programming” try to make code as 
readable as a well written book [Knuth 84]. Visual Programming (VP) is an at-
tempt to offer the programmer a way of specifying computations using diagrams 
and direct interaction with a computer [Glinert 90, Chang 87]. Some program 
visualization tools offer the programmer the possibility of animating automati-
cally code and data. Debuggers, for example, allow the programmer to step 
through the code, see it execute and transform monitored variables [Baecker 68]. 
In this thesis we will not deal with program visualization, we shall only concern 
ourselves with visualizing algorithms. 
 
There are three possible levels of algorithm visualization. The first and third are 
mentioned by [Price 98], but not the second (static history).  We can visualize an 
algorithm statically by seeing the pseudocode and a diagram of the data structure 
on which the algorithm operates. We can animate the pseudocode and a model of 
the data structure. This is the classical meaning of the term algorithmic animation 
(“algorithm animation is dynamic algorithm visualization,” [Brown 98b]). But an 
intermediate possibility is to produce a history of pictures of the operation of the 
algorithm. This is the method used in books to illustrate algorithms, and is also 
one that we will explore later in this thesis. The new editions of Sedgewick’s al-
gorithms book, incorporate many such static histories of algorithm runs, to great 
effect. The dynamics of the sorting algorithms can be visualized to an extent that 
it is easy to recognize the kind of sorting algorithm being used alone from a scat-
ter plot of the data being sorted [Sedgewick 03]. 
 
In this thesis, I look at the three possibilities shown on the left side of Figure 1.3 
of visualizing algorithms and data structures: static, history, and full animation 
visualizations, using two different platforms: an electronic blackboard and the 
Macromedia Flash animation engine. 
 
 
 
1.3 Academic experience with algorithmic animation 
 
There are many visualizations of algorithmic animations available on-line. Most 
are used by students, as part of a course, and have been developed by university 
staff. Some universities have invested considerable resources in electronic class-
rooms where such animations are used [Bazik 98]. Animations have also been 
used in Artificial Intelligence for state space search [Ciesielski 01, Stern 97], ge-
netic algorithms [Jackson 97], expert systems reasoning [Selig 90], visualizing 
knowledge based systems [Domingue 98], and even for understanding neural 
networks [Jackson 96].  Recently, algorithmic animations in Java have gained 
prominence in the Web. This shows that there is an eager audience for them. The 
effectiveness of program visualizations for educative purposes has been a recur-
rent topic [Badre 89, 92, Cunniff 87, Green 96, Rieber 89, 90a, 90b]. Neverthe-
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less, not enough evaluations have been conducted about the pedagogical effect of 
animations on students’ learning and some of the existing ones are contradictory. 
 
One of the most careful evaluations was conducted at Auburn University [Hansen 
1998]. Students were divided into an animation group and a control group. They 
learned the same algorithms, but in one group they were given an animation writ-
ten with the Toolbook system (similar to Hypercard in the Macintosh) and in the 
other group, they used pages from a book. Both groups were academically equiva-
lent, judging from pre-test examinations. The results of a post-test showed a posi-
tive effect of the animations on students’ proficiency: 
 
- The students in the animation group had 74% correct answers in the test, com-

pared with 43% in the control group. 
- When two sorting algorithms were learned, the percentage of correct answers 

were 63% and 44% for the animation and the text group, respectively. 
- Only when the control group had to solve additional homework questions did 

the proficiency of both groups become comparable. 
 
The main caveat for this study was the limited number of animations tested. Only 
four sorting algorithms and their differential learning in the two groups were 
compared. 
 
Other researchers have not obtained so statistically significant and clear-cut re-
sults. On the one hand, it is difficult to teach complete courses dividing the stu-
dents into test and control groups. On the other hand, there are many aspects that 
can contribute to obscure the comparison. It can be that students in the animation 
group, for example, become more engaged with the topic because of the novelty 
of the technology, whereas students in the control group perform at their normal 
level of attention. The quality of the explanation of the algorithms in each group 
can be also different. It is difficult to quantify how the engagement of the students 
with the technology evolves over time. More extensive studies are needed. 
 
In contrast with the evaluation mentioned above, studies by Stasko and his col-
leagues [Stasko 93a] did not detect a significant advantage of animations in learn-
ing situations. The explanation they advance is that students may not make the 
mental connection between the animation itself and the abstract aspects of the 
algorithm. For an expert, these connections are obvious, while for a student they 
may not be. Remember the proof of the Pythagoras Theorem illustrated in the 
previous section. For a trained mathematician, the proof is obvious. For a new 
student some words would be needed to complement the “proof without words”. 
It seems, therefore, that the level of expertise of the viewer should not be forgot-
ten while designing an algorithmic animation. 
 
[Byrne et al. 96] reached a conclusion along other lines. It seems that simple algo-
rithms were learnt better by the group using animations, but complex algorithms 
are learnt equally well with or without animation. It could be that the visual chan-
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nel is overwhelmed when the complexity of the animation exceeds a certain level 
of detail. Psychologists who have compared learning with pictures to learning 
with animations conclude that the value of an animation depends on the subject 
matter being studied and the amount of practice that the pupils obtain. An anima-
tion can engage the students more if the instructional environment is under their 
control [Rieber 90a]. 
 
Kehoe et al. examined the use of algorithmic animations by students from a dif-
ferent perspective: students were asked to solve homework problems and the ani-
mation was one of the materials that could be used. A control group had no access 
to the animations [Kehoe 01]. The animation group performed significantly better 
than the control group. A review of the way the students used the animations 
showed that most students worked with the animations as a way of figuring out 
better the mechanics of the algorithm. Based on this experiment the authors of the 
study advanced three hypotheses: 
 
- The advantage of algorithm animations is more evident in homework situa-

tions, when the student can work with the animation to solve problems. 
- Animations make an algorithm less intimidating, enhancing comprehension. 
- Algorithm animation can facilitate learning of the procedural aspects of an 

algorithm. 
 
Some learning researchers have postulated that learning is best when more than 
one communication channel is involved. An animation synchronized with an ex-
planation is therefore better than just an animation followed, or preceded by an 
explanation. This is usually done by the lecturer in the classroom, when explain-
ing the animation being run, but an oral explanation is not usually available in 
simulations provided on-line. Other researchers have tried to activate other chan-
nels, for example, using color to code animation objects, or using sound effects to 
make users “hear” their data or programs [DiGiano 92a, 92b, Francioni 91, Gaver 
91]. My animation of a data structures learning unit (discussed in Chapter 3) com-
bines the textual explanation with the animation. The animation itself makes tex-
tual explanations pop-up for better comprehension of the algorithms. As we will 
see later, my algorithmic animations for the electronic blackboard and in Flash 
can be enriched with sound. 
 
The most comprehensive review of the educational experiments performed with 
computer animations was undertaken by Hundhausen, Douglas and Stasko 
[Hundhausen 02b]. They reviewed and compared 24 different educational ex-
periments, especially the very extensive ones done by Lawrence [93, 94], trying to 
find out which methodology was applied and which kind of cognitive approach 
was being tested. The authors find that algorithmic animation has been used for 
seven main purposes:  
 
- for use in lectures, 
- for independent study, 
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- for homework, 
- for discussions in class, 
- for laboratories, 
- for discussions in office hours, 
- for tests. 
 
The success reported had to do with the kind of application that was tested in each 
study. A global summary of the 24 studies was produced by the authors. The ex-
periments reporting significant results (as a benefit of teaching with algorithmic 
visualization versus teaching without it) comprised 46% of the experiments, 
whereas in 42% of the experiments non-significant results were found.  
 
Stasko [97] studied computer animations in the classroom following a completely 
different approach. He conducted pedagogical experiments in classes where the 
students had to write their own algorithm visualizations as part of the assign-
ments. He concludes that students do indeed benefit from this activity. Building 
an animation is very much like having to teach the algorithm to another person. 
The student does not only implement the algorithm – he or she has to actively 
look for the best possible way of illustrating the algorithm steps. Not surprisingly, 
the best students in the class were also the ones who developed the best visualiza-
tions. 
 
Hübscher-Younger [2003b] has confirmed with her own experiments that author-
ing animations can foster better understanding of algorithms.  In her approach, 
students build their own visualizations, share them and evaluate the results. Pre 
and post-testing showed that students could profit from this exercise. The explana-
tion advanced by the authors of the experiments is that when students build their 
own explanations, they are able, at the same time, to understand the concepts bet-
ter. In these experiments the students were allowed to use any kind of visualiza-
tion engine including paper. In previous experiments, HalVis, a Hypercard based 
system, and CAROUSEL, a Web based system, were used [Hübscher-Younger 
03a]. Another author who has experimented with “active algorithm learning” is 
[Faltin 02]. His system present animations and ask questions, which the students 
answer by helping the animation to continue. 
 
The success of these experiments probably validates the constructivist approach 
[Papert 80]. Knowledge is a construct of the mind. Students have to build their 
own conceptualizations and this is best accomplished when they have to external-
ize their own mental modeling using a computer visualization. Hall et al. found, 
for example, that students that draw their own diagrams of a physical process get 
higher scores on tests, than students who only have a text at their disposal or even 
a text with illustrations [Hall 97]. 
 
More studies are needed in order to fully understand the potential impact of com-
puter built animations but one thing is clear: if students are to program their own 
animations, this should be easy to do. A cleverly designed system is needed, 
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which allows the students to obtain immediate feedback. Automatic algorithmic 
animation would be the answer but, for the reasons to be discussed in the next 
chapter, automatic animation remains still an unsolved problem. 
 
Additionally to cognitive constructivism, two other theories of learning play a role 
in the experiments that have been performed to date: one is epistemic fidelity, the 
other the dual coding hypothesis. Epistemic fidelity assumes that humans have 
mental models of the physical and logical world, and if the visualization directly 
corresponds to or stimulates those models, then efficient learning transfer is 
achieved, i.e., the students learn the subject better. The dual coding hypothesis, on 
the other side, postulates that when information is coded in both a non-verbal and 
a verbal way, this dual code also makes the transfer from teacher to student more 
efficient [Hundhausen 02b]. As we will see in Chapter 3, probably all these dif-
ferent considerations play a significant role for the production of good algorithmic 
animations. 
 
 
1.4 Some preliminary conclusions 
 
Visualization is not the panacea for solving all problems students or programmers 
have understanding algorithms. Visual programming languages have not been as 
effective as initially thought because textual communication can be superior for 
certain complex tasks [Petre 93, 95]. Many programmers prefer to work, for ex-
ample, with editors such as Emacs, instead of visually oriented ones. They prefer 
the versatility of the programming tools and the speed with which it is possible to 
define Emacs commands. 
 
We must also distinguish between animations which have the purpose of allowing 
the viewer to absorb or handle large quantities of information, and those geared 
towards understanding the dynamics of algorithms. Experiments at Xerox with 
user interfaces, for example, have led to 3D visualization methods that can be 
used to see the desktop and directory hierarchies in novel ways [Robertson 93]. 
The intention of these systems is to shift the load from conscious cognition to 
subconscious perception. 
 
The main conclusion that we can therefore extract regarding algorithmic visuali-
zations is that they are primarily for learning. Although subtle bugs can be per-
ceived and found by running an algorithmic visualization, that is not the purpose 
of the animation itself. While in visual debugging we are more concerned with 
catching all possible state transitions and being able to trace and retrace steps, in 
algorithmic animation we are trying to stimulate the visual channel of the viewer. 
We try to attract her attention to certain parts of the animation and make her dis-
regard others. We are making her focus on certain steps which are the essential 
ones. Visual debugging is neutral in this respect: everything should be visible; a 
bug can be hidden in the important, but also in the not so important lines of code. 
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From his long experience with algorithmic animation, Stasko has drawn the con-
clusion that animations are one more of the instructional materials that teachers 
can use, but one that attracts the interest of students to algorithm analysis and de-
sign [Stasko 98b]. He forcefully makes the point, that any instructional material 
that gets the attention of the students is useful, because it keeps them engaged. 
Some kind of interaction is needed, though. An animation should not be con-
ceived as a video: the students should have the possibility of producing their own 
animations or at least, of providing data for them. 
 
Based on the material discussed in this chapter, I can now formulate the principles 
that guide the further research described in this thesis: 
 
A) Algorithmic animations should contribute to the creation of  a mental model of 
the operation of an algorithm that will allow the viewer to recall the mechanics of 
the algorithm easily, both in the short and in the long term. 
 
B) Algorithmic animations are for learning – they should be combined with tex-
tual or oral explanations of the mechanics of the algorithm. 
 
C) Students should be able to produce their own animations with low overhead, in 
any desired programming language. 
 
D) Animations should be distributable – students and lecturers should be able to 
export the animations to the Web or send them by e-mail, possibly in different 
formats. 
 
The next chapter provides a historical review of algorithmic animation, before 
proceeding to work towards the goals stated above. In Chapter 7, I rephrase the 
above ideas using Tufte’s description of graphical excellence [Tufte 83]. 
 


