Aus dem Centrum für Muskuloskeletale Chirurgie der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

DISSERTATION

Histologische und immunhistologische Untersuchungen zum Transplantat-Remodeling nach Ersatz des vorderen Kreuzbandes mit freiem autologen und allogenen Sehnentransplantat

-Eine Langzeitstudie am Schafsmodell-

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

von

Moritz Dustmann

aus Köln

Gutachter: 1. Priv.-Doz. Dr. med. A. Weiler

2. Priv.-Doz. Dr. med. M. Muschik

3. Priv.-Doz. Dr. med. E. Lais

Datum der Promotion:16.02.2007Datum der Zeugnisübergabe:23.03.2007

Meinen lieben Eltern gewidmet

Inhaltsverzeichnis

1 Ell	NLEITUNG	4
1.1	Motivation	4
1.2	Anatomie und Funktion des VKB	5
1.2.1	Makroskopische Anatomie	5
1.2.2	Mikroskopische Anatomie	7
1.3	Funktion des VKB	11
1.4	Kreuzbandverletzungen	12
1.4.1	Pathomechanismus	12
1.4.2	Historischer Überblick der Therapie	12
1.4.3	Status Quo der Therapie	16
1.5	Remodeling und Ligamentisierung	19
1.6	Myofibroblasten	20
1.7	Zielsetzung	22
2 M/	ATERIAL UND METHODEN	24
2.1	Studiendesign	24
2.1.1	Versuchstiere	25
2.1.2	Tiermodell	25
2.1.3	Transplantatwahl	26
2.2	Operatives Vorgehen	27
2.2.1	Anästhesie und OP-Vorbereitungen	27
2.2.2	Operation	28
2.2.3	Postoperative Maßnahmen	32
2.3	Probenentnahme und histologische Aufarbeitung	33
2.4	Konventionelle Färbungen	34
2.5	Immunhistologie	35
2.5.1	Theoretische Grundlagen der Immunhistologie	35
2.5.2	Immunhistologische Färbung der Myofibroblasten	36

1

2.6	A	uswertung der Daten	37
2	.6.1	Deskriptive Auswertung	38
2	.6.2	Bindegewebszellen und Myofibroblasten	38
2	.6.3	Polarisationsmikroskopie	38
2	.6.4	Kollagen-Crimp	39
2	.6.5	Statistik	40
_			
3	ER	GEBNISSE	41
3.1	A	lusschlusskriterien	41
3.2	N	Iakroskopische Auswertung	41
3.3	N	Iikroskopische Auswertung	42
3	.3.1	konventionelle Histologie und Gesamtzellzahl	42
3	.3.2	Immunhistologie der Myofibroblasten	46
3	.3.3	Kollagenanordnung und Crimp	51
4	DIS	KUSSION	56
4.1	L	igamentisierung	56
4.2	N	Iyofibroblasten	60
4.3	A	utograft versus Allograft	62
4.4	E	Grgebnisse im Zusammenhang mit Ergebnissen der Arbeitsgruppe	69
4.5	L	imitierungen der Studie	70
4.6	S	chlussfolgerung und klinische Bedeutung	72
5	ZU	SAMMENFASSUNG	73
6	SU	MMARY	74
7	LIT	ERATURVERZEICHNIS	75

9	ANHANG	100
9.1	Färbetechniken	100
9.2	Abkürzungsverzeichnis	102
9.3	Abbildungsverzeichnis	103
9.4	Publikationen	108
9.5	Lebenslauf	109

8 Danksagung

An erster Stelle möchte ich Herrn Priv. Doz. Dr. med. Andreas Weiler für die Überlassung des Themas und die Überwachung meiner Studien.

Meinem Betreuer Herrn Dr. med. Sven Scheffler danke ich für die zahlreichen Hilfestellungen in allen Fragen und die Ratschläge während der Durchführung meiner Arbeit und bei der Erstellung der Dissertationsschrift. Herrn Dr. Frank Unterhauser möchte ich ebenso für die Hilfe und Anregungen vor allem in histologischen Fragen danken. Auch Herr Dr. med. vet. Patrick Hunt und Frau Karin Schlichting standen vor allem für veterinärmedizinische und organisatorische Aspekte jederzeit freundschaftlich und beratend zur Seite.

Ganz besonderer Dank gilt meinen Mitdoktorandinnen Tanja Schmidt, Stefanie Keil, Judith Keil und Insa Gangey für die freundschaftliche Zusammenarbeit und für die vielen fröhlichen Stunden! Die kameradschaftliche Teamarbeit hat großen Spaß gemacht und werde ich stets in bester Erinnerung behalten.

Den Medizinisch-technischen Assistentinnen Frau Gabi Hardung, Frau Camilla Bergmann und allen voran Frau Marzena Princ gilt ganz besondere Anerkennung für die Unterstützung und die vielen Tipps bei der Laborarbeit. Marzena Princ war bei der Aufarbeitung der Präparate und bei den vielen Färbungen eine unersetzliche Hilfe. Ferner möchte ich auch allen nicht erwähnten Mitarbeitern der unfallchirurgischen und tierexperimentellen Forschungseinrichtung für die hilfsbereite und kollegiale Atmosphäre danken.

Frau Dr. rer. nat. Brigitte Wegener, Institut für medizinische Biometrie, Charité danke ich für die Hilfe bei der statistischen Auswertung der Ergebnisse.

Schließlich gilt besonders große Dankbarkeit meinen Eltern Ingrid und Prof. Dr. med. Hans-Otto Dustmann, die mir in allen Fragen jederzeit uneingeschränkt zur Seite standen und mich in jeglicher Hinsicht unterstützen! Durch sie lernte ich die Grundvoraussetzungen für das Erstellen einer Promotionsschrift: Charaktereigenschaften wie Fleiß, Kontinuität, Zielstrebigkeit und Freude an der Arbeit. Sie haben so entscheidend zur Fertigstellung dieser Dissertation beigetragen.

Meinen Freunden und meiner Schwester danke ich für ihr stets offenes Ohr und für die Abwechslung, die bei der Promotion auch von großer Wichtigkeit ist.

9 Anhang

Färbetechniken 9.1

Hämatoxilin/Eosin-Färbung

1.	Paraffinierte Schnitte in Xylol spülen	2 x 10 min.
2.	Absteigende Alkoholreihe $(100\% \rightarrow 96\% \rightarrow 80\% \rightarrow 70\%)$	je 2 min.
3.	Spülen in Aqua dest.	
4.	Hämatoxylin-Kernfärbung nach Harris ¹	7 min.
5.	Spülen in Aqua dest.	
6.	Spülen in HCL-Alkohol (0,25%)	
7.	Wässern in Leitungswasser	10 min.
8.	Eosinfärbung ²	
9.	Entwässern mit Alkohol (2 x 96%, 2 x 100%)	
10.	Spülen in Xylol	
11.	Eindeckeln mit Vitroclud ³	

Masson-Goldner Trichromfärbung

1.	Paraffinierte Schnitte in Xylol spülen	2 x 10 min.
2.	Absteigende Alkoholreihe $(100\% \rightarrow 96\% \rightarrow 80\% \rightarrow 70\%)$	je 2 min.
3.	Spülen in Aqua dest.	
4.	Weigerts Eisenhämatoxylinfärbung ⁴	2 – 4 min
5.	Wässern in Leitungswasser	10 min.
6.	Säurefuchsin-Ponceau-Färbung ⁵	5 min.
7.	Spülen in Essigsäure 1%	
8.	Differenzieren in Phosphormolybdänsäure-Orange G ⁶ bis das Bindegewebe vollständig entfärbt ist	15 – 30 min.

 ¹ Hämatoxylin, Papanicolaous Lösung 1a Harris', Merck KgaA, Darmstadt, Deutschland
² Eosin Solution Aqueous, Sigma Diagnostics, St. Louis, Missouri, USA
³ Vitro-Clud[®], R. Langenbrink, Emmendingen, Deutschland
⁴ Weigerts Eisenhämatoxylin, Chroma-Gesellschaft Schmid GmbH + Co., Münster, Deutschland

⁵ Säurefuchsin, Chroma-Gesellschaft Schmid GmbH + Co., Münster, Deutschland

9.	Spülen in Essigsäure 1%	
10.	Gegenfärben mit Lichtgrün ⁷	10 min.
11.	Spülen in Essigsäure 1%	
12.	Entwässern mit Alkohol (2 x 96%, 2 x 100%)	
13.	Spülen in Xylol	
14.	Eindeckeln mit Vitroclud ⁸	

Immunhistochemische Färbung (ASMA)

1.	Paraffinierte Schnitte in Xylol spülen	2 x 10 min.
2.	Absteigende Alkoholreihe $(100\% \rightarrow 96\% \rightarrow 80\% \rightarrow 70\%)$	je 2 min.
3.	Spülen in Aqua dest.	
4.	Spülen mit PBS-Puffer ⁹ , pH 7,2	5 min.
5.	Inkubation der Schnitte mit Normalserum ¹⁰	20 min.
6.	Inkubation der Schnitte mit Primärantikörper ¹¹ bei 4° C.	über Nacht
7.	Spülen mit PBS-Puffer, pH 7,2	2 x 5 min.
8.	Inkubation mit biotinyliertem Zweitantikörper ¹²	30 min.
9.	Spülen mit PBS-Puffer, pH 7,2	2 x 5 min.
10.	Inkubation mit ABC-Substrat ¹³	50 min.
11.	Spülen mit PBS-Puffer, pH 7,2	2 x 5 min.
12.	Inkubation mit Chromogenpuffer ¹⁴	2 x 5 min.
13.	Entwickeln mit Substrat Vector [®] Red ¹⁵ (gelöst in 100 mM – 200 mM Tris-HCl, pH 8,2 - 8,5) bis zur klaren Anfärbung der Gefäße	8-20 min.
15.	Spülen mit PBS-Puffer, pH 7,2	

¹⁴ Trizma[®] Base T-1503, Sigma Chemical Co., St. Louis, USA

Trizma® Hydrochloride T-3253, Sigma Chemical Co., St. Louis, USA Natriumchlorid, Merck KGaA, Darmstadt

 ⁶ Orange g Differenzierungslösung, Merck KGaA, Darmstadt, Deutschland
⁷ Lichtgrün, Chroma-Gesellschaft Schmid GmbH + Co., Münster, Deutschland
⁸ Vitro-Clud[®], R. Langenbrink, Emmendingen, Deutschland

⁹ 3L 175 Phosphatpuffer Lösung pH 7,2, Waldeck GmbH & Co. KG, Münster, Deutschland

¹⁰ Normal Horse Serum, Vector Laboratories, Inc. Burlingame, CA, USA

¹¹ Smooth Muscle Actin, Klon 1A4, DAKO A/S, Glostrup, Denmark

¹² Vectastain[®], Biotinylated Anti-Mouse/Anti-Rabbit IgG, Made in Horse, Vector Laboratories, Inc. Burlingame, CA, USA

¹³ ABC kit, Alkaline Phosphatase Standard AK-5000, Vector Laboratories, Inc. Burlingame, CA, USA

¹⁵ Vector[®] Red Alkaline Phosphatase Substrate Kit I, Vector Laboratories, Inc. Burlingame, CA, USA

16.	Kerngegenfärbung in Methylengrün ¹⁶	
17.	Entwässern mit Alkohol (2 x 96%, 2 x 100%)	
18.	Spülen in Xylol	
19.	Eindeckeln mit Vitroclud	

9.2 Abkürzungsverzeichnis

Abb	Abbildung
ASMA	. α - smooth muscle actin
CO ₂	Kohlendioxid
dest	. destillatum
EKG	. Elektrokardiogramm
EZM	. Extrazelluläre Matrix
НКВ	. Hinteres Kreuzband
Lig	. Ligamentum
M	. Musculus
MFB	. Myofibroblast
TGF	. transforming growth factor beta
VKB	. vorderes Kreuzband

¹⁶ Certistain[®] Methylgrün, Merck KGaA, Darmstadt, Deutschland

9.3 Abbildungsverzeichnis

Abb. 1: a) Menschliches Kniegelenk. Aus [121] 1: VKB, 2: HKB b) Kniegelenk des	
Schafes. Das anteromediale und das posterolaterale Faserbündel lassen sich	
im Schafsknie makroskopisch unterscheiden (Sonde).	6
Abb. 2: Fibroblasten im VKB (40x, HE-Färbung)	8
Abb. 3: Aufbau des Kollagenfaserbündels in seiner hierarchischen Struktur aus	
jeweils untergeordneten Einheiten. Das Tropokollagen bildet extrazellulär	
Mikrofibrillen, die zu Kollagenfibrillen zusammengelagert sind. Diese	
formen die Kollagenfasern und schließlich die Kollagenfaserbündel. Aus	
[81]	10
Abb. 4: Des Kallagen verläuft im Cowabe in einer longitudingligewallten Struktur	
Abo. 4. Das Konagen verlauft im Gewebe in einer förgfudmar gewenten Stuktur,	
messen und gibt Auslauft über den Demodeling Prozess der Extragellulären	
Matrix (native Eleverschne im polerisierten Licht, 10 v)	10
Matrix. (flative Flexorsenine fill polarisierten Licht, 10 x)	10
Abb. 5: Die proximal entpringenden Fasern des VKB ziehen nach anteromedial. die	
distal entspringenden Fasern nach posterolateral. Dadurch entspannt sich das	
posterolaterale Bündel bei Flexion. Aus [53]	11
Abb. 6: Kreuzbandersatz durch proximal gestielten Fascia-lata-Streifen nach Hey-	
Groves im Jahre 1917. Aus [94]	
Abb. 7: Dynamischer Kreuzbandersatz mittels proximal gestielter Gracilissehne	
nach Lindemann 1950. Aus [95]	14
Abb. 8: a) Der undifferenzierte Fibroblast enthält nicht-kontraktiles Aktin (Cortical	
cytoplasmic actins). b) Unter mechanischer Belastung differenziert der	
Fibroblast zum Proto-Myofibroblast und beginnt sich dabei entlang der	
Zugspannung auszurichten. Er exprimiert kontraktiles Aktin (Cytoplasmic	
actins), welches in Fibronexus (Focal adhesion site) endet. c) Unter Einfluss	

von TGF-B1 und fortgesetzter mechanischer Belastung differenziert der	
Proto-Myofibroblast weiter zum Myofibroblasten, der schließlich α -Smooth	
muscle actin exprimiert und über ausgeprägtere Zell-Stroma Verbindungen	
mehr Kraft auf seine Umgebung übertragen kann als der Proto-	
Myofibroblast. Aus [160]	21
Abb. 9: Merino-Mix-Schaf auf Bauernhof der Humboldt-Universität 3 Wochen	
postoperativ	25
Abb. 10: a) Übersicht der hinteren Extremität des Schafes mit flächiger	
gemeinsamen Sehne des M gracilis und M sartorius b) Nach Umklappen	
des M gracilis kommt die flächige und kurze Sehne des M semitendinosus	
zum Vorschein	26
	20
Abb. 11: Als Transplantat diente die Sehne des M. flexor digitalis superficialis, die	
von der Sehne des M. gastrocnemius umhüllt ist	27
Abb. 12: Transplantat in Baseball-stitch Technik präpariert.	29
Abb. 13: a) Arthrotomie; b) Debridierte Insertionstelle des VKB; c) Bohrung des	
femoralen Knochentunnels; d) Bohrung des tibialen Knochentunnels; e)	
femorale Verankerung mit einem Endobutton; f) und g) Einziehen des	
Transplantates; h) tibiale Verankerung über eine Knochenbrücke.	30
Abb. 14: Schematische Darstellung der Knochentunnel. Aus [72]	31
Abb. 15: Das Transplantat wurde femoral über einen Endobutton, tibial über eine	
Knochenbrücke verankert.	32
Abb. 16: Schematische Darstellung der immunhistochemischen Färbemethode mit	
biotinyliertem Sekundärantikörper und Avidin-Biotin-Komplex Aus [66]	
sound in the second sec	

Abb. 17: Der Polarisator zerlegt diffus, in alle Richtungen schwingendes Licht in	
linear polarisiertes Licht. Der Analysator lässt Licht nur in einer definierten	
Schwingungrichtung passieren	39

Abb.	23:	Myofibroblasten	der	6-Wochen	Tiere	autologes	Transplantat	(a),
	allogenes Transplantat (b): Die Myofibroblasten wachsen fingerförmig von							
	peripher in das azelluläre Gewebe ein. (ASMA-Färbung, 20x)							

- Abb. 29: Crimp-Struktur nach 52 Wochen, autologes Transplantat (a), allogenes Transplantat (b), (20x): Das Gewebe ist wieder longitudinal orientiert und regelmäßig von bindegewebigen Septen durchzogen. Die Crimp-Frequenz variiert noch stark.

9.4 Publikationen

Vorträge:

Dustmann, M.; Scheffler, S.; Gangéy, I.; Unterhauser, F.; Weiler A.: Analyse des Bandremodeling von freien autologen und allogenen Sehnentransplantaten nach VKB-Rekonstruktion am Schafsmodell

1. gemeinsamer Kongress Orthopädie – Unfallchirurgie, Berlin 2005

Dustmann, H. O.; Dustmann, M.: Der künstliche Gelenkersatz – Was gibt es Neues? – Minimalinvasive Zugänge, Kurzschaftprothesen, Navigation VHS Rhein-Sieg, Stadtmuseum Siegburg – 20. Februar 2006

9.5 Lebenslauf

Mein Lebenslauf wird aus Datenschutzgründen in der elektronischen Version meiner Arbeit nicht mit veröffentlicht.

Erklärung

Ich, Moritz Dustmann, erkläre, dass ich die vorgelegte Dissertationsschrift mit dem Thema: "Histologische und immunhistologische Untersuchungen zum Transplantat-Remodeling nach Ersatz des vorderen Kreuzbandes mit freiem autologen und allogenen Sehnentransplantat" selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer Arbeiten dargestellt habe."

Datum

Unterschrift