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Abstract

The analysis and visualization of electron dynamics in molecular systems represents an effective means

to gain deeper understanding of various physical and chemical processes. For this purpose, this theo-

retical-chemical dissertation aims at the development of general analysis tools (detCI@ORBKIT) and

new theoretical methods (“Born-Oppenheimer Broken Symmetry” ansatz), focusing on the different

components of the electronic continuity equation. This fundamental relation connects the electron

density with the electronic flux density, or electronic current density. While the former is a scalar field,

which defines the probability distribution of the electrons, the latter is a vector field describing the

instantaneous and spatially resolved flow of electrons. The robustness and scalability of the developed

methodological framework is first benchmarked, before it is subsequently applied to various fields.

In chemistry, curved arrows are drawn at Lewis structures to symbolize the electron movement dur-

ing chemical reactions. In the first application, this simple model is elucidated by means of quantum

dynamics exemplary for the benzene molecule. For this purpose, different localized electronic superpo-

sition states are prepared by laser excitation initiating charge migration in the attosecond time regime.

The analysis of the time evolution of the electron density reveals that, in the investigated cases, the

electrons follow a pincer-type mechanism and that, in contrast to the predictions by the simple tra-

ditional model, a very small number of electrons is transported. Interestingly, the laser preparation

phase is observed to play an important role in the patterns of charge migration.

The last part of this dissertation is devoted to electron dynamics in a graphene-based molecular

nanojunction. By applying dissipative quantum dynamics, it is demonstrated that this nanostructure

can be reliably switched by a static electric field in the spirit of a traditional field effect transistor.

The subsequent investigation of the electronic flux density for both conformers yields an intuitive

picture of the charge migration mechanism and reveals a possible route to optimize the structure of

the nanojunction.

The main conclusions of my doctoral studies can be summarized as follows: While the analysis of the

electron density allows quantitative statements about reaction mechanisms, the electronic flux density

gives a direct and intuitive insight into the exact course of chemical reactions. The gained dynamical

information not only significantly contributes to the understanding of chemical mechanisms, but can

also help to optimize the functionality of the devices under investigation.
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Kurzzusammenfassung

Die Analyse und Visualisierung von Elektronendynamik in molekularen Systemen stellt ein effektives

Mittel dar, um ein tiefer gehendes Verständnis über verschiedenste physikalische und chemische Pro-

zesse zu gewinnen. Um dies zu ermöglichen, werden in dieser theoretisch-chemischen Doktorarbeit all-

gemeine Analysewerkzeuge (detCI@ORBKIT) und neue theoretische Methoden („Born-Oppenheimer

Broken Symmetry“ Ansatz) erarbeitet. Dabei wird der Schwerpunkt auf die verschiedenen Kompo-

nenten der elektronischen Kontinuitätsgleichung gelegt. Diese fundamentale Gleichung verbindet das

Skalarfeld der Elektronendichte, die die Aufenthaltswahrscheinlichkeit der Elektronen definiert, mit

dem Vektorfeld der Elektronenflussdichte oder Elektronenstromdichte, welche den instantanen und

ortsaufgelösten Elektronenfluss beschreibt. Der entwickelte methodische Rahmen wird zunächst auf

seine Robustheit und Skalierbarkeit hin untersucht, bevor er anschließend produktiv in verschiedenen

Bereichen eingesetzt wird.

In der Chemie werden gebogenen Pfeile an Lewisstrukturen skizziert, um die Elektronenbewegung

während chemischer Reaktionen zu symbolisieren. Im ersten Anwendungsbereich wird dieses einfache

Modell mit quantendynamischen Mitteln am Beispiel des Benzolmoleküls näher beleuchtet. Mittels

Laseranregung werden hierfür zunächst verschiedene lokalisierte elektronische Superpositionszustän-

de erzeugt, was jeweils eine Ladungsmigration im Attosekundenbereich zur Folge hat. Analysen der

Dynamik der Elektronendichte verdeutlichen, dass die Elektronen in den untersuchten Fällen einem

zangenartigen Mechanismus folgen und dass wesentlich weniger Elektronen fließen als durch das einfa-

che Modell vorhergesagt. Interessanterweise, wird beobachtet, dass die Laserpräparationsphase einen

großen Einfluss auf die Flussmuster während der Ladungsmigration haben kann.

Der letzte Teil dieser Dissertation widmet sich der Elektronendynamik in einem graphenbasierten

molekularen Nanoschalter. Zunächst wird mittels dissipativer Quantendynamik demonstriert, dass die

Nanostruktur ähnlich eines traditionellen Feldeffekttransistors durch ein statisches elektrisches Feld

zuverlässig geschaltet werden kann. Die nachfolgende Untersuchung der Elektronenflussdichte in beiden

Konformeren zeigt anschaulich den Ladungsmigrationsmechanismus und offenbart einen möglichen

Optimierungsweg hinsichtlich der Struktur des Nanoschalters.

Die Hauptaussagen meines Promotionsstudiums lassen sich folgendermaßen zusammenfassen: Wäh-

rend die Analyse der Elektronendichte quantitative Aussagen über Reaktionsmechanismen erlaubt,

gibt die Elektronenflussdichte einen direkten und intuitiven Einblick in deren genaue Abläufe. Die

gewonnenen dynamischen Informationen tragen nicht nur signifikant zum Verständnis der Mechanismen

bei, sondern können auch dabei helfen die Funktionalität der untersuchten Geräte zu optimieren.
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Chapter 1

Introduction

Electronic motion is ubiquitous in all areas of chemistry. The spectrum ranges from electrons, which

are rearranged during simple chemical reactions, to electrons that are driven through molecular nano-

junctions by chemical potentials. Understanding these transport processes can represent a keystone

not only for the development of novel materials and molecular devices, but also for shedding light on

the mechanisms of chemical reactions.

As an illustrative example, consider the curved arrows drawn at the Lewis structures of the reactants

in chemical equations (see for example organic chemistry textbooks such as Refs. [1–4]). These arrows,

which are familiar to every chemist, are usually intended to symbolize the motion of one or two valence

electrons from one bond to another during a chemical reaction. But is there a relation between this

very simplified picture and the actual electronic motion? Furthermore, if this is the case, how many

electrons are transferred during this process?

The benzene molecule is predestined as a simple model system to study these questions. The six

delocalized π-electrons of this highly symmetric molecule can be localized to resemble the typically

sketched non-aromatic Kekulé structures (see Fig. 1.1a), and this initiates a charge migration process,

where the electrons migrate from one Kekulé structure to the other. The localization of an oriented[5–11]

benzene molecule can be achieved either by exciting the so-called Kekulé vibrational mode in the

electronic ground state, as shown by Schild et al.,[12] or by an electronic excitation to a non-aromatic

superposition state, as demonstrated by Ulusoy and Nest.[13] The ensuing charge carrier dynamics is

either mediated by nuclear or electronic motion, respectively. To differentiate both phenomena, the

former is commonly referred to as charge transfer, while the latter, usually much faster process is called

charge migration.[14]

Regarding the first scenario, Schild et al.[12] were able to show that only 0.2 electrons are transferred
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Chapter 1 Introduction

Figure 1.1: Lewis structures of the two non-aromatic superposition states of the benzene molecule investigated
by Ulusoy and Nest.[13] (a) The partial localization of the electron density resembles the typically sketched
Kekulé structures. (b) Negative and positive partial charges are found on alternating carbon atoms. The red
arrows show the possible charge migration mechanisms: clockwise, pincer-type, or anti-clockwise motion (from
top to down). In the simple traditional model, the harpoons (central rows) symbolize the motion of one and the
arrows (upper and lower rows) correspond to the motion of two electrons. Thus, in this model, all six electrons
participate in both scenario. The depictions are inspired from Refs. [13, 16].

during the femtosecond vibrational dynamics. This small fraction stands in stark contrast to the

six electrons hypothesized by the simple traditional model sketched in Fig. 1.1a. Concerning the

mechanism, they could show that, as expected, the π-electrons follow the nuclei. Note that this

approach to charge transfer processes has been applied to several similar systems (cf. Refs. [15–18])

with comparable outcomes.

Concerning the second scenario, charge migration processes in general attracted great amounts of ex-

perimental and theoretical interest in the recent years. The phenomenon has been first discussed purely

hypothetically in 1944 by Eyring, Walter, and Kimball in their Quantum Chemistry textbook.[19] The

first experimental evidences were found by Weinkauf and Schlag et al.[20–23] The subsequent theoret-

ical development was pioneered by Levine and Remacle et al.,[24–26] Cederbaum et al.,[27–33] Ban-

drauk et al.,[34–36] Fujimura, Kono and Lin et al.,[37–39] and other groups.[40–44] Recent developments

in attosecond laser technology, which allow to indirectly monitor electron dynamics on its natural

timescale,[45–55] have enabled the first experimental observation and control of the attosecond charge

migration in ionized iodoacetylene.[56]

The charge migration involving a non-aromatic electronic superposition state in the benzene molecule

(second scenario) was first studied by Ulusoy and Nest.[13] They modeled a sequence of laser pulses

in order to prepare a superposition state of the electronic ground and the first excited state. After its

preparation, the system undergoes a Rabi-type electronic charge migration between the two Kekulé

structures in the attosecond time domain. As sketched in Fig. 1.1a, the charge migration could ei-

ther proceed clockwise, anti-clockwise, or via a pincer-type motion. The latter is the one proposed in

Ref. [13]. Paper A1 is supposed to validate this assumption by modeling this process in real space
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and real time. The number of electrons participating in this charge migration process is quantified by

applying methods originally derived for concerted electronic and nuclear fluxes during coherent tun-

neling (see Ref. [18]). Paper A2 focuses on an equivalent analysis for another non-aromatic electronic

superposition state considered in Ref. [13]. This specific superposition state generates negative and

positive partial charges on alternating carbon atoms as sketched in Fig. 1.1b. Here, no mechanism was

proposed so far.

Even the simple benzene model system offers very rich possibilities to initiate charge migration.

In Paper A3, this is used to investigate the possibility of quantum control of the charge migration

mechanism in degenerate superposition states of benzene. By varying exclusively the polarization of

the laser field, different degenerate superposition states of benzene are excited and the effect on the

charge migration mechanism is investigated.

The studies in the Papers A1–A3 focus on the analysis of the dynamics of the electronic proba-

bility density and derived quantities. Although this is a powerful procedure allowing for quantitative

statements, it requires an intricate analysis to unravel mechanistic details. However, if the probability

density is interpreted as a probability fluid, another very insightful, complementary quantity can be de-

rived: the electronic probability flux density, or local electronic current density. This quantity describes

the spatially resolved instantaneous flow of electrons and allows for a very intuitive interpretation of

the mechanisms of charge migration at a single glance. Although the electronic flux density can be

derived straightforwardly for a general multi-determinantal wave packet, to the best of our knowledge

no post-processing program is capable of computing it. In Paper B1, we derive the required formulas

and develop detCI@ORBKIT — an open-source framework to analyze and visualize N -electron dy-

namics. This computational project follows the open-source molecular modeling philosophy[57] and is

an extension to ORBKIT,[D2] our recently published open-source Python library for post-processing

single-determinantal wave function data from output files of quantum chemistry programs. The new

program detCI@ORBKIT extends this functionality to multi-determinantal configuration interaction

wave functions and allows for the computation of expectation values of several one-electron operators.

Besides the implementation details, Paper B1 focuses on the robustness and convergence properties

of the electronic flux density with respect to the quantum chemical level of theory and the basis set. As

the system size increases, the computational effort of high-level quantum chemistry calculations rapidly

becomes prohibitively large. Therefore, Paper B2 supplements the framework of detCI@ORBKIT

with a hybrid density functional theory/configuration interaction methodology. The quality and scal-

ability of this novel non-variational hybrid approach is studied for the quantum dynamics in two

exemplary scenarios: a state selective excitation of a diatomic molecule and a broadband excitation of
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Chapter 1 Introduction

a medium-sized organic dye.

Consider charge transfer processes in the electronic ground state, i.e., electron dynamics driven by

nuclear vibrational dynamics. If an attempt is made to compute the electronic flux density for this

scenario, it vanishes as soon as the clamped nuclei approximation is applied. This approximation

lays the foundation to the Born-Oppenheimer approximation, which is the cornerstone of modern

quantum chemistry. Since avoiding the use of the Born-Oppenheimer approximation is only computa-

tionally tractable for very small systems, e.g., H+
2 ,[58–63] H2,[64–67] and H2D+,[68,69] approximations

become inevitable. A few approaches with various drawbacks have been proposed to overcome this

problem. The semi-classical coupled channels theory[70–72, D1] and its generalization[73] by Diestler

and coworkers correlates the gross atomic density with the nuclear flux density and thereby con-

strains the electronic flux density to strictly follow the nuclear motion. The so-called time-shift flux of

Okuyama and Takatsuka[74] introduces a time delay into the wave function yielding a non-vanishing

but complex-valued electronic flux density. The ansatz to reduce the complete Schrödinger equation

as proposed by Manz et al.[18] is only capable of providing information about a single component of

the flux density in the average field of the others. Besides, different perturbative approaches have

been proposed involving the influence of electronically excited states,[75–78] but those depart from

the Born-Oppenheimer picture. In Paper B3, we pursue another strategy to obtain the electronic

flux density within the framework of the Born-Oppenheimer approximation. Our Born-Oppenheimer

broken symmetry (BOBS) ansatz correlates the electronic with the nuclear motion by translating the

density pairwise anti-symmetrically within the nuclear configuration space. Requiring only knowledge

of the ground state nuclear quantum dynamics and static ground state electronic quantities that are

readily accessible with ORBKIT[D2] from the standard output of quantum chemical programs, this

approach yields a non-vanishing electronic flux density which can be forced to approximately fulfill the

electronic continuity equation. In Paper B3, the robustness and general applicability of the BOBS

ansatz are investigated for the hydrogen molecular ion vibrating in its electronic ground state. The re-

sults are then benchmarked against non-Born-Oppenheimer results that are available for this particular

scenario.[63]

In summary, the Papers B1–B3 establish a reliable framework for the visualization and analysis

for charge migration and charge transport processes. The general applicability of this toolset can be

exploited to investigate electron dynamics not only in small but also in much larger systems, such as

those encountered in molecular electronics.

The research field of molecular electronics (cf., e.g., Refs. [79–81] and references therein) addresses

the design of electronic components, where the functional unit is built up from a single molecule. Exam-
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Figure 1.2: Cartoon of the molecular junction proposed by Agapito and Cheng[134] which consists of nitro-
substituted oligo-(phenylene ethynylene) covalently bound to graphene nanoribbon leads (OPE-GNR). In Pa-
per C1, we demonstrate that the conductivity of this device can be switched in the spirit of a traditional field
effect transistor, i.e., by applying an external static electric field ~E.

ples include wires,[82,83] rectifiers,[84–94] LEDs,[95–98] transistors,[99–120] and other electronics.[121–124]

Transistors are of particular interest, since these components represent the central switching units in

modern electronics. A wide variety of systems have been proposed and investigated for this par-

ticular application (cf., e.g., Ref. [125–128] and references therein). Recently, the first experimental

demonstration of a light-induced graphene based molecular switch working at room temperature was

presented by Jia et al.[129] Here, the well-known switching behavior of diarylethenes (cf., e.g., Ref. [130]

and references therein) was exploited, and a representative of this class of molecules was bound co-

valently between two graphene tips. Graphene tips and related graphene-based nanostructures such

as carbon nanotubes and graphene nanoribbons (GNRs) are predestined as contact materials,[131]

since they are virtually one-dimensional, show unique electronic transport properties even at room

temperature,[132,133] and can bind covalently to organic molecules, which potentially enhances their

conductance properties.

For this endeavor, oligo-(phenylene ethynylene)s (OPEs) which attracted attention especially as

molecular wires (cf., e.g., Ref. [82] and references therein) have interesting electrochemical properties.

When they are inserted into a host n-alkanethiolate self-assembled monolayer on a gold surface, they

exhibit stochastic conductance switching in STM experiments.[135–139] Based on (from the present point

of view) outdated mechanistic interpretations of this phenomenon (for an assessment of the different

proposed mechanisms, see Ref. [128]), Agapito and Cheng[134] designed a molecular junction, where

nitro-substituted OPE is covalently bound to graphene nanoribbon leads (OPE-GNR), see Fig. 1.2.

They applied the non-equilibrium Green’s function formalism to demonstrate that this nanojunction

can be found in two distinct conformers, which differ significantly in their conductance. In Paper C1,
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we model the reaction path between both conformers and show that this system can be switched in the

spirit of a traditional field effect transistor, i.e., by applying an external static electric field in top gate

position. We apply dissipative quantum dynamics to model the complete switching cycle and show

that the energetically unfavored less conducting conformer can be readily accessed.

In reference to the ground-breaking experimental work by Jia et al,[129] C. D. Frisbie highlighted in

a perspective article[140] the necessity of the precise knowledge of the electron flow mechanism through

the device as the key aspect for the design of more efficient molecular junctions. In Paper C2, we

take up this challenge and develop a novel computational procedure to visualize spatially-resolved

electron transport through single-molecule-graphene-nanoribbon junctions. The foundation of our ap-

proach is the driven Liouville-von Neumann (DLvN) formalism for time-dependent electronic transport

calculations.[141–149] The transparent DLvN formalism allows us to directly access the density matrix

of the molecular junction, and thus, to reconstruct the time-dependent local electronic current density

allowing for a detailed mechanistic investigation. As a realistic test case, we investigate in detail the

electronic current dynamics in both conformers of the OPE-GNR nanojunction (cf. Paper C1).

This dissertation is structured as follows. The chapter Theoretical Background gives a brief intro-

duction to the basic quantum mechanical concepts used in this thesis. Because of the diversity of the

time-independent and time-dependent phenomena studied, this chapter covers a wide range of quan-

tum chemical and quantum dynamical methods, and I try to present a compact derivation revealing

the connections between all these methods. The chapter Publications contains all the papers that have

been published as part of my doctoral studies. Here, the contributions by the individual authors are

clearly outlined. Finally, the central findings of all publications are summarized and put into context

in the chapter Summary.
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Chapter 2

Theoretical Background

The subsequent chapter should serve as an overview for the theoretical framework behind this thesis.

The methods and underlying basic quantum mechanical concepts, which are necessary to understand

the publications arisen from this dissertation, will be established and explained. No claims to com-

pleteness are raised, and it is assumed that the reader is familiar with the basic concepts of quantum

chemistry. The underlying literature is marked as a citation in the heading of each chapter.

2.1 The Time-Dependent Schrödinger Equation [150,151]

Neglecting relativistic effects, the state of a molecular system evolves according to the time-dependent

Schrödinger equation[152]

ı~
∂

∂t

∣∣Φtot(t)
〉

=
(
Ĥmol(r,R) + V̂int(r,R, t)

) ∣∣Φtot(t)
〉
, (2.1)

where ~ is the reduced Planck constant, and t stands for the time. The spatial coordinates of the N

electrons and M nuclei are labeled r = {~rk}Nk=1 and R = {~RA}MA=1, respectively. The total molecular

wave function
∣∣Φtot(t)

〉
depends on the time, the 4N electronic, and 4M nuclear spatial and spin

coordinates. Note that the nuclear spin will be ignored throughout this work. The time-dependent

interaction operator V̂int(r,R, t) incorporates effects such as the interaction with an external electric

field, which in the semi-classical dipole approximation is given by V̂int(r,R, t) = −µ̂(r,R) · ~F (t) with

the dipole operator µ̂(r,R) and the electric field operator ~F (t). The field-free Hamiltonian Ĥmol(r,R)

has no explicit time-dependence. It describes all interaction within the molecular framework and reads

7



Chapter 2 Theoretical Background

in the laboratory frame of reference

Ĥmol(r,R) = T̂nuc(R) + Ĥel(r,R)

= −
M∑
A

~2

2MA
∇2
~RA

+ Ĥel(r,R)
(2.2)

with the nuclear kinetic energy operator T̂nuc(R). Here, MA is the mass of the Ath nucleus, and ~∇~RA

is the spatial gradient with respect to the Cartesian coordinates of this nucleus. The second term of

Eq. (2.2) is usually referred to as the electronic Hamiltonian,

Ĥel(r,R) = T̂el(r) + V̂coul(r,R)

= −
N∑
k

~2

2me
∇2
~rk

+ V̂coul(r,R),
(2.3)

and is composed of the kinetic energy operator for the electrons T̂el(r) and all intra-molecular Coulomb

interactions

V̂coul(r,R) =
M∑
A

M∑
B>A

ZAZBe
2

4πε0
∣∣~RA − ~RB

∣∣ − N∑
k

M∑
A

ZAe
2

4πε0
∣∣~rk − ~RA

∣∣ +
N∑
k

N∑
k′>k

e2

4πε0
∣∣~rk − ~rk′

∣∣ , (2.4)

where the first term corresponds to the internuclear repulsion, the second term is the electron-nuclear

attraction, and the last represents the electron-electron repulsion. Further, me is the electron rest mass,

e the elementary charge, ε0 the vacuum permittivity, and ~∇~rk
is the spatial gradient with respect to

the Cartesian coordinates of electron k.

The great difference between the masses of electrons and nuclei justifies the assumption that the

electrons are moving much faster than the nuclei. Consequently, from the nuclear point of view,

the electrons adjust instantaneously to the nuclear motion, and from the electronic point of view,

the nuclei are fixed in space. Within this clamped nuclei approximation, stationary solutions of the

electronic problem can be obtained by solving the time-independent electronic Schrödinger equation

parametrically for a given nuclear configuration

Ĥel(r;R)
∣∣Ψ(λ)〉 = E

(λ)
el (R)

∣∣Ψ(λ)〉, (2.5)

where the parametric dependence on R is symbolized by a semicolon. Here,
∣∣Ψ(λ)〉 is the stationary

electronic wave function of the electronic state λ for the nuclear configuration R, and E(λ)
el (R) is the

associated electronic energy, which is called potential energy surface.

As the electronic wave functions form a complete set, the total molecular wave function may be

8



2.1 The Time-Dependent Schrödinger Equation

expanded as a linear combination of these basis functions

∣∣Φtot(t)
〉

=
∑
λ

∣∣Ψ(λ)〉∣∣χ(λ)(t)
〉
, (2.6)

where the expansion coefficients
∣∣χ(λ)(t)

〉
depend on the time and the nuclear coordinates and are

usually referred to as nuclear wave functions. Eq. (2.6), known as the general Born-Huang ansatz, is

exact as long as the summation is not truncated. When inserting this ansatz into the time-dependent

Schrödinger equation, cf. Eq. (2.1), and integrating over the electronic wave functions, i.e., left-

multiplying by
〈
Ψ(λ)

∣∣, we arrive at the equations of motion for the nuclei

ı~
∂

∂t

∣∣χ(λ)(t)
〉

=
[
T̂nuc(R) + E

(λ)
el (R) +

(∑
ν

Λλν(R)
)

+ V̂int(R, t)
]∣∣χ(λ)(t)

〉
, (2.7)

Here, the non-adiabatic or kinetic coupling terms are given by

Λλν(R) = −
M∑
A

~2

2MA

[
2~Λ(1)

λν,~RA
(R) · ~∇~RA

+ Λ(2)
λν,~RA

(R)
]
. (2.8)

where the first-order coupling terms ~Λ(1)
λν,~RA

(R) =
〈
Ψ(λ)

∣∣~∇~RA

∣∣Ψ(ν)〉 are vector quantities and the

second-order coupling terms Λ(2)
λν,~RA

(R) are scalar functions. As a convention, here and in the follow-

ing, the Dirac notation of the inner product
〈
Ψ(λ)

∣∣Ψ(ν)〉 indicates an integration over the electronic

coordinates r only, while
〈
χ(λ)(t)

∣∣χ(ν)(t)
〉
refers to an integration over the nuclear coordinate space

R. Strictly speaking, the notation in Eq. (2.6) is not accurate, since it is a not direct product basis.

Nonetheless, this issue can be circumvented by respecting the order of the integrals. Neglecting the

non-adiabatic coupling terms, i.e., uncoupling the electronic states for the field-free Hamiltonian, yields

the Born-Oppenheimer approximation.[151]

9



Chapter 2 Theoretical Background

2.2 The Solution of the Time-Independent Electronic

Schrödinger Equation [150]

Despite the simplifications achieved by the clamped-nuclei approximation and the associated Born-

Oppenheimer approximation, the electronic problem, cf. Eq. (2.5), is still not solvable exactly for most

systems. Thus, further approximations need to be applied. One famous approximation to access the

electronic ground state (λ = 0) is to assume that the electrons can be treated independently from

each other, experiencing the interactions with the remaining electrons only via an effective potential

v̂eff(~rk;R). Within this mean-field method, the electronic Hamiltonian takes the form

Ĥel(r;R) =
N∑
k

(
− ~2

2me
∇2
~rk

+ v̂eff(~rk;R)
)

+ V̂nuc-nuc(R), (2.9)

where the internuclear repulsion V̂nuc-nuc(R) acts only as a constant factor, and the time-independent

electronic Schrödinger equation can be recast from an N -electron problem to N one-electron problems,

(
− ~2

2me
∇2
~rk

+ v̂eff(~rk;R)
) ∣∣ψa〉 = εa(R)

∣∣ψa〉, (2.10)

which hugely simplifies the eigenvalue problem. The one-electron wave functions
∣∣ψa〉 are called molec-

ular spin orbitals, and the associated eigenenergies εa(R) are denoted as molecular orbital energies.

Due to the fact that the mean-field electronic Hamiltonian is a sum of single-particle Hamiltonians,

the corresponding total molecular wave function
∣∣Ψ(0)

HF
〉
can be formulated as a product of molecular

spin orbitals. Since
∣∣Ψ(0)

HF
〉
is further required to be antisymmetric with respect to the exchange of two

electrons, the molecular spin orbitals can be arranged in the form of a Slater determinant

Ψ(0)
HF(x;R) = 1√

N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψa(~x1;R) ψa(~x2;R) . . . ψa(~xN ;R)

ψb(~x1;R) ψb(~x2;R) . . . ψb(~xN ;R)
...

... . . . ...

ψc(~x1;R) ψc(~x2;R) . . . ψc(~xN ;R)

∣∣∣∣∣∣∣∣∣∣∣∣∣
≡
∣∣ψaψb . . . ψc〉

(2.11)

where ψa(~xk;R) is the ath spin orbital occupied by electron k with its spatial and spin coordinates

~xk ≡ {~rk,ms,k}. For a non-relativistic Hamiltonian, each spin orbital can be factorized into a spatial

part, ϕa(~rk), denoted as spatial molecular orbital (MO) and a spin function, σ(ms,k), i.e.,

ψa(~xk;R) = ϕa(~rk;R)σ(ms,k) (2.12)

10



2.2 The Solution of the Time-Independent Electronic Schrödinger Equation

with σ(ms,k) being either spin-up (α) or spin-down (β). Note that for many purposes the spin part

can be integrated out in order to get a spin-free representation of the wave function.

Typically for molecules, the MOs are expressed according to the MO-LCAO ansatz (molecular or-

bitals as linear combination of atomic orbitals), i.e., they are expanded using a finite set of atom-

centered basis functions

ϕa(~rk;R) =
M∑
A

nAO(A)∑
iA

C
(a)
iA

(R)φiA(~rk − ~RA), (2.13)

where C(a)
iA

(R) is the iAth expansion coefficient of MO a, and each nucleus A possesses nAO(A) atomic

orbitals (AOs), φiA(~rk − ~RA). These are, for practical purposes, often themselves expanded in terms

of Gaussian functions. For more details on basis functions, the reader is referred to, e.g., Ref. [153].

2.2.1 The Hartree-Fock Method [150,153]

When the Slater determinant wave function ansatz of Eq. (2.11) is inserted into the time-independent

electronic Schrödinger equation, cf. Eq. (2.5), the one-electron eigenvalue equations as required by

Eq. (2.10) can be obtained, leading to the Hartree-Fock equations

F̂ (~rk;R)ψHF
a (~xk;R) =

[
ĥ(~rk;R) +

N∑
b

(
Ĵb(~rk;R)− K̂b(~rk;R)

)]
ψHF
a (~xk;R)

= εHF
a (R)ψHF

a (~xk;R).

(2.14)

Here, the electronic kinetic energy and the electron-nuclear attraction are described by the single

particle operators

ĥ(~rk;R)ψHF
a (~xk;R) =

[
− ~2

2me
∇2
~rk
−

M∑
A

ZAe
2

4πε0
∣∣~rk − ~RA

∣∣
]
ψHF
a (~xk;R) (2.15)

and the electron-electron interactions are encoded in the Coulomb and the exchange operators

Ĵb(~rk;R)ψHF
a (~xk;R) =

[∫
d~xk′

(
ψHF
b (~xk′ ;R)

)† e2

4πε0
∣∣~rk − ~rk′

∣∣ψHF
b (~xk′ ;R)

]
ψHF
a (~xk;R) (2.16)

K̂b(~rk;R)ψHF
a (~xk;R) =

[∫
d~xk′

(
ψHF
b (~xk′ ;R)

)† e2

4πε0
∣∣~rk − ~rk′

∣∣ψHF
a (~xk′ ;R)

]
ψHF
b (~xk;R). (2.17)

As the Coulomb and the exchange operators depend on the molecular spin orbitals, the Hartree-Fock

equations cannot be solved directly. But since the exact energy is a lower bound to the expectation
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Chapter 2 Theoretical Background

value of the Hamiltonian with any trial wave function
∣∣Ψ̃〉 according to the variational principle,

E
(0)
el (R) ≤

〈
Ψ̃
∣∣∣Ĥel(r;R)

∣∣∣Ψ̃〉〈
Ψ̃
∣∣Ψ̃〉 , (2.18)

the eigenvalue problem can be solved iteratively by varying the MO coefficients, until the solution is

converged. Within the MO-LCAO ansatz, this minimization procedure is equivalent to solving the

so-called Hartree-Fock-Roothaan-Hall matrix equation[154,155]

FC = SCε (2.19)

with the Fock matrix in the AO basis F (i,j) =
〈
φi
∣∣F̂ (~rk;R)

∣∣φj〉, the MO coefficient matrix C(i,a) =

C
(a)
i , the AO overlap matrix S(i,j) =

〈
φi
∣∣φj〉, and the diagonal MO energy matrix ε(a,a) = εa. The

benefit of this variant is that by construction all integrals have to be carried out only once over all

atomic orbitals at the beginning of the computational scheme. The solution of Eq. (2.19) gives as

many MOs as there are AO basis functions, and only the N lowest spin orbitals, denoted occupied spin

orbitals, contribute to the total energy. The remaining are called unoccupied or virtual spin orbitals.

2.2.2 The Configuration Interaction Method [150,153]

The Hartree-Fock method yields the best solution obtainable with a single Slater determinant at a

given basis set level. However, even in the complete basis set limit, the resulting Hartree-Fock energy

is not the exact electronic ground state energy. The energy difference is known as correlation energy,

and many so-called post-Hartree-Fock methods have been proposed to approach the exact limit.

The conceptually simplest post-Hartree-Fock method is the method of configuration interaction (CI).

Here, the electronic wave function for an electronic state λ is expressed as a linear combination of N -

electron trial wave functions

∣∣Ψ(λ)
CI
〉

= D
(λ)
0
∣∣Ψ(0)

HF
〉

+
(

1
1!

)2∑
ar

Dr(λ)
a

∣∣Ψ(0)
HF
〉r
a

+
(

1
2!

)2 ∑
abrs

D
rs(λ)
ab

∣∣Ψ(0)
HF
〉rs
ab

+ . . . (2.20)

with the CI coefficients Drs...(λ)
ab... , which can be optimized applying the variational principle. The

trial wave functions are n-tuply excited Slater determinants
∣∣Ψ(0)

HF
〉rs...
ab...

which are constructed from

the Hartree-Fock reference wave function
∣∣Ψ(0)

HF
〉
by promoting electrons from occupied {a, b, . . . } to

unoccupied spin orbitals {r, s, . . . }. Note that CI coefficients can be constrained, such that the spin of

the wave function is respected. In practice, this is done by constructing configuration state functions

(CSF). If all possible excitations are included, the method is labeled full CI and is exact within the
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2.2 The Solution of the Time-Independent Electronic Schrödinger Equation

chosen basis set. Due to the fact that the number of determinants scales factorially with the number

of electrons and orbitals, full CI is only applicable to very small systems.

To reduce the computational effort, two different strategies can be pursued: On the one hand, the

rank of excitation can be restricted, e.g., allowing only for singly excited (CI singles) or only for doubly

excited determinants (CI doubles). On the other hand, the excitations can be restricted to a specific

orbital space, the so-called active space. This restricted active space CI (RAS-CI) method can be

further improved by additionally optimizing the MO coefficients to account for orbital relaxation. This

procedure is known as the multi-configuration self-consistent field (MCSCF) method.[156] Usually all

possible excitations within the active space are considered, leading to the complete active space self-

consistent field (CASSCF) method. A main drawback of the MCSCF procedure is that the MOs within

the active space are treated differently than the MOs outside this orbital space. To compensate for this

unbalanced situation, the MCSCF wave function is often taken as reference for an additional multi-

reference CI (MRCI) calculation, where the excited determinants are constructed from all determinants

present in the MCSCF reference wave functions, i.e.,

∣∣Ψ(λ)
MRCI

〉
= D

(λ)
0
∣∣Ψ(λ)

MCSCF
〉

+
(

1
1!

)2∑
ar

Dr(λ)
a

∣∣Ψ(λ)
MCSCF

〉r
a

+
(

1
2!

)2 ∑
abrs

D
rs(λ)
ab

∣∣Ψ(λ)
MCSCF

〉rs
ab

+ . . . .

(2.21)

The CI methodology allows for an accurate high-level treatment of the ground and the excited electronic

states of small and medium sized molecules, but as the system size increases, the computational effort

rapidly becomes prohibitively large.

2.2.3 The Density Functional Theory [153,157]

The density functional theory (DFT) circumvents the explicit treatment of the correlated N -electron

wave function by mapping the multi-dimensional problem onto the three-dimensional ground state

one-electron density, which is defined by

ρ
(0)
el (~r;R) = N

∑
ms

∫
· · ·
∫

d~x2 · · · d~xN
∣∣Ψ(0)({~r,ms}, ~x2, . . . , ~xN ;R)

∣∣2
= ρ

(0)
el,α(~r;R) + ρ

(0)
el,β(~r;R).

(2.22)

Here, the all-electron density is integrated over the coordinates of all but one electron, yielding two

spin densities, which are summed up in the second line of Eq. (2.22). The spatial coordinates of the

remaining electron ~r are sometimes referred to as the observation point. For sake of clarity, the index

of this electron is omitted, and the coordinate dependence and the superscript of ρ(0)
el (~r;R) will be

dropped in the following, wherever possible.
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Chapter 2 Theoretical Background

According to the first Hohenberg-Kohn theorem,[158] the exact ground state energy for a non-

degenerate ground state is uniquely defined by the one-electron density, i.e., the energy is a functional

of the one-electron density and may be written as

E
[
ρel
]

= Vnuc-nuc + T
[
ρel
]

+ Vel-nuc
[
ρel
]

+ J
[
ρel
]

+ E′xc
[
ρel
]
, (2.23)

where the functional forms are only known for the constant nuclear repulsion Vnuc-nuc, the electron-

nuclear attraction functional

Vel-nuc
[
ρel
]

= −
M∑
A

∫
d~r ZAe

2

4πε0
∣∣~r − ~RA

∣∣ρel(~r;R), (2.24)

and the Coulomb functional

J
[
ρel
]

= 1
2

∫∫
d~r d~r ′ e2

4πε0
∣∣~r − ~r ′∣∣ρel(~r;R)ρel(~r ′;R). (2.25)

The expressions for the kinetic energy functional T
[
ρel
]
and the exchange-correlation energy functional

E′xc
[
ρel
]
are unknown. However, if they would be known, according to the second Hohenberg-Kohn

theorem,[158] the exact ground energy could be obtained variationally, as E
[
ρel
]
≤ E

[
ρ̃el
]
for any trial

density ρ̃el.

One approach to at least partially solve this issue, is the famous Kohn-Sham formulation of DFT

(KS-DFT).[159] Here, the one-electron density is mapped onto the density of a fictious non-interacting

system, which is fully described by a single Slater determinant ΨKS(x;R) built up from so-called

Kohn-Sham orbitals ψKS
a ({~r,ms};R). Consequently, the one-electron density can be written as a sum

of single particle densities

ρel(~r;R) =
N∑
a

∑
ms

∣∣ψKS
a ({~r,ms};R)

∣∣2, (2.26)

and the expression for the total energy can be reformulated as

E
[
ρel
]

= TKS
[
ρel
]

+ Vnuc-nuc + Vel-nuc
[
ρel
]

+ J
[
ρel
]

+ Exc
[
ρel
]
, (2.27)

where the expression for the non-interacting kinetic energy is naturally given by

TKS
[
ρel
]

= − ~2

2me

N∑
a

〈
ψKS
a

∣∣∇2
~r

∣∣ψKS
a

〉
. (2.28)

The exchange-correlation energy functional Exc
[
ρel
]
, which is the only unknown quantity in Eq. (2.27),
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2.2 The Solution of the Time-Independent Electronic Schrödinger Equation

is augmented by the error in the kinetic energy, i.e., the fraction of the kinetic energy which is not

covered by TKS
[
ρel
]
,

Exc
[
ρel
]

= E′xc
[
ρel
]

+ T
[
ρel
]
− TKS

[
ρel
]
. (2.29)

This residual kinetic energy fraction is often ignored.[157]

Following the second Hohenberg-Kohn theorem, the single-particle Kohn-Sham equations

(
− ~2

2me
∇2
~r + v̂eff(~r;R)

) ∣∣ψKS
a

〉
= εKS

a (R)
∣∣ψKS
a

〉
, (2.30)

which are of the same form as Eq. (2.10), can now be solved by variation of the electron density. Here,

the effective potential operator is given by

v̂eff(~r;R) = −
M∑
A

ZAe
2

4πε0
∣∣~r − ~RA

∣∣ +
∫

d~r ′ e
2ρel(~r ′;R)

4πε0
∣∣~r − ~r ′∣∣ + v̂xc(~r;R), (2.31)

where the first term is often referred to as external potential v̂0(~r;R). The exchange-correlation

potential is the functional derivative of the exchange-correlation energy functional with respect to the

electron density

v̂xc(~r;R) =
δExc

[
ρel
]

δρel(~r;R) .
(2.32)

Evidently, the Kohn-Sham equations are very similar to the Hartree-Fock equations. However, while the

Hartree-Fock formalism is a mean-field approximation to the time-independent electronic Schrödinger

equation, the Kohn-Sham formalism represents an exact recast of the N -electron problem to N one-

electron problems, provided that the exchange-correlation potential would be known. Since this is not

the case for almost all systems, approximations become inevitable.

The simplest approximation for the exchange-correlation energy is the local density approximation

(LDA). Here, the electron density is locally treated as a homogeneous electron gas of the same density,

for which the exchange energy Ex
[
ρel
]
is known analytically[160,161] , and the respective correlation

energy Ec
[
ρel
]
can be fitted[162–164] to accurate quantum Monte Carlo simulations.[165] Accordingly,

the LDA exchange-correlation energy functional is given by

ELDA
xc

[
ρel
]

=
∫

d~r ρel(~r;R)εLDA
xc

[
ρel
]
. (2.33)

where εLDA
xc

[
ρel
]
is the exchange-correlation energy of the homogeneous electron gas of electron density

ρel.

Clearly, for molecular systems, a slowly varying homogeneous electron gas is a rather poor approxi-
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mation to the electron density. To this end, a local dependence on the gradient of the electron density

can be added to the exchange-correlation energy functional to allow for the description of a more

non-uniform electron distribution. This leads to the generalized gradient approximation (GGA) with

EGGA
xc

[
ρel
]

=
∫

d~r ρel(~r;R)εGGA
xc

[
ρel,∇ρel

]
. (2.34)

A variety of GGA functionals has been proposed over the years varying in quality and general appli-

cability. Popular GGA functionals are PW91[166] or PBE[167] .

In order to further improve the results, the exchange-correlation energy expression can be supple-

mented by a fraction ζ of exact exchange K
[
{ψKS

a }
]
, i.e., the exchange energy obtained within the

Hartree-Fock formalism using Kohn-Sham orbitals {ψKS
a },[168]

Ehybrid
xc

[
ρel
]

= ζ
(
K
[
{ψKS

a }
]
− ELDA/GGA

x
[
ρel, ~∇ρel

])
+ ELDA/GGA

xc
[
ρel
] (2.35)

Although, this treatment is computationally considerably more expensive than for GGA functionals,

it is in general substantially cheaper than a post-HF treatment and yields reliable results in many

cases. Consequently, those hybrid functionals are widely used in computational chemistry. Prominent

examples for hybrid functionals are B3LYP[169,170] and PBE0[171] .

2.2.4 The Time-Dependent Density Functional Theory [153,157,172–174]

The purpose of the subsequent section is to extend the ground state capabilities of density functional

theory to the description of excited state properties by means of linear response time-dependent density

functional theory (LR-TDDFT).

Consider a molecular system with clamped nuclei in its electronic ground state being perturbed by

an external stimulus. The electron dynamics of this system is given by the time-dependent Schrödinger

equation Eq. (2.1) with the interaction operator

V̂int(r, t;R) = v̂1(r, t;R) · ϑ(t− t0), (2.36)

where the time-dependent perturbation v̂1(r, t;R) is switched on at t = t0 by a Heavyside step function

ϑ(t− t0). The time-independent problem, i.e., t ≤ t0, is assumed to be solved.

Two theorems, namely the Runge-Gross and the van Leeuwen theorem, form the basis of the time-

dependent density functional theory (TDDFT) allowing for the treatment of such problems within

the framework of DFT. While the Runge-Gross theorem[175] extends the Hohenberg-Kohn theorem
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2.2 The Solution of the Time-Independent Electronic Schrödinger Equation

to the time-dependent regime for a given initial state, the van Leeuwen theorem[176] can be seen as

a time-dependent analogue to the Kohn-Sham ansatz, i.e., the time-dependent electron density of the

interacting system evolving from an initial state can be mapped onto a fictious non-interacting system

being driven by a time-dependent effective potential. This effective potential is not only a functional of

the time-dependent electron density, but also a functional of the initial states of both, the interacting

and the non-interacting system. However, due to the particular choice for the interaction operator, cf.

Eq. (2.36), the system is in its ground state for t ≤ t0, and thus, the latter functional dependences

vanish since the initial state is itself functional of the density.

Analogously to the time-independent case, the time-dependent electron density can now be expanded

in terms of time-dependent Kohn-Sham (TDKS) orbitals

ρel(~r, t;R) =
N∑
a

∑
ms

∣∣ψTDKS
a ({~r,ms}, t;R)

∣∣2, (2.37)

which are described by the TDKS equations

ı~
∂

∂t

∣∣ψTDKS
a (t)

〉
=
(
− ~2

2me
∇2
~r + v̂eff(~r, t;R)

) ∣∣ψTDKS
a (t)

〉
(2.38)

with the initial condition
∣∣ψTDKS
a (t = t0)

〉
=
∣∣ψKS
a

〉
and the time-dependent effective potential

v̂eff(~r, t;R) = v̂(~r, t;R) +
∫

d~r ′ e
2ρel(~r ′, t;R)
4πε0

∣∣~r − ~r ′∣∣ + v̂xc(~r, t;R). (2.39)

The time-dependent external potential is given as

v̂(~r, t;R) = v̂0(~r;R) + v̂1(r, t;R) · ϑ(t− t0)

= −
M∑
A

ZAe
2

4πε0
∣∣~r − ~RA

∣∣ + v̂1(r, t;R) · ϑ(t− t0)
(2.40)

with the unperturbed external potential v̂0(~r;R). Notice that the time-dependent exchange-correlation

potential v̂xc(~r, t;R) is causal and history-dependent. However, the treatment of the causality and

history-dependence is usually avoided by introducing the so-called adiabatic approximation. Here,

it is assumed that the density is slowly varying in time and that consequently, the time-dependent

exchange-correlation potential becomes local in time. This allows us to employ the well-established

framework of time-independent DFT functionals with the time-dependent density, i.e.,

v̂xc(~r, t;R) =
δExc

[
ρel
]

δρel(~r;R)

∣∣∣∣∣
ρel(~r;R)→ρel(~r,t;R)

. (2.41)

17



Chapter 2 Theoretical Background

The Linear-Response Time-Dependent Density Functional Theory [153,157,172–174]

Now, let the external stimulus be a weak uniform oscillating electric field in the semi-classical dipole

approximation

v̂1(r, t;R) = −µ̂el(r) · F cos(ωt) (2.42)

with the electronic dipole moment operator µ̂el(r), the electric field strength F , and the field frequency

ω. The density response induced by this perturbation can be expanded using a functional Taylor series

expansion around v̂0(~r;R)[177]

ρel(~r, t;R)− ρel[v̂0](~r, t;R) =
∫∫

dt′ d~r ′ δρel[v̂0](~r, t;R)
δ v̂(~r ′, t′;R) v̂1(~r ′, t′;R)

+ 1
2!

∫∫∫∫
dt′d~r ′dt′′ d~r ′′ δ2ρel[v̂0](~r, t;R)

δ v̂(~r ′, t′;R)δ v̂(~r ′′, t′′;R) v̂1(~r ′, t′;R)v̂1(~r ′′, t′′;R) + . . .

(2.43)

where ρel,0(~r;R) = ρel[v̂0](~r, t;R) is the unperturbed density, the first term on the right hand side cor-

responds to the linear response ρel,1(~r, t;R), the second term to the quadratic (second-order) response

ρel,2(~r, t;R), etc. Here, we focus only on the linear density response, which can be rewritten as

ρel,1(~r, t;R) =
∫∫

dt′ d~r ′ χ(~r, t, ~r ′, t′;R) v̂1(~r ′, t′;R), (2.44)

where the density-density response function is given by the functional derivative of the density with

respect to the time-dependent external potential

χ(~r, t, ~r ′, t′;R) = δρel[v̂](~r, t;R)
δ v̂(~r ′, t′;R)

∣∣∣∣
v̂0(~r;R)

. (2.45)

The same linear density response as in Eq. (2.44) can be described within the framework of the

non-interacting TDKS system, i.e.,

ρel,1(~r, t;R) =
∫∫

dt′ d~r ′ χeff(~r, t, ~r ′, t′;R) v̂eff,1(~r ′, t′;R) (2.46)

with the linearized effective potential

v̂eff,1(~r, t;R) = v̂1(~r, t;R) +
∫

d~r ′ e
2ρel,1(~r ′, t;R)
4πε0

∣∣~r − ~r ′∣∣ + v̂xc,1(~r, t;R), (2.47)

where the linearized exchange-correlation potential is given by

v̂xc,1(~r, t;R) =
∫∫

dt′ d~r ′ f̂xc(~r, t, ~r ′, t′;R) ρel,1(~r ′, t′;R). (2.48)
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2.2 The Solution of the Time-Independent Electronic Schrödinger Equation

The time-dependent exchange-correlation kernel f̂xc(~r, t, ~r ′, t′;R) is a crucial quantity for LR-TDDFT

and is defined as the functional derivative of the exchange-correlation potential with respect to the

density

f̂xc(~r, t, ~r ′, t′;R) = δ v̂xc[ρel](~r, t;R)
δρel(~r ′, t′;R)

∣∣∣∣
ρel,0(~r;R)

. (2.49)

Note that, as for the exchange-correlation potential, cf. Eq. (2.41), the exchange-correlation kernel

becomes time-independent and real valued, within the commonly used adiabatic approximation.

In Fourier space, the non-interacting Kohn-Sham density-density response function, cf. Eq. (2.46),

can be written explicitly in terms of unperturbed Kohn-Sham orbitals

χeff(~r, ~r ′, ω;R) =
∑
ar

[
ρKS
ar (~r ′;R)ρKS

ra (~r;R)
ω − ωKS

ar + ıη
− ρKS

ra (~r ′;R)ρKS
ar (~r;R)

ω + ωKS
ar + ıη

]
(2.50)

Here and in the following, {a, b, . . . } label occupied, {r, s, . . . } unoccupied, and {p, q, . . . } generic

orbitals. In Eq. (2.50), ρKS
pq (~r;R) =

∑
ms

(
ψKS
q ({~r,ms};R)

)†
ψKS
p ({~r,ms};R) is the transition density

from orbital p to orbital q, ωKS
pq (R) = [εKS

q (R)− εKS
p (R)]/~ is the respective transition frequency, and

η is an infinitesimally small positive number.

Collecting and Fourier transforming the results obtained above, cf. Eqs. (2.44–2.50), yields after

some algebra a Dyson-type equation,

χ(~r, ~r ′, ω;R) = χeff(~r, ~r ′, ω;R)

+
∫∫

d~r ′′ d~r ′′′ χ(~r, ~r ′′, ω;R)
[

e2

4πε0
∣∣~r ′′ − ~r ′′′∣∣ + f̂xc(~r ′′, ~r ′′′, ω;R)

]
χeff(~r ′′′, ~r ′, ω;R)

(2.51)

which connects the interacting with the non-interacting response function and could be solved self-

consistently. The poles of χ(~r, ~r ′, ω;R) correspond to excitation energies of electronically excited

states. To circumvent the numerically very demanding and — with respect to the number of unoccupied

orbitals — slowly converging procedure, the problem can be recast into a non-Hermitian eigenvalue

problem. In the context of DFT, this is also known as Casida equation,[178]

 A B

B? A?


 X

Y

 = ω

 −1 0

0 1


 X

Y

 , (2.52)
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Chapter 2 Theoretical Background

where

Aar,bs(ω;R) = ωKS
ar (R) δabδrs +Kar,bs(ω;R),

Bar,bs(ω;R) = Kar,bs(ω;R),

Kar,bs(ω;R) =
∫∫

d~r d~r ′ ρKS
ra (~r;R)

[
e2

4πε0
∣∣~r − ~r ′∣∣ + f̂xc(~r, ~r ′, ω;R)

]
ρKS
bs (~r ′;R).

(2.53)

By inserting Eq. (2.50), the linear density response, see Eq. (2.46), has been reformulated to

ρel,1(~r, ω;R) =
∑
ar

[
ρKS
ra (~r;R)

(∫
d~r ′ ρKS

ar (~r ′;R) v̂eff,1(~r ′, ω;R)
ω − ωKS

ar + ıη

)

+ ρKS
ar (~r;R)

(
−
∫

d~r ′ ρKS
ra (~r ′;R) v̂eff,1(~r ′, ω;R)
ω + ωKS

ar + ıη

)]

=
∑
ar

[
ρKS
ra (~r;R) Xar(ω;R) + ρKS

ar (~r;R) Yar(ω;R)
]
.

(2.54)

This relation allows the computation of additional excited state observables beyond simple excitation

energies such as oscillator strengths. As a side remark, neglecting the exchange-correlation kernel in

Eq. (2.53) corresponds the so-called random phase approximation, while neglecting the B matrix in

Eq. (2.52) yields the so-called Tamm-Dancoff approximation,[179] which is equivalent to the CI singles

formalism in the Hartree-Fock theory.
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2.3 Open Quantum Systems

2.3 Open Quantum Systems [180,181]

A main focus of this thesis represents the study of the dynamics of quantum systems which are in

contact with their environment. In order to describe these open systems, it is instructive to introduce

the Liouville-von Neumann (LvN) equation

∂

∂t
Θ̂(t) = − ı

~

[
Ĥtot(t), Θ̂(t)

]
= L(t)Θ̂(t)

(2.55)

For the sake of generality, the coordinate dependence of all operators will be dropped henceforth, and

the total Hamiltonian will be considered as a sum of a time-independent unperturbed part and a time-

dependent perturbation, i.e., Ĥtot(t) = Ĥ0 + Ĥint(t). The second line of Eq. (2.55) introduces the

Liouville super-operator or Liouvillian L(t) in analogy to the classical Liouville equation.

For a closed system, the LvN equation is a straightforward reformulation of the time-dependent

Schrödinger equation Eq. (2.1) describing the time evolution of the so-called density matrix operator.

For the special case of a pure state, it can be written as

Θ̂(t) =
∣∣Φtot(t)

〉〈
Φtot(t)

∣∣. (2.56)

For a general mixed state while considering a time-independent basis, the density matrix operator is

given by

Θ̂(t) =
∑
nm

Pnm(t)
∣∣Φ(n)

tot
〉〈

Φ(m)
tot
∣∣, (2.57)

where the diagonal terms of the coefficient matrix Pnn(t) correspond to populations, and the off-

diagonal terms refer to coherences between states. Occasionally, the coefficient matrix is diagonalized

to yield a statistical mixture of pure states with the eigenvalues as their statistical weights. Note that

the expectation value of an arbitrary operator Â with the density matrix operator may be calculated

through the trace 〈
Â
〉

= Tr
{
Â Θ̂(t)

}
. (2.58)

When only the time-independent part of the Hamiltonian is regarded, the time evolution of the wave

function of a closed system is fully governed by a unitary time propagation operator

Û0(t, t0) = e−ıĤ0·(t−t0)/~ . (2.59)

This propagator can be used to transfer the LvN equation from the Schrödinger picture, cf. Eq. (2.55),

21



Chapter 2 Theoretical Background
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Figure 2.1: Conceptual sketch of the two scenarios of open quantum systems discussed within these sections:
(a) An open system “S” weakly coupled to a macroscopic bath “B” which is in its thermal equilibrium. Here,
only energy transfer is allowed. (b) An open electronic quantum system “S” consisting of three subsystems: the
extended molecule “M”, the left lead “L”, the right lead “R”. The latter two are each coupled to an electronic
reservoir, “BL” and “BR”, respectively. Each reservoir has a specific temperature and chemical potential. In
this model, also particle transfer is allowed.

to the interaction picture
∂

∂t
Θ̂I(t) = − ı

~

[
Ĥint,I(t), Θ̂I(t)

]
, (2.60)

where the subscript “I” signifies that an operator has been transformed to the interaction picture, i.e.,

ÂI(t) = Û†0 (t, t0)Â Û0(t, t0). In integral form, the time evolution of the density matrix operator can be

written as

Θ̂I(t) = Θ̂I(t0)− ı

~

t∫
t0

dt′
[
Ĥint,I(t′), Θ̂I(t′)

]
. (2.61)

2.3.1 The Liouville-von Neumann Equation in Lindblad Form [180,181]

Consider a finite open system “S” which is weakly coupled to a macroscopic bath “B” in its thermal

equilibrium as depicted in Fig. 2.1a. It is assumed that the total system is closed, and that the

interactions between both subsystems Ĥint are time-independent and switched on at t = t0, i.e., the

initial density matrix operator for both subsystems is considered to be given by a tensor product

Θ̂(t0) = Θ̂S(t0)⊗ Θ̂B(t0). (2.62)

The Hamiltonian describing this scenario takes the form

Ĥtot(t) = ĤS ⊗ 1̂B + 1̂S ⊗ ĤB + Ĥint · ϑ(t− t0) (2.63)

with ĤS acting only on the Hilbert space of the system and ĤB acting only on the Hilbert space of

the bath. The system-bath interaction Hamiltonian Ĥint acts on the combined, total Hilbert space. As

a side remark, the procedure described within this section can be easily extended to time-dependent

situations, where the interactions with external stimuli are usually incorporated into ĤS.

Inserting the integral form Eq. (2.61) into Eq. (2.60) and performing a partial trace over the bath
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2.3 Open Quantum Systems

degrees of freedom results in the equation of motion for the reduced system

∂

∂t
Θ̂S,I(t) = − 1

~2

t∫
0

dt′ TrB

{[
Ĥint,I(t),

[
Ĥint,I(t′), Θ̂I(t′)

]]}
, (2.64)

where the initial time t0 and the term TrB

{[
Ĥint,I(t), Θ̂(0)

]}
are taken to be zero. Since the system

is supposed to be weakly coupled to a macroscopic bath, the latter is only negligibly affected by the

interaction with the system. Consequently, it can be safely assumed that the bath is stationary and

that, at all times, the total system can be approximately described by a tensor product

Θ̂I(t) ≈ Θ̂S,I(t)⊗ Θ̂B,I. (2.65)

This weak-coupling approximation is known as the Born approximation. If we further employ the

Markov approximation, i.e., the time evolution at time t only depends on the density matrix operator

at that time, Eq. (2.64) simplifies to

∂

∂t
Θ̂S,I(t) = − 1

~2

t∫
0

dt′ TrB

{[
Ĥint,I(t),

[
Ĥint,I(t′), Θ̂S,I(t)⊗ Θ̂B,I

]]}
. (2.66)

To resolve the issue that this equation still depends on the choice of the initial preparation at time

t = 0, the variable t′ can be substituted with t − t′, and the upper limit of the integration can be

extended to infinity. This results in the following Markovian quantum master equation

∂

∂t
Θ̂S,I(t) = − 1

~2

∞∫
0

dt′ TrB

{[
Ĥint,I(t),

[
Ĥint,I(t− t′), Θ̂S,I(t)⊗ Θ̂B,I

]]}
. (2.67)

This reformulation is justified, when the time scale of the system relaxation τrelax is significantly larger

than the time scale of the bath correlations τB, i.e., τrelax � τB. All dynamics taking place on shorter

time scales are not resolved. The time axis is said to be coarse-grained.

The approximations performed above are often referred to as Born-Markov approximation. Since

the resulting master equation Eq. (2.67), which is usually referred to as Redfield equation[182,183] ,

does not guarantee that the probabilistic interpretation of the density operator is maintained during

the quantum dynamics,[184,185] a further approximation, the so-called secular approximation, can be

used to enforce this feature. This treatment, which will be described in the following, is supposed to

eliminate rapidly oscillating terms within the dynamics.

According to the spectral decomposition theorem, the interaction Hamiltonian can be expanded in
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terms of tensor products of system Âα and bath operators B̂α (here in Schrödinger picture)

Ĥint =
∑
α

Âα ⊗ B̂α (2.68)

with Âα = Â†α and B̂α = B̂†α. The eigenvalues ε of the system Hamiltonian ĤS and the projections

onto the corresponding eigenvectors P̂ (ε) can be now used to project Âα onto the system eigenspace

with a fixed frequency ω = (ε′ − ε)/~

Âα(ω) =
∑

ω=(ε′−ε)/~

P̂ (ε)ÂαP̂ (ε′). (2.69)

Using the commutator relation
[
ĤS, Âα(ω)

]
= −ωÂα(ω), this operator can be straightforwardly trans-

formed to the interaction picture

eıĤSt/~Âα(ω)e−ıĤSt/~ = e−ıωtÂα(ω). (2.70)

As the eigenvectors of ĤS form a complete set, the summation over all frequencies recovers Âα, and

consequently, Eq. (2.68) can be reformulated in the interaction picture as

Ĥint,I(t) =
∑
α,ω

e−ıωtÂα(ω)⊗ B̂α(t)

=
∑
α,ω

e+ıωtÂ†α(ω)⊗ B̂†α(t).
(2.71)

Inserting Eq. (2.71) into the Markovian master equation Eq. (2.67), yields

∂

∂t
Θ̂S,I(t) =

∑
ω,ω′

∑
α,β

eı(ω
′−ω)t Γα,β(ω)

(
Âβ(ω)Θ̂S,I(t)Â†α(ω′)− Â†α(ω′)Âβ(ω)Θ̂S,I(t)

)
+ h.c. (2.72)

where “h.c.” stands for the Hermitian conjugate expression, and the one-sided Fourier transform of the

bath correlation function is defined as

Γα,β(ω) = 1
~2

∞∫
0

dt′ e+ıωt′
〈
B̂†α(t)B̂β(t− t′)

〉

= 1
~2

∞∫
0

dt′ e+ıωt′
〈
B̂†α(t′)B̂β(0)

〉 (2.73)

with the bath correlation function
〈
B̂†α(t)B̂β(t− t′)

〉
= TrB

{
B̂†α(t)B̂β(t− t′)Θ̂B,I

}
. Here, the second

line follows from the stationarity of the bath. This shows that the bath correlation function is homo-
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2.3 Open Quantum Systems

geneous, and that therefore, Γα,β(ω) is time-independent. Commonly, Γα,β(ω) is split into its real and

imaginary part

Γα,β(ω) = 1
2γα,β(ω) + ıSα,β(ω). (2.74)

The time scale of the system relaxation τrelax is considered to be large compared to the time scale

of the system dynamics which is typically τS ∼ |ω′ − ω|−1, i.e., τrelax � τS. Consequently, all terms

with ω′ 6= ω can be neglected within the secular approximation to remove the rapidly oscillating

contributions. This simplifies Eq. (2.72) to

∂

∂t
Θ̂S,I(t) = − ı

~

[
ĤLS, Θ̂S,I(t)

]
+ LDΘ̂S,I(t), (2.75)

where the Lamb shift Hamiltonian,

ĤLS =
∑
ω

∑
α,β

Sα,β(ω)Â†α(ω)Âβ(ω), (2.76)

renormalizes the unperturbed energy levels, and the dissipative Liouvillian or dissipator is defined as

LDΘ̂S,I(t) = 1
2
∑
ω

∑
α,β

γα,β(ω)
{[
Âβ(ω), Θ̂S,I(t)Â†α(ω)

]
+
[
Âβ(ω)Θ̂S,I(t), Â†α(ω)

]}
. (2.77)

Notice that Eq. (2.75) can be transformed to the Schrödinger picture by simply adding the free system

Hamiltonian ĤS to the Lamb shift Hamiltonian ĤLS. A final diagonalizing of the matrices γα,β(ω)

and the neglect of the Lamb shift Hamiltonian ĤLS brings Eq. (2.75) to the Liouville-von Neumann

equation in Lindblad form.
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2.3.2 The Driven Liouville-von Neumann Equation [143]

While the Liouville-von Neumann equation in Lindblad form describes bath induced relaxation dy-

namics of open quantum systems towards their equilibrium, the driven Liouville-von Neumann (DLvN)

equation is capable of describing electronic transport processes, where open systems are driven towards

a non-equilibrium situation by their environment. While in the former, only energy is transferred, the

latter methodology also involves particle transport.

More specifically, within the DLvN approach, electronic transport through a nanojunction can be

described using a finite model system. As sketched in Fig. 2.1b, this open electronic system “S”

consists of three subsystems: the extended molecule “M”, the left lead “L”, and the right lead “R”.

The latter two are each coupled to an electronic reservoir, “BL” and “BR”, respectively. These implicit

reservoirs mimic the presence of semi-infinite leads, and their specific electronic temperatures and

chemical potentials drive the electron dynamics within the system. In the local basis of the three

subsystems, the density matrix operator is given by

Θ̂(t) =


Θ̂L Θ̂LM Θ̂LR

Θ̂ML Θ̂M Θ̂MR

Θ̂RL Θ̂RM Θ̂R

 . (2.78)

When neglecting the influence of the infinite reservoirs, the Hamiltonian of the finite system in matrix

representation has the following block form

ĤS =


ĤL V̂LM 0

V̂ †LM ĤM V̂ †RM

0 V̂RM ĤR

 (2.79)

where the left lead ĤL, the extended molecule ĤM, and the right lead Hamiltonian ĤR are diago-

nal matrices containing the respective energy eigenvalues
{
ε

L/M/R
a

}
, and V̂LM and V̂RM describe the

couplings from the left lead and the right lead to the extended molecule, respectively. The interlead

couplings V̂LR are not strictly zero but negligibly small, provided the size of the extended molecule is

chosen large enough.

There are two competing effects, which have to be taken into account to mimic semi-infinite leads:

electron adsorption at the lead edges transferring electrons from the finite leads to the electron reservoirs

and electron injection back from the electron reservoirs into the finite leads. While the former effect

dephases the electrons approaching the edges of the leads and prevents backscattering, the latter

accounts for the electronic temperatures and chemical potentials of the leads.
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The electron adsorption is realized by supplementing the Hamiltonian Eq. (2.79) with a complex

absorbing potential leading to a complex Hamiltonian with the following real and imaginary part

ĤS = ĤRe
S − ıĤIm

S

=


ĤL V̂LM 0

V̂ †LM ĤM V̂ †RM

0 V̂RM ĤR

− ı

Γ̂L 0 0

0 0 0

0 0 Γ̂R

 ,
(2.80)

where Γ̂L/R is a diagonal matrix containing the electron adsorption or damping rate for each lead

eigenstate. The Liouville-von Neumann equation for this complex valued system Hamiltonian reads

∂

∂t
Θ̂(t) = − ı

~

[
ĤRe

S , Θ̂(t)
]
− 1

~

[
ĤIm

S , Θ̂(t)
]

+
(2.81)

with the anticommutator [ ]+. Here, the first term governs the coherent time evolution of the closed

finite system, cf. Eq. (2.55), and the second term captures the electron adsorption.

In order to maintain the electron balance in the system, incoherent electrons have to be injected

back into the leads. This is achieved using the same expression as for the electron adsorption with the

same rate constant but with opposite sign. Since the semi-infinite leads are assumed to be always in

their thermal equilibrium, the time-dependent density matrix operator Θ̂L/R(t) is further replaced by

Θ̂0
L/R(t), which is a diagonal matrix containing the equilibrium Fermi-Dirac statistics of the respective

lead
fL/R

(
εL/R
a , µL/R

)
= 1

exp
[(
ε

L/R
a − µL/R

)/
kBTL/R

]
+ 1 (2.82)

with the Boltzmann constant kB, the lead eigenstate energies εL/R
a , the electronic temperature TL/R,

and the chemical potential µL/R.

The final driven Liouville-von Neumann equation takes the form

∂

∂t
Θ̂(t) = − ı

~

[
ĤRe

S , Θ̂(t)
]

− 1
2~


[
Γ̂L,

(
Θ̂L(t)− Θ̂0

L

)]
+

Γ̂LΘ̂LM(t) Γ̂LΘ̂LR(t) + Θ̂LR(t)Γ̂R

Θ̂ML(t)Γ̂L 0 Θ̂MR(t)Γ̂R

Γ̂RΘ̂RL(t) + Θ̂RL(t)Γ̂L Γ̂RΘ̂RM(t)
[
Γ̂R,

(
Θ̂R(t)− Θ̂0

R

)]
+

 .
(2.83)

In the original formulation of the DLvN approach,[143,145–147] the wide-band approximation is invoked

and all rates are chosen to be the same Γ̂L
!= Γ̂R

!= 2γ 1̂L/R. This rate constant, which is the only

free parameter entering the model. It is usually tuned such that the steady-state current matches non-
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equilibrium Green’s function (NEGF) reference calculations. This vast simplification of Eq. (2.83) is

only justified for evenly distributed lead states. To circumvent this drawback, a parameter-free version

of the DLvN approach has been proposed in a very recent study.[148] Here, state-specific rates are

obtained directly from the self-energy obtained within a NEGF reference calculations. Interestingly, it

can be shown that the DLvN approach for electron transport processes is formally an approximation

to the NEGF formalism.[144]

A central quantity for the analysis of electronic transport processes is the electric current I(t). In

order to access this quantity, consider the time-evolution of the extended molecule block in Eq. (2.83)

∂

∂t
Θ̂M(t) = − ı

~

[
ĤM, Θ̂(t)

]
− ı

~
(V̂MLΘ̂LM(t)− Θ̂ML(t)V̂LM)− ı

~
(V̂MRΘ̂RM(t)− Θ̂MR(t)V̂RM).

(2.84)

Taking the trace of this expression yields the temporal change of the number of electrons in the extended

molecule region.

ṄM = Tr
{
∂

∂t
Θ̂M(t)

}
= Tr

{
− ı
~

[
ĤM, Θ̂M(t)

]}
+ 2

~

NM∑
a

NL∑
b

V
(b,a)

LM Im
{
Θ

(b,a)
LM (t)

}
− 2

~

NM∑
a

NR∑
b

V
(a,b)

MR Im
{
Θ

(a,b)
MR (t)

}
,

(2.85)

where the boldface characters stand for the eigenstate representation of the respective operator. Here,

NL, NM, and NR stand for the total number of left lead, extended molecule, and right lead eigenstates.

The first term of Eq. (2.85) does not vary the number of electrons within the extended molecule region

and vanishes. The second term corresponds to the net probability influx from the left lead, while

the last refers to the negative net probability outflux to the right lead. Averaging both, the in- and

the outflux, and multiplying this expression by the elementary charge yields the total electric current

passing the junction

I(t) = e

~

NM∑
a

[
NL∑
b

V
(b,a)

LM Im
{
Θ

(b,a)
LM (t)

}
+

NR∑
b

V
(a,b)

MR Im
{
Θ

(a,b)
MR (t)

}]
. (2.86)

In a steady-state, both terms are identical, i.e., the number of electrons flowing from the left lead to the

extended molecule region is identical to the number of electrons flowing from the extended molecule

region to the right lead.
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2.3.3 The Non-Equilibrium Green’s Function Formalism [143,186,187]

The DLvN approach represents a very straightforward and transparent method to describe explicitly

time-dependent electron transport processes. However, the standard method to characterize steady-

state currents for electronic transport processes is the above mentioned non-equilibrium Green’s func-

tion (NEGF) formalism which will be described in the subsequent section, closely following Ref. [186].

The starting point for this approach is the complete, closed system, the Hamiltonian ĤS of which is

equivalent to the Hamiltonian of the DLvN approach, cf. Eq. (2.79). The Green’s function Ĝ of the

system is defined as

(E − ĤS) Ĝ = 1̂
E − ĤL −V̂LM 0

−V̂ †LM E − ĤM −V̂ †RM

0 −V̂RM E − ĤR



ĜL ĜLM ĜLR

ĜML ĜM ĜMR

ĜRL ĜRM ĜR

 =


1̂L 0 0

0 1̂M 0

0 0 1̂R

 .
(2.87)

Accordingly, the Green’s function for the extended molecule, which in this context is often referred to

as scattering region or device, can be written as

ĜM = (E − ĤM − Σ̂L − Σ̂R)−1, (2.88)

where the self-energy of the left and right lead describes the influence of the respective lead on the

device and is given by Σ̂L/R = V̂ †LM/RMĝL/RV̂LM/RM with the Green’s function of the respective isolated

lead ĝL/R = (E − ĤL/R)−1. The latter quantity can be straightforwardly calculated using iterative

methods.[187–193] Eq. (2.88) illustrates that the Green’s function formalism allows to circumvent the

treatment of the full system by dividing the problem into smaller subproblems.

Consider a non-equilibrium situation, where both leads have different chemical potentials. The

electrons which flow from the left lead into the device correspond, from the viewpoint of the isolated

lead, to a wave function which is totally reflected at lead edge
∣∣ψL,n

〉
with n being a quantum number.

The resulting wave functions for the compound system responding to this incoming wave can be

formulated as ∣∣ψM
〉

= ĜMV̂
†
LM
∣∣ψL,n

〉
∣∣ψR

〉
= ĝRV̂RMĜMV̂

†
LM
∣∣ψL,n

〉
∣∣ψL
〉

= (1 + ĝLV̂LMĜMV̂
†
LM)

∣∣ψL,n
〉
.

(2.89)

Assuming a steady-state condition and following the approach of Eqs. (2.84) and (2.85), the electric
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current from the extended molecule to the right lead transported by
∣∣ψL,n

〉
takes the form

I
(L,n)
R = − ıe

~

(〈
ψR
∣∣V̂RM

∣∣ψM
〉
−
〈
ψM
∣∣V̂MR

∣∣ψR
〉)

= − ıe
~
〈
ψL,n

∣∣V̂LMĜ
†
MV̂
†
RM(ĝR − ĝ†R)V̂RMĜMV̂

†
LM
∣∣ψL,n

〉
= e

~
〈
ψL,n

∣∣V̂LMĜ
†
MΓ̂RĜMV̂

†
LM
∣∣ψL,n

〉 (2.90)

with the broadening function Γ̂L/R = ı
(

Σ̂L/R − Σ̂†L/R
)
. A thermal population of all possible incoming

waves yields

IR = e

~

∞∫
−∞

dE fL(E,µL)
∑
n

δ(E − εn)
〈
ψL,n

∣∣V̂LMĜ
†
MΓ̂RĜMV̂

†
LM
∣∣ψL,n

〉

= e

~

∞∫
−∞

dE fL(E,µL)
∑
m,n

δ(E − εn)
〈
ψL,n

∣∣V̂LM
∣∣m〉〈m∣∣Ĝ†MΓ̂RĜMV̂

†
LM
∣∣ψL,n

〉

= e

~

∞∫
−∞

dE fL(E,µL)
∑
m

〈
m
∣∣Ĝ†MΓ̂RĜMV̂

†
LM

(∑
n

δ(E − εn)
∣∣ψL,n

〉〈
ψL,n

∣∣)V̂LM
∣∣m〉

= e

2π~

∞∫
−∞

dE fL(E,µL)Tr
{
Ĝ†MΓ̂RĜMΓ̂L

}
.

(2.91)

Here, the definition spectral function of the isolated left lead âL = 2π
∑
n δ(E − εn)

∣∣ψL,n
〉〈
ψL,n

∣∣ is
used to introduce the broadening function of the left lead Γ̂L = V̂ †LMâLV̂LM into Eq. (2.91). A final

subtraction of the respective contributions for incoming waves from the right lead IL results in the

famous Landau-Büttiker formalism for the electric current

I = IR − IL = e

h

∞∫
−∞

dE [fL(E,µL)− fR(E,µR)]T (E) (2.92)

with the transmission T (E) = Tr
{
Ĝ†MΓ̂RĜMΓ̂L

}
.
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2.4 The Electronic Continuity Equation

The last theory section is devoted to the introduction of the electronic continuity equation, which

describes the connection between the electron density ρel(~r, t) and the electronic flux density ~jel(~r, t).

This fundamental relation allows for the intuitive interpretation of the electron density as a conserved

probability fluid.

Consider the coherent dynamics of a molecular system evolving freely from an initial state. In

position representation, the Liouville-von Neumann equation describing this scenario is given by

〈
r,R

∣∣∣ ∂
∂t
Θ̂(t)

∣∣∣r,R〉 = − ı
~

〈
r,R

∣∣∣[Ĥmol(r,R), Θ̂(t)
]∣∣∣r,R〉

= − ı
~

(〈
r,R

∣∣∣T̂nuc(R)Θ̂(t)
∣∣∣r,R〉− 〈r,R∣∣∣Θ̂(t)T̂nuc(R)

∣∣∣r,R〉
+
〈
r,R

∣∣∣T̂el(r)Θ̂(t)
∣∣∣r,R〉− 〈r,R∣∣∣Θ̂(t)T̂el(r)

∣∣∣r,R〉
+
〈
r,R

∣∣∣V̂coul(r,R)Θ̂(t)
∣∣∣r,R〉− 〈r,R∣∣∣Θ̂(t)V̂coul(r,R)

∣∣∣r,R〉),
(2.93)

where the last line vanishes, since the Coulomb operator is a multiplicative operator in position rep-

resentation. Applying the basic operator definitions introduced in Eqs. (2.2) and (2.3) and the ansatz

Θ̂(t) =
∣∣Φtot(t)

〉〈
Φtot(t)

∣∣, for a pure state, the quantum mechanical total continuity equation is defined

as

∂

∂t

∣∣∣Φtot(r,R, t)
∣∣∣2

= −
M∑
A

~∇~RA
·
[
− ı~

2MA

(
Φ†tot(r,R, t)~∇~RA

Φtot(r,R, t)− Φtot(r,R, t)~∇~RA
Φ†tot(r,R, t)

)]

−
N∑
k

~∇~rk
·
[
− ı~

2me

(
Φ†tot(r,R, t)~∇~rk

Φtot(r,R, t)− Φtot(r,R, t)~∇~rk
Φ†tot(r,R, t)

)]
.

(2.94)

Note that the spin-free representation is used throughout the whole section. Integrating over all nuclear

degrees of freedom and all but one electronic coordinate and utilizing the divergence theorem results

in the electronic continuity equation

∂

∂t
ρel(~r, t) = −~∇~r ·~jel(~r, t) (2.95)

which describes the probability conservation maintained by the electron density ρel(~r, t) and the elec-

tronic flux density ~jel(~r, t). Incidentally, multiplying Eq. (2.95) by the elementary charge yields the

continuity equation for charge conservation connecting the temporal variation of the electronic charge

density, e · ρel(~r, t), with the spatial variation of the electronic current density, e · ~jel(~r, t). Among

other things, this relation is used to obtain the current I(t) within the framework of the DLvN and
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the NEGF formalism.

Let the system’s wave function be defined by a Born-Huang expansion, cf. Eq. (2.6), where the

electronic part has been solved within the clamped nuclei approximation. The corresponding density

matrix operator is given by

Θ̂(t) =
∑
λ,ν

∣∣Ψ(λ)〉∣∣χ(λ)(t)
〉〈
χ(ν)(t)

∣∣〈Ψ(ν)∣∣, (2.96)

and thus, the time-derivative of the electron density, which we will refer to as electron flow, takes the

form
∂

∂t
ρel(~r, t) =

∑
λ,ν

∫
dR ρ

(λ,ν)
el (~r;R) ∂

∂t
ρ(λ,ν)

nuc (R, t) (2.97)

with the time-dependent nuclear and the time-independent electronic transition density between the

electronic states λ and ν

ρ(λ,ν)
nuc (R, t) =

(
χ(ν)(R, t)

)†
χ(λ)(R, t) (2.98)

ρ
(λ,ν)
el (~r;R) =

∫
· · ·
∫

d~r2 · · · d~rN Ψ(ν)(r,R)Ψ(λ)(r,R). (2.99)

For clarity, the normalization constant of the electronic transition density is assumed to be incorporated

into the electronic wave function, cf. Eq. (2.22).

The right-hand side of Eq. (2.95) describes the spatial variation of the electronic flux density. This

fundamental quantity intuitively describes the spatially resolved instantaneous flow of electrons and

has the general form
~jel(~r, t) =

∑
λ,ν

∫
dR ρ(λ,ν)

nuc (R, t) ~j (λ,ν)
el (~r;R). (2.100)

Here, the time-independent electronic transition flux density from state λ and state ν reads

~j
(λ,ν)
el (~r;R) = − ı~

2me

∫
· · ·
∫

d~r2 · · · d~rN
(

Ψ(ν)(r,R)~∇~r Ψ(λ)(r,R)−Ψ(λ)(r,R)~∇~r Ψ(ν)(r,R)
)
.

(2.101)

As a direct consequence of the clamped nuclei approximation, the adiabatic electronic flux density, i.e.,

the diagonal terms of Eq. (2.101), vanishes, since the electronic states are real-valued. This unphysical

phenomenon is a long-known issue,[152] and so far, only a few approaches have been proposed to

circumvent this drawback.[18,70–78, B3] One of which, the Born-Oppenheimer broken-symmetry ansatz,

has been developed within this dissertation and is published in Paper B3. This paper also features a

more detailed view on this problem.

Interestingly, the electronic current density is the integrand of the electronic dipole moment in
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velocity gauge. For the time-independent transition electronic current density between two electronic

states, it is defined as

µ
(λ,ν)
el,v (R) = −e

∫
d~r ~j (λ,ν)

el (~r;R). (2.102)

The corresponding quantity in length gauge is given in terms of the charge density by

µ
(λ,ν)
el,r (R) = −e

∫
d~r ~r · ρ(λ,ν)

el (~r;R), (2.103)

The dipole moments in both gauges are related via[194]

(
µ

(λ,ν)
el,v (R)

)
r = ı~(

E
(ν)
el (R)− E(λ)

el (R)
)µ(λ,ν)

v,el (R) (2.104)

Eq. (2.104) represents a valuable tool to estimate the convergence of high-level quantum chemistry

calculations.[D1,B1]
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Chapter 3

Publications

The following chapter contains the scientific papers published in the context of this thesis. These

publications are ordered thematically, belonging to three main topics: A the investigation of charge

migration processes in superposition states of benzene, B method development for the computation of

the electronic flux density, and C the analysis of field-driven electron dynamics in nanojunctions. For

each publication, the contributions by the individual authors are outlined.
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Charge Migration

Paper A1

“Multidirectional Angular Electronic Flux during Adiabatic Attosecond Charge Migration in Excited

Benzene”

G. Hermann, C. Liu, J. Manz, B. Paulus, J. F. Pérez-Torres, V. Pohl, and J. C. Tremblay

J. Phys. Chem. A 120, 5360–5369 (2016)

DOI: 10.1021/acs.jpca.6b01948

URL: http://dx.doi.org/10.1021/acs.jpca.6b01948

Figure 3.1: Graphical Abstract. Reprint with permission from Hermann et al.[A1] ( c©2016 American Chemical
Society)

Author contributions

The conception of this work and the methodology were conceived by Jörn Manz and Jhon Fredy

Pérez-Torres. Jhon Fredy Pérez-Torres did preliminary CI calculations and ChunMei Liu prepared

preliminary results for the novel methodology. Preliminary figures to visualize those results were

prepared by ChunMei Liu and Jhon Fredy Pérez-Torres. I performed the CASSCF calculations, which

are presented in the final version of the paper, with input from Beate Paulus and Jean Christophe

Tremblay. Gunter Hermann and I, in equal parts, did the final implementation of the methodology

and prepared the final results. The final data visualization was done by Gunter Hermann and myself

with input from all other coauthors. All coauthors discussed the final results. The manuscript was

predominantly written by Jörn Manz. All coauthors contributed to the final version of this manuscript.
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Charge Migration

Paper A2

“Attosecond Angular Flux of Partial Charges on the Carbon Atoms of Benzene in Non-Aromatic

Excited State”

G. Hermann, C. Liu, J. Manz, B. Paulus, V. Pohl, and J. C. Tremblay

Chem. Phys. Lett. 683, 553–558 (2017)

DOI: 10.1016/j.cplett.2017.01.030

URL: http://dx.doi.org/10.1016/j.cplett.2017.01.030

Figure 3.2: Graphical Abstract. Reprint with permission from Hermann et al.[A2] ( c©2017 Elsevier B.V. All
rights reserved.)

Author contributions

The idea behind this work was conceived by Jörn Manz. I performed the CASSCF calculations with

input from Beate Paulus and Jean Christophe Tremblay. ChunMei Liu applied the methodology

of Paper A1 and prepared results for the comparison to the new improved methodology. Gunter

Hermann and I together with Jean Christophe Tremblay developed detCI@ORBKIT.[B1] Based on

this program Gunter Hermann and I, in equal parts, implemented the new improved methodology, and

prepared the final results. We additionally did the final data visualization with input from all other

coauthors. The first version of the manuscript was written by Jörn Manz. All coauthors contributed

to the final version of this manuscript.
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Charge Migration

Paper A3

“Quantum Control of Electronic Fluxes during Adiabatic Attosecond Charge Migration in Degenerate

Superposition States of Benzene”

D. Jia, J. Manz, B. Paulus, V. Pohl, J. C. Tremblay, and Y. Yang

Chem. Phys. 482, 146–159 (2017)

DOI: 10.1016/j.chemphys.2016.09.021

URL: http://dx.doi.org/10.1016/j.chemphys.2016.09.021

Figure 3.3: Graphical Abstract. Reprint with permission from Jia et al.[A3] ( c©2016 Elsevier B.V. All rights
reserved.)

Author contributions

The idea behind this work was conceived by Jörn Manz. I performed the CASSCF calculations with

input from Beate Paulus and Jean Christophe Tremblay. The optimization of the laser pulse for the

state-selective excitation of different degenerate superposition states of benzene was done by Dongming

Jia and Yonggang Yang. I used detCI@ORBKIT[B1] and applied the methodology of Paper A1 and

Paper A2 to prepare the remaining results. The graphical representation of those results was also

done by myself. The mechanistic interpretation was done by Jean Christophe Tremblay and myself

with very helpful input from Gunter Hermann and Jörn Manz. The first version of the manuscript was

written by Jörn Manz. All coauthors contributed to the final version of this manuscript.
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Electronic Flux Density

Paper B1

“An Open-Source Framework for Analyzing N -Electron Dynamics. I. Multideterminantal Wave Func-

tions”

V. Pohl, G. Hermann, and J. C. Tremblay

J. Comput. Chem. 38, 1515–1527 (2017)

DOI: 10.1002/jcc.24792

URL: http://dx.doi.org/10.1002/jcc.24792

Figure 3.4: Graphical Abstract. Reprint with permission from Pohl et al.[B1] ( c©2017 Wiley Periodicals, Inc.)

Author contributions

Based on ORBKIT (cf. Paper D2), a rudimentary precursor version of the program detCI@ORBKIT

was developed by Gunter Hermann and myself, in equal parts, during the preparation of Paper D1 un-

der the supervision of Jhon Fredy Pérez Torres. The final version was programed by Gunter Hermann

and myself, in equal parts, after the preparation of Paper A1 to enable the new methodology pre-

sented in Paper A2 and Paper A3. The derivation of the algorithms was also done by us together

with Jean Christophe Tremblay. I performed the Full CI and the CASSCF calculations and pro-

grammed the interfaces to the respective quantum chemical programs (PSI4[195] and MOLPRO[196] )

with detCI@ORBKIT. Gunter Hermann and I processed the quantum chemical data and prepared the

figures for visualizing the results. The manuscript was written by Gunter Hermann with considerable

input from Jean Christophe Tremblay and myself.
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Electronic Flux Density

Paper B2

“An Open-Source Framework for Analyzing N -Electron Dynamics. II. Hybrid Density Functional

Theory/Configuration Interaction Methodology”

G. Hermann, V. Pohl, and J. C. Tremblay

J. Comput. Chem. 38, 2378–2387 (2017)

DOI: 10.1002/jcc.24896

URL: http://dx.doi.org/10.1002/jcc.24896

Figure 3.5: Graphical Abstract. Reprint with permission from Hermann et al.[B2] ( c©2017 Wiley Periodicals,
Inc.)

Author contributions

The initial idea for the hybrid DFT/CI methodology was conceived by Jean Christophe Tremblay.

Gunter Hermann and I implemented this approach into the framework of the program detCI@ORBKIT.

Gunter Hermann performed the TD-DFT calculations and interfaced the respective quantum chemical

programs, i.e., TURBOMOLE[197] and GAMESS (US),[198] to detCI@ORBKIT. Gunter Hermann

and I processed the quantum chemical data and prepared the figures for visualizing the results. The

manuscript was written by Jean Christophe Tremblay and Gunter Hermann with input from myself.
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Electronic Flux Density

Paper B3

“Adiabatic Electronic Flux Density: A Born-Oppenheimer Broken-Symmetry Ansatz”

V. Pohl and J. C. Tremblay

Phys. Rev. A 93, 012504 (2016)

DOI: 10.1103/PhysRevA.93.012504

URL: http://dx.doi.org/10.1103/PhysRevA.93.012504

Figure 3.6: Graphical Abstract. Produced exclusively for this dissertation using figures from Paper B3.

Author contributions

The general concept behind the Born-Oppenheimer broken symmetry ansatz was conceived by Jean

Christophe Tremblay. Jean Christophe Tremblay and I together did the subsequent derivation of this

ansatz. I did the implementation of this ansatz, performed the numerical simulations, and prepared

the figures for visualizing the results. Jean Christophe Tremblay and I wrote the manuscript in equal

parts.
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Electron Dynamics in Nanojunctions

Paper C1

“Field-Induced Conformational Change in a Single-Molecule-Graphene–Nanoribbon Junction: Effect

of Vibrational Energy Redistribution”

V. Pohl and J. C. Tremblay

J. Phys. Chem. C 120, 28808–28819 (2016)

DOI: 10.1021/acs.jpcc.6b09682

URL: http://dx.doi.org/10.1021/acs.jpcc.6b09682

Figure 3.7: Graphical Abstract. Reprint with permission from Pohl et al.[C1] ( c©2016 American Chemical
Society)

Author contributions

The project was initially conceived by Jean Christophe Tremblay and myself. Jean Christophe Tremblay

derived the model for dissipation with considerable input from myself. I performed all numerical

simulations and worked out the implementation. The manuscript was written by myself with significant

input from Jean Christophe Tremblay.
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Electron Dynamics in Nanojunctions

Paper C2

“Electronic Flux Density Maps Reveal Unique Current Patterns in a Single-Molecule-Graphene–Nano-

ribbon Junction”

V. Pohl, L. E. Marsoner Steinkasserer, and J. C. Tremblay

arXiv preprint arXiv:1707.07635 (2017)

URL: https://arxiv.org/abs/1707.07635 (2017)

Figure 3.8: Graphical Abstract. Reprint with permission from Pohl et al.[C2]

Author contributions

The project was initially conceived by myself. Jean Christophe Tremblay proposed the novel localization

scheme and the tight-binding scheme, and I proposed the route to compute electronic flux density. The

derivation of the theoretical framework was done by Jean Christophe Tremblay and myself in equal

parts. I implemented the localization scheme and the driven Liouville-von Neumann formalism and

performed the dynamical simulations. Lukas Eugen Marsoner Steinkasserer and I, in equal parts,

implemented the current-voltage characteristics into ASE.[199,200] Together we performed the NEGF

reference calculations. All coauthors discussed and interpreted the results. The manuscript was written

by myself with input from Jean Christophe Tremblay and Lukas Eugen Marsoner Steinkasserer.
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Chapter 4

Summary

The primary goal of this dissertation was to gain deeper insight into the mechanistic details of electronic

motion during various processes. For this reason, a main focus was the development of versatile methods

for the analysis and visualization of N -electron dynamics with an emphasis on the components of

the electronic continuity equation. This methodological framework was then used, among others, for

quantitative investigations of attosecond charge migration processes in different electronic superposition

states of the benzene molecule, and for the mechanistic study of the dynamics of electron transport

through a single-molecule-graphene-nanoribbon junction driven by chemical potentials.

Ulusoy and Nest[13] have demonstrated that the aromaticity of oriented benzene can be controlled

by well-designed laser pulses. They applied optimal control theory to selectively populate two non-

aromatic electronic superposition states of benzene: one superposition state with equal populations in

the electronic ground S0(11A1g) and the first excited state S1(11B2u) and another with equal popu-

lations in the electronic ground and the second excited state S2(11B1u). The respective bond orders

and Mulliken charges were used as a measure for the aromaticity, and they revealed that the electron

density of these superposition states is partially localized on alternating bonds for the S0 + S1, or on

alternating atoms for the S0 +S2 case. While the former resembles the typically sketched non-aromatic

Kekulé structures (see Fig. 4.1a), the latter corresponds to a situation, where the carbon atoms show al-

ternating partial charges (see Fig. 4.1b). Both localizations result in periodic charge migration between

the two possible localization patterns as shown in Figs. 4.1a and 4.1b.

In Paper A1 and Paper A2, we investigated the mechanisms of both charge migration processes.

Here, we adapted a methodology originally developed for the study of concerted electronic and nuclear

fluxes during coherent tunneling,[18] and reformulated this ansatz for charge migration processes.[A1]

This new methodology allows to compute the one-dimensional electronic probability flux from the
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Figure 4.1: Mechanistic studies of the attosecond charge migration in different superposition states of the
benzene molecule. (a,b) The time evolution of the electron density (lower row) and the associated Lewis
structures of (a) the S0(11A1g) + S1(11B2u) and (b) the S0(11A1g) + S2(11B1u) superposition state of the
benzene molecule. The red arrows highlight the charge migration mechanisms. Each arrow corresponds to the
motion of (a) 0.1 and (b) 0.2 electrons. (c) Demonstration of the control of the charge migration mechanism. By
varying the polarization of the laser pulses, different superposition stats of the 11A1g electronic ground state and
the degenerate 11E1u excited state are populated. While the initial and final electron distribution is identical,
the charge migration mechanisms are qualitatively different. The Lewis structures correspond to representative
snapshots of the time evolution of the electron density of the respective charge migration processes. From left
to right: before the preparation, at t = 0, t = τ̄ /4, and t = τ̄ /2, where τ̄ = 504 as is the period. The arrows
highlight the charge migration mechanisms. These depictions are adapted from Papers A1–A3.

electronic probability density by exploiting symmetry conditions and the electronic continuity equation.

The electronic flux is an insightful quantity allowing one to make quantitative mechanistic statements

for charge migration. This is illustrated in the first applications of this methodology.[A1,A2] Based

on state-averaged CASSCF(6,6) calculations for the wave functions and additional MRCI singles and

doubles calculations for the excitation energies, we determined the angular electronic fluxes for the

S0 + S1 and the S0 + S2 superposition state. While the calculations in Paper A1 were restricted to

using the dominant Slater determinant, the development of our new program detCI@ORBKIT[B1,B2]

allowed us to consider the full wave functions in follow-upPaper A2. Here, we found that, although the

charge migration mechanisms stayed unchanged, the renormalization slightly changed the magnitude

of the flux.

As graphically summarized in Figs. 4.1a and 4.1b, the two scenarios S0 +S1 and S0 +S2 exhibit some

interesting characteristics: The localization patterns vary periodically with a period in the attosecond

time regime, i.e., τ̄ = 830 as and τ̄ = 590 as. The dynamics is mediated by a flux following a pincer-type

motion with the sources and the sinks for fluxes at the bond centers for S0 + S1 and at the atoms for

S0+S2. This confirms the working hypothesis of Ulusoy and Nest for the S0+S1 superposition state.[13]
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Furthermore, we found that the maximum number of electrons flowing during the charge migration

process is Nf = 6× 0.12 = 0.72 and Nf = 6× 0.2 = 1.2, respectively. Remarkably, these numbers are

significantly smaller than the six electrons implied by the simple traditional model of oscillating the

Lewis structures. This discovery is mainly caused by the delocalization of the electrons which enables

the formation of a new bond while requiring only a small reorganization of the electrons. Broadly

speaking, our methodology may be seen as a frist-principles numerical pendant to the traditional

Lewis structure based model.

In Paper A3, we demonstrated quantum control of attosecond charge migration. We designed reso-

nant linearly and circularly polarized π/2-laser pulses to selectively populate four different degenerate

superposition states with equal population in the electronic ground and one of four degenerate excited

states. These excited states include complex-valued linear combinations of the two components of the

11E1u state. The dipole-allowed transitions induce charge migration with a period of τ̄ = 504 as which

we subsequently investigated with our methodology. Analysis of the angular electronic fluxes revealed

that similar initial conditions, i.e., a partial localization of the density on one side of the molecule,

created from different pulses yielded widely different mechanisms for the charge migration process.

For the laser excitations with linearly polarized light, there were fixed sources and sinks on opposite

sides of the ring and the fluxes followed a pincer-type motion. For the laser excitations with circularly

polarized light, the sources and sinks rotated as a function of time and the flux mechanism was more

involved. Although from the perspective of the electron density, the localization rotates clockwise or

anti-clockwise, the flux still follows the pincer-type mechanism which itself undergoes an overall ro-

tation. In conclusion, while three of the four degenerate superposition states show exactly the same

initial and final electron distribution, the attosecond charge migration proceeds via an entirely different

mechanism. This is illustrated in Fig. 4.1c.

Although the procedure presented in Papers A1–A3 is very powerful and allows for quantitative

statements deduced from the electron density, sophisticated symmetry arguments were required to

unravel the exact mechanisms of the charge migration processes, and more importantly, the approach

is not applicable to every system. However, this procedure can be circumvented by regarding a com-

plementary quantity: the electronic flux density (not to be confused with the electronic flux). Being

related to the electron density via the continuity equation, the electronic flux density is a vector field

describing the instantaneous flow of electrons. It gives an intuitive picture of the electronic motion

and allows for mechanistic insights at a single glance. This promising perspective motivated us to

develop a program that is capable of computing this quantity and further, to benchmark the applica-

bility of the flux density for the analysis of charge migration processes. In Paper B1, we presented
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Chapter 4 Summary

detCI@ORBKIT, our new general open-source framework to analyze and visualize N -electron dynam-

ics. This new program extends our recently published post-processing Python library ORBKIT[D2]

to determinant-based configuration interaction wave functions. While requiring only the output of

standard quantum chemistry programs, detCI@ORBKIT is capable of computing various one-electron

properties, such as the electron density, the electronic flux density, other derived observables, and their

analytical integrals, allowing for a balanced study of charge migration processes. The modular struc-

ture of detCI@ORBKIT allows to straightforwardly implement other (non-standard) quantities. This

opportunity was used in Paper A2 and Paper A3 to improve the methodology of Paper A1 to

consider the full wave functions, which significantly enhanced the quality of the results. In the second

part of Paper B1, we applied detCI@ORBKIT to a few benchmark systems: the trihydrogen cation

and the lithium hydride molecule. We initiated a charge migration process by preparing superposition

states. Our proposed analysis toolset combined with different visualization techniques provided deep

insight into mechanistic details. Here, especially the electronic flux density has proven as valuable tool

allowing for an intuitive interpretation of the charge migration mechanism. The last part of Paper B1

focused on the convergence of the electronic flux density. By comparing the electron flow, i.e., the time

derivative of the electron density, with the divergence of the electronic flux density, the basis set con-

vergence was benchmarked for full CI calculations of the trihydrogen cation. The convergence with

respect to the electronic structure theory method was then tested with CI singles, RAS-CI, CASSCF,

and full CI calculations for the lithium hydride molecule. While the qualitative features of the elec-

tronic flux density turned out to be very robust with respect to the method and the atomic basis set,

except for the minimal basis set, the quantitative convergence appeared to be quite slow. Thus, for

quantitative statements concerning the flux of electrons, the focus of the analysis should be laid on

the electron density and derived quantities, as done in Papers A1–A3. For mechanistic studies, the

electronic flux density is preferable.

With increasing system size, the computational effort of the high-level wave function-based quantum

chemical treatment required for the mechanistic study of charge migration processes quickly becomes

prohibitively large. For this purpose, we presented a hybrid density functional theory/configuration

interaction methodology in Paper B2. In this novel procedure, which complements the functionalities

of detCI@ORBKIT, we proposed to use LR-TDDFT calculations to generate a basis of pseudo-CI

vectors and energies to describe the N -electron dynamics. While retaining the simple picture of a CI

singles wave function, the energetic description of the system can be significantly improved at about the

cost of a CI singles calculation. In Paper B2, the applicability of this approach was demonstrated for

the lithium hydride molecule. Here, we benchmarked results on the B2-PLYP level of theory against CI
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Figure 4.2: (a-c) Representative snapshot of the electronic flux density (left panels, in units of Eh/~a2
0) and

the difference density (right panels, in units of 1/a3
0) for the charge migration in the lithium hydride molecule

applying different quantum chemical methods: (a) full CI, (b) CI singles, and (c) hybrid TDDFT/CI singles
methodology on the B2-PLYP level of theory. (e,f) Representative snapshot of the electronic flux density in
the alizarin molecule after a broadband laser excitation applying the hybrid TDDFT/CI singles methodology
on the B3LYP level of theory. Two thresholds are applied to the pseudo-CI basis: (e) |Dr(λ)

a | > 10−3 and (f)
|Dr(λ)

a | > 10−1. The vectors are colored according to their magnitude, and the grey isosurface corresponds to
the magnitude 3 · 10−4Eh/~a2

0. These depictions are adapted from Paper B2.

singles and full CI reference calculations.[B1] The results are depicted in Figs. 4.2a–4.2c, and two main

conclusions can be drawn: Firstly, as expected, a good choice of functional can improve the energetic

description to almost the full CI reference, and secondly, the character of the pseudo-CI wave function

is very similar to the CI singles reference wave function. Accordingly, as for the CI singles calculations,

the respective observables agree semi-quantitatively with the full CI reference. In order to demonstrate

the scalability of our approach, we simulate a broadband laser excitation in an alizarin molecule. Once

again, the flux density directly gives valuable insights into the charge migration mechanism, as can

be seen from the representative snapshot depicted in Fig. 4.2d. To further improve the scalability,

we tested a truncation of the pseudo-CI basis (cf., Figs. 4.2d and 4.2e) and proved that except for

minor features, the electronic flux density is very robust even for very stringent threshold values. This

strategy extends the scope of our method for reconstructing the electronic flux density to larger, even

nanoscale systems.

Clearly, the electronic flux density is a potentially very useful tool for visualizing electron dynamics.

Unfortunately, for vibrational nuclear quantum dynamics in the electronic ground state, this quantity

vanishes, since in the Born-Oppenheimer approximation, the electrons are always in a real-valued

stationary state. In Paper B3, we illuminated this counterintuitive result in detail. Starting from the

Liouville-von Neumann equation, we tried to derive the electronic continuity equation following two
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Figure 4.3: (a) Conceptual sketch of the Born-Oppenheimer broken symmetry (BOBS) ansatz. The density
matrix is translated pairwise anti-symmetrically in the nuclear configuration space. (b) Representative snapshot
of the electronic flux density of the hydrogen molecular ion H+

2 vibrating in its electronic ground state 2Σ+
g

computed with the BOBS ansatz. These depictions are adapted from Paper B3.

different routes — yielding two contradictory results. To resolve this issue and to restore the intuitive

picture of electrons following the nuclei, we proposed to correlate the electronic with the nuclear motion

by translating the density matrix pairwise anti-symmetrically in the nuclear configuration space, as

sketched in Fig. 4.3a. Our novel Born-Oppenheimer broken symmetry (BOBS) ansatz yields a unique

definition of an electronic flux density. By varying the so-called correlation length, i.e., the length

of the translation, this real-valued electronic flux density can be forced to approximately fulfill the

electronic continuity equation. Certainly, applying a translation operator to the density matrix in

position space can be computationally very demanding. Thus, in a further step, we introduced a Taylor

series expansion to second order to our BOBS ansatz, where the correlation length only acts as a linear

parameter. This is computationally significantly more efficient while yielding nearly the same results

as the non-linear BOBS ansatz. Additionally, the Taylor series expansion revealed very interesting

connections to non-adiabatic couplings. When comparing our BOBS ansatz in the non-linear form to

the time-shift flux of Okuyama and Takatsuka,[74] it becomes clear that both approaches follow the

same idea. Specifically, the time-shift flux arises from a time delay, which can be interpreted as a

spatial translation in the nuclear configuration space in the context of ab-initio molecular dynamics. In

contrast, applying a time delay in quantum dynamics leads to a vanishing flux density. Concerning our

BOBS ansatz in the linearized form, it can be shown that the formula for the electronic flux density

is equivalent to the formula derived by Diestler[77] following a completely different, considerably more

complex route involving excited states and perturbation theory. Consequently, all three approaches,

the BOBS ansatz, the time-shift flux, and the perturbative approach by Diestler, are closely related.

On the other hand, only the BOBS ansatz gives access to an approximate electronic continuity, and

thus, provides an error estimate for the quality of the mechanistic predictions.

In the subsequent part of Paper B3, we applied our BOBS ansatz to the hydrogen molecular ion H+
2

vibrating in its electronic ground state 2Σ+
g , since for this particular scenario, non-Born-Oppenheimer
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Figure 4.4: (a) Cartoon of the OPE-GNR nanojunction. The application of an external static electric field
~E causes a rotation of the central nitrophenyl group, and thus, switches the junction from a conductive (ON,
Θ = 0◦) to a less conductive conformation (OFF, Θ = 90◦). The rotation causes a breakdown of the delocalized
π-system. (b) The frontier molecular orbitals for the two logical states. (c) The potential energy curve as a
function of the dihedral angle Θ with (grey and red curves) and without external electric field (blue curve) and
a sketch of the proposed switching cycle. These depictions are adapted from Papers C1.

results are available as a reference.[63] The investigation showed that the numerical error minimization

reliably leads to a unique minimum, and that the BOBS ansatz only negligibly alters the electron flow.

Thus, the latter still agrees very well with the non-Born-Oppenheimer results. The electronic flux

density (cf. Fig. 4.3b), although it is too localized and circles around the nuclei, agrees qualitatively

with the non-Born-Oppenheimer results and captures the main features, i.e., the correct symmetry

properties and nodal planes, at all times. In summary, the BOBS ansatz is a transparent, generally

applicable formalism which yields semi-quantitative and validatable results. Moreover, the numerical

procedure behind this approach is robust and simple. This lays the foundation for future detailed

mechanistic investigations on a variety of chemical reactions, such as Diels-Alder reactions or pericyclic

reactions.

The last part of the dissertation focused on electron dynamics through a single-molecule-graphene-

nanoribbon junction driven by a potential bias. Our selected nanojunction is sketched in Fig. 4.4a and

consists of nitro-substituted oligo-(phenylene ethynylene) covalently bound to graphene nanoribbon

leads (OPE-GNR). It was proposed and first studied by Agapito and Cheng.[134] They applied the

NEGF formalism and found two distinct conformers or logical states that differ significantly in their

conductivity: one planar conducting (ON, Θ = 0◦) and one perpendicular less conducting conformer

(OFF, Θ = 90◦). As visualized in Fig. 4.4b, the rotation of the central nitrophenyl group about the

triple bound breaks the conjugation of the delocalized π-system and leads to a drastic decrease in the

conductivity of the graphene wire. In Paper C1, we aimed at describing the dynamical switching of

this system using dissipative quantum dynamics. First, we optimized both logical states and modeled

the full reaction path between the two conducting conformers ON and ON’ (Θ = 180◦) using a nudged

elastic band calculation. These simulations and a normal mode analysis unambiguously identified

the OFF conformer as transition state as can be seen from the blue curve in Fig. 4.4c. Fortunately,
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Figure 4.5: Streamline plot of the electronic current density through the OPE-GNR nanojunction (see
Fig. 4.4a) at a bias voltage of U = 4 V for both of its logical states: ON (Θ = 0◦, upper panel) and OFF
(Θ = 90◦, lower panel). The current density is integrated over the z-coordinate and color coded according to
its magnitude. All values smaller than 0.05µA/Å are neglected. These depictions are adapted from Papers C2.

we discovered that the dipole moment of the central nitrophenyl group can be used to access this

energetically unfavored conformer by applying a static external electric field in top-gate position, in

the spirit of a traditional field effect transistor. Based on these findings, we parameterized a microscopic

model Hamiltonian for the quasi-one-dimensional reaction path coupled to the bath of lead phonons

from first principles using DFT. In the subsequent part of Paper C1, the full switching cycle was

simulated. As soon as the electric field is turned on (see red curve in Fig. 4.4c), the OFF conformer

becomes the energetically favored structure. This initiates a nuclear dynamics that is dominated by

three characteristic time regimes: a coherent, a delocalization, and a vibrational–relaxation regime.

In the first regime, the oligomer unit oscillates harmonically between ON and ON’, before the wave

packet spreads out over a wide angular range in the delocalization regime. In the last regime, the

highly rotationally excited wave packet relaxes to its equilibrium geometry — the OFF conformer. If

now the field is again turned off, the system relaxes back to a conducting conformer following the same

mechanism. Analysis of the individual relaxation channels showed that the energy is mainly dissipated

to only a few transversal acoustic phonons of the graphene nanoribbon frame. Since the dynamics

proceeds without any memory effects, the device and thus the conductivity can be reliably switched

from one logical state to the other in the nanosecond time regime. To reduce this time scale, one could

either decrease or increase the size of the central unit. While the former reduces the moment of inertia

and allows for a faster relaxation, the latter increases the bulkyness of the central group and reduces

its mobility.

In Paper C2, we investigated the spatially resolved electron transport through the OPE-GNR

nanojunction driven by a chemical potential. The starting point for this study was the driven Liouville-

von Neumann (DLvN) formalism for time-dependent electronic transport calculations. Supplemented

by a novel molecular orbital localization scheme based on standard DFT calculations, we were able to
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simulate the electron dynamics for both logical states under the influence of a time-dependent linear

bias voltage ramp. Although both conformers have the same energy spectrum, only the ON conformer

possesses conductive channels from one lead to the other. Thus, as the bias voltage increases, these

channels are sequentially populated leading to steps in the current-voltage characteristic. In contrast,

the OFF conformer remains non-conductive, i.e., the current-voltage characteristic hardly shows any

observable increase. The results agree qualitatively with reference NEGF calculations. In order to

converge our time-dependent results to this reference (The DLvN formalism is an approximation to the

NEGF theory.[144]), we parameterized a tight-binding Hamiltonian from our DFT results and extended

the finite contacts by additional lead units. For the subsequent detailed mechanistic study of the

electron dynamics associated with this transport process, we exploited the transparency of the DLvN

approach and used the directly accessible density matrix to compute the electronic flux density. In

general, the electron dynamics proceeds through the π-system mainly along the bonds. While for

the OFF conformer (see lower panel in Fig. 4.5), the electronic motion is undirected and no flux

density passes the central unit, for the ON conformer (see upper panel in Fig. 4.5), the electrons

flow directed from one side of the junction to the other. Consider now only the latter, conducting

case. The electronic flux density is, as expected, largest at the bottleneck of the nanojunction, i.e., on

the triple bonds connecting the leads with nitrophenyl group. Interestingly, due to a non-zero angle

between the overall electron transport direction and the direction prescribed by the central unit, the

electronic flux density is reflected at the edges of the GNR leads. This forces the flux density to follow

a wide meandering path along the leads. Potentially, this finding could be exploited to enhance the

conductance properties of this device by bringing both transport axes into coincidence.

To draw a conclusion, during my doctoral studies, I co-developed a robust and versatile set of

tools to analyze and visualize electrons in motion. The application of this framework has proven

to be very useful for the qualitative and quantitative understanding of a wide range of processes.

Particularly noteworthy is the electronic flux density because the study of this quantity potentially

opens up the opportunity to facilitate the understanding of chemical reactions or to enhance the

properties of molecular electronic components.
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