ZYKLISCHE REFLEXIONEN TERRIGENER SEDIMENTE IM PERU-CHILE-GRABEN

Auswertung von 2D Offshore Steilwinkel-Reflexionsseismik zwischen 36° S und 40° S

Dissertation

zur Erlangung des Doktorgrades am Fachbereich Geowissenschaften der Freien Universität Berlin

> vorgelegt von Klausheinz Rauch

Berlin, November 2004

Tag der Disputation: 18. Februar 2005

Gutachter: Prof. Dr. S. A. Shapiro Prof. Dr. R. Kind

ZUSAMMENFASSUNG

Die im Rahmen des Projektes "Subduction Processes off Chile" (SPOC) registrierten seismischen Daten stellen eine Ergänzung der bereits vorliegenden Informationen über die Subduktion der pazifisch-ozeanischen Nazca-Platte unter den südamerikanischen Kontinent und generell über aktive konvergente Plattenränder dar, die in mehr als zwei Jahrzehnten gesammelt wurden. Insbesondere wird das Untersuchungsgebiet des Sonderforschungsbereiches SFB267 (Deformation Processes in the Andes) durch diese offshore Daten nach Süden erweitert.

Bisherige Arbeiten an reflexionsseismischen Daten aus dem Gebiet zwischen 28°-44°S (SPOC-Messgebiet) vor der Küste Chiles beschränken sich auf eine Messung aus dem Jahr 1988 (ausgeführt von Lamont-Doherty Geological Observatory in Zusammenarbeit mit der nationalen Ölgesellschaft Chiles Empresa Nacional del Petróleo (ENAP)). Die damals aufgenommenen sechs seismischen Profile sind von Bangs und Cande (Bangs et al., 1997) sowie von Diaz-Naveas (Diaz-Naveas, 1999) bearbeitet worden.

Im Rahmen dieser Dissertation sind drei offshore Profile aus dem SPOC-Messgebiet A, die jeweils einen Landanschluss haben, im Zeit- und Tiefenbereich bearbeitet worden, um ein möglichst gutes Bild der geologischen Strukturen des Untergrundes zu bekommen. Mit Hilfe einer strukturellen Interpretation wurden die Störungsmuster kartiert und der Nachweis geführt, dass die im Tiefseegraben (trench) deponierten terrigenen Sedimente auf Grund der starken Haftreibung die Konvergenzbewegung der Nazca-Platte hinsichtlich Richtung und Geschwindigkeit mit ausführen.

Die auf einigen Profilen auftretenden zyklischen Reflexionssequenzen in den Sedimenten werden untersucht und globale paläoklimatische Variationen im Quartär als Ursache identifiziert. Dabei wird der Nachweis der Zyklizität mit Hilfe von Kreuzkorrelationen eines aus den seismischen Daten extrahierten wavelets mit den seismischen Spuren geführt. Über die mittlere Sedimentationsrate und alternativ über Richthorizonte, deren Tiefenlage mit der Tiefe der Maxima der Korrelationsfunktion übereinstimmen, wird das Alter dieser Horizonte unter Einbeziehung der Konvergenzrate der Nazca-Platte abgeschätzt und die Horizonte in eine Zeitskala eingehängt. Durch den Vergleich der Korrelationsfunktion mit paläoklimatischen Parametern wie Temperatur und CO₂-Gehalt (aus den Vostok-Kurven) werden vier Zyklen mit einer Periode von ca. 120.000 Jahren über einen Zeitraum von 420.000 Jahren identifiziert und den Milankovitch-Zyklen zugeordnet.

Das unterschiedliche Reflexionsbild der trench-Sedimente auf den drei Profilen wird mit dem lokalen Sedimentationsmechanismus und dem Transport des Sedimentmaterials innerhalb des trench begründet.

SUMMARY

Over more than two decades information was gathered about active convergent margins and particularly about the subduction of the oceanic Nazca plate under the South American continent. The seismic offshore data acquired as part of the project 'Subduction Processes off Chile' (SPOC) add new aspects to the already available results and is an enlargement of the target zone of the German Collaborative Research Centre SFB267 (Deformation Processes in the Andes) southwards.

Recent investigations on reflection seismic data from the area between 28°-44°S latitude (SPOC target area) off the Chilean coast are limited to the data acquisition in the year 1988 (operated by the Lamont-Doherty Geological Observatory in cooperation with the national oil corporation of Chile Empresa Nacional del Petróleo (ENAP)). At that time six lines have been acquired, and the data have been processed by Bangs and Cande (Bangs et al., 1997) as well as by Diaz-Naveas (Diaz-Naveas, 1999).

As part of this dissertation three offshore profiles, selected from the SPOC data set, which have an extension on land, were processed in the time domain as well as in the depth domain to get an image of the subsurface geological structure. By applying a structural interpretation the fault pattern has been determined. It will also be shown that the terrigenous sediments deposited in the trench are moving with the same convergence rate and in the same direction as the Nazca plate due to the strong friction.

The periodic reflections in the trench sediments seen on some of the lines are investigated and it will be shown that these cycles are caused by global paleoclimatic variations in the Quaternary. To prove this, a cross-correlation technique using an extracted wavelet and seismic traces is applied. Horizons in the same depth as the maxima of the crosscorrelation function are marked. The age of the horizons is estimated by using an average sedimentation rate and, alternatively, by using the convergence distance of these horizons. These values allow to fit the horizons to a time scale. Comparing the maxima of the cross-correlation function with paleoclimatic parameters like the temperature and the CO_2 content (taken from the Vostok curves) it is possible to identify four glacialinterglacial cycles with a period of approx. 120,000 years over a time range of 420,000 years, which seem to be related to the Milankovitch cycles.

The different images of the trench sediments seen on the processed lines seem to be caused by the local sedimentation mechanism in the trench and by the distance, the material is transported over to the deposit sites.

Inhaltsverzeichnis

Zusammenfassung Summary

1	Einlei	tung	8
	1.1	Übersicht	8
	1.2	Zielsetzung dieser Arbeit	10
2	Beart	eitung der Seismischen Daten	11
	2.1	SONNE-Meßfahrten SO161 Leg 2 und 3	12
	2.2	Seismische Akquisition	14
	2.3	Datenbasis und Geometrie	15
	2.4	Technische Einrichtungen	16
	2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6	Geophysikalische Verfahren Sphärische Divergenz Frequenzfilterung Editing Dekonvolution Multiplen-Unterdrückung Migration	17 17 17 18 18 18 18
	2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7	Seismische Geschwindigkeiten Stapelgeschwindigkeiten (Zeitbereich) Post-stack Migrationsgeschwindigkeiten (Zeitbereich) Pre-stack Migrationsgeschwindigkeiten (Zeitbereich) Geschwindigkeitsmodell für die Laufzeit-Tiefen-Streckung (Tiefenbereich) Geschwindigkeitsfeld für die Post-stack Migration (Tiefenbereich) Geschwindigkeitsmodell für die Pre-stack Tiefenmigration (Tiefenbereich) Geschwindigkeitsmodell abgeleitet aus Refraktionsmessungen (Tiefenbereich)	23 24 24 25 26 26 26 27 28
	2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6	Ergebnisse der Datenbearbeitung Stapelung und Pre-stack Zeitmigration (Profil 022) Pre-stack Tiefenmigration und Tiefen/Zeit-Transformation (Profil 022) Stapelung und Pre-stack Zeitmigration (Profil 046) Pre-stack Tiefenmmigration und Tiefen/Zeit-Transformation (Profil 046) Stapelung und Pre-stack Zeitmigration (Profil 3842) Pre-stack Tiefenmigration und Tiefen/Zeit-Transformation (Profil 3842)	30 31 32 33 34 35 36
3	Struk	turelle Interpretation	37
	3.1	Reflexionshorizonte	38
	3.2	Tektonische Störungen	40
4	Analy	se der Ergebnisse	42
	4.1	Seismische Ergebnisse	42
	4.2	Geometrie des Peru-Chile-Grabens	47
	4.3	Haftreibung zwischen Sedimenten und ozeanischer Kruste	51

5 Zy	yklische Sedimentation	54
5.1	Sedimentation im Peru-Chile-Graben	55
5.2	Zyklische Reflexionen in den SPOC-Daten	57
5.3	Nachweis der Zyklizität mittels Kreuzkorrelation	58
5.4 5.4 5.4	 Altersbestimmung ausgewählter Horizonte 4.1 Altersbestimmung über die mittlere Sedimentationsrate 4.2 Altersbestimmung über Reflexionshorizonte 	61 61 62
5.5 5.5 5.5 5.5	 Vergleich der Reflexionszyklen mit globalen klimatischen Perioden 5.1 Vostok-Projekt 5.2 Epica-Projekt 5.3 Seismische Kreuzkorrelationsfunktion und Vostok-Temperaturkurve 5.4 Proximale und distale Sedimentation im trench 	64 64 66 68 70
6 Sc	chlussfolgerungen	76
7 Li	teraturverzeichnis	78
8 Da	anksagung	85
9 G	lossar	86
10	0 Anhang	
10.1	Datenbasis	88
10.2	Aufnahmeparameter	89
<i>10.3</i> 10 10	Processing-Sequenz im Zeitbereich0.3.1Standardbearbeitung0.3.2Pre-stack Migration im Zeitbereich	<i>90</i> 90 91
10.4	Processing Sequenz im Tiefenbereich	91
10.5	Berechnung der scheinbaren Konvergenzrate	93
10.6	Archivierung	95
10.7	Curriculum Vitae	97

Abb. 2-1: Geographische Lage des SPOC Meßgebietes	
Abb. 2-2: Geographische Lage der 23 seismischen Profile im Abschnitt A	14
Abb. 2-3: Farbskala für die Geschwindigkeitsfelder	
Abb. 2-4: Stapelgeschwindigkeiten	
Abb. 2-5: Post-stack Migrationsgeschwindigkeiten im Zeitbereich	25
Abb. 2-6: Pre-stack Migrationsgeschwindigkeiten im Zeitbereich	25
Abb. 2-7: Durchschnittsgeschwindigkeiten im Tiefenbereich	
Abb. 2-8: Post-stack Migrationsgeschwindigkeiten im Tiefenbereich	
Abb. 2-9: Pre-stack Migrationsgeschwindigkeiten im Tiefenbereich	
Abb. 2-10: Refraktions-Geschwindigkeitsmodell im Tiefenbereich	
Abb. 2-11: Geglättetes Refraktions-Geschwindigkeitsmodell im Tiefenbereich	29
Abb. 2-12: Geglättetes Reflexions-Geschwindigkeitsmodell im Tiefenbereich	
Abb. 2-13: Profil 022 Stapelung (links) und Pre-stack Zeitmigration (rechts)	
Abb. 2-14: Profil 022 Pre-stack Tiefenmigration (links) und Tiefen/Zeit-Transformation (r	echts).32

Abb. 2-15: Profil 046 Stapelung (links) und Pre-stack Zeitmigration (rechts)	33
Abb. 2-16: Profil 046 Pre-stack Tiefenmigration (links) und Tiefen/Zeit-Transformation (rechts	s).34
Abb. 2-17: Profil 3842 Stapelung (links) und Pre-stack Zeitmigration (rechts)	35
Abb. 2-18: Profil 3842 Pre-stack Tiefenmigration (links) und Tiefen/Zeit-Transformation (rech	its)36
Abb. 3-1: Profil 3842 mit markierten Horizonten und tektonischen Störungen (Ausschnitt)	
Abb. 3-2: Reflexionshorizonte der Profile 022 (o.), 046 (m.) und 3842 (u.)	39
Abb. 3-3: Tektonische Störungen auf den Profilen 022 (o.), 046 (m.) und 3842 (u.)	41
Abb. 4-1: Linie 3842 Post-stack Zeitmigration (Ausschnitt)	43
Abb. 4-2: Linie 3842 Pre-stack Zeitmigration (Ausschnitt)	43
Abb. 4-3: Linie 3842 Post-stack Tiefenmigration (Ausschnitt)	45
Abb. 4-4: Linie 3842 Pre-stack Tiefenmigration (Ausschnitt)	45
Abb. 4-5: Linie 3842 Pre-stack Zeitmigration (Ausschnitt)	46
Abb. 4-6: Linie 3842 Pre-stack Tiefenmigration (Tiefen/Zeit-transformiert, Ausschnitt)	46
Abb. 4-7: Pelagische und terrigene Sedimente	48
Abb. 4-8: Linie 022 trench Sedimente	49
Abb. 4-9: Linie 046 trench Sedimente	49
Abb. 4-10: Linie 3842 trench Sedimente	49
Abb. 4-11: Schematische Darstellung des trench	50
Abb. 4-12: Haftreibung zwischen Nazca-Platte und trench-Sedimenten	52
Abb. 4-13: Simulierter Shift zwischen der Nazca-Platte und den trench-Sedimenten	53
Abb. 5-1: Tiefenlage der Nazca-Platte und des trench mit Sedimenten	55
Abb. 5-2: Trench-Sedimente des tiefenmigrierten Profils 3842	58
Abb. 5-3: Visueller Vergleich der tiefenmigrierten Horizonte	59
Abb. 5-4: Linie 3842 Reflexionen und Kreuzkorrelationsfunktion	60
Abb. 5-5: Altersbestimmung über Reflexionshorizonte	63
Abb. 5-6: Vostok-Eiskern: abgeleitete Parameter (aus Petit et al., 1999)	65
Abb. 5-7: Vostok-Eiskern: Temperaturverlauf und CO ₂ Gehalt	66
Abb. 5-8: Vergleich der Epica-Dome-C-Daten mit den Vostok-Daten (aus Epica, 2004)	67
Abb. 5-9: Vostok-Kurven (Temp. & CO ₂ , l.), Kreuzkorrelation (m.) und Seismik (r.)	69
Abb. 5-10: Reflexionen der trench-Sedimente (Profil 022(o.), 046(m.), 3842(u.))	70
Abb. 5-11: Linie 022 Reflexionen und Kreuzkorrelationsfunktion	71
Abb. 5-12: Linie 046 Reflexionen und Kreuzkorrelationsfunktion	72
Abb. 5-13: Lage der Profile mit trench, Schelf- und Küstenbereich	74
Abb. 10-1: Energiequelle (airgun array)	89
Tabelle 2-1: Liste der Nullsetzungen	18
Tabelle 4-1: Geometrische Parameter des Peru-Chile-Grabens auf ausgewählten Profilen	50
Tabelle 4-2: Geometrische Parameter des Axialkanals auf ausgewählten Profilen	51
Tabelle 5-1: Sedimentationsrate, abgeleitet aus der Konvergenzrate der Nazca-Platte	62
Tabelle 5-2: Alter der Reflexionshorizonte	63
Tabelle 5-3: Auswertbare Komponenten im Vostok-Eiskern (aus Petit et al., 1999)	65
Tabelle 5-4: Alter der Maxima von Vostok-Kurve (Temperatur) und der Kreuzkorrelation	68
Tabelle 10-1: Ausgewählte Seismische Linien im SPOC Meßgebiet, Abschnitt A	88
Tabelle 10-2: Aufnahme-Parameter	89